US20080114277A1 - Porous bioresorbable dressing conformable to a wound and methods of making same - Google Patents
Porous bioresorbable dressing conformable to a wound and methods of making same Download PDFInfo
- Publication number
- US20080114277A1 US20080114277A1 US11/983,548 US98354807A US2008114277A1 US 20080114277 A1 US20080114277 A1 US 20080114277A1 US 98354807 A US98354807 A US 98354807A US 2008114277 A1 US2008114277 A1 US 2008114277A1
- Authority
- US
- United States
- Prior art keywords
- dressing
- wound site
- wound
- solvent
- reduced pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000003361 porogen Substances 0.000 claims abstract description 84
- 229920000642 polymer Polymers 0.000 claims abstract description 63
- 238000011065 in-situ storage Methods 0.000 claims abstract description 10
- 238000000465 moulding Methods 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 6
- 206010052428 Wound Diseases 0.000 claims description 187
- 208000027418 Wounds and injury Diseases 0.000 claims description 187
- 239000012530 fluid Substances 0.000 claims description 49
- 239000002904 solvent Substances 0.000 claims description 48
- 239000011148 porous material Substances 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 37
- 239000002253 acid Substances 0.000 claims description 24
- 150000003839 salts Chemical class 0.000 claims description 24
- 239000004014 plasticizer Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 20
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- 230000029663 wound healing Effects 0.000 claims description 11
- 230000035876 healing Effects 0.000 claims description 10
- 230000008467 tissue growth Effects 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 4
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 238000002560 therapeutic procedure Methods 0.000 abstract description 31
- 230000008569 process Effects 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 28
- 239000000463 material Substances 0.000 description 25
- 210000001519 tissue Anatomy 0.000 description 18
- 238000004891 communication Methods 0.000 description 16
- 235000017557 sodium bicarbonate Nutrition 0.000 description 14
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 229920000747 poly(lactic acid) Polymers 0.000 description 8
- 229940065514 poly(lactide) Drugs 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000000643 oven drying Methods 0.000 description 7
- 229920001610 polycaprolactone Polymers 0.000 description 7
- 102000008186 Collagen Human genes 0.000 description 6
- 108010035532 Collagen Proteins 0.000 description 6
- 230000033115 angiogenesis Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 229920001436 collagen Polymers 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- -1 poly(lactide) Polymers 0.000 description 6
- 239000013557 residual solvent Substances 0.000 description 6
- 238000001291 vacuum drying Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000007873 sieving Methods 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 230000002491 angiogenic effect Effects 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 239000003911 antiadherent Substances 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000001087 glyceryl triacetate Substances 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical class CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920005594 polymer fiber Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- 239000001069 triethyl citrate Substances 0.000 description 2
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 2
- 235000013769 triethyl citrate Nutrition 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- YUXIBTJKHLUKBD-UHFFFAOYSA-N Dibutyl succinate Chemical compound CCCCOC(=O)CCC(=O)OCCCC YUXIBTJKHLUKBD-UHFFFAOYSA-N 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920001273 Polyhydroxy acid Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229960002097 dibutylsuccinate Drugs 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- VKNUORWMCINMRB-UHFFFAOYSA-N diethyl malate Chemical compound CCOC(=O)CC(O)C(=O)OCC VKNUORWMCINMRB-UHFFFAOYSA-N 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 230000010595 endothelial cell migration Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000037313 granulation tissue formation Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 150000004701 malic acid derivatives Chemical class 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- KSCKTBJJRVPGKM-UHFFFAOYSA-N octan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-] KSCKTBJJRVPGKM-UHFFFAOYSA-N 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/00987—Apparatus or processes for manufacturing non-adhesive dressings or bandages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/425—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/64—Use of materials characterised by their function or physical properties specially adapted to be resorbable inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/915—Constructional details of the pressure distribution manifold
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00365—Plasters use
- A61F2013/00536—Plasters use for draining or irrigating wounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00902—Plasters containing means
- A61F2013/00927—Plasters containing means with biological activity, e.g. enzymes for debriding wounds or others, collagen or growth factors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1005—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by inward collapsing of portion of hollow body
Definitions
- the present invention relates generally to methods, systems and compositions for making and using porous bioresorbable dressing in various configurations.
- Wound healing may be broadly split into three overlapping basic phases: inflammation, proliferation, and maturation.
- the inflammatory phase is characterized by hemostasis and inflammation.
- the next phase consists mainly of epithelialization, angiogenesis, granulation tissue formation, and collagen deposition.
- the final phase includes maturation and remodeling.
- the complexity of the three step wound healing process is augmented by the influence of local factors such as ischemia, edema, and infection, and systemic factors such as diabetes, age, hypothyroidism, malnutrition, and obesity.
- the rate limiting step of wound healing is often angiogenesis.
- Wound angiogenesis is marked by endothelial cell migration and capillary formation where the sprouting of capillaries into the wound bed is critical to support the regenerating tissue.
- the granulation phase and tissue deposition require nutrients supplied by the capillaries. Impairments in wound angiogenesis therefore may lead to chronic problem wounds.
- angiogenic phenotype is a complex process that requires a number of cellular and molecular events to occur in sequential steps. Some of these activities include endothelial cell proliferation, degradation of surrounding basement membrane, migration of endothelial cells through the connective tissue stroma, formation of tube-like structures, and maturation of endothelial-lined tubes into new blood vessels.
- Angiogenesis is controlled by positive and reduced regulators.
- cells associated with tissue repair such as platelets, monocytes, and macrophages, release angiogenic growth factors, such as vascular endothelial growth factor (VEGF) into injured sites that initiate angiogenesis.
- VEGF vascular endothelial growth factor
- Reduced pressure therapy generally refers to application of a pressure less than the ambient pressure at the wound site, where the magnitude and time period of the reduced pressure treatment is sufficient to promote healing.
- devices used to apply reduced pressure include those popularized by Kinetic Concepts, Inc. of San Antonio, Tex., by its commercially available VACUUM ASSISTED CLOSURE® or V.A.C.® product line.
- the reduced pressure induced healing process has been described in U.S. Pat. Nos. 5,636,643 and 5,645,081, the disclosures of which are incorporated fully by reference.
- the reduced pressure serves to promote the migration of epithelial tissue and subcutaneous tissue from the healthy tissue towards the wound site.
- Typical reduced pressure therapy includes application of reduced pressure to a wound site through a dressing that serves as a manifold to distribute the reduced pressure.
- the dressing is sized to fit the existing wound, placed in contact with the wound, and then periodically replaced with smaller pieces of dressing as the wound begins to heal and becomes smaller. While use of reduced pressure therapy with the dressing has been highly successful, there still exists various difficulties with this process. For example, it may be difficult to obtain a dressing of a proper width, length or depth to properly fit the wound. Further, as the dressing is removed it may also remove healthy tissue, thereby causing further trauma to the wound site.
- biodegradable materials to make the dressing, thereby resulting in a dressing that need not be removed from the wound site.
- biodegradable polymer is formed in advance into a particular shape. Individual wounds, however, are of inconsistent shapes and sizes.
- bioresorbable dressing containing open cell pores where the dressing is designed to readily conform to the size and shape of the wound site.
- the invention produces methods, systems and compositions for making and using porous bioresorbable dressing in various configurations.
- One embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy, whereby the pore formation occurs in situ.
- a bioresorbable polymer is dissolved in an appropriate solvent and mixed with stoichiometric amounts of a porogen. Residual solvent is removed.
- the resulting dressing is then placed into the wound by being hand molded to fill the shape and size of the wound.
- the resulting dressing may be shaped into a rope which is then coiled into or onto the wound site to fit the shape and size of the wound.
- the wound fluids react with the porogen in the dressing, creating pores within the dressing in situ.
- a drape for sealing the dressing is placed over the dressing at the wound site.
- a reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- Another embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy.
- a bioresorbable polymer is dissolved in an appropriate solvent and mixed with stoichiometric amounts of porogen. Residual solvent is removed.
- the dressing is then placed in a fluid, whereby the fluid reacts with the porogen in the dressing, creating pores within the dressing.
- the resulting dressing is then dried and placed into the wound site by being hand molded to the shape and size of the wound site.
- the resulting dressing may be shaped into a rope which is then coiled into the wound to fit the shape and size of the wound.
- a drape for sealing the dressing is placed over the dressing at the wound site.
- a reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- Another embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy, whereby the pore formation occurs in situ.
- a bioresorbable polymer and plasticizer are dissolved in an appropriate solvent and mixed with a porogen.
- the resultant mixture is then contacted with a non-solvent such that the whole mixture will precipitate out of solution as one dressing.
- the residual non-solvent is removed.
- the resulting dressing is placed into the wound site by being hand molded to the shape and size of the wound.
- the resulting dressing may be shaped into a rope that is then coiled into the wound to fit the shape and size of the wound.
- the wound fluids react with the porogen within the dressing, creating pores within the dressing in situ.
- a drape for sealing the dressing is placed over the dressing at the wound site.
- a reduced pressure delivery tube is fluidly connected to the dressing to delivery a reduced pressure to the wound site.
- Another embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy.
- a bioresorbable polymer and plasticizer are dissolved in an appropriate solvent and mixed with a porogen.
- the resulting mixture is then placed in a non-solvent.
- the non-solvent should be one that results in the polymer, plasticizer and the porogen precipitating out of solution.
- the residual non-solvent is removed.
- the resulting precipitant, i.e., dressing is placed in a fluid, whereby the fluid reacts with the porogen in the dressing, creating pores within the dressing.
- the resulting dressing is then dried and placed into the wound by being hand molded to the shape and size of the wound site.
- the resulting dressing may be shaped into a rope which is then coiled into or onto the wound to fit the shape and size of the wound site.
- a drape for sealing the dressing is placed over the dressing at the wound site.
- a reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- One embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy where the dressing also contains factors to promote tissue growth and/or healing.
- a bioresorbable polymer is dissolved in an appropriate solvent and mixed with stoichiometric amounts of a porogen. Residual solvent is removed.
- the resulting dressing is then placed into a fluid, whereby the fluid reacts with the porogen in the dressing, creating pores within the dressing. Once the reaction is complete, the dressing is removed from the fluid and allowed to dry.
- the resulting porous dressing may be coated with various substances, including but not limited to, cells, growth factors, or other nutrients that promote cell growth and/or healing.
- the porous dressing is then placed into the wound site by being hand molded to the shape and size of the wound.
- the resulting dressing may be shaped into a rope that is then coiled into or onto the wound to fit the shape and size of the wound site.
- a drape for sealing the dressing is placed over the dressing at the wound site.
- a reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- FIG. 1 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a bioresorbable polymer with a sodium biocarbonate and acid porogen system and its use in reduced pressure therapy.
- FIG. 2 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a bioresorbable polymer with a salt porogen system and its use in reduced pressure therapy.
- FIG. 3 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a porous dressing by use of a bioresorbable polymer and porogen system, and use of the porous dressing in reduced pressure therapy.
- FIG. 4 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a porous dressing by use of a bioresorbable polymer and porogen system, and use of the porous dressing in reduced pressure therapy.
- FIG. 5 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a porous dressing in the shape of a rope and use of the porous dressing in reduced pressure therapy.
- All embodiments of the invention include use of a bioresorbable dressing to be used in conjunction with reduced pressure therapy for treatment of a wound site.
- the invention is not necessarily limited by a specific location of the wound site, nor the type of tissue that is the target of reduced pressure therapy.
- the wound site treated by the instant invention may be a location upon or within the body in which it is desired to promote growth and/or healing of the tissue.
- the first embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer dressing and use of the dressing with reduced pressure therapy, as illustrated in FIG. 1 .
- one or more bioresorbable polymers is dissolved in an appropriate solvent ( 101 ).
- the type of solvent used will depend upon the bioresorbable polymer(s) selected.
- the bioresorbable polymer is a biocompatible material whose degradation by products can be bio assimilated or excreted via natural pathways in the body.
- the bioresorbable polymer may include, but is not limited to, lactide, poly(lactide) (PLA), glycolide polymers, poly(glycolic acid) (PGA), poly(lactide-co-glycolide) (PLGA), ethylene glycol/lactide copolymers, polycaprolactone, polyhydroxybutyrate, polyurethanes, polyphosphazenes, poly(ethylene glycol)-poly(lactide-co-glycolide) co-polymer, polyhydroxyacids, polycarbonates, polyamides, polyanhydrides, polyamino acids, polyortho esters, polyacetals, degradable polycyanoacrylates, polycarbonates, polyfumarates, degradable polyurethanes, proteins such as albumin, collagen, fibrin, synthetic and natural polyamino acids, polysaccharides such as alginate, heparin, and other naturally occurring biodegradable polymers of sugar units.
- lactide poly(l
- the polymer is a PLA:PCL copolymer, wherein the ratio of PLA to PCL may range from 100:0 to 0:100. In some preferred embodiments, the PLA:PCL copolymer ratio is about 90:10. In other embodiments, the PLA:PCL copolymer ratio is about 80:20. In yet another embodiment, the PLA:PCL copolymer ratio is about 70:30.
- a porogen system of sodium biocarbonate and acid is also added to the bioresorbable polymer mixture ( 102 ).
- the acid may be any acid that is not in liquid or gaseous form, thus it is in a solid or crystalline state. Examples of appropriate acids to use therein includes, but is not limited to, citric acid.
- the amount of sodium bicarbonate and acid used may be used in stoichiometic amounts. It is also envisioned that the sodium bicarbonate may be used in non stoichiometric amounts. Further, the amount of porogen used should be that which creates sufficient number of open cells or channels so that would fluids may be drained and the reduced pressure may continue unimpaired.
- the solvent is then removed from the resulting dressing ( 103 ).
- methods to remove the solvent include, but are not limited to, evaporation, oven drying, vacuum drying, hand kneading and the like.
- the solvent is evaporated over a period of about 48 hours.
- the dressing may be heat pressed to compress it and remove any residual bubbles that may exist.
- the plates of the hot press are preferably covered or coated with a material that inhibits the sticking of the dressing to the plates. Examples of appropriate materials include, for example, Teflon.
- the practitioner may cover the top and/or bottom plate(s) of the hot press with additional sodium bicarbonate and acid.
- the bottom surface of the dressing is coated with sodium bicarbonate and acid particles with a size of greater than about 500 ⁇ m and/or the top surface of the dressing is coated with sodium bicarbonate and acid particles with a size of about 90 to about 250 ⁇ m.
- an imprinting wafer as the top and/or bottom plate(s) to imprint pores, lines, or other design onto the top and bottom of the dressing.
- the dressing is heat pressed at a given temperature and pressure, then cooled.
- the dressing should be malleable.
- the dressing may be placed in the wound site by use of, for example, hand molding the dressing to fit the shape and size of the wound site ( 104 ).
- the reduced pressure therapy device is then fluidly connected to the wound site ( 105 ).
- the wound site and the dressing are covered by a drape made of a flexible substance.
- the drape is impermeable, thus blocking or slowing the transmission of either liquids or gas.
- the drape is made of a material that permits the diffusion of water vapor but provides an air-tight seal over the wound site when reduced pressure therapy is applied.
- the drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound.
- the drape is secured to the skin surface about the wound circumference by, for example, adhesive material.
- At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape.
- the reduced pressure delivery tube may be made of any medical-grade tubing material, including without limitation, paralyne-coated silicone or urethane. Further, the tubing may be coated with agents to prevent the tubing adhesion to the wound. For example, the tubing may be coated with heparin, anti-coagulants, anti-fibrogens, anti-adherents, anti-thrombinogens or hydrophilic substances.
- the reduced pressure delivery tube is placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- the dressing serves as a manifold to distribute the reduced pressure, assisting in applying reduced pressure to, delivering fluids to, or removing fluids from a wound site.
- the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing.
- the manifold facilitates even reduced pressure distribution over the entire wound site.
- the wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible.
- the drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface.
- At least one reduced pressure delivery tube is fluidly connected to the manifold.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids from the wound site then initiate an acid base reaction between the sodium bicarbonate and the acid, producing carbon dioxide gas ( 106 ).
- the carbon dioxide gas production will thus transform the dressing in situ into a three-dimensional structure with interconnected pores, or a “scaffold.” Further, fluids such as water may be added to the wound site to assist in the porogen system reaction.
- step ( 106 ) may occur before step ( 105 ).
- the pore size produced by the carbon dioxide gas production is about 50 to about 1,500 microns. In one embodiment, the pore size is between about 100 and about 500 microns. In another embodiment, the pore size is between about 100 and about 250 microns. It is understood that the size of the resulting pores is dependent upon the size of the sodium bicarbonate and acid particles and the amount of gas produced. As such, one may use any method to control the size of the sodium bicarbonate and acid particles, including by not limited to, sieving and centrifugation. In one embodiment, the sodium bicarbonate and acid are sieved through one or more screens to produce particles of a certain size. Thus, the pore size will be at a minimum the size of the particles produced by the sieving. If the dressing is malleable enough, the carbon dioxide gas produced will further increase the pore size.
- the amount of porogen system used and the particle size of the porogen system will control the percent porosity of the resulting porous dressing. It is understood that the percent porosity preferred by the practitioner may depend upon factors such as the mechanical properties of the materials used within the dressing, such as bioresorbable polymers, the cell infiltration desired, the presence or absence of wound healing or tissue treatment substances, and the like. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- Reduced pressure therapy is then applied to the wound ( 107 ). It is understood that the frequency of reduced pressure treatment depends upon the location of the body, the size and shape of the wound site, the exact dressing or dressing used, and the types of various agents applied to the site, if any. Further, depending upon the treatment regiment, reduced pressure therapy may be substantially continuous application or cyclical such that it oscillates the pressure over time. As the wound heals, the porous dressing is resorbed by the body and is replaced by granulating tissue.
- plasticizers is added to the bioresorbable polymer in the solvent ( 102 ).
- Plasticizers may be any material that enhances the deformability of a polymeric compound, adding softening and flexibility to the compound.
- the plasticizers may include, but are not limited to, cetyl alcohol esters, glycerol, glycerol esters, acetylated glycerides, glycerol monostearate, glyceryl triacetate, glycerol tributyrate, phthalates, dibutyl phthalate, diethyl phthalate, dimethyl phthalate, dioctyl phthalate, citrates, acetyl tributyl citrate, acetyl triethyl citrate, tributyl citrate, triethyl citrate, sebacates, diethyl sebacate, dibutyl sebacate, adipates, azelates, benzoates, vegetable oils,
- the second embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer dressing and use of the porous dressing for reduced pressure therapy, as illustrated in FIG. 2 .
- a bioresorbable polymer is dissolved in an appropriate solvent ( 201 ).
- the bioresorbable polymer may be made of one or more polymers that are bioresorbable. Suitable polymer include those polymers disclosed in other embodiments of the invention. In an alternate embodiment, one or more plasticizers are also added to the bioresorbable polymer.
- the bioresorbable polymer is then mixed with a crystalline or solid salt that serves as the porogen system ( 202 ).
- the invention is not limited by the type of salt, as long as the salt is of an appropriate particle size and dissolvable in a fluid, i.e., a gas, liquid, or flowable material, including but not limited to, colloids, dressings, a liquid, a slurry, a suspension, a viscous gel, a paste, a putty, and particulate solids.
- a fluid i.e., a gas, liquid, or flowable material
- colloids i.e., colloids, dressings, a liquid, a slurry, a suspension, a viscous gel, a paste, a putty, and particulate solids.
- appropriate salts used herein includes, but is not limited to, sodium chloride and potassium chloride.
- the amount of salt used may be used in stoichiometic amounts. It is also envisioned
- the solvent is then removed ( 203 ).
- methods to remove the solvent include, but are not limited to, evaporation, oven drying, vacuum drying, hand kneading and the like.
- the solvent is evaporated over a period of about 48 hours.
- the resulting dressing may be heat pressed to compress the dressing and remove any residual bubbles that may exist.
- the plates of the hot press are preferably covered or coated with a material that inhibits the sticking of the dressing to the plates. Examples of appropriate materials include, for example, Teflon.
- the practitioner may cover the top and/or bottom plate(s) of the hot press with additional particles of the salt, i.e., the porogen system.
- the bottom surface of the dressing is coated with salt particles of a size of greater than about 500 ⁇ m and the top surface of the dressing is coated with salt particles with a size of about 90 to about 250 ⁇ m.
- an imprinting wafer as the top and/or bottom plate(s) to imprint pores, lines, or other design onto the top and bottom of the dressing. The dressing is pressed at a given temperature and pressure, then cooled.
- the dressing should be malleable. As such, one may place the dressing in the wound site by use of, for example, hand molding the dressing in the wound site to fill the shape and size of the wound ( 204 ).
- the reduced pressure device is then fluidly connected to the wound site ( 205 ).
- the wound site and the dressing are covered by a drape made of impermeable substance that is flexible.
- the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure.
- the drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound.
- the drape is secured to the skin surface about the wound circumference by, for example, adhesive material.
- At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape.
- the reduced pressure delivery tube may be made of any medical-grade tubing material, including without limitation paralyne-coated silicone or urethane.
- the tubing may be coated with agents to prevent the tubing adhesion to the wound.
- the tubing may be coated with heparin, anti-coagulants, anti-fibrogens, anti-adherents, anti-thrombinogens or hydrophilic substances.
- the dressing serves as a manifold to distribute the reduced pressure.
- the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing.
- the manifold facilitates even reduced pressure distribution over the entire wound site.
- the wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible.
- the drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface.
- At least one reduced pressure delivery tube is fluidly connected to the manifold.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids which may include interstitial liquid in the tissues or liquid that has exuded from the tissue or its capillaries of the wound site, will then react with the porogen system, dissolving the salt particles and thus generating pores within the dressing in situ ( 206 ). Further, fluids such as water may be added to the wound site to assist in the porogen system reaction.
- the resulting spaces left by the dissolved salt result in a dressing with interconnected pores.
- the size of the resulting pores is dependent upon the size of the salt particles used. As such, one may use methods to control the size of the salt particles.
- the salt particles may be sieved through one or more screens to produce particles of a certain size. When the salt particle dissolves, the remaining pore is about the size of the salt particle.
- the pore size produced by the dissolved salt may be about 50 to about 500 microns. In another embodiment, the pore size is between about 100 and about 400 microns. In another embodiment, the pore size is between about 100 and about 250 microns.
- the amount of porogen system used and the particle size of the porogen system will control the percent porosity. It is understood that the percent porosity preferred may depend upon factors such as the mechanical properties of the materials used to make the dressing, the cell infiltration desired, the presence or absence of wound healing or tissue treatment substances trapped within or bound to the dressing, and the like.
- Wound healing or tissue treatment substances may be covalently or non-covalently bound to dressing by, for example, use of a cross linker, inclusion of a specific reactive group on either the solid support or the s or both molecules, electrostatic interactions, hydrophilic interactions, hydrophobic interactions, attachment by use of molecules such as streptavidin, and use of a combination of covalent and non-covalent interactions.
- the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- step ( 206 ) may occur before step ( 205 ).
- Reduced pressure therapy is then applied to the wound ( 207 ).
- the wound heals the dressing is resorbed by the body and is replaced by granulating tissue.
- one or more plasticizers is added to the bioresorbable polymer in the solvent ( 202 ). If one or more plasticizers are included in the polymer, then the residual solvent may be removed ( 203 ) by any method such as oven drying or vacuum drying as long as the conditions used do not favor evaporation of the plasticizer.
- the third embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer dressing and use of the dressing for reduced pressure therapy, as illustrated in FIG. 3 .
- bioresorbable polymers are dissolved in an appropriate solvent ( 301 ).
- Suitable bioresorbable polymers may include any polymers discussed in other embodiments of the invention.
- at least one plasticizer is also added to the bioresorbable polymer.
- the bioresorbable polymer is then mixed with a porogen system, which may include one or more compounds that result in creation of pores within the dressing.
- a porogen system is not limited, and may include compounds that dissolve when placed in contact with a fluid.
- This type of porogen system includes inorganic salts like sodium chloride, crystals of saccharose, or gelatin spheres will dissolve in fluids such as water.
- Another type of porogen system is a mixture of sodium bicarbonate and an acid. Sodium bicarbonate and acid, when placed in contact with a fluid, result in the bicarbonate and acid reacting to form carbon dioxide gas. The gas may then increase the size of the pores.
- the solvent is then removed, leaving behind a dressing ( 303 ).
- methods to remove the solvent include, but are not limited to, evaporation, oven drying, vacuum drying, hand kneading and the like.
- the dressing may be heat pressed to compress the dressing and remove any residual bubbles that may exist.
- the plates of the hot press are preferably covered or coated with a material that inhibits the sticking of the dressing to the plates, for example, Teflon.
- Teflon Teflon
- the practitioner may cover the top and/or bottom plate(s) of the hot press with additional porogen system particles.
- the bottom surface of the dressing is coated with porogen system particles of a size of greater than about 500 ⁇ m and the top surface of the dressing is coated with porogen system particles with a size of about 90 to about 250 ⁇ m.
- an imprinting wafer as the top and/or bottom plate(s) to imprint pores, lines, or other design onto the top and bottom of the dressing. The dressing is pressed at a given temperature and pressure, and then the dressing is cooled
- the dressing is then placed in warm water to increase its malleability and react the porogen system, thereby initiating the creation of pores ( 304 ).
- the resulting spaces left by the porogen system result in the dressing being a dressing with interconnected pores.
- the size of the resulting pores is dependent upon the size of the porogen particles used. As such, one may use means to control the porogen particle size by use of, for example, sieving the particles with screens. Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- one or more substances may be used to coat the porous dressing or may be bound to the porous dressing.
- the dressing may be coated with collagen, hyaluronic acid, gelatin chitosan, antimicrobial agents, therapeutic agents, antiviral agents, growth factors, bioactive substances and other agents that may further facilitate healing and/or tissue growth.
- the dressing may be coated with a substance to make the dressing radiopaque.
- the dressing is soaked in a solution containing collagen. The dressing is then drained of excess solution and lyophilization of the dressing occurs.
- the dressing is soaked in a solution containing collagen, drained of excess solution and the collagen is then crosslinked onto the dressing.
- the dressing is then placed in the wound site by use of hand molding the dressing in the wound site to fill the shape and size of the wound ( 305 ).
- the dressing is cut to fit the size and shape of the wound. Any wound fluids from the wound site may also act on any remaining porogen system to create further pores.
- the reduced pressure device is then fluidly connected to the wound site ( 306 ).
- the wound site and the dressing are covered by a drape made of impermeable substance that is flexible.
- the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure.
- the drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound.
- the drape is secured to the skin surface about the wound circumference by, for example, adhesive material.
- At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape.
- the reduced pressure delivery tube may be made of any medical-grade tubing material, including without limitation paralyne-coated silicone or urethane. Further, the tubing may be coated with agents to prevent the tubing adhesion to the wound.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- the dressing serves as a manifold to
- a manifold is placed over the bioresorbable dressing.
- the manifold facilitates even reduced pressure distribution over the entire wound site.
- the reduced pressure delivery tube is then fluidly connected to the manifold.
- Reduced pressure therapy is then applied to the wound ( 307 ).
- the wound heals the dressing is resorbed by the body and is replaced by granulating tissue.
- the fourth embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer and use of the polymer as a dressing for reduced pressure therapy, as illustrated in FIG. 4 .
- a bioresorbable polymer is dissolved in an appropriate solvent ( 401 ).
- Suitable bioresorbable polymers include, but are not limited to, polymers disclosed in the other embodiments of the invention.
- the bioresorbable polymer is then mixed with one or more plasticizers and a porogen system to form a non-solid mixture, such as a fluid or a slurry ( 402 ).
- the porogen system may include but is not limited to, a dissolvable salt or a combination of sodium bicarbonate and acid.
- the amount of porogen system used may be used in stoichiometic amounts. It is also envisioned that the porogen system may be in non stoichiometric amounts.
- the resulting mixture is then added to a non-solvent for the polymer, plasticizer and porogen such that the mixture precipitates out of solution when the mixture comes in contact with the non-solvent ( 403 ).
- Excess non-solvent is then removed from the resulting precipitate ( 404 ).
- methods to remove the non solvent includes, but is not limited to, evaporation, hand kneading, and the like. Residual solvent may be removed by any method such as oven drying or vacuum driving as long as the conditions used do not favor evaporation of the plasticizer.
- the resulting dressing may also be heat pressed to remove any residual bubbles that may exist.
- the resulting dressing should be malleable.
- the dressing can be molded to fill the shape and size of the wound.
- the dressing is shaped by rolling the dressing into a sheet of a desired thickness and cutting the dressing into the desired shape and size of the wound.
- the reduced pressure device is then fluidly connected to the wound site ( 406 ).
- the wound site and the dressing are covered by a drape made of impermeable substance that is flexible.
- the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure.
- the drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound, where it is secured to the skin surface by, for example, adhesive material.
- At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape.
- the reduced pressure delivery tube may be made of any medical-grade tubing material and may be coated with agents to prevent the tubing adhesion to the wound.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- the dressing serves to distribute the reduced pressure.
- the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing.
- the manifold facilitates even reduced pressure distribution over the entire wound site.
- the wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible.
- the drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface.
- At least one reduced pressure delivery tube is fluidly connected to the manifold.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids from the wound site will then react with the porogen system, forming pores in situ ( 407 ).
- the resulting spaces left by the porogen system result in a scaffold, i.e., dressing with interconnected pores.
- the size of the resulting pores is dependent upon the size of the porogen particles used. As such, one may use means to control the porogen particle size by use of, for example, sieving the particles with screens. Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- the porogen system is placed in contact with a fluid before step ( 406 ) such that the porogen system reacts with the fluid and forms the interconnected pores before the dressing, i.e., scaffold, is placed in the wound site.
- Reduced pressure therapy is then applied to the wound ( 408 ).
- the dressing is resorbed by the body and is replaced by granulating tissue.
- a porous, bioresorbable rope dressing or dressing is prepared that can be placed into a wound of any size, shape or depth and be able to fill the wound completely because of its rope configuration and flexibility, as illustrated in FIG. 5 .
- the shape of the rope may be non-woven, woven, knitted, braided polymer fibers and the like. These different shapes introduce additional channels or pockets of air, and are based upon the shape of the polymer fibers and the degree of their interwoven nature.
- a bioresorbable polymer is dissolved in an appropriate solvent ( 501 ).
- Suitable polymers include, but are not limited to, polymers disclosed in the other embodiments of the invention.
- the bioresorbable polymer is then mixed with one or more plasticizers and a porogen system to form a non-solid mixture, such as a fluid or slurry ( 502 ).
- the porogen system may include but is not limited to, a dissolvable salt or a combination of sodium bicarbonate and acid.
- the amount of porogen system used may be used in stoichiometic amounts or non stoichiometric amounts.
- the resulting mixture is then extruded through a syringe or other device with a desired tip diameter into a non solvent for the polymer, plasticizer and porogen such that the mixture precipitates out of solution in the form of a string or rope ( 503 ).
- the rope may be shaped by rolling the resulting mixture into a sheet of a desired thickness and cutting the dressing into a rope shape.
- the rope dressing is then transferred to an aqueous medium such as water to react with the porogen system and therefore form a porous dressing ( 504 ).
- the resulting spaces left by the porogen system result in a dressing with interconnected pores.
- the size of the resulting pores is dependent upon the size of the porogen particles used. As such, one may use means to control the porogen particle size by use of, for example, sieving the particles with screens. Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- the excess medium is then removed by means including, but not limited to evaporation, hand kneading and the like ( 505 ). Further, oven drying or vacuum drying may also be used as long as the conditions used do not favor evaporation of the plasticizer. If necessary, the rope-shaped dressing may also be heat pressed to remove any residual bubbles that may exist.
- the resulting dressing should be malleable.
- the rope-shaped dressing can be coiled into the wound site to fill the shape and size of the wound ( 506 ).
- two or more ropes are braided or twisted together to form a thicker diameter rope that is then coiled into the wound site.
- a reduced pressure device is then fluidly connected to the wound site ( 507 ).
- the wound site and the dressing are covered by a drape made of impermeable substance that is flexible.
- the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure.
- the drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound.
- the drape is secured to the skin surface about the wound circumference by, for example, adhesive material.
- At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape.
- the reduced pressure delivery tube may be made of any medical-grade tubing material and may be coated with agents to prevent the tubing adhesion to the wound.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- the dressing serves to distribute the reduced pressure.
- the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing.
- the manifold facilitates even reduced pressure distribution over the entire wound site.
- the wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible.
- the drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface.
- At least one reduced pressure delivery tube is fluidly connected to the manifold.
- the reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids from the wound site react with any residual porogen system, and form additional pores in situ ( 508 ). Reduced pressure therapy is then applied to the wound ( 509 ). As the wound heals, the dressing is resorbed by the body and is replaced by granulating tissue.
- the rope diameter could vary but preferably would be between about 2 to about 7 mm.
- the bioresorbable dressing may be formed by any means suited to the practitioner.
- a porous, bioresorbable dressing is prepared by heating one or more bioresorbable polymers above its glass transition temperature such that the polymer is flowable.
- Suitable polymers include, but are not limited to, polymers disclosed in the other embodiments of the invention.
- the bioresorbable polymer is then mixed with a porogen system.
- one or more plasticizers is also added to the bioresorbable polymer.
- the resulting mixture is stirred, with or without additional heating, until the biodegradable polymer is mixed with the porogen system.
- the mixture may then be formed into a sheet or mold and cooled.
- the resulting mixture may be formed by any means into a shape and size dressing desired to fit the wound site, including but not limited to, hand molding, laser cutting, and the like.
- a porous, bioresorbable interfacial layer was prepared by combining a solution of 2.36 g of 90:10 PLA:PCL and 0.26 g of triethylcitrate in 12 mL of dichloromethane with a mixture of 1.65 g citric acid and 2.73 g sodium bicarbonate that have been sieved to a particle size of 90-250 .
- the suspension was cast onto a Teflon-coated mold and dried.
- the resulting sheet was then hot-pressed, soaked in water for 12 hrs to remove the porogen, and dried.
- V.A.C.® Therapy was simulated using a grid equipped with fluid ports and pressure sensors, a saline infusion rate of 500 mL/day and an applied pressure of 50, 125 or 200 mmHg.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Anesthesiology (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A method of making a porous bioresorbable dressing is provided for use in applying reduced pressure therapy to a wound site. The process includes manufacture of a dressing by use of one or more bioresorbable polymers and a porogen system. The malleability of the dressing allows the dressing to be placed into the wound site such that it fills the shape and size of the wound. Embodiments include use of hand molding and formation of a rope dressing. The porogen system may be activated external to the wound site or formed in situ within the wound site, thus creating a porous dressing. A reduced pressure delivery tube is fluidly connected to the wound site to delivery a reduced pressure to the wound site.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/857,903, filed Nov. 9, 2006, U.S. Provisional Application No. 60/857,902, filed Nov. 9, 2006, and U.S. Provisional Application No. 60/857,814, filed Nov. 9, 2006. Priority is claimed to all of the above-mentioned applications, and each application is hereby incorporated by reference.
- 1. Field of the Invention
- The present invention relates generally to methods, systems and compositions for making and using porous bioresorbable dressing in various configurations.
- 2. Description of Related Art
- Wound healing may be broadly split into three overlapping basic phases: inflammation, proliferation, and maturation. The inflammatory phase is characterized by hemostasis and inflammation. The next phase consists mainly of epithelialization, angiogenesis, granulation tissue formation, and collagen deposition. The final phase includes maturation and remodeling. The complexity of the three step wound healing process is augmented by the influence of local factors such as ischemia, edema, and infection, and systemic factors such as diabetes, age, hypothyroidism, malnutrition, and obesity. The rate limiting step of wound healing, however, is often angiogenesis. Wound angiogenesis is marked by endothelial cell migration and capillary formation where the sprouting of capillaries into the wound bed is critical to support the regenerating tissue. The granulation phase and tissue deposition require nutrients supplied by the capillaries. Impairments in wound angiogenesis therefore may lead to chronic problem wounds.
- Expression of the angiogenic phenotype is a complex process that requires a number of cellular and molecular events to occur in sequential steps. Some of these activities include endothelial cell proliferation, degradation of surrounding basement membrane, migration of endothelial cells through the connective tissue stroma, formation of tube-like structures, and maturation of endothelial-lined tubes into new blood vessels. Angiogenesis is controlled by positive and reduced regulators. In addition to endothelial cells, cells associated with tissue repair, such as platelets, monocytes, and macrophages, release angiogenic growth factors, such as vascular endothelial growth factor (VEGF) into injured sites that initiate angiogenesis.
- There are currently several methods used to augment wound healing, including irrigating the wound to remove of toxins and bacteria, local and systemic antibiotics and anesthetics, and local application of growth factors. One of the most successful ways to promote wound healing in soft tissue wounds that are slow to heal or non-healing is reduced pressure therapy. Reduced pressure therapy generally refers to application of a pressure less than the ambient pressure at the wound site, where the magnitude and time period of the reduced pressure treatment is sufficient to promote healing. Examples of devices used to apply reduced pressure include those popularized by Kinetic Concepts, Inc. of San Antonio, Tex., by its commercially available VACUUM ASSISTED CLOSURE® or V.A.C.® product line. The reduced pressure induced healing process has been described in U.S. Pat. Nos. 5,636,643 and 5,645,081, the disclosures of which are incorporated fully by reference.
- The reduced pressure serves to promote the migration of epithelial tissue and subcutaneous tissue from the healthy tissue towards the wound site. Typical reduced pressure therapy includes application of reduced pressure to a wound site through a dressing that serves as a manifold to distribute the reduced pressure. The dressing is sized to fit the existing wound, placed in contact with the wound, and then periodically replaced with smaller pieces of dressing as the wound begins to heal and becomes smaller. While use of reduced pressure therapy with the dressing has been highly successful, there still exists various difficulties with this process. For example, it may be difficult to obtain a dressing of a proper width, length or depth to properly fit the wound. Further, as the dressing is removed it may also remove healthy tissue, thereby causing further trauma to the wound site.
- It has been proposed to use biodegradable materials to make the dressing, thereby resulting in a dressing that need not be removed from the wound site. With many of these dressings, however, the biodegradable polymer is formed in advance into a particular shape. Individual wounds, however, are of inconsistent shapes and sizes.
- A need exists, therefore, for a dressing that be easily manufactured and configured to a shape and size to fit the individual patient's wound. A need also exists for a dressing that need not be removed from the wound site. Further, a need exists for a dressing that contains pores such that the dressing can promote healing and healthy tissue growth at the wound site.
- All references cited herein are incorporated by reference to the maximum extent allowable by law. To the extent a reference may not be fully incorporated herein, it is incorporated by reference for background purposes and indicative of the knowledge of one of ordinary skill in the art.
- These and other needs are met through the use of bioresorbable dressing containing open cell pores where the dressing is designed to readily conform to the size and shape of the wound site. Thus, in its broadest sense, the invention produces methods, systems and compositions for making and using porous bioresorbable dressing in various configurations.
- One embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy, whereby the pore formation occurs in situ. In this embodiment, a bioresorbable polymer is dissolved in an appropriate solvent and mixed with stoichiometric amounts of a porogen. Residual solvent is removed. The resulting dressing is then placed into the wound by being hand molded to fill the shape and size of the wound. Alternatively, the resulting dressing may be shaped into a rope which is then coiled into or onto the wound site to fit the shape and size of the wound. The wound fluids react with the porogen in the dressing, creating pores within the dressing in situ. A drape for sealing the dressing is placed over the dressing at the wound site. A reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- Another embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy. In this embodiment, a bioresorbable polymer is dissolved in an appropriate solvent and mixed with stoichiometric amounts of porogen. Residual solvent is removed. The dressing is then placed in a fluid, whereby the fluid reacts with the porogen in the dressing, creating pores within the dressing. The resulting dressing is then dried and placed into the wound site by being hand molded to the shape and size of the wound site. Alternatively, the resulting dressing may be shaped into a rope which is then coiled into the wound to fit the shape and size of the wound. A drape for sealing the dressing is placed over the dressing at the wound site. A reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- Another embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy, whereby the pore formation occurs in situ. In this embodiment, a bioresorbable polymer and plasticizer are dissolved in an appropriate solvent and mixed with a porogen. The resultant mixture is then contacted with a non-solvent such that the whole mixture will precipitate out of solution as one dressing. The residual non-solvent is removed. The resulting dressing is placed into the wound site by being hand molded to the shape and size of the wound. Alternatively, the resulting dressing may be shaped into a rope that is then coiled into the wound to fit the shape and size of the wound. The wound fluids react with the porogen within the dressing, creating pores within the dressing in situ. A drape for sealing the dressing is placed over the dressing at the wound site. A reduced pressure delivery tube is fluidly connected to the dressing to delivery a reduced pressure to the wound site.
- Another embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy. In this embodiment, a bioresorbable polymer and plasticizer are dissolved in an appropriate solvent and mixed with a porogen. The resulting mixture is then placed in a non-solvent. The non-solvent should be one that results in the polymer, plasticizer and the porogen precipitating out of solution. The residual non-solvent is removed. The resulting precipitant, i.e., dressing, is placed in a fluid, whereby the fluid reacts with the porogen in the dressing, creating pores within the dressing. The resulting dressing is then dried and placed into the wound by being hand molded to the shape and size of the wound site. Alternatively, the resulting dressing may be shaped into a rope which is then coiled into or onto the wound to fit the shape and size of the wound site. A drape for sealing the dressing is placed over the dressing at the wound site. A reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- One embodiment in accordance with the invention is a method and apparatus for making a porous bioresorbable dressing to be used at a wound site undergoing reduced pressure therapy where the dressing also contains factors to promote tissue growth and/or healing. In this embodiment, a bioresorbable polymer is dissolved in an appropriate solvent and mixed with stoichiometric amounts of a porogen. Residual solvent is removed. The resulting dressing is then placed into a fluid, whereby the fluid reacts with the porogen in the dressing, creating pores within the dressing. Once the reaction is complete, the dressing is removed from the fluid and allowed to dry. At this time, the resulting porous dressing may be coated with various substances, including but not limited to, cells, growth factors, or other nutrients that promote cell growth and/or healing. The porous dressing is then placed into the wound site by being hand molded to the shape and size of the wound. Alternatively, the resulting dressing may be shaped into a rope that is then coiled into or onto the wound to fit the shape and size of the wound site. A drape for sealing the dressing is placed over the dressing at the wound site. A reduced pressure delivery tube is fluidly connected to the dressing to deliver a reduced pressure to the wound site.
- Other objects, features, and advantages of the present invention will become apparent with reference to the drawings and detailed description that follow.
-
FIG. 1 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a bioresorbable polymer with a sodium biocarbonate and acid porogen system and its use in reduced pressure therapy. -
FIG. 2 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a bioresorbable polymer with a salt porogen system and its use in reduced pressure therapy. -
FIG. 3 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a porous dressing by use of a bioresorbable polymer and porogen system, and use of the porous dressing in reduced pressure therapy. -
FIG. 4 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a porous dressing by use of a bioresorbable polymer and porogen system, and use of the porous dressing in reduced pressure therapy. -
FIG. 5 illustrates a flowchart in accordance with some embodiments of the invention, demonstrating the process of making a porous dressing in the shape of a rope and use of the porous dressing in reduced pressure therapy. - In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
- All embodiments of the invention include use of a bioresorbable dressing to be used in conjunction with reduced pressure therapy for treatment of a wound site. The invention is not necessarily limited by a specific location of the wound site, nor the type of tissue that is the target of reduced pressure therapy. Thus, the wound site treated by the instant invention may be a location upon or within the body in which it is desired to promote growth and/or healing of the tissue.
- The first embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer dressing and use of the dressing with reduced pressure therapy, as illustrated in
FIG. 1 . - To start, one or more bioresorbable polymers is dissolved in an appropriate solvent (101). The type of solvent used will depend upon the bioresorbable polymer(s) selected. The bioresorbable polymer is a biocompatible material whose degradation by products can be bio assimilated or excreted via natural pathways in the body. The bioresorbable polymer may include, but is not limited to, lactide, poly(lactide) (PLA), glycolide polymers, poly(glycolic acid) (PGA), poly(lactide-co-glycolide) (PLGA), ethylene glycol/lactide copolymers, polycaprolactone, polyhydroxybutyrate, polyurethanes, polyphosphazenes, poly(ethylene glycol)-poly(lactide-co-glycolide) co-polymer, polyhydroxyacids, polycarbonates, polyamides, polyanhydrides, polyamino acids, polyortho esters, polyacetals, degradable polycyanoacrylates, polycarbonates, polyfumarates, degradable polyurethanes, proteins such as albumin, collagen, fibrin, synthetic and natural polyamino acids, polysaccharides such as alginate, heparin, and other naturally occurring biodegradable polymers of sugar units. Further, in one preferred embodiment the polymer is a PLA:PCL copolymer, wherein the ratio of PLA to PCL may range from 100:0 to 0:100. In some preferred embodiments, the PLA:PCL copolymer ratio is about 90:10. In other embodiments, the PLA:PCL copolymer ratio is about 80:20. In yet another embodiment, the PLA:PCL copolymer ratio is about 70:30.
- A porogen system of sodium biocarbonate and acid is also added to the bioresorbable polymer mixture (102). The acid may be any acid that is not in liquid or gaseous form, thus it is in a solid or crystalline state. Examples of appropriate acids to use therein includes, but is not limited to, citric acid. The amount of sodium bicarbonate and acid used may be used in stoichiometic amounts. It is also envisioned that the sodium bicarbonate may be used in non stoichiometric amounts. Further, the amount of porogen used should be that which creates sufficient number of open cells or channels so that would fluids may be drained and the reduced pressure may continue unimpaired.
- The solvent is then removed from the resulting dressing (103). Examples of methods to remove the solvent include, but are not limited to, evaporation, oven drying, vacuum drying, hand kneading and the like. In one embodiment, the solvent is evaporated over a period of about 48 hours.
- In one embodiment, the dressing may be heat pressed to compress it and remove any residual bubbles that may exist. The plates of the hot press are preferably covered or coated with a material that inhibits the sticking of the dressing to the plates. Examples of appropriate materials include, for example, Teflon. To increase the porosity of the dressing, the practitioner may cover the top and/or bottom plate(s) of the hot press with additional sodium bicarbonate and acid. In one preferred embodiment, the bottom surface of the dressing is coated with sodium bicarbonate and acid particles with a size of greater than about 500 μm and/or the top surface of the dressing is coated with sodium bicarbonate and acid particles with a size of about 90 to about 250 μm. Alternatively, one may use an imprinting wafer as the top and/or bottom plate(s) to imprint pores, lines, or other design onto the top and bottom of the dressing. The dressing is heat pressed at a given temperature and pressure, then cooled.
- At this stage, the dressing should be malleable. As such, the dressing may be placed in the wound site by use of, for example, hand molding the dressing to fit the shape and size of the wound site (104).
- The reduced pressure therapy device is then fluidly connected to the wound site (105). Here, the wound site and the dressing are covered by a drape made of a flexible substance. Preferably, the drape is impermeable, thus blocking or slowing the transmission of either liquids or gas. Preferably, the drape is made of a material that permits the diffusion of water vapor but provides an air-tight seal over the wound site when reduced pressure therapy is applied. The drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound. The drape is secured to the skin surface about the wound circumference by, for example, adhesive material. At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape. The reduced pressure delivery tube may be made of any medical-grade tubing material, including without limitation, paralyne-coated silicone or urethane. Further, the tubing may be coated with agents to prevent the tubing adhesion to the wound. For example, the tubing may be coated with heparin, anti-coagulants, anti-fibrogens, anti-adherents, anti-thrombinogens or hydrophilic substances. The reduced pressure delivery tube is placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source. Thus, in this embodiment, the dressing serves as a manifold to distribute the reduced pressure, assisting in applying reduced pressure to, delivering fluids to, or removing fluids from a wound site.
- In an alternate embodiment, the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing. The manifold facilitates even reduced pressure distribution over the entire wound site. The wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible. The drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface. At least one reduced pressure delivery tube is fluidly connected to the manifold. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids from the wound site then initiate an acid base reaction between the sodium bicarbonate and the acid, producing carbon dioxide gas (106). The carbon dioxide gas production will thus transform the dressing in situ into a three-dimensional structure with interconnected pores, or a “scaffold.” Further, fluids such as water may be added to the wound site to assist in the porogen system reaction. In an alternative embodiment, step (106) may occur before step (105).
- Typically, the pore size produced by the carbon dioxide gas production is about 50 to about 1,500 microns. In one embodiment, the pore size is between about 100 and about 500 microns. In another embodiment, the pore size is between about 100 and about 250 microns. It is understood that the size of the resulting pores is dependent upon the size of the sodium bicarbonate and acid particles and the amount of gas produced. As such, one may use any method to control the size of the sodium bicarbonate and acid particles, including by not limited to, sieving and centrifugation. In one embodiment, the sodium bicarbonate and acid are sieved through one or more screens to produce particles of a certain size. Thus, the pore size will be at a minimum the size of the particles produced by the sieving. If the dressing is malleable enough, the carbon dioxide gas produced will further increase the pore size.
- Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity of the resulting porous dressing. It is understood that the percent porosity preferred by the practitioner may depend upon factors such as the mechanical properties of the materials used within the dressing, such as bioresorbable polymers, the cell infiltration desired, the presence or absence of wound healing or tissue treatment substances, and the like. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- Reduced pressure therapy is then applied to the wound (107). It is understood that the frequency of reduced pressure treatment depends upon the location of the body, the size and shape of the wound site, the exact dressing or dressing used, and the types of various agents applied to the site, if any. Further, depending upon the treatment regiment, reduced pressure therapy may be substantially continuous application or cyclical such that it oscillates the pressure over time. As the wound heals, the porous dressing is resorbed by the body and is replaced by granulating tissue.
- In an alternate embodiment, one or more plasticizers is added to the bioresorbable polymer in the solvent (102). Plasticizers may be any material that enhances the deformability of a polymeric compound, adding softening and flexibility to the compound. The plasticizers may include, but are not limited to, cetyl alcohol esters, glycerol, glycerol esters, acetylated glycerides, glycerol monostearate, glyceryl triacetate, glycerol tributyrate, phthalates, dibutyl phthalate, diethyl phthalate, dimethyl phthalate, dioctyl phthalate, citrates, acetyl tributyl citrate, acetyl triethyl citrate, tributyl citrate, triethyl citrate, sebacates, diethyl sebacate, dibutyl sebacate, adipates, azelates, benzoates, vegetable oils, fumarates, diethyl fumarate, malates, diethyl malate, oxalates, diethyl oxalate, succinates, dibutyl succinate, butyrates, cetyl alcohol esters, salicylic acid, triacetin, malonates, diethyl malonate, castor oil, triethylene glycol, and poloxamers. If one or more plasticizers are included in the polymer, then the residual solvent may be removed (103) by any method such as oven drying or vacuum drying as long as the conditions used do not favor evaporation of the plasticizer.
- The second embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer dressing and use of the porous dressing for reduced pressure therapy, as illustrated in
FIG. 2 . - A bioresorbable polymer is dissolved in an appropriate solvent (201). The bioresorbable polymer may be made of one or more polymers that are bioresorbable. Suitable polymer include those polymers disclosed in other embodiments of the invention. In an alternate embodiment, one or more plasticizers are also added to the bioresorbable polymer.
- The bioresorbable polymer is then mixed with a crystalline or solid salt that serves as the porogen system (202). The invention is not limited by the type of salt, as long as the salt is of an appropriate particle size and dissolvable in a fluid, i.e., a gas, liquid, or flowable material, including but not limited to, colloids, dressings, a liquid, a slurry, a suspension, a viscous gel, a paste, a putty, and particulate solids. Examples of appropriate salts used herein includes, but is not limited to, sodium chloride and potassium chloride. The amount of salt used may be used in stoichiometic amounts. It is also envisioned that the salt may not be in non stoichiometric amounts.
- The solvent is then removed (203). Examples of methods to remove the solvent include, but are not limited to, evaporation, oven drying, vacuum drying, hand kneading and the like. In one embodiment, the solvent is evaporated over a period of about 48 hours.
- In one alternate embodiment, the resulting dressing may be heat pressed to compress the dressing and remove any residual bubbles that may exist. The plates of the hot press are preferably covered or coated with a material that inhibits the sticking of the dressing to the plates. Examples of appropriate materials include, for example, Teflon. To make the dressing later develop into a more porous dressing, the practitioner may cover the top and/or bottom plate(s) of the hot press with additional particles of the salt, i.e., the porogen system. In one preferred embodiment, the bottom surface of the dressing is coated with salt particles of a size of greater than about 500 μm and the top surface of the dressing is coated with salt particles with a size of about 90 to about 250 μm. Alternatively, one may use an imprinting wafer as the top and/or bottom plate(s) to imprint pores, lines, or other design onto the top and bottom of the dressing. The dressing is pressed at a given temperature and pressure, then cooled.
- At this stage, the dressing should be malleable. As such, one may place the dressing in the wound site by use of, for example, hand molding the dressing in the wound site to fill the shape and size of the wound (204).
- The reduced pressure device is then fluidly connected to the wound site (205). In this step, the wound site and the dressing are covered by a drape made of impermeable substance that is flexible. Preferably, the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure. The drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound. The drape is secured to the skin surface about the wound circumference by, for example, adhesive material. At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape. The reduced pressure delivery tube may be made of any medical-grade tubing material, including without limitation paralyne-coated silicone or urethane. Further, the tubing may be coated with agents to prevent the tubing adhesion to the wound. For example, the tubing may be coated with heparin, anti-coagulants, anti-fibrogens, anti-adherents, anti-thrombinogens or hydrophilic substances. Thus, in this embodiment, the dressing serves as a manifold to distribute the reduced pressure.
- In an alternate embodiment, the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing. The manifold facilitates even reduced pressure distribution over the entire wound site. The wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible. The drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface. At least one reduced pressure delivery tube is fluidly connected to the manifold. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids, which may include interstitial liquid in the tissues or liquid that has exuded from the tissue or its capillaries of the wound site, will then react with the porogen system, dissolving the salt particles and thus generating pores within the dressing in situ (206). Further, fluids such as water may be added to the wound site to assist in the porogen system reaction. The resulting spaces left by the dissolved salt result in a dressing with interconnected pores. The size of the resulting pores is dependent upon the size of the salt particles used. As such, one may use methods to control the size of the salt particles. For example, the salt particles may be sieved through one or more screens to produce particles of a certain size. When the salt particle dissolves, the remaining pore is about the size of the salt particle. The pore size produced by the dissolved salt may be about 50 to about 500 microns. In another embodiment, the pore size is between about 100 and about 400 microns. In another embodiment, the pore size is between about 100 and about 250 microns.
- Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. It is understood that the percent porosity preferred may depend upon factors such as the mechanical properties of the materials used to make the dressing, the cell infiltration desired, the presence or absence of wound healing or tissue treatment substances trapped within or bound to the dressing, and the like. Wound healing or tissue treatment substances may be covalently or non-covalently bound to dressing by, for example, use of a cross linker, inclusion of a specific reactive group on either the solid support or the s or both molecules, electrostatic interactions, hydrophilic interactions, hydrophobic interactions, attachment by use of molecules such as streptavidin, and use of a combination of covalent and non-covalent interactions.
- In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- In an alternative embodiment, step (206) may occur before step (205).
- Reduced pressure therapy is then applied to the wound (207). As the wound heals, the dressing is resorbed by the body and is replaced by granulating tissue.
- In an alternate embodiment, one or more plasticizers is added to the bioresorbable polymer in the solvent (202). If one or more plasticizers are included in the polymer, then the residual solvent may be removed (203) by any method such as oven drying or vacuum drying as long as the conditions used do not favor evaporation of the plasticizer.
- The third embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer dressing and use of the dressing for reduced pressure therapy, as illustrated in
FIG. 3 . - One or more bioresorbable polymers are dissolved in an appropriate solvent (301). Suitable bioresorbable polymers may include any polymers discussed in other embodiments of the invention. In one alternative embodiment, at least one plasticizer is also added to the bioresorbable polymer.
- The bioresorbable polymer is then mixed with a porogen system, which may include one or more compounds that result in creation of pores within the dressing. (302). The type of a porogen system is not limited, and may include compounds that dissolve when placed in contact with a fluid. This type of porogen system includes inorganic salts like sodium chloride, crystals of saccharose, or gelatin spheres will dissolve in fluids such as water. Another type of porogen system is a mixture of sodium bicarbonate and an acid. Sodium bicarbonate and acid, when placed in contact with a fluid, result in the bicarbonate and acid reacting to form carbon dioxide gas. The gas may then increase the size of the pores.
- The solvent is then removed, leaving behind a dressing (303). Examples of methods to remove the solvent include, but are not limited to, evaporation, oven drying, vacuum drying, hand kneading and the like.
- In one alternate embodiment, the dressing may be heat pressed to compress the dressing and remove any residual bubbles that may exist. The plates of the hot press are preferably covered or coated with a material that inhibits the sticking of the dressing to the plates, for example, Teflon. To make the dressing later develop into a more porous dressing, the practitioner may cover the top and/or bottom plate(s) of the hot press with additional porogen system particles. In one preferred embodiment, the bottom surface of the dressing is coated with porogen system particles of a size of greater than about 500 μm and the top surface of the dressing is coated with porogen system particles with a size of about 90 to about 250 μm. Alternatively, one may use an imprinting wafer as the top and/or bottom plate(s) to imprint pores, lines, or other design onto the top and bottom of the dressing. The dressing is pressed at a given temperature and pressure, and then the dressing is cooled
- The dressing is then placed in warm water to increase its malleability and react the porogen system, thereby initiating the creation of pores (304). The resulting spaces left by the porogen system result in the dressing being a dressing with interconnected pores. The size of the resulting pores is dependent upon the size of the porogen particles used. As such, one may use means to control the porogen particle size by use of, for example, sieving the particles with screens. Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- In one alternate embodiment, one or more substances may be used to coat the porous dressing or may be bound to the porous dressing. For example, the dressing may be coated with collagen, hyaluronic acid, gelatin chitosan, antimicrobial agents, therapeutic agents, antiviral agents, growth factors, bioactive substances and other agents that may further facilitate healing and/or tissue growth. Further, the dressing may be coated with a substance to make the dressing radiopaque.
- In one embodiment, the dressing is soaked in a solution containing collagen. The dressing is then drained of excess solution and lyophilization of the dressing occurs.
- In an alternate embodiment, the dressing is soaked in a solution containing collagen, drained of excess solution and the collagen is then crosslinked onto the dressing.
- The dressing is then placed in the wound site by use of hand molding the dressing in the wound site to fill the shape and size of the wound (305). In another embodiment, the dressing is cut to fit the size and shape of the wound. Any wound fluids from the wound site may also act on any remaining porogen system to create further pores.
- The reduced pressure device is then fluidly connected to the wound site (306). The wound site and the dressing are covered by a drape made of impermeable substance that is flexible. Preferably, the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure. The drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound. The drape is secured to the skin surface about the wound circumference by, for example, adhesive material. At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape. The reduced pressure delivery tube may be made of any medical-grade tubing material, including without limitation paralyne-coated silicone or urethane. Further, the tubing may be coated with agents to prevent the tubing adhesion to the wound. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source. Thus, in this embodiment, the dressing serves as a manifold to distribute the reduced pressure.
- In one embodiment, a manifold is placed over the bioresorbable dressing. The manifold facilitates even reduced pressure distribution over the entire wound site. The reduced pressure delivery tube is then fluidly connected to the manifold.
- Reduced pressure therapy is then applied to the wound (307). As the wound heals, the dressing is resorbed by the body and is replaced by granulating tissue.
- The fourth embodiment in accordance with the invention is to a method and apparatus for preparing a bioresorbable porous polymer and use of the polymer as a dressing for reduced pressure therapy, as illustrated in
FIG. 4 . - A bioresorbable polymer is dissolved in an appropriate solvent (401). Suitable bioresorbable polymers include, but are not limited to, polymers disclosed in the other embodiments of the invention.
- The bioresorbable polymer is then mixed with one or more plasticizers and a porogen system to form a non-solid mixture, such as a fluid or a slurry (402). The porogen system may include but is not limited to, a dissolvable salt or a combination of sodium bicarbonate and acid. The amount of porogen system used may be used in stoichiometic amounts. It is also envisioned that the porogen system may be in non stoichiometric amounts.
- The resulting mixture is then added to a non-solvent for the polymer, plasticizer and porogen such that the mixture precipitates out of solution when the mixture comes in contact with the non-solvent (403). Excess non-solvent is then removed from the resulting precipitate (404). Examples of methods to remove the non solvent includes, but is not limited to, evaporation, hand kneading, and the like. Residual solvent may be removed by any method such as oven drying or vacuum driving as long as the conditions used do not favor evaporation of the plasticizer. The resulting dressing may also be heat pressed to remove any residual bubbles that may exist.
- The resulting dressing should be malleable. As such, one may place the dressing in the wound site by use of, for example, hand molding the dressing in the wound site to fill the shape and size of the wound (405). Alternatively, the dressing can be molded to fill the shape and size of the wound. In another embodiment, the dressing is shaped by rolling the dressing into a sheet of a desired thickness and cutting the dressing into the desired shape and size of the wound.
- The reduced pressure device is then fluidly connected to the wound site (406). In this step, the wound site and the dressing are covered by a drape made of impermeable substance that is flexible. Preferably, the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure. The drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound, where it is secured to the skin surface by, for example, adhesive material. At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape. The reduced pressure delivery tube may be made of any medical-grade tubing material and may be coated with agents to prevent the tubing adhesion to the wound. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source. Thus, in this embodiment, the dressing serves to distribute the reduced pressure.
- In an alternate embodiment, the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing. The manifold facilitates even reduced pressure distribution over the entire wound site. The wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible. The drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface. At least one reduced pressure delivery tube is fluidly connected to the manifold. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids from the wound site will then react with the porogen system, forming pores in situ (407). The resulting spaces left by the porogen system result in a scaffold, i.e., dressing with interconnected pores. The size of the resulting pores is dependent upon the size of the porogen particles used. As such, one may use means to control the porogen particle size by use of, for example, sieving the particles with screens. Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- In an alternate embodiment, the porogen system is placed in contact with a fluid before step (406) such that the porogen system reacts with the fluid and forms the interconnected pores before the dressing, i.e., scaffold, is placed in the wound site.
- Reduced pressure therapy is then applied to the wound (408). As the wound heals, the dressing is resorbed by the body and is replaced by granulating tissue.
- In a fifth embodiment, a porous, bioresorbable rope dressing or dressing is prepared that can be placed into a wound of any size, shape or depth and be able to fill the wound completely because of its rope configuration and flexibility, as illustrated in
FIG. 5 . The shape of the rope may be non-woven, woven, knitted, braided polymer fibers and the like. These different shapes introduce additional channels or pockets of air, and are based upon the shape of the polymer fibers and the degree of their interwoven nature. - A bioresorbable polymer is dissolved in an appropriate solvent (501). Suitable polymers include, but are not limited to, polymers disclosed in the other embodiments of the invention. The bioresorbable polymer is then mixed with one or more plasticizers and a porogen system to form a non-solid mixture, such as a fluid or slurry (502). The porogen system may include but is not limited to, a dissolvable salt or a combination of sodium bicarbonate and acid. The amount of porogen system used may be used in stoichiometic amounts or non stoichiometric amounts.
- The resulting mixture is then extruded through a syringe or other device with a desired tip diameter into a non solvent for the polymer, plasticizer and porogen such that the mixture precipitates out of solution in the form of a string or rope (503). In an alternate embodiment, the rope may be shaped by rolling the resulting mixture into a sheet of a desired thickness and cutting the dressing into a rope shape.
- The rope dressing is then transferred to an aqueous medium such as water to react with the porogen system and therefore form a porous dressing (504). The resulting spaces left by the porogen system result in a dressing with interconnected pores. The size of the resulting pores is dependent upon the size of the porogen particles used. As such, one may use means to control the porogen particle size by use of, for example, sieving the particles with screens. Further, the amount of porogen system used and the particle size of the porogen system will control the percent porosity. In one preferred embodiment, the percent porosity is at least about 50%. In another preferred embodiment, the percent porosity is about 70%.
- The excess medium is then removed by means including, but not limited to evaporation, hand kneading and the like (505). Further, oven drying or vacuum drying may also be used as long as the conditions used do not favor evaporation of the plasticizer. If necessary, the rope-shaped dressing may also be heat pressed to remove any residual bubbles that may exist.
- The resulting dressing should be malleable. As such, the rope-shaped dressing can be coiled into the wound site to fill the shape and size of the wound (506). In another embodiment, two or more ropes are braided or twisted together to form a thicker diameter rope that is then coiled into the wound site.
- A reduced pressure device is then fluidly connected to the wound site (507). In this step, the wound site and the dressing are covered by a drape made of impermeable substance that is flexible. Preferably, the drape is made of a material that permits the diffusion of water vapor but provides an air-tight enclosure. The drape will extend over the surface of the wound site and dressing and extend beyond the edges of the wound. The drape is secured to the skin surface about the wound circumference by, for example, adhesive material. At least one reduced pressure delivery tube is placed beneath the drape, and extends out from underneath the drape. The reduced pressure delivery tube may be made of any medical-grade tubing material and may be coated with agents to prevent the tubing adhesion to the wound. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source. Thus, in this embodiment, the dressing serves to distribute the reduced pressure.
- In an alternate embodiment, the bioresorbable dressing is placed within the wound site and a manifold is placed over the dressing. The manifold facilitates even reduced pressure distribution over the entire wound site. The wound site, dressing and manifold are then covered by a drape made of impermeable substance that is flexible. The drape will extend over the surface of the wound site, dressing and manifold, extending beyond the edges of the wound and preferably secured to the skin surface. At least one reduced pressure delivery tube is fluidly connected to the manifold. The reduced pressure delivery tube is also placed in fluid communication to a reduced pressure source, which preferably comprises a canister safely placed under the vacuum through fluid communication with a reduced pressure source.
- Wound fluids from the wound site react with any residual porogen system, and form additional pores in situ (508). Reduced pressure therapy is then applied to the wound (509). As the wound heals, the dressing is resorbed by the body and is replaced by granulating tissue. The rope diameter could vary but preferably would be between about 2 to about 7 mm.
- It is also understood that the bioresorbable dressing may be formed by any means suited to the practitioner. For example, in a sixth embodiment, a porous, bioresorbable dressing is prepared by heating one or more bioresorbable polymers above its glass transition temperature such that the polymer is flowable. Suitable polymers include, but are not limited to, polymers disclosed in the other embodiments of the invention. The bioresorbable polymer is then mixed with a porogen system. In another embodiment, one or more plasticizers is also added to the bioresorbable polymer. The resulting mixture is stirred, with or without additional heating, until the biodegradable polymer is mixed with the porogen system. The mixture may then be formed into a sheet or mold and cooled. The resulting mixture may be formed by any means into a shape and size dressing desired to fit the wound site, including but not limited to, hand molding, laser cutting, and the like.
- A porous, bioresorbable interfacial layer was prepared by combining a solution of 2.36 g of 90:10 PLA:PCL and 0.26 g of triethylcitrate in 12 mL of dichloromethane with a mixture of 1.65 g citric acid and 2.73 g sodium bicarbonate that have been sieved to a particle size of 90-250. The suspension was cast onto a Teflon-coated mold and dried. The resulting sheet was then hot-pressed, soaked in water for 12 hrs to remove the porogen, and dried. V.A.C.® Therapy was simulated using a grid equipped with fluid ports and pressure sensors, a saline infusion rate of 500 mL/day and an applied pressure of 50, 125 or 200 mmHg. The test (n=3) was performed on a 4×6 inch sheet of porous, bioresorbable interfacial layer for 48 hours. Fluid was collected and pressure was monitored at pre-determined time points. Tissue ingrowth into the dressing was evaluated using a 5-cm diameter full-thickness excisional swine wound model. The control wounds (n=3) were dressed with a reticulated open-cell dressing while the test wounds (n=3) were covered with porous, bioresorbable interfacial layer with an reticulated open-cell dressing. Continuous V.A.C.® Therapy at −125 mmHg was then initiated. The difference between reticulated open-cell dressing porous, bioresorbable interfacial layer with an reticulated open-cell dressing at each pressure setting was minimal (0.5-1.6 mmHg). After 7 days, tissue with dressing was excised en bloc, fixed and H&E stained.
- The results indicate that the presence of a porous, bioresorbable interfacial layer under the reticulated open-cell dressing did not impede the fluid flow through the dressing. Ingrowth into reticulated open-cell dressing was extensive when it was placed directly on the wound. Ingrowth into the reticulated open-cell dressing was not observed when porous, bioresorbable interfacial layer was placed between the wound bed. The ingrowth was only seen in the interfacial layer. Thus, removal of just the reticulated open-cell dressing would not have disrupted the new tissue growth if the bioresorbable interfacial layer was used.
- It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.
Claims (25)
1. A method for promoting new tissue growth and/or wound healing at a wound site comprising:
forming a dressing by dissolving one or more bioresorbable polymers and a porogen system in a solvent, and removing said solvent;
positioning the dressing into the wound site such that the dressing fills the size and shape of the wound site;
positioning a manifold in contact with the dressing;
covering the manifold with a drape;
securing the drape to the skin surface about the wound circumference;
applying a reduced pressure to the wound site through the dressing and manifold; and
forming pores within the dressing in situ by wound fluids contacting the porogen system within the dressing.
2. The method of claim 1 , wherein said porogen system is sodium biocarbonate and at least one acid.
3. The method of claim 2 , wherein said acid is citric acid.
4. The method of claim 1 , wherein said porogen system is a salt.
5. The method of claim 1 , wherein said forming a dressing further comprises the addition of one or more plasticizers to said solvent.
6. The method of claim 1 , wherein the pores are between 100 and 500 microns in size.
7. The method of claim 1 , wherein positioning the dressing into the wound site occurs by hand molding the dressing.
8. A method for promoting new tissue growth and/or wound healing at a wound site comprising:
forming a dressing by dissolving one or more bioresorbable polymer in a solvent, mixing a porogen system with said polymer in said solvent, and removing said solvent;
contacting the dressing with a fluid such that the porogen system forms pores;
positioning the dressing into the wound site such that the dressing contacts the wound site;
positioning a manifold in contact with the dressing;
covering the manifold with a drape;
securing the drape to the skin surface about the wound circumference;
applying a reduced pressure to the wound site through the dressing and manifold.
9. The method of claim 8 wherein said porogen system is sodium biocarbonate and at least one acid.
10. The method of claim 9 , wherein said acid is citric acid.
11. The method of claim 8 , wherein said porogen system is a salt.
12. The method of claim 8 , wherein said forming a dressing further comprises the addition of one or more plasticizers to said solvent.
13. The method of claim 8 , wherein positioning the dressing into the wound site occurs by hand molding the dressing.
14. A method for forming a dressing to be used to support new tissue growth and/or wound healing at a wound site, said method comprising:
dissolving one or more bioresorbable polymers in a solvent;
adding porogen system particles to said solvent;
removing the solvent to form a solid dressing;
heat pressing the dressing;
initiating formation of pores by contacting the dressing with a fluid.
15. The method of claim 14 , wherein said method further comprises:
coating the dressing with porogen system particles before heat pressing the dressing.
16. The method of claim 14 , wherein said method further comprises:
imprinting a wafer on the top and/or bottom of the dressing by use of the heat pressing plates.
17. The method of claim 14 , wherein said method further comprises:
coating the dressing with one or more substances that facilitate healing.
18. A method of promoting new tissue growth and/or healing at a wound site comprising:
forming a dressing by
i) dissolving one or more bioresorbable polymer and a porogen system to a solvent to form a mixture;
ii) placing said mixture in a non solvent such that the one or more bioresorbable polymer and porogen system precipitates out of ii) solution; and
removing excess non solvent;
positioning the dressing into the wound site such that the dressing contacts the wound site;
positioning a manifold in contact with the dressing;
covering the manifold with a drape;
securing the drape to the skin surface about the wound circumference;
applying a reduced pressure to the wound site through the dressing and manifold.
19. The method of claim 18 , wherein said dressing further comprises at least one plasticizer.
20. The method of claim 18 , wherein said porogen system is sodium biocarbonate and at least one acid.
21. The method of claim 18 , wherein said acid is citric acid.
22. The method of claim 18 , wherein said porogen system is a salt.
23. The method of claim 18 , wherein said positioning the dressing into the wound site occurs by hand molding the dressing.
24. The method of claim 18 , wherein said method further comprises:
forming said dressing into a rope configuration before positioning the dressing into the wound site.
25. A method of promoting new tissue growth at a wound site comprising:
forming a dressing by
i) forming a mixture by dissolving one or more bioresorbable polymer in a solvent and adding a porogen system to said solvent;
ii) extruding said mixture in a non solvent by use of a device with a desired tip diameter such that the mixture precipitates in the shape of a rope with a desired diameter; and
iii) removing excess non solvent;
positioning the dressing into the wound site such that the dressing contacts the wound site;
positioning a manifold in contact with the dressing;
covering the manifold with a drape;
securing the drape to the skin surface about the wound circumference;
applying a reduced pressure to the wound site through the dressing and manifold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/983,548 US20080114277A1 (en) | 2006-11-09 | 2007-11-09 | Porous bioresorbable dressing conformable to a wound and methods of making same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85790206P | 2006-11-09 | 2006-11-09 | |
US85790306P | 2006-11-09 | 2006-11-09 | |
US85781406P | 2006-11-09 | 2006-11-09 | |
US11/983,548 US20080114277A1 (en) | 2006-11-09 | 2007-11-09 | Porous bioresorbable dressing conformable to a wound and methods of making same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080114277A1 true US20080114277A1 (en) | 2008-05-15 |
Family
ID=39365147
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/983,549 Expired - Fee Related US8110216B2 (en) | 2006-11-09 | 2007-11-09 | Methods of making porous bioresorbable dressing comprising casing comprising microspheres |
US11/983,548 Abandoned US20080114277A1 (en) | 2006-11-09 | 2007-11-09 | Porous bioresorbable dressing conformable to a wound and methods of making same |
US13/355,266 Active US8273368B2 (en) | 2006-11-09 | 2012-01-20 | Porous bioresorbable linked dressing comprising microspheres and methods of making same |
US13/584,373 Expired - Fee Related US8496959B2 (en) | 2006-11-09 | 2012-08-13 | Method of promoting new tissue growth and/or wound healing using bioresorbable dressing comprising microspheres or microparticles |
US13/942,382 Active US8852627B2 (en) | 2006-11-09 | 2013-07-15 | Porous bioresorbable rope shaped wound dressing comprising microparticles and reduced pressure source |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/983,549 Expired - Fee Related US8110216B2 (en) | 2006-11-09 | 2007-11-09 | Methods of making porous bioresorbable dressing comprising casing comprising microspheres |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/355,266 Active US8273368B2 (en) | 2006-11-09 | 2012-01-20 | Porous bioresorbable linked dressing comprising microspheres and methods of making same |
US13/584,373 Expired - Fee Related US8496959B2 (en) | 2006-11-09 | 2012-08-13 | Method of promoting new tissue growth and/or wound healing using bioresorbable dressing comprising microspheres or microparticles |
US13/942,382 Active US8852627B2 (en) | 2006-11-09 | 2013-07-15 | Porous bioresorbable rope shaped wound dressing comprising microparticles and reduced pressure source |
Country Status (14)
Country | Link |
---|---|
US (5) | US8110216B2 (en) |
EP (3) | EP2079417B1 (en) |
JP (3) | JP5249236B2 (en) |
KR (2) | KR20090085677A (en) |
CN (3) | CN101534762B (en) |
AU (2) | AU2007319939B2 (en) |
CA (2) | CA2666530C (en) |
HK (1) | HK1134008A1 (en) |
IL (2) | IL198584A0 (en) |
NO (2) | NO20092082L (en) |
SG (1) | SG175690A1 (en) |
TW (2) | TWI362925B (en) |
WO (2) | WO2008060475A2 (en) |
ZA (1) | ZA200902780B (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070219489A1 (en) * | 2006-03-14 | 2007-09-20 | Johnson Royce W | Method for percutaneously administering reduced pressure treatment using balloon dissection |
US20090157017A1 (en) * | 2006-03-14 | 2009-06-18 | Archel Ambrosio | Bioresorbable foaming tissue dressing |
US20100297208A1 (en) * | 2006-05-12 | 2010-11-25 | Nicholas Fry | Scaffold |
US20110184357A1 (en) * | 2010-01-22 | 2011-07-28 | Kci Licensing, Inc. | Devices, systems, and methods for instillation of foamed fluid with negative pressure wound therapy |
US20120150188A1 (en) * | 2009-04-17 | 2012-06-14 | Mccarthy Stephen | Absorbable bone adhesive applicator |
US8235939B2 (en) | 2006-02-06 | 2012-08-07 | Kci Licensing, Inc. | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
WO2012142473A1 (en) * | 2011-04-15 | 2012-10-18 | University Of Massachusetts | Surgical cavity drainage and closure system |
US8939933B2 (en) | 2006-03-14 | 2015-01-27 | Kci Licensing, Inc. | Manifolds, systems, and methods for administering reduced pressure to a subcutaneous tissue site |
US9259228B2 (en) | 2006-06-15 | 2016-02-16 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US9351993B2 (en) | 2012-06-14 | 2016-05-31 | Microvention, Inc. | Polymeric treatment compositions |
US9370536B2 (en) | 2012-09-26 | 2016-06-21 | Lifecell Corporation | Processed adipose tissue |
US9381278B2 (en) | 2012-04-18 | 2016-07-05 | Microvention, Inc. | Embolic devices |
US9456823B2 (en) | 2011-04-18 | 2016-10-04 | Terumo Corporation | Embolic devices |
US9486221B2 (en) | 2007-12-21 | 2016-11-08 | Microvision, Inc. | Hydrogel filaments for biomedical uses |
US9655989B2 (en) | 2012-10-15 | 2017-05-23 | Microvention, Inc. | Polymeric treatment compositions |
US9993252B2 (en) | 2009-10-26 | 2018-06-12 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US10092663B2 (en) | 2014-04-29 | 2018-10-09 | Terumo Corporation | Polymers |
US10124090B2 (en) | 2014-04-03 | 2018-11-13 | Terumo Corporation | Embolic devices |
US20180325741A1 (en) * | 2017-05-15 | 2018-11-15 | Baxter International Inc. | Biodegradable negative pressure wound therapy dressing |
US10226533B2 (en) | 2014-04-29 | 2019-03-12 | Microvention, Inc. | Polymer filaments including pharmaceutical agents and delivering same |
US10368874B2 (en) | 2016-08-26 | 2019-08-06 | Microvention, Inc. | Embolic compositions |
US10576182B2 (en) | 2017-10-09 | 2020-03-03 | Microvention, Inc. | Radioactive liquid embolic |
US10639398B2 (en) | 2016-07-05 | 2020-05-05 | Lifecell Corporation | Tissue matrices incorporating multiple tissue types |
US10639396B2 (en) | 2015-06-11 | 2020-05-05 | Microvention, Inc. | Polymers |
US10821205B2 (en) | 2017-10-18 | 2020-11-03 | Lifecell Corporation | Adipose tissue products and methods of production |
US11090338B2 (en) | 2012-07-13 | 2021-08-17 | Lifecell Corporation | Methods for improved treatment of adipose tissue |
CN113303974A (en) * | 2021-05-26 | 2021-08-27 | 华中科技大学同济医学院附属协和医院 | Novel sterile pressure sore dressing and manufacturing method thereof |
US11123375B2 (en) | 2017-10-18 | 2021-09-21 | Lifecell Corporation | Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products |
US11246994B2 (en) | 2017-10-19 | 2022-02-15 | Lifecell Corporation | Methods for introduction of flowable acellular tissue matrix products into a hand |
CN114533935A (en) * | 2022-02-28 | 2022-05-27 | 浙江卫未生物医药科技有限公司 | Cytokine dressing for eliminating whelk and preparation method thereof |
US11633521B2 (en) | 2019-05-30 | 2023-04-25 | Lifecell Corporation | Biologic breast implant |
US11826488B2 (en) | 2017-10-19 | 2023-11-28 | Lifecell Corporation | Flowable acellular tissue matrix products and methods of production |
US11957814B2 (en) | 2011-05-31 | 2024-04-16 | Lifecell Corporation | Adipose tissue matrices |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4636634B2 (en) | 1996-04-26 | 2011-02-23 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Intravascular stent |
JP4795234B2 (en) | 2003-07-22 | 2011-10-19 | ケーシーアイ ライセンシング インク | Negative pressure wound dressing |
PT2347775T (en) | 2005-12-13 | 2020-07-14 | The President And Fellows Of Harvard College | Scaffolds for cell transplantation |
EP2079417B1 (en) | 2006-11-09 | 2014-07-30 | KCI Licensing, Inc. | Porous bioresorbable linked dressing comprising microspheres and methods of making same |
CN101605519B (en) | 2007-02-09 | 2013-05-22 | 凯希特许有限公司 | Breathable interface system for topical pressure reducing |
US9770535B2 (en) | 2007-06-21 | 2017-09-26 | President And Fellows Of Harvard College | Scaffolds for cell collection or elimination |
HUE049431T2 (en) | 2007-11-21 | 2020-09-28 | Smith & Nephew | Wound dressing |
GB0722820D0 (en) | 2007-11-21 | 2008-01-02 | Smith & Nephew | Vacuum assisted wound dressing |
WO2009067711A2 (en) | 2007-11-21 | 2009-05-28 | T.J. Smith & Nephew, Limited | Suction device and dressing |
GB0723875D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Wound management |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US20130096518A1 (en) | 2007-12-06 | 2013-04-18 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US8377017B2 (en) | 2008-01-03 | 2013-02-19 | Kci Licensing, Inc. | Low-profile reduced pressure treatment system |
CA2715460C (en) | 2008-02-13 | 2020-02-18 | President And Fellows Of Harvard College | Continuous cell programming devices |
US9370558B2 (en) | 2008-02-13 | 2016-06-21 | President And Fellows Of Harvard College | Controlled delivery of TLR agonists in structural polymeric devices |
GB0803564D0 (en) | 2008-02-27 | 2008-04-02 | Smith & Nephew | Fluid collection |
EP2977067B1 (en) | 2008-03-13 | 2020-12-09 | 3M Innovative Properties Company | Apparatus for applying reduced pressure to a tissue site on a foot |
US8685432B2 (en) * | 2008-03-25 | 2014-04-01 | University Of Utah Research Foundation | Controlled release tissue graft combination biomaterials |
WO2011127149A1 (en) * | 2010-04-06 | 2011-10-13 | University Of Utah Research Foundation | Controlled release combination biomaterials |
US9320775B2 (en) | 2008-04-30 | 2016-04-26 | Kci Licensing, Inc. | Use of nucleic acids with reduced pressure therapy |
CN102076280B (en) * | 2008-06-24 | 2014-08-27 | 生物活性外科公司 | Surgical sutures incorporated with stem cells or other bioactive materials |
RU2011107119A (en) | 2008-09-18 | 2012-10-27 | КейСиАй Лайсензинг, Инк. (US) | SYSTEMS AND METHODS OF DELIVERY THERAPY |
US8158844B2 (en) | 2008-10-08 | 2012-04-17 | Kci Licensing, Inc. | Limited-access, reduced-pressure systems and methods |
RU2011114218A (en) | 2008-10-29 | 2012-12-10 | КейСиАй ЛАЙСЕНЗИНГ, ИНК. | OPEN CAVITY THERAPY DEVICES AND SYSTEMS REDUCED PRESSURE |
US8708984B2 (en) * | 2008-12-24 | 2014-04-29 | Kci Licensing, Inc. | Reduced-pressure wound treatment systems and methods employing manifold structures |
US8529528B2 (en) * | 2008-12-24 | 2013-09-10 | Kci Licensing, Inc. | Reduced-pressure wound treatment systems and methods employing microstrain-inducing manifolds |
GB0900423D0 (en) | 2009-01-12 | 2009-02-11 | Smith & Nephew | Negative pressure device |
AU2010278702C1 (en) | 2009-07-31 | 2016-07-14 | Forsyth Dental Infirmary For Children | Programming of cells for tolerogenic therapies |
DE102009038387A1 (en) * | 2009-08-24 | 2011-03-03 | Birgit Riesinger | Wound care article with convex insert |
EP2335661B1 (en) | 2009-12-18 | 2012-12-12 | Paul Hartmann AG | Cutting aid for wound dressing for suppression therapy |
US8721606B2 (en) * | 2010-03-11 | 2014-05-13 | Kci Licensing, Inc. | Dressings, systems, and methods for treating a tissue site |
US8882730B2 (en) | 2010-03-12 | 2014-11-11 | Kci Licensing, Inc. | Radio opaque, reduced-pressure manifolds, systems, and methods |
US9999702B2 (en) | 2010-04-09 | 2018-06-19 | Kci Licensing Inc. | Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds |
US8632512B2 (en) * | 2010-04-09 | 2014-01-21 | Kci Licensing, Inc. | Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds |
US8604265B2 (en) | 2010-04-16 | 2013-12-10 | Kci Licensing, Inc. | Dressings and methods for treating a tissue site on a patient |
US9061095B2 (en) | 2010-04-27 | 2015-06-23 | Smith & Nephew Plc | Wound dressing and method of use |
GB201011173D0 (en) | 2010-07-02 | 2010-08-18 | Smith & Nephew | Provision of wound filler |
US11202759B2 (en) * | 2010-10-06 | 2021-12-21 | President And Fellows Of Harvard College | Injectable, pore-forming hydrogels for materials-based cell therapies |
GB201020005D0 (en) | 2010-11-25 | 2011-01-12 | Smith & Nephew | Composition 1-1 |
BR112013012785A2 (en) | 2010-11-25 | 2020-10-20 | Bluestar Silicones France Sas | composition i - ii and products and uses thereof |
US8597264B2 (en) | 2011-03-24 | 2013-12-03 | Kci Licensing, Inc. | Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds |
US9675561B2 (en) | 2011-04-28 | 2017-06-13 | President And Fellows Of Harvard College | Injectable cryogel vaccine devices and methods of use thereof |
EP2701745B1 (en) | 2011-04-28 | 2018-07-11 | President and Fellows of Harvard College | Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration |
JP6062426B2 (en) | 2011-06-03 | 2017-01-18 | プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ | In situ antigen-producing cancer vaccine |
US20150159066A1 (en) | 2011-11-25 | 2015-06-11 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
AU2013215067A1 (en) * | 2012-02-02 | 2014-06-12 | Kci Licensing, Inc. | Foam structure wound inserts for directional granulation |
CA2865349C (en) | 2012-03-06 | 2021-07-06 | Ferrosan Medical Devices A/S | Pressurized container containing haemostatic paste |
SI2838515T1 (en) | 2012-04-16 | 2020-07-31 | President And Fellows Of Harvard College | Mesoporous silica compositions for modulating immune responses |
CA2874290C (en) | 2012-06-12 | 2020-02-25 | Ferrosan Medical Devices A/S | Dry haemostatic composition |
US9889235B2 (en) | 2013-02-05 | 2018-02-13 | University Of Utah Research Foundation | Implantable devices for bone or joint defects |
US8893721B2 (en) * | 2013-03-15 | 2014-11-25 | Futrell Medical Corporation | Surgical drape with vapor evacuation |
US20160120706A1 (en) | 2013-03-15 | 2016-05-05 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
EP3804742A1 (en) | 2013-03-15 | 2021-04-14 | 3M Innovative Properties Company | Wound healing compositions |
CA2928963C (en) | 2013-12-11 | 2020-10-27 | Ferrosan Medical Devices A/S | Dry composition comprising an extrusion enhancer |
US10682400B2 (en) | 2014-04-30 | 2020-06-16 | President And Fellows Of Harvard College | Combination vaccine devices and methods of killing cancer cells |
US9770369B2 (en) | 2014-08-08 | 2017-09-26 | Neogenix, Llc | Wound care devices, apparatus, and treatment methods |
CN106999621B (en) | 2014-10-13 | 2020-07-03 | 弗罗桑医疗设备公司 | Dry composition for hemostasis and wound healing |
US10653837B2 (en) | 2014-12-24 | 2020-05-19 | Ferrosan Medical Devices A/S | Syringe for retaining and mixing first and second substances |
US11786457B2 (en) | 2015-01-30 | 2023-10-17 | President And Fellows Of Harvard College | Peritumoral and intratumoral materials for cancer therapy |
WO2016164705A1 (en) | 2015-04-10 | 2016-10-13 | Omar Abdel-Rahman Ali | Immune cell trapping devices and methods for making and using the same |
EP3316930B1 (en) | 2015-07-03 | 2019-07-31 | Ferrosan Medical Devices A/S | Syringe for mixing two components and for retaining a vacuum in a storage condition |
CN109072197A (en) | 2016-02-06 | 2018-12-21 | 哈佛学院校长同事会 | It is immune to rebuild to remold hematopoiesis nest |
US11555177B2 (en) | 2016-07-13 | 2023-01-17 | President And Fellows Of Harvard College | Antigen-presenting cell-mimetic scaffolds and methods for making and using the same |
EP3703633B2 (en) | 2017-11-03 | 2024-06-26 | 3M Innovative Properties Company | Extended wear-time dressing |
KR20210008479A (en) | 2018-05-09 | 2021-01-22 | 훼로산 메디칼 디바이스 에이/에스 | How to prepare a hemostatic composition |
US11877916B2 (en) | 2019-05-03 | 2024-01-23 | Parkview Health | Perineal therapy pad |
CN113795225A (en) * | 2019-05-08 | 2021-12-14 | 凯希特许有限公司 | Manifold with bioactive substances for negative pressure therapy |
CN112587709A (en) * | 2020-12-25 | 2021-04-02 | 天津强微特生物科技有限公司 | 3D printing dressing adhesive tape containing multiple growth factors and preparation method |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1355846A (en) * | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
US2547758A (en) * | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) * | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
US2682873A (en) * | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
US2969057A (en) * | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US3367332A (en) * | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3520300A (en) * | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
US3568675A (en) * | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3648692A (en) * | 1970-12-07 | 1972-03-14 | Parke Davis & Co | Medical-surgical dressing for burns and the like |
US3682180A (en) * | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
US3826254A (en) * | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
US4080970A (en) * | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4096853A (en) * | 1975-06-21 | 1978-06-27 | Hoechst Aktiengesellschaft | Device for the introduction of contrast medium into an anus praeter |
US4139004A (en) * | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4165748A (en) * | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
US4184510A (en) * | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
US4245630A (en) * | 1976-10-08 | 1981-01-20 | T. J. Smith & Nephew, Ltd. | Tearable composite strip of materials |
US4256109A (en) * | 1978-07-10 | 1981-03-17 | Nichols Robert L | Shut off valve for medical suction apparatus |
US4261363A (en) * | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4275721A (en) * | 1978-11-28 | 1981-06-30 | Landstingens Inkopscentral Lic, Ekonomisk Forening | Vein catheter bandage |
US4284079A (en) * | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
US4333468A (en) * | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4382441A (en) * | 1978-12-06 | 1983-05-10 | Svedman Paul | Device for treating tissues, for example skin |
US4392853A (en) * | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
US4392858A (en) * | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
US4465485A (en) * | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
US4475909A (en) * | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
US4525374A (en) * | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
US4525166A (en) * | 1981-11-21 | 1985-06-25 | Intermedicat Gmbh | Rolled flexible medical suction drainage device |
US4540412A (en) * | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
US4543100A (en) * | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
US4569348A (en) * | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
US4605399A (en) * | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
US4608041A (en) * | 1981-10-14 | 1986-08-26 | Frese Nielsen | Device for treatment of wounds in body tissue of patients by exposure to jets of gas |
US4640688A (en) * | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4655754A (en) * | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4664662A (en) * | 1984-08-02 | 1987-05-12 | Smith And Nephew Associated Companies Plc | Wound dressing |
US4733659A (en) * | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
US4743232A (en) * | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
US4758220A (en) * | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
US4826494A (en) * | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4838883A (en) * | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4840187A (en) * | 1986-09-11 | 1989-06-20 | Bard Limited | Sheath applicator |
US4863449A (en) * | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
US4897081A (en) * | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US4906233A (en) * | 1986-05-29 | 1990-03-06 | Terumo Kabushiki Kaisha | Method of securing a catheter body to a human skin surface |
US4906240A (en) * | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4919654A (en) * | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
US4941882A (en) * | 1987-03-14 | 1990-07-17 | Smith And Nephew Associated Companies, P.L.C. | Adhesive dressing for retaining a cannula on the skin |
US4948575A (en) * | 1989-01-24 | 1990-08-14 | Minnesota Mining And Manufacturing Company | Alginate hydrogel foam wound dressing |
US4953565A (en) * | 1986-11-26 | 1990-09-04 | Shunro Tachibana | Endermic application kits for external medicines |
US4985019A (en) * | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
US5037397A (en) * | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
US5086170A (en) * | 1989-01-16 | 1992-02-04 | Roussel Uclaf | Process for the preparation of azabicyclo compounds |
US5092858A (en) * | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
US5100396A (en) * | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
US5134994A (en) * | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
US5149331A (en) * | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
US5176663A (en) * | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
US5215522A (en) * | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
US5232453A (en) * | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
US5278100A (en) * | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
US5279550A (en) * | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5298015A (en) * | 1989-07-11 | 1994-03-29 | Nippon Zeon Co., Ltd. | Wound dressing having a porous structure |
US5342376A (en) * | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
US5344415A (en) * | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
US5437622A (en) * | 1992-04-29 | 1995-08-01 | Laboratoire Hydrex (Sa) | Transparent adhesive dressing with reinforced starter cuts |
US5437651A (en) * | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5525646A (en) * | 1991-03-04 | 1996-06-11 | Lundgren; Dan | Bioresorbable material and an article of manufacture made of such material for medical use |
US5527293A (en) * | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5549584A (en) * | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US5556375A (en) * | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
US5607388A (en) * | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
US5636643A (en) * | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
US5641502A (en) * | 1995-06-07 | 1997-06-24 | United States Surgical Corporation | Biodegradable moldable surgical material |
US5645081A (en) * | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
US5716413A (en) * | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US5766631A (en) * | 1993-09-21 | 1998-06-16 | Arnold; Peter Stuart | Wound implant materials |
US5792469A (en) * | 1992-03-12 | 1998-08-11 | Atrix Laboratories, Inc. | Biodegradable in situ forming film dressing |
US6071267A (en) * | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US6241747B1 (en) * | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
US6287316B1 (en) * | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
US6345523B1 (en) * | 2000-09-29 | 2002-02-12 | Lambert Kuo | Figure wheel of a combination lock |
US20020077661A1 (en) * | 2000-12-20 | 2002-06-20 | Vahid Saadat | Multi-barbed device for retaining tissue in apposition and methods of use |
US20020115951A1 (en) * | 2001-02-22 | 2002-08-22 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
US20020120185A1 (en) * | 2000-05-26 | 2002-08-29 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US20030044380A1 (en) * | 2001-07-19 | 2003-03-06 | Zhu Yong Hua | Adhesive including medicament |
US6553998B2 (en) * | 1997-09-12 | 2003-04-29 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US6562374B1 (en) * | 2000-06-23 | 2003-05-13 | Korea Institute Of Science And Technology | Biodegradable porous polymer scaffolds for tissue engineering prepared from an effervescent mixture and its preparation |
US6586246B1 (en) * | 1999-03-18 | 2003-07-01 | Innotech Medical, Inc. | Preparing porous biodegradable polymeric scaffolds for tissue engineering using effervescent salts |
US20030180344A1 (en) * | 2002-02-05 | 2003-09-25 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
US6689339B1 (en) * | 1997-11-07 | 2004-02-10 | Medion Research Laboratories Inc. | Viscous compositions containing carbon dioxide |
US6720374B2 (en) * | 2001-06-19 | 2004-04-13 | Riken Vitamin Co., Ltd. | Aliphatic polyester composition and flexible products |
US20050123590A1 (en) * | 2003-12-05 | 2005-06-09 | 3M Innovative Properties Company | Wound dressings and methods |
US20060055089A1 (en) * | 1999-09-17 | 2006-03-16 | Zhang John J | Zoned radiation crosslinked elastomeric materials |
US20060199876A1 (en) * | 2005-03-04 | 2006-09-07 | The University Of British Columbia | Bioceramic composite coatings and process for making same |
US7700819B2 (en) * | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB692578A (en) | 1949-09-13 | 1953-06-10 | Minnesota Mining & Mfg | Improvements in or relating to drape sheets for surgical use |
NL189176B (en) | 1956-07-13 | 1900-01-01 | Hisamitsu Pharmaceutical Co | PLASTER BASED ON A SYNTHETIC RUBBER. |
GB833587A (en) * | 1957-08-30 | 1960-04-27 | Pritchett & Gold & E P S Co | Improvements relating to plastic materials |
US3066672A (en) | 1960-09-27 | 1962-12-04 | Jr William H Crosby | Method and apparatus for serial sampling of intestinal juice |
DE2640413C3 (en) | 1976-09-08 | 1980-03-27 | Richard Wolf Gmbh, 7134 Knittlingen | Catheter monitor |
GB1562244A (en) | 1976-11-11 | 1980-03-05 | Lock P M | Wound dressing materials |
US4266545A (en) | 1979-04-06 | 1981-05-12 | Moss James P | Portable suction device for collecting fluids from a closed wound |
EP0035583B1 (en) | 1980-03-11 | 1985-08-14 | Schmid, Eduard, Dr.Dr.med. | Skin graft pressure bandage |
US4297995A (en) | 1980-06-03 | 1981-11-03 | Key Pharmaceuticals, Inc. | Bandage containing attachment post |
US4419097A (en) | 1981-07-31 | 1983-12-06 | Rexar Industries, Inc. | Attachment for catheter tube |
AU550575B2 (en) | 1981-08-07 | 1986-03-27 | Richard Christian Wright | Wound drainage device |
US4551139A (en) | 1982-02-08 | 1985-11-05 | Marion Laboratories, Inc. | Method and apparatus for burn wound treatment |
DE3361779D1 (en) | 1982-07-06 | 1986-02-20 | Dow Corning | Medical-surgical dressing and a process for the production thereof |
NZ206837A (en) | 1983-01-27 | 1986-08-08 | Johnson & Johnson Prod Inc | Thin film adhesive dressing:backing material in three sections |
US4548202A (en) * | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
GB2157958A (en) | 1984-05-03 | 1985-11-06 | Ernest Edward Austen Bedding | Ball game net support |
US4872450A (en) * | 1984-08-17 | 1989-10-10 | Austad Eric D | Wound dressing and method of forming same |
US4710165A (en) | 1985-09-16 | 1987-12-01 | Mcneil Charles B | Wearable, variable rate suction/collection device |
WO1987004626A1 (en) | 1986-01-31 | 1987-08-13 | Osmond, Roger, L., W. | Suction system for wound and gastro-intestinal drainage |
GB2195255B (en) | 1986-09-30 | 1991-05-01 | Vacutec Uk Limited | Apparatus for vacuum treatment of an epidermal surface |
DE3634569A1 (en) | 1986-10-10 | 1988-04-21 | Sachse Hans E | CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS |
GB8628564D0 (en) | 1986-11-28 | 1987-01-07 | Smiths Industries Plc | Anti-foaming agent suction apparatus |
US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
GB8812803D0 (en) | 1988-05-28 | 1988-06-29 | Smiths Industries Plc | Medico-surgical containers |
US5000741A (en) | 1988-08-22 | 1991-03-19 | Kalt Medical Corporation | Transparent tracheostomy tube dressing |
GB8906100D0 (en) | 1989-03-16 | 1989-04-26 | Smith & Nephew | Laminates |
US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
US5358494A (en) * | 1989-07-11 | 1994-10-25 | Svedman Paul | Irrigation dressing |
GB2235877A (en) | 1989-09-18 | 1991-03-20 | Antonio Talluri | Closed wound suction apparatus |
US5376376A (en) | 1992-01-13 | 1994-12-27 | Li; Shu-Tung | Resorbable vascular wound dressings |
US5167613A (en) | 1992-03-23 | 1992-12-01 | The Kendall Company | Composite vented wound dressing |
US5981568A (en) * | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
DE4306478A1 (en) | 1993-03-02 | 1994-09-08 | Wolfgang Dr Wagner | Drainage device, in particular pleural drainage device, and drainage method |
FR2705567A1 (en) * | 1993-05-25 | 1994-12-02 | Smith & Nephew Laboratoires Fi | Microparticles, preparation process and application to dressings |
US5664270A (en) | 1994-07-19 | 1997-09-09 | Kinetic Concepts, Inc. | Patient interface system |
ES2223977T3 (en) | 1994-08-22 | 2005-03-01 | Kci Licensing, Inc. | CONTAINER. |
DE29504378U1 (en) | 1995-03-15 | 1995-09-14 | MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal | Electronically controlled low-vacuum pump for chest and wound drainage |
US6096344A (en) | 1995-07-28 | 2000-08-01 | Advanced Polymer Systems, Inc. | Bioerodible porous compositions |
GB9523253D0 (en) | 1995-11-14 | 1996-01-17 | Mediscus Prod Ltd | Portable wound treatment apparatus |
RU2182195C2 (en) * | 1996-10-04 | 2002-05-10 | Е.И. Дюпон Де Немур Энд Компани | Polyester-based fiber |
US6135116A (en) | 1997-07-28 | 2000-10-24 | Kci Licensing, Inc. | Therapeutic method for treating ulcers |
AU755496B2 (en) | 1997-09-12 | 2002-12-12 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US6488643B1 (en) | 1998-10-08 | 2002-12-03 | Kci Licensing, Inc. | Wound healing foot wrap |
US7799004B2 (en) | 2001-03-05 | 2010-09-21 | Kci Licensing, Inc. | Negative pressure wound treatment apparatus and infection identification system and method |
AU4176101A (en) | 2000-02-24 | 2001-09-03 | Venetec Int Inc | Universal catheter anchoring system |
SE518528C2 (en) | 2000-12-27 | 2002-10-22 | Artimplant Ab | A process for producing an open porous polymeric material and an open porous polymeric material |
US20020142992A1 (en) * | 2001-03-28 | 2002-10-03 | Scherr George H. | Cellulosic foam compositions |
GB2376632B (en) * | 2001-06-21 | 2004-10-27 | Johnson & Johnson Medical Ltd | Removable cavity wound dressing |
CA2484424A1 (en) * | 2003-02-18 | 2004-09-02 | George H. Scherr | Alginate foam compositions |
DE102004022645A1 (en) | 2004-05-07 | 2005-12-15 | Resorba Wundversorgung Gmbh & Co. Kg | Bioresorbable collagen-based material |
GB2415382A (en) | 2004-06-21 | 2005-12-28 | Johnson & Johnson Medical Ltd | Wound dressings for vacuum therapy |
WO2006010273A1 (en) | 2004-07-30 | 2006-02-02 | The University Of British Columbia | Method for producing hydrocolloid foams |
EP2079417B1 (en) | 2006-11-09 | 2014-07-30 | KCI Licensing, Inc. | Porous bioresorbable linked dressing comprising microspheres and methods of making same |
GB0707758D0 (en) * | 2007-04-21 | 2007-05-30 | Smith & Nephew | A foam material for medical use and method for producing same |
-
2007
- 2007-11-09 EP EP07867406.6A patent/EP2079417B1/en not_active Not-in-force
- 2007-11-09 CN CN2007800415741A patent/CN101534762B/en not_active Expired - Fee Related
- 2007-11-09 CA CA2666530A patent/CA2666530C/en not_active Expired - Fee Related
- 2007-11-09 WO PCT/US2007/023668 patent/WO2008060475A2/en active Application Filing
- 2007-11-09 TW TW096142609A patent/TWI362925B/en not_active IP Right Cessation
- 2007-11-09 EP EP14173292.5A patent/EP2783665B1/en not_active Not-in-force
- 2007-11-09 JP JP2009536320A patent/JP5249236B2/en not_active Expired - Fee Related
- 2007-11-09 TW TW096142607A patent/TW200838478A/en unknown
- 2007-11-09 KR KR1020097011827A patent/KR20090085677A/en not_active IP Right Cessation
- 2007-11-09 EP EP07870865.8A patent/EP2079418B1/en not_active Not-in-force
- 2007-11-09 CN CN201310053793.9A patent/CN103169571B/en not_active Expired - Fee Related
- 2007-11-09 AU AU2007319939A patent/AU2007319939B2/en not_active Ceased
- 2007-11-09 US US11/983,549 patent/US8110216B2/en not_active Expired - Fee Related
- 2007-11-09 JP JP2009536319A patent/JP5850516B2/en not_active Expired - Fee Related
- 2007-11-09 CN CN200780041708XA patent/CN101605518B/en not_active Expired - Fee Related
- 2007-11-09 KR KR1020097011825A patent/KR20090082468A/en not_active IP Right Cessation
- 2007-11-09 CA CA2663774A patent/CA2663774C/en not_active Expired - Fee Related
- 2007-11-09 WO PCT/US2007/023667 patent/WO2008057600A2/en active Application Filing
- 2007-11-09 SG SG2011079209A patent/SG175690A1/en unknown
- 2007-11-09 US US11/983,548 patent/US20080114277A1/en not_active Abandoned
- 2007-11-09 AU AU2007317809A patent/AU2007317809B2/en not_active Ceased
-
2009
- 2009-04-16 ZA ZA2009/02780A patent/ZA200902780B/en unknown
- 2009-05-05 IL IL198584A patent/IL198584A0/en unknown
- 2009-05-05 IL IL198585A patent/IL198585A0/en unknown
- 2009-05-28 NO NO20092082A patent/NO20092082L/en not_active Application Discontinuation
- 2009-06-03 NO NO20092144A patent/NO20092144L/en not_active Application Discontinuation
-
2010
- 2010-01-30 HK HK10101083.4A patent/HK1134008A1/en not_active IP Right Cessation
-
2012
- 2012-01-20 US US13/355,266 patent/US8273368B2/en active Active
- 2012-08-13 US US13/584,373 patent/US8496959B2/en not_active Expired - Fee Related
-
2013
- 2013-03-18 JP JP2013055542A patent/JP5722372B2/en not_active Expired - Fee Related
- 2013-07-15 US US13/942,382 patent/US8852627B2/en active Active
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1355846A (en) * | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
US2547758A (en) * | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) * | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
US2682873A (en) * | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
US2969057A (en) * | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US3367332A (en) * | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3520300A (en) * | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
US3568675A (en) * | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3682180A (en) * | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
US3648692A (en) * | 1970-12-07 | 1972-03-14 | Parke Davis & Co | Medical-surgical dressing for burns and the like |
US3826254A (en) * | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
US4096853A (en) * | 1975-06-21 | 1978-06-27 | Hoechst Aktiengesellschaft | Device for the introduction of contrast medium into an anus praeter |
US4245630A (en) * | 1976-10-08 | 1981-01-20 | T. J. Smith & Nephew, Ltd. | Tearable composite strip of materials |
US4080970A (en) * | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4139004A (en) * | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4184510A (en) * | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
US4165748A (en) * | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
US4256109A (en) * | 1978-07-10 | 1981-03-17 | Nichols Robert L | Shut off valve for medical suction apparatus |
US4275721A (en) * | 1978-11-28 | 1981-06-30 | Landstingens Inkopscentral Lic, Ekonomisk Forening | Vein catheter bandage |
US4382441A (en) * | 1978-12-06 | 1983-05-10 | Svedman Paul | Device for treating tissues, for example skin |
US4284079A (en) * | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
US4261363A (en) * | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4569348A (en) * | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
US4333468A (en) * | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4465485A (en) * | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
US4392853A (en) * | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4392858A (en) * | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
US4608041A (en) * | 1981-10-14 | 1986-08-26 | Frese Nielsen | Device for treatment of wounds in body tissue of patients by exposure to jets of gas |
US4525166A (en) * | 1981-11-21 | 1985-06-25 | Intermedicat Gmbh | Rolled flexible medical suction drainage device |
US4475909A (en) * | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
US4540412A (en) * | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
US4543100A (en) * | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
US4525374A (en) * | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
US4897081A (en) * | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US5215522A (en) * | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
US4664662A (en) * | 1984-08-02 | 1987-05-12 | Smith And Nephew Associated Companies Plc | Wound dressing |
US4655754A (en) * | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4826494A (en) * | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4605399A (en) * | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
US5037397A (en) * | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
US4640688A (en) * | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4758220A (en) * | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
US4733659A (en) * | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
US4838883A (en) * | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4906233A (en) * | 1986-05-29 | 1990-03-06 | Terumo Kabushiki Kaisha | Method of securing a catheter body to a human skin surface |
US4840187A (en) * | 1986-09-11 | 1989-06-20 | Bard Limited | Sheath applicator |
US4743232A (en) * | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
US4953565A (en) * | 1986-11-26 | 1990-09-04 | Shunro Tachibana | Endermic application kits for external medicines |
US4941882A (en) * | 1987-03-14 | 1990-07-17 | Smith And Nephew Associated Companies, P.L.C. | Adhesive dressing for retaining a cannula on the skin |
US4863449A (en) * | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
US5176663A (en) * | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
US4906240A (en) * | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4985019A (en) * | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
US4919654A (en) * | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
US5086170A (en) * | 1989-01-16 | 1992-02-04 | Roussel Uclaf | Process for the preparation of azabicyclo compounds |
US4948575A (en) * | 1989-01-24 | 1990-08-14 | Minnesota Mining And Manufacturing Company | Alginate hydrogel foam wound dressing |
US5527293A (en) * | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5100396A (en) * | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
US5298015A (en) * | 1989-07-11 | 1994-03-29 | Nippon Zeon Co., Ltd. | Wound dressing having a porous structure |
US5232453A (en) * | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
US5134994A (en) * | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
US5092858A (en) * | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
US5525646A (en) * | 1991-03-04 | 1996-06-11 | Lundgren; Dan | Bioresorbable material and an article of manufacture made of such material for medical use |
US5149331A (en) * | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
US5278100A (en) * | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
US5645081A (en) * | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
US5636643A (en) * | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
US5279550A (en) * | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5792469A (en) * | 1992-03-12 | 1998-08-11 | Atrix Laboratories, Inc. | Biodegradable in situ forming film dressing |
US5437622A (en) * | 1992-04-29 | 1995-08-01 | Laboratoire Hydrex (Sa) | Transparent adhesive dressing with reinforced starter cuts |
US5342376A (en) * | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
US6241747B1 (en) * | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
US5344415A (en) * | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
US5437651A (en) * | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5766631A (en) * | 1993-09-21 | 1998-06-16 | Arnold; Peter Stuart | Wound implant materials |
US5549584A (en) * | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US5556375A (en) * | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
US5607388A (en) * | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
US5641502A (en) * | 1995-06-07 | 1997-06-24 | United States Surgical Corporation | Biodegradable moldable surgical material |
US5863297A (en) * | 1995-10-11 | 1999-01-26 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US5716413A (en) * | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US6553998B2 (en) * | 1997-09-12 | 2003-04-29 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US6689339B1 (en) * | 1997-11-07 | 2004-02-10 | Medion Research Laboratories Inc. | Viscous compositions containing carbon dioxide |
US6071267A (en) * | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US6586246B1 (en) * | 1999-03-18 | 2003-07-01 | Innotech Medical, Inc. | Preparing porous biodegradable polymeric scaffolds for tissue engineering using effervescent salts |
US6287316B1 (en) * | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
US20060055089A1 (en) * | 1999-09-17 | 2006-03-16 | Zhang John J | Zoned radiation crosslinked elastomeric materials |
US20020120185A1 (en) * | 2000-05-26 | 2002-08-29 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US6562374B1 (en) * | 2000-06-23 | 2003-05-13 | Korea Institute Of Science And Technology | Biodegradable porous polymer scaffolds for tissue engineering prepared from an effervescent mixture and its preparation |
US6345523B1 (en) * | 2000-09-29 | 2002-02-12 | Lambert Kuo | Figure wheel of a combination lock |
US20020077661A1 (en) * | 2000-12-20 | 2002-06-20 | Vahid Saadat | Multi-barbed device for retaining tissue in apposition and methods of use |
US7700819B2 (en) * | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
US20020115951A1 (en) * | 2001-02-22 | 2002-08-22 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
US6720374B2 (en) * | 2001-06-19 | 2004-04-13 | Riken Vitamin Co., Ltd. | Aliphatic polyester composition and flexible products |
US20030044380A1 (en) * | 2001-07-19 | 2003-03-06 | Zhu Yong Hua | Adhesive including medicament |
US20030180344A1 (en) * | 2002-02-05 | 2003-09-25 | Cambridge Scientific, Inc. | Bioresorbable osteoconductive compositions for bone regeneration |
US20050123590A1 (en) * | 2003-12-05 | 2005-06-09 | 3M Innovative Properties Company | Wound dressings and methods |
US20060199876A1 (en) * | 2005-03-04 | 2006-09-07 | The University Of British Columbia | Bioceramic composite coatings and process for making same |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8235939B2 (en) | 2006-02-06 | 2012-08-07 | Kci Licensing, Inc. | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
US8617140B2 (en) | 2006-03-14 | 2013-12-31 | Kci Licensing, Inc. | System for percutaneously administering reduced pressure treatment using balloon dissection |
US20090157017A1 (en) * | 2006-03-14 | 2009-06-18 | Archel Ambrosio | Bioresorbable foaming tissue dressing |
US9456860B2 (en) | 2006-03-14 | 2016-10-04 | Kci Licensing, Inc. | Bioresorbable foaming tissue dressing |
US20070219489A1 (en) * | 2006-03-14 | 2007-09-20 | Johnson Royce W | Method for percutaneously administering reduced pressure treatment using balloon dissection |
US8029498B2 (en) | 2006-03-14 | 2011-10-04 | Kci Licensing Inc. | System for percutaneously administering reduced pressure treatment using balloon dissection |
US9050402B2 (en) | 2006-03-14 | 2015-06-09 | Kci Licensing, Inc. | Method for percutaneously administering reduced pressure treatment using balloon dissection |
US8939933B2 (en) | 2006-03-14 | 2015-01-27 | Kci Licensing, Inc. | Manifolds, systems, and methods for administering reduced pressure to a subcutaneous tissue site |
US8267918B2 (en) | 2006-03-14 | 2012-09-18 | Kci Licensing, Inc. | System and method for percutaneously administering reduced pressure treatment using a flowable manifold |
US8771253B2 (en) | 2006-03-14 | 2014-07-08 | Kci Licensing, Inc. | System and method for percutaneously administering reduced pressure treatment using a flowable manifold |
US20100297208A1 (en) * | 2006-05-12 | 2010-11-25 | Nicholas Fry | Scaffold |
US8338402B2 (en) | 2006-05-12 | 2012-12-25 | Smith & Nephew Plc | Scaffold |
US9451963B2 (en) | 2006-06-15 | 2016-09-27 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US10499925B2 (en) | 2006-06-15 | 2019-12-10 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US9877731B2 (en) | 2006-06-15 | 2018-01-30 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US9724103B2 (en) | 2006-06-15 | 2017-08-08 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US10226258B2 (en) | 2006-06-15 | 2019-03-12 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US9259228B2 (en) | 2006-06-15 | 2016-02-16 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US11160557B2 (en) | 2006-06-15 | 2021-11-02 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US11185336B2 (en) | 2006-06-15 | 2021-11-30 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US9486221B2 (en) | 2007-12-21 | 2016-11-08 | Microvision, Inc. | Hydrogel filaments for biomedical uses |
US10194915B2 (en) | 2007-12-21 | 2019-02-05 | Microvention, Inc. | Implantation devices including hydrogel filaments |
WO2010078209A3 (en) * | 2008-12-31 | 2010-11-04 | Kci Licensing, Inc. | Bioresorbable foaming tissue dressing |
CN102264400A (en) * | 2008-12-31 | 2011-11-30 | 凯希特许有限公司 | Bioresorbable foaming tissue dressing |
US20120150188A1 (en) * | 2009-04-17 | 2012-06-14 | Mccarthy Stephen | Absorbable bone adhesive applicator |
US9993252B2 (en) | 2009-10-26 | 2018-06-12 | Microvention, Inc. | Embolization device constructed from expansile polymer |
US9974693B2 (en) | 2010-01-22 | 2018-05-22 | Kci Licensing, Inc. | Devices, systems, and methods for instillation of foamed fluid with negative pressure wound therapy |
US10918527B2 (en) | 2010-01-22 | 2021-02-16 | Kci Licensing, Inc. | Devices, systems, and methods for instillation of foamed fluid with negative pressure wound therapy |
US20210128362A1 (en) * | 2010-01-22 | 2021-05-06 | Kci Licensing, Inc. | Devices, systems, and methods for instillation of foamed fluid with negative pressure wound therapy |
US20110184357A1 (en) * | 2010-01-22 | 2011-07-28 | Kci Licensing, Inc. | Devices, systems, and methods for instillation of foamed fluid with negative pressure wound therapy |
US12076218B2 (en) * | 2010-01-22 | 2024-09-03 | Solventum Intellectual Properties Company | Devices, systems, and methods for instillation of foamed fluid with negative pressure wound therapy |
US11000418B2 (en) | 2011-04-15 | 2021-05-11 | University Of Massachusetts | Surgical cavity drainage and closure system |
US9597484B2 (en) | 2011-04-15 | 2017-03-21 | University Of Massachusetts | Surgical cavity drainage and closure system |
WO2012142473A1 (en) * | 2011-04-15 | 2012-10-18 | University Of Massachusetts | Surgical cavity drainage and closure system |
US20130274717A1 (en) * | 2011-04-15 | 2013-10-17 | Raymond Dunn | Surgical cavity drainage and closure system |
US20160317792A9 (en) * | 2011-04-15 | 2016-11-03 | University Of Massachusetts | Surgical cavity drainage and closure system |
US10166148B2 (en) * | 2011-04-15 | 2019-01-01 | University Of Massachusetts | Surgical cavity drainage and closure system |
US9456823B2 (en) | 2011-04-18 | 2016-10-04 | Terumo Corporation | Embolic devices |
US11957814B2 (en) | 2011-05-31 | 2024-04-16 | Lifecell Corporation | Adipose tissue matrices |
US9381278B2 (en) | 2012-04-18 | 2016-07-05 | Microvention, Inc. | Embolic devices |
US10201562B2 (en) | 2012-06-14 | 2019-02-12 | Microvention, Inc. | Polymeric treatment compositions |
US9937201B2 (en) | 2012-06-14 | 2018-04-10 | Microvention, Inc. | Polymeric treatment compositions |
US11998563B2 (en) | 2012-06-14 | 2024-06-04 | Microvention, Inc. | Polymeric treatment compositions |
US11331340B2 (en) | 2012-06-14 | 2022-05-17 | Microvention, Inc. | Polymeric treatment compositions |
US10588923B2 (en) | 2012-06-14 | 2020-03-17 | Microvention, Inc. | Polymeric treatment compositions |
US9351993B2 (en) | 2012-06-14 | 2016-05-31 | Microvention, Inc. | Polymeric treatment compositions |
US11090338B2 (en) | 2012-07-13 | 2021-08-17 | Lifecell Corporation | Methods for improved treatment of adipose tissue |
US9370536B2 (en) | 2012-09-26 | 2016-06-21 | Lifecell Corporation | Processed adipose tissue |
US10709810B2 (en) | 2012-09-26 | 2020-07-14 | Lifecell Corporation | Processed adipose tissue |
US9655989B2 (en) | 2012-10-15 | 2017-05-23 | Microvention, Inc. | Polymeric treatment compositions |
US10828388B2 (en) | 2012-10-15 | 2020-11-10 | Microvention, Inc. | Polymeric treatment compositions |
US11801326B2 (en) | 2012-10-15 | 2023-10-31 | Microvention, Inc. | Polymeric treatment compositions |
US10258716B2 (en) | 2012-10-15 | 2019-04-16 | Microvention, Inc. | Polymeric treatment compositions |
US10124090B2 (en) | 2014-04-03 | 2018-11-13 | Terumo Corporation | Embolic devices |
US10946100B2 (en) | 2014-04-29 | 2021-03-16 | Microvention, Inc. | Polymers including active agents |
US10226533B2 (en) | 2014-04-29 | 2019-03-12 | Microvention, Inc. | Polymer filaments including pharmaceutical agents and delivering same |
US10092663B2 (en) | 2014-04-29 | 2018-10-09 | Terumo Corporation | Polymers |
US10639396B2 (en) | 2015-06-11 | 2020-05-05 | Microvention, Inc. | Polymers |
US11759547B2 (en) | 2015-06-11 | 2023-09-19 | Microvention, Inc. | Polymers |
US10639398B2 (en) | 2016-07-05 | 2020-05-05 | Lifecell Corporation | Tissue matrices incorporating multiple tissue types |
US11051826B2 (en) | 2016-08-26 | 2021-07-06 | Microvention, Inc. | Embolic compositions |
US10368874B2 (en) | 2016-08-26 | 2019-08-06 | Microvention, Inc. | Embolic compositions |
US11911041B2 (en) | 2016-08-26 | 2024-02-27 | Microvention, Inc. | Embolic compositions |
US20180325741A1 (en) * | 2017-05-15 | 2018-11-15 | Baxter International Inc. | Biodegradable negative pressure wound therapy dressing |
US11992575B2 (en) | 2017-10-09 | 2024-05-28 | Microvention, Inc. | Radioactive liquid embolic |
US10576182B2 (en) | 2017-10-09 | 2020-03-03 | Microvention, Inc. | Radioactive liquid embolic |
US11123375B2 (en) | 2017-10-18 | 2021-09-21 | Lifecell Corporation | Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products |
US10821205B2 (en) | 2017-10-18 | 2020-11-03 | Lifecell Corporation | Adipose tissue products and methods of production |
US11826488B2 (en) | 2017-10-19 | 2023-11-28 | Lifecell Corporation | Flowable acellular tissue matrix products and methods of production |
US11246994B2 (en) | 2017-10-19 | 2022-02-15 | Lifecell Corporation | Methods for introduction of flowable acellular tissue matrix products into a hand |
US11633521B2 (en) | 2019-05-30 | 2023-04-25 | Lifecell Corporation | Biologic breast implant |
CN113303974A (en) * | 2021-05-26 | 2021-08-27 | 华中科技大学同济医学院附属协和医院 | Novel sterile pressure sore dressing and manufacturing method thereof |
CN114533935A (en) * | 2022-02-28 | 2022-05-27 | 浙江卫未生物医药科技有限公司 | Cytokine dressing for eliminating whelk and preparation method thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2079418B1 (en) | Porous bioresorbable dressing conformable to a wound and methods of making same | |
CN111432761B (en) | Dressing for extending wearing time | |
US10893982B2 (en) | Perforated, layered wound treatment material | |
RU2710345C2 (en) | Systems and methods for tissue healing | |
RU2436556C2 (en) | Porous biodegradable bandage, corresponding to wound sizes, and methods of its obtaining | |
RU2433834C2 (en) | Porous biologically absorbable bandage which includes microspheres and method of its manufacturing | |
AU2013205713A1 (en) | Porous bioresorbable linked dressing comprising microspheres and methods of making same | |
CN108697829B (en) | Improved fibrinogen-based tissue adhesive patch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KCI LICENSING, INC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMBROSIO, ARCHEL;PAYNE, JOANNA;KIESWETTER, KRISTINE;REEL/FRAME:020388/0404 Effective date: 20080109 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |