US20080093089A1 - System for Lining a Wellbore Casing - Google Patents
System for Lining a Wellbore Casing Download PDFInfo
- Publication number
- US20080093089A1 US20080093089A1 US11/963,526 US96352607A US2008093089A1 US 20080093089 A1 US20080093089 A1 US 20080093089A1 US 96352607 A US96352607 A US 96352607A US 2008093089 A1 US2008093089 A1 US 2008093089A1
- Authority
- US
- United States
- Prior art keywords
- tubular
- filed
- attorney docket
- patent application
- application ser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007789 sealing Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000004033 plastic Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B29/00—Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
- E21B29/10—Reconditioning of well casings, e.g. straightening
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/103—Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
- E21B43/108—Expandable screens or perforated liners
Definitions
- This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.
- a relatively large borehole diameter is required at the upper part of the wellbore.
- Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings.
- increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
- the present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbore casings.
- a system for lining a wellbore casing includes a tubular support member defining a first passage, a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end, a tubular liner coupled to and supported by the tapered end of the tubular expansion cone, and a shoe defining a valveable passage coupled to an end of the tubular liner, wherein the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the outside diameter of the tubular expansion cone.
- a method of lining a wellbore casing includes positioning a tubular liner within the wellbore casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing.
- a system for lining a wellbore casing includes means for positioning a tubular liner within the wellbore casing, and means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing.
- a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.
- an apparatus includes a subterranean formation defining a borehole, a casing positioned in and coupled to the borehole, and a tubular liner positioned in and coupled to the casing at one or more discrete locations.
- FIG. 1 a is a cross sectional illustration of the placement of an illustrative embodiment of a system for lining a wellbore casing within a borehole having a preexisting wellbore casing.
- FIG. 1 b is a cross sectional illustration of the system of FIG. 1 a during the injection of a fluidic material into the tubular support member.
- FIG. 1 c is a cross sectional illustration of the system of FIG. 1 b during the pressurization of the interior portion of the shoe after sealing off the valveable fluid passage of the shoe.
- FIG. 1 d is a cross sectional illustration of the system of FIG. 1 c during the continued injection of the fluidic material into the tubular support member.
- FIG. 1 e is a cross sectional illustration of the system of FIG. 1 d after the completion of the radial expansion and plastic deformation of the expandable tubular members.
- FIG. 1 f is a cross sectional illustration of the system of FIG. 1 e after machining the bottom central portion of the shoe.
- FIG. 2 is a cross sectional illustration of an illustrative embodiment of the expandable tubular members of the system of FIG. 1 a.
- FIG. 3 is a flow chart illustration of an illustrative embodiment of a method for manufacturing the expandable tubular member of FIG. 2 .
- FIG. 4 a is a cross sectional illustration of an illustrative embodiment of the upsetting of the ends of a tubular member.
- FIG. 4 b is a cross sectional illustration of the expandable tubular member of FIG. 4 a after radially expanding and plastically deforming the ends of the expandable tubular member.
- FIG. 4 c is a cross sectional illustration of the expandable tubular member of FIG. 4 b after forming threaded connections on the ends of the expandable tubular member.
- FIG. 4 d is a cross sectional illustration of the expandable tubular member of FIG. 4 c after coupling sealing members to the exterior surface of the intermediate unexpanded portion of the expandable tubular member.
- FIG. 5 is a cross-sectional illustration of an exemplary embodiment of a tubular expansion cone.
- FIG. 6 is a cross-sectional illustration of an exemplary embodiment of a tubular expansion cone.
- the reference numeral 10 refers, in general, to a system for lining a wellbore casing that includes a tubular support member 12 that defines a passage 12 a .
- a tubular expansion cone 14 that defines a passage 14 a is coupled to an end of the tubular support member 12 .
- the tubular expansion cone 14 includes a tapered outer surface 14 b for reasons to be described.
- a pre-expanded end 16 a of a first expandable tubular member 16 that defines a passage 16 b is adapted to mate with and be supported by the tapered outer surface 14 b of the tubular expansion cone 14 .
- the first expandable tubular member 16 further includes an unexpanded intermediate portion 16 c , another pre-expanded end 16 d , and a sealing member 16 e coupled to the exterior surface of the unexpanded intermediate portion.
- the inside and outside diameters of the pre-expanded ends, 16 a and 16 d , of the first expandable tubular member 16 are greater than the inside and outside diameters of the unexpanded intermediate portion 16 c .
- An end 18 a of a shoe 18 that defines a passage 18 b and a valveable passage 18 c is coupled to the pre-expanded end 16 a of the first expandable tubular member 16 by a conventional threaded connection.
- An end 20 a of a tubular member 20 that defines a passage 20 b is coupled to the other pre-expanded end 16 d of the first expandable tubular member 16 by a conventional threaded connection.
- Another end 20 c of the tubular member 20 is coupled to an end 22 a of a tubular member 22 that defines a passage 22 b by a conventional threaded connection.
- a pre-expanded end 24 a of a second expandable tubular member 24 that defines a passage 24 b is coupled to the other end 22 c of the tubular member 22 .
- the second expandable tubular member 24 further includes an unexpanded intermediate portion 24 c , another pre-expanded end 24 d , and a sealing member 24 e coupled to the exterior surface of the unexpanded intermediate portion.
- the inside and outside diameters of the pre-expanded ends, 24 a and 24 d , of the second expandable tubular member 24 are greater than the inside and outside diameters of the unexpanded intermediate portion 24 c.
- An end 26 a of a tubular member 26 that defines a passage 26 b is coupled to the other pre-expanded end 24 d of the second expandable tubular member 24 by a conventional threaded connection.
- Another end 26 c of the tubular member 26 is coupled to an end 28 a of a tubular member 28 that defines a passage 28 b by a conventional threaded connection.
- a pre-expanded end 30 a of a third expandable tubular member 30 that defines a passage 30 b is coupled to the other end 28 c of the tubular member 28 .
- the third expandable tubular member 30 further includes an unexpanded intermediate portion 30 c , another pre-expanded end 30 d , and a sealing member 30 e coupled to the exterior surface of the unexpanded intermediate portion.
- the inside and outside diameters of the pre-expanded ends, 30 a and 30 d , of the third expandable tubular member 30 are greater than the inside and outside diameters of the unexpanded intermediate portion 30 c.
- the inside and outside diameters of the pre-expanded ends, 16 a , 16 d , 24 a , 24 d , 30 a and 30 d , of the expandable tubular members, 16 , 24 , and 30 , and the tubular members 20 , 22 , 26 , and 28 are substantially equal.
- the sealing members, 16 e , 24 e , and 30 e , of the expandable tubular members, 16 , 24 , and 30 respectively, further include anchoring elements for engaging the wellbore casing 104 .
- the tubular members, 20 , 22 , 26 , and 28 are conventional tubular members having threaded end connections suitable for use in an oil or gas well, an underground pipeline, or as a structural support.
- the system 10 is initially positioned in a borehole 100 formed in a subterranean formation 102 that includes a pre-existing wellbore casing 104 .
- the borehole 100 may be positioned in any orientation from vertical to horizontal.
- the wellbore casing 104 may be, for example, a wellbore casing for an oil or gas well, an underground pipeline, or a structural support.
- the upper end of the tubular support member 12 may be supported in a conventional manner using, for example, a slip joint, or equivalent device in order to permit upward movement of the tubular support member and tubular expansion cone 14 relative to one or more of the expandable tubular members, 16 , 24 , and 30 , and tubular members, 20 , 22 , 26 , and 28 .
- a fluidic material 106 is then injected into the system 10 , through the passages, 12 a and 14 a , of the tubular support member 12 and tubular expansion cone 14 , respectively.
- the fluidic material 106 then passes into the passages, 18 b and 18 c , of the shoe 18 into the borehole 100 .
- a ball 108 , plug or other equivalent device is then introduced into the injected fluidic material 106 .
- the ball 108 will then pass through the passages, 12 a , 14 a , and 18 b , of the tubular support member 12 , the tubular expansion cone 14 , and the shoe 18 , respectively, and will then be positioned within the valveable passage 18 c of the shoe.
- the valveable passage 18 c of the shoe 18 is closed thereby permitting the passage 18 b of the shoe below the tubular expansion cone 14 to be pressurized by the continued injection of the fluidic material 106 .
- the continued injection of the fluidic material 106 through the passages, 12 a and 14 a , of the tubular support member 12 and the tubular expansion cone 14 pressurizes the passage 18 b of the shoe 18 below the tubular expansion cone thereby radially expanding and plastically deforming the expandable tubular member 16 off of the tapered external surface 14 b of the tubular expansion cone 14 .
- the intermediate non pre-expanded portion 16 c of the expandable tubular member 16 is radially expanded and plastically deformed off of the tapered external surface 14 b of the tubular expansion cone 14 .
- the sealing member 16 e engages the interior surface of the wellbore casing 104 . Consequently, the radially expanded intermediate portion 16 c of the expandable tubular member 16 is thereby coupled to the wellbore casing 104 . In an exemplary embodiment, the radially expanded intermediate portion 16 c of the expandable tubular member 16 is also thereby anchored to the wellbore casing 104 .
- the continued injection of the fluidic material 106 through the passages, 12 a and 14 a , of the tubular support member 12 and tubular expansion cone 14 , respectively, will then pressurize the passages 18 b , 16 b , 20 b and 22 b below the tubular expansion cone thereby radially expanding and plastically deforming the second expandable tubular member 24 off of the tapered external surface 14 b of the tubular expansion cone 14 .
- the intermediate non pre-expanded portion 24 c of the second expandable tubular member 24 is radially expanded and plastically deformed off of the tapered external surface 14 b of the tubular expansion cone 14 .
- the sealing member 24 e engages the interior surface of the wellbore casing 104 . Consequently, the radially expanded intermediate portion 24 c of the second expandable tubular member 24 is thereby coupled to the wellbore casing 104 . In an exemplary embodiment, the radially expanded intermediate portion 24 c of the second expandable tubular member 24 is also thereby anchored to the wellbore casing 104 .
- the continued injection of the fluidic material 106 through the passages, 12 a and 14 a , of the tubular support member 12 and tubular expansion cone 14 , respectively, will then pressurize the passages 18 b , 16 b , 20 b , 22 b , 24 b , 26 b , and 28 b below the tubular expansion cone thereby radially expanding and plastically deforming the third expandable tubular member 30 off of the tapered external surface 14 b of the tubular expansion cone 14 .
- the intermediate non pre-expanded portion 30 c of the third expandable tubular member 30 is radially expanded and plastically deformed off of the tapered external surface 14 b of the tubular expansion cone 14 .
- the sealing member 30 e engages the interior surface of the wellbore casing 104 . Consequently, the radially expanded intermediate portion 30 c of the third expandable tubular member 30 is thereby coupled to the wellbore casing 104 . In an exemplary embodiment, the radially expanded intermediate portion 30 c of the third expandable tubular member 30 is also thereby anchored to the wellbore casing 104 .
- the tubular support member 12 and tubular expansion cone 14 are displaced upwardly relative to the expandable tubular members, 16 , 24 , and 30 , and the tubular members, 20 , 22 , 26 , and 28 , by applying an upward axial force to the upper end of the tubular support member.
- the tubular support member 12 and the tubular expansion cone 14 are removed from the wellbore 100 .
- the lower central portion of the shoe 18 is then removed using a conventional milling device.
- the intermediate non pre-expanded portions, 16 c , 24 c , and 30 c , of the expandable tubular members, 16 , 24 , and 30 , respectively, are radially expanded and plastically deformed by the pressurization of the interior passages, 18 a , 16 b , 20 b , 22 b , 24 b , 26 b , 28 b , and 30 b , of the shoe 18 , the expandable tubular member 16 , the tubular members, 20 and 22 , the expandable tubular member 24 , the tubular members, 26 and 28 , and the expandable tubular member 30 , respectively, below the tubular expansion cone 14 .
- the sealing members, 16 e , 24 e , and 30 e are displaced in the radial direction into engagement with the wellbore casing 104 thereby coupling the shoe 18 , the expandable tubular member 16 , the tubular members, 20 and 22 , the expandable tubular member 24 , the tubular members, 26 and 28 , and the expandable tubular member 30 to the wellbore casing.
- the expandable connections between the expandable tubular members, 16 , 24 , and 30 , the shoe 18 , and the tubular members, 20 , 22 , 26 , and 28 do not have to be expandable connections thereby providing significant cost savings.
- the tubular members 20 , 22 , 26 , and 28 are interleaved among the expandable tubular members, 16 , 24 , and 30 .
- the tubular members, 20 , 22 , 26 , and 28 can be conventional tubular members thereby significantly reducing the cost and complexity of the system 10 .
- the number and length of the interleaved tubular members, 20 , 22 , 26 , and 28 can be much greater than the number and length of the expandable tubular members.
- the total length of the intermediate non pre-expanded portions, 16 c , 24 c , and 30 c , of the expandable tubular members, 16 , 24 , and 30 is approximately 200 feet, and the total length of the tubular members, 20 , 22 , 26 , and 28 , is approximately 3800 feet. Consequently, in an exemplary embodiment, a liner having a total length of approximately 4000 feet is coupled to a wellbore casing by radially expanding and plastically deforming a total length of only approximately 200 feet.
- the sealing members 16 e , 24 e , and 30 e , of the expandable tubular members, 16 , 24 , and 30 , respectively, are used to couple the expandable tubular members and the tubular members, 20 , 22 , 26 , and 28 to the wellbore casing 104 , the radial gap between the tubular members, the expandable tubular members, and the wellbore casing 104 may be large enough to effectively eliminate the possibility of damage to the expandable tubular members and tubular members during the placement of the system 10 within the wellbore casing.
- the expandable tubular members, 24 and 30 are radially expanded and plastically deformed by injecting the fluidic material 106 and applying an upward axial force to the tubular support member 12 and tubular expansion cone 14 . In this manner, radial expansion and plastic deformation of the expandable tubular members, 24 and 30 , may be enhanced.
- the expandable tubular members, 24 and 30 are radially expanded and plastically deformed by only applying an upward axial force to the tubular support member 12 and tubular expansion cone 14 . In this manner, radial expansion and plastic deformation of the expandable tubular members, 24 and 30 , may be provided without the further continued injection of the fluidic material 106 .
- the pre-expanded ends, 16 a , 16 d , 24 a , 24 d , 30 a , and 30 d , of the expandable tubular members, 16 , 24 , and 30 , respectively, and the tubular members, 20 , 22 , 26 , and 28 have outside diameters and wall thicknesses of 8.375 inches and 0.350 inches, respectively; prior to the radial expansion, the intermediate non pre-expanded portions, 16 c , 24 c , and 30 c , of the expandable tubular members, 16 , 24 , and 30 , respectively, have outside diameters of 7.625 inches; the tubular members, 20 , 22 , 26 , and 28 , have inside diameters of 7.675 inches; after the radial expansion, the inside diameters of the intermediate portions, 16 c , 24 c , and 30 c , of the expandable tubular members, 16 , 24 , and 30 , are equal to 7.675 inches
- the system 10 is used to form or repair a wellbore casing, a pipeline, or a structural support.
- the tubular member 200 defines an interior region 200 a and includes a first end 200 b including a first threaded connection 200 ba , a first tapered portion 200 c , an intermediate portion 200 d , a second tapered portion 200 e , and a second end 200 f including a second threaded connection 200 fa .
- the tubular member 200 further preferably includes an intermediate sealing member 200 g that is coupled to the exterior surface of the intermediate portion 200 d.
- the tubular member 200 has a substantially annular cross section.
- the tubular member 200 may be fabricated from any number of conventional commercially available materials such as, for example, Oilfield Country Tubular Goods (OCTG), 13 chromium steel tubing/casing, or L83, J55, or P110 API casing.
- OCTG Oilfield Country Tubular Goods
- 13 chromium steel tubing/casing or L83, J55, or P110 API casing.
- the interior 200 a of the tubular member 200 has a substantially circular cross section. Furthermore, in an exemplary embodiment, the interior region 200 a of the tubular member includes a first inside diameter D 1 , an intermediate inside diameter D INT , and a second inside diameter D 2 . In an exemplary embodiment, the first and second inside diameters, D 1 and D 2 , are substantially equal. In an exemplary embodiment, the first and second inside diameters, D 1 and D 2 , are greater than the intermediate inside diameter D INT .
- the first end 200 b of the tubular member 200 is coupled to the intermediate portion 200 d by the first tapered portion 200 c
- the second end 200 f of the tubular member is coupled to the intermediate portion by the second tapered portion 200 e .
- the outside diameters of the first and second ends, 200 b and 200 f , of the tubular member 200 is greater than the outside diameter of the intermediate portion 200 d of the tubular member.
- the first and second ends, 200 b and 200 f , of the tubular member 200 include wall thicknesses, t 1 and t 2 , respectively.
- the outside diameter of the intermediate portion 200 d of the tubular member 200 ranges from about 75% to 98% of the outside diameters of the first and second ends, 200 a and 200 f .
- the intermediate portion 200 d of the tubular member 200 includes a wall thickness t INT .
- the wall thicknesses t 1 and t 2 are substantially equal in order to provide substantially equal burst strength for the first and second ends, 200 a and 200 f , of the tubular member 200 .
- the wall thicknesses, t 1 and t 2 are both greater than the wall thickness t INT in order to optimally match the burst strength of the first and second ends, 200 a and 200 f , of the tubular member 200 with the intermediate portion 200 d of the tubular member 200 .
- first and second tapered portions, 200 c and 200 e are inclined at an angle, ⁇ , relative to the longitudinal direction ranging from about 0 to 30 degrees in order to optimally facilitate the radial expansion of the tubular member 200 .
- first and second tapered portions, 200 c and 200 e provide a smooth transition between the first and second ends, 200 a and 200 f , and the intermediate portion 200 d , of the tubular member 200 in order to minimize stress concentrations.
- the intermediate sealing member 200 g is coupled to the outer surface of the intermediate portion 200 d of the tubular member 200 .
- the intermediate sealing member 200 g seals the interface between the intermediate portion 200 d of the tubular member 200 and the interior surface of a wellbore casing 205 after the radial expansion and plastic deformation of the intermediate portion 200 d of the tubular member 200 .
- the intermediate sealing member 200 g has a substantially annular cross section.
- the outside diameter of the intermediate sealing member 200 g is selected to be less than the outside diameters of the first and second ends, 200 a and 200 f , of the tubular member 200 in order to optimally protect the intermediate sealing member 200 g during placement of the tubular member 200 within the wellbore casings 205 .
- the intermediate sealing member 200 g may be fabricated from any number of conventional commercially available materials such as, for example, thermoset or thermoplastic polymers.
- the intermediate sealing member 200 g is fabricated from thermoset polymers in order to optimally seal the radially expanded intermediate portion 200 d of the tubular member 200 with the wellbore casing 205 .
- the sealing member 200 g includes one or more rigid anchors for engaging the wellbore casing 205 to thereby anchor the radially expanded and plastically deformed intermediate portion 200 d of the tubular member 200 to the wellbore casing.
- the tubular member 200 is formed by a process 300 that includes the steps of: (1) upsetting both ends of a tubular member in step 305 ; (2) expanding both upset ends of the tubular member in step 310 ; (3) stress relieving both expanded upset ends of the tubular member in step 315 ; (4) forming threaded connections in both expanded upset ends of the tubular member in step 320 ; and (5) putting a sealing material on the outside diameter of the non-expanded intermediate portion of the tubular member in step 325 .
- both ends, 400 a and 400 b , of a tubular member 400 are upset using conventional upsetting methods.
- the upset ends, 400 a and 400 b , of the tubular member 400 include the wall thicknesses t 1 and t 2 .
- the intermediate portion 400 c of the tubular member 400 includes the wall thickness t INT and the interior diameter D INT .
- the wall thicknesses t 1 and t 2 are substantially equal in order to provide burst strength that is substantially equal along the entire length of the tubular member 400 .
- the wall thicknesses t 1 and t 2 are both greater than the wall thickness t INT in order to provide burst strength that is substantially equal along the entire length of the tubular member 400 , and also to optimally facilitate the formation of threaded connections in the first and second ends, 400 a and 400 b.
- both ends, 400 a and 400 b , of the tubular member 400 are radially expanded using conventional radial expansion methods, and then both ends, 400 a and 400 b , of the tubular member are stress relieved.
- the radially expanded ends, 400 a and 400 b , of the tubular member 400 include the interior diameters D 1 and D 2 .
- the interior diameters D 1 and D 2 are substantially equal in order to provide a burst strength that is substantially equal.
- the ratio of the interior diameters D 1 and D 2 to the interior diameter D INT ranges from about 100% to 120% in order to faciliate the subsequent radial expansion of the tubular member 400 .
- the expansion forces placed upon the tubular member 400 during the subsequent radial expansion process are substantially equalized. More generally, the relationship given in equation (1) may be used to calculate the optimal geometry for the tubular member 400 for subsequent radial expansion and plastic deformation of the tubular member 400 for fabricating and/or repairing a wellbore casing, a pipeline, or a structural support.
- step 320 conventional threaded connections, 400 d and 400 e , are formed in both expanded ends, 400 a and 400 b , of the tubular member 400 .
- the threaded connections, 400 d and 400 e are provided using conventional processes for forming pin and box type threaded connections available from Atlas-Bradford.
- a sealing member 400 f is then applied onto the outside diameter of the non-expanded intermediate portion 400 c of the tubular member 400 .
- the sealing member 400 f may be applied to the outside diameter of the non-expanded intermediate portion 400 c of the tubular member 400 using any number of conventional commercially available methods.
- the sealing member 400 f is applied to the outside diameter of the intermediate portion 400 c of the tubular member 400 using commercially available chemical and temperature resistant adhesive bonding.
- the expandable tubular members, 16 , 24 , and 30 , of the system 10 are substantially identical to, and/or incorporate one or more of the teachings of, the tubular members 200 and 400 .
- the expansion cone 500 defines a passage 500 a and includes a front end 505 , a rear end 510 , and a radial expansion section 515 .
- the radial expansion section 515 includes a first conical outer surface 520 and a second conical outer surface 525 .
- the first conical outer surface 520 includes an angle of attack ⁇ 1 and the second conical outer surface 525 includes an angle of attack ⁇ 2 .
- the angle of attack ⁇ 1 is greater than the angle of attack ⁇ 2 .
- the first conical outer surface 520 radially overexpands the intermediate portions, 16 c , 24 c , 30 c , 200 d , and 400 c , of the tubular members, 16 , 24 , 30 , 200 , and 400
- the second conical outer surface 525 radially overexpands the pre-expanded first and second ends, 16 a and 16 d , 24 a and 24 d , 30 a and 30 d , 200 b and 200 f , and 400 a and 400 b , of the tubular members, 16 , 24 , 30 , 200 and 400 .
- the first conical outer surface 520 includes an angle of attack ⁇ 1 ranging from about 8 to 20 degrees
- the second conical outer surface 525 includes an angle of attack ⁇ 2 ranging from about 4 to 15 degrees in order to optimally radially expand and plastically deform the tubular members, 16 , 24 , 30 , 200 and 400
- the expansion cone 500 may include 3 or more adjacent conical outer surfaces having angles of attack that decrease from the front end 505 of the expansion cone 500 to the rear end 510 of the expansion cone 500 .
- a tubular expansion cone 600 defines a passage 600 a and includes a front end 605 , a rear end 610 , and a radial expansion section 615 .
- the radial expansion section 615 includes an outer surface having a substantially parabolic outer profile thereby providing a paraboloid shape. In this manner, the outer surface of the radial expansion section 615 provides an angle of attack that constantly decreases from a maximum at the front end 605 of the expansion cone 600 to a minimum at the rear end 610 of the expansion cone.
- the parabolic outer profile of the outer surface of the radial expansion section 615 may be formed using a plurality of adjacent discrete conical sections and/or using a continuous curved surface. In this manner, the region of the outer surface of the radial expansion section 615 adjacent to the front end 605 of the expansion cone 600 may optimally radially overexpand the intermediate portions, 16 c , 24 c , 30 c , 200 d , and 400 c , of the tubular members, 16 , 24 , 30 , 200 , and 400 , while the region of the outer surface of the radial expansion section 615 adjacent to the rear end 610 of the expansion cone 600 may optimally radially overexpand the pre-expanded first and second ends, 16 a and 16 d , 24 a and 24 d , 30 a and 30 d , 200 b and 200 f , and 400 a and 400 b , of the tubular members, 16 , 24 , 30 , 200 and 400 .
- the parabolic profile of the outer surface of the radial expansion section 615 is selected to provide an angle of attack that ranges from about 8 to 20 degrees in the vicinity of the front end 605 of the expansion cone 6800 and an angle of attack in the vicinity of the rear end 610 of the expansion cone 600 from about 4 to 15 degrees.
- the tubular expansion cone 14 of the system 10 is substantially identical to the expansion cones 500 or 600 , and/or incorporates one or more of the teachings of the expansion cones 500 and/or 600 .
- a conventional rotary expansion system such as, for example, those commercially available from Weatherford International may be substituted for, or used in combination with the expansion cones 14 , 500, and/or 600 above.
- conventional expansion systems may be substituted for, or used in combination with the expansion cones 14 , 500, and/or 600 above.
- a system for lining a wellbore casing includes a tubular support member defining a first passage, a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end, a tubular liner coupled to and supported by the tapered end of the tubular expansion cone, and a shoe defining a valveable passage coupled to an end of the tubular liner, wherein the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the outside diameter of the tubular expansion cone.
- each expandable tubular member further includes a first tubular transitionary member coupled between the first expanded end portion and the intermediate portion, and a second tubular transitionary member coupled between the second expanded end portion and the intermediate portion, wherein the angles of inclination of the first and second tubular transitionary members relative to the intermediate portion ranges from about 0 to 30 degrees.
- the outside diameter of the intermediate portion ranges from about 75 percent to about 98 percent of the outside diameters of the first and second expanded end portions.
- the burst strength of the first and second expanded end portions is substantially equal to the burst strength of the intermediate tubular section.
- the ratio of the inside diameters of the first and second expanded end portions to the interior diameter of the intermediate portion ranges from about 100 to 120 percent.
- the relationship between the wall thicknesses t 1 , t 2 , and t INT of the first expanded end portion, the second expanded end portion, and the intermediate portion, respectively, of the expandable tubular members, the inside diameters D 1 , D 2 and D INT of the first expanded end portion, the second expanded end portion, and the intermediate portion, respectively, of the expandable tubular members, and the inside diameter D wellbore of the wellbore casing that the expandable tubular member will be inserted into, and the outside diameter D cone of the expansion cone that will be used to radially expand the expandable tubular member within the wellbore casing is given by the following expression: Dwellbore - 2 * t 1 ⁇ D 1 ⁇ 1 t 1 ⁇ [ ( t 1 - t INT ) * D cone + t INT * D INT ]
- the tapered end of the tubular expansion cone includes a plurality of adjacent discrete tapered sections.
- the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the tubular expansion cone to the opposite end of the tubular expansion cone.
- the tapered end of the tubular expansion cone includes an paraboloid body.
- the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body.
- the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.
- a method of lining a wellbore casing includes positioning a tubular liner within the wellbore casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing.
- a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.
- the remaining portions of the tubular liner are not radially expanded.
- the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
- the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing and one or more of the tubular members are not radially expanded into engagement with the wellbore casing.
- the tubular members that are radially expanded into engagement with the wellbore casing include a portion that is radially expanded into engagement with the wellbore casing and a portion that is not radially expanded into engagement with the wellbore casing.
- the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the maximum inside diameters of the expandable tubular members.
- the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.
- a system for lining a wellbore casing includes means for positioning a tubular liner within the wellbore casing, and means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing.
- a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.
- the remaining portions of the tubular liner are not radially expanded.
- the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
- the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing and one or more of the tubular members are not radially expanded into engagement with the wellbore casing.
- the tubular members that are radially expanded into engagement with the wellbore casing comprise a portion that is radially expanded into engagement with the wellbore casing and a portion that is not radially expanded into engagement with the wellbore casing.
- An apparatus has also been described that includes a subterranean formation defining a borehole, a casing positioned in and coupled to the borehole, and a tubular liner positioned in and coupled to the casing at one or more discrete locations.
- the tubular liner is coupled to the casing at a plurality of discrete locations.
- the tubular liner is coupled to the casing by a process that includes positioning the tubular liner within the casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the casing.
- a plurality of discrete portions of the tubular liner are radially expanded into engagement with the casing.
- the remaining portions of the tubular liner are not radially expanded.
- the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
- the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the casing and one or more of the tubular members are not radially expanded into engagement with the casing.
- the tubular members that are radially expanded into engagement with the casing comprise a portion that is radially expanded into engagement with the casing and a portion that is not radially expanded into engagement with the casing.
- the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the maximum inside diameters of the expandable tubular members.
- the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.
- the system 10 may be used to form or repair a wellbore casing, an underground pipeline, a structural support, or a tubing.
- the system 10 may include one or more expandable tubular members and one or more other tubular members.
- the system 10 may include a plurality of expandable tubular members, and the other tubular members may be interleaved among the expandable tubular members.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
A system for lining a wellbore casing.
Description
- The present application is the National Stage filing for PCT patent application serial number PCT/US02/25727, attorney docket number 25791.67.03, filed on Aug. 14, 2002, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, the disclosures of which are incorporated herein by reference.
- The present application is a continuation-in-part of U.S. utility patent application Ser. No. 10/030,593, attorney docket number 25791.25.08, filed on Jan. 8, 2002, which was the National Stage filing for PCT patent application serial number PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/146,203, attorney docket no. 25791.25, filed on Jul. 29, 1999, and U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, the disclosures of which are incorporated herein by reference.
- The present application is related to the following: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, attorney docket no. 25791.10.04, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, attorney docket no. 25791.18, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, attorney docket no. 25791.25.08, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, attorney docket no. 25791.27.08, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, attorney docket no. 25791.31, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, attorney docket no. 25791.34.02, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, attorney docket no. 25791.36.03, which claims priority from provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, attorney docket no. 25791.38.07, which claims priority from provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, attorney docket no. 25791.40, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, attorney docket no. 25791.44, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, attorney docket no. 25791.45.07, which claims priority from provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/, filed on Dec. 18, 2002, attorney docket no. 25791.46.07, which claims priority from provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, attorney docket no. 25791.47.03, which claims priority from provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, attorney docket no. 25791.48.06, which claims priority from provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, attorney docket no. 25791.50.02, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, attorney docket no. 25791.51.06, which claims priority from provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, attorney docket no. 25791.52.06, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, attorney docket no. 25791.53, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, attorney docket no. 25791.56, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, attorney docket no. 25791.57, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, attorney docket no. 25791.58.02, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, attorney docket no. 25791.58, (36) PCT Application US02/24399, attorney docket no. 25791.59.02, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (37) PCT Application US02/29856, attorney docket no. 25791.60.02, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, attorney docket no. 25791.60, filed on Oct. 3, 2001, (38) PCT Application US02/20256, attorney docket no. 25791.61.02, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, attorney docket no. 25791.62, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, attorney docket no. 25791.63, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, attorney docket no. 25791.64, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, attorney docket no. 25791.65, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, attorney docket no. 25791.66, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, attorney docket no. 25791.67.03, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, attorney docket no. 25791.68.02, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, attorney docket no. 25791.71.02, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, attorney docket no. 25791.71, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, attorney docket no. 25791.74, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, attorney docket no. 25791.75, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, attorney docket no. 25791.76, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, attorney docket no. 25791.77, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, attorney docket no. 25791.78, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, attorney docket no. 25791.79, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, attorney docket no. 25791.80, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, attorney docket no. 25791.81, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, attorney docket no. 25791.82, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, attorney docket no. 25791.83, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, attorney docket no. 25791.84, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, attorney docket no. 25791.85, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, attorney docket no. 25791.86, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, attorney docket no. 25791.87.02, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, attorney docket no. 25791.87, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, attorney docket no. 25791.88.02, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, attorney docket no. 25791.88, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, attorney docket no. 25791.89.02, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, attorney docket no. 25791.89, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, attorney docket no. 25791.90.02, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, attorney docket no. 25791.92.02, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, attorney docket no. 25791.93.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, attorney docket no. 25791.94, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, attorney docket no. 25791.95.02, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, attorney docket no. 25791.97, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, attorney docket no. 25791.98, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, attorney docket no. 25791.99, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, attorney docket no. 25791.100, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, attorney docket no. 25791.101.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, attorney docket no. 25791.102, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, attorney docket no. 25791.104.02, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, attorney docket no. 25791.106.02, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, attorney docket no. 25791.107.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, attorney docket no. 25791.108.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, attorney docket no. 25791.110.02, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, attorney docket no. 25791.110, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, attorney docket no. 25791.111.02, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, attorney docket no. 25791.111, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, attorney docket no. 25791.112, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, attorney docket no. 25791.114, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, attorney docket no. 25791.115, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, attorney docket no. 25791.117, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, attorney docket no. 25791.118, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, attorney docket no. 25791.119, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, attorney docket no. 25791.120, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, attorney docket no. 25791.121, filed on Sep. 20, 2002, (90) PCT application PCT/US03/24779, filed on Aug. 8, 2003, attorney docket no. 25791.125.02, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, attorney docket no. 25791.125, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, attorney docket no. 25791.126, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, attorney docket no. 25791.127, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, attorney docket no. 25791.128, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, attorney docket no. 25791.129, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, attorney docket no. 25791.145, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, attorney docket no. 25791.151, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, attorney docket no. 25791.157, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, attorney docket no. 25791.185, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, attorney docket no. 25791.186, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, attorney docket no. 25791.193, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, attorney docket no. 25791.200, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, attorney docket no. 25791.213, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, attorney docket no. 25791.225, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, attorney docket no. 25791.228, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, attorney docket no. 25791.236, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, attorney docket no. 25791.238, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, attorney docket no. 25791.239, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, attorney docket no. 25791.241, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, attorney docket no. 25791.253, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, attorney docket no. 25791.256, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, attorney docket no. 25791.260, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, attorney docket no. 25791.262, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, attorney docket no. 25791.268, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, attorney docket no. 25791.270, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, attorney docket no. 25791.272, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, attorney docket no. 25791.273, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, attorney docket no. 25791.277, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, attorney docket no. 25791.286, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, attorney docket no. 25791.292, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, attorney docket no. 25791.257, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, and (122) U.S. utility patent application Ser. No. ______, attorney docket no. 25791.318, filed on Feb. 23, 2004, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/089,419, attorney docket no. 25791.36.03, filed on Sep. 19, 2002, which issued as U.S. Pat. No. 6,695,012, the disclosures of which are incorporated herein by reference.
- This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.
- Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
- The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbore casings.
- According to one aspect of the present invention, a system for lining a wellbore casing is provided that includes a tubular support member defining a first passage, a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end, a tubular liner coupled to and supported by the tapered end of the tubular expansion cone, and a shoe defining a valveable passage coupled to an end of the tubular liner, wherein the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the outside diameter of the tubular expansion cone.
- According to another aspect of the present invention, a method of lining a wellbore casing is provided that includes positioning a tubular liner within the wellbore casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing.
- According to another aspect of the present invention, a system for lining a wellbore casing is provided that includes means for positioning a tubular liner within the wellbore casing, and means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.
- According to another aspect of the present invention, an apparatus is provided that includes a subterranean formation defining a borehole, a casing positioned in and coupled to the borehole, and a tubular liner positioned in and coupled to the casing at one or more discrete locations.
-
FIG. 1 a is a cross sectional illustration of the placement of an illustrative embodiment of a system for lining a wellbore casing within a borehole having a preexisting wellbore casing. -
FIG. 1 b is a cross sectional illustration of the system ofFIG. 1 a during the injection of a fluidic material into the tubular support member. -
FIG. 1 c is a cross sectional illustration of the system ofFIG. 1 b during the pressurization of the interior portion of the shoe after sealing off the valveable fluid passage of the shoe. -
FIG. 1 d is a cross sectional illustration of the system ofFIG. 1 c during the continued injection of the fluidic material into the tubular support member. -
FIG. 1 e is a cross sectional illustration of the system ofFIG. 1 d after the completion of the radial expansion and plastic deformation of the expandable tubular members. -
FIG. 1 f is a cross sectional illustration of the system ofFIG. 1 e after machining the bottom central portion of the shoe. -
FIG. 2 is a cross sectional illustration of an illustrative embodiment of the expandable tubular members of the system ofFIG. 1 a. -
FIG. 3 is a flow chart illustration of an illustrative embodiment of a method for manufacturing the expandable tubular member ofFIG. 2 . -
FIG. 4 a is a cross sectional illustration of an illustrative embodiment of the upsetting of the ends of a tubular member. -
FIG. 4 b is a cross sectional illustration of the expandable tubular member ofFIG. 4 a after radially expanding and plastically deforming the ends of the expandable tubular member. -
FIG. 4 c is a cross sectional illustration of the expandable tubular member ofFIG. 4 b after forming threaded connections on the ends of the expandable tubular member. -
FIG. 4 d is a cross sectional illustration of the expandable tubular member ofFIG. 4 c after coupling sealing members to the exterior surface of the intermediate unexpanded portion of the expandable tubular member. -
FIG. 5 is a cross-sectional illustration of an exemplary embodiment of a tubular expansion cone. -
FIG. 6 is a cross-sectional illustration of an exemplary embodiment of a tubular expansion cone. - Referring initially to
FIG. 1 a, thereference numeral 10 refers, in general, to a system for lining a wellbore casing that includes atubular support member 12 that defines apassage 12 a. Atubular expansion cone 14 that defines apassage 14 a is coupled to an end of thetubular support member 12. In an exemplary embodiment, thetubular expansion cone 14 includes a taperedouter surface 14 b for reasons to be described. Apre-expanded end 16 a of a firstexpandable tubular member 16 that defines apassage 16 b is adapted to mate with and be supported by the taperedouter surface 14 b of thetubular expansion cone 14. The firstexpandable tubular member 16 further includes an unexpandedintermediate portion 16 c, anotherpre-expanded end 16 d, and a sealingmember 16 e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 16 a and 16 d, of the firstexpandable tubular member 16 are greater than the inside and outside diameters of the unexpandedintermediate portion 16 c. Anend 18 a of ashoe 18 that defines apassage 18 b and avalveable passage 18 c is coupled to thepre-expanded end 16 a of the firstexpandable tubular member 16 by a conventional threaded connection. - An
end 20 a of atubular member 20 that defines apassage 20 b is coupled to the otherpre-expanded end 16 d of the firstexpandable tubular member 16 by a conventional threaded connection. Anotherend 20 c of thetubular member 20 is coupled to anend 22 a of atubular member 22 that defines apassage 22 b by a conventional threaded connection. Apre-expanded end 24 a of a secondexpandable tubular member 24 that defines apassage 24 b is coupled to theother end 22 c of thetubular member 22. The secondexpandable tubular member 24 further includes an unexpandedintermediate portion 24 c, anotherpre-expanded end 24 d, and a sealingmember 24 e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 24 a and 24 d, of the secondexpandable tubular member 24 are greater than the inside and outside diameters of the unexpandedintermediate portion 24 c. - An
end 26 a of atubular member 26 that defines apassage 26 b is coupled to the otherpre-expanded end 24 d of the secondexpandable tubular member 24 by a conventional threaded connection. Anotherend 26 c of thetubular member 26 is coupled to anend 28 a of atubular member 28 that defines apassage 28 b by a conventional threaded connection. Apre-expanded end 30 a of a thirdexpandable tubular member 30 that defines apassage 30 b is coupled to theother end 28 c of thetubular member 28. The thirdexpandable tubular member 30 further includes an unexpandedintermediate portion 30 c, anotherpre-expanded end 30 d, and a sealingmember 30 e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 30 a and 30 d, of the thirdexpandable tubular member 30 are greater than the inside and outside diameters of the unexpandedintermediate portion 30 c. - In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 16 a, 16 d, 24 a, 24 d, 30 a and 30 d, of the expandable tubular members, 16, 24, and 30, and the
tubular members wellbore casing 104. In several exemplary embodiments, the tubular members, 20, 22, 26, and 28, are conventional tubular members having threaded end connections suitable for use in an oil or gas well, an underground pipeline, or as a structural support. - In an exemplary embodiment, as illustrated in
FIG. 1 a, thesystem 10 is initially positioned in a borehole 100 formed in asubterranean formation 102 that includes apre-existing wellbore casing 104. The borehole 100 may be positioned in any orientation from vertical to horizontal. Furthermore, thewellbore casing 104 may be, for example, a wellbore casing for an oil or gas well, an underground pipeline, or a structural support. In an exemplary embodiment, the upper end of thetubular support member 12 may be supported in a conventional manner using, for example, a slip joint, or equivalent device in order to permit upward movement of the tubular support member andtubular expansion cone 14 relative to one or more of the expandable tubular members, 16, 24, and 30, and tubular members, 20, 22, 26, and 28. - In an exemplary embodiment, as illustrated in
FIG. 1 b, afluidic material 106 is then injected into thesystem 10, through the passages, 12 a and 14 a, of thetubular support member 12 andtubular expansion cone 14, respectively. Thefluidic material 106 then passes into the passages, 18 b and 18 c, of theshoe 18 into theborehole 100. - In an exemplary embodiment, as illustrated in
FIG. 1 c, aball 108, plug or other equivalent device is then introduced into the injectedfluidic material 106. Theball 108 will then pass through the passages, 12 a, 14 a, and 18 b, of thetubular support member 12, thetubular expansion cone 14, and theshoe 18, respectively, and will then be positioned within thevalveable passage 18 c of the shoe. In this manner, thevalveable passage 18 c of theshoe 18 is closed thereby permitting thepassage 18 b of the shoe below thetubular expansion cone 14 to be pressurized by the continued injection of thefluidic material 106. - In an exemplary embodiment, as illustrated in
FIG. 1 d, the continued injection of thefluidic material 106 through the passages, 12 a and 14 a, of thetubular support member 12 and thetubular expansion cone 14, respectively, pressurizes thepassage 18 b of theshoe 18 below the tubular expansion cone thereby radially expanding and plastically deforming theexpandable tubular member 16 off of the taperedexternal surface 14 b of thetubular expansion cone 14. In particular, the intermediate nonpre-expanded portion 16 c of theexpandable tubular member 16 is radially expanded and plastically deformed off of the taperedexternal surface 14 b of thetubular expansion cone 14. As a result, the sealingmember 16 e engages the interior surface of thewellbore casing 104. Consequently, the radially expandedintermediate portion 16 c of theexpandable tubular member 16 is thereby coupled to thewellbore casing 104. In an exemplary embodiment, the radially expandedintermediate portion 16 c of theexpandable tubular member 16 is also thereby anchored to thewellbore casing 104. - The continued injection of the
fluidic material 106 through the passages, 12 a and 14 a, of thetubular support member 12 and thetubular expansion cone 14, respectively, will then displace thetubular expansion cone 14 upwardly into engagement with thepre-expanded end 24 a of the secondexpandable tubular member 24. - In an exemplary embodiment, as illustrated in
FIG. 1 e, the continued injection of thefluidic material 106 through the passages, 12 a and 14 a, of thetubular support member 12 andtubular expansion cone 14, respectively, will then pressurize thepassages expandable tubular member 24 off of the taperedexternal surface 14 b of thetubular expansion cone 14. In particular, the intermediate nonpre-expanded portion 24 c of the secondexpandable tubular member 24 is radially expanded and plastically deformed off of the taperedexternal surface 14 b of thetubular expansion cone 14. As a result, the sealingmember 24 e engages the interior surface of thewellbore casing 104. Consequently, the radially expandedintermediate portion 24 c of the secondexpandable tubular member 24 is thereby coupled to thewellbore casing 104. In an exemplary embodiment, the radially expandedintermediate portion 24 c of the secondexpandable tubular member 24 is also thereby anchored to thewellbore casing 104. - The continued injection of the
fluidic material 106 through the passages, 12 a and 14 a, of thetubular support member 12 and thetubular expansion cone 14, respectively, will then displace thetubular expansion cone 14 upwardly into engagement with thepre-expanded end 30 a of the thirdexpandable tubular member 30. - The continued injection of the
fluidic material 106 through the passages, 12 a and 14 a, of thetubular support member 12 andtubular expansion cone 14, respectively, will then pressurize thepassages expandable tubular member 30 off of the taperedexternal surface 14 b of thetubular expansion cone 14. In particular, the intermediate nonpre-expanded portion 30 c of the thirdexpandable tubular member 30 is radially expanded and plastically deformed off of the taperedexternal surface 14 b of thetubular expansion cone 14. As a result, the sealingmember 30 e engages the interior surface of thewellbore casing 104. Consequently, the radially expandedintermediate portion 30 c of the thirdexpandable tubular member 30 is thereby coupled to thewellbore casing 104. In an exemplary embodiment, the radially expandedintermediate portion 30 c of the thirdexpandable tubular member 30 is also thereby anchored to thewellbore casing 104. - In an exemplary embodiment, during the injection of the
fluidic material 106 through the passages, 12 a and 14 a, of thetubular support member 12 and thetubular expansion cone 14, respectively, thetubular support member 12 andtubular expansion cone 14 are displaced upwardly relative to the expandable tubular members, 16, 24, and 30, and the tubular members, 20, 22, 26, and 28, by applying an upward axial force to the upper end of the tubular support member. - After completing the radial expansion and plastic deformation of the third
expandable tubular member 30, thetubular support member 12 and thetubular expansion cone 14 are removed from thewellbore 100. - In an exemplary embodiment, as illustrated in
FIG. 1 f, the lower central portion of theshoe 18 is then removed using a conventional milling device. - Thus, during the operation of the
system 10, the intermediate non pre-expanded portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, respectively, are radially expanded and plastically deformed by the pressurization of the interior passages, 18 a, 16 b, 20 b, 22 b, 24 b, 26 b, 28 b, and 30 b, of theshoe 18, theexpandable tubular member 16, the tubular members, 20 and 22, theexpandable tubular member 24, the tubular members, 26 and 28, and theexpandable tubular member 30, respectively, below thetubular expansion cone 14. As a result, the sealing members, 16 e, 24 e, and 30 e, are displaced in the radial direction into engagement with thewellbore casing 104 thereby coupling theshoe 18, theexpandable tubular member 16, the tubular members, 20 and 22, theexpandable tubular member 24, the tubular members, 26 and 28, and theexpandable tubular member 30 to the wellbore casing. Furthermore, as a result, the expandable connections between the expandable tubular members, 16, 24, and 30, theshoe 18, and the tubular members, 20, 22, 26, and 28, do not have to be expandable connections thereby providing significant cost savings. Furthermore, in thesystem 10, thetubular members system 10. Moreover, because only the intermediate non pre-expanded portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, respectively, are radially expanded and plastically deformed, the number and length of the interleaved tubular members, 20, 22, 26, and 28 can be much greater than the number and length of the expandable tubular members. In an exemplary embodiment, the total length of the intermediate non pre-expanded portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, is approximately 200 feet, and the total length of the tubular members, 20, 22, 26, and 28, is approximately 3800 feet. Consequently, in an exemplary embodiment, a liner having a total length of approximately 4000 feet is coupled to a wellbore casing by radially expanding and plastically deforming a total length of only approximately 200 feet. - Furthermore, the sealing
members wellbore casing 104, the radial gap between the tubular members, the expandable tubular members, and thewellbore casing 104 may be large enough to effectively eliminate the possibility of damage to the expandable tubular members and tubular members during the placement of thesystem 10 within the wellbore casing. - In an exemplary embodiment, after the sealing
member 16 e of theexpandable tubular member 16 has been radially expanded into engagement with thewellbore casing 104, the expandable tubular members, 24 and 30, are radially expanded and plastically deformed by injecting thefluidic material 106 and applying an upward axial force to thetubular support member 12 andtubular expansion cone 14. In this manner, radial expansion and plastic deformation of the expandable tubular members, 24 and 30, may be enhanced. - In an exemplary embodiment, after the sealing
member 16 e of theexpandable tubular member 16 has been radially expanded into engagement with thewellbore casing 104, the expandable tubular members, 24 and 30, are radially expanded and plastically deformed by only applying an upward axial force to thetubular support member 12 andtubular expansion cone 14. In this manner, radial expansion and plastic deformation of the expandable tubular members, 24 and 30, may be provided without the further continued injection of thefluidic material 106. - In an exemplary embodiment, the pre-expanded ends, 16 a, 16 d, 24 a, 24 d, 30 a, and 30 d, of the expandable tubular members, 16, 24, and 30, respectively, and the tubular members, 20, 22, 26, and 28, have outside diameters and wall thicknesses of 8.375 inches and 0.350 inches, respectively; prior to the radial expansion, the intermediate non pre-expanded portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, respectively, have outside diameters of 7.625 inches; the tubular members, 20, 22, 26, and 28, have inside diameters of 7.675 inches; after the radial expansion, the inside diameters of the intermediate portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, are equal to 7.675 inches; and the wellbore casing 104 has an inside diameter of 8.755 inches in an exemplary embodiment, the pre-expanded ends, 16 a, 16 d, 24 a, 24 d, 30 a, and 30 d, of the expandable tubular members, 16, 24, and 30, respectively, and the tubular members, 20, 22, 26, and 28, have outside diameters and wall thicknesses of 4.500 inches and 0.250 inches, respectively; prior to the radial expansion, the intermediate non pre-expanded portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, respectively, have outside diameters of 4.000 inches; the tubular members, 20, 22, 26, and 28, have inside diameters of 4.000 inches; after the radial expansion, the inside diameters of the intermediate portions, 16 c, 24 c, and 30 c, of the expandable tubular members, 16, 24, and 30, are equal to 4.000 inches; and the wellbore casing 104 has an inside diameter of 4.892 inches.
- In an exemplary embodiment, the
system 10 is used to form or repair a wellbore casing, a pipeline, or a structural support. - Referring now to
FIG. 2 , an exemplary embodiment of anexpandable tubular member 200 will now be described. Thetubular member 200 defines aninterior region 200 a and includes afirst end 200 b including a first threadedconnection 200 ba, a firsttapered portion 200 c, anintermediate portion 200 d, a secondtapered portion 200 e, and asecond end 200 f including a second threadedconnection 200 fa. Thetubular member 200 further preferably includes anintermediate sealing member 200 g that is coupled to the exterior surface of theintermediate portion 200 d. - In an exemplary embodiment, the
tubular member 200 has a substantially annular cross section. Thetubular member 200 may be fabricated from any number of conventional commercially available materials such as, for example, Oilfield Country Tubular Goods (OCTG), 13 chromium steel tubing/casing, or L83, J55, or P110 API casing. - In an exemplary embodiment, the interior 200 a of the
tubular member 200 has a substantially circular cross section. Furthermore, in an exemplary embodiment, theinterior region 200 a of the tubular member includes a first inside diameter D1, an intermediate inside diameter DINT, and a second inside diameter D2. In an exemplary embodiment, the first and second inside diameters, D1 and D2, are substantially equal. In an exemplary embodiment, the first and second inside diameters, D1 and D2, are greater than the intermediate inside diameter DINT. - The
first end 200 b of thetubular member 200 is coupled to theintermediate portion 200 d by the firsttapered portion 200 c, and thesecond end 200 f of the tubular member is coupled to the intermediate portion by the secondtapered portion 200 e. In an exemplary embodiment, the outside diameters of the first and second ends, 200 b and 200 f, of thetubular member 200 is greater than the outside diameter of theintermediate portion 200 d of the tubular member. The first and second ends, 200 b and 200 f, of thetubular member 200 include wall thicknesses, t1 and t2, respectively. In an exemplary embodiment, the outside diameter of theintermediate portion 200 d of thetubular member 200 ranges from about 75% to 98% of the outside diameters of the first and second ends, 200 a and 200 f. Theintermediate portion 200 d of thetubular member 200 includes a wall thickness tINT. - In an exemplary embodiment, the wall thicknesses t1 and t2 are substantially equal in order to provide substantially equal burst strength for the first and second ends, 200 a and 200 f, of the
tubular member 200. In an exemplary embodiment, the wall thicknesses, t1 and t2, are both greater than the wall thickness tINT in order to optimally match the burst strength of the first and second ends, 200 a and 200 f, of thetubular member 200 with theintermediate portion 200 d of thetubular member 200. - In an exemplary embodiment, the first and second tapered portions, 200 c and 200 e, are inclined at an angle, α, relative to the longitudinal direction ranging from about 0 to 30 degrees in order to optimally facilitate the radial expansion of the
tubular member 200. In an exemplary embodiment, the first and second tapered portions, 200 c and 200 e, provide a smooth transition between the first and second ends, 200 a and 200 f, and theintermediate portion 200 d, of thetubular member 200 in order to minimize stress concentrations. - The
intermediate sealing member 200 g is coupled to the outer surface of theintermediate portion 200 d of thetubular member 200. In an exemplary embodiment, theintermediate sealing member 200 g seals the interface between theintermediate portion 200 d of thetubular member 200 and the interior surface of awellbore casing 205 after the radial expansion and plastic deformation of theintermediate portion 200 d of thetubular member 200. In an exemplary embodiment, theintermediate sealing member 200 g has a substantially annular cross section. In an exemplary embodiment, the outside diameter of theintermediate sealing member 200 g is selected to be less than the outside diameters of the first and second ends, 200 a and 200 f, of thetubular member 200 in order to optimally protect theintermediate sealing member 200 g during placement of thetubular member 200 within thewellbore casings 205. Theintermediate sealing member 200 g may be fabricated from any number of conventional commercially available materials such as, for example, thermoset or thermoplastic polymers. In an exemplary embodiment, theintermediate sealing member 200 g is fabricated from thermoset polymers in order to optimally seal the radially expandedintermediate portion 200 d of thetubular member 200 with thewellbore casing 205. In several alternative embodiments, the sealingmember 200 g includes one or more rigid anchors for engaging thewellbore casing 205 to thereby anchor the radially expanded and plastically deformedintermediate portion 200 d of thetubular member 200 to the wellbore casing. - Referring to
FIGS. 3 , and 4 a to 4 d, in an exemplary embodiment, thetubular member 200 is formed by aprocess 300 that includes the steps of: (1) upsetting both ends of a tubular member instep 305; (2) expanding both upset ends of the tubular member instep 310; (3) stress relieving both expanded upset ends of the tubular member instep 315; (4) forming threaded connections in both expanded upset ends of the tubular member instep 320; and (5) putting a sealing material on the outside diameter of the non-expanded intermediate portion of the tubular member instep 325. - As illustrated in
FIG. 4 a, instep 305, both ends, 400 a and 400 b, of atubular member 400 are upset using conventional upsetting methods. The upset ends, 400 a and 400 b, of thetubular member 400 include the wall thicknesses t1 and t2. Theintermediate portion 400 c of thetubular member 400 includes the wall thickness tINT and the interior diameter DINT. In an exemplary embodiment, the wall thicknesses t1 and t2 are substantially equal in order to provide burst strength that is substantially equal along the entire length of thetubular member 400. In an exemplary embodiment, the wall thicknesses t1 and t2 are both greater than the wall thickness tINT in order to provide burst strength that is substantially equal along the entire length of thetubular member 400, and also to optimally facilitate the formation of threaded connections in the first and second ends, 400 a and 400 b. - As illustrated in
FIG. 4 b, insteps tubular member 400 are radially expanded using conventional radial expansion methods, and then both ends, 400 a and 400 b, of the tubular member are stress relieved. The radially expanded ends, 400 a and 400 b, of thetubular member 400 include the interior diameters D1 and D2. In an exemplary embodiment, the interior diameters D1 and D2 are substantially equal in order to provide a burst strength that is substantially equal. In an exemplary embodiment, the ratio of the interior diameters D1 and D2 to the interior diameter DINT ranges from about 100% to 120% in order to faciliate the subsequent radial expansion of thetubular member 400. - In a preferred embodiment, the relationship between the wall thicknesses t1, t2, and tINT of the
tubular member 400; the inside diameters D1, D2 and DINT of thetubular member 400; the inside diameter Dwellbore of the wellbore casing that thetubular member 400 will be inserted into; and the outside diameter Dcone of the expansion cone that will be used to radially expand thetubular member 400 within the wellbore casing is given by the following expression:
where t1=t2; and
D1=D2. - By satisfying the relationship given in equation (1), the expansion forces placed upon the
tubular member 400 during the subsequent radial expansion process are substantially equalized. More generally, the relationship given in equation (1) may be used to calculate the optimal geometry for thetubular member 400 for subsequent radial expansion and plastic deformation of thetubular member 400 for fabricating and/or repairing a wellbore casing, a pipeline, or a structural support. - As illustrated in
FIG. 4 c, instep 320, conventional threaded connections, 400 d and 400 e, are formed in both expanded ends, 400 a and 400 b, of thetubular member 400. In an exemplary embodiment, the threaded connections, 400 d and 400 e, are provided using conventional processes for forming pin and box type threaded connections available from Atlas-Bradford. - As illustrated in
FIG. 4 d, instep 325, a sealingmember 400 f is then applied onto the outside diameter of the non-expandedintermediate portion 400 c of thetubular member 400. The sealingmember 400 f may be applied to the outside diameter of the non-expandedintermediate portion 400 c of thetubular member 400 using any number of conventional commercially available methods. In a preferred embodiment, the sealingmember 400 f is applied to the outside diameter of theintermediate portion 400 c of thetubular member 400 using commercially available chemical and temperature resistant adhesive bonding. - In an exemplary embodiment, the expandable tubular members, 16, 24, and 30, of the
system 10 are substantially identical to, and/or incorporate one or more of the teachings of, thetubular members - Referring to
FIG. 5 , an exemplary embodiment oftubular expansion cone 500 for radially expanding thetubular members expansion cone 500 defines apassage 500 a and includes afront end 505, arear end 510, and aradial expansion section 515. - In an exemplary embodiment, the
radial expansion section 515 includes a first conicalouter surface 520 and a second conicalouter surface 525. The first conicalouter surface 520 includes an angle of attack α1 and the second conicalouter surface 525 includes an angle of attack α2. In an exemplary embodiment, the angle of attack α1 is greater than the angle of attack α2. In this manner, the first conicalouter surface 520 radially overexpands the intermediate portions, 16 c, 24 c, 30 c, 200 d, and 400 c, of the tubular members, 16, 24, 30, 200, and 400, and the second conicalouter surface 525 radially overexpands the pre-expanded first and second ends, 16 a and 16 d, 24 a and 24 d, 30 a and 30 d, 200 b and 200 f, and 400 a and 400 b, of the tubular members, 16, 24, 30, 200 and 400. In an exemplary embodiment, the first conicalouter surface 520 includes an angle of attack α1 ranging from about 8 to 20 degrees, and the second conicalouter surface 525 includes an angle of attack α2 ranging from about 4 to 15 degrees in order to optimally radially expand and plastically deform the tubular members, 16, 24, 30, 200 and 400. More generally, theexpansion cone 500 may include 3 or more adjacent conical outer surfaces having angles of attack that decrease from thefront end 505 of theexpansion cone 500 to therear end 510 of theexpansion cone 500. - Referring to
FIG. 6 , another exemplary embodiment of atubular expansion cone 600 defines apassage 600 a and includes afront end 605, arear end 610, and aradial expansion section 615. In an exemplary embodiment, theradial expansion section 615 includes an outer surface having a substantially parabolic outer profile thereby providing a paraboloid shape. In this manner, the outer surface of theradial expansion section 615 provides an angle of attack that constantly decreases from a maximum at thefront end 605 of theexpansion cone 600 to a minimum at therear end 610 of the expansion cone. The parabolic outer profile of the outer surface of theradial expansion section 615 may be formed using a plurality of adjacent discrete conical sections and/or using a continuous curved surface. In this manner, the region of the outer surface of theradial expansion section 615 adjacent to thefront end 605 of theexpansion cone 600 may optimally radially overexpand the intermediate portions, 16 c, 24 c, 30 c, 200 d, and 400 c, of the tubular members, 16, 24, 30, 200, and 400, while the region of the outer surface of theradial expansion section 615 adjacent to therear end 610 of theexpansion cone 600 may optimally radially overexpand the pre-expanded first and second ends, 16 a and 16 d, 24 a and 24 d, 30 a and 30 d, 200 b and 200 f, and 400 a and 400 b, of the tubular members, 16, 24, 30, 200 and 400. In an exemplary embodiment, the parabolic profile of the outer surface of theradial expansion section 615 is selected to provide an angle of attack that ranges from about 8 to 20 degrees in the vicinity of thefront end 605 of the expansion cone 6800 and an angle of attack in the vicinity of therear end 610 of theexpansion cone 600 from about 4 to 15 degrees. - In an exemplary embodiment, the
tubular expansion cone 14 of thesystem 10 is substantially identical to theexpansion cones expansion cones 500 and/or 600. - In several alternative embodiments, a conventional rotary expansion system such as, for example, those commercially available from Weatherford International may be substituted for, or used in combination with the
expansion cones - In several alternative embodiments, conventional expansion systems may be substituted for, or used in combination with the
expansion cones - A system for lining a wellbore casing has been described that includes a tubular support member defining a first passage, a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end, a tubular liner coupled to and supported by the tapered end of the tubular expansion cone, and a shoe defining a valveable passage coupled to an end of the tubular liner, wherein the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the outside diameter of the tubular expansion cone. In an exemplary embodiment, the wall thicknesses of the first and second expanded end portions are greater than the wall thickness of the intermediate portion. In an exemplary embodiment, each expandable tubular member further includes a first tubular transitionary member coupled between the first expanded end portion and the intermediate portion, and a second tubular transitionary member coupled between the second expanded end portion and the intermediate portion, wherein the angles of inclination of the first and second tubular transitionary members relative to the intermediate portion ranges from about 0 to 30 degrees. In an exemplary embodiment, the outside diameter of the intermediate portion ranges from about 75 percent to about 98 percent of the outside diameters of the first and second expanded end portions. In an exemplary embodiment, the burst strength of the first and second expanded end portions is substantially equal to the burst strength of the intermediate tubular section. In an exemplary embodiment, the ratio of the inside diameters of the first and second expanded end portions to the interior diameter of the intermediate portion ranges from about 100 to 120 percent. In an exemplary embodiment, the relationship between the wall thicknesses t1, t2, and tINT of the first expanded end portion, the second expanded end portion, and the intermediate portion, respectively, of the expandable tubular members, the inside diameters D1, D2 and DINT of the first expanded end portion, the second expanded end portion, and the intermediate portion, respectively, of the expandable tubular members, and the inside diameter Dwellbore of the wellbore casing that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone that will be used to radially expand the expandable tubular member within the wellbore casing is given by the following expression:
wherein t1=t2; and wherein D1=D2. In an exemplary embodiment, the tapered end of the tubular expansion cone includes a plurality of adjacent discrete tapered sections. In an exemplary embodiment, the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the tubular expansion cone to the opposite end of the tubular expansion cone. In an exemplary embodiment, the tapered end of the tubular expansion cone includes an paraboloid body. In an exemplary embodiment, the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body. In an exemplary embodiment, the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members. - A method of lining a wellbore casing has also been described that includes positioning a tubular liner within the wellbore casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing and one or more of the tubular members are not radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the tubular members that are radially expanded into engagement with the wellbore casing include a portion that is radially expanded into engagement with the wellbore casing and a portion that is not radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the maximum inside diameters of the expandable tubular members. In an exemplary embodiment, the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.
- A system for lining a wellbore casing has also been described that includes means for positioning a tubular liner within the wellbore casing, and means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing and one or more of the tubular members are not radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the tubular members that are radially expanded into engagement with the wellbore casing comprise a portion that is radially expanded into engagement with the wellbore casing and a portion that is not radially expanded into engagement with the wellbore casing.
- An apparatus has also been described that includes a subterranean formation defining a borehole, a casing positioned in and coupled to the borehole, and a tubular liner positioned in and coupled to the casing at one or more discrete locations. In an exemplary embodiment, the tubular liner is coupled to the casing at a plurality of discrete locations. In an exemplary embodiment, the tubular liner is coupled to the casing by a process that includes positioning the tubular liner within the casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the casing and one or more of the tubular members are not radially expanded into engagement with the casing. In an exemplary embodiment, the tubular members that are radially expanded into engagement with the casing comprise a portion that is radially expanded into engagement with the casing and a portion that is not radially expanded into engagement with the casing. In an exemplary embodiment, the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the maximum inside diameters of the expandable tubular members. In an exemplary embodiment, the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.
- It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the
system 10 may be used to form or repair a wellbore casing, an underground pipeline, a structural support, or a tubing. Furthermore, thesystem 10 may include one or more expandable tubular members and one or more other tubular members. In addition, thesystem 10 may include a plurality of expandable tubular members, and the other tubular members may be interleaved among the expandable tubular members. - Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Claims (27)
1-48. (canceled)
49. A method of lining a wellbore casing, comprising:
positioning a tubular liner within the wellbore casing; and
radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing,
wherein the tubular liner comprises one or more expandable tubular members that each comprise:
a first tubular portion, a second tubular portion, and an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion, and
wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion.
50. The method of claim 49 , wherein a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.
51. The method of claim 49 , wherein the remaining portions of the tubular liner are not radially expanded.
52. The method of claim 49 , wherein the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
53. The method of claim 49 , wherein the tubular liner comprises a plurality of expandable tubular members,
wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing, and
wherein a plurality of the expandable tubular members are not radially expanded into engagement with the wellbore casing.
54. A system for lining a wellbore casing, comprising:
means for positioning a tubular liner within the wellbore casing; and
means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing,
wherein the tubular liner comprises one or more expandable tubular members that each comprise:
a first tubular portion, a second tubular portion, and an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion, and
wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion.
55. The system of claim 54 , wherein a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.
56. The system of claim 54 , wherein the remaining portions of the tubular liner are not radially expanded.
57. The system of claim 54 , wherein the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
58. The system of claim 54 , wherein the tubular liner comprises a plurality of tubular members,
wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing, and
wherein a plurality of the tubular members are not radially expanded into engagement with the wellbore casing.
59. An apparatus, comprising:
a subterranean formation defining a borehole;
a casing positioned in and coupled to the borehole; and
a tubular liner positioned in and coupled to the casing at one or more discrete locations,
wherein the tubular liner comprises one or more radially expanded and plastically deformed tubular members that each comprise:
a first tubular portion, a second tubular portion, and an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion that engages the interior surface of the casing,
wherein the intermediate tubular portion is radially expanded and plastically deformed, and
wherein the first and second tubular portions are not radially expanded and plastically deformed.
60. The apparatus of claim 59 , wherein the tubular liner comprises a plurality of the radially expanded and plastically deformed tubular members.
61. The apparatus of claim 60 , wherein the tubular liner further comprises one or more other tubular members,
and wherein the other tubular members are interleaved among the radially expanded and plastically deformed tubular members.
62. A method of lining a wellbore casing, comprising:
positioning a tubular liner within the wellbore casing; and
radially expanding a plurality of discrete portions of the tubular liner into engagement with the wellbore casing,
wherein the tubular liner comprises one or more expandable tubular members that each comprise:
a first tubular portion, a second tubular portion, and an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion, and
wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion.
63. The method of claim 62 , wherein remaining portions of the tubular liner, other than the discrete portions, are not radially expanded.
64. The method of claim 62 , wherein the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
65. The method of claim 62 , wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing, and
wherein a plurality of the expandable tubular members are not radially expanded into engagement with the wellbore casing.
66. The method of claim 62 , wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing, and
wherein the tubular liner comprises one or more other tubular members that are interleaved among the expandable tubular members.
67. A system for lining a wellbore casing, comprising:
means for positioning a tubular liner within the wellbore casing; and
means for radially expanding a plurality of discrete portions of the tubular liner into engagement with the wellbore casing,
wherein the tubular liner comprises one or more expandable tubular members that each comprise:
a first tubular portion, a second tubular portion, and an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion, and
wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion.
68. The system of claim 67 , wherein the remaining portions of the tubular liner, other than the discrete portions, are not radially expanded.
69. The system of claim 67 , wherein the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.
70. The system of claim 67 , wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing, and
wherein a plurality of the expandable tubular members are not radially expanded into engagement with the wellbore casing.
71. The system of claim 67 , wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing,
wherein the tubular liner comprises one or more other tubular members that are interleaved among the expandable tubular members.
72. An apparatus, comprising:
a subterranean formation defining a borehole;
a casing positioned in and coupled to the borehole; and
a tubular liner positioned in and coupled to the casing at a plurality of discrete spaced apart locations,
wherein the tubular liner comprises one or more radially expanded and plastically deformed tubular members that each comprise:
a first tubular portion, a second tubular portion, and an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion that engages the interior surface of the casing,
wherein the intermediate tubular portion is radially expanded and plastically deformed, and
wherein the first and second tubular portions are not radially expanded and plastically deformed.
73. The apparatus of claim 72 , wherein the tubular liner comprises a plurality of the radially expanded and plastically deformed tubular members.
74. The system of claim 72 , wherein the tubular liner further comprises one or more other tubular members, and
wherein the other tubular members are interleaved among the radially expanded and plastically deformed tubular members.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/963,526 US20080093089A1 (en) | 2001-09-06 | 2007-12-21 | System for Lining a Wellbore Casing |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31798501P | 2001-09-06 | 2001-09-06 | |
US31838601P | 2001-09-10 | 2001-09-10 | |
PCT/US2002/025727 WO2003023179A2 (en) | 2001-09-06 | 2002-08-14 | System for lining a wellbore casing |
US10/488,664 US7350563B2 (en) | 1999-07-09 | 2002-08-14 | System for lining a wellbore casing |
US11/963,526 US20080093089A1 (en) | 2001-09-06 | 2007-12-21 | System for Lining a Wellbore Casing |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/025727 Division WO2003023179A2 (en) | 1999-07-09 | 2002-08-14 | System for lining a wellbore casing |
US10/488,664 Division US7350563B2 (en) | 1999-07-09 | 2002-08-14 | System for lining a wellbore casing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080093089A1 true US20080093089A1 (en) | 2008-04-24 |
Family
ID=39316819
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/963,539 Abandoned US20080093068A1 (en) | 2001-09-06 | 2007-12-21 | System for Lining a Wellbore Casing |
US11/963,526 Abandoned US20080093089A1 (en) | 2001-09-06 | 2007-12-21 | System for Lining a Wellbore Casing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/963,539 Abandoned US20080093068A1 (en) | 2001-09-06 | 2007-12-21 | System for Lining a Wellbore Casing |
Country Status (1)
Country | Link |
---|---|
US (2) | US20080093068A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110220356A1 (en) * | 2010-03-11 | 2011-09-15 | Halliburton Energy Services, Inc. | Multiple stage cementing tool with expandable sealing element |
US20140166310A1 (en) * | 2012-12-13 | 2014-06-19 | Eventure Global Technology, Llc | Expandable liner for oversized base casing |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2214226A (en) * | 1939-03-29 | 1940-09-10 | English Aaron | Method and apparatus useful in drilling and producing wells |
US3245471A (en) * | 1963-04-15 | 1966-04-12 | Pan American Petroleum Corp | Setting casing in wells |
US4976322A (en) * | 1988-01-21 | 1990-12-11 | Abdrakhmanov Gabrashit S | Method of construction of multiple-string wells |
US5083608A (en) * | 1988-11-22 | 1992-01-28 | Abdrakhmanov Gabdrashit S | Arrangement for patching off troublesome zones in a well |
US5664327A (en) * | 1988-11-03 | 1997-09-09 | Emitec Gesellschaft Fur Emissionstechnologie Gmbh | Method for producing a hollow composite members |
US6135208A (en) * | 1998-05-28 | 2000-10-24 | Halliburton Energy Services, Inc. | Expandable wellbore junction |
US20020066578A1 (en) * | 2000-09-08 | 2002-06-06 | Broome John Todd | Gravel pack expanding valve |
US20020195256A1 (en) * | 1998-12-22 | 2002-12-26 | Weatherford/Lamb, Inc. | Downhole sealing |
US6550539B2 (en) * | 2001-06-20 | 2003-04-22 | Weatherford/Lamb, Inc. | Tie back and method for use with expandable tubulars |
US6634431B2 (en) * | 1998-11-16 | 2003-10-21 | Robert Lance Cook | Isolation of subterranean zones |
US6799632B2 (en) * | 2002-08-05 | 2004-10-05 | Intelliserv, Inc. | Expandable metal liner for downhole components |
US6907937B2 (en) * | 2002-12-23 | 2005-06-21 | Weatherford/Lamb, Inc. | Expandable sealing apparatus |
US20070169944A1 (en) * | 1999-07-09 | 2007-07-26 | Enventure Global Technology, L.L.C. | System for lining a wellbore casing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3353599A (en) * | 1964-08-04 | 1967-11-21 | Gulf Oil Corp | Method and apparatus for stabilizing formations |
-
2007
- 2007-12-21 US US11/963,539 patent/US20080093068A1/en not_active Abandoned
- 2007-12-21 US US11/963,526 patent/US20080093089A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2214226A (en) * | 1939-03-29 | 1940-09-10 | English Aaron | Method and apparatus useful in drilling and producing wells |
US3245471A (en) * | 1963-04-15 | 1966-04-12 | Pan American Petroleum Corp | Setting casing in wells |
US4976322A (en) * | 1988-01-21 | 1990-12-11 | Abdrakhmanov Gabrashit S | Method of construction of multiple-string wells |
US5664327A (en) * | 1988-11-03 | 1997-09-09 | Emitec Gesellschaft Fur Emissionstechnologie Gmbh | Method for producing a hollow composite members |
US5083608A (en) * | 1988-11-22 | 1992-01-28 | Abdrakhmanov Gabdrashit S | Arrangement for patching off troublesome zones in a well |
US6135208A (en) * | 1998-05-28 | 2000-10-24 | Halliburton Energy Services, Inc. | Expandable wellbore junction |
US6634431B2 (en) * | 1998-11-16 | 2003-10-21 | Robert Lance Cook | Isolation of subterranean zones |
US20020195256A1 (en) * | 1998-12-22 | 2002-12-26 | Weatherford/Lamb, Inc. | Downhole sealing |
US6527049B2 (en) * | 1998-12-22 | 2003-03-04 | Weatherford/Lamb, Inc. | Apparatus and method for isolating a section of tubing |
US20070169944A1 (en) * | 1999-07-09 | 2007-07-26 | Enventure Global Technology, L.L.C. | System for lining a wellbore casing |
US20020066578A1 (en) * | 2000-09-08 | 2002-06-06 | Broome John Todd | Gravel pack expanding valve |
US6550539B2 (en) * | 2001-06-20 | 2003-04-22 | Weatherford/Lamb, Inc. | Tie back and method for use with expandable tubulars |
US6799632B2 (en) * | 2002-08-05 | 2004-10-05 | Intelliserv, Inc. | Expandable metal liner for downhole components |
US6907937B2 (en) * | 2002-12-23 | 2005-06-21 | Weatherford/Lamb, Inc. | Expandable sealing apparatus |
US7070001B2 (en) * | 2002-12-23 | 2006-07-04 | Weatherford/Lamb, Inc. | Expandable sealing apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110220356A1 (en) * | 2010-03-11 | 2011-09-15 | Halliburton Energy Services, Inc. | Multiple stage cementing tool with expandable sealing element |
US8230926B2 (en) | 2010-03-11 | 2012-07-31 | Halliburton Energy Services Inc. | Multiple stage cementing tool with expandable sealing element |
US20140166310A1 (en) * | 2012-12-13 | 2014-06-19 | Eventure Global Technology, Llc | Expandable liner for oversized base casing |
EP2932012A4 (en) * | 2012-12-13 | 2016-08-17 | Enventure Global Technology | Expandable liner for oversized base casing |
Also Published As
Publication number | Publication date |
---|---|
US20080093068A1 (en) | 2008-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6634431B2 (en) | Isolation of subterranean zones | |
US7121352B2 (en) | Isolation of subterranean zones | |
US7552776B2 (en) | Anchor hangers | |
US6745845B2 (en) | Isolation of subterranean zones | |
US7246667B2 (en) | Radial expansion of tubular members | |
US7146702B2 (en) | Method and apparatus for forming a mono-diameter wellbore casing | |
US7325602B2 (en) | Method and apparatus for forming a mono-diameter wellbore casing | |
US7172024B2 (en) | Mono-diameter wellbore casing | |
US7350563B2 (en) | System for lining a wellbore casing | |
US7231985B2 (en) | Radial expansion of tubular members | |
EP1485567B1 (en) | Mono-diameter wellbore casing | |
US7168496B2 (en) | Liner hanger | |
US7290616B2 (en) | Liner hanger | |
CA2459537C (en) | System for lining a wellbore casing | |
US7363984B2 (en) | System for radially expanding a tubular member | |
US20050150098A1 (en) | Method and apparatus for forming a mono-diameter wellbore casing | |
US20040251034A1 (en) | Mono-diameter wellbore casing | |
US20070169944A1 (en) | System for lining a wellbore casing | |
GB2398323A (en) | Isolation of subterranean zones | |
US20080093089A1 (en) | System for Lining a Wellbore Casing | |
WO2004003337A1 (en) | System for radially expanding a tubular member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |