US20080060286A1 - Dynamic stain glass window - Google Patents

Dynamic stain glass window Download PDF

Info

Publication number
US20080060286A1
US20080060286A1 US11/470,878 US47087806A US2008060286A1 US 20080060286 A1 US20080060286 A1 US 20080060286A1 US 47087806 A US47087806 A US 47087806A US 2008060286 A1 US2008060286 A1 US 2008060286A1
Authority
US
United States
Prior art keywords
stain glass
glass window
stain
windows
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/470,878
Inventor
Donald M Ferris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/470,878 priority Critical patent/US20080060286A1/en
Publication of US20080060286A1 publication Critical patent/US20080060286A1/en
Priority to US12/471,438 priority patent/US20090233030A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/06Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings
    • B44F1/066Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings comprising at least two transparent elements, e.g. sheets, layers

Definitions

  • the present invention generally relates to a dynamic stain glass window, i.e. a stain glass window that provides a moving and changing light pattern to the viewer. More particularly the present invention relates to a multi-pane stain glass window suitable to produce a moving and changing stain glass window design which may be lighted in the traditional manner of natural daylight and/or by the more modern method of artificial back lighting i.e., spotlights, strobes, and lasers.
  • Stain glass windows have been produced using a traditional methodology for centuries. Such a stain glass window would typically be made by cutting pieces of colored glass and skillfully fitting them together according to a pattern by using lead came, i.e. and H-shaped metal channel. Each individual piece of glass is cut by hand and meticulously fit to the pattern. The lead came is then soldered together at the joints to form an integral stain glass window. Such an assembled stain glass window may then be glazed; that is, a glaze compound developed for the purpose would be applied to the assembled window and brushed into the crevices between the cut pieces of glass and the lead came. The excess glaze would then be removed from the window surface. When the glaze hardened, it would cause the stain glass window to be substantially air and watertight.
  • the original paper design sheet is mounted on a wooden work board and horseshoe nails are driven into the wooden board along the outside border, such that when the lead came is pushed against the nails it will align with the outer edge of the original design.
  • Glass is fitted into the lead came, then held in place with more horseshoe nails. More lead came is cut and formed along all sides of the glass pieces, then more stain glass is fitted into the window using the paper pattern as a guide.
  • the horseshoe nails are pulled out and moved to hold the edge of the growing window. This process continues until the window is fully assembled. Next all of the joints where the lead came meets are soldered.
  • the horseshoe nails are removed and the window is put between two wood boards and flipped over so the second side can be soldered.
  • the pieces of glass and lead came form a single window.
  • This window is then glazed with a scrub brush, which pushes glazing compound between the stain glass and the lead came.
  • a chemical powder is sprinkled over the window.
  • the window is vigorously buffed, which removes excess glazing compound and polishes the stain glass to a brilliant shine.
  • the window is now finished and is basically air and watertight. If desired, steel reinforcement can be soldered to the backside of the window at a 90 -degree angle to the window surface, along the lead came lines of the window to strengthen the window so it will not bow out over time from the weight of the lead cam and stain glass.
  • This type of traditional stain glass window is based on the effect of light passing through a colored glass thus creating a beautiful glowing image.
  • the image is static, i.e. it never changes or moves and any change in the effect of the light passing through the glass is dependent on the movement of the light source, for example the course of the sun.
  • the light source for stain glass windows that are artificially lit, there usually is not even this light source movement to provide any visual change in the stain glass image.
  • U.S. Pat. No. 6,640,510 teaches a decorative stain glass window comprising stain glass and decorative metal within an insulated glass sandwich-like unit. This produces yet another form of static stain glass window.
  • U.S. Pat. No. 6,962,737 teaches a method of using electroluminescent materials in place of pieces of stain glass to create the effect of a backlit stain glass window panel.
  • the window produced is a static stain glass effect design window.
  • the present invention provides advantages and alternatives over the prior art by providing a dynamic stain glass window assembly utilizing traditional stain glass pieces in a manner that provides for a moving light pattern, i.e., kaleidoscopic effect, to be displayed instead of a single image using natural daylight, artificial light, or both.
  • a moving light pattern i.e., kaleidoscopic effect
  • a dynamic stain glass window assembly that may be mounted either vertically as is historically the manner static stain glass windows are mounted or horizontally for use as, for example, a sky light or tabletop surface.
  • a dynamic stain glass window assembly having one fixed stain glass window and one moveably mounted stain glass window providing a moving light pattern to be displayed beyond the surface of the window in a predetermined pattern.
  • the predetermined patterns can also be used as visual alert or alarm function similar to the audible signals on a traditional clock for example.
  • a dynamic stain glass window assembly having one fixed stain glass window and at least two moveably mounted stain glass windows providing a moving light pattern display.
  • a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing; a first stain glass window fixedly attached in said front of said display unit; a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for said moveably mounted second stain glass window; a bogie wheel for said moveably mounted second stain glass window; and a drive motor cooperatively connected to said bogie wheel for driving said bogie wheel and rotating said moveably mounted second stain glass window; thereby creating a dynamically changing stain glass window image.
  • a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing; a first stain glass window fixedly attached in said front of said display unit; a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows; a bogie wheel for each of said plurality of moveably mounted second stain glass windows; and a drive motor cooperatively connected to each of said bogie wheels for driving said drive wheel and rotating said plurality of moveably mounted second stain glass windows; thereby creating a dynamically changing stain glass window image.
  • stain glass and “stain-glass” carries the usually understood meaning in the art, that is, hand poured glass that has a metallic oxide added to create a color change in the glass.
  • hand poured clear glass is also considered a “stain glass” or “stain-glass” even though no color is added.
  • stain glass and stain-glass being hand pouring vs. glass created by machine.
  • There are many different styles of clear stain glass including for example rippled, frosted, wavy, and beveled.
  • bogie wheel As used throughout the terms bogie wheel, drive wheel, and bogie/drive wheel are used interchangeably to identify the wheel that makes the stain glass windows rotate.
  • the present invention thus advantageously provides the beauty, artistry, and glowing image of a traditional stain glass window using real stain glass pieces with the ability to provide a changing and moving light pattern.
  • FIG. 1 shows a perspective front view of one preferred embodiment of the present invention.
  • FIG. 2 show a perspective rear view of the rotating stain glass windows as mounted on the idler pulleys and driven by the bogie wheels as well as the drive assembly of one preferred embodiment of the present invention.
  • FIG. 3 shows a perspective view of a bogie/drive wheel suitable for use with a preferred embodiment of the present invention.
  • FIG. 4 shows a perspective view of an idler pulley suitable for use with a preferred embodiment of the present invention.
  • FIG. 5 shows a top plan view of a pair of idler pulleys mounted in an idler pulley mounting bracket of one preferred embodiment of the present invention.
  • FIG. 6 shows a top plan view of motor 12 , reduction unit 12 a of a drive motor, and motor drive shaft 12 b suitable for use with the present invention.
  • FIG. 7 shows an end plan view of reduction unit 12 a and motor drive shaft 12 b of a drive motor suitable for use with the present invention.
  • FIG. 8 shows a plan view of the beveled gear orientation and location for use with the present invention.
  • FIG. 1 presents a perspective front view of one preferred embodiment of the present invention showing the front of a display container ( 100 ) having a front face 101 , a rear face 102 ( FIG. 2 ), a bottom 103 ( FIG. 2 ), a top 104 ( FIG. 2 ), and two side walls 105 ( FIG. 2 ), said front face having fixedly mounted therein a first stain glass window 21 , and one sidewall 105 having mounted thereon an ON/OFF power switch with rheostat 1 , a polarity switch 2 , a power cord 3 , and a mounting bracket 4 .
  • the first stain glass window may comprise stain glass or clear beveled glass or a combination of the two, preferably clear beveled glass.
  • the first stain glass having a desired design created by the shapes, sizes, and number of glass pieces used to complete the desired window design.
  • FIG. 2 there is shown a perspective rear view of one preferred embodiment of the present invention showing the first stain glass window 21 fixedly mounted in the front face 101 of display unit 100 , also shown are the rear face 102 which is light transparent, sidewalls 105 , top 104 having a mounting bracket 4 ( FIG. 1 ) located therein, and bottom 103 .
  • FIG. 2 there are a second stain glass window 22 and a third stain glass window 23 both moveably mounted parallel to one another and to said first stain glass window 21 , and further all said stain glass windows being on the same horizontal axis.
  • Said second and third stain glass windows 22 and 23 having the same circular geometry and size as said first stain glass window 21 .
  • the second and third stain glass windows 22 and 23 are preferably constructed of stain glass sections having the same or different desired patterns.
  • Said second stain glass window 22 and said third stain glass window 23 being moveably mounted on four sets of idler pulleys 8 .
  • Said four sets of idler pulleys 8 comprising four pair of idler pulleys 8 each said pair mounted in a idler pulley mounting bracket 6 and the four mounting brackets 6 being fixedly attached to the back side of front face 101 of display unit 100 . It is to be understood that said idler pulley mounting brackets 6 may alternatively be mounted to the sidewalls 105 , the top 104 , the bottom 103 or any combination thereof.
  • the motor mounting unit 11 having beveled drive gear 9 ( FIG. 8 ) engaging complementary beveled drive wheel gears 10 ( FIG. 8 ), said beveled drive wheel gears each being fixedly mounted to a bogie/drive wheel 7 .
  • the outer surface of each of bogie/drive wheels 7 frictionally engaging the outer rim of one of moveably mounted stain glass windows 22 and 23 .
  • FIG. 3 shows perspective view of a presently preferred bogie wheel or drive wheel 7 and
  • FIG. 4 shows a perspective view of a presently preferred idler pulley 8 .
  • FIG. 5 there is shown a plan view of a pair of idler pulleys 8 moveably mounted by way of mounting bolt 81 and mounting nut 82 within idler pulley mounting bracket 6 . Also shown are mounting fasteners 83 for fixedly mounting said idler pulley mounting bracket 6 within said display unit 100 .
  • FIG. 6 shows a top plan view of the drive motor 12 with gear reduction unit 12 a and drive shaft 12 b.
  • FIG. 7 shows an end plan view of the gear reduction unit 12 a and drive shaft 12 b.
  • FIG. 8 there is shown a schematic top view of the drive motor 12 with gear reduction unit 12 a and drive shaft 12 b with beveled drive gear 9 cooperatively combined with a pair of beveled drive wheel gears 10 each said beveled drive wheel 10 mounted on the face of a drive wheel 7 .
  • the bogie/drive wheels 7 and the beveled bogie/drive wheel gears are mounted through their center axes by a mounting fastener 70 , spacers 72 , and fastener nut 71 onto motor mounting unit 11 .
  • the mounting of the beveled drive gear 9 between the pair of parallel mounted beveled drive wheel gears 10 results in stain glass windows 22 and 23 rotating in opposite directions to one another.
  • the gears may be configured to make both stain glass windows 22 and 23 rotate in the same direction.
  • the movement of the stain glass windows 22 and 23 and the preferred beveled stain glass composition of the first stain glass window 21 provided for a dynamic and changing light pattern, kaleidoscopic effect, to the viewer of the window.
  • the presently preferred stain glass windows are designed and constructed using common well known materials and techniques.
  • the windows do require a support outer metal frame 24 and structural frame support members 25 mounted across the diameter of the windows to provide the necessary window stability such that the stain glass section and the lead came are not damaged or loosened.
  • the presently preferred window outer frame 24 and structural frame support members 25 comprise steel flat bar stock.
  • the present invention may be lighted from the back through the light transparent back 102 by natural sunlight it may also or alternatively be lighted by artificial light form any of many known artificial light sources.
  • the transparent back 102 may be composed of any suitable and well known material such as, for example, glass, acrylic, and the like. The presently preferred material is clear acrylic sheet. It is also to be appreciated that the use of artificial light sources to light the window of the present invention is contemplated either in the alternative, or in addition to, natural light.
  • Suitable motors to drive the claimed invention are well known in the art as are the bogie wheels and idler pulleys, as well as beveled drive gears and beveled drive wheel gears.
  • a presently preferred drive motor with an integral gear reduction unit is model GPP7458 supplied by Baldor Electric Company.
  • Presently preferred bogie wheels are available as model 480-0019 and the presently preferred Idler Pulleys are available as model 416-0017 both being supplied by Capital Stamping Company.
  • Presently preferred bevel gears are model L149Y-G for mounting on the bogie wheels and model L149Y-P for the bevel gear attached to the motor drive shaft both supplied by the Boston Gear Company.
  • a similar AC motor would also be suitable, but a DC motor is preferred.
  • the advantage of a DC motor is that coupled with a rheostat it allows for easy and efficient changing of the motor speed and therefore the speed of rotation of the stain glass windows. This in turn allows for the light patterns to change in effect from a gentle rhythmic low speed oscillation to a higher speed pulsating type oscillation of the light patterns.
  • Another advantage of the DC motor is that the direction of rotation of the windows can be reversed by simply using a polarity switch in the electrical circuit as is illustrated in the preferred embodiment. The use of a polarity switch to change the direction of rotation and of a rheostat to change the speed of rotation provides for a plurality of lighting effects.
  • One particularly preferred embodiment of the present invention provides for a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing: a first stain glass window fixedly attached in said front of said display unit; a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for said moveably mounted second stain glass window; a drive wheel for said moveably mounted second stain glass window; and a drive motor cooperatively connected to said drive wheel for driving said drive wheel and thereby rotating said moveably mounted second stain glass window; thereby creating a dynamically changing stain glass window image.
  • a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing: a first stain glass window fixedly attached in said front of said display unit; a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows; a drive wheel for each of said plurality of moveably mounted second stain glass windows; and a drive motor cooperatively connected to each of said drive wheels for driving said drive wheel and thereby rotating said plurality of moveably mounted second stain glass windows; thereby creating a dynamically changing stain glass window image.

Landscapes

  • Displays For Variable Information Using Movable Means (AREA)

Abstract

A dynamic stain glass window utilizing a plurality of moving traditional stain glass windows to create a changing lighted image to the viewer combined with a motorized drive system to provide the rotational movement of the windows.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to a dynamic stain glass window, i.e. a stain glass window that provides a moving and changing light pattern to the viewer. More particularly the present invention relates to a multi-pane stain glass window suitable to produce a moving and changing stain glass window design which may be lighted in the traditional manner of natural daylight and/or by the more modern method of artificial back lighting i.e., spotlights, strobes, and lasers.
  • 2. Description of the Related Art
  • Stain glass windows have been produced using a traditional methodology for centuries. Such a stain glass window would typically be made by cutting pieces of colored glass and skillfully fitting them together according to a pattern by using lead came, i.e. and H-shaped metal channel. Each individual piece of glass is cut by hand and meticulously fit to the pattern. The lead came is then soldered together at the joints to form an integral stain glass window. Such an assembled stain glass window may then be glazed; that is, a glaze compound developed for the purpose would be applied to the assembled window and brushed into the crevices between the cut pieces of glass and the lead came. The excess glaze would then be removed from the window surface. When the glaze hardened, it would cause the stain glass window to be substantially air and watertight.
  • The modern methodology of producing a traditional stain glass window remains basically the same as it has for centuries. Such modern stain glass windows are generally made by drawing the design for the window on paper. A light table is used to trace this original design onto a second sheet of paper. Then using a pair of scissors having three blades where the second blade moves between the first and third blade thereby cutting a strip of paper that is just as wide as the middle part of the H shaped lead came which will fit between the glass pieces the second sheet is cut into individual pattern pieces. These individual pattern pieces are then put on the desired stain glass and using a glasscutter, each separate piece of stain glass for the design is cut to match the pattern piece. Once all of the pattern pieces are cut they are laid out on the original paper pattern to confirm they have been accurately cut to shape. To assemble the stain glass window the original paper design sheet is mounted on a wooden work board and horseshoe nails are driven into the wooden board along the outside border, such that when the lead came is pushed against the nails it will align with the outer edge of the original design. Glass is fitted into the lead came, then held in place with more horseshoe nails. More lead came is cut and formed along all sides of the glass pieces, then more stain glass is fitted into the window using the paper pattern as a guide. As the work progresses, the horseshoe nails are pulled out and moved to hold the edge of the growing window. This process continues until the window is fully assembled. Next all of the joints where the lead came meets are soldered. The horseshoe nails are removed and the window is put between two wood boards and flipped over so the second side can be soldered. Once the joints are soldered on both sides, the pieces of glass and lead came form a single window. This window is then glazed with a scrub brush, which pushes glazing compound between the stain glass and the lead came. Once the glazing compound is applied, a chemical powder is sprinkled over the window. Using a clean scrub brush, the window is vigorously buffed, which removes excess glazing compound and polishes the stain glass to a brilliant shine. The window is now finished and is basically air and watertight. If desired, steel reinforcement can be soldered to the backside of the window at a 90-degree angle to the window surface, along the lead came lines of the window to strengthen the window so it will not bow out over time from the weight of the lead cam and stain glass.
  • This type of traditional stain glass window is based on the effect of light passing through a colored glass thus creating a beautiful glowing image. The image is static, i.e. it never changes or moves and any change in the effect of the light passing through the glass is dependent on the movement of the light source, for example the course of the sun. For stain glass windows that are artificially lit, there usually is not even this light source movement to provide any visual change in the stain glass image.
  • More recently there have been stain glass windows that incorporate masks to provide less time consuming and expensive images. For example, U.S. Pat. No. 6,640,510 teaches a decorative stain glass window comprising stain glass and decorative metal within an insulated glass sandwich-like unit. This produces yet another form of static stain glass window.
  • U.S. Pat. No. 6,962,737 teaches a method of using electroluminescent materials in place of pieces of stain glass to create the effect of a backlit stain glass window panel. However, once again the window produced is a static stain glass effect design window.
  • However, there remains the static nature of traditional stain glass windows as well as modern simulations of stain glass. Furthermore, none of the simulations can provide the glowing beauty of real stain glass.
  • DISCLOSURE OF THE INVENTION
  • The present invention provides advantages and alternatives over the prior art by providing a dynamic stain glass window assembly utilizing traditional stain glass pieces in a manner that provides for a moving light pattern, i.e., kaleidoscopic effect, to be displayed instead of a single image using natural daylight, artificial light, or both.
  • According to a further aspect of the present invention, there is provided a dynamic stain glass window assembly that may be mounted either vertically as is historically the manner static stain glass windows are mounted or horizontally for use as, for example, a sky light or tabletop surface.
  • According to yet another aspect of the present invention there is provided a dynamic stain glass window assembly having one fixed stain glass window and one moveably mounted stain glass window providing a moving light pattern to be displayed beyond the surface of the window in a predetermined pattern. The predetermined patterns can also be used as visual alert or alarm function similar to the audible signals on a traditional clock for example.
  • According to a yet further aspect of the present invention there is provided a dynamic stain glass window assembly having one fixed stain glass window and at least two moveably mounted stain glass windows providing a moving light pattern display.
  • According to still another aspect of the present invention there is provided a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing; a first stain glass window fixedly attached in said front of said display unit; a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for said moveably mounted second stain glass window; a bogie wheel for said moveably mounted second stain glass window; and a drive motor cooperatively connected to said bogie wheel for driving said bogie wheel and rotating said moveably mounted second stain glass window; thereby creating a dynamically changing stain glass window image.
  • According to still yet another aspect of the present invention there is provided a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing; a first stain glass window fixedly attached in said front of said display unit; a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows; a bogie wheel for each of said plurality of moveably mounted second stain glass windows; and a drive motor cooperatively connected to each of said bogie wheels for driving said drive wheel and rotating said plurality of moveably mounted second stain glass windows; thereby creating a dynamically changing stain glass window image.
  • As used herein the terms “stain glass” and “stain-glass” carries the usually understood meaning in the art, that is, hand poured glass that has a metallic oxide added to create a color change in the glass. However, it is to be understood that hand poured clear glass is also considered a “stain glass” or “stain-glass” even though no color is added. The distinction of being “stain glass” and “stain-glass” being hand pouring vs. glass created by machine. There are many different styles of clear stain glass including for example rippled, frosted, wavy, and beveled.
  • As used throughout the terms bogie wheel, drive wheel, and bogie/drive wheel are used interchangeably to identify the wheel that makes the stain glass windows rotate.
  • The present invention thus advantageously provides the beauty, artistry, and glowing image of a traditional stain glass window using real stain glass pieces with the ability to provide a changing and moving light pattern.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective front view of one preferred embodiment of the present invention.
  • FIG. 2 show a perspective rear view of the rotating stain glass windows as mounted on the idler pulleys and driven by the bogie wheels as well as the drive assembly of one preferred embodiment of the present invention.
  • FIG. 3 shows a perspective view of a bogie/drive wheel suitable for use with a preferred embodiment of the present invention.
  • FIG. 4 shows a perspective view of an idler pulley suitable for use with a preferred embodiment of the present invention.
  • FIG. 5 shows a top plan view of a pair of idler pulleys mounted in an idler pulley mounting bracket of one preferred embodiment of the present invention.
  • FIG. 6 shows a top plan view of motor 12, reduction unit 12 a of a drive motor, and motor drive shaft 12 b suitable for use with the present invention.
  • FIG. 7 shows an end plan view of reduction unit 12 a and motor drive shaft 12 b of a drive motor suitable for use with the present invention.
  • FIG. 8 shows a plan view of the beveled gear orientation and location for use with the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
  • Reference will now be made to the drawings, wherein to the extent possible like reference numerals are utilized to designate like components throughout the various views. Referring to FIG. 1, which presents a perspective front view of one preferred embodiment of the present invention showing the front of a display container (100) having a front face 101, a rear face 102 (FIG. 2), a bottom 103 (FIG. 2), a top 104 (FIG. 2), and two side walls 105 (FIG. 2), said front face having fixedly mounted therein a first stain glass window 21, and one sidewall 105 having mounted thereon an ON/OFF power switch with rheostat 1, a polarity switch 2, a power cord 3, and a mounting bracket 4. The first stain glass window may comprise stain glass or clear beveled glass or a combination of the two, preferably clear beveled glass. The first stain glass having a desired design created by the shapes, sizes, and number of glass pieces used to complete the desired window design.
  • Referring now to FIG. 2 there is shown a perspective rear view of one preferred embodiment of the present invention showing the first stain glass window 21 fixedly mounted in the front face 101 of display unit 100, also shown are the rear face 102 which is light transparent, sidewalls 105, top 104 having a mounting bracket 4 (FIG. 1) located therein, and bottom 103.
  • As further shown in FIG. 2, there are a second stain glass window 22 and a third stain glass window 23 both moveably mounted parallel to one another and to said first stain glass window 21, and further all said stain glass windows being on the same horizontal axis. Said second and third stain glass windows 22 and 23 having the same circular geometry and size as said first stain glass window 21. The second and third stain glass windows 22 and 23 are preferably constructed of stain glass sections having the same or different desired patterns. Said second stain glass window 22 and said third stain glass window 23 being moveably mounted on four sets of idler pulleys 8. Said four sets of idler pulleys 8 comprising four pair of idler pulleys 8 each said pair mounted in a idler pulley mounting bracket 6 and the four mounting brackets 6 being fixedly attached to the back side of front face 101 of display unit 100. It is to be understood that said idler pulley mounting brackets 6 may alternatively be mounted to the sidewalls 105, the top 104, the bottom 103 or any combination thereof.
  • As also shown in FIG. 2, is the motor mounting unit 11 having beveled drive gear 9 (FIG. 8) engaging complementary beveled drive wheel gears 10 (FIG. 8), said beveled drive wheel gears each being fixedly mounted to a bogie/drive wheel 7. The outer surface of each of bogie/drive wheels 7 frictionally engaging the outer rim of one of moveably mounted stain glass windows 22 and 23.
  • Finally, also shown in cooperative combination are associated connecting wiring 5, motor 12 (FIGS. 6 and 8) within motor mounting unit 11, a Power Control Unit 13 to which the ON/OFF power switch with rheostat 1 and polarity switch 2 are connected, an AC/DC converter 14, and power cord 3.
  • FIG. 3 shows perspective view of a presently preferred bogie wheel or drive wheel 7 and FIG. 4 shows a perspective view of a presently preferred idler pulley 8.
  • Turning to FIG. 5, there is shown a plan view of a pair of idler pulleys 8 moveably mounted by way of mounting bolt 81 and mounting nut 82 within idler pulley mounting bracket 6. Also shown are mounting fasteners 83 for fixedly mounting said idler pulley mounting bracket 6 within said display unit 100.
  • FIG. 6 shows a top plan view of the drive motor 12 with gear reduction unit 12 a and drive shaft 12 b. FIG. 7 shows an end plan view of the gear reduction unit 12 a and drive shaft 12 b.
  • Finally, turning to FIG. 8 there is shown a schematic top view of the drive motor 12 with gear reduction unit 12 a and drive shaft 12 b with beveled drive gear 9 cooperatively combined with a pair of beveled drive wheel gears 10 each said beveled drive wheel 10 mounted on the face of a drive wheel 7. The bogie/drive wheels 7 and the beveled bogie/drive wheel gears are mounted through their center axes by a mounting fastener 70, spacers 72, and fastener nut 71 onto motor mounting unit 11.
  • In practice the mounting of the beveled drive gear 9 between the pair of parallel mounted beveled drive wheel gears 10 results in stain glass windows 22 and 23 rotating in opposite directions to one another. However, it is to be understood that the gears may be configured to make both stain glass windows 22 and 23 rotate in the same direction. The movement of the stain glass windows 22 and 23 and the preferred beveled stain glass composition of the first stain glass window 21 provided for a dynamic and changing light pattern, kaleidoscopic effect, to the viewer of the window.
  • The presently preferred stain glass windows are designed and constructed using common well known materials and techniques. The windows do require a support outer metal frame 24 and structural frame support members 25 mounted across the diameter of the windows to provide the necessary window stability such that the stain glass section and the lead came are not damaged or loosened. The presently preferred window outer frame 24 and structural frame support members 25 comprise steel flat bar stock.
  • It is to be appreciated that the present invention may be lighted from the back through the light transparent back 102 by natural sunlight it may also or alternatively be lighted by artificial light form any of many known artificial light sources. The transparent back 102 may be composed of any suitable and well known material such as, for example, glass, acrylic, and the like. The presently preferred material is clear acrylic sheet. It is also to be appreciated that the use of artificial light sources to light the window of the present invention is contemplated either in the alternative, or in addition to, natural light.
  • Suitable motors to drive the claimed invention are well known in the art as are the bogie wheels and idler pulleys, as well as beveled drive gears and beveled drive wheel gears. A presently preferred drive motor with an integral gear reduction unit is model GPP7458 supplied by Baldor Electric Company. Presently preferred bogie wheels are available as model 480-0019 and the presently preferred Idler Pulleys are available as model 416-0017 both being supplied by Capital Stamping Company. Presently preferred bevel gears are model L149Y-G for mounting on the bogie wheels and model L149Y-P for the bevel gear attached to the motor drive shaft both supplied by the Boston Gear Company. These devices are also well known in the art and suitable alternatives will be easily obtainable by those skilled in the art. It is to be understood that a similar AC motor would also be suitable, but a DC motor is preferred. The advantage of a DC motor is that coupled with a rheostat it allows for easy and efficient changing of the motor speed and therefore the speed of rotation of the stain glass windows. This in turn allows for the light patterns to change in effect from a gentle rhythmic low speed oscillation to a higher speed pulsating type oscillation of the light patterns. Another advantage of the DC motor is that the direction of rotation of the windows can be reversed by simply using a polarity switch in the electrical circuit as is illustrated in the preferred embodiment. The use of a polarity switch to change the direction of rotation and of a rheostat to change the speed of rotation provides for a plurality of lighting effects.
  • One particularly preferred embodiment of the present invention provides for a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing: a first stain glass window fixedly attached in said front of said display unit; a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for said moveably mounted second stain glass window; a drive wheel for said moveably mounted second stain glass window; and a drive motor cooperatively connected to said drive wheel for driving said drive wheel and thereby rotating said moveably mounted second stain glass window; thereby creating a dynamically changing stain glass window image.
  • Another particularly preferred embodiment of the present invention provides for a dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination: a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing: a first stain glass window fixedly attached in said front of said display unit; a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window; a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows; a drive wheel for each of said plurality of moveably mounted second stain glass windows; and a drive motor cooperatively connected to each of said drive wheels for driving said drive wheel and thereby rotating said plurality of moveably mounted second stain glass windows; thereby creating a dynamically changing stain glass window image.
  • Although the preferred embodiments of the present invention has been disclosed, various changes and modifications may be made without departing from the scope of the invention as set forth in the appended claims.

Claims (13)

1. A dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a moveable traditional stain glass window creating a moving light pattern to be displayed comprising in cooperative combination:
a) a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing;
b) a first stain glass window fixedly attached in said front of said display unit;
c) a second stain glass window moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window;
d) a plurality of idler pulleys for said moveably mounted second stain glass window;
e) a bogie wheel for said moveably mounted second stain glass window; and
f) a drive motor cooperatively connected to said bogie wheel for driving said bogie wheel and rotating said moveably mounted second stain glass window;
thereby creating a dynamically changing stain glass window image.
2. A dynamic stain glass window assembly utilizing a fixed traditional stain glass window and a plurality of moveable traditional stain glass windows creating a moving light pattern to be displayed comprising in cooperative combination:
a) a display unit having a front, a back, a top, and bottom and a pair of sides for mounting and containing;
b) a first stain glass window fixedly attached in said front of said display unit;
c) a plurality of second stain glass windows moveably mounted within said display unit and positioned on the same horizontal axis as said first stain glass window;
d) a plurality of idler pulleys for each of said plurality of moveably mounted second stain glass windows;
e) a bogie wheel for each of said plurality of moveably mounted second stain glass windows; and
f) a drive motor cooperatively connected to each of said bogie wheels for driving said drive wheel and rotating said plurality of moveably mounted second stain glass windows;
thereby creating a dynamically changing stain glass window image.
3. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of moveably mounted second stain glass windows comprise two stain glass windows.
4. The dynamic stain glass window assembly as claimed in claim 1 wherein, said first stain glass window comprises a clear beveled glass patterned window and said second stain glass window comprises a stain glass patterned window.
5. The dynamic stain glass window assembly as claimed in claim 2 wherein, said first stain glass window comprises a clear beveled glass patterned window, and said plurality of second stain glass windows comprise patterned stain glass windows.
6. The dynamic stain glass window assembly as claimed in claim 5 wherein, said plurality of second stain glass patterned windows all have the same pattern.
7. The dynamic stain glass window assembly as claimed in claim 5 wherein, said plurality of second stain glass patterned windows all have different patterns.
8. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of second stain glass windows rotate in opposite directions to each other.
9. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of second stain glass windows rotate in the same direction to each other.
10. The dynamic stain glass window assembly as claimed in claim 1 wherein, said second stain glass window has a variable speed of rotation.
11. The dynamic stain glass window assembly as claimed in claim 10 wherein, said variable speed of rotation is controlled by a rheostat.
12. The dynamic stain glass window assembly as claimed in claim 2 wherein, said plurality of second stain glass windows has a variable speed of rotation.
13. The dynamic stain glass window assembly as claimed in claim 12 wherein, said variable speed of rotation is controlled by a rheostat.
US11/470,878 2006-09-07 2006-09-07 Dynamic stain glass window Abandoned US20080060286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/470,878 US20080060286A1 (en) 2006-09-07 2006-09-07 Dynamic stain glass window
US12/471,438 US20090233030A1 (en) 2006-09-07 2009-05-25 Dynamic stain glass window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/470,878 US20080060286A1 (en) 2006-09-07 2006-09-07 Dynamic stain glass window

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/471,438 Continuation-In-Part US20090233030A1 (en) 2006-09-07 2009-05-25 Dynamic stain glass window

Publications (1)

Publication Number Publication Date
US20080060286A1 true US20080060286A1 (en) 2008-03-13

Family

ID=39168163

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/470,878 Abandoned US20080060286A1 (en) 2006-09-07 2006-09-07 Dynamic stain glass window

Country Status (1)

Country Link
US (1) US20080060286A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200060A (en) * 1939-02-20 1940-05-07 Walter W Geiser Flow visualizer
US5377433A (en) * 1992-07-07 1995-01-03 Hazlehurst; Laurance N. Dynamic artwork display
US5418021A (en) * 1993-11-22 1995-05-23 Kim; Chang S. Tinted-glass window assembly
US6007037A (en) * 1997-12-17 1999-12-28 Quoizel, Inc. Mounting system for stained glass window art
US6263600B1 (en) * 1998-09-25 2001-07-24 Carl Ten Brink Display device
US6594929B2 (en) * 2001-02-19 2003-07-22 Trevor Butcher Display device
US6640510B2 (en) * 2001-05-04 2003-11-04 Robert Kane Decorative stained glass and method
US6962737B2 (en) * 2003-12-01 2005-11-08 Boris Volfson Simulated stained glass modular electroluminescent articles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200060A (en) * 1939-02-20 1940-05-07 Walter W Geiser Flow visualizer
US5377433A (en) * 1992-07-07 1995-01-03 Hazlehurst; Laurance N. Dynamic artwork display
US5418021A (en) * 1993-11-22 1995-05-23 Kim; Chang S. Tinted-glass window assembly
US6007037A (en) * 1997-12-17 1999-12-28 Quoizel, Inc. Mounting system for stained glass window art
US6263600B1 (en) * 1998-09-25 2001-07-24 Carl Ten Brink Display device
US6594929B2 (en) * 2001-02-19 2003-07-22 Trevor Butcher Display device
US6640510B2 (en) * 2001-05-04 2003-11-04 Robert Kane Decorative stained glass and method
US6962737B2 (en) * 2003-12-01 2005-11-08 Boris Volfson Simulated stained glass modular electroluminescent articles

Similar Documents

Publication Publication Date Title
CN112396927A (en) Economics is with having economic change curve display device who rotates show structure
US20080060286A1 (en) Dynamic stain glass window
US20090233030A1 (en) Dynamic stain glass window
CN210961224U (en) Exhibition display wall
DE69012589D1 (en) METHOD FOR THE PRODUCTION OF CONTINUOUSALLY FRONT MILLED BEVEL GEARS WITH BEVELED BEARING EDGES.
CN114532800A (en) Artwork display device for art teaching
BR0311661A (en) Asymmetrically shaded carpet tiles and carpet tile installations that create illusions of light and depth
JP3567245B2 (en) Stone carving lighting equipment manufacturing method
CN220287327U (en) New energy lighting device for view
CN112178515A (en) Decorative lamp band structure for ceiling
CN220630277U (en) Afforestation energy-saving greenhouse system
CN221243953U (en) Simulation special effect device for cutting entity
CN213424375U (en) Demonstration mechanism for demonstrating motion characteristics of shadows
CN213550920U (en) Outdoor artistic device with light color adjusting function
CN210921227U (en) Interactive view lighting apparatus of shadow
CN212809571U (en) Remote control luminous dynamic artistic device based on solar eclipse demonstration
CN211097534U (en) Focusing positioning groove of toy microscope
CN209920925U (en) Novel art transparent platform
CN219528215U (en) Special decorative board of projection
CN2417491Y (en) Quartz clock with moving picture
CN112008148B (en) Panel cutting machine that indoor decoration operation was used
CN213882634U (en) Display rack for environmental art design
CN215495853U (en) Construction engineering is beckoned and is bid with propaganda device
CN214468289U (en) Physical angle control device for LED landscape lamp
CN214475904U (en) Artificial rainbow device and artificial rainbow window

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION