US20080054973A1 - Leakage improvement for a high-voltage latch - Google Patents

Leakage improvement for a high-voltage latch Download PDF

Info

Publication number
US20080054973A1
US20080054973A1 US11/470,536 US47053606A US2008054973A1 US 20080054973 A1 US20080054973 A1 US 20080054973A1 US 47053606 A US47053606 A US 47053606A US 2008054973 A1 US2008054973 A1 US 2008054973A1
Authority
US
United States
Prior art keywords
voltage
terminal
transistor
latch
nmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/470,536
Inventor
Johnny Chan
Jeffrey Ming-Hung Tsai
Tin-Wai Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Priority to US11/470,536 priority Critical patent/US20080054973A1/en
Assigned to ATMEL CORPORATION reassignment ATMEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAN, JOHNNY, TSAI, JEFFREY MING-HUNG, WONG, TIN-WAI
Priority to PCT/US2007/077542 priority patent/WO2008030812A2/en
Priority to CN2007800332113A priority patent/CN101512659B/en
Priority to DE112007002102T priority patent/DE112007002102T5/en
Priority to TW096133079A priority patent/TW200820620A/en
Publication of US20080054973A1 publication Critical patent/US20080054973A1/en
Priority to US12/538,766 priority patent/US7863959B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356182Bistable circuits using complementary field-effect transistors with additional means for controlling the main nodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits

Definitions

  • the present invention relates to high-voltage data latches that are used for writing data into non-volatile memories and, more particularly, to apparatus and a method for limiting leakage current drawn from a high voltage supply or generator, such as an on-chip charge pump circuit that provide a high voltage to the high-voltage data latches during a high-voltage write mode of operation.
  • a high voltage supply or generator such as an on-chip charge pump circuit that provide a high voltage to the high-voltage data latches during a high-voltage write mode of operation.
  • a latch is used to store data bits to be written into pre-selected memory cells of a non-volatile memory. Except when data bits are being written into the memory cells, the latch is normally supplied with a low-voltage power supply, such as, for example, 3 volts or less. During a write mode of operation, the latch is supplied with a high voltage of 7-15 volts, as required for writing data into the non-volatile memory cells.
  • a single non-volatile memory chip may contain a large number, for example, 512 or more, or high-voltage latch circuits. These latch circuits are typically called high-voltage latch circuits, although a high voltage supply is only required for write operations.
  • An on-chip high-voltage supply or generator such as a charge pump circuit, provides the high-voltage for writing the data bits into the non-volatile memory cells.
  • the high-voltage generator typically has limited current capability and excessive leakage currents in some of the high-voltage latches may load down the generator so much as to cause the high-voltage level to be less than what is required for proper writing of data bit into the memory cells of the non-volatile memory.
  • FIG. 1 illustrates a typical cross-coupled high-voltage latch circuit 10 that includes a first CMOS inverter circuit 12 and a second CMOS inverter circuit 14 .
  • the first CMOS inverter circuit 12 includes a first pull-up PMOS transistor 16 that has a source connected to a HV node 18 and a drain connected to a latch input node A.
  • the first CMOS inverter circuit 12 also includes a first pull-down NMOS transistor 20 that has a drain connected to the latch input node A and a source connected to ground.
  • the gates of the first pull-up PMOS transistor 16 and the pull-down NMOS transistor 20 are connected together. Note that the HV node 18 is supplied with low voltage except when a write mode of operation occurs.
  • the second CMOS inverter circuit 14 includes a second pull-up PMOS transistor 22 that has a source connected to the HV node 18 and a drain connected to a data storage output node B.
  • the second CMOS inverter circuit 14 also includes a second pull-down NMOS transistor 24 that has a drain connected to the data storage output terminal B and a source connected to ground. The gates of the second pull-up PMOS transistor 22 and the second pull-down NMOS transistor 24 are connected together.
  • the second pull-down NMOS transistor 24 is a low-threshold voltage Vt, high-voltage NMOS transistor, which tends to have a high leakage current at high write voltages because of its susceptibility to punch through at high voltages.
  • Vt low-threshold voltage
  • a reset NMOS transistor 32 is connected between the latch input node A and ground.
  • a HIGH RESET signal is applied to a RESET terminal 34 to turn on the reset NMOS transistor 32 and pull the latch input node A to ground.
  • the latch input node A is connected through a load input NMOS transistor 26 to a DATA In terminal 28 .
  • a LOAD signal is provided at a gate terminal 30 of the load input NMOS transistor 26 to load a data bit at the DATA IN terminal 28 into the latch input node A.
  • An OUTPUT terminal 36 provides the signal from the latch input node A that is provided to write to the memory.
  • a suitable high-voltage power supply of, for example, 7-15 volts is provided to the HV node 18 to power the two inverters 12 , 14 forming the high-voltage latch.
  • the high-voltage is supplied from a high-voltage generation circuit, such as, for example, a charge-pump circuit that is provided on the chip.
  • the NMOS transistor 24 is a high-voltage, low Vt threshold device.
  • a low Vt threshold device is required because it is difficult to load a HIGH or “1” level to the latch because of the Vt voltage drop across the load input NMOS transistor 26 that makes it difficult to load a HIGH or “1” level into the latch input node A.
  • a non-volatile memory chip has 512 or more high-voltage latches like the typical high-voltage latch circuit 10 , some or all of which may be leaky with a high voltage at their HV voltage supply terminals. Excessive leakage currents taken from the on-chip high voltage generation circuit, such as, for example, an on-chip charge pump, that supplies a nominal 15 volts, may cause the voltage at the HV terminal 18 to be pulled down to, say, 12 volts. The reduced high voltage at the HV terminal 18 may cause malfunctions in a memory write function.
  • FIG. 2 is a timing diagram that illustrates operation of the typical high-voltage latch circuit 10 of FIG. 1 , when the DATA IN signal at the DATA IN terminal 28 is LOW, or at 0 volts.
  • a LOAD signal is initially at a LOW level at the gate terminal 30 of the NMOS load input transistor 26 to keep the NMOS load input NMOS transistor 26 off.
  • the RESET signal at terminal 34 is HIGH, which turns on the reset NMOS transistor 32 to pull the latch input node A to ground.
  • the HV_ENABLE signal is initially LOW, which provides a Vdd voltage at terminal 18 .
  • the NMOS load input NMOS transistor 26 When the LOAD signal is raised HIGH to Vdd, the NMOS load input NMOS transistor 26 is turned on to provide a LOW logic level DATA IN signal to the latch input node A and the voltage on the data storage output node B goes HIGH to Vdd. Subsequently, the HV_ENABLE control signal goes high to apply a high voltage HV from a high voltage generation circuit to the HV node 18 .
  • the second pull-up PMOS transistor 22 is turned on so that the voltage at the data storage output node B is at essentially the same high voltage as at the HV node 18 .
  • the HV voltage at the HV node 18 is initially at a Vdd level.
  • the HV voltage at node 18 rises to a HV(Actual) level that is less than the full HV(Target) level because of the extra leakage current that the high voltage generation circuit must provide to the leaky pull-down NMOS transistor 24 for a number of such high-voltage latch circuits.
  • the full HV(Target) level is, for example, 15 volts while the HV(Actual) level is, for example, 12 volts due to leakage in various high voltage latch circuits.
  • the voltage at the latch input node A and the OUTPUT terminal 36 remains at a LOW state.
  • the voltage at the data storage node B tracks the HV voltage and only rises to the HV(Actual) level.
  • FIG. 3 is a timing diagram that illustrates operation of the typical high-voltage latch circuit 10 of FIG. 1 , when the DATA IN signal at the DATA IN terminal 28 is HIGH.
  • the LOAD signal is initially at a LOW level at the gate terminal 30 of the NMOS load input transistor 26 to keep the NMOS load input NMOS transistor 26 off.
  • the RESET signal at terminal 34 is HIGH, which turns on the reset NMOS transistor 32 to pull the latch input node A to ground.
  • the HV_ENABLE signal is initially LOW, which provides a Vdd voltage at terminal 18 .
  • the load input NMOS transistor 26 When the LOAD signal is raised to Vdd, the load input NMOS transistor 26 is turned on to provide a HIGH logic level DATA IN signal to the latch input node A and the voltage on the data storage output node B goes low to 0 volts when the pull-up PMOS transistor 22 is turned off and the pull-down NMOS transistor 24 is turned on. Subsequently, the HV_ENABLE control signal goes high to apply the high voltage HV from a high voltage generation circuit to the HV node 18 . The first pull-up PMOS transistor 16 is turned on so that the voltage at the data storage output node B is LOW. The HV voltage at the HV node 18 is initially at the Vdd voltage level.
  • the HV voltage at node 18 rises to the full HV(Target) level because there is no leakage current through the pull-down NMOS transistor 24 .
  • the signal at latch input node A and the OUTPUT terminal 36 tracks the HV level at the HV terminal 18 .
  • the resistance of the pull-down NMOS transistor 24 can be increased by increasing the gate length L of the pull-down NMOS transistor; but this takes more area on the chip and increases the size of the chip.
  • the current output, or strength, of the HV generation circuit can be increased, but this may require a larger pump circuit, which takes more area on the chip and increases the size of the chip. Increasing the strength of the HV generation circuit may also require a higher clock frequency to provide a greater write current.
  • the present invention provides a non-volatile memory having a plurality of high-voltage CMOS latches.
  • Each high-voltage CMOS latch includes a HV terminal that is connected to a Vdd supply voltage during a standby mode of operation and during a load data mode of operation and that receives a HIGH-VOLTAGE supply voltage during a high-voltage write mode of operation.
  • a first CMOS inverter and a second CMOS inverter, each having respective input and output terminals, are each connected between the HV terminal and a ground terminal.
  • the input terminal of the second CMOS inverter and the output terminal of the first CMOS inverter are connected to a latch input node A.
  • the input terminal of the first CMOS inverter and the output terminal of the second CMOS output terminal are connected to a latch output node B.
  • the first CMOS inverter has a first PMOS pull-up transistor that is connected between the HV terminal and the latch input node A.
  • the first CMOS inverter also has a first NMOS pull-down transistor connected between the latch input node A and the ground terminal.
  • the second CMOS inverter has a second PMOS pull-up transistor connected between the HV terminal and the latch output node B.
  • the second CMOS inverter has a pass-gate high-voltage NMOS transistor with a VT implant connected between the latch output node A and a second high-voltage, low-threshold NMOS pull-down transistor that is connected to the ground terminal.
  • the pass-gate high-voltage NMOS transistor has a gate connected to a STANDBY terminal that receives a HIGH LOGIC signal with a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation.
  • the pass-gate high-voltage NMOS transistor limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor and reduces punch-through current and drain-to-substrate leakage of the second high-voltage, low-threshold NMOS pull-down transistor.
  • Each high-voltage CMOS latch circuit has a DATA IN input terminal connected to the latch input node A through a NMOS load input NMOS transistor, at a gate terminal of which is provided a DATA LOAD signal to turn on the NMOS load input NMOS transistor.
  • Each high-voltage CMOS latch circuit has a reset NMOS transistor that is connected between the latch input node A and the ground terminal and that has a gate terminal at which is provided a HIGH RESET signal to turn on the reset NMOS transistor during the standby mode of operation and at which is provided a LOW RESET signal to turn off the reset NMOS transistor during a data-loading mode of operation and during a high-voltage write mode of operation.
  • the present invention also provides a method of limiting leakage current in one or more high-voltage latches that are used for high-voltage writing of data into a non-volatile memory.
  • the method includes the steps for each of the one or more latches of: connecting a cross-coupled CMOS latch between a HV terminal and a ground terminal by connecting a first CMOS inverter between a HV terminal and a ground terminal and by connecting a second CMOS inverter between the HV terminal and a ground terminal; connecting an input terminal of the second CMOS inverter and an output terminal of the first CMOS to a latch input node A for the latch circuit; connecting the latch input node A through a NMOS load input NMOS transistor to a DATA In input terminal of the latch; providing a LOAD signal at a gate terminal of the NMOS load input NMOS transistor to turn on the NMOS load input NMOS transistor; connecting an input terminal of the first CMOS inverter and an output terminal of
  • FIG. 1 is a circuit diagram of a prior art high voltage latch circuit having a high-voltage leakage path from an output terminal to ground.
  • FIG. 2 is a timing diagram for the circuit of FIG. 1 that is loaded with a LOW DATA IN signal.
  • FIG. 3 is a timing diagram for the circuit of FIG. 1 that is loaded with a HIGH DATA IN signal.
  • FIG. 4 is a circuit diagram of a high voltage latch circuit according to the present invention.
  • FIG. 5 is a timing diagram for the circuit of FIG. 4 that is loaded with a LOW DATA IN signal.
  • FIG. 6 is a timing diagram for the circuit of FIG. 4 that is loaded with a HIGH DATA IN signal.
  • FIG. 4 illustrates an improved high-voltage latch circuit 100 according to the present invention.
  • the latch circuit includes a first CMOS inverter circuit 102 and a second CMOS inverter circuit 104 .
  • the first CMOS inverter circuit 102 includes a first pull-up PMOS transistor 106 that has a source connected to a HV node 108 and a drain connected to a latch input node A.
  • the first CMOS inverter circuit 102 also includes a first pull-down NMOS transistor 110 that has a drain connected to the latch input node A and a source connected to ground. The gates of the first pull-up PMOS transistor 106 and the first pull-down NMOS transistor 110 are connected together.
  • the second CMOS inverter circuit 104 includes a second pull-up PMOS transistor 112 that has a source connected to the HV node 108 and a drain connected to a data storage output node B.
  • the second CMOS inverter circuit 104 includes a pass-gate high-voltage NMOS transistor 116 with a VT implant that is connected between the latch output node B and a drain of a second high-voltage, low-threshold NMOS pull-down transistor 118 that ha a source terminal connected to the ground terminal.
  • the pass-gate high-voltage NMOS transistor 116 has a gate connected to a STANDBY terminal 120 that receives a HIGH LOGIC signal with a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation.
  • the STANDBY signal is Low when the memory system is in a standby mode of operation.
  • the STANDBY signal is HIGH when the latch is loading data and during a high-voltage write opertation.
  • the STANDBY signal is not a high-voltage signal and is limited to Vdd in its HIGH state.
  • a reset NMOS transistor 122 is connected between the latch input node A and the ground terminal.
  • a gate terminal of the reset NMOS transistor 122 in connected to a RESET terminal 124 , at which is provided a HIGH RESET signal to turn on the reset NMOS transistor 122 during a standby mode of operation.
  • a LOW RESET signal turns off the reset NMOS transistor 122 during a data-loading mode of operation and during a high-voltage write mode of operation.
  • a load input NMOS transistor 126 is connected between the latch input node A and a DATA IN input terminal 128 .
  • a DATA LOAD signal is provided at a DATA LOAD terminal that is connected to a gate terminal of the load input NMOS transistor 126 .
  • a HIGH DATA LOAD signal turns on the load input NMOS transistor 126 to connect the DATA IN input terminal to the latch input node A.
  • An output terminal 136 provides the signal from the latch input node A that is provided to write to the memory.
  • FIG. 5 is a timing diagram that illustrates operation of the improved high-voltage latch circuit 100 for a LOW DATA IN signal at the DATA IN input terminal 128 .
  • the high-voltage latch circuit 100 operates in three modes: a standby mode, a data-loading mode, and a high-voltage write mode.
  • the standby mode of operation occurs when the latch circuit 100 is powered by a low Vdd voltage on the HV node 108 .
  • the data-loading mode of operation occurs when the input data signal at the DATA IN terminal 128 is loaded into the latch circuit 100 that is still operated with the low Vdd voltage at terminal 108 .
  • the high-voltage writer mode of operation occurs when the high voltage is applied to the HV node 108 to write data into the non-volatile memory cells.
  • the STANDBY signal is at a LOW level Vdd to cutoff the pass-gate high-voltage NMOS transistor 116 .
  • the HV-ENABLE signal is at a 0 (LOW) level to provide a Vdd voltage at terminal 108 .
  • Data at the latch input node A and the data storage output node B is either HIGH or LOW.
  • the STANDBY signal goes to a HIGH signal level to turn on the pass-gate high-voltage NMOS transistor 116 .
  • the RESET signal at terminal 124 goes LOW to cut the reset NMOS transistor 122 .
  • the data-loading mode of operation begins when the LOAD signal at a Vdd level is provided at the gate terminal 130 of the load input NMOS transistor 126 .
  • a LOW input signal at the DATA IN terminal 128 is loaded into the latch input node A. This turns on the second pull-up PMOS transistor 112 and turns off the second NMOS pull-down transistor 118 and causes the data storage output node B to go to a HIGH Vdd level.
  • the HIGH STANDBY voltage at input terminal 120 continues to turn on the pass-gate high-voltage NMOS transistor 116 .
  • the HIGH state of the STANDBY voltage is at most Vdd.
  • the pass-gate high-voltage NMOS transistor 116 receives the STANDBY signal that has a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation.
  • Vdd STANDBY voltage at the gate terminal of the pass-gate high-voltage NMOS transistor 116 limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor to Vdd ⁇ Vt and reduces punch-through current and drain-to-substrate leakage.
  • FIG. 5 shows these two voltages HV and B ramping up to the HV voltage target level, for example, 15 volts.
  • the output voltage at terminal 136 stays at a LOW state.
  • FIG. 6 is a timing diagram that illustrates operation of the improved high-voltage latch circuit 100 for a HIGH DATA IN signal at the DATA IN input terminal 128 .
  • the STANDBY signal is at a LOW level Vdd to cutoff the pass-gate high-voltage NMOS transistor 116 .
  • the HV-ENABLE signal is at a 0 (LOW) level to provide a Vdd voltage at terminal 108 .
  • Data at the latch input node A and the data storage output node B is either HIGH or LOW.
  • the STANDBY signal goes to a HIGH signal level to turn on the pass-gate high-voltage NMOS transistor 116 .
  • the RESET signal at terminal 124 goes LOW to cut the reset NMOS transistor 122 .
  • the data-loading mode of operation begins when the LOAD signal at a Vdd level is provided at the gate terminal 128 of the load input NMOS transistor 126 .
  • a HIGH input signal at the DATA IN terminal 130 is loaded into the latch input node A. This turns off the second pull-up PMOS transistor 112 and which turns on the second NMOS pull-down transistor 118 and causes the data storage output node B to go to a LOW level.
  • the HIGH STANDBY voltage at input terminal 120 continues to turn on the pass-gate high-voltage NMOS transistor 116 .
  • the HIGH state of the STANDBY voltage is at most Vdd.
  • the pass-gate high-voltage NMOS transistor 116 receives the STANDBY signal that has a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation.
  • Vdd STANDBY voltage at the gate terminal of the pass-gate high-voltage NMOS transistor 116 limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor to Vdd ⁇ Vt and reduces punch-through current and drain-to-substrate leakage.
  • a high voltage supply is applied to the HV node 108 and the voltage at the data storage output node A follows the voltage on the HV node 108 .
  • FIG. 6 shows these two voltages HV and A ramping up to the HV voltage target level, for example, 15 volts.
  • Terminal 136 provides the node A voltage as an output signal to write the memory.

Landscapes

  • Static Random-Access Memory (AREA)
  • Logic Circuits (AREA)
  • Read Only Memory (AREA)

Abstract

An improved CMOS high-voltage latch stores data bits to be written to memory cells of a non-volatile memory has two cross-coupled CMOS inverters. One of the inverters has a pull-down leg that includes a pass-gate high-voltage NMOS transistor that is connected between a latch output node and a second high-voltage, low-threshold NMOS pull-down transistor that is connected to ground. A gate of the pass-gate high-voltage NMOS transistor receives a standby signal with a logic HIGH value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a voltage mode of operation and during a high-voltage write mode of operation. The pass-gate high-voltage NMOS transistor thereby limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor to less than the standby signal in order to reduce punch-trough current and drain-to-substrate leakage of the second high-voltage, low-threshold NMOS pull-down transistor.

Description

    TECHNICAL FIELD
  • The present invention relates to high-voltage data latches that are used for writing data into non-volatile memories and, more particularly, to apparatus and a method for limiting leakage current drawn from a high voltage supply or generator, such as an on-chip charge pump circuit that provide a high voltage to the high-voltage data latches during a high-voltage write mode of operation.
  • BACKGROUND ART
  • A latch is used to store data bits to be written into pre-selected memory cells of a non-volatile memory. Except when data bits are being written into the memory cells, the latch is normally supplied with a low-voltage power supply, such as, for example, 3 volts or less. During a write mode of operation, the latch is supplied with a high voltage of 7-15 volts, as required for writing data into the non-volatile memory cells. A single non-volatile memory chip may contain a large number, for example, 512 or more, or high-voltage latch circuits. These latch circuits are typically called high-voltage latch circuits, although a high voltage supply is only required for write operations. An on-chip high-voltage supply or generator, such as a charge pump circuit, provides the high-voltage for writing the data bits into the non-volatile memory cells. The high-voltage generator typically has limited current capability and excessive leakage currents in some of the high-voltage latches may load down the generator so much as to cause the high-voltage level to be less than what is required for proper writing of data bit into the memory cells of the non-volatile memory.
  • FIG. 1 illustrates a typical cross-coupled high-voltage latch circuit 10 that includes a first CMOS inverter circuit 12 and a second CMOS inverter circuit 14. The first CMOS inverter circuit 12 includes a first pull-up PMOS transistor 16 that has a source connected to a HV node 18 and a drain connected to a latch input node A. The first CMOS inverter circuit 12 also includes a first pull-down NMOS transistor 20 that has a drain connected to the latch input node A and a source connected to ground. The gates of the first pull-up PMOS transistor 16 and the pull-down NMOS transistor 20 are connected together. Note that the HV node 18 is supplied with low voltage except when a write mode of operation occurs.
  • The second CMOS inverter circuit 14 includes a second pull-up PMOS transistor 22 that has a source connected to the HV node 18 and a drain connected to a data storage output node B. The second CMOS inverter circuit 14 also includes a second pull-down NMOS transistor 24 that has a drain connected to the data storage output terminal B and a source connected to ground. The gates of the second pull-up PMOS transistor 22 and the second pull-down NMOS transistor 24 are connected together.
  • To enable operation of the high-voltage latch circuit 10 with a normal low Vdd voltage being supplied at the HV node 18, the second pull-down NMOS transistor 24 is a low-threshold voltage Vt, high-voltage NMOS transistor, which tends to have a high leakage current at high write voltages because of its susceptibility to punch through at high voltages. Thus, a leakage path is provided from the HV node 18 to ground through a leaky second pull-down NMOS transistor 24 with a low threshold voltage, Vt.
  • A reset NMOS transistor 32 is connected between the latch input node A and ground. A HIGH RESET signal is applied to a RESET terminal 34 to turn on the reset NMOS transistor 32 and pull the latch input node A to ground.
  • The latch input node A is connected through a load input NMOS transistor 26 to a DATA In terminal 28. A LOAD signal is provided at a gate terminal 30 of the load input NMOS transistor 26 to load a data bit at the DATA IN terminal 28 into the latch input node A.
  • An OUTPUT terminal 36 provides the signal from the latch input node A that is provided to write to the memory.
  • When the non-volatile chip is not being used in a high-voltage write mode of operation, a Vdd logic-circuit power supply voltage of 3 volts, for example, is provided to the HV node 18 to power the two inverters 12, 14 forming the high-voltage latch 10. When the non-volatile chip is actually being used in a high-voltage write mode of operation, a suitable high-voltage power supply of, for example, 7-15 volts is provided to the HV node 18 to power the two inverters 12, 14 forming the high-voltage latch. The high-voltage is supplied from a high-voltage generation circuit, such as, for example, a charge-pump circuit that is provided on the chip.
  • In order to provide for proper switching operation of the latch with a low Vdd logic-circuit supply voltage, such as, for example, 3 volts or less, the NMOS transistor 24 is a high-voltage, low Vt threshold device. A low Vt threshold device is required because it is difficult to load a HIGH or “1” level to the latch because of the Vt voltage drop across the load input NMOS transistor 26 that makes it difficult to load a HIGH or “1” level into the latch input node A.
  • When the chip is in a high-voltage write mode of operation with the HV transistor 18 at 7-15 volts and when the data storage output node B is at a HIGH, “1”, logic level, the high-voltage pull-up PMOS transistor 22 is turned on and the high-voltage pull-down, low-threshold voltage NMOS transistor 24 is turned off. This essentially places almost all of the 7-15 volts from the HV terminal 18 across the low-threshold NMOS transistor 24. If the high-voltage pull-down NMOS transistor 24 is leaky because of the presence of a punch through path in it, a leakage path goes from the high voltage at the data storage output node B to ground through the leaky pull-down low-threshold NMOS transistor 24.
  • A non-volatile memory chip has 512 or more high-voltage latches like the typical high-voltage latch circuit 10, some or all of which may be leaky with a high voltage at their HV voltage supply terminals. Excessive leakage currents taken from the on-chip high voltage generation circuit, such as, for example, an on-chip charge pump, that supplies a nominal 15 volts, may cause the voltage at the HV terminal 18 to be pulled down to, say, 12 volts. The reduced high voltage at the HV terminal 18 may cause malfunctions in a memory write function.
  • FIG. 2 is a timing diagram that illustrates operation of the typical high-voltage latch circuit 10 of FIG. 1, when the DATA IN signal at the DATA IN terminal 28 is LOW, or at 0 volts. A LOAD signal is initially at a LOW level at the gate terminal 30 of the NMOS load input transistor 26 to keep the NMOS load input NMOS transistor 26 off. Initially, the RESET signal at terminal 34 is HIGH, which turns on the reset NMOS transistor 32 to pull the latch input node A to ground. The HV_ENABLE signal is initially LOW, which provides a Vdd voltage at terminal 18. When the LOAD signal is raised HIGH to Vdd, the NMOS load input NMOS transistor 26 is turned on to provide a LOW logic level DATA IN signal to the latch input node A and the voltage on the data storage output node B goes HIGH to Vdd. Subsequently, the HV_ENABLE control signal goes high to apply a high voltage HV from a high voltage generation circuit to the HV node 18. The second pull-up PMOS transistor 22 is turned on so that the voltage at the data storage output node B is at essentially the same high voltage as at the HV node 18. The HV voltage at the HV node 18 is initially at a Vdd level. However, after the HV_ENABLE control voltage goes HIGH to connect the high voltage generation circuit to the HV node 18, the HV voltage at node 18 rises to a HV(Actual) level that is less than the full HV(Target) level because of the extra leakage current that the high voltage generation circuit must provide to the leaky pull-down NMOS transistor 24 for a number of such high-voltage latch circuits. The full HV(Target) level is, for example, 15 volts while the HV(Actual) level is, for example, 12 volts due to leakage in various high voltage latch circuits. The voltage at the latch input node A and the OUTPUT terminal 36 remains at a LOW state. The voltage at the data storage node B tracks the HV voltage and only rises to the HV(Actual) level.
  • FIG. 3 is a timing diagram that illustrates operation of the typical high-voltage latch circuit 10 of FIG. 1, when the DATA IN signal at the DATA IN terminal 28 is HIGH. The LOAD signal is initially at a LOW level at the gate terminal 30 of the NMOS load input transistor 26 to keep the NMOS load input NMOS transistor 26 off. Initially, the RESET signal at terminal 34 is HIGH, which turns on the reset NMOS transistor 32 to pull the latch input node A to ground. The HV_ENABLE signal is initially LOW, which provides a Vdd voltage at terminal 18. When the LOAD signal is raised to Vdd, the load input NMOS transistor 26 is turned on to provide a HIGH logic level DATA IN signal to the latch input node A and the voltage on the data storage output node B goes low to 0 volts when the pull-up PMOS transistor 22 is turned off and the pull-down NMOS transistor 24 is turned on. Subsequently, the HV_ENABLE control signal goes high to apply the high voltage HV from a high voltage generation circuit to the HV node 18. The first pull-up PMOS transistor 16 is turned on so that the voltage at the data storage output node B is LOW. The HV voltage at the HV node 18 is initially at the Vdd voltage level. After the HV_ENABLE control voltage goes high to connect the high voltage generation circuit to the HV node 18, the HV voltage at node 18 rises to the full HV(Target) level because there is no leakage current through the pull-down NMOS transistor 24. The signal at latch input node A and the OUTPUT terminal 36 tracks the HV level at the HV terminal 18.
  • Various possible remedies for reducing the effect of leakage through the pull-down NMOS transistor 24, when the voltage at the data storage output terminal B is at a high-voltage level, have some disadvantages. Changing the process parameters for fabrication of the pull-down NMOS transistor 24 may reduce leakage; but this can cause its threshold voltage Vt to increase and adversely affect low-voltage operation.
  • To decrease leakage current, the resistance of the pull-down NMOS transistor 24 can be increased by increasing the gate length L of the pull-down NMOS transistor; but this takes more area on the chip and increases the size of the chip. The current output, or strength, of the HV generation circuit can be increased, but this may require a larger pump circuit, which takes more area on the chip and increases the size of the chip. Increasing the strength of the HV generation circuit may also require a higher clock frequency to provide a greater write current.
  • SUMMARY OF THE INVENTION
  • The present invention provides a non-volatile memory having a plurality of high-voltage CMOS latches. Each high-voltage CMOS latch includes a HV terminal that is connected to a Vdd supply voltage during a standby mode of operation and during a load data mode of operation and that receives a HIGH-VOLTAGE supply voltage during a high-voltage write mode of operation. A first CMOS inverter and a second CMOS inverter, each having respective input and output terminals, are each connected between the HV terminal and a ground terminal. The input terminal of the second CMOS inverter and the output terminal of the first CMOS inverter are connected to a latch input node A. The input terminal of the first CMOS inverter and the output terminal of the second CMOS output terminal are connected to a latch output node B.
  • The first CMOS inverter has a first PMOS pull-up transistor that is connected between the HV terminal and the latch input node A. The first CMOS inverter also has a first NMOS pull-down transistor connected between the latch input node A and the ground terminal. The second CMOS inverter has a second PMOS pull-up transistor connected between the HV terminal and the latch output node B. The second CMOS inverter has a pass-gate high-voltage NMOS transistor with a VT implant connected between the latch output node A and a second high-voltage, low-threshold NMOS pull-down transistor that is connected to the ground terminal. The pass-gate high-voltage NMOS transistor has a gate connected to a STANDBY terminal that receives a HIGH LOGIC signal with a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation. The pass-gate high-voltage NMOS transistor limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor and reduces punch-through current and drain-to-substrate leakage of the second high-voltage, low-threshold NMOS pull-down transistor.
  • Each high-voltage CMOS latch circuit has a DATA IN input terminal connected to the latch input node A through a NMOS load input NMOS transistor, at a gate terminal of which is provided a DATA LOAD signal to turn on the NMOS load input NMOS transistor.
  • Each high-voltage CMOS latch circuit has a reset NMOS transistor that is connected between the latch input node A and the ground terminal and that has a gate terminal at which is provided a HIGH RESET signal to turn on the reset NMOS transistor during the standby mode of operation and at which is provided a LOW RESET signal to turn off the reset NMOS transistor during a data-loading mode of operation and during a high-voltage write mode of operation.
  • The present invention also provides a method of limiting leakage current in one or more high-voltage latches that are used for high-voltage writing of data into a non-volatile memory. The method includes the steps for each of the one or more latches of: connecting a cross-coupled CMOS latch between a HV terminal and a ground terminal by connecting a first CMOS inverter between a HV terminal and a ground terminal and by connecting a second CMOS inverter between the HV terminal and a ground terminal; connecting an input terminal of the second CMOS inverter and an output terminal of the first CMOS to a latch input node A for the latch circuit; connecting the latch input node A through a NMOS load input NMOS transistor to a DATA In input terminal of the latch; providing a LOAD signal at a gate terminal of the NMOS load input NMOS transistor to turn on the NMOS load input NMOS transistor; connecting an input terminal of the first CMOS inverter and an output terminal of the second CMOS output terminal to a latch output node B for the latch circuit; connecting a high-voltage, pass-gate NMOS transistor between the latch output node A and one terminal of a low-threshold NMOS pull-down transistor that has another terminal connected to ground; and limiting the voltage across the second high-voltage, low threshold NMOS pull-down transistor and the reducing punch through current and drain-to substrate leakage by turning on the pass-gate high-voltage NMOS transistor with a HIGH signal with a value of Vdd at most.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
  • FIG. 1 is a circuit diagram of a prior art high voltage latch circuit having a high-voltage leakage path from an output terminal to ground.
  • FIG. 2 is a timing diagram for the circuit of FIG. 1 that is loaded with a LOW DATA IN signal.
  • FIG. 3 is a timing diagram for the circuit of FIG. 1 that is loaded with a HIGH DATA IN signal.
  • FIG. 4 is a circuit diagram of a high voltage latch circuit according to the present invention.
  • FIG. 5 is a timing diagram for the circuit of FIG. 4 that is loaded with a LOW DATA IN signal.
  • FIG. 6 is a timing diagram for the circuit of FIG. 4 that is loaded with a HIGH DATA IN signal.
  • DETAILED DESCRIPTION
  • FIG. 4 illustrates an improved high-voltage latch circuit 100 according to the present invention. The latch circuit includes a first CMOS inverter circuit 102 and a second CMOS inverter circuit 104. The first CMOS inverter circuit 102 includes a first pull-up PMOS transistor 106 that has a source connected to a HV node 108 and a drain connected to a latch input node A. The first CMOS inverter circuit 102 also includes a first pull-down NMOS transistor 110 that has a drain connected to the latch input node A and a source connected to ground. The gates of the first pull-up PMOS transistor 106 and the first pull-down NMOS transistor 110 are connected together.
  • The second CMOS inverter circuit 104 includes a second pull-up PMOS transistor 112 that has a source connected to the HV node 108 and a drain connected to a data storage output node B. The second CMOS inverter circuit 104 includes a pass-gate high-voltage NMOS transistor 116 with a VT implant that is connected between the latch output node B and a drain of a second high-voltage, low-threshold NMOS pull-down transistor 118 that ha a source terminal connected to the ground terminal. The pass-gate high-voltage NMOS transistor 116 has a gate connected to a STANDBY terminal 120 that receives a HIGH LOGIC signal with a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation.
  • The STANDBY signal is Low when the memory system is in a standby mode of operation. The STANDBY signal is HIGH when the latch is loading data and during a high-voltage write opertation. The STANDBY signal is not a high-voltage signal and is limited to Vdd in its HIGH state. By allowing the STANDBY signal to only reach Vdd, the pass-gate high-voltage NMOS transistor 116 will shut off once the Vg (STANDBY voltage)−Vs (source voltage of transistor 116)−Vt (threshold voltage of transistor 116)=0. This limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor 118 to be Vdd−Vt. This reduces punch through current and drain-to-substrate leakage of the second high-voltage, low-threshold NMOS pull-down transistor 118.
  • A reset NMOS transistor 122 is connected between the latch input node A and the ground terminal. A gate terminal of the reset NMOS transistor 122 in connected to a RESET terminal 124, at which is provided a HIGH RESET signal to turn on the reset NMOS transistor 122 during a standby mode of operation. A LOW RESET signal turns off the reset NMOS transistor 122 during a data-loading mode of operation and during a high-voltage write mode of operation.
  • A load input NMOS transistor 126 is connected between the latch input node A and a DATA IN input terminal 128. A DATA LOAD signal is provided at a DATA LOAD terminal that is connected to a gate terminal of the load input NMOS transistor 126. A HIGH DATA LOAD signal turns on the load input NMOS transistor 126 to connect the DATA IN input terminal to the latch input node A. An output terminal 136 provides the signal from the latch input node A that is provided to write to the memory.
  • FIG. 5 is a timing diagram that illustrates operation of the improved high-voltage latch circuit 100 for a LOW DATA IN signal at the DATA IN input terminal 128. The high-voltage latch circuit 100 operates in three modes: a standby mode, a data-loading mode, and a high-voltage write mode. The standby mode of operation occurs when the latch circuit 100 is powered by a low Vdd voltage on the HV node 108. The data-loading mode of operation occurs when the input data signal at the DATA IN terminal 128 is loaded into the latch circuit 100 that is still operated with the low Vdd voltage at terminal 108. The high-voltage writer mode of operation occurs when the high voltage is applied to the HV node 108 to write data into the non-volatile memory cells.
  • Standby Mode
  • During the standby mode of operation, the STANDBY signal is at a LOW level Vdd to cutoff the pass-gate high-voltage NMOS transistor 116. The HV-ENABLE signal is at a 0 (LOW) level to provide a Vdd voltage at terminal 108. Data at the latch input node A and the data storage output node B is either HIGH or LOW. Prior to the standby mode of operation ending, the STANDBY signal goes to a HIGH signal level to turn on the pass-gate high-voltage NMOS transistor 116. The RESET signal at terminal 124 goes LOW to cut the reset NMOS transistor 122.
  • Data Load Mode
  • The data-loading mode of operation begins when the LOAD signal at a Vdd level is provided at the gate terminal 130 of the load input NMOS transistor 126. In this mode of operation, a LOW input signal at the DATA IN terminal 128 is loaded into the latch input node A. This turns on the second pull-up PMOS transistor 112 and turns off the second NMOS pull-down transistor 118 and causes the data storage output node B to go to a HIGH Vdd level.
  • High-Voltage Write Mode
  • During the high-voltage write mode of operation, the HIGH STANDBY voltage at input terminal 120 continues to turn on the pass-gate high-voltage NMOS transistor 116. Note that the HIGH state of the STANDBY voltage is at most Vdd. The pass-gate high-voltage NMOS transistor 116 receives the STANDBY signal that has a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation. The Vdd STANDBY voltage at the gate terminal of the pass-gate high-voltage NMOS transistor 116 limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor to Vdd−Vt and reduces punch-through current and drain-to-substrate leakage.
  • During the high-voltage write mode of operation, a high voltage supply is applied to the HV node 108 and the voltage at the data storage output node B follows the voltage on the HV node 108. FIG. 5 shows these two voltages HV and B ramping up to the HV voltage target level, for example, 15 volts. The output voltage at terminal 136 stays at a LOW state.
  • FIG. 6 is a timing diagram that illustrates operation of the improved high-voltage latch circuit 100 for a HIGH DATA IN signal at the DATA IN input terminal 128.
  • Standby Mode
  • During the standby mode of operation, the STANDBY signal is at a LOW level Vdd to cutoff the pass-gate high-voltage NMOS transistor 116. The HV-ENABLE signal is at a 0 (LOW) level to provide a Vdd voltage at terminal 108. Data at the latch input node A and the data storage output node B is either HIGH or LOW. Prior to the standby mode of operation ending, the STANDBY signal goes to a HIGH signal level to turn on the pass-gate high-voltage NMOS transistor 116. The RESET signal at terminal 124 goes LOW to cut the reset NMOS transistor 122.
  • Data Load Mode
  • The data-loading mode of operation begins when the LOAD signal at a Vdd level is provided at the gate terminal 128 of the load input NMOS transistor 126. In this mode of operation, a HIGH input signal at the DATA IN terminal 130 is loaded into the latch input node A. This turns off the second pull-up PMOS transistor 112 and which turns on the second NMOS pull-down transistor 118 and causes the data storage output node B to go to a LOW level.
  • High-Voltage Write Mode
  • During the high-voltage write mode of operation, the HIGH STANDBY voltage at input terminal 120 continues to turn on the pass-gate high-voltage NMOS transistor 116. Note that the HIGH state of the STANDBY voltage is at most Vdd. The pass-gate high-voltage NMOS transistor 116 receives the STANDBY signal that has a value of at most Vdd to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation. The Vdd STANDBY voltage at the gate terminal of the pass-gate high-voltage NMOS transistor 116 limits the voltage across the second high-voltage, low-threshold NMOS pull-down transistor to Vdd−Vt and reduces punch-through current and drain-to-substrate leakage.
  • During the high-voltage write mode of operation, a high voltage supply is applied to the HV node 108 and the voltage at the data storage output node A follows the voltage on the HV node 108. FIG. 6 shows these two voltages HV and A ramping up to the HV voltage target level, for example, 15 volts. Terminal 136 provides the node A voltage as an output signal to write the memory.
  • The foregoing descriptions of specific embodiments of the present invention has been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (16)

1. A non-volatile memory having a plurality of high-voltage CMOS latches, each high-voltage CMOS latch comprising:
a HV terminal that is connected to a VDD supply voltage during a standby mode of operation and during a load data mode of operation and that is connected to a HIGH-VOLTAGE supply voltage during a high-voltage write mode of operation;
a first CMOS inverter and a second CMOS inverter, each having respective input and output terminals, and each being connected between the HV terminal and a ground terminal;
the input terminal of the second CMOS inverter and the output terminal of the first CMOS inverter are connected to a latch input node A;
the input terminal of the first CMOS inverter and the output terminal of the second CMOS output terminal are connected to a latch output node B;
said first CMOS inverter having a first PMOS pull-up transistor connected between the HV terminal and the latch input node A, said first CMOS inverter having a first NMOS pull-down transistor connected between the latch input node A and the ground terminal;
said second CMOS inverter having a second PMOS pull-up transistor connected between the HV terminal and the latch output node B;
said second CMOS inverter having a pass-gate high-voltage NMOS transistor that is connected between the latch output node B and a second high-voltage, low-threshold NMOS pull-down transistor that is connected to the ground terminal; and
said pass-gate high-voltage NMOS transistor having a gate connected to a STANDBY terminal that receives a HIGH LOGIC signal with a value of at most VDD to turn on the pass-gate high-voltage NMOS transistor when the high-voltage CMOS latch is in a data-loading mode of operation and during a high-voltage write mode of operation to limit the voltage across the second high-voltage, low-threshold NMOS pull-down transistor and to reduce punch-through current and drain-to-substrate leakage of the second high-voltage, low-threshold NMOS pull-down transistor.
2. The non-volatile memory of claim 1 wherein each high-voltage CMOS latch circuit has a DATA IN input terminal connected to the latch input node A through a load input NMOS transistor, at a gate terminal of which is provided a DATA LOAD signal to turn on the NMOS load input NMOS transistor.
3. The non-volatile memory of claim 1 including a reset NMOS transistor that is connected between the latch input node A and the ground terminal and that has a gate terminal at which is provided a HIGH RESET signal to turn on the reset NMOS transistor during the standby mode of operation and at which is provided a LOW RESET signal to turn off the reset NMOS transistor during a data-loading mode of operation and during a high-voltage write mode of operation.
4. A method limiting leakage current in one or more high-voltage latches that are used for high-voltage writing of data into a non-volatile memory, comprising the steps for each of the one or more latches of:
connecting a cross-coupled CMOS latch between a HV terminal and a ground terminal by connecting a first CMOS inverter between a HV terminal and a ground terminal and by connecting a second high-voltage inverter between the HV terminal and a ground terminal;
connecting an input terminal of the second CMOS inverter and an output terminal of the first CMOS to a latch input node A for the latch circuit;
connecting the latch input node A through a NMOS load input NMOS transistor to a DATA In input terminal of the latch;
providing a LOAD signal at a gate terminal of the NMOS load input NMOS transistor to turn on the NMOS load input NMOS transistor;
connecting an input terminal of the first CMOS inverter and an output terminal of the second CMOS output terminal to a latch output node B for the latch circuit;
connecting a high-voltage, pass-gate NMOS transistor between the latch output node A and one terminal of a low-threshold NMOS pull-down transistor that has another terminal connected to ground; and
limiting the voltage across the second high-voltage, low threshold NMOS pull-down transistor and the reducing punch through current and drain-to substrate leakage by turning on the pass-gate high-voltage NMOS transistor with a HIGH signal with a value of Vdd at most.
5. A latch circuit, comprising:
first and second cross-coupled inverters, each inverter having a PMOS transistor connected to a supply voltage and an NMOS transistor connected to ground with the gates of the EMOS and NMOS transistors joined at a first node and with a second node joining source-drains thereof, with the first node of the first inverter connected to the second node of the second inverter, with the second node of the first inverter connected to the first node of the second inverter and to a transistor means for applying a RESET voltage; and
a pass-gate transistor means interposed between the PMOS and the NMOS transistors of the second inverter for applying a STANDBY voltage to the NMOS transistor of the second inverter to thereby limit the voltage at the NMOS transistor to the voltage established by the STANDBY voltage.
6. The latch circuit of claim 5 having means for operating in three modes, a first mode being a STANDBY mode, a second mode being a LOAD DATA mode, and a third mode being a WRITE mode.
7. The latch circuit of claim 6 wherein the supply voltage supplies a second voltage Vdd lower than the high voltage, the Vdd voltage being connected to the latch circuit during the first and second modes of operation and the high voltage connected to the latch circuit during the third mode of operation.
8. The latch circuit of claim 6 wherein the first and second inverters have PMOS pull-up transistors and wherein the first inverter has an NMOS pull-down transistor and the second inverter has an NMOS pass-gate transistor that is in series with an NMOS pull-down transistor and that is inactive in the first mode and active in the second and third modes.
9. The latch circuit of claim 5 having a first auxiliary transistor associated with a DATA TN terminal and a DATA LOAD signal terminal, the auxiliary transistor connected to the second node of the first inverter and to the first node of the second inverter.
10. The latch circuit of claim 9 wherein the auxiliary transistor is an NMOS transistor.
11. The latch circuit of claim 9 wherein a second auxiliary transistor means for applying a RESET voltage is connected to the second node of the first inverter and the first node of the second inverter.
12. A method of operating a latch circuit in association with a programmable memory device comprising,
connecting first and second CMOS inverters with PMOS and NMOS transistors in a manner forming a cross-coupled CMOS latch between a high voltage terminal and a ground terminal;
providing a high voltage for writing to a high voltage device in a write mode;
providing a lower voltage than the high voltage for loading data into the CMOS latch in a LOAD DATA mode and during a STANDBY mode; and
providing a pass-gate transistor in series with one of said CMOS inverters for applying a STANDBY voltage to turn on the pass-gate transistor and thereby limit voltage across an NMOS transistor in the one of said CMOS inverters.
13. The method of claim 12 including providing a first auxiliary transistor to the CMOS latch for establishing a DATA LOAD signal.
14. The method of claim 12 including providing a second auxiliary transistor to the latch for establishing a RESET sigral.
15. The method of claim 12 including providing a low threshold NNOS pull-down transistor in series with the pass-gate transistor that limits voltage across the low threshold NMOS pull-down transistor.
16. The method of claim 12 including connecting the CMOS inverters with an input terminal of the second CMOS inverter and an output terminal of the first CMOS inverter to a latch input node and connecting the input terminal of the first CMOS inverter and an output terminal of the second CMOS inverter to a latch output node.
US11/470,536 2006-09-06 2006-09-06 Leakage improvement for a high-voltage latch Abandoned US20080054973A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/470,536 US20080054973A1 (en) 2006-09-06 2006-09-06 Leakage improvement for a high-voltage latch
PCT/US2007/077542 WO2008030812A2 (en) 2006-09-06 2007-09-04 Leakage improvement for a high-voltage latch
CN2007800332113A CN101512659B (en) 2006-09-06 2007-09-04 Leakage improvement for a high-voltage latch
DE112007002102T DE112007002102T5 (en) 2006-09-06 2007-09-04 Improved leakage suppression for a high voltage latch
TW096133079A TW200820620A (en) 2006-09-06 2007-09-05 Leakage improvement for a high-voltage latch
US12/538,766 US7863959B2 (en) 2006-09-06 2009-08-10 Apparatus and methods for a high-voltage latch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/470,536 US20080054973A1 (en) 2006-09-06 2006-09-06 Leakage improvement for a high-voltage latch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/538,766 Continuation US7863959B2 (en) 2006-09-06 2009-08-10 Apparatus and methods for a high-voltage latch

Publications (1)

Publication Number Publication Date
US20080054973A1 true US20080054973A1 (en) 2008-03-06

Family

ID=39150614

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/470,536 Abandoned US20080054973A1 (en) 2006-09-06 2006-09-06 Leakage improvement for a high-voltage latch
US12/538,766 Expired - Fee Related US7863959B2 (en) 2006-09-06 2009-08-10 Apparatus and methods for a high-voltage latch

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/538,766 Expired - Fee Related US7863959B2 (en) 2006-09-06 2009-08-10 Apparatus and methods for a high-voltage latch

Country Status (5)

Country Link
US (2) US20080054973A1 (en)
CN (1) CN101512659B (en)
DE (1) DE112007002102T5 (en)
TW (1) TW200820620A (en)
WO (1) WO2008030812A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295447A1 (en) * 2006-09-06 2009-12-03 Atmel Corporation Apparatus and methods for a high-voltage latch
US20120032719A1 (en) * 2010-08-05 2012-02-09 Freescale Semiconductor, Inc. Electronic circuit and method for operating a module in a functional mode and in an idle mode
US20130121070A1 (en) * 2011-11-16 2013-05-16 Stmicroelectronics (Crolles 2) Sas Memory Device
US8681566B2 (en) 2011-05-12 2014-03-25 Micron Technology, Inc. Apparatus and methods of driving signal for reducing the leakage current

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577029B2 (en) 2007-05-04 2009-08-18 Mosaid Technologies Incorporated Multi-level cell access buffer with dual function
CN106656163B (en) * 2016-12-05 2020-07-03 宁波大学 Feedback type D latch
CN108347234A (en) * 2017-12-29 2018-07-31 成都华微电子科技有限公司 high-speed comparator circuit based on inverter design

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298816A (en) * 1993-03-30 1994-03-29 Kaplinsky Cecil H Write circuit for CMOS latch and memory systems
US6157577A (en) * 1999-02-09 2000-12-05 Lucent Technologies, Inc. Memory device voltage steering technique
US6188246B1 (en) * 1998-05-20 2001-02-13 Nec Corporation Semiconductor circuit with sequential circuit which can prevent leakage current
US6288586B1 (en) * 1998-02-12 2001-09-11 Hyundai Electronics Industries Co., Ltd. Circuit for standby current reduction
US6459301B2 (en) * 1998-05-14 2002-10-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor circuit device having active and standby states
US6501315B1 (en) * 2001-12-12 2002-12-31 Xilinx, Inc. High-speed flip-flop operable at very low voltage levels with set and reset capability
US6700412B2 (en) * 2000-10-19 2004-03-02 Nec Electronics Corporation Semiconductor device
US20040135611A1 (en) * 2002-10-31 2004-07-15 Ulf Tohsche D-type flipflop
US20040214389A1 (en) * 2002-07-08 2004-10-28 Madurawe Raminda Udaya Semiconductor latches and SRAM devices
US20060171194A1 (en) * 2003-06-11 2006-08-03 Tyler Lowrey Programmable matrix array with chalcogenide material
US20070159873A1 (en) * 2005-04-21 2007-07-12 Micron Technology, Inc Static random access memory cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713292A3 (en) * 1994-11-21 1997-10-01 Motorola Inc A feedback latch and method therefor
JP3597655B2 (en) * 1996-04-17 2004-12-08 株式会社ルネサステクノロジ Semiconductor integrated circuit
US6107852A (en) * 1998-05-19 2000-08-22 International Business Machines Corporation Method and device for the reduction of latch insertion delay
US6380781B1 (en) * 1999-11-01 2002-04-30 Intel Corporation Soft error rate tolerant latch
JP3874234B2 (en) * 2000-04-06 2007-01-31 株式会社ルネサステクノロジ Semiconductor integrated circuit device
US6563743B2 (en) * 2000-11-27 2003-05-13 Hitachi, Ltd. Semiconductor device having dummy cells and semiconductor device having dummy cells for redundancy
US6621318B1 (en) * 2001-06-01 2003-09-16 Sun Microsystems, Inc. Low voltage latch with uniform sizing
US7369446B2 (en) * 2006-07-13 2008-05-06 Atmel Corporation Method and apparatus to prevent high voltage supply degradation for high-voltage latches of a non-volatile memory
US20080054973A1 (en) 2006-09-06 2008-03-06 Atmel Corporation Leakage improvement for a high-voltage latch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298816A (en) * 1993-03-30 1994-03-29 Kaplinsky Cecil H Write circuit for CMOS latch and memory systems
US6288586B1 (en) * 1998-02-12 2001-09-11 Hyundai Electronics Industries Co., Ltd. Circuit for standby current reduction
US6459301B2 (en) * 1998-05-14 2002-10-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor circuit device having active and standby states
US6188246B1 (en) * 1998-05-20 2001-02-13 Nec Corporation Semiconductor circuit with sequential circuit which can prevent leakage current
US6157577A (en) * 1999-02-09 2000-12-05 Lucent Technologies, Inc. Memory device voltage steering technique
US6700412B2 (en) * 2000-10-19 2004-03-02 Nec Electronics Corporation Semiconductor device
US6501315B1 (en) * 2001-12-12 2002-12-31 Xilinx, Inc. High-speed flip-flop operable at very low voltage levels with set and reset capability
US20040214389A1 (en) * 2002-07-08 2004-10-28 Madurawe Raminda Udaya Semiconductor latches and SRAM devices
US20040135611A1 (en) * 2002-10-31 2004-07-15 Ulf Tohsche D-type flipflop
US20060171194A1 (en) * 2003-06-11 2006-08-03 Tyler Lowrey Programmable matrix array with chalcogenide material
US20070159873A1 (en) * 2005-04-21 2007-07-12 Micron Technology, Inc Static random access memory cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295447A1 (en) * 2006-09-06 2009-12-03 Atmel Corporation Apparatus and methods for a high-voltage latch
US7863959B2 (en) * 2006-09-06 2011-01-04 Atmel Corporation Apparatus and methods for a high-voltage latch
US20120032719A1 (en) * 2010-08-05 2012-02-09 Freescale Semiconductor, Inc. Electronic circuit and method for operating a module in a functional mode and in an idle mode
US8390369B2 (en) * 2010-08-05 2013-03-05 Freescale Semiconductor, Inc. Electronic circuit and method for operating a module in a functional mode and in an idle mode
US8681566B2 (en) 2011-05-12 2014-03-25 Micron Technology, Inc. Apparatus and methods of driving signal for reducing the leakage current
US9054700B2 (en) 2011-05-12 2015-06-09 Micron Technology, Inc. Apparatus and methods of driving signal for reducing the leakage current
US20130121070A1 (en) * 2011-11-16 2013-05-16 Stmicroelectronics (Crolles 2) Sas Memory Device
US8837206B2 (en) * 2011-11-16 2014-09-16 Stmicroelectronics (Crolles 2) Memory device

Also Published As

Publication number Publication date
TW200820620A (en) 2008-05-01
CN101512659B (en) 2012-10-17
WO2008030812A2 (en) 2008-03-13
US20090295447A1 (en) 2009-12-03
DE112007002102T5 (en) 2009-07-16
WO2008030812A3 (en) 2008-05-08
CN101512659A (en) 2009-08-19
US7863959B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
US7369446B2 (en) Method and apparatus to prevent high voltage supply degradation for high-voltage latches of a non-volatile memory
US8030962B2 (en) Configuration random access memory
US7863959B2 (en) Apparatus and methods for a high-voltage latch
US8184489B2 (en) Level shifting circuit
CN110462737B (en) Writing data paths to reduce negative boosted charge leakage
US8274848B2 (en) Level shifter for use with memory arrays
EP1252631A1 (en) High performance cmos word-line driver
US7990189B2 (en) Power-up signal generating circuit and integrated circuit using the same
US7911826B1 (en) Integrated circuits with clearable memory elements
US7453725B2 (en) Apparatus for eliminating leakage current of a low Vt device in a column latch
US7180361B2 (en) Antifuse programming circuit in which one stage of transistor is interposed in a series with antifuse between power supplies during programming
US7218153B2 (en) Word line driver with reduced leakage current
US20190172522A1 (en) SRAM Configuration Cell for Low-Power Field Programmable Gate Arrays
US9064552B2 (en) Word line driver and related method
US8947122B2 (en) Non-volatile latch structures with small area for FPGA
US9245594B2 (en) Switching circuit
US7768818B1 (en) Integrated circuit memory elements
US20180212516A1 (en) Charge pumps and methods of operating charge pumps
US6430093B1 (en) CMOS boosting circuit utilizing ferroelectric capacitors
US20090237974A1 (en) Programmable memory cell
US6657912B1 (en) Circuit for optimizing power consumption and performance

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATMEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAN, JOHNNY;TSAI, JEFFREY MING-HUNG;WONG, TIN-WAI;REEL/FRAME:018307/0347

Effective date: 20060906

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION