US20080054496A1 - High temperature operating package and circuit design - Google Patents

High temperature operating package and circuit design Download PDF

Info

Publication number
US20080054496A1
US20080054496A1 US11/512,860 US51286006A US2008054496A1 US 20080054496 A1 US20080054496 A1 US 20080054496A1 US 51286006 A US51286006 A US 51286006A US 2008054496 A1 US2008054496 A1 US 2008054496A1
Authority
US
United States
Prior art keywords
die
fet
circuit
terminal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/512,860
Inventor
Neill Thornton
Dennis Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Components Industries LLC
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Priority to US11/512,860 priority Critical patent/US20080054496A1/en
Publication of US20080054496A1 publication Critical patent/US20080054496A1/en
Assigned to FAIRCHILD SEMICONDUCTOR CORPORATION reassignment FAIRCHILD SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANG, DENNIS, THORNTON, NEILL
Assigned to FAIRCHILD SEMICONDUCTOR CORPORATION reassignment FAIRCHILD SEMICONDUCTOR CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE CITY AND STATE OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 021549 FRAME 0923. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNEE. Assignors: LANG, DENNIS, THORNTON, NEILL
Priority to US12/419,696 priority patent/US8030764B2/en
Priority to US13/221,179 priority patent/US8803239B2/en
Assigned to SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC reassignment SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAIRCHILD SEMICONDUCTOR CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18165Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • This invention relates to semiconductor devices and packages therefor designed to operate at high temperatures.
  • the invention further relates to the stacking of power switching semiconductor devices.
  • packages for semiconductor devices are designed to conduct the heat generated by the device to the printed circuit board (PCB).
  • the heat is conducted through the die pad and the leads to the PCB, which dissipates the heat.
  • High power devices may operate at temperatures that may be out of the safe temperature range of the PCB.
  • silicon carbide SiC
  • SiC-based devices may operate at over 200° C.
  • a PCB is kept at temperatures below 100° C. Therefore, a package that may operate at high temperatures without significantly affecting the PCB is desired.
  • high power semiconductor devices provide good switching at high voltages, though they may be less effective at preventing leakage when the device is deactivated.
  • SiC is known to have desirable switching properties in high-voltage devices; however, SiC devices tend to leak current more readily than is desirable. Therefore, a circuit design that prevents leakage in high power devices and allows a high temperature device to be used without significantly affecting other devices is desired.
  • the invention comprises, in one form thereof, a circuit design and a package for semiconductor devices that reduces thermal conduction to the printed circuit board (PCB) in order to radiate the heat generated by the device away from the PCB.
  • the package is configured with the die pad at the top of the package, facing away from the PCB.
  • the terminals of the die are electrically connected to the leads, which are located proximate to the PCB, via bond wires with low thermal conductivity.
  • the die, the die pad, and the bond wires are encapsulated in a thermally resistant material that has a high thermal impedance as compared to certain metals, such as copper. Since the die is substantially thermally isolated from the PCB, the die operates at a high temperature and radiates heat away from the PCB.
  • a high temperature power device is stacked on a second power device with a high thermal resistance layer therebetween.
  • the circuit is configured such that the second power device is turned on before the high temperature device and turned off just after. This is accomplished by using a common gate drive and setting the threshold voltage of the second device to be lower than the threshold voltage of the high temperature device.
  • a gate timing circuit is used to control the switches.
  • the invention includes a packaged semiconductor device, comprising an encapsulant having a top surface and a bottom surface, the encapsulant comprising a thermally resistant material; a die having a first surface and a second surface and being embedded in the encapsulant proximate to the top surface; a plurality of leads engaging the encapsulant proximate the bottom surface; and a die pad embedded in the top surface of the encapsulant.
  • the die pad includes a die attach surface in engagement with the second surface of the die and at least one surface that is exposed by said encapsulant.
  • the die attach surface of the die pad may be in electrical communication with the second surface of the die, which may be a field effect transistor with one or more drain terminals on the second surface.
  • the die may be an integrated circuit.
  • the die is comprised of silicon carbide.
  • the leads are connected to a printed circuit board such that the bottom surface of the encapsulant is proximate the printed circuit board.
  • the invention includes a method for forming a package for a semiconductor device having a high temperature operation.
  • the method comprises the steps of providing a semiconductor die attached to a die pad and vertically displaced from a plurality of leads; electrically connecting each of said leads to a terminal on said die via bond wires; encapsulating the die, the bond wires, at least a portion of the die pad, and at least a portion of the leads in a thermally resistant material; and attaching the leads to a circuit, which may comprise a printed circuit board, such that the die and the die pad are displaced from the circuit and substantially thermally isolated from the circuit.
  • the die may be a field effect transistor having a drain terminal in electrical communication with the die pad, or, alternatively, the die is an integrated circuit. Further, the die may comprise silicon carbide.
  • the invention in another form, includes a circuit having a thermally isolated semiconductor device.
  • the circuit comprises a first semiconductor die having a first die top surface and a first die bottom surface; a second semiconductor die having a second die top surface and a second die bottom surface, the first die bottom surface being attached to the second die top surface; a thermal resistance layer which could be a die attachment material situated between the first die and the second die; and a die pad having a die attach surface engaging the second die bottom surface.
  • each of the first die and the second die are a field effect transistor wherein: the first die comprises a first die source terminal and a first die gate terminal on the first die top surface and a first die drain terminal on the first die bottom surface; and the second die comprises a second die source terminal and a second die gate terminal on the second die top surface and a second die drain terminal on the second die bottom surface.
  • the thermal resistance layer is electrically conductive such that the first die drain terminal is in electrical communication with the second die source terminal to connect the first die and the second die in series. Even further, the first die gate terminal and the second die gate terminal are in electrical communication with a common gate drive and the second die has a lower threshold voltage than the first die.
  • first die gate terminal and the second die gate terminal are electrically connected to a gate timing circuit for controlling the activation and the deactivation of the first die and the second die.
  • the thermal resistance layer may be an electrically conductive epoxy, a tungsten layer, or another suitable material that is thermally resistant and electrically conductive.
  • the first die may comprise silicon carbide and the second die may comprise silicon. In an alternative embodiment, at least one of the first die and the second die may be an integrated circuit.
  • the invention includes a method for providing a semiconductor power device with current leakage prevention.
  • the method comprises the steps of providing a first field effect transistor (FET) die with a first FET gate terminal and a first FET source terminal on a first FET top surface and a first FET drain terminal on a first FET bottom surface; providing a second FET die with a second FET gate terminal and a second FET source terminal on a second FET top surface and a second FET drain terminal on a second FET bottom surface, wherein the second FET has a lower threshold voltage that the first FET; attaching the first FET die to the second FET die with an electrically conductive thermal resistance layer therebetween such that the first FET drain terminal is in electrical communication with the second FET source terminal; and affixing the second FET die to a die pad.
  • the method may further comprise the step of connecting the first FET gate terminal and the second FET gate terminal to a common gate drive.
  • the invention includes a circuit comprising a plurality of semiconductor power devices configured in a stack and connected in series.
  • the circuit may further comprise a thermal resistance layer between at least two of the plurality of semiconductor power devices.
  • One or more of the semiconductor power devices may be field effect transistors and one or more of the semiconductor power devices may comprise silicon carbide.
  • An advantage of the present invention is that the package provides a poor thermal path to the circuit board causing the device to operate at a higher temperature and to radiate heat away from the PCB.
  • a further advantage of the invention is that it provides a high power switch stacked on top of and connected in series with another switch that control s the leakage current of the high power switch. Because the switches are separated by a thermal resistance layer, the high voltage device operates at a higher temperature without affecting the low temperature devices including the second switch and the PCB.
  • FIG. 1 is a sectional view of the high temperature operating package of the first embodiment of the present invention
  • FIG. 2 is a sectional view of the high temperature operating package of the second embodiment.
  • FIG. 3 is an example circuit diagram of a circuit according to the package of FIG. 2 .
  • the package 10 includes a semiconductor die 12 , a die pad 14 , a plurality of leads 16 , and an encapsulant 18 .
  • the die 12 is a semiconductor power device such as a field effect transistor.
  • the invention may be applied to any semiconductor device including an integrated circuit.
  • the die 12 is made of any semiconductor material, however, silicon carbide (SiC) has been shown to have good performance characteristics at high temperatures.
  • a first surface 20 of the die 12 includes terminals for the gate and the source and a second surface 22 includes one or more terminals for the drain.
  • the second surface 22 is attached to a die attach surface 24 of the die pad 14 such as with an electrically conductive epoxy, solder, or another suitable method that provides electrical communication between the one or more drain terminals of the second surface 22 and the die attach surface 24 .
  • Several leads 16 are vertically spaced from the die 12 and the die pad 14 , and wire bonds 28 electrically connect each of the leads 16 to one of the gate terminals, the source terminals, or the die pad 12 , which is in communication with the drain terminal.
  • the encapsulant 18 has a bottom surface 30 and a top surface 32 and is a material that has both a high electrical and thermal resistance in comparison to the metal components.
  • a thermally resistant material is a material with a substantially higher thermal impedance than certain metals, such as copper.
  • the leads 16 are proximate the bottom surface 30 such that the bottom surface 30 is proximate to the printed circuit board (PCB) when the leads 16 are connected to the PCB.
  • the die pad 14 is situated at the top surface 32 with an exposed surface 26 uncovered by the encapsulant 18 .
  • the encapsulant material between the die 12 and the leads 16 and the PCB provides a poor thermal path from the die to the PCB. It should be noted that the bond wires 28 are thin and also provide a poor thermal path between the die 12 and the leads 16 .
  • the leads 16 and the die pad 14 may be provided in a lead frame that is separated after encapsulation.
  • the package 10 may be provided in a leadless configuration wherein the leads 16 are enclosed by the encapsulant 18 with one or more exposed surfaces.
  • the leads 16 provide electrical communication between the PCB and the terminals of the die 12 via the wire bonds 28 .
  • the poor thermal path of the encapsulant 18 thermally isolates the die 12 and the die pad 14 from the leads 16 and thus from the PCB. Because the heat generated by the operation of the die 12 is not dissipated by the PCB, the die 12 operates at a high temperature. In the case that the die 12 is an SiC device, the temperature may be as high as 200° C. or more. Since the die 12 is thermally isolated from the PCB, the PCB is not damaged by the elevated temperature. Heat is conducted from the die 12 to the die pad 14 and then radiated away from the package 10 via the exposed surface 26 .
  • FIGS. 2 and 3 illustrate a second embodiment of the invention comprising a package 100 having a high temperature die 102 stacked on a series die 104 with a thermal resistance layer 106 therebetween.
  • the series die 104 is attached to a die pad 108 .
  • the high temperature die 102 is a field effect transistor, such as a SiC JFET, with a first surface 110 and a second surface 112 .
  • the first surface 110 includes one or more source terminals and one or more gate terminals.
  • the second surface 112 includes one or more drain terminals.
  • the series die 104 operates at a lower, more conventional temperature with the heat generated by the operation of the series die 104 being dissipated by the PCB via the die pad 108 .
  • the series die 104 is thus a lower temperature operating device, such as a Si JFET, with a top surface 114 and a bottom surface 116 .
  • the top surface 114 includes one or more gate terminals and one or more source terminals.
  • the bottom surface 116 includes one or more drain terminals.
  • the high temperature die 102 and the series die 104 are connected in series such that the drain terminals of the high temperature die 102 are in electrical communication with the source terminals of the series die 104 via the thermal resistance layer 106 .
  • the thermal resistance layer 106 is thus an electrically conductive and thermally resistant material, such as a thick layer of an electrically conductive epoxy with high thermal resistance or a tungsten layer.
  • the bottom surface 116 is attached to a die attach surface 118 of the die pad 108 such that the drain terminals of the series die 104 are in electrical communication with the die pad 108 .
  • the series die 104 also conducts heat to the die pad 108 in order to dissipate the heat generated by the series die 104 to the PCB.
  • One or more bond wires 120 provide electrical communication between the source terminals of the high temperature die 102 and one or more leads (not shown).
  • the bond wire 120 provides a poor thermal path, though the source terminal may be alternatively connected to a device or a lead via a thermal resistance layer.
  • one or more bond wires 122 provide electrical communication between the die pad 108 and one or more leads (not shown), thus electrically connecting the drain of the series die 104 to the terminal.
  • the gate terminals of the high temperature die 102 and the series die 104 are in electrical communication with a common gate drive via bond wires 124 , which are bonded to one or more leads (not shown).
  • the order of activation of the switches is controlled by the threshold voltages of each device wherein the high temperature die 102 has a higher threshold voltage than the series die 104 .
  • the devices may have separate gate drives and a timing circuit controls the activation and deactivation of the switches.
  • the package 100 includes an encapsulant (not shown) and may be configured with external leads or in a molded leadless package configuration.
  • FIG. 3 is a circuit diagram illustrating an example circuit according to the second embodiment of the invention.
  • the circuit is a DC buck converter with a MOSFET or diode 130 as well as an inductor 132 and a capacitor 134 in connection with ground.
  • the power switching is provided by the package 100 , wherein the high temperature die 102 includes a source 136 , a drain 138 , and a gate 140 , and the series die 104 includes a source 142 , a drain 144 , and a gate 146 .
  • the package 100 illustrated in FIG. 2 may be used in any switching operation, such as the buck converter described here or an amplifier.
  • the gate drive increases the voltage on both the gate 146 and the gate 140 . Since the series die 104 has the lower threshold voltage, it will be activated before the high temperature die 102 . For example, the series die 104 may have a threshold voltage of 2 volts and the high temperature die 102 may have a threshold voltage of 4 volts. Certain applications with larger gates, however, will require a lager difference in threshold voltages. A smaller difference in threshold voltages, such as 0.5 volts may be used in applications requiring fast switching.
  • the power switch is closed. The power switch is opened when the gate drive lowers the voltage to the gates 140 and 146 .
  • the high temperature device 102 deactivates first and opens the switch.
  • the series device 104 deactivates when the gate drive continues to lower the voltage to the gates to thereby prevent cut off any possible leakage current.
  • the series device 104 is a Si device and it is only switched on just before the high temperature device 102 and is switched of just after the high temperature device 102 , the series device 104 prevents the high temperature device 104 from leaking current. Also because the series device 104 is activated before the high voltage device 102 and deactivated after it, the high voltage switching is controlled by the high temperature device 102 . Further, the thermal resistance layer 106 thermally isolates the high temperature device 102 from the series device 104 such that the high temperature device 102 does not dissipate heat to the PCB and thus operates at a higher temperature. Therefore the circuit designer may take advantage of the good switching performance provided by silicon carbide without damaging the other components of the circuit with the elevated temperatures.
  • the top FET is attached to the bottom FET with an electrically conductive material with a relatively low thermal resistance, such as solder. This configuration allows the circuit to be designed with the benefits described above without electrically isolating one of the devices.
  • further semiconductor devices may be stacked in addition to the two devices described in the second embodiment.
  • a thermal resistance layer may be included between devices to thermally isolate one device from another.
  • the SiC FET the high temperature device 102
  • the Si FET the series device 104
  • IC integrated circuit
  • two or more devices are stacked with a thermal resistance layer therebetween wherein the thermal resistance layer is also not electrically conductive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

The invention provides a semiconductor device that is thermally isolated from the printed circuit board such that the device operates at a higher temperature and radiates heat away from the printed circuit board. In another embodiment, the semiconductor is stacked onto a second device and optionally thermally isolated from the second device.

Description

    FIELD OF THE INVENTION
  • This invention relates to semiconductor devices and packages therefor designed to operate at high temperatures. The invention further relates to the stacking of power switching semiconductor devices.
  • BACKGROUND OF THE INVENTION
  • Conventionally, packages for semiconductor devices, such as power devices or integrated circuits, are designed to conduct the heat generated by the device to the printed circuit board (PCB). The heat is conducted through the die pad and the leads to the PCB, which dissipates the heat. High power devices, however, may operate at temperatures that may be out of the safe temperature range of the PCB. For example, silicon carbide (SiC) has desirable properties for high power devices, though SiC-based devices may operate at over 200° C. Typically, a PCB is kept at temperatures below 100° C. Therefore, a package that may operate at high temperatures without significantly affecting the PCB is desired.
  • In certain cases, high power semiconductor devices provide good switching at high voltages, though they may be less effective at preventing leakage when the device is deactivated. For example, as described above, SiC is known to have desirable switching properties in high-voltage devices; however, SiC devices tend to leak current more readily than is desirable. Therefore, a circuit design that prevents leakage in high power devices and allows a high temperature device to be used without significantly affecting other devices is desired.
  • SUMMARY OF THE INVENTION
  • The invention comprises, in one form thereof, a circuit design and a package for semiconductor devices that reduces thermal conduction to the printed circuit board (PCB) in order to radiate the heat generated by the device away from the PCB. In one embodiment, the package is configured with the die pad at the top of the package, facing away from the PCB. The terminals of the die are electrically connected to the leads, which are located proximate to the PCB, via bond wires with low thermal conductivity. The die, the die pad, and the bond wires are encapsulated in a thermally resistant material that has a high thermal impedance as compared to certain metals, such as copper. Since the die is substantially thermally isolated from the PCB, the die operates at a high temperature and radiates heat away from the PCB. In a second embodiment, a high temperature power device is stacked on a second power device with a high thermal resistance layer therebetween. The circuit is configured such that the second power device is turned on before the high temperature device and turned off just after. This is accomplished by using a common gate drive and setting the threshold voltage of the second device to be lower than the threshold voltage of the high temperature device. Alternatively, a gate timing circuit is used to control the switches.
  • More particularly, the invention includes a packaged semiconductor device, comprising an encapsulant having a top surface and a bottom surface, the encapsulant comprising a thermally resistant material; a die having a first surface and a second surface and being embedded in the encapsulant proximate to the top surface; a plurality of leads engaging the encapsulant proximate the bottom surface; and a die pad embedded in the top surface of the encapsulant. The die pad includes a die attach surface in engagement with the second surface of the die and at least one surface that is exposed by said encapsulant. The die attach surface of the die pad may be in electrical communication with the second surface of the die, which may be a field effect transistor with one or more drain terminals on the second surface. Alternatively, the die may be an integrated circuit. In a particular embodiment, the die is comprised of silicon carbide. The leads are connected to a printed circuit board such that the bottom surface of the encapsulant is proximate the printed circuit board.
  • In another form, the invention includes a method for forming a package for a semiconductor device having a high temperature operation. The method comprises the steps of providing a semiconductor die attached to a die pad and vertically displaced from a plurality of leads; electrically connecting each of said leads to a terminal on said die via bond wires; encapsulating the die, the bond wires, at least a portion of the die pad, and at least a portion of the leads in a thermally resistant material; and attaching the leads to a circuit, which may comprise a printed circuit board, such that the die and the die pad are displaced from the circuit and substantially thermally isolated from the circuit. The die may be a field effect transistor having a drain terminal in electrical communication with the die pad, or, alternatively, the die is an integrated circuit. Further, the die may comprise silicon carbide.
  • In another form, the invention includes a circuit having a thermally isolated semiconductor device. The circuit comprises a first semiconductor die having a first die top surface and a first die bottom surface; a second semiconductor die having a second die top surface and a second die bottom surface, the first die bottom surface being attached to the second die top surface; a thermal resistance layer which could be a die attachment material situated between the first die and the second die; and a die pad having a die attach surface engaging the second die bottom surface. In a particular embodiment, each of the first die and the second die are a field effect transistor wherein: the first die comprises a first die source terminal and a first die gate terminal on the first die top surface and a first die drain terminal on the first die bottom surface; and the second die comprises a second die source terminal and a second die gate terminal on the second die top surface and a second die drain terminal on the second die bottom surface. Further, the thermal resistance layer is electrically conductive such that the first die drain terminal is in electrical communication with the second die source terminal to connect the first die and the second die in series. Even further, the first die gate terminal and the second die gate terminal are in electrical communication with a common gate drive and the second die has a lower threshold voltage than the first die. Alternatively the first die gate terminal and the second die gate terminal are electrically connected to a gate timing circuit for controlling the activation and the deactivation of the first die and the second die. The thermal resistance layer may be an electrically conductive epoxy, a tungsten layer, or another suitable material that is thermally resistant and electrically conductive. The first die may comprise silicon carbide and the second die may comprise silicon. In an alternative embodiment, at least one of the first die and the second die may be an integrated circuit.
  • In yet another form, the invention includes a method for providing a semiconductor power device with current leakage prevention. The method comprises the steps of providing a first field effect transistor (FET) die with a first FET gate terminal and a first FET source terminal on a first FET top surface and a first FET drain terminal on a first FET bottom surface; providing a second FET die with a second FET gate terminal and a second FET source terminal on a second FET top surface and a second FET drain terminal on a second FET bottom surface, wherein the second FET has a lower threshold voltage that the first FET; attaching the first FET die to the second FET die with an electrically conductive thermal resistance layer therebetween such that the first FET drain terminal is in electrical communication with the second FET source terminal; and affixing the second FET die to a die pad. The method may further comprise the step of connecting the first FET gate terminal and the second FET gate terminal to a common gate drive.
  • In still another form, the invention includes a circuit comprising a plurality of semiconductor power devices configured in a stack and connected in series. The circuit may further comprise a thermal resistance layer between at least two of the plurality of semiconductor power devices. One or more of the semiconductor power devices may be field effect transistors and one or more of the semiconductor power devices may comprise silicon carbide.
  • An advantage of the present invention is that the package provides a poor thermal path to the circuit board causing the device to operate at a higher temperature and to radiate heat away from the PCB. A further advantage of the invention is that it provides a high power switch stacked on top of and connected in series with another switch that control s the leakage current of the high power switch. Because the switches are separated by a thermal resistance layer, the high voltage device operates at a higher temperature without affecting the low temperature devices including the second switch and the PCB.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is disclosed with reference to the accompanying drawings, wherein:
  • FIG. 1 is a sectional view of the high temperature operating package of the first embodiment of the present invention;
  • FIG. 2 is a sectional view of the high temperature operating package of the second embodiment; and
  • FIG. 3 is an example circuit diagram of a circuit according to the package of FIG. 2.
  • Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrate several embodiments of the invention but should not be construed as limiting the scope of the invention in any manner.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1, there is shown the high temperature operating package of the present invention. The package 10 includes a semiconductor die 12, a die pad 14, a plurality of leads 16, and an encapsulant 18.
  • As shown in FIG. 1, the die 12 is a semiconductor power device such as a field effect transistor. The invention, however, may be applied to any semiconductor device including an integrated circuit. The die 12 is made of any semiconductor material, however, silicon carbide (SiC) has been shown to have good performance characteristics at high temperatures. In the illustrated configuration, a first surface 20 of the die 12 includes terminals for the gate and the source and a second surface 22 includes one or more terminals for the drain. The second surface 22 is attached to a die attach surface 24 of the die pad 14 such as with an electrically conductive epoxy, solder, or another suitable method that provides electrical communication between the one or more drain terminals of the second surface 22 and the die attach surface 24. Several leads 16 are vertically spaced from the die 12 and the die pad 14, and wire bonds 28 electrically connect each of the leads 16 to one of the gate terminals, the source terminals, or the die pad 12, which is in communication with the drain terminal.
  • The encapsulant 18 has a bottom surface 30 and a top surface 32 and is a material that has both a high electrical and thermal resistance in comparison to the metal components. A thermally resistant material, as used herein, is a material with a substantially higher thermal impedance than certain metals, such as copper. The leads 16 are proximate the bottom surface 30 such that the bottom surface 30 is proximate to the printed circuit board (PCB) when the leads 16 are connected to the PCB. The die pad 14 is situated at the top surface 32 with an exposed surface 26 uncovered by the encapsulant 18. The encapsulant material between the die 12 and the leads 16 and the PCB provides a poor thermal path from the die to the PCB. It should be noted that the bond wires 28 are thin and also provide a poor thermal path between the die 12 and the leads 16.
  • In construction, the leads 16 and the die pad 14 may be provided in a lead frame that is separated after encapsulation. Also, the package 10 may be provided in a leadless configuration wherein the leads 16 are enclosed by the encapsulant 18 with one or more exposed surfaces.
  • In use, the leads 16 provide electrical communication between the PCB and the terminals of the die 12 via the wire bonds 28. The poor thermal path of the encapsulant 18, however, thermally isolates the die 12 and the die pad 14 from the leads 16 and thus from the PCB. Because the heat generated by the operation of the die 12 is not dissipated by the PCB, the die 12 operates at a high temperature. In the case that the die 12 is an SiC device, the temperature may be as high as 200° C. or more. Since the die 12 is thermally isolated from the PCB, the PCB is not damaged by the elevated temperature. Heat is conducted from the die 12 to the die pad 14 and then radiated away from the package 10 via the exposed surface 26.
  • FIGS. 2 and 3 illustrate a second embodiment of the invention comprising a package 100 having a high temperature die 102 stacked on a series die 104 with a thermal resistance layer 106 therebetween. The series die 104 is attached to a die pad 108. In the illustrated configuration, the high temperature die 102 is a field effect transistor, such as a SiC JFET, with a first surface 110 and a second surface 112. The first surface 110 includes one or more source terminals and one or more gate terminals. The second surface 112 includes one or more drain terminals. The series die 104 operates at a lower, more conventional temperature with the heat generated by the operation of the series die 104 being dissipated by the PCB via the die pad 108. The series die 104 is thus a lower temperature operating device, such as a Si JFET, with a top surface 114 and a bottom surface 116. The top surface 114 includes one or more gate terminals and one or more source terminals. The bottom surface 116 includes one or more drain terminals.
  • The high temperature die 102 and the series die 104 are connected in series such that the drain terminals of the high temperature die 102 are in electrical communication with the source terminals of the series die 104 via the thermal resistance layer 106. The thermal resistance layer 106 is thus an electrically conductive and thermally resistant material, such as a thick layer of an electrically conductive epoxy with high thermal resistance or a tungsten layer. The bottom surface 116 is attached to a die attach surface 118 of the die pad 108 such that the drain terminals of the series die 104 are in electrical communication with the die pad 108. The series die 104 also conducts heat to the die pad 108 in order to dissipate the heat generated by the series die 104 to the PCB.
  • One or more bond wires 120 provide electrical communication between the source terminals of the high temperature die 102 and one or more leads (not shown). The bond wire 120 provides a poor thermal path, though the source terminal may be alternatively connected to a device or a lead via a thermal resistance layer. Similarly, one or more bond wires 122 provide electrical communication between the die pad 108 and one or more leads (not shown), thus electrically connecting the drain of the series die 104 to the terminal. The gate terminals of the high temperature die 102 and the series die 104 are in electrical communication with a common gate drive via bond wires 124, which are bonded to one or more leads (not shown). The order of activation of the switches is controlled by the threshold voltages of each device wherein the high temperature die 102 has a higher threshold voltage than the series die 104. Alternatively, the devices may have separate gate drives and a timing circuit controls the activation and deactivation of the switches.
  • The package 100 includes an encapsulant (not shown) and may be configured with external leads or in a molded leadless package configuration.
  • FIG. 3 is a circuit diagram illustrating an example circuit according to the second embodiment of the invention. The circuit is a DC buck converter with a MOSFET or diode 130 as well as an inductor 132 and a capacitor 134 in connection with ground. The power switching is provided by the package 100, wherein the high temperature die 102 includes a source 136, a drain 138, and a gate 140, and the series die 104 includes a source 142, a drain 144, and a gate 146. It should be noted that the package 100 illustrated in FIG. 2 may be used in any switching operation, such as the buck converter described here or an amplifier.
  • In operation, the gate drive increases the voltage on both the gate 146 and the gate 140. Since the series die 104 has the lower threshold voltage, it will be activated before the high temperature die 102. For example, the series die 104 may have a threshold voltage of 2 volts and the high temperature die 102 may have a threshold voltage of 4 volts. Certain applications with larger gates, however, will require a lager difference in threshold voltages. A smaller difference in threshold voltages, such as 0.5 volts may be used in applications requiring fast switching. Once the high temperature device 102 is activated subsequently to the series device 104, the power switch is closed. The power switch is opened when the gate drive lowers the voltage to the gates 140 and 146. The high temperature device 102 deactivates first and opens the switch. The series device 104 deactivates when the gate drive continues to lower the voltage to the gates to thereby prevent cut off any possible leakage current.
  • This configuration is beneficial because SiC devices have been shown to have good switch performance on the high side, though they tend to leak current more readily than is desired. Since the series device 104 is a Si device and it is only switched on just before the high temperature device 102 and is switched of just after the high temperature device 102, the series device 104 prevents the high temperature device 104 from leaking current. Also because the series device 104 is activated before the high voltage device 102 and deactivated after it, the high voltage switching is controlled by the high temperature device 102. Further, the thermal resistance layer 106 thermally isolates the high temperature device 102 from the series device 104 such that the high temperature device 102 does not dissipate heat to the PCB and thus operates at a higher temperature. Therefore the circuit designer may take advantage of the good switching performance provided by silicon carbide without damaging the other components of the circuit with the elevated temperatures.
  • It should be noted that one may also stack field effect transistors electrically connected in series as shown in the above embodiment without the thermal resistance layer 106. The top FET is attached to the bottom FET with an electrically conductive material with a relatively low thermal resistance, such as solder. This configuration allows the circuit to be designed with the benefits described above without electrically isolating one of the devices.
  • In an alternative embodiment, further semiconductor devices may be stacked in addition to the two devices described in the second embodiment. A thermal resistance layer may be included between devices to thermally isolate one device from another. In a further alternative embodiment, the SiC FET (the high temperature device 102), the Si FET (the series device 104), or both are replaced by an integrated circuit (IC). In this embodiment, two or more devices are stacked with a thermal resistance layer therebetween wherein the thermal resistance layer is also not electrically conductive.
  • While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof to adapt to particular situations without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.

Claims (36)

1. A packaged semiconductor device, comprising:
an encapsulant having a top surface and a bottom surface, said encapsulant comprising a thermally resistant material;
a die having a first surface and a second surface and being embedded in said encapsulant proximate to the top surface; and
a plurality of leads engaging said encapsulant proximate the bottom surface.
2. The packaged semiconductor device of claim 1, further comprising a die pad embedded in the top surface of said encapsulant, said die pad having a die attach surface in engagement with the second surface of said die.
3. The packaged semiconductor device of claim 2, said die pad comprising at least one surface that is exposed by said encapsulant.
4. The packaged semiconductor device of claim 2, the die attach surface of said die pad being in electrical communication with the second surface of said die.
5. The packaged semiconductor device of claim 4, said die being a field effect transistor and having one or more drain terminals on the second surface.
6. The packaged semiconductor device of claim 4, one or more of said leads being in electrical communication with the die attach surface of said die pad via a bond wire.
7. The packaged semiconductor device of claim 1, each of said leads being in electrical communication with a terminal on said die via a bond wire.
8. The packaged semiconductor device of claim 1, wherein said die is a field effect transistor.
9. The packaged semiconductor device of claim 1, wherein said die is an integrated circuit.
10. The packaged semiconductor device of claim 1, wherein said die is comprised of silicon carbide.
11. The packaged semiconductor device of claim 1, wherein said leads are connected to a printed circuit board such that the bottom surface of said encapsulant is proximate the printed circuit board.
12. A method of forming a package for a semiconductor device having a high temperature operation, comprising the steps of:
providing a semiconductor die attached to a die pad and vertically displaced from a plurality of leads;
electrically connecting each of said leads to a terminal on said die via bond wires;
encapsulating the die, the bond wires, at least a portion of the die pad, and at least a portion of the leads in a thermally resistant material; and
attaching the leads to a circuit such that the die and the die pad are displaced from the circuit and substantially thermally isolated from the circuit.
13. The method of claim 12, the circuit comprising a printed circuit board.
14. The method of claim 12, the die being a field effect transistor having a drain terminal in electrical communication with the die pad.
15. The method of claim 12, the die being an integrated circuit.
16. The method of claim 12, the die comprising silicon carbide.
17. A circuit having a thermally isolated semiconductor device, the circuit comprising:
a first semiconductor die having a first die top surface and a first die bottom surface;
a second semiconductor die having a second die top surface and a second die bottom surface, the first die bottom surface being attached to the second die top surface;
a thermal resistance layer situated between said first die and said second die; and
a die pad having a die attach surface engaging the second die bottom surface.
18. The circuit of claim 17, at least one of said first die and said second die being an integrated circuit.
19. The circuit of claim 17, each of said first die and said second die being a field effect transistor wherein:
said first die comprises a first die source terminal and a first die gate terminal on the first die top surface and a first die drain terminal on the first die bottom surface; and
said second die comprising a second die source terminal and a second die gate terminal on the second die top surface and a second die drain terminal on the second die bottom surface.
20. The circuit of claim 19, the thermal resistance layer being electrically conductive such that the first die drain terminal is in electrical communication with the second die source terminal to connect said first die and said second die in series.
21. The circuit of claim 20, the first die gate terminal and the second die gate terminal being in electrical communication with a common gate drive.
22. The circuit of claim 21, said second die having a lower threshold voltage than said first die.
23. The circuit of claim 21, the first die source terminal being in electrical communication with a lead and the second die drain terminal being in electrical communication with said die pad.
24. The circuit of claim 20, the first die gate terminal and the second die gate terminal being electrically connected to a gate timing circuit for controlling the activation and the deactivation of said first die and said second die.
25. The circuit of claim 20, the thermal resistance layer being an electrically conductive epoxy.
26. The circuit of claim 20, the thermal resistance layer being a tungsten layer.
27. The circuit of claim 17, said first die comprising silicon carbide.
28. The circuit of claim 27, said second die comprising silicon.
29. A method of providing a semiconductor power device with current leakage prevention, comprising the steps of:
providing a first field effect transistor (FET) die with a first FET gate terminal and a first FET source terminal on a first FET top surface and a first FET drain terminal on a first FET bottom surface;
providing a second FET die with a second FET gate terminal and a second FET source terminal on a second FET top surface and a second FET drain terminal on a second FET bottom surface, wherein the second FET has a lower threshold voltage that the first FET;
attaching the first FET die to the second FET die with an electrically conductive thermal resistance layer therebetween such that the first FET drain terminal is in electrical communication with the second FET source terminal; and
affixing the second FET die to a die pad.
30. The method of claim 29, further comprising the step of connecting the first FET gate terminal and the second FET gate terminal to a common gate drive.
31. The method of claim 29, the first FET die comprising silicon carbide and the second FET die comprising silicon.
32. The method of claim 29, the thermal resistance layer comprising a material selected from the group consisting essentially of an electrically conductive epoxy and a tungsten layer.
33. A circuit comprising a plurality of semiconductor power devices configured in a stack and connected in series.
34. The circuit of claim 33, further comprising a thermal resistance layer between at least two of said plurality of semiconductor power devices.
35. The circuit of claim 33, wherein one or more of said semiconductor power devices are field effect transistors.
36. The circuit of claim 33, wherein one or more of said semiconductor power devices comprise silicon carbide.
US11/512,860 2006-08-30 2006-08-30 High temperature operating package and circuit design Abandoned US20080054496A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/512,860 US20080054496A1 (en) 2006-08-30 2006-08-30 High temperature operating package and circuit design
US12/419,696 US8030764B2 (en) 2006-08-30 2009-04-07 High temperature operating package and circuit design
US13/221,179 US8803239B2 (en) 2006-08-30 2011-08-30 High temperature operating package and circuit design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/512,860 US20080054496A1 (en) 2006-08-30 2006-08-30 High temperature operating package and circuit design

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/419,696 Continuation US8030764B2 (en) 2006-08-30 2009-04-07 High temperature operating package and circuit design

Publications (1)

Publication Number Publication Date
US20080054496A1 true US20080054496A1 (en) 2008-03-06

Family

ID=39150379

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/512,860 Abandoned US20080054496A1 (en) 2006-08-30 2006-08-30 High temperature operating package and circuit design
US12/419,696 Active 2026-09-15 US8030764B2 (en) 2006-08-30 2009-04-07 High temperature operating package and circuit design
US13/221,179 Active 2027-08-23 US8803239B2 (en) 2006-08-30 2011-08-30 High temperature operating package and circuit design

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/419,696 Active 2026-09-15 US8030764B2 (en) 2006-08-30 2009-04-07 High temperature operating package and circuit design
US13/221,179 Active 2027-08-23 US8803239B2 (en) 2006-08-30 2011-08-30 High temperature operating package and circuit design

Country Status (1)

Country Link
US (3) US20080054496A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054496A1 (en) * 2006-08-30 2008-03-06 Neill Thornton High temperature operating package and circuit design
US8971968B2 (en) * 2013-01-18 2015-03-03 Dell Products, Lp System and method for context aware usability management of human machine interfaces

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098860A1 (en) * 2003-11-10 2005-05-12 Siliconware Precision Industries Co., Ltd. Lead frame and semiconductor package with the same
US20050104168A1 (en) * 2003-11-13 2005-05-19 Choi Yoon-Hwa Molded leadless package having improved reliability and high thermal transferability, and sawing type molded leadless package and method of manufacturing the same
US20060038282A1 (en) * 2004-08-23 2006-02-23 Texas Instruments Incorporated Heatsink apparatus and thermally-conductive intermediate material for dissipating heat in semiconductor packages
US20060071351A1 (en) * 2004-09-28 2006-04-06 Texas Instruments Incorporated Mold compound interlocking feature to improve semiconductor package strength
US20060199302A1 (en) * 2005-03-04 2006-09-07 Fujio Ito Semiconductor device and a manufacturing method of the same
US20060244117A1 (en) * 2005-04-29 2006-11-02 Stats Chippac, Ltd. Semiconductor package including second substrate and having exposed substrate surfaces on upper and lower sides
US20060249828A1 (en) * 2005-05-04 2006-11-09 Stats Chippac Ltd Stacked Package Semiconductor Module having Packages Stacked in a Cavity in the Module Substrate
US20060255436A1 (en) * 2005-05-11 2006-11-16 Isao Ozawa Semiconductor device with sealed semiconductor chip
US20070040250A1 (en) * 1999-01-28 2007-02-22 Ryoichi Kajiwara Semiconductor device
US20080191329A1 (en) * 2007-02-13 2008-08-14 Advanced Semiconductor Engineering, Inc. Semiconductor package
US20080194062A1 (en) * 1999-11-10 2008-08-14 Toshiyasu Kawai Adhesive film for semiconductor, lead frame and semiconductor device using the same, and method of producing semiconductor device
US20080211069A1 (en) * 2003-08-05 2008-09-04 Kenji Amano Semiconductor package configuration with improved lead portion arrangement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447849A3 (en) * 1997-03-10 2005-07-20 Seiko Epson Corporation Semiconductor device and circuit board having the same mounted thereon
US5929521A (en) * 1997-03-26 1999-07-27 Micron Technology, Inc. Projected contact structure for bumped semiconductor device and resulting articles and assemblies
JP2004327951A (en) * 2003-03-06 2004-11-18 Shinko Electric Ind Co Ltd Semiconductor device
US7034345B2 (en) * 2003-03-27 2006-04-25 The Boeing Company High-power, integrated AC switch module with distributed array of hybrid devices
US7148564B2 (en) * 2004-02-17 2006-12-12 Delphi Technologies, Inc. Dual-sided substrate integrated circuit package including a leadframe having leads with increased thickness
US7422930B2 (en) * 2004-03-02 2008-09-09 Infineon Technologies Ag Integrated circuit with re-route layer and stacked die assembly
JP2005302951A (en) * 2004-04-09 2005-10-27 Toshiba Corp Semiconductor device package for power
US7482686B2 (en) * 2004-06-21 2009-01-27 Braodcom Corporation Multipiece apparatus for thermal and electromagnetic interference (EMI) shielding enhancement in die-up array packages and method of making the same
WO2006019911A1 (en) * 2004-07-26 2006-02-23 Sun Microsystems, Inc. Multi-chip module and single-chip module for chips and proximity connectors
WO2006068643A1 (en) * 2004-12-20 2006-06-29 Semiconductor Components Industries, L.L.C. Semiconductor package structure having enhanced thermal dissipation characteristics
US7573720B1 (en) * 2005-06-15 2009-08-11 Sun Microsystems, Inc. Active socket for facilitating proximity communication
WO2007016649A2 (en) * 2005-08-02 2007-02-08 Satcon Technology Corporation Double-sided package for power module
US7622796B2 (en) * 2005-09-13 2009-11-24 Alpha And Omega Semiconductor Limited Semiconductor package having a bridged plate interconnection
US7554188B2 (en) * 2006-04-13 2009-06-30 International Rectifier Corporation Low inductance bond-wireless co-package for high power density devices, especially for IGBTs and diodes
US20080017966A1 (en) * 2006-05-02 2008-01-24 Advanced Analogic Technologies, Inc. Pillar Bump Package Technology
JP2007305962A (en) * 2006-05-12 2007-11-22 Honda Motor Co Ltd Power semiconductor module
US20080054496A1 (en) * 2006-08-30 2008-03-06 Neill Thornton High temperature operating package and circuit design

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070040250A1 (en) * 1999-01-28 2007-02-22 Ryoichi Kajiwara Semiconductor device
US20080169537A1 (en) * 1999-01-28 2008-07-17 Ryoichi Kajiwara Semiconductor device
US20080194062A1 (en) * 1999-11-10 2008-08-14 Toshiyasu Kawai Adhesive film for semiconductor, lead frame and semiconductor device using the same, and method of producing semiconductor device
US20080211069A1 (en) * 2003-08-05 2008-09-04 Kenji Amano Semiconductor package configuration with improved lead portion arrangement
US20050098860A1 (en) * 2003-11-10 2005-05-12 Siliconware Precision Industries Co., Ltd. Lead frame and semiconductor package with the same
US20050104168A1 (en) * 2003-11-13 2005-05-19 Choi Yoon-Hwa Molded leadless package having improved reliability and high thermal transferability, and sawing type molded leadless package and method of manufacturing the same
US20060038282A1 (en) * 2004-08-23 2006-02-23 Texas Instruments Incorporated Heatsink apparatus and thermally-conductive intermediate material for dissipating heat in semiconductor packages
US20060071351A1 (en) * 2004-09-28 2006-04-06 Texas Instruments Incorporated Mold compound interlocking feature to improve semiconductor package strength
US20060199302A1 (en) * 2005-03-04 2006-09-07 Fujio Ito Semiconductor device and a manufacturing method of the same
US20060244117A1 (en) * 2005-04-29 2006-11-02 Stats Chippac, Ltd. Semiconductor package including second substrate and having exposed substrate surfaces on upper and lower sides
US20060249828A1 (en) * 2005-05-04 2006-11-09 Stats Chippac Ltd Stacked Package Semiconductor Module having Packages Stacked in a Cavity in the Module Substrate
US20060255436A1 (en) * 2005-05-11 2006-11-16 Isao Ozawa Semiconductor device with sealed semiconductor chip
US20080191329A1 (en) * 2007-02-13 2008-08-14 Advanced Semiconductor Engineering, Inc. Semiconductor package

Also Published As

Publication number Publication date
US20090189678A1 (en) 2009-07-30
US20120032712A1 (en) 2012-02-09
US8030764B2 (en) 2011-10-04
US8803239B2 (en) 2014-08-12

Similar Documents

Publication Publication Date Title
US9837393B2 (en) Semiconductor package with integrated semiconductor devices and passive component
TWI384622B (en) Structure and method for self protection of power device
US11145579B1 (en) Thermally enhanced electronic packages for GaN power integrated circuits
US20230378034A1 (en) Power stage package including flexible circuit and stacked die
US20190237416A1 (en) Power device package
US20120181681A1 (en) Stacked Half-Bridge Package with a Current Carrying Layer
US9536803B2 (en) Integrated power module with improved isolation and thermal conductivity
US9142620B2 (en) Power device packaging having backmetals couple the plurality of bond pads to the die backside
EP3474322A1 (en) Semiconductor device and method of manufacture
US8803239B2 (en) High temperature operating package and circuit design
US20160172335A1 (en) Semiconductor device
EP3297022B1 (en) Top side cooling for gan power device
CN112234032B (en) Semiconductor package, semiconductor assembly and method for manufacturing semiconductor package
US20220068754A1 (en) Intelligent power module packaging structure
US11227819B2 (en) Cascode semiconductor device and method of manufacture
Lee et al. A new package of high-voltage cascode gallium nitride device for high-frequency applications
US11715720B2 (en) Integrated half-bridge power converter
US11942401B2 (en) Half-bridge semiconductor device
US11984387B2 (en) Plurality of stacked transistors attached by solder balls

Legal Events

Date Code Title Description
AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THORNTON, NEILL;LANG, DENNIS;REEL/FRAME:021549/0923;SIGNING DATES FROM 20060805 TO 20060811

AS Assignment

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, MAINE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CITY AND STATE OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 021549 FRAME 0923. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNEE.;ASSIGNORS:THORNTON, NEILL;LANG, DENNIS;REEL/FRAME:021569/0559;SIGNING DATES FROM 20060805 TO 20060811

Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, MAINE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CITY AND STATE OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 021549 FRAME 0923;ASSIGNORS:THORNTON, NEILL;LANG, DENNIS;REEL/FRAME:021569/0559;SIGNING DATES FROM 20060805 TO 20060811

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:057694/0374

Effective date: 20210722