US20080041631A1 - Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells - Google Patents

Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells Download PDF

Info

Publication number
US20080041631A1
US20080041631A1 US11/761,270 US76127007A US2008041631A1 US 20080041631 A1 US20080041631 A1 US 20080041631A1 US 76127007 A US76127007 A US 76127007A US 2008041631 A1 US2008041631 A1 US 2008041631A1
Authority
US
United States
Prior art keywords
drill
drilling
bit
cement
drill string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/761,270
Inventor
William Vail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weatherford/Lamb Inc
Original Assignee
Weatherford/Lamb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/323,152 priority Critical patent/US5551521A/en
Priority to US08/708,396 priority patent/US5894897A/en
Priority to US09/295,808 priority patent/US6263987B1/en
Priority to US09/487,197 priority patent/US6397946B1/en
Priority to US31365401P priority
Priority to US35345702P priority
Priority to US36763802P priority
Priority to US38496402P priority
Priority to US10/162,302 priority patent/US6868906B1/en
Priority to US10/223,025 priority patent/US6857486B2/en
Priority to US10/678,731 priority patent/US7048050B2/en
Priority to US11/292,331 priority patent/US7228901B2/en
Application filed by Weatherford/Lamb Inc filed Critical Weatherford/Lamb Inc
Priority to US11/761,270 priority patent/US20080041631A1/en
Assigned to SMART DRILLING AND COMPLETION, INC. reassignment SMART DRILLING AND COMPLETION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VAIL, WILLIAM BANNING, III
Assigned to WEATHERFORD/LAMB, INC. reassignment WEATHERFORD/LAMB, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMART DRILLING AND COMPLETION, INC.
Publication of US20080041631A1 publication Critical patent/US20080041631A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives used in the borehole
    • E21B4/04Electric drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods ; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • E21B17/206Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables with conductors, e.g. electrical, optical
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/10Valves arrangements in drilling fluid circulation systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/124Units with longitudinally-spaced plugs for isolating the intermediate space
    • E21B33/1243Units with longitudinally-spaced plugs for isolating the intermediate space with inflatable sleeves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/126Packers; Plugs with fluid-pressure-operated elastic cup or skirt
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices, or the like for cementing casings into boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives used in the borehole
    • E21B4/18Anchoring or feeding in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B2023/008Self propelling system or apparatus, e.g. for moving tools within the horizontal portion of a borehole

Abstract

The steel drill string attached to a drilling bit during typical rotary drilling operations used to drill oil and gas wells is used for a second purpose as the casing that is cemented in place during typical oil and gas well completions. Methods of operation are described that provide for the efficient installation a cemented steel cased well wherein the drill string and the drill bit are cemented into place during one single drilling pass down into the earth. The normal mud passages or watercourses present in the rotary drill bit are used for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single pass into the earth. A one-way cement valve is installed near the drill bit of the drill string that allows the cement to set up efficiently under ambiently hydrostatic conditions while the drill string and drill bit are cemented into place during one single drilling pass into the earth.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/292,331, filed on Dec. 1, 2005, now U.S. Pat. No. 7,228,901, which is a continuation of U.S. patent application Ser. No. 10/678,731, filed on Oct. 2, 2003, now U.S. Pat. No. 7,048,050, which is a continuation of U.S. patent application Ser. No. 10/162,302, filed on Jun. 4, 2002, now U.S. Pat. No. 6,868,906, which applications and patent are herein incorporated by reference in their entirety. U.S. patent application Ser. No. 10/162,302 is a continuation-in-part of U.S. patent application Ser. No. 09/487,197 filed on Jan. 19, 2000, now U.S. Pat. No. 6,397,946, which is herein incorporated by reference in its entirety. U.S. Pat. No. 6,397,946 is a continuation-in-part of U.S. patent application Ser. No. 09/295,808 filed on Apr. 20, 1999, now U.S. Pat. No. 6,263,987, which is herein incorporated by reference in its entirety. U.S. Pat. No. 6,263,987 is a continuation-in-part of U.S. patent application Ser. No. 08/708,396 filed on Sep. 3, 1996, now U.S. Pat. No. 5,894,897, which is incorporated herein by reference in its entirety. U.S. Pat. No. 5,894,897 is a continuation-in-part of U.S. patent application Ser. No. 08/323,152 filed on Oct. 14, 1994, now U.S. Pat. No. 5,551,521, which is herein incorporated by reference in its entirety.
  • This application further claims benefit of U.S. Provisional Patent Application Ser. No. 60/313,654 filed on Aug. 19, 2001, U.S. Provisional Patent Application Ser. No. 60/353,457 filed on Jan. 31, 2002, U.S. Provisional Patent Application Ser. No. 60/367,638 filed on Mar. 26, 2002, and U.S. Provisional Patent Application Ser. No. 60/384,964 filed on Jun. 3, 2002. All of the above United States Provisional patent applications are herein incorporated by reference in their entirety.
  • Portions of this application were disclosed in U.S. Disclosure Document No. 362582 filed on Sep. 30, 1994, which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • The field of invention relates to apparatus that uses the steel drill string attached to a drilling bit during drilling operations used to drill oil and gas wells for a second purpose as the casing that is cemented in place during typical oil and gas well completions. The field of invention further relates to methods of operation of said apparatus that provides for the efficient installation a cemented steel cased well during one single pass down into the earth of the steel drill string. The field of invention further relates to methods of operation of the apparatus that uses the typical mud passages already present in a typical drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, that allow mud to circulate during typical drilling operations for the second independent, and the distinctly separate, purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single drilling pass into the earth. The field of invention further relates to apparatus and methods of operation that provides the pumping of cement down the drill string, through the mud passages in the drill bit, and into the annulus between the formation and the drill string for the purpose of cementing the drill string and the drill bit into place during one single drilling pass into the formation. The field of invention further relates to a one-way cement valve and related devices installed near the drill bit of the drill string that allows the cement to set up efficiently while the drill string and drill bit are cemented into place during one single drilling pass into the formation.
  • 2. Description of the Prior Art
  • From an historical perspective, completing oil and gas wells using rotary drilling techniques has in recent times comprised the following typical steps. With a pile driver or rotary rig, install any necessary conductor pipe on the surface for attachment of the blowout preventer and for mechanical support at the wellhead. Install and cement into place any surface casing necessary to prevent washouts and cave-ins near the surface, and to prevent the contamination of freshwater sands as directed by state and federal regulations. Choose the dimensions of the drill bit to result in the desired sized production well. Begin rotary drilling of the production well with a first drill bit. Simultaneously circulate drilling mud into the well while drilling. Drilling mud is circulated downhole to carry rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. After the first bit wears out, pull the drill string out, change bits, lower the drill string into the well and continue drilling. It should be noted here that each “trip” of the drill bit typically requires many hours of rig time to accomplish the disassembly and reassembly of the drill string, pipe segment by pipe segment.
  • Drill the production well using a succession of rotary drill bits attached to the drill string until the hole is drilled to its final depth. After the final depth is reached, pull out the drill string and its attached drill bit. Assemble and lower the production casing into the well while back filling each section of casing with mud as it enters the well to overcome the buoyancy effects of the air filled casing (caused by the presence of the float collar valve), to help avoid sticking problems with the casing, and to prevent the possible collapse of the casing due to accumulated build-up of hydrostatic pressure.
  • To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination problems comprised of the following individual steps. Introduce the Bottom Wiper Plug into the interior of the steel casing assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement. Introduce the Top Wiper Plug into the interior of the steel casing assembled into the well and pump down with water under pump pressure thereby forcing the cement through the float collar valve and any other one-way valves present. Allow the cement to cure.
  • SUMMARY OF THE INVENTION
  • Apparatus and methods of operation of that apparatus are disclosed that allow for cementation of a drill string with attached drill bit into place during one single drilling pass into a geological formation. The process of drilling the well and installing the casing becomes one single process that saves installation time and reduces costs during oil and gas well completion procedures. Apparatus and methods of operation of the apparatus are disclosed that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. This is a crucial step that allows a “Typical Drilling Process” involving some 14 steps to be compressed into the “New Drilling Process” that involves only 7 separate steps as described in the Description of the Preferred Embodiments below. The New Drilling Process is now possible because of “Several Recent Changes in the Industry” also described in the Description of the Preferred Embodiments below. In addition, the New Drilling Process also requires new apparatus to properly allow the cement to cure under ambient hydrostatic conditions. That new apparatus includes a Latching Subassembly, a Latching Float Collar Valve Assembly, the Bottom Wiper Plug, and the Top Wiper Plug. Suitable methods of operation are disclosed for the use of the new apparatus.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a section view of a drill string in the process of being cemented in place during one drilling pass into formation with a preferred embodiment of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Apparatus and methods of operation of that apparatus are disclosed herein in the preferred embodiments of the invention that allow for cementation of a drill string with attached drill bit into place during one single drilling pass into a geological formation. The drill bit is the cutting or boring element used in drilling oil and gas wells. The method of drilling the well and installing the casing becomes one single process that saves installation time and reduces costs during oil and gas well completion procedures as documented in the following description of the preferred embodiments of the invention. Apparatus and methods of operation of the apparatus are disclosed herein that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place.
  • FIG. 1 shows a section view of a drill string in the process of being cemented in place during one drilling pass into formation. Often, the drill string is the term loosely applied to both drill pipe and drill collars. Drill collars provide weight on the bit to keep it in firm contact with the bottom of the hole. Drill collars are primarily used to supply weight to the bit for drilling and to maintain weight to keep the drill string from bending or buckling. They also prevent doglegs by supporting and stabilizing the bit. A borehole 2 is drilled though the earth including geological formation 4. The borehole is the wellbore, or the hole made by drilling or boring. Drilling is boring a hole in the earth, usually to find and remove subsurface formation fluids such as oil and gas. The borehole 2 is drilled with a milled tooth rotary drill bit 6 having milled steel roller cones 8, 10, and 12 (not shown for simplicity). A standard water passage 14 is shown through the rotary cone drill bit. This rotary bit could equally be a tungsten carbide insert roller cone bit having jets for waterpassages, the principle of operation and the related apparatus being the same for either case for the preferred embodiment herein.
  • Where formations are relatively soft, a jet deflection bit may be employed in directional drilling to deviate the hole. Directional drilling is the intentional deviation of a wellbore from the vertical. Controlled directional drilling makes it possible to reach subsurface areas laterally remote from the point where the bit enters the earth. For a jet deflection bit, a conventional roller cone bit is modified by equipping it with one oversize nozzle and closing off or reducing others, or by replacing a roller cone with a large nozzle. The drill pipe and special bit are lowered into the hole, and the large jet is pointed so that, when pump pressure is applied, the jet washes out the side of the hole in a specific direction. The large nozzle erodes away one side of the hole so that the hole is deflected off vertical. The large amount of mud emitted from the enlarged jet washes away the formation in front of the bit, and the bit follows the path of least resistance. The path of the wellbore is the trajectory.
  • A basic requirement in drilling a directional well is some means of changing the course of the hole. Generally, a driller either uses a specially-designed deflection tool or modifies the bottomhole assembly he is using to drill ahead. A bottomhole assembly is a combination of drill collars, stabilizers, and associated equipment made up just above the bit. Ideally, altering the bottomhole assembly in a particular way enables the driller to control the amount and direction of bending and thereby to increase, decrease, or maintain drift angle as desired.
  • Deflection tools cause the bit to drill in a preferred direction because of the way the tool is designed or made up in the drill string. A stabilizer may be used to change the deviation angle in a well by controlling the location of the contact point between the hole and drill collars. The stabilizer is a tool placed near the bit, and often above it, in the drilling assembly. Conversely, stabilizers are used to maintain correct hole angle. To maintain hole angle, the driller may use a combination of large, heavy drill collars and stabilizers to minimize or eliminate bending. Any increase in stabilization of the bottomhole assembly increases the drift diameter of the hole being drilled. Stabilizers must be adequately supported by the wall of the hole if they are to effectively stabilize the bit and centralize the drill collars.
  • The threads 16 on rotary drill bit 6 are screwed into the Latching Subassembly 18. The Latching Subassembly 18 is also called the Latching Sub for simplicity herein. The Latching Sub 18 is a relatively thick-walled steel pipe having some functions similar to a standard drill collar.
  • The Latching Float Collar Valve Assembly 20 is pumped downhole with drilling mud after the depth of the well is reached. The Latching Float Collar Valve Assembly 20 is pumped downhole with mud pressure pushing against the Upper Seal 22 of the Latching Float Collar Valve Assembly 20. The Latching Float Collar Valve Assembly 20 latches into place into Latch Recession 24. The Latch 26 of the Latching Float Collar Valve Assembly 20 is shown latched into place with Latching Spring 28 pushing against Latching Mandrel 30.
  • The Float 32 of the Latching Float Collar Valve Assembly 20 seats against the Float Seating Surface 34 under the force from Float Collar Spring 36 that makes a one-way cement valve. However, the pressure applied to the mud or cement from the surface may force open the Float to allow mud or cement to be forced into the annulus generally designated as 38 in FIG. 1. This one-way cement valve is a particular example of “a one-way cement valve means installed near the drill bit” which is a term defined herein. The one-way cement valve means may be installed at any distance from the drill bit but is preferentially installed “near” the drill bit.
  • FIG. 1 corresponds to the situation where cement is in the process of being forced from the surface through the Latching Float Collar Valve Assembly 20. In fact, the top level of cement in the well is designated as element 40. Below 40, cement fills the annulus of the borehole 2. Above 40, mud fills the annulus of the borehole 2. For example, cement is present at position 42 and drilling mud is present at position 44 in FIG. 1.
  • Relatively thin-wall casing, or drill pipe, designated as element 46 in FIG. 1, is attached to the Latching Sub 18. The bottom male threads of the drill pipe 48 are screwed into the female threads 50 of the Latching Sub 18.
  • The drilling mud was wiped off the walls of the drill pipe 48 in the well with Bottom Wiper Plug 52. The Bottom Wiper Plug 52 is fabricated from rubber in the shape shown. Portions 54 and 56 of the Upper Seal of the Bottom Wiper Plug 52 are shown in a ruptured condition in FIG. 1. Initially, they sealed the upper portion of the Bottom Wiper Plug 52. Under pressure from cement, the Bottom Wiper Plug 52 is pumped down into the well until the Lower Lobe 58 of the Bottom Wiper Plug 52 latches into place into Latching Sub Recession 60 in the Latching Sub 18. After the Bottom Wiper Plug 52 latches into place, the pressure of the cement ruptures the Upper Seal of the Bottom Wiper Plug 52. A Bottom Wiper Plug Lobe 62 is shown in FIG. 1. Such lobes provide an efficient means to wipe the mud off the walls of the drill pipe 48 while the Bottom Wiper Plug 52 is pumped downhole with cement.
  • Top Wiper Plug 64 is being pumped downhole by water 66 under pressure in the drill pipe. As the Top Wiper Plug 64 is pumped down under water pressure, the cement remaining in region 68 is forced downward through the Bottom Wiper Plug 52, through the Latching Float Collar Valve Assembly 20, through the waterpassages of the drill bit and into the annulus in the well. A Top Wiper Plug Lobe 70 is shown in FIG. 1. Such lobes provide an efficient means to wipe the cement off the walls of the drill pipe while the Top Wiper Plug 64 is pumped downhole with water.
  • After the Bottom Surface 72 of the Top Wiper Plug 64 is forced into the Top Surface 74 of the Bottom Wiper Plug 52, almost the entire “cement charge” has been forced into the annulus between the drill pipe and the hole. As pressure is reduced on the water, the Float of the Latching Float Latching Float Collar Valve Assembly 20 seals against the Float Seating Surface. As the water pressure is reduced on the inside of the drill pipe, then the cement in the annulus between the drill pipe and the hole can cure under ambient hydrostatic conditions. This procedure herein provides an example of the proper operation of a “one-way cement valve means”.
  • Therefore, the preferred embodiment in FIG. 1 provides apparatus that uses the steel drill string attached to a drilling bit during drilling operations used to drill oil and gas wells for a second purpose as the casing that is cemented in place during typical oil and gas well completions.
  • The preferred embodiment in FIG. 1 provides apparatus and methods of operation of said apparatus that results in the efficient installation of a cemented steel cased well during one single pass down into the earth of the steel drill string thereby making a steel cased borehole or cased well.
  • The steps described herein in relation to the preferred embodiment in FIG. 1 provides a method of operation that uses the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, that allow mud to circulate during typical drilling operations for the second independent, and the distinctly separate, purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single pass into the earth.
  • The preferred embodiment of the invention further provides apparatus and methods of operation that result in the pumping of cement down the drill string, through the mud passages in the drill bit, and into the annulus between the formation and the drill string for the purpose of cementing the drill string and the drill bit into place during one single drilling pass into the formation.
  • The apparatus described in the preferred embodiment in FIG. 1 also provide a one-way cement valve and related devices installed near the drill bit of the drill string that allows the cement to set up efficiently while the drill string and drill bit are cemented into place during one single drilling pass into the formation.
  • Methods of operation of apparatus disclosed in FIG. 1 have been disclosed that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. This is a crucial step that allows a “Typical Drilling Process” involving some 14 steps to be compressed into the “New Drilling Process” that involves only 7 separate steps as described in detail below. The New Drilling Process is now possible because of “Several Recent Changes in the Industry” also described in detail below.
  • Typical procedures used in the oil and gas industries to drill and complete wells are well documented. For example, such procedures are documented in the entire “Rotary Drilling Series” published by the Petroleum Extension Service of the University of Texas at Austin, Austin, Tex. that is included herein by reference in its entirety comprised of the following: Unit I—“The Rig and Its Maintenance” (12 Lessons); Unit II—“Normal Drilling Operations” (5 Lessons); Unit III—Nonroutine Rig Operations (4 Lessons); Unit IV—Man Management and Rig Management (1 Lesson); and Unit V—Offshore Technology (9 Lessons). All of the individual Glossaries of all of the above Lessons are explicitly included in the specification herein and any and all definitions in those Glossaries shall be considered explicitly referenced herein.
  • Additional procedures used in the oil and gas industries to drill and complete wells are well documented in the series entitled “Lessons in Well Servicing and Workover” published by the Petroleum Extension Service of the University of Texas at Austin, Austin, Tex. that is included herein by reference in its entirety comprised of all 12 Lessons. All of the individual Glossaries of all of the above Lessons are explicitly included in the specification herein and any and all definitions in those Glossaries shall be considered explicitly referenced herein.
  • With reference to typical practices in the oil and gas industries, a typical drilling process may therefore be described in the following.
  • Typical Drilling Process
  • From an historical perspective, completing oil and gas wells using rotary drilling techniques has in recent times comprised the following typical steps:
  • Step 1
  • With a pile driver or rotary rig, install any necessary conductor pipe on the surface for attachment of the blowout preventer and for mechanical support at the wellhead.
  • Step 2
  • Install and cement into place any surface casing necessary to prevent washouts and cave-ins near the surface, and to prevent the contamination of freshwater sands as directed by state and federal regulations.
  • Step 3
  • Choose the dimensions of the drill bit to result in the desired sized production well. Begin rotary drilling of the production well with a first drill bit. Simultaneously circulate drilling mud into the well while drilling. Drilling mud is circulated downhole to carry rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. After the first bit wears out, pull the drill string out, change bits, lower the drill string into the well and continue drilling. It should be noted here that each “trip” of the drill bit typically requires many hours of rig time to accomplish the disassembly and reassembly of the drill string, pipe segment by pipe segment.
  • Step 4
  • Drill the production well using a succession of rotary drill bits attached to the drill string until the hole is drilled to its final depth.
  • Step 5
  • After the final depth is reached, pull out the drill string and its attached drill bit.
  • Step 6
  • Perform open-hole logging of the geological formations to determine the amount of oil and gas present. This typically involves measurements of the porosity of the rock, the electrical resistivity of the water present, the electrical resistivity of the rock, certain neutron measurements from within the open-hole, and the use of Archie's Equations. If no oil and gas is present from the analysis of such open-hole logs, an option can be chosen to cement the well shut. If commercial amounts of oil and gas are present, continue the following steps.
  • Step 7
  • Typically reassemble drill bit and drill string into the well to clean the well after open-hole logging.
  • Step 8
  • Pull out the drill string and its attached drill bit.
  • Step 9
  • Attach the casing shoe into the bottom male pipe threads of the first length of casing to be installed into the well. This casing shoe may or may not have a one-way valve (“casing shoe valve”) installed in its interior to prevent fluids from back-flowing from the well into the casing string.
  • Step 10
  • Typically install the float collar onto the top female threads of the first length of casing to be installed into the well which has a one-way valve (“float collar valve”) that allows the mud and cement to pass only one way down into the hole thereby preventing any fluids from back-flowing from the well into the casing string. Therefore, a typical installation has a casing shoe attached to the bottom and the float collar valve attached to the top portion of the first length of casing to be lowered into the well. Please refer to pages 28-31 of the book entitled “Casing and Cementing” Unit II Lesson 4, Second Edition, of the Rotary Drilling Series, Petroleum Extension Service, The University of Texas at Austin, Tex., 1982 (hereinafter defined as “Ref. 1”). All of the individual definitions of words and phrases in the Glossary of Ref. 1 are explicitly included herein in their entirety.
  • Step 11
  • Assemble and lower the production casing into the well while back filling each section of casing with mud as it enters the well to overcome the buoyancy effects of the air filled casing (caused by the presence of the float collar valve), to help avoid sticking problems with the casing, and to prevent the possible collapse of the casing due to accumulated build-up of hydrostatic pressure.
  • Step 12
  • To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination problems comprised of the following individual steps:
      • A. Introduce the Bottom Wiper Plug into the interior of the steel casing assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement (Ref. 1, pages 28-31).
      • B. Introduce the Top Wiper Plug into the interior of the steel casing assembled into the well and pump down with water under pump pressure thereby forcing the cement through the float collar valve and any other one-way valves present (Ref. 1, pages 28-31).
      • C. After the Bottom Wiper Plug and the Top Wiper Plug have seated in the float collar, release the pump pressure on the water column in the casing that results in the closing of the float collar valve which in turn prevents cement from backing up into the interior of the casing. The resulting interior pressure release on the inside of the casing upon closure of the float collar valve prevents distortions of the casing that might prevent a good cement seal (Ref. 1, page 30). In such circumstances, “the cement is cured under ambient hydrostatic conditions”.
      • Step 13
  • Allow the cement to cure.
  • Step 14
  • Follow normal “final completion operations” that include installing the tubing with packers and perforating the casing near the producing zones. For a description of such normal final completion operations, please refer to the book entitled “Well Completion Methods”, Well Servicing and Workover, Lesson 4, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Tex., 1971 (hereinafter defined as “Ref. 2”). All of the individual definitions of words and phrases in the Glossary of Ref. 2 are explicitly included herein in their entirety. Other methods of completing the well are described therein that shall, for the purposes of this application herein, also be called “final completion operations”.
  • Several Recent Changes in the Industry
  • Several recent concurrent changes in the industry have made it possible to reduce the number of steps defined above. These changes include the following:
      • a. Until recently, drill bits typically wore out during drilling operations before the desired depth was reached by the production well. However, certain drill bits have recently been able to drill a hole without having to be changed. For example, please refer to the book entitled “The Bit”, Unit I, Lesson 2, Third Edition, of the Rotary Drilling Series, The University of Texas at Austin, Tex., 1981 (hereinafter defined as “Ref. 3”). All of the individual definitions of words and phrases in the Glossary of Ref. 3 are explicitly included herein in their entirety. On page 1 of Ref. 3 it states: “For example, often only one bit is needed to make a hole in which the casing will be set.” On page 12 of Ref. 3 it states in relation to tungsten carbide insert roller cone bits: “Bit runs as long as 300 hours have been achieved; in some instances, only one or two bits have been needed to drill a well to total depth.” This is particularly so since the advent of the sealed bearing tri-cone bit designs appeared in 1959 (Ref. 3, page 7) having tungsten carbide inserts (Ref. 3, page 12). Therefore, it is now practical to talk about drill bits lasting long enough for drilling a well during one pass into the formation, or “one pass drilling”.
      • b. Until recently, it has been impossible or impractical to obtain sufficient geophysical information to determine the presence or absence of oil and gas from inside steel pipes in wells. Heretofore, either standard open-hole logging tools or Measurement-While-Drilling (“MWD”) tools were used in the open-hole to obtain such information. Therefore, the industry has historically used various open-hole tools to measure formation characteristics. However, it has recently become possible to measure the various geophysical quantities listed in Step 6 above from inside steel pipes such as drill strings and casing strings. For example, please refer to the book entitled “Cased Hole Log Interpretation Principles/Applications”, Schlumberger Educational Services, Houston, Tex., 1989. Please also refer to the article entitled “Electrical Logging: State-of-the-Art”, by Robert E. Maute, The Log Analyst, May-June 1992, pages 206-227.
  • Because drill bits typically wore out during drilling operations until recently, different types of metal pipes have historically evolved which are attached to drilling bits, which, when assembled, are called “drill strings”. Those drill strings are different than typical “casing strings” run into the well. Because it was historically absolutely necessary to do open-hole logging to determine the presence or absence of oil and gas, the fact that different types of pipes were used in “drill strings” and “casing strings” was of little consequence to the economics of completing wells. However, it is possible to choose the “drill string” to be acceptable for a second use, namely as the “casing string” that is to be installed after drilling has been completed.
  • New Drilling Process
  • Therefore, the preferred embodiments of the invention herein reduce and simplify the above 14 steps as follows:
  • Repeat Steps 1-2 above.
  • Steps 3-5 (Revised)
  • Choose the drill bit so that the entire production well can be drilled to its final depth using only one single drill bit. Choose the dimensions of the drill bit for desired size of the production well. If the cement is to be cured under ambient hydrostatic conditions, attach the drill bit to the bottom female threads of the Latching Subassembly (“Latching Sub”). Choose the material of the drill string from pipe material that can also be used as the casing string. Attach the first section of drill pipe to the top female threads of the Latching Sub. Rotary drill the production well to its final depth during “one pass drilling” into the well. While drilling, simultaneously circulate drilling mud to carry the rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. Open-hole logging can be done while the well is being drilled with measuring-while-drilling (MWD) or logging-while-drilling (LWD) techniques. LWD is obtaining logging measurements by MWD techniques as the well is being drilled. MWD is the acquisition of downhole information during the drilling process. One MWD system transmits data to the surface via wireline; the other, through drilling fluid. MWD systems are capable of transmitting well data to the surface without interrupting circulating and drilling.
  • MWD may be used to determine the angle and direction by which the wellbore deviates from the vertical by directional surveying during routine drilling operations. A steering tool is a directional survey instrument used in combination with a deflected downhole motor that shows, on a rig floor monitor, the inclination and direction of a downhole sensing unit. A gyroscopic surveying instrument may be used to determine direction and angle at which a wellbore is drifting off the vertical. The steering tool instrument enables the operator both to survey and to orient a downhole motor while actually using a deflection tool to make hole. Sensors in the downhole instrument transmit data continuously, via the wireline, to the surface monitor. The operator can compensate for reactive torque, maintain hole direction, and change course when necessary without tripping out the drill string or interrupting drilling. MWD systems furnish the directional supervisor with real-time directional data on the rig floor—that is, they show what is happening downhole during drilling. The readings are analyzed to provide accurate hole trajectory.
  • Step 6 (Revised)
  • After the final depth of the production well is reached, perform logging of the geological formations to determine the amount of oil and gas present from inside the drill pipe of the drill string. This typically involves measurements from inside the drill string of the necessary geophysical quantities as summarized in Item “b.” of “Several Recent Changes in the Industry”. If such logs obtained from inside the drill string show that no oil or gas is present, then the drill string can be pulled out of the well and the well filled in with cement. If commercial amounts of oil and gas are present, continue the following steps.
  • Steps 7-11 (Revised)
  • If the cement is to be cured under ambient hydrostatic conditions, pump down a Latching Float Collar Valve Assembly with mud until it latches into place in the notches provided in the Latching Sub located above the drill bit.
  • Steps 12-13 (Revised)
  • To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination comprised of the following individual steps:
      • A. Introduce the Bottom Wiper Plug into the interior of the drill string assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement.
      • B. Introduce the Top Wiper Plug into the interior of the drill string assembled into the well and pump down with water thereby forcing the cement through any Float Collar Valve Assembly present and through the watercourses in “a regular bit” or through the mud nozzles of a “jet bit” or through any other mud passages in, the drill bit into the annulus between the drill string and the formation.
      • C. After the Bottom Wiper Plug and Top Wiper Plug have seated in the Latching Float Collar Valve Assembly, release the pressure on the interior of the drill string that results in the closing of the float collar which in turn prevents cement from backing up in the drill string. The resulting pressure release upon closure of the float collar prevents distortions of the drill string that might prevent a good cement seal as described earlier. I.e., “the cement is cured under ambient hydrostatic conditions”.
        Repeat Step 14 above.
  • Centering the casing in the hole is necessary for cement to form a uniform sheath around the casing to effectively prevent migration of fluids from permeable zones. Various accessory devices assure better distribution of the cement slurry outside the casing.
  • Field reports show that that casing cementation is improved by the employment of centralizers. Centralizers are often used on casing for two main purposes in connection with cementing: (1) to ensure a reasonably uniform distribution of cement around the pipe, and (2) to obtain a compete seal between the casing and the formation. Centralizers allow proper cement distribution by holding casing away from the wall. Centralizers also lessen the effect of differential pressure to stick the liner and center the pipe in the hole. A casing centralizer is a device secured around the casing at regular intervals to center it in the hole. Hinged centralizers are usually clamped onto the casing after it is made up and as it is run into the hole.
  • Therefore, the “New Drilling Process” has only 7 distinct steps instead of the 14 steps in the “Typical Drilling Process”. The “New Drilling Process”, consequently has fewer steps, is easier to implement, and will be less expensive.
  • The preferred embodiment of the invention disclosed in FIG. 1 requires a Latching Subassembly and a Latching Float Collar Valve Assembly. The advantage of this approach is that the Float 32 of the Latching Float Collar Valve Assembly and the Float Seating Surface 34 in FIG. 1 are installed at the end of the drilling process and will not be worn due to mud passage during normal drilling operations.
  • Another preferred embodiment of the invention provides a float and float collar valve assembly permanently installed within the Latching Subassembly at the beginning of the drilling operations. However, such a preferred embodiment has the disadvantage that drilling mud passing by the float and the float collar valve assembly during normal drilling operations will tend to wear on the mutually sealing surfaces.
  • The drill bit described in FIG. 1 is a milled steel toothed roller cone bit. However, any rotary bit can be used with the invention. A tungsten carbide insert roller cone bit can be used. Any type of diamond bit or drag bit can be used. The invention may be used with any drill bit described in Ref. 3 above that possesses mud passages, waterpassages, or passages for gas. The bit consists of a cutting element and circulating element. The cutting element penetrates and gouges or scrapes the formation to remove it. The circulating element permits passage of drilling fluid and utilizes the hydraulic force of the fluid stream to improve drilling rates. Any type of rotary drill bit can be used possessing such passageways. Similarly, any type of bit whatsoever that utilizes any fluid or gas that passes through passageways in the bit can be used whether or not the bit rotates. A drag bit, for example, is any of a variety of drilling bits with no moving parts that drill by intrusion and drag.
  • A rock bit cone or other chunk of metal is sometimes left in an open hole and never touched again. A fish is an object that is left in the wellbore during drilling or workover operations and that must be recovered before work can proceed, which may be anything from a piece of scrap metal to a part of the drill stem. The drill stem includes all members in the assembly used for rotary drilling from the swivel to the bit. The fish may be part of the drill string which has been purposely disconnected, so that the part of the drill string may be recovered from the well by fishing.
  • While the above description contains many specificities, these should not be construed as limitations on the scope of the invention, but rather as exemplification of preferred embodiments thereto. As have been briefly described, there are many possible variations. Accordingly, the scope of the invention should be determined not only by the embodiments illustrated, but by the appended claims and their legal equivalents.

Claims (1)

1. An apparatus for drilling a wellbore comprising:
a drill string having a casing portion for lining the wellbore; and
a drilling assembly selectively connected to the drill string and having an earth removal member.
US11/761,270 1994-10-14 2007-06-11 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells Abandoned US20080041631A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US08/323,152 US5551521A (en) 1994-10-14 1994-10-14 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US08/708,396 US5894897A (en) 1994-10-14 1996-09-03 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US09/295,808 US6263987B1 (en) 1994-10-14 1999-04-20 One pass drilling and completion of extended reach lateral wellbores with drill bit attached to drill string to produce hydrocarbons from offshore platforms
US09/487,197 US6397946B1 (en) 1994-10-14 2000-01-19 Closed-loop system to compete oil and gas wells closed-loop system to complete oil and gas wells c
US31365401P true 2001-08-19 2001-08-19
US35345702P true 2002-01-31 2002-01-31
US36763802P true 2002-03-26 2002-03-26
US38496402P true 2002-06-03 2002-06-03
US10/162,302 US6868906B1 (en) 1994-10-14 2002-06-04 Closed-loop conveyance systems for well servicing
US10/223,025 US6857486B2 (en) 2001-08-19 2002-08-15 High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US10/678,731 US7048050B2 (en) 1994-10-14 2003-10-02 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US11/292,331 US7228901B2 (en) 1994-10-14 2005-12-01 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US11/761,270 US20080041631A1 (en) 1994-10-14 2007-06-11 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/761,270 US20080041631A1 (en) 1994-10-14 2007-06-11 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US12/330,157 US20090194338A1 (en) 1994-10-14 2008-12-08 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US12/876,956 US20110079439A1 (en) 1994-10-14 2010-09-07 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US13/189,308 US20120043134A1 (en) 1994-10-14 2011-07-22 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/292,331 Continuation US7228901B2 (en) 1994-10-14 2005-12-01 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/330,157 Continuation US20090194338A1 (en) 1994-10-14 2008-12-08 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Publications (1)

Publication Number Publication Date
US20080041631A1 true US20080041631A1 (en) 2008-02-21

Family

ID=43827503

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/223,025 Active US6857486B2 (en) 2001-08-19 2002-08-15 High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US11/761,270 Abandoned US20080041631A1 (en) 1994-10-14 2007-06-11 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US12/330,157 Abandoned US20090194338A1 (en) 1994-10-14 2008-12-08 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US12/876,956 Abandoned US20110079439A1 (en) 1994-10-14 2010-09-07 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US13/189,308 Abandoned US20120043134A1 (en) 1994-10-14 2011-07-22 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/223,025 Active US6857486B2 (en) 2001-08-19 2002-08-15 High power umbilicals for subterranean electric drilling machines and remotely operated vehicles

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/330,157 Abandoned US20090194338A1 (en) 1994-10-14 2008-12-08 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US12/876,956 Abandoned US20110079439A1 (en) 1994-10-14 2010-09-07 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US13/189,308 Abandoned US20120043134A1 (en) 1994-10-14 2011-07-22 Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Country Status (8)

Country Link
US (5) US6857486B2 (en)
EP (1) EP1436482B1 (en)
AT (1) AT360132T (en)
AU (1) AU2002331600A1 (en)
CA (1) CA2454865A1 (en)
DE (1) DE60219656D1 (en)
NO (1) NO326447B1 (en)
WO (1) WO2003016671A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106437537A (en) * 2016-09-06 2017-02-22 中国石油化工股份有限公司 Oil pumping tubular column with hot-washing paraffin removal function
CN106761385A (en) * 2017-02-28 2017-05-31 重庆大学 Soft projecting coal bed anti-collapse continuous drilling and forming hole equipment and technique
US10316619B2 (en) 2017-03-16 2019-06-11 Saudi Arabian Oil Company Systems and methods for stage cementing
US10378339B2 (en) 2017-11-08 2019-08-13 Saudi Arabian Oil Company Method and apparatus for controlling wellbore operations
US10378298B2 (en) 2017-08-02 2019-08-13 Saudi Arabian Oil Company Vibration-induced installation of wellbore casing
US10487604B2 (en) 2017-08-02 2019-11-26 Saudi Arabian Oil Company Vibration-induced installation of wellbore casing

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586699B1 (en) 1999-08-16 2017-03-07 Smart Drilling And Completion, Inc. Methods and apparatus for monitoring and fixing holes in composite aircraft
US7228901B2 (en) * 1994-10-14 2007-06-12 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7013997B2 (en) * 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US6868906B1 (en) * 1994-10-14 2005-03-22 Weatherford/Lamb, Inc. Closed-loop conveyance systems for well servicing
US7100710B2 (en) * 1994-10-14 2006-09-05 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7147068B2 (en) * 1994-10-14 2006-12-12 Weatherford / Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7108084B2 (en) * 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7040420B2 (en) * 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US20060124306A1 (en) * 2000-01-19 2006-06-15 Vail William B Iii Installation of one-way valve after removal of retrievable drill bit to complete oil and gas wells
WO2004079147A2 (en) * 2003-03-05 2004-09-16 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7509722B2 (en) * 1997-09-02 2009-03-31 Weatherford/Lamb, Inc. Positioning and spinning device
GB9810321D0 (en) * 1998-05-15 1998-07-15 Head Philip Method of downhole drilling and apparatus therefore
GB2340857A (en) * 1998-08-24 2000-03-01 Weatherford Lamb An apparatus for facilitating the connection of tubulars and alignment with a top drive
US20030198519A1 (en) * 1998-09-22 2003-10-23 Water Corporation Repair of lined pipes
AU2001269810B2 (en) * 1998-11-16 2005-04-07 Shell Oil Company Radial expansion of tubular members
US7231985B2 (en) * 1998-11-16 2007-06-19 Shell Oil Company Radial expansion of tubular members
US7121352B2 (en) * 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
US7234531B2 (en) * 1999-12-03 2007-06-26 Enventure Global Technology, Llc Mono-diameter wellbore casing
GB2344606B (en) * 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
US7357188B1 (en) * 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US20070051520A1 (en) * 1998-12-07 2007-03-08 Enventure Global Technology, Llc Expansion system
AU772327B2 (en) * 1998-12-22 2004-04-22 Weatherford Technology Holdings, Llc Procedures and equipment for profiling and jointing of pipes
US7188687B2 (en) * 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
GB2347441B (en) * 1998-12-24 2003-03-05 Weatherford Lamb Apparatus and method for facilitating the connection of tubulars using a top drive
GB2345074A (en) * 1998-12-24 2000-06-28 Weatherford Lamb Floating joint to facilitate the connection of tubulars using a top drive
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7311148B2 (en) * 1999-02-25 2007-12-25 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
AU770359B2 (en) * 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
US7350563B2 (en) * 1999-07-09 2008-04-01 Enventure Global Technology, L.L.C. System for lining a wellbore casing
US20050123639A1 (en) * 1999-10-12 2005-06-09 Enventure Global Technology L.L.C. Lubricant coating for expandable tubular members
US7216727B2 (en) * 1999-12-22 2007-05-15 Weatherford/Lamb, Inc. Drilling bit for drilling while running casing
US7334650B2 (en) * 2000-04-13 2008-02-26 Weatherford/Lamb, Inc. Apparatus and methods for drilling a wellbore using casing
US6536520B1 (en) * 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
GB0010378D0 (en) * 2000-04-28 2000-06-14 Bbl Downhole Tools Ltd Expandable apparatus for drift and reaming a borehole
CA2416573A1 (en) * 2000-09-18 2002-03-21 Shell Canada Ltd Liner hanger with sliding sleeve valve
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US20050166387A1 (en) * 2003-06-13 2005-08-04 Cook Robert L. Method and apparatus for forming a mono-diameter wellbore casing
US7100685B2 (en) * 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
WO2002053867A2 (en) * 2001-01-03 2002-07-11 Enventure Global Technology Mono-diameter wellbore casing
GB0109993D0 (en) * 2001-04-24 2001-06-13 E Tech Ltd Method
US6742596B2 (en) * 2001-05-17 2004-06-01 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
US10174572B2 (en) 2009-08-13 2019-01-08 Smart Drilling And Completion, Inc. Universal drilling and completion system
US9625361B1 (en) 2001-08-19 2017-04-18 Smart Drilling And Completion, Inc. Methods and apparatus to prevent failures of fiber-reinforced composite materials under compressive stresses caused by fluids and gases invading microfractures in the materials
US6857486B2 (en) 2001-08-19 2005-02-22 Smart Drilling And Completion, Inc. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles
US9284780B2 (en) 2001-08-19 2016-03-15 Smart Drilling And Completion, Inc. Drilling apparatus
US8515677B1 (en) 2002-08-15 2013-08-20 Smart Drilling And Completion, Inc. Methods and apparatus to prevent failures of fiber-reinforced composite materials under compressive stresses caused by fluids and gases invading microfractures in the materials
US9587435B2 (en) 2001-08-19 2017-03-07 Smart Drilling And Completion, Inc. Universal drilling and completion system
CA2458211C (en) * 2001-08-20 2010-10-12 Enventure Global Technology Apparatus for radially expanding tubular members including a segmented expansion cone
CA2459910C (en) * 2001-09-07 2010-04-13 Enventure Global Technology Adjustable expansion cone assembly
US6722427B2 (en) * 2001-10-23 2004-04-20 Halliburton Energy Services, Inc. Wear-resistant, variable diameter expansion tool and expansion methods
CA2471875A1 (en) * 2001-12-27 2003-07-17 Enventure Global Technology Seal receptacle using expandable liner hanger
GB0203386D0 (en) * 2002-02-13 2002-03-27 Sps Afos Group Ltd Wellhead seal unit
GB0206227D0 (en) * 2002-03-16 2002-05-01 Weatherford Lamb Bore-lining and drilling
EP1972752A2 (en) 2002-04-12 2008-09-24 Enventure Global Technology Protective sleeve for threated connections for expandable liner hanger
EP1501645A4 (en) * 2002-04-15 2006-04-26 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
GB2426993B (en) * 2002-05-29 2007-05-02 Enventure Global Technology System for radially expanding a tubular member
GB2417273B (en) * 2002-06-12 2006-10-11 Enventure Global Technology Collapsible expansion cone
GB0216259D0 (en) * 2002-07-12 2002-08-21 Sensor Highway Ltd Subsea and landing string distributed sensor system
US20040011534A1 (en) * 2002-07-16 2004-01-22 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
WO2004011776A2 (en) * 2002-07-29 2004-02-05 Enventure Global Technology Method of forming a mono diameter wellbore casing
US6994176B2 (en) * 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
AU2003259865A1 (en) * 2002-08-23 2004-03-11 Enventure Global Technology Interposed joint sealing layer method of forming a wellbore casing
WO2004020790A2 (en) * 2002-08-30 2004-03-11 Sensor Highway Limited Method and apparatus for logging a well using fiber optics
AU2003275132A1 (en) * 2002-09-20 2004-04-08 Enventure Global Technlogy Mono diameter wellbore casing
EP1552271A1 (en) * 2002-09-20 2005-07-13 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US7303022B2 (en) * 2002-10-11 2007-12-04 Weatherford/Lamb, Inc. Wired casing
US6896075B2 (en) * 2002-10-11 2005-05-24 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US6899186B2 (en) * 2002-12-13 2005-05-31 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
AU2003301165A1 (en) * 2002-12-19 2004-07-14 Red Sky Systems, Inc. Hermetically sealed optical amplifier module to be integrated into a pressure vessel
US6857487B2 (en) * 2002-12-30 2005-02-22 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US6953096B2 (en) * 2002-12-31 2005-10-11 Weatherford/Lamb, Inc. Expandable bit with secondary release device
US20060054354A1 (en) * 2003-02-11 2006-03-16 Jacques Orban Downhole tool
US20070039742A1 (en) * 2004-02-17 2007-02-22 Enventure Global Technology, Llc Method and apparatus for coupling expandable tubular members
GB2415003B (en) * 2003-02-18 2007-06-20 Enventure Global Technology Protective compression and tension sleeves for threaded connections for radially expandable tubular members
US7096982B2 (en) * 2003-02-27 2006-08-29 Weatherford/Lamb, Inc. Drill shoe
GB2433276B (en) * 2003-03-05 2007-10-17 Weatherford Lamb Full bore lined wellbores
CA2517895C (en) * 2003-03-05 2009-12-01 Weatherford/Lamb, Inc. Casing running and drilling system
CA2517978C (en) * 2003-03-05 2009-07-14 Weatherford/Lamb, Inc. Drilling with casing latch
WO2004081346A2 (en) * 2003-03-11 2004-09-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
US7370707B2 (en) * 2003-04-04 2008-05-13 Weatherford/Lamb, Inc. Method and apparatus for handling wellbore tubulars
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US20040206511A1 (en) * 2003-04-21 2004-10-21 Tilton Frederick T. Wired casing
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7264067B2 (en) * 2003-10-03 2007-09-04 Weatherford/Lamb, Inc. Method of drilling and completing multiple wellbores inside a single caisson
GB0329712D0 (en) * 2003-12-22 2004-01-28 Bp Exploration Operating Process
US20050217845A1 (en) * 2004-03-30 2005-10-06 Mcguire Lindell V Tubing hanger running tool and subsea test tree control system
US7777643B2 (en) * 2004-05-06 2010-08-17 Halliburton Energy Services, Inc. Optical communications with a bottom hole assembly
WO2006014417A2 (en) * 2004-07-06 2006-02-09 The Charles Machine Works, Inc. Coiled tubing with dual member drill string
CA2514136C (en) * 2004-07-30 2011-09-13 Weatherford/Lamb, Inc. Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
CA2577083A1 (en) 2004-08-13 2006-02-23 Mark Shuster Tubular member expansion apparatus
US7186033B2 (en) * 2005-02-23 2007-03-06 Schlumberger Technology Corporation Fiber optic booster connector
EP1696101B1 (en) * 2005-02-28 2008-03-12 Services Petroliers Schlumberger Method and apparatus suitable for hole cleaning during drilling operations
CA2538196C (en) * 2005-02-28 2011-10-11 Weatherford/Lamb, Inc. Deep water drilling with casing
US7789162B2 (en) * 2005-03-22 2010-09-07 Exxonmobil Upstream Research Company Method for running tubulars in wellbores
US20060226701A1 (en) * 2005-03-31 2006-10-12 Caterpillar Inc. Electrically conductive hydraulic hose
US7913773B2 (en) * 2005-08-04 2011-03-29 Schlumberger Technology Corporation Bidirectional drill string telemetry for measuring and drilling control
EP1941123A1 (en) * 2005-10-27 2008-07-09 Shell Internationale Research Maatschappij B.V. Extended reach drilling apparatus and method
US8251614B2 (en) * 2005-12-19 2012-08-28 Siemens Aktiengesellschaft Electrical power system for a subsea system
US20070193778A1 (en) * 2006-02-21 2007-08-23 Blade Energy Partners Methods and apparatus for drilling open hole
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US8276689B2 (en) * 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US8944783B2 (en) * 2006-06-27 2015-02-03 Schlumberger Technology Corporation Electric progressive cavity pump
NO326032B1 (en) * 2006-07-24 2008-09-01 Sira Kvina Kraftselskap The process feed and apparatus for directionally controlling rock drilling machine
US20080050180A1 (en) * 2006-08-23 2008-02-28 Baugh Benton F Method for increasing bit load
US7954560B2 (en) * 2006-09-15 2011-06-07 Baker Hughes Incorporated Fiber optic sensors in MWD Applications
US7957946B2 (en) * 2007-06-29 2011-06-07 Schlumberger Technology Corporation Method of automatically controlling the trajectory of a drilled well
US7832468B2 (en) * 2007-10-03 2010-11-16 Pine Tree Gas, Llc System and method for controlling solids in a down-hole fluid pumping system
US8459965B2 (en) * 2007-10-17 2013-06-11 Collin Morris Production tubing member with auxiliary conduit
US7570858B2 (en) * 2007-12-05 2009-08-04 Baker Hughes Incorporated Optical fiber for pumping and method
US8162061B2 (en) * 2008-04-13 2012-04-24 Baker Hughes Incorporated Subsea inflatable bridge plug inflation system
WO2010050840A1 (en) * 2008-10-31 2010-05-06 Schlumberger Canada Limited An integrated coring system
NO333099B1 (en) * 2008-11-03 2013-03-04 Statoil Asa The process feed for modifying an existing subsea located oljeproduksjonsbronn, and a saledes modified oljeproduksjonsbronn
US8619134B2 (en) * 2009-03-11 2013-12-31 Seatrepid International, Llc Unmanned apparatus traversal and inspection system
CN102341561B (en) * 2009-03-27 2015-06-24 卡梅伦国际有限公司 Dc powered subsea inverter
EP2459842B1 (en) 2009-07-28 2014-03-12 Halliburton Energy Services, Inc. Wellbore cleanout tool
US8651177B2 (en) * 2009-08-13 2014-02-18 Smart Drilling And Completion, Inc. Long-lasting hydraulic seals for smart shuttles, for coiled tubing injectors, and for pipeline pigs
US8261842B2 (en) 2009-12-08 2012-09-11 Halliburton Energy Services, Inc. Expandable wellbore liner system
CA2790484C (en) * 2010-02-22 2016-09-13 Baker Hughes Incorporated Reverse circulation apparatus and methods for using same
US8230926B2 (en) * 2010-03-11 2012-07-31 Halliburton Energy Services Inc. Multiple stage cementing tool with expandable sealing element
US8689879B2 (en) 2010-04-08 2014-04-08 Schlumberger Technology Corporation Fluid displacement methods and apparatus for hydrocarbons in subsea production tubing
WO2011138574A2 (en) * 2010-05-04 2011-11-10 Bp Exploration Operating Company Limited Control line protection
CA2707059C (en) 2010-06-22 2015-02-03 Gerald V. Chalifoux Method and apparatus for installing and removing an electric submersiblepump
US10087728B2 (en) 2010-06-22 2018-10-02 Petrospec Engineering Inc. Method and apparatus for installing and removing an electric submersible pump
US9175561B2 (en) * 2011-06-14 2015-11-03 Shane Brown Resin injection apparatus for drilling apparatus for installing a ground anchor
CA2903524C (en) * 2011-07-14 2017-12-19 Halliburton Energy Services, Inc. Methods and systems for controlling torque transfer from rotating equipment
US9057245B2 (en) * 2011-10-27 2015-06-16 Aps Technology, Inc. Methods for optimizing and monitoring underground drilling
US8839883B2 (en) 2012-02-13 2014-09-23 Halliburton Energy Services, Inc. Piston tractor system for use in subterranean wells
US9109419B2 (en) * 2012-05-01 2015-08-18 Vetco Gray U.K. Limited Plug installation system and method
EP2696026A1 (en) * 2012-08-10 2014-02-12 Welltec A/S Downhole turbine-driven system
US9624723B2 (en) 2012-10-26 2017-04-18 Saudi Arabian Oil Company Application of downhole rotary tractor
US9605528B2 (en) 2013-03-25 2017-03-28 Halliburton Energy Services, Inc. Distributed sensing with a multi-phase drilling device
US9546544B2 (en) 2013-04-17 2017-01-17 Saudi Arabian Oil Company Apparatus for driving and maneuvering wireline logging tools in high-angled wells
CN104120972B (en) * 2013-04-25 2016-04-13 董书朋 A kind of rig for exploiting shale gas
US9719315B2 (en) * 2013-11-15 2017-08-01 Ge Oil & Gas Esp, Inc. Remote controlled self propelled deployment system for horizontal wells
CN103806833A (en) * 2014-03-18 2014-05-21 西南石油大学 High-speed rock-breaking drill tool
RU2645312C1 (en) 2014-06-27 2018-02-20 Халлибертон Энерджи Сервисез, Инк. Measurement of micro-jams and slips of bottomhole motor using fiber-optic sensors
WO2016108858A1 (en) * 2014-12-30 2016-07-07 Halliburton Energy Services Inc. Condition monitoring of electric motor
US20180154498A1 (en) * 2016-12-05 2018-06-07 Onesubsea Ip Uk Limited Burnishing assembly systems and methods
US10151187B1 (en) 2018-02-12 2018-12-11 Eagle Technology, Llc Hydrocarbon resource recovery system with transverse solvent injectors and related methods
US10502041B2 (en) 2018-02-12 2019-12-10 Eagle Technology, Llc Method for operating RF source and related hydrocarbon resource recovery systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148875A (en) * 1990-06-21 1992-09-22 Baker Hughes Incorporated Method and apparatus for horizontal drilling

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291230A (en) * 1963-11-12 1966-12-13 Cullen Well drilling apparatus
US4057116A (en) 1972-11-17 1977-11-08 Atlantic Richfield Company Slim hold drilling
US3837412A (en) 1972-12-06 1974-09-24 W Driver Downhole electrical core drilling system
US4031969A (en) 1974-03-07 1977-06-28 Roy H. Cullen Method and apparatus for earth boring
US4016943A (en) 1975-03-07 1977-04-12 Roy H. Cullen Method for connecting electrical conductors for electric earth boring means
DE2604063A1 (en) 1976-02-03 1977-08-04 Miguel Kling Self-propelled and self-locking device for driving of channels or of elongated structures
US4010619A (en) * 1976-05-24 1977-03-08 The United States Of America As Represented By The Secretary Of The Navy Remote unmanned work system (RUWS) electromechanical cable system
US4051908A (en) 1976-11-05 1977-10-04 Driver W B Downhole drilling system
US4095865A (en) 1977-05-23 1978-06-20 Shell Oil Company Telemetering drill string with piped electrical conductor
FR2417709B1 (en) 1978-02-21 1982-12-10 Coflexip
US4336415A (en) 1980-05-16 1982-06-22 Walling John B Flexible production tubing
US4676310A (en) 1982-07-12 1987-06-30 Scherbatskoy Serge Alexander Apparatus for transporting measuring and/or logging equipment in a borehole
FR2530876B1 (en) 1982-07-21 1985-01-18 Inst Francais Du Petrole
US4463814A (en) 1982-11-26 1984-08-07 Advanced Drilling Corporation Down-hole drilling apparatus
US4544041A (en) 1983-10-25 1985-10-01 Rinaldi Roger E Well casing inserting and well bore drilling method and means
FR2596803B1 (en) 1986-04-02 1988-06-24 Elf Aquitaine A drilling and casing simultaneous
GB8616006D0 (en) 1986-07-01 1986-08-06 Framo Dev Ltd Drilling system
FR2607975B1 (en) 1986-12-05 1989-09-01 Inst Francais Du Petrole Assembly for an electrical connection through a pipe formed of several elements
US5129452A (en) 1990-02-23 1992-07-14 Oil Dynamics, Inc. Flexible electrical submersible motor pump system for deviated wells
US5908049A (en) 1990-03-15 1999-06-01 Fiber Spar And Tube Corporation Spoolable composite tubular member with energy conductors
US5172765A (en) 1990-03-15 1992-12-22 Conoco Inc. Method using spoolable composite tubular member with energy conductors
US5176180A (en) 1990-03-15 1993-01-05 Conoco Inc. Composite tubular member with axial fibers adjacent the side walls
US5097870A (en) 1990-03-15 1992-03-24 Conoco Inc. Composite tubular member with multiple cells
US5553678A (en) 1991-08-30 1996-09-10 Camco International Inc. Modulated bias units for steerable rotary drilling systems
FR2679958B1 (en) 1991-08-02 1997-06-27 Inst Francais Du Petrole System, support for carrying out measurements or interventions in a well drilled or being drilled, and their uses.
FR2679957B1 (en) 1991-08-02 1998-12-04 Inst Francais Du Petrole Method and device for carrying out measurements and / or interventions in a well drilled or being drilled.
US5271472A (en) 1991-08-14 1993-12-21 Atlantic Richfield Company Drilling with casing and retrievable drill bit
US5197553A (en) 1991-08-14 1993-03-30 Atlantic Richfield Company Drilling with casing and retrievable drill bit
US5215151A (en) 1991-09-26 1993-06-01 Cudd Pressure Control, Inc. Method and apparatus for drilling bore holes under pressure
NO306522B1 (en) 1992-01-21 1999-11-15 Anadrill Int Sa A method for acoustic transmission of measurement signals on measurement while drilling
US5311952A (en) 1992-05-22 1994-05-17 Schlumberger Technology Corporation Apparatus and method for directional drilling with downhole motor on coiled tubing
NO180055C (en) 1992-10-16 1997-02-05 Norsk Hydro As Preventer for shutting off an annulus between a drill string and a brönnvegg when drilling for oil or gas
US5332048A (en) 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5392715A (en) 1993-10-12 1995-02-28 Osaka Gas Company, Ltd. In-pipe running robot and method of running the robot
US5472057A (en) 1994-04-11 1995-12-05 Atlantic Richfield Company Drilling with casing and retrievable bit-motor assembly
GB9411228D0 (en) 1994-06-04 1994-07-27 Camco Drilling Group Ltd A modulated bias unit for rotary drilling
US6158531A (en) 1994-10-14 2000-12-12 Smart Drilling And Completion, Inc. One pass drilling and completion of wellbores with drill bit attached to drill string to make cased wellbores to produce hydrocarbons
US5551521A (en) 1994-10-14 1996-09-03 Vail, Iii; William B. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7040420B2 (en) * 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US6263987B1 (en) 1994-10-14 2001-07-24 Smart Drilling And Completion, Inc. One pass drilling and completion of extended reach lateral wellbores with drill bit attached to drill string to produce hydrocarbons from offshore platforms
US6397946B1 (en) 1994-10-14 2002-06-04 Smart Drilling And Completion, Inc. Closed-loop system to compete oil and gas wells closed-loop system to complete oil and gas wells c
US5894897A (en) 1994-10-14 1999-04-20 Vail Iii William Banning Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US5497840A (en) 1994-11-15 1996-03-12 Bestline Liner Systems Process for completing a well
MY121223A (en) 1995-01-16 2006-01-28 Shell Int Research Method of creating a casing in a borehole
GB2301187B (en) 1995-05-22 1999-04-21 British Gas Plc Method of and apparatus for locating an anomaly in a duct
CA2230185C (en) 1995-08-22 2004-01-06 Norman Bruce Moore Puller-thruster downhole tool
US5921285A (en) 1995-09-28 1999-07-13 Fiberspar Spoolable Products, Inc. Composite spoolable tube
DE59508569D1 (en) 1995-10-09 2000-08-17 Baker Hughes Inc A method and drilling rig for drilling of boreholes in subsurface formations
US6196336B1 (en) 1995-10-09 2001-03-06 Baker Hughes Incorporated Method and apparatus for drilling boreholes in earth formations (drilling liner systems)
US5828003A (en) 1996-01-29 1998-10-27 Dowell -- A Division of Schlumberger Technology Corporation Composite coiled tubing apparatus and methods
US6041860A (en) 1996-07-17 2000-03-28 Baker Hughes Incorporated Apparatus and method for performing imaging and downhole operations at a work site in wellbores
US5890537A (en) 1996-08-13 1999-04-06 Schlumberger Technology Corporation Wiper plug launching system for cementing casing and liners
US5842149A (en) 1996-10-22 1998-11-24 Baker Hughes Incorporated Closed loop drilling system
US6112809A (en) 1996-12-02 2000-09-05 Intelligent Inspection Corporation Downhole tools with a mobility device
US5769160A (en) 1997-01-13 1998-06-23 Pes, Inc. Multi-functional downhole cable system
US6148664A (en) 1997-05-02 2000-11-21 Testing Drill Collar, Ltd. Method and apparatus for shutting in a well while leaving drill stem in the borehole
US6009825A (en) * 1997-10-09 2000-01-04 Aker Marine, Inc. Recoverable system for mooring mobile offshore drilling units
US6004639A (en) 1997-10-10 1999-12-21 Fiberspar Spoolable Products, Inc. Composite spoolable tube with sensor
US6296066B1 (en) * 1997-10-27 2001-10-02 Halliburton Energy Services, Inc. Well system
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
US6092610A (en) 1998-02-05 2000-07-25 Schlumberger Technology Corporation Actively controlled rotary steerable system and method for drilling wells
GB9810321D0 (en) * 1998-05-15 1998-07-15 Head Philip Method of downhole drilling and apparatus therefore
US6513606B1 (en) 1998-11-10 2003-02-04 Baker Hughes Incorporated Self-controlled directional drilling systems and methods
EP1149228B1 (en) 1998-12-12 2005-07-27 Halliburton Energy Services, Inc. Apparatus for measuring downhole drilling efficiency parameters
US6273189B1 (en) 1999-02-05 2001-08-14 Halliburton Energy Services, Inc. Downhole tractor
CA2271401C (en) 1999-02-23 2008-07-29 Tesco Corporation Drilling with casing
BR0009654A (en) 1999-04-09 2002-01-08 Shell Int Research Method for sealing an annulus between two solid tubular or between a solid tubular and a borehole, well provided with a tubular sealed, and the tubular provided with an inner tubular sealed to said tubular
DE60003651T2 (en) 1999-04-09 2004-06-24 Shell Internationale Research Maatschappij B.V. Method for producing a hole in a substrate information
US6538576B1 (en) 1999-04-23 2003-03-25 Halliburton Energy Services, Inc. Self-contained downhole sensor and method of placing and interrogating same
US6189621B1 (en) 1999-08-16 2001-02-20 Smart Drilling And Completion, Inc. Smart shuttles to complete oil and gas wells
US6343649B1 (en) 1999-09-07 2002-02-05 Halliburton Energy Services, Inc. Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation
US6257332B1 (en) 1999-09-14 2001-07-10 Halliburton Energy Services, Inc. Well management system
US6257162B1 (en) * 1999-09-20 2001-07-10 Coflexip, S.A. Underwater latch and power supply
US6315062B1 (en) 1999-09-24 2001-11-13 Vermeer Manufacturing Company Horizontal directional drilling machine employing inertial navigation control system and method
US6419033B1 (en) 1999-12-10 2002-07-16 Baker Hughes Incorporated Apparatus and method for simultaneous drilling and casing wellbores
US6325148B1 (en) 1999-12-22 2001-12-04 Weatherford/Lamb, Inc. Tools and methods for use with expandable tubulars
NO996448L (en) 1999-12-23 2001-06-25 Norske Stats Oljeselskap System for intervention of subsea well
AU2001241585B2 (en) 2000-02-16 2006-06-01 Horizontal Expansion Tech , LLC Horizontal directional drilling in wells
US6374924B2 (en) 2000-02-18 2002-04-23 Halliburton Energy Services, Inc. Downhole drilling apparatus
CA2311158A1 (en) 2000-06-09 2001-12-09 Tesco Corporation A method for drilling with casing
US20030070841A1 (en) 2000-06-30 2003-04-17 S & S Trust Shallow depth, coiled tubing horizontal drilling system
US6554064B1 (en) 2000-07-13 2003-04-29 Halliburton Energy Services, Inc. Method and apparatus for a sand screen with integrated sensors
US6408943B1 (en) 2000-07-17 2002-06-25 Halliburton Energy Services, Inc. Method and apparatus for placing and interrogating downhole sensors
DZ3387A1 (en) 2000-07-18 2002-01-24 Exxonmobil Upstream Res Co Method for treating multiple intervals within a wellbore
US6419014B1 (en) 2000-07-20 2002-07-16 Schlumberger Technology Corporation Apparatus and method for orienting a downhole tool
US6763889B2 (en) 2000-08-14 2004-07-20 Schlumberger Technology Corporation Subsea intervention
CA2444657C (en) 2001-04-23 2007-10-16 Weatherford/Lamb, Inc. Apparatus and methods for conveying instrumentation within a borehole using continuous sucker rod
US6745834B2 (en) 2001-04-26 2004-06-08 Schlumberger Technology Corporation Complete trip system
WO2002087869A2 (en) 2001-04-27 2002-11-07 Fiberspar Corporation Improved composite tubing
NO322809B1 (en) 2001-06-15 2006-12-11 Schlumberger Technology Bv Apparatus and methods feed for a monitor the and control the placement of equipment on the seabed
US6857486B2 (en) 2001-08-19 2005-02-22 Smart Drilling And Completion, Inc. High power umbilicals for subterranean electric drilling machines and remotely operated vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148875A (en) * 1990-06-21 1992-09-22 Baker Hughes Incorporated Method and apparatus for horizontal drilling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106437537A (en) * 2016-09-06 2017-02-22 中国石油化工股份有限公司 Oil pumping tubular column with hot-washing paraffin removal function
CN106761385A (en) * 2017-02-28 2017-05-31 重庆大学 Soft projecting coal bed anti-collapse continuous drilling and forming hole equipment and technique
US10316619B2 (en) 2017-03-16 2019-06-11 Saudi Arabian Oil Company Systems and methods for stage cementing
US10378298B2 (en) 2017-08-02 2019-08-13 Saudi Arabian Oil Company Vibration-induced installation of wellbore casing
US10487604B2 (en) 2017-08-02 2019-11-26 Saudi Arabian Oil Company Vibration-induced installation of wellbore casing
US10378339B2 (en) 2017-11-08 2019-08-13 Saudi Arabian Oil Company Method and apparatus for controlling wellbore operations

Also Published As

Publication number Publication date
US20120043134A1 (en) 2012-02-23
EP1436482A4 (en) 2005-08-31
AT360132T (en) 2007-05-15
US20090194338A1 (en) 2009-08-06
EP1436482A2 (en) 2004-07-14
US20110079439A1 (en) 2011-04-07
NO326447B1 (en) 2008-12-08
AU2002331600A1 (en) 2003-03-03
DE60219656D1 (en) 2007-05-31
EP1436482B1 (en) 2007-04-18
NO20040711L (en) 2004-04-13
US6857486B2 (en) 2005-02-22
CA2454865A1 (en) 2003-02-27
WO2003016671A2 (en) 2003-02-27
US20030034177A1 (en) 2003-02-20
WO2003016671A3 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
AU733035B2 (en) Casing mounted lateral liner seal housing
CA2466771C (en) Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell
EP0840834B1 (en) Apparatus and process for drilling and completing multiple wells
US6199633B1 (en) Method and apparatus for intersecting downhole wellbore casings
US5868210A (en) Multi-lateral wellbore systems and methods for forming same
US5163522A (en) Angled sidewall coring assembly and method of operation
EP0852653B1 (en) Method and apparatus for selective horizontal well re-entry using retrievable diverter oriented by logging means
US5443129A (en) Apparatus and method for orienting and setting a hydraulically-actuatable tool in a borehole
EP1006260B1 (en) Drilling liner systems
EP0852652B1 (en) Method for isolating multi-lateral well completions while maintaining selective drainhole re-entry access
US5646611A (en) System and method for indirectly determining inclination at the bit
US7350590B2 (en) Instrumentation for a downhole deployment valve
US5787987A (en) Lateral seal and control system
US4852666A (en) Apparatus for and a method of drilling offset wells for producing hydrocarbons
US5667023A (en) Method and apparatus for drilling and completing wells
US20150184477A1 (en) Method and Device for a Running Tool
US5860474A (en) Through-tubing rotary drilling
US6478096B1 (en) Apparatus and method for formation testing while drilling with minimum system volume
US5287921A (en) Method and apparatus for setting a whipstock
CA2595018C (en) System and method for producing fluids from a subterranean formation
CA2644442C (en) Automated steerable hole enlargement drilling device and methods
CA2514534C (en) A downhole tool with an axial drive unit
US20100139981A1 (en) Hole Enlargement Drilling Device and Methods for Using Same
US5074366A (en) Method and apparatus for horizontal drilling
EP1249574B1 (en) Multilateral well drilling and completion method and apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: WEATHERFORD/LAMB, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMART DRILLING AND COMPLETION, INC.;REEL/FRAME:019893/0893

Effective date: 20030519

Owner name: SMART DRILLING AND COMPLETION, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VAIL, WILLIAM BANNING, III;REEL/FRAME:019893/0844

Effective date: 20030214

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION