US20080030261A1 - Charge Pump Circuit - Google Patents

Charge Pump Circuit Download PDF

Info

Publication number
US20080030261A1
US20080030261A1 US11/576,622 US57662205A US2008030261A1 US 20080030261 A1 US20080030261 A1 US 20080030261A1 US 57662205 A US57662205 A US 57662205A US 2008030261 A1 US2008030261 A1 US 2008030261A1
Authority
US
United States
Prior art keywords
voltage
output
charge pump
rectifier
pump circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/576,622
Inventor
Kenichi Nakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Assigned to ROHM CO., LTD. reassignment ROHM CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKATA, KENICHI
Publication of US20080030261A1 publication Critical patent/US20080030261A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • the present invention relates to a charge pump circuit providing a predetermined voltage.
  • FIG. 5 shows a structure similar to the charge pump circuit disclosed in the patent document 1.
  • a charge pump circuit 101 has an input terminal 107 receiving a power supply voltage VDD, a clock input terminal 108 receiving a clock signal CLK, and an output terminal 109 providing a predetermined boosted voltage to a load connected thereto.
  • the load is a power supply portion of an electric circuit achieving predetermined functions of an electric device.
  • First and second rectifier elements 110 and 111 that are diode elements are connected in series between input and output terminals 107 and 109 .
  • Output terminal 109 is connected to an output capacitor 112 and a series connection unit of resistances 113 and 114 dividing an output voltage.
  • a voltage on a node between resistances 113 and 114 is provided as a feedback voltage to an operational amplifier 115 .
  • Operational amplifier 115 makes a comparison between the feedback voltage and a reference voltage V REF to provide a high- or low-level signal.
  • the output of operational amplifier 115 is supplied to a base of NPN bipolar transistor 116 having a grounded emitter.
  • a collector of transistor 116 is connected to a collector of an NPN bipolar transistor 117 having a grounded emitter and a base connected to its collector.
  • the collector of transistor 117 is also connected to a constant current supply 118 passing a constant current Is from input terminal 107 .
  • the base of transistor 117 is connected to a base of an NPN bipolar transistor 119 having a grounded emitter.
  • a collector of transistor 119 is connected to an IN terminal of a current mirror circuit 120 .
  • An OUT 1 terminal of current mirror circuit 120 is connected to a collector of an NPN bipolar transistor 121 having a grounded emitter and a collector of an NPN bipolar transistor 122 having a grounded emitter and a base connected to its collector.
  • a base of transistor 121 is connected to clock input terminal 108 .
  • Clock input terminal 108 is further connected to an inverter 123 , which inverts and outputs clock signal CLK.
  • Inverter 123 provides its output to a base of an NPN bipolar transistor 124 having a grounded emitter.
  • Transistor 124 has a collector connected to an OUT 2 terminal of current mirror circuit 120 as well as an emitter connected to a base of an NPN bipolar transistor 125 having a grounded emitter.
  • the base of transistor 122 is connected to a base of an NPN bipolar transistor 126 having a grounded emitter.
  • a collector of transistor 126 is connected to a base of a PNP bipolar transistor 127 having an emitter connected to input terminal 107 and a collector connected to the collector of transistor 125 .
  • a node between the collectors of transistors 125 and 127 is connected to the other end of a boost capacitor 128 , of which one end is connected to a node between first and second rectifier elements 110 and 111 .
  • Charge pump circuit 101 operates as follows. When the voltage on the node between resistances 113 and 114 , i.e., the feedback voltage is lower than reference voltage V REF , operational amplifier 115 provides a low-level signal to turn off transistor 116 . When transistor 116 is turned off, constant current Is flows through transistor 117 , and further flows through transistor 119 to the IN terminal of current mirror circuit 120 . Consequently, constant current Is flows through OUT 1 and OUT 2 terminals of current mirror circuit 120 .
  • operational amplifier 115 When the feedback voltage is higher than reference voltage V REF , operational amplifier 115 provides a high-level signal to turn on transistor 116 .
  • transistor 116 When transistor 116 is turned on, transistors 117 and 119 are turned off, and a current does not flow through the IN terminal of current mirror circuit 120 . Consequently, a current does not flow through the OUT 1 and OUT 2 terminals of current mirror circuit 120 .
  • clock signal CLK turns off both transistors 125 and 127 regardless of the high and low levels, the charges do not move with respect to first and second rectifier elements 110 and 111 .
  • the boosting operation stops.
  • a boosting operation takes place to raise the output voltage during a period of clock signal CLK immediately after the feedback voltage becomes lower than reference voltage V REF . Thereafter, the output voltage slowly falls according to discharging of output capacitor 112 that depends on a magnitude of a load, and the boosting operation stops until the feedback voltage becomes lower than reference voltage V REF . Since a period for which the boosting operation stops is present, the current consumption is suppressed as a whole.
  • the slight rising and lowering of the output voltage, i.e., variations in output voltage described above are referred to as “ripple”, and an amplitude of the variation is referred to as a “ripple voltage”.
  • Patent Document 1 Japanese Patent Laying-Open No. 2000-066747
  • the invention has been made in view of the above, and an object of the invention is to provide a charge pump circuit that achieves a short cycle of ripple of an output voltage and a small ripple voltage even when a load is small.
  • a charge pump circuit includes first and second rectifier elements connected in series between input and output terminals, an output capacitor connected to the output terminal, and a boost capacitor having one end connected to a node between the first and second rectifier elements; is configured such that charges are moved successively through the first and second rectifier elements by a voltage on the other end of the boost capacitor, and are accumulated in the output capacitor to attain a predetermined voltage on the output terminal; and further includes an integrator providing a voltage produced by integrating a difference between a feedback voltage fed from the output terminal and a reference voltage; and a clock inverter having transistors arranged on a power supply side and a ground side for receiving with a clock signal, and a variable current supply supplying a current depending on the output voltage of the integrator to one of the transistors on the power supply side and the ground side, and providing a voltage depending on a current supplied by the variable current supply to the other terminal of the boost capacitor.
  • a charge pump circuit includes first and second rectifier elements connected in series between input and output terminals, an output capacitor connected to the output terminal, and a boost capacitor having one end connected to a node between the first and second rectifier elements; is configured such that charges are moved successively through the first and second rectifier elements by a voltage on the other end of the boost capacitor, and are accumulated in the output capacitor to attain a predetermined voltage on the output terminal; and further includes an integrator providing a voltage produced by integrating a difference between a feedback voltage fed from the output terminal and a reference voltage, and a variable current supply arranged between the input terminal and the first rectifier element, and supplying a current depending on the output voltage of the integrator to the first rectifier element.
  • the charge pump circuit further includes one or more rectifier elements connected in series between the first and second rectifier elements.
  • the rectifier element is a diode element.
  • the rectifier element is a switch element, and the first and second rectifier elements are alternately turned on and off.
  • the charge pump circuit since the charge pump circuit according to the invention has the integrator providing the voltage produced by integrating the difference between the feedback voltage of the output terminal and the reference voltage, and the variable current supply supplying the current depending on the output voltage of the integrator, the charge pump circuit can control the charges moving through the first and second rectifier elements so that the cycle of ripple of the output voltage can be short and the ripple voltage can be small even when a load is small.
  • FIG. 1 is a circuit diagram of a charge pump circuit according to an embodiment of the invention.
  • FIG. 2 is a circuit diagram of a charge pump circuit according to another embodiment of the invention.
  • FIG. 3 is a circuit diagram of a charge pump circuit according to still another embodiment of the invention.
  • FIG. 4 is a circuit diagram of a charge pump circuit according to yet another embodiment of the invention.
  • FIG. 5 is a circuit diagram of a charge pump circuit in the prior art.
  • 1 - 4 charge pump circuit 7 input terminal, 8 clock input terminal, 9 output terminal, 10 and 40 first rectifier element, 11 and 41 second rectifier element, 12 output capacitor, 15 integrator, 16 clock inverter, 17 boost capacitor, 30 power-supply-side transistor forming clock inverter, 31 ground-side transistor forming clock inverter, 32 and 51 variable current supply
  • FIG. 1 is a circuit diagram of a charge pump circuit of an embodiment of the invention.
  • a charge pump circuit 1 includes an input terminal 7 receiving a power supply voltage VDD, an input terminal 8 receiving a clock signal CLK, and an output terminal 9 providing a predetermined boosted voltage to a load connected thereto.
  • First and second rectifier elements 10 and 11 that are diode elements are connected in series between input and output terminals 7 and 9 .
  • these diode elements shown in FIG. 1 are PN junction diodes, respectively, MOS transistors each having a gate and a drain connected together or the like may be employed.
  • Output terminal 9 is connected to an output capacitor 12 and a series connection unit of resistances 13 and 14 dividing the output voltage.
  • Output capacitor 12 has a large capacitance for suppressing a ripple voltage as far as possible.
  • Resistances 13 and 14 have high resistance values for reducing a current flowing toward a ground potential. A voltage on a node between resistances 13 and 14 is fed as a feedback voltage to an integrator 15 .
  • Integrator 15 produces an output voltage by integrating a difference between the feedback voltage and reference voltage V REF , and this output voltage controls a current value of a variable current supply 32 (to be described later) of a clock inverter 16 .
  • Clock inverter 16 inverts clock signal CLK provided from clock input terminal 8 , and provides a voltage of a waveform depending on the current value of variable current supply 32 .
  • the output of clock inverter 16 is connected to the other end of a boost capacitor 17 for a boosting operation, and one end of boost capacitor 17 is connected to a node between first and second rectifier elements 10 and 11 .
  • Integrator 15 has an operational amplifier 20 , a capacitor 21 and a resistance 22 , and a node between resistances 13 and 14 is connected between an inversion input terminal of operational amplifier 20 and one end of capacitor 21 .
  • Operational amplifier 20 receives reference voltage V REF on its non-inversion input terminal, receives the foregoing feedback voltage on its inversion input terminal and provides a voltage by integrating a difference between the feedback voltage provided from the output terminal and reference voltage V REF .
  • the output terminal of operational amplifier 20 forms the output of integrator 15 .
  • the other end of capacitor 21 is connected to one end of resistance 22 , and the other end of resistance 22 is connected to the output terminal of operational amplifier 20 .
  • the capacitance of capacitor 21 can be relatively small. Therefore, in the case where many components of charge pump circuit 1 are integrated in an integrated circuit, integrator 15 can also be integrated therein.
  • Clock inverter 16 has a transistor 30 on the power supply side that is a PMOS transistor, a transistor 31 on a ground side that is an NMOS transistor and a variable current supply 32 .
  • Gates of power-supply-side transistor 30 and ground-side transistor 31 are connected to clock input terminal 8
  • a source of power-supply-side transistor 30 is connected to input terminal 7
  • a source of ground-side transistor 31 is connected to variable current supply 32 .
  • a drain of power-supply-side transistor 30 is connected to a drain of ground-side transistor 31 , and a node between these drains forms an output of clock inverter 16 .
  • Variable current supply 32 supplies a current toward the ground potential, and the current value thereof is controlled by the output voltage of integrator 15 as already described.
  • Variable current supply 32 may be arranged between input terminal 7 and power-supply-side transistor 30 .
  • charge pump circuit 1 An operation of charge pump circuit 1 will now be described. Charges supplied from power supply voltage V DD via input terminal 7 are moved successively through first and second rectifier elements 10 and 11 by the voltage on the other end of boost capacitor 17 , and are accumulated by output capacitor 12 . Thereby, output terminal 9 provides a predetermined voltage.
  • first and second rectifier elements 10 and 11 The charges successively move through first and second rectifier elements 10 and 11 as described below in greater detail.
  • clock signal CLK of clock input terminal 8 When clock signal CLK of clock input terminal 8 is high, the output voltage of clock inverter 16 lowers, and causes the voltage on the negative side of first rectifier element 10 through boost capacitor 17 to lower. Therefore, the charges move from the positive side of first rectifier element 10 to the negative side, and are temporarily accumulated in boost capacitor 17 .
  • clock signal CLK becomes low thereafter, the output of clock inverter 16 rises, and the voltage on the negative side of first rectifier element 10 , i.e., the voltage on the positive side of second rectifier element 11 rises.
  • the charges temporarily accumulated in boost capacitor 17 move from the positive side of second rectifier element 11 to the negative side, and are accumulated in output capacitor 12 .
  • Resistances 13 and 14 divide the output voltage on output terminal 9 , and integrator 15 integrates the feedback voltage, i.e., the voltage on the node between them.
  • the output voltage (integrated voltage) of integrator 15 controls the current value of variable current supply 32 to increase it with rising of the output voltage of integrator 15 , and to decrease it with lowering of the output voltage.
  • This current value controls the degree of lowering of the output voltage of clock inverter 16 , and consequently determines the charges that move through first and second rectifier elements 10 and 11 .
  • the charges moving through the first and second rectifier elements are controlled according to the load.
  • the moving charges decrease so that the ripple voltage lowers.
  • the ripple voltage is low, the period of ripple is short even when the discharge quantity of output capacitor 12 is very small.
  • a charge pump circuit 2 has input terminal 7 , clock input terminal 8 and output terminal 9 similarly to charge pump circuit 1 , and also has a series connection unit of output capacitor 12 and resistances 13 and 14 dividing the output voltage, integrator 15 , clock inverter 16 and boost capacitor 17 .
  • First and second rectifier elements 40 and 41 that are PMOS transistors and serve as switch elements, respectively, are connected in series between input and output terminals 7 and 9 .
  • a gate of first rectifier element 40 is connected to an output of inverter 42 inverting clock signal CLK, and a gate of second rectifier element 41 is connected to an output of an inverter 43 further inverting the output of inverter 42 .
  • Inverters 42 and 43 are supplied with the output voltage on output terminal 9 as a power supply.
  • Charge pump circuit 2 operates similarly to charge pump circuit 1 as a whole, but first and second rectifier elements 40 and 41 are alternately turned on and off in synchronization with the changes in voltage on the negative side of first rectifier element 40 through boost capacitor 17 . More specifically, when clock signal CLK on clock input terminal 8 is high, the voltage on the negative side of first rectifier element 40 lowers through boost capacitor 17 , and first rectifier element 40 is turned on so that boost capacitor 17 temporarily accumulates the charges. When clock signal CLK becomes low thereafter, the voltage on the negative side of first rectifier element 40 , i.e., the voltage on the positive side of second rectifier element 41 rises, and second rectifier element 41 is turned on so that output capacitor 12 accumulates the charges that have been temporarily accumulated in boost capacitor 17 .
  • FIG. 2 shows the PMOS transistor as the switch element, an NMOS transistor or the like may be used.
  • the signals controlling the gates of first and second rectifier elements 40 and 41 may employ a period of non-overlapping. In this case, it is necessary to change output polarities of inverters 42 and 43 , and to add a delay element, but the manners of such change and addition are well know to those skilled in the art, and therefore are not described herein.
  • variable current supply is arranged in series with the first and second rectifier elements.
  • a charge pump circuit 3 has input terminal 7 , clock input terminal 8 and output terminal 9 similarly to charge pump circuit 1 , and also has the series connection unit of output capacitor 12 and resistances 13 and 14 dividing the output voltage, integrator 15 and boost capacitor 17 .
  • First and second rectifier elements 10 and 11 that are diode elements are connected in series between input and output terminals 7 and 9 .
  • a variable current supply 51 is arranged between input terminal 7 and first rectifier element 10 , and is controlled by the output voltage of integrator 15 .
  • the other end of boost capacitor 17 is connected to an output of a clock inverter 52 .
  • Clock inverter 52 inverts clock signal CLK provided from clock input terminal 8 , but does not have a variable current supply.
  • Charge pump circuit 3 operates similarly to charge pump circuit 1 as a whole, but the current value of variable current supply 51 is controlled by the integrated voltage provided from integrator 15 .
  • This current value is the quantity of charges that can move per unit time, and therefore determines the charges that move through first and second rectifier elements 10 and 11 .
  • the ripple voltage is small, and the ripple period is short similarly to charge pump circuit 1 . Also, the current consumption is suppressed.
  • charge pump circuit 3 is a modification of charge pump circuit 1
  • charge pump circuit 2 may be modified, and such a configuration may be employed that the switch elements are used as the first and second rectifier elements, and are arranged in series with the variable current supply.
  • a charge pump circuit 4 includes, in addition to the components of charge pump circuit 1 , a third rectifier element 11 a arranged between second rectifier element 11 and output terminal 9 , and a second boost capacitor 17 a having an end connected to a node between second and third rectifier elements 11 and 11 a.
  • the other end of second boost capacitor 17 a is connected to an output of a second clock inverter 16 a having the same structure as clock inverter 16 .
  • Gates of second power-supply-side transistor 30 a and a second ground-side transistor 31 a of second clock inverter 16 a are connected to an output of an inverter 18 that inverts clock signal CLK.
  • a current value of a second variable current supply 32 a is controlled by the output voltage of integrator 15 similarly to variable current supply 32 .
  • Charge pump circuit 4 operates as follows.
  • clock signal CLK When clock signal CLK is high, the voltage on the negative side of first rectifier element 10 lowers, and the voltage on the negative side of second rectifier element 11 rises. Therefore, the charges move from the positive side to the negative side of first rectifier element 10 , and are temporarily accumulated in boost capacitor 17 .
  • the charges temporarily accumulated in second boost capacitor 17 a move from the positive side to the negative side of third rectifier element 11 a, and are accumulated in output capacitor 12 .
  • clock signal CLK becomes low thereafter, the voltage on the negative side of first rectifier element 10 rises, and the voltage on the negative side of second rectifier element 11 lowers. Accordingly, the charges temporarily accumulated in boost capacitor 17 move from the positive side to the negative side of second rectifier element 11 , and are temporarily accumulated in second boost capacitor 17 a.
  • one of two clock inverters 16 and 16 a may be configured not to have a variable current supply. This is because it is merely required to control only the charges moving through only one of the rectifier elements in some cases.
  • one or more rectifier element(s) may be employed in addition to third rectifier element 11 a.
  • Charge pump circuits 2 and 3 may be modified similarly to charge pump circuit 1 .
  • integrator 15 may be formed of another internal circuit.
  • the output voltage takes a positive value.
  • the invention can be applied to the structure in which the output voltage takes a negative value.
  • the MOS transistor may be replaced with a bipolar transistor.

Abstract

A charge pump circuit (1) includes first and second rectifier elements (10 and 11) connected in series between input and output terminals (7 and 9), provides a predetermined voltage from the output terminal (9) by passing charges successively through the rectifier elements (10 and 11) and accumulating the charges in an output capacitor (12), and further includes an integrator (15) integrating a difference between a feedback voltage provided from the output terminal (9) and a reference voltage, a boost capacitor (17) having an end connected to a node between the first and second rectifier elements (10 and 11), and a clock inverter (16) having power-supply-side and ground-side transistors (30 and 31) receiving a clock signal (CLK), and a variable current supply (32) supplying a current depending on the output voltage of the integrator (15) to one of the transistors, and having an output connected to the other end of the boost capacitor (17).

Description

    TECHNICAL FIELD
  • The present invention relates to a charge pump circuit providing a predetermined voltage.
  • BACKGROUND ART
  • Charge pump circuits that employ, as major components, rectifier elements such as diode elements or switch elements and capacitors have been widely used as circuits that boost an input voltage to provide a predetermined voltage. As one of such circuits, a structure performing feedback control to provide an appropriate output voltage has been proposed and disclosed, e.g., in Japanese Patent Laying-Open No. 2000-066747 (patent document 1). FIG. 5 shows a structure similar to the charge pump circuit disclosed in the patent document 1.
  • A charge pump circuit 101 has an input terminal 107 receiving a power supply voltage VDD, a clock input terminal 108 receiving a clock signal CLK, and an output terminal 109 providing a predetermined boosted voltage to a load connected thereto. Although not shown, the load is a power supply portion of an electric circuit achieving predetermined functions of an electric device.
  • First and second rectifier elements 110 and 111 that are diode elements are connected in series between input and output terminals 107 and 109. Output terminal 109 is connected to an output capacitor 112 and a series connection unit of resistances 113 and 114 dividing an output voltage. A voltage on a node between resistances 113 and 114 is provided as a feedback voltage to an operational amplifier 115. Operational amplifier 115 makes a comparison between the feedback voltage and a reference voltage VREF to provide a high- or low-level signal.
  • The output of operational amplifier 115 is supplied to a base of NPN bipolar transistor 116 having a grounded emitter. A collector of transistor 116 is connected to a collector of an NPN bipolar transistor 117 having a grounded emitter and a base connected to its collector. The collector of transistor 117 is also connected to a constant current supply 118 passing a constant current Is from input terminal 107. The base of transistor 117 is connected to a base of an NPN bipolar transistor 119 having a grounded emitter. A collector of transistor 119 is connected to an IN terminal of a current mirror circuit 120.
  • An OUT1 terminal of current mirror circuit 120 is connected to a collector of an NPN bipolar transistor 121 having a grounded emitter and a collector of an NPN bipolar transistor 122 having a grounded emitter and a base connected to its collector. A base of transistor 121 is connected to clock input terminal 108.
  • Clock input terminal 108 is further connected to an inverter 123, which inverts and outputs clock signal CLK. Inverter 123 provides its output to a base of an NPN bipolar transistor 124 having a grounded emitter. Transistor 124 has a collector connected to an OUT2 terminal of current mirror circuit 120 as well as an emitter connected to a base of an NPN bipolar transistor 125 having a grounded emitter.
  • The base of transistor 122 is connected to a base of an NPN bipolar transistor 126 having a grounded emitter. A collector of transistor 126 is connected to a base of a PNP bipolar transistor 127 having an emitter connected to input terminal 107 and a collector connected to the collector of transistor 125. A node between the collectors of transistors 125 and 127 is connected to the other end of a boost capacitor 128, of which one end is connected to a node between first and second rectifier elements 110 and 111.
  • Charge pump circuit 101 operates as follows. When the voltage on the node between resistances 113 and 114, i.e., the feedback voltage is lower than reference voltage VREF, operational amplifier 115 provides a low-level signal to turn off transistor 116. When transistor 116 is turned off, constant current Is flows through transistor 117, and further flows through transistor 119 to the IN terminal of current mirror circuit 120. Consequently, constant current Is flows through OUT1 and OUT2 terminals of current mirror circuit 120.
  • In this state, when clock signal CLK of clock input terminal 108 attains a high level, transistor 121 is turned on so that transistors 122 and 126 are turned off, and transistor 127 is turned off. Since transistor 124 is turned off, constant current IS flows as a base current through transistor 125, and turns on transistor 125. Consequently, the voltage on the other end of boost capacitor 128 lowers, and the voltage on the negative side of first rectifier element 110 lowers. Charges move from the positive side of first rectifier element 110 to the negative side thereof, and are temporarily accumulated in boost capacitor 128.
  • When clock signal CLK attains a low level thereafter, transistor 121 is turned off so that constant current IS flows through transistors 122 and 126, and constant current IS flows as a base current through transistor 127 to turn on transistor 127. Meanwhile, transistor 124 is turned on so that transistor 125 is turned off. Consequently, the voltage on the other end of boost capacitor 128 rises, and the voltage on the negative side of first rectifier element 110, i.e., the voltage on the positive side of second rectifier element 111 rises. The charges that have been temporarily accumulated in boost capacitor 128 move from the positive side of second rectifier element 111 to the negative side thereof, and are accumulated in output capacitor 112. In this manner, the boosting operation is performed to raise the voltage of output terminal 109 when the feedback voltage is lower than reference voltage VREF.
  • When the feedback voltage is higher than reference voltage VREF, operational amplifier 115 provides a high-level signal to turn on transistor 116. When transistor 116 is turned on, transistors 117 and 119 are turned off, and a current does not flow through the IN terminal of current mirror circuit 120. Consequently, a current does not flow through the OUT1 and OUT2 terminals of current mirror circuit 120. In this state, since clock signal CLK turns off both transistors 125 and 127 regardless of the high and low levels, the charges do not move with respect to first and second rectifier elements 110 and 111. As described above, when the feedback voltage is higher than reference voltage VREF, the boosting operation stops.
  • In a stable operation, therefore, a boosting operation takes place to raise the output voltage during a period of clock signal CLK immediately after the feedback voltage becomes lower than reference voltage VREF. Thereafter, the output voltage slowly falls according to discharging of output capacitor 112 that depends on a magnitude of a load, and the boosting operation stops until the feedback voltage becomes lower than reference voltage VREF. Since a period for which the boosting operation stops is present, the current consumption is suppressed as a whole. The slight rising and lowering of the output voltage, i.e., variations in output voltage described above are referred to as “ripple”, and an amplitude of the variation is referred to as a “ripple voltage”.
  • Patent Document 1: Japanese Patent Laying-Open No. 2000-066747
  • DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • However, when a load is small, a discharge quantity of output capacitor 112 is extremely small so that a period or cycle of the ripple is long, and further the ripple voltage is relatively large. Consequently, a power supply portion of an electric circuit that is connected as a load swings to a relatively large extent with a long cycle so that characteristics of the electric device are liable to lower.
  • The invention has been made in view of the above, and an object of the invention is to provide a charge pump circuit that achieves a short cycle of ripple of an output voltage and a small ripple voltage even when a load is small.
  • Means for Solving the Problems
  • For achieving the above object, a charge pump circuit according to the invention includes first and second rectifier elements connected in series between input and output terminals, an output capacitor connected to the output terminal, and a boost capacitor having one end connected to a node between the first and second rectifier elements; is configured such that charges are moved successively through the first and second rectifier elements by a voltage on the other end of the boost capacitor, and are accumulated in the output capacitor to attain a predetermined voltage on the output terminal; and further includes an integrator providing a voltage produced by integrating a difference between a feedback voltage fed from the output terminal and a reference voltage; and a clock inverter having transistors arranged on a power supply side and a ground side for receiving with a clock signal, and a variable current supply supplying a current depending on the output voltage of the integrator to one of the transistors on the power supply side and the ground side, and providing a voltage depending on a current supplied by the variable current supply to the other terminal of the boost capacitor.
  • A charge pump circuit according to another aspect of the invention includes first and second rectifier elements connected in series between input and output terminals, an output capacitor connected to the output terminal, and a boost capacitor having one end connected to a node between the first and second rectifier elements; is configured such that charges are moved successively through the first and second rectifier elements by a voltage on the other end of the boost capacitor, and are accumulated in the output capacitor to attain a predetermined voltage on the output terminal; and further includes an integrator providing a voltage produced by integrating a difference between a feedback voltage fed from the output terminal and a reference voltage, and a variable current supply arranged between the input terminal and the first rectifier element, and supplying a current depending on the output voltage of the integrator to the first rectifier element.
  • Preferably, the charge pump circuit further includes one or more rectifier elements connected in series between the first and second rectifier elements.
  • Preferably, the rectifier element is a diode element.
  • Preferably, the rectifier element is a switch element, and the first and second rectifier elements are alternately turned on and off.
  • EFFECTS OF THE INVENTION
  • Since the charge pump circuit according to the invention has the integrator providing the voltage produced by integrating the difference between the feedback voltage of the output terminal and the reference voltage, and the variable current supply supplying the current depending on the output voltage of the integrator, the charge pump circuit can control the charges moving through the first and second rectifier elements so that the cycle of ripple of the output voltage can be short and the ripple voltage can be small even when a load is small.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a circuit diagram of a charge pump circuit according to an embodiment of the invention.
  • FIG. 2 is a circuit diagram of a charge pump circuit according to another embodiment of the invention.
  • FIG. 3 is a circuit diagram of a charge pump circuit according to still another embodiment of the invention.
  • FIG. 4 is a circuit diagram of a charge pump circuit according to yet another embodiment of the invention.
  • FIG. 5 is a circuit diagram of a charge pump circuit in the prior art.
  • DESCRIPTION OF THE REFERENCE SIGNS
  • 1-4 charge pump circuit, 7 input terminal, 8 clock input terminal, 9 output terminal, 10 and 40 first rectifier element, 11 and 41 second rectifier element, 12 output capacitor, 15 integrator, 16 clock inverter, 17 boost capacitor, 30 power-supply-side transistor forming clock inverter, 31 ground-side transistor forming clock inverter, 32 and 51 variable current supply
  • BEST MODES FOR CARRYING OUT THE INVENTION
  • Embodiments of the invention will now be described with reference to the drawings. In the following description, the same or corresponding portions bear the same reference numbers, and description thereof is not repeated.
  • FIG. 1 is a circuit diagram of a charge pump circuit of an embodiment of the invention.
  • Referring to FIG. 1, a charge pump circuit 1 includes an input terminal 7 receiving a power supply voltage VDD, an input terminal 8 receiving a clock signal CLK, and an output terminal 9 providing a predetermined boosted voltage to a load connected thereto.
  • First and second rectifier elements 10 and 11 that are diode elements are connected in series between input and output terminals 7 and 9. Although these diode elements shown in FIG. 1 are PN junction diodes, respectively, MOS transistors each having a gate and a drain connected together or the like may be employed. Output terminal 9 is connected to an output capacitor 12 and a series connection unit of resistances 13 and 14 dividing the output voltage. Output capacitor 12 has a large capacitance for suppressing a ripple voltage as far as possible. Resistances 13 and 14 have high resistance values for reducing a current flowing toward a ground potential. A voltage on a node between resistances 13 and 14 is fed as a feedback voltage to an integrator 15.
  • Integrator 15 produces an output voltage by integrating a difference between the feedback voltage and reference voltage VREF, and this output voltage controls a current value of a variable current supply 32 (to be described later) of a clock inverter 16. Clock inverter 16 inverts clock signal CLK provided from clock input terminal 8, and provides a voltage of a waveform depending on the current value of variable current supply 32. The output of clock inverter 16 is connected to the other end of a boost capacitor 17 for a boosting operation, and one end of boost capacitor 17 is connected to a node between first and second rectifier elements 10 and 11.
  • Internal circuits of integrator 15 and clock inverter 16 will now be described. Integrator 15 has an operational amplifier 20, a capacitor 21 and a resistance 22, and a node between resistances 13 and 14 is connected between an inversion input terminal of operational amplifier 20 and one end of capacitor 21. Operational amplifier 20 receives reference voltage VREF on its non-inversion input terminal, receives the foregoing feedback voltage on its inversion input terminal and provides a voltage by integrating a difference between the feedback voltage provided from the output terminal and reference voltage VREF. The output terminal of operational amplifier 20 forms the output of integrator 15. The other end of capacitor 21 is connected to one end of resistance 22, and the other end of resistance 22 is connected to the output terminal of operational amplifier 20. The capacitance of capacitor 21 can be relatively small. Therefore, in the case where many components of charge pump circuit 1 are integrated in an integrated circuit, integrator 15 can also be integrated therein.
  • Clock inverter 16 has a transistor 30 on the power supply side that is a PMOS transistor, a transistor 31 on a ground side that is an NMOS transistor and a variable current supply 32. Gates of power-supply-side transistor 30 and ground-side transistor 31 are connected to clock input terminal 8, a source of power-supply-side transistor 30 is connected to input terminal 7, and a source of ground-side transistor 31 is connected to variable current supply 32. A drain of power-supply-side transistor 30 is connected to a drain of ground-side transistor 31, and a node between these drains forms an output of clock inverter 16. Variable current supply 32 supplies a current toward the ground potential, and the current value thereof is controlled by the output voltage of integrator 15 as already described. Variable current supply 32 may be arranged between input terminal 7 and power-supply-side transistor 30.
  • An operation of charge pump circuit 1 will now be described. Charges supplied from power supply voltage VDD via input terminal 7 are moved successively through first and second rectifier elements 10 and 11 by the voltage on the other end of boost capacitor 17, and are accumulated by output capacitor 12. Thereby, output terminal 9 provides a predetermined voltage.
  • The charges successively move through first and second rectifier elements 10 and 11 as described below in greater detail. When clock signal CLK of clock input terminal 8 is high, the output voltage of clock inverter 16 lowers, and causes the voltage on the negative side of first rectifier element 10 through boost capacitor 17 to lower. Therefore, the charges move from the positive side of first rectifier element 10 to the negative side, and are temporarily accumulated in boost capacitor 17. When clock signal CLK becomes low thereafter, the output of clock inverter 16 rises, and the voltage on the negative side of first rectifier element 10, i.e., the voltage on the positive side of second rectifier element 11 rises. The charges temporarily accumulated in boost capacitor 17 move from the positive side of second rectifier element 11 to the negative side, and are accumulated in output capacitor 12.
  • Resistances 13 and 14 divide the output voltage on output terminal 9, and integrator 15 integrates the feedback voltage, i.e., the voltage on the node between them. The output voltage (integrated voltage) of integrator 15 controls the current value of variable current supply 32 to increase it with rising of the output voltage of integrator 15, and to decrease it with lowering of the output voltage. This current value controls the degree of lowering of the output voltage of clock inverter 16, and consequently determines the charges that move through first and second rectifier elements 10 and 11.
  • More specifically, when the load coupled to output terminal 9 increases, the integrated voltage provided from integrator 15 slightly rises, and the current value of variable current supply 32 increases. When the output voltage of clock inverter 16 lowers while the current value of variable current supply 32 is large, this lowering of the output voltage occurs to a large extent, and the charges moving from the positive side of first rectifier element 10 to the negative side increase in quantity. Conversely, when the load coupled to output terminal 9 is small, the integrated voltage provided from integrator 15 slightly lowers, and the current value of variable current supply 32 decreases. When the output voltage of clock inverter 16 lowers while the current value of variable current supply 32 is small, this lowering of the output voltage occurs to a small extent, and the charges moving from the positive side of first rectifier element 10 to the negative side decrease in quantity. The charges moving through first rectifier element 10 move through second rectifier element 11, and are accumulated in output capacitor 12 as already described.
  • Accordingly, the charges moving through the first and second rectifier elements are controlled according to the load. When the load is small, the moving charges decrease so that the ripple voltage lowers. When the ripple voltage is low, the period of ripple is short even when the discharge quantity of output capacitor 12 is very small. Although there is no period during which the boosting operation stops, current consumption is suppressed because wasteful charges do not move through first and second rectifier elements 10 and 11.
  • Referring to FIG. 2, description will now be given on an embodiment using switch elements as the first and second rectifier elements of the charge pump circuit.
  • Referring to FIG. 2, a charge pump circuit 2 has input terminal 7, clock input terminal 8 and output terminal 9 similarly to charge pump circuit 1, and also has a series connection unit of output capacitor 12 and resistances 13 and 14 dividing the output voltage, integrator 15, clock inverter 16 and boost capacitor 17. First and second rectifier elements 40 and 41 that are PMOS transistors and serve as switch elements, respectively, are connected in series between input and output terminals 7 and 9. A gate of first rectifier element 40 is connected to an output of inverter 42 inverting clock signal CLK, and a gate of second rectifier element 41 is connected to an output of an inverter 43 further inverting the output of inverter 42. Inverters 42 and 43 are supplied with the output voltage on output terminal 9 as a power supply.
  • Charge pump circuit 2 operates similarly to charge pump circuit 1 as a whole, but first and second rectifier elements 40 and 41 are alternately turned on and off in synchronization with the changes in voltage on the negative side of first rectifier element 40 through boost capacitor 17. More specifically, when clock signal CLK on clock input terminal 8 is high, the voltage on the negative side of first rectifier element 40 lowers through boost capacitor 17, and first rectifier element 40 is turned on so that boost capacitor 17 temporarily accumulates the charges. When clock signal CLK becomes low thereafter, the voltage on the negative side of first rectifier element 40, i.e., the voltage on the positive side of second rectifier element 41 rises, and second rectifier element 41 is turned on so that output capacitor 12 accumulates the charges that have been temporarily accumulated in boost capacitor 17.
  • Although FIG. 2 shows the PMOS transistor as the switch element, an NMOS transistor or the like may be used. The signals controlling the gates of first and second rectifier elements 40 and 41 may employ a period of non-overlapping. In this case, it is necessary to change output polarities of inverters 42 and 43, and to add a delay element, but the manners of such change and addition are well know to those skilled in the art, and therefore are not described herein.
  • Referring to FIG. 3, description will now be given on still another embodiment in which the variable current supply is arranged in series with the first and second rectifier elements.
  • Referring to FIG. 3, a charge pump circuit 3 has input terminal 7, clock input terminal 8 and output terminal 9 similarly to charge pump circuit 1, and also has the series connection unit of output capacitor 12 and resistances 13 and 14 dividing the output voltage, integrator 15 and boost capacitor 17. First and second rectifier elements 10 and 11 that are diode elements are connected in series between input and output terminals 7 and 9. Further, a variable current supply 51 is arranged between input terminal 7 and first rectifier element 10, and is controlled by the output voltage of integrator 15. The other end of boost capacitor 17 is connected to an output of a clock inverter 52. Clock inverter 52 inverts clock signal CLK provided from clock input terminal 8, but does not have a variable current supply.
  • Charge pump circuit 3 operates similarly to charge pump circuit 1 as a whole, but the current value of variable current supply 51 is controlled by the integrated voltage provided from integrator 15. This current value is the quantity of charges that can move per unit time, and therefore determines the charges that move through first and second rectifier elements 10 and 11. When the load is small, the ripple voltage is small, and the ripple period is short similarly to charge pump circuit 1. Also, the current consumption is suppressed.
  • Although charge pump circuit 3 is a modification of charge pump circuit 1, charge pump circuit 2 may be modified, and such a configuration may be employed that the switch elements are used as the first and second rectifier elements, and are arranged in series with the variable current supply.
  • Referring to FIG. 4, description will now be given on an embodiment in which the first and second rectifier elements as well as a further rectifier element(s) are connected in series between input and output terminals 7 and 9 for further boosting the output voltage.
  • Referring to FIG. 4, a charge pump circuit 4 includes, in addition to the components of charge pump circuit 1, a third rectifier element 11 a arranged between second rectifier element 11 and output terminal 9, and a second boost capacitor 17 a having an end connected to a node between second and third rectifier elements 11 and 11 a. The other end of second boost capacitor 17 a is connected to an output of a second clock inverter 16 a having the same structure as clock inverter 16. Gates of second power-supply-side transistor 30 a and a second ground-side transistor 31 a of second clock inverter 16 a are connected to an output of an inverter 18 that inverts clock signal CLK. A current value of a second variable current supply 32 a is controlled by the output voltage of integrator 15 similarly to variable current supply 32.
  • Charge pump circuit 4 operates as follows. When clock signal CLK is high, the voltage on the negative side of first rectifier element 10 lowers, and the voltage on the negative side of second rectifier element 11 rises. Therefore, the charges move from the positive side to the negative side of first rectifier element 10, and are temporarily accumulated in boost capacitor 17. Also, the charges temporarily accumulated in second boost capacitor 17 a move from the positive side to the negative side of third rectifier element 11 a, and are accumulated in output capacitor 12. When clock signal CLK becomes low thereafter, the voltage on the negative side of first rectifier element 10 rises, and the voltage on the negative side of second rectifier element 11 lowers. Accordingly, the charges temporarily accumulated in boost capacitor 17 move from the positive side to the negative side of second rectifier element 11, and are temporarily accumulated in second boost capacitor 17 a.
  • In some cases, one of two clock inverters 16 and 16 a may be configured not to have a variable current supply. This is because it is merely required to control only the charges moving through only one of the rectifier elements in some cases. Naturally, one or more rectifier element(s) may be employed in addition to third rectifier element 11 a. Charge pump circuits 2 and 3 may be modified similarly to charge pump circuit 1.
  • Although the charge pump circuits of the embodiments of the invention have been described, the invention is not restricted to the descriptions of the embodiments, and various changes in design may be performed within a scope of the appended claims. For example, integrator 15 may be formed of another internal circuit. In the embodiments already described, the output voltage takes a positive value. However, the invention can be applied to the structure in which the output voltage takes a negative value. Naturally, the MOS transistor may be replaced with a bipolar transistor.
  • Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims (8)

1. A charge pump circuit comprising first and second rectifier elements connected in series between input and output terminals, an output capacitor connected to the output terminal, and a boost capacitor having one end connected to a node between said first and second rectifier elements; being configured such that charges are moved successively through said first and second rectifier elements by a voltage on the other end of said boost capacitor, and are accumulated in said output capacitor to attain a predetermined voltage on said output terminal; and further comprising:
an integrator providing a voltage produced by integrating a difference between a feedback voltage fed from said output terminal and a reference voltage; and
a clock inverter having transistors arranged on a power supply side and a ground side for receiving a clock signal, and a variable current supply supplying a current depending on the output voltage of said integrator to one of said transistors on the power supply side and the ground side, and providing a voltage depending on a current supplied by said variable current supply to the other terminal of said boost capacitor.
2. A charge pump circuit comprising first and second rectifier elements connected in series between input and output terminals, an output capacitor connected to the output terminal, and a boost capacitor having one end connected to a node between said first and second rectifier elements; being configured such that charges are moved successively through said first and second rectifier elements by a voltage on the other end of said boost capacitor, and are accumulated in said output capacitor to attain a predetermined voltage on said output terminal; and further comprising:
an integrator providing a voltage produced by integrating a difference between a feedback voltage fed from said output terminal and a reference voltage; and
a variable current supply arranged between said input terminal and said first rectifier element, and supplying a current depending on the output voltage of said integrator to said first rectifier element.
3. The charge pump circuit according to claim 1, further comprising:
one or more rectifier elements connected in series between said first and second rectifier elements.
4. The charge pump circuit according to claim 1, wherein said rectifier element is a diode element.
5. The charge pump circuit according to claim 1, wherein
said rectifier element is a switch element, and the first and second rectifier elements are alternately turned on and off.
6. The charge pump circuit according to claim 2, further comprising:
one or more rectifier elements connected in series between said first and second rectifier elements.
7. The charge pump circuit according to claim 2, wherein said rectifier element is a diode element.
8. The charge pump circuit according to claim 2, wherein
said rectifier element is a switch element, and the first and second rectifier elements are alternately turned on and off.
US11/576,622 2004-11-05 2005-10-17 Charge Pump Circuit Abandoned US20080030261A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004-322865 2004-11-05
JP2004322865A JP4666345B2 (en) 2004-11-05 2004-11-05 Charge pump circuit
PCT/JP2005/019010 WO2006049007A1 (en) 2004-11-05 2005-10-17 Charge pump circuit

Publications (1)

Publication Number Publication Date
US20080030261A1 true US20080030261A1 (en) 2008-02-07

Family

ID=36319021

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/576,622 Abandoned US20080030261A1 (en) 2004-11-05 2005-10-17 Charge Pump Circuit

Country Status (5)

Country Link
US (1) US20080030261A1 (en)
JP (1) JP4666345B2 (en)
CN (1) CN101048930B (en)
TW (1) TW200631294A (en)
WO (1) WO2006049007A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266281A1 (en) * 2007-04-25 2008-10-30 Innocom Technology (Shenzhen) Co., Ltd.; Innolux Display Corp. Gamma voltage output circuit and liquid crystal display device having same
US20090140794A1 (en) * 2007-11-29 2009-06-04 Chi-Hao Wu Constant-current charge pump
US20090201280A1 (en) * 2008-01-31 2009-08-13 Tpo Displays Corp. Image display system
US20090309633A1 (en) * 2008-06-17 2009-12-17 Monolithic Power Systems Charge pump for switched capacitor circuits with slew-rate control of in-rush current
US20120139620A1 (en) * 2007-10-24 2012-06-07 Cypress Semiconductor Corporation Supply regulated charge pump system
US20150061738A1 (en) * 2013-08-27 2015-03-05 Samsung Electro-Mechanics Co., Ltd. Charge pump circuit
US9087714B2 (en) 2010-09-01 2015-07-21 Ricoh Electronic Devices Co., Ltd. Semiconductor integrated circuit and semiconductor integrated circuit apparatus
US20160211739A1 (en) * 2015-01-15 2016-07-21 Nxp B.V. Integrated circuit charge pump with failure protection
US9484810B2 (en) 2013-08-13 2016-11-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20180109181A1 (en) * 2016-10-14 2018-04-19 Cirrus Logic International Semiconductor Ltd. Charge pump input current limiter
US10651800B2 (en) 2017-02-10 2020-05-12 Cirrus Logic, Inc. Boosted amplifier with current limiting
US10826452B2 (en) 2017-02-10 2020-11-03 Cirrus Logic, Inc. Charge pump with current mode output power throttling

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029098A (en) * 2006-07-20 2008-02-07 Oki Electric Ind Co Ltd Voltage booster circuit
JP5183899B2 (en) * 2006-08-28 2013-04-17 ローム株式会社 Booster circuit
JP5072731B2 (en) * 2008-06-23 2012-11-14 株式会社東芝 Constant voltage boost power supply
JP2010035387A (en) * 2008-07-31 2010-02-12 Daikin Ind Ltd Gate drive device for voltage-type drive element
JP2011061891A (en) * 2009-09-07 2011-03-24 Renesas Electronics Corp Load drive circuit
CN102342006A (en) * 2009-12-03 2012-02-01 松下电器产业株式会社 Semiconductor integrated circuit and step-up circuit having same
TWI423572B (en) * 2010-02-03 2014-01-11 Univ Nat Chiao Tung High speed boosting charge pump circuit
TWI463769B (en) * 2012-03-05 2014-12-01 Novatek Microelectronics Corp Charge pump device
US8922184B2 (en) * 2012-03-22 2014-12-30 Realtek Semiconductor Corp. Integrated switch-capacitor DC-DC converter and method thereof
PL227598B1 (en) * 2013-12-14 2018-01-31 Uniwersytet Jagiellonski System for collecting and measuring of slowly-changing electric charge and method for collecting and measuring of slowly-changing electric charge
WO2017046072A1 (en) * 2015-09-15 2017-03-23 Firecomms Limited Glitch compensation in electronic circuits
US11271476B2 (en) * 2017-05-09 2022-03-08 Sony Semiconductor Solutions Corporation Power supply circuit comprising a charge pump circuit and a feedback circuit for the charge pump circuit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483434A (en) * 1992-01-14 1996-01-09 Seesink; Petrus H. High voltage generator having output current control
US5625544A (en) * 1996-04-25 1997-04-29 Programmable Microelectronics Corp. Charge pump
US6118346A (en) * 1998-05-20 2000-09-12 National Semiconductor Corp. Dynamic matching of up and down currents in charge pumps to reduce spurious tones
US20020075705A1 (en) * 1999-12-23 2002-06-20 Erich Bayer Dc/dc converter and method of operating a dc/dc converter
US6411531B1 (en) * 2000-11-21 2002-06-25 Linear Technology Corporation Charge pump DC/DC converters with reduced input noise
US20020186064A1 (en) * 2000-05-26 2002-12-12 Mitsubishi Denki Kabushiki Kaisha Delay circuit having low operating environment dependency
US6570435B1 (en) * 1999-11-18 2003-05-27 Texas Instruments Incorporated Integrated circuit with current limited charge pump and method
US6850102B2 (en) * 2001-10-24 2005-02-01 Mediatek Inc. Apparatus for calibrating a charge pump and method therefor
US6927441B2 (en) * 2001-03-20 2005-08-09 Stmicroelectronics S.R.L. Variable stage charge pump
US6977441B2 (en) * 1999-08-19 2005-12-20 Seiko Epson Corporation Interconnect substrate and method of manufacture thereof, electronic component and method of manufacturing thereof, circuit board and electronic instrument

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199433A (en) * 1987-10-09 1989-04-18 Nec Corp Balanced bipolar current source circuit
JP4281360B2 (en) * 2003-01-14 2009-06-17 凸版印刷株式会社 Charge pump circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483434A (en) * 1992-01-14 1996-01-09 Seesink; Petrus H. High voltage generator having output current control
US5625544A (en) * 1996-04-25 1997-04-29 Programmable Microelectronics Corp. Charge pump
US6118346A (en) * 1998-05-20 2000-09-12 National Semiconductor Corp. Dynamic matching of up and down currents in charge pumps to reduce spurious tones
US6977441B2 (en) * 1999-08-19 2005-12-20 Seiko Epson Corporation Interconnect substrate and method of manufacture thereof, electronic component and method of manufacturing thereof, circuit board and electronic instrument
US6570435B1 (en) * 1999-11-18 2003-05-27 Texas Instruments Incorporated Integrated circuit with current limited charge pump and method
US20020075705A1 (en) * 1999-12-23 2002-06-20 Erich Bayer Dc/dc converter and method of operating a dc/dc converter
US20020186064A1 (en) * 2000-05-26 2002-12-12 Mitsubishi Denki Kabushiki Kaisha Delay circuit having low operating environment dependency
US6411531B1 (en) * 2000-11-21 2002-06-25 Linear Technology Corporation Charge pump DC/DC converters with reduced input noise
US6927441B2 (en) * 2001-03-20 2005-08-09 Stmicroelectronics S.R.L. Variable stage charge pump
US6850102B2 (en) * 2001-10-24 2005-02-01 Mediatek Inc. Apparatus for calibrating a charge pump and method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080266281A1 (en) * 2007-04-25 2008-10-30 Innocom Technology (Shenzhen) Co., Ltd.; Innolux Display Corp. Gamma voltage output circuit and liquid crystal display device having same
US20120139620A1 (en) * 2007-10-24 2012-06-07 Cypress Semiconductor Corporation Supply regulated charge pump system
US20090140794A1 (en) * 2007-11-29 2009-06-04 Chi-Hao Wu Constant-current charge pump
US20090201280A1 (en) * 2008-01-31 2009-08-13 Tpo Displays Corp. Image display system
US20090309633A1 (en) * 2008-06-17 2009-12-17 Monolithic Power Systems Charge pump for switched capacitor circuits with slew-rate control of in-rush current
US8049551B2 (en) * 2008-06-17 2011-11-01 Monolithic Power Systems, Inc. Charge pump for switched capacitor circuits with slew-rate control of in-rush current
US9087714B2 (en) 2010-09-01 2015-07-21 Ricoh Electronic Devices Co., Ltd. Semiconductor integrated circuit and semiconductor integrated circuit apparatus
US9484810B2 (en) 2013-08-13 2016-11-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20150061738A1 (en) * 2013-08-27 2015-03-05 Samsung Electro-Mechanics Co., Ltd. Charge pump circuit
US20160211739A1 (en) * 2015-01-15 2016-07-21 Nxp B.V. Integrated circuit charge pump with failure protection
US9819260B2 (en) * 2015-01-15 2017-11-14 Nxp B.V. Integrated circuit charge pump with failure protection
US20180109181A1 (en) * 2016-10-14 2018-04-19 Cirrus Logic International Semiconductor Ltd. Charge pump input current limiter
US10581322B2 (en) * 2016-10-14 2020-03-03 Cirrus Logic, Inc. Charge pump input current limiter
US10651800B2 (en) 2017-02-10 2020-05-12 Cirrus Logic, Inc. Boosted amplifier with current limiting
US10826452B2 (en) 2017-02-10 2020-11-03 Cirrus Logic, Inc. Charge pump with current mode output power throttling
US11152906B2 (en) 2017-02-10 2021-10-19 Cirrus Logic, Inc. Charge pump with current mode output power throttling

Also Published As

Publication number Publication date
TW200631294A (en) 2006-09-01
JP2006136134A (en) 2006-05-25
JP4666345B2 (en) 2011-04-06
WO2006049007A1 (en) 2006-05-11
TWI364156B (en) 2012-05-11
CN101048930A (en) 2007-10-03
CN101048930B (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US20080030261A1 (en) Charge Pump Circuit
KR910001643B1 (en) Intergrated high voltage generating system
US7238992B2 (en) Semiconductor circuit for DC-DC converter
US7453312B2 (en) Voltage regulator outputting positive and negative voltages with the same offsets
US6297687B1 (en) Drive control circuit of charged pump circuit
US7961158B2 (en) Constant-current driving circuit
US7583133B2 (en) Self-oscillating regulated low-ripple charge pump and method
US7368969B2 (en) Level shift circuit and semiconductor device
US6927986B2 (en) Power supply and PWM circuits
US7304530B2 (en) Utilization of device types having different threshold voltages
US7199641B2 (en) Selectably boosted control signal based on supply voltage
KR20110087234A (en) Switching regulator
JP2007228679A (en) Charge pump circuit
US7276961B2 (en) Constant voltage outputting circuit
US6972973B2 (en) Voltage booster having noise reducing structure
US7479811B2 (en) Sample/hold circuit module
US8289071B2 (en) Charge pump
US20160261261A1 (en) Methods and Apparatus for a Burst Mode Charge Pump Load Switch
JP5894565B2 (en) Regulator and switch device
US5604671A (en) Charge pump circuit for boosting voltage
US20130113526A1 (en) Control signal generation circuit, charge pump drive circuit, clock driver, and drive method of charge pump
US6141229A (en) Voltage boosting circuit and method thereof
JPH0430207B2 (en)
US11641161B1 (en) Charge pump circuit
US9621022B1 (en) Method and apparatus for generating complementary signals

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROHM CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKATA, KENICHI;REEL/FRAME:019119/0527

Effective date: 20070220

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION