US20070298438A1 - Methods and compositions for determining enzymatic activity - Google Patents
Methods and compositions for determining enzymatic activity Download PDFInfo
- Publication number
- US20070298438A1 US20070298438A1 US11/748,424 US74842407A US2007298438A1 US 20070298438 A1 US20070298438 A1 US 20070298438A1 US 74842407 A US74842407 A US 74842407A US 2007298438 A1 US2007298438 A1 US 2007298438A1
- Authority
- US
- United States
- Prior art keywords
- leu
- lys
- glu
- val
- synthase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *S*(C=Cc(cc1)ccc1O)=O Chemical compound *S*(C=Cc(cc1)ccc1O)=O 0.000 description 2
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12N9/1037—Naringenin-chalcone synthase (2.3.1.74), i.e. chalcone synthase
Definitions
- the phenylpropanoid synthetic pathway in plants produces a class of compounds know as anthocyanins, which are used for a variety of applications.
- Anthocyanins are involved in pigmentation and protection against UV photodamage, synthesis of anti-microbial phytoalexins, and are flavonoid inducers of Rhizobium modulation genes 1-4.
- the phenylpropanoids exhibit cancer chemopreventive activity, as well as anti-mitotic, estrogenic, anti-malarial, anti-oxidant, and antiasthmatic activities.
- the benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids highlight the dietary importance of these compounds.
- Chalcone synthase (CHS) a polyketide synthase, plays an essential role in the biosynthesis of plant phenylpropanoids.
- crystalline polyketide synthases and the three-dimensional coordinates derived therefrom. Three-dimensional coordinates have been obtained for an active form of chalcone synthase and several inactive mutants thereof, both with and without substrate or substrate analog. Similar results have been obtained for the polyketide synthases stilbene synthase and pyrone synthase.
- the three-dimensional properties of polyketide synthase proteins are determined, in particular the three-dimensional properties of the active site.
- the invention features specific coordinates of at least fourteen a carbon atoms defined for the active site in three-dimensional space. R-groups attached to said ⁇ -carbons are defined such that mutants can be made by changing at least one R-group found in the synthase active site. Such mutants may have unique and useful properties.
- isolated non-native (e.g., mutant) synthase(s) having at least fourteen active site ⁇ -carbons having the structural coordinates disclosed herein and one or more R-groups other than those found in native chalcone synthase(s).
- the three-dimensional coordinates disclosed herein can be employed in a variety of methods.
- the polyketide synthase used in the crystallization studies disclosed herein is a chalcone synthase derived from Medicago sataiva (alfalfa).
- alfalfa Medicago sataiva
- a large number of proteins have been isolated and sequenced which have primary amino acid sequence similar to that of chalcone synthase, but for which substrate specificity and/or product is unknown.
- methods for predicting the activity and/or substrate specificity of a putative polyketide synthase there are further provided methods for identifying potential substrates for a polyketide synthase, as well as inhibitors thereof.
- FIG. 2A shows a ribbon representation of the CHS homodimer.
- the approximate alpha carbon positions of Met 137 from each of the monomers are labeled accordingly.
- Naringenin completely fills the coumaroyl-binding and cyclization pockets while the CoA binding tunnels are highlighted by black arrows.
- FIG. 2B presents a stereoview of the monomer's alpha carbon backbone. The orientation of the left-hand monomer is exactly the same as in FIG. 2A . Every twenty residues are numbered starting with residue 3 and include the C-terminal residue, 389.
- FIG. 3 shows a comparison of chalcone synthase and 3-ketoacyl-CoA thiolase.
- Ribbon view of the CHS monomer is oriented perpendicular to the dimer interface.
- the active site cysteine (Cys 164) and the location of bound CoA are rendered as ball and stick models.
- strands ⁇ 1d and ⁇ 2d of the cyclization pocket are noted.
- the reaction catalyzed by CHS is illustrated with the coumaroyl- and malonyl-derived portions of chalcone, respectively.
- the thiolase monomer is depicted in the same orientation as CHS with the Active site cysteine (Cys 125) modeled and the reaction of thiolase as indicated.
- FIG. 4 collectively shows structures of CHS-Acyl-CoA complexes.
- the ribbon diagram in panel FIG. 4A (on the top left) is the same as FIG. 2A .
- the CoA binding region depicted in stereo is bounded by a black box in the upper ribbon diagram.
- Close-up stereoviews of the C 164 S mutant CoA binding region for the malonyl- and hexanoyl-CoA complexes are depicted in FIGS. 4B and 4C , respectively. This mutant retains decarboxylation activity and an acetyl-CoA complex is observed crystallographically for the malonyl-CoA complex.
- FIG. 5A shows the CHS-naringenin complex viewed down the CoA-binding tunnel.
- the ribbon diagram at the top left has been rotated 90 degrees around the y-axis from the orientation shown in FIG. 2A .
- This view approximates the global orientation of the CHS dimer used for the close-up view of the natingenin binding site depicted in stereo.
- the black box highlights the region of CHS shown in stereo close-up. Hydrogen bonds are depicted as dashed cylinders.
- FIG. 5B illustrates a comparison of the CHS apoenzyme, CHS-naringenin, and CHS-resveratrol structures.
- Protein backbone atoms for the three refined structures were superimposed by least squares fit in O. The position of bound naringenin and resveratrol are shown.
- a modeled low energy conformation of chalcone is indicated by dashed cylinders. Strands ⁇ 1d and ⁇ 2d for each complex are also depicted (see FIG. 3 ). ⁇ 2d does not change in all the complexes examined, but ⁇ 1d moves in the CHS-resveratrol complex.
- FIG. 5C presents representative sequence alignment of the ⁇ 1d- ⁇ 2d region is given with positions 255, 266, and 268 highlighted. The first three sequences follow a CHS-like cyclization pathway, while the last three use the STS-cyclization pathway. Figure prepared with MOLSCRIPT and rendered with POV-Ray.
- FIG. 6 presents the proposed reaction mechanism for chalcone synthesis.
- the three boxed regions labeled 1, 2, and 3 depict the addition of acetate units derived from malonyl-CoA during the elongation of polyketide intermediates.
- Box I is depicted in expanded fashion to illustrate the mechanistic details governing the decarboxylation, enolization, and condensation phase of ketide elongation. Smaller black arrows depict the flow of electrons.
- Each acetate unit of the malonyl-CoA thioesters is coded to emphasize the portions of chalcone derived from each of three elongation reactions using malonyl-CoA. Cyclization and aromatization of the enzyme bound tetraketide leads to formation of chalcone. Hydrogen bonds are shown as dashed lines. Coenzyme A is symbolized as a circle.
- FIG. 7 collectively presents three-dimensional models of the elongation and cyclization reaction in CHS and STS. Views are shown in stereo.
- FIG. 7A illustrates the elongation of the triketide covalently attached to Cys 164 by the acetyl-CoA carbanion produces the tetraketide CoA thioester reaction intermediate that subsequently reattaches to Cys 164.
- FIG. 7B illustrates the folding of the tetraketide intermediate in CHS positions the oxygen of C1 near the hydrogen of C6 facilitating internal proton transfer and expulsion of chalcone upon cyclization.
- FIG. 7A illustrates the elongation of the triketide covalently attached to Cys 164 by the acetyl-CoA carbanion produces the tetraketide CoA thioester reaction intermediate that subsequently reattaches to Cys 164.
- FIG. 7B illustrates the folding of the tetraketide intermediate in CHS positions the
- FIG. 7C illustrates alternate folding of the tetraketide intermediate and positioning of the oxygen of C7 near the hydrogen of C2 in STS allows formation of resveratrol using an internal proton transfer followed by hydrolysis and decarboxylation. Rendered and dashed lines illustrate potential hydrogen bonding interactions. Figure prepared with MOLSCREPIT and rendered with POV-Ray.
- FIG. 8 presents a comparison of the active site volumes of CHS and GCHS2.
- the active site volumes available for binding ketide intermediates were calculated with VOID00 for the CHS-COA complex and for a homology model of GCHS2 with CoA.
- the cavities are shown as a wire mesh.
- the homology model of GCHS2 was generated using MODELER and the volume calculated and displayed as for CHS.
- the numbering scheme is for alfalfa CHS homodimer.
- FIG. 9 shows an example of a computer system in block diagram form.
- the phenylpropanoid synthetic pathway in plants produces a class of compounds know as anthocyanins, which are used for a variety of applications.
- Anthocyanins are involved in pigmentation and protection against UV photodamage, synthesis of anti-microbial phytoalexins, and are flavonoid inducers of Rhizobium modulation genes 1-4.
- the phenylpropanoids exhibit cancer chemopreventive activity, as well as anti-mitotic, estrogenic, anti-malarial, anti-oxidant, and antiasthmatic activities.
- the benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids highlight the dietary importance of these compounds.
- Polyketides are a large class of compounds and include a broad range of antibiotics, immunosuppressants and anticancer agents which together account for sales of over $5 billion per year.
- Polyketides are molecules which are an extremely rich source of bioactivities, including antibiotics (e.g., tetracyclines and erythromycin), anti-cancer agents (e.g., daunomycin), immunosuppressants (e.g., FK506 and rapamycin), and veterinary products (e.g., monensin) and the like.
- antibiotics e.g., tetracyclines and erythromycin
- anti-cancer agents e.g., daunomycin
- immunosuppressants e.g., FK506 and rapamycin
- veterinary products e.g., monensin
- Chalcone synthase (CHS), a polyketide synthase, plays an essential role in the biosynthesis of plant phenylpropanoids.
- CHS supplies 4,2′,4′,6′-tetrahydroxychalcone (chalcone) to downstream enzymes that synthesize a diverse set of flavonoid phytoalexins and anthocyanin pigments.
- Synthesis of chalcone by CHS involves the sequential condensation of one p-coumaroyl- and three malonyl-Coenzyme-A (CoA) molecules (Kreuzaler and Hahlbrock, Eur. J. Biochem. 205-213, 1975).
- each subsequent condensation step begins with decarboxylation of malonyl-CoA at the CHS active site; the resulting acetyl-CoA carbanion then serves as the nucleophile for chain elongation.
- CHS uses CoA-thioesters for shuttling substrates and intermediate polyketides instead of the acyl carrier proteins used by the fatty acid synthases. Also, unlike these enzymes, which function as either multichain or multimodular enzyme complexes catalyzing distinct reactions at different active sites, CHS functions as a unimodular polyketide synthase and carries out a series of decarboxylation, condensation, cyclization, and aromatization reactions at a single active site.
- a number of plant polyketide synthases related to CHS by sequence identity including stilbene synthase (STS), bibenzyl synthase (BBS), and acridone synthase (ACS), share a common chemical mechanism, but differ from CHS in their substrate specificity and/or in the stereochemistry of the polyketide cyclization reaction.
- STS condenses one coumaroyl- and three malonyl-CoA molecules, like CHS, but synthesizes resveratrol (resveratrol) through a structurally distinct cyclization intermediate.
- naturally occurring amino acid and “naturally occurring R-group” includes L-isomers of the twenty amino acids naturally occurring in proteins.
- Naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, and lysine.
- all amino acids referred to in this application are in the L-form.
- Unnatural amino acid and “unnatural R-group” includes amino acids that are not naturally found in proteins. Examples of unnatural amino acids included herein are racemic mixtures of selenocysteine and selenomethionine. In addition, unnatural amino acids include the D or L forms of, for example, nor-leucine, para-nitrophenylalanine, homophenylalanine, para-fluorophenylalanine, 3-amino-2-benzylpropionic acid, homoarginines, D-phenylalanine, and the like.
- R-group refers to the substituent attached to the ⁇ -carbon of an amino acid residue.
- An R-group is an important determinant of the overall chemical character of an amino acid. There are twenty natural R-groups found in proteins, which make up the twenty naturally occurring amino acids.
- ⁇ -carbon refers to the chiral carbon atom found in an amino acid residue. Typically, four substituents will be covalently bound to said ⁇ -carbon including an amine group, a carboxylic acid group, a hydrogen atom, and an R-group.
- “Positively charged amino acid” and “positively charged R-group” includes any naturally occurring or unnatural amino acid having a positively charged side chain under normal physiological conditions.
- Examples of positively charged, naturally occurring amino acids include arginine, lysine, histidine, and the like.
- “Negatively charged amino acid” and “negatively charged R-group” includes any naturally occurring or unnatural amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged, naturally occurring amino acids include aspartic acid, glutamic acid, and the like.
- Hydrophobic amino acid and “hydrophobic R-group” includes any naturally occurring or unnatural amino acid having an uncharged, nonpolar side chain that is relatively insoluble in water.
- naturally occurring hydrophobic amino acids are alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, methionine, and the like.
- Hydrophilic amino acid and “hydrophilic R-group” includes any naturally occurring or unnatural amino acid having a charged polar side chain that is relatively soluble in water.
- hydrophilic amino acids include serine, threonine, tyrosine, asparagine, glutamine, cysteine, and the like.
- mutant or mutant synthase refers to a polyketide synthase polypeptide, having the three-dimensional coordinates as set forth in Protein Data Bank (PDB) Accession No. 1BI5 (the content of which is incorporated herein by reference in its entirety), and having R-groups on each ⁇ -carbon other than the prescribed arrangements of R-groups associated with each ⁇ -carbon of a known isolated polyketide synthase (Accession No. 1BI5).
- mutant or mutated synthase polypeptides include those having Protein Data Base Accession No. 1D6F, 1K6I, and 1D6H (the content of which are incorporated herein by reference in their entirety). Access to the foregoing information in the Protein Data Bank can be found at www.rcsb.org.
- R-groups of known isolated polyketide synthases can be readily determined by consulting sequence databases well known in the art, such as, for example, Genbank. Additional R-groups found inside and/or outside of the active site may or may not be the same. R-groups may be a natural R-group, unnatural R-group, hydrophobic R-group, hydrophilic R-group, positively charged R-group, negatively charged R-group, and the like.
- the term “mutant” only refers to the configuration of R-groups within the active site; therefore, mutations outside of the residues found in the active site are not considered to be mutants in light of the present invention.
- Nonmutated synthase includes a synthase wherein no R-group(s) are changed relative to the active site of CHS (see, for example, PDB Accession No. 1BI5).
- a nonmutated synthase according to the present invention may or may not have amino acid residues outside of the active site that are the same as those taught for native CHS.
- a nonmutated synthase is a synthase having an active site comprising ⁇ -carbons having the coordinates as given in Table 1 and having the arrangements of R-groups associated with ⁇ -carbons as given in Table 1. TABLE 1 Structural Cartesian coordinates of ⁇ -carbons found in the active site of a polyketide synthase of the present invention.
- Non-native or “non-native synthase” refers to synthase proteins that are not found in nature, whether isolated or not.
- a non-native synthase may, for example, be a mutated synthase (see, for example, PDB Accession No. 1D6F, 1D6I and 1D6H).
- “Native” or “native synthase” refers to synthase proteins that are produced in nature, e.g., are not mutants (see, for example, PDB Accession No. 1BI5).
- isolated refers to a protein or nucleic acid that has been identified and separated from its natural environment. Contaminant components of its natural environment may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
- the isolated molecule in the case of a protein, will be purified to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence or to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or silver stain.
- nucleic acid the isolated molecule will preferably be purified to a degree sufficient to obtain a nucleic acid sequence using standard sequencing methods.
- “Degenerate variations thereof” refers to changing a gene sequence using the degenerate nature of the genetic code to encode proteins having the same amino acid sequence yet having a different gene sequence.
- polyketide synthases of the present invention are based on amino acid sequences. Degenerate gene variations thereof can be made encoding the same protein due to the plasticity of the genetic code, as described herein.
- “Expression” refers to transcription of a gene or nucleic acid sequence, stable accumulation of nucleic acid, and the translation of that nucleic acid to a polypeptide sequence. Expression of genes also involves transcription of the gene to make RNA, processing of RNA into mRNA in eukaryotic systems, and translation of mRNA into proteins. It is not necessary for the genes to integrate into the genome of a cell in order to achieve expression. This definition in no way limits expression to a particular system or to being confined to cells or a particular cell type and is meant to include cellular, transient, in vitro, in vivo, and viral expression systems in both prokaryotic, eukaryotic cells, and the like.
- Form or “heterologous” genes refers to a gene encoding a protein whose exact amino acid sequence is not normally found in the host cell.
- Promoter refers to a nucleotide sequence element within a nucleic acid fragment or gene that controls We expression of that gene. These can also include expression control sequences. Promoter regulatory elements, and the like, from a variety of sources can be used efficiently to promote gene expression. Promoter regulatory elements are meant to include constitutive, tissue-specific, developmental-specific, inducible, subgenomic promoters, and the like. Promoter regulatory elements may also include certain enhancer elements or silencing elements that improve or regulate transcriptional efficiency. Promoter regulatory elements are recognized by RNA polymerases, promote the binding thereof, and facilitate RNA transcription.
- a polypeptide is a chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation or phosphorylation).
- a polypeptide or protein refers to a polymer in which the monomers are amino acid residues, which are joined together through amide bonds.
- the amino acids are alpha-amino acids, either the L-optical isomer or the D-optical isomer can be used, the L-isomers being typical.
- a synthase polypeptide of the invention is intended to encompass an amino acid sequence as set forth in SEQ ID NO:1 (see, Table 2) or SEQ ID NO:1 having one or more of the following mutations: C164A, H303Q, and N336A, mutants, variants and conservative substitutions thereof comprising L- or D-amino acids and include modified sequences such as glycoproteins.
- polypeptides of the invention are intended to cover naturally occurring proteins, as well as those which are recombinantly or synthetically synthesized.
- Polypeptide or protein fragments are also encompassed by the invention. Fragments can have the same or substantially the same amino acid sequence as the naturally occurring protein.
- a polypeptide or peptide having substantially the same sequence means that an amino acid sequence is largely, but not entirely, the same, but retains a functional activity of the sequence to which it is related.
- polypeptides of the invention include peptides, or full-length protein, that contains substitutions, deletions, or insertions into the protein backbone, that would still have an approximately 70%-90% homology to the original protein over the corresponding portion. A yet greater degree of departure from homology is allowed if like-amino acids, i.e. conservative amino acid substitutions, do not count as a change in the sequence.
- a polypeptide may be substantially related but for a conservative variation, such polypeptides being encompassed by the invention.
- a conservative variation denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acids, or glutamine for asparagine, and the like.
- conservative substitutions include the changes of: alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine, glutamine, or glutamate; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; valine to isoleucine or leucine, and the like.
- conservative variation also includes the use of
- Modifications and substitutions are not limited to replacement of amino acids.
- modifications include incorporation of rare amino acids, dextra-amino acids, glycosylation sites, cytosine for specific disulfide bridge formation.
- the modified peptides can be chemically synthesized, or the isolated gene can be site-directed mutagenized, or a synthetic gene can be synthesized and expressed in bacteria, yeast, baculovirus, tissue culture and so on.
- Chalcone synthase polypeptides of the invention include synthase polypeptides from plants, prokaryotes, eukaryotes, including, for example, invertebrates, mammals and humans and include sequences as set forth in SEQ ID NO:1, as well as sequences that have at least 70% homology to the sequence of SEQ ED NO: 1, fragments, variants, or conservative substitutions of any of the foregoing sequences.
- variant refers to polypeptides modified at one or more amino acid residues yet still retain the biological activity of a synthase polypeptide. Variants can be produced by any number of means known in the art, including, for example, methods such as, for example, error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR mutagenesis, and the like, as well as any combination thereof.
- substantially identical is meant a polypeptide or nucleic acid exhibiting at least 50%, preferably 85%, more preferably 90%, and most preferably 95% homology to a reference amino acid or nucleic acid sequence.
- sequence analysis software e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705.
- sequence analysis software e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705.
- sequence analysis software e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705
- sequence analysis software e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705
- identity in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same when compared and aligned for maximum correspondence over a comparison window or designated region as measured using any number of
- sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
- test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
- sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
- a “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
- Methods of alignment of sequence for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g. by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol.
- BLAST Basic Local Alignment Search Tool at the National Center for Biological Information
- ALIGN AMAS (Analysis of Multiply Aligned Sequences)
- AMPS Protein Multiple Sequence Alignment
- ASSET Aligned Segment Statistical Evaluation Tool
- BIOSCAN BIOSCAN
- BIOSCAN BIOSCAN
- FASTA FASTA, Intervals & Points
- BMB CLUSTAL V, CLUSTAL W, CONSENSUS, LCONSENSUS, WCONSENSUS, Smith-Waterman algorithm, DARWIN, Las Vegas algorithm, FNAT (Forced Nucleotide Alignment Tool), Framealign, Framesearch, DYNAMIC, FILTER, FSAP (Fristensky Sequence Analysis Package), GAP (Global Alignment Program), GENAL, GIBBS, GenQuest, ISSC (Global Alignment Program), GENAL, GIBBS, GenQuest, ISSC (Global Alignment Program), GENAL, GIBBS, GenQu
- Such alignment programs can also be used to screen genome databases to identify polynucleotide sequences having substantially identical sequences.
- a number of genome databases are available, for example, a substantial portion of the human genome is available as part of the Human Genome Sequencing Project (J. Roach, http:///weber.u.Washington.edu/ ⁇ roach/human_genome_progress 2.html) (Gibbs, 1995). At least twenty-one other genomes have already been sequenced, including, for example, M. genitalium (Fraser et al., 1995), M. jannaschii (Bult et al., 1996), H. influenzae (Fleischmann et al., 1995), E.
- BLAST and BLAST 2.0 algorithms are described in Altschul et al., Nuc. Acids Res. 25:3389-3402, 1977, and Altschul et al., J. Mol. Biol. 215:403-410, 1990, respectively.
- Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov).
- HSPs high scoring sequence pairs
- T is referred to as the neighborhood word score threshold (Altschul et al., supra).
- These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them.
- the word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
- the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
- the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Natl. Acad. Sci. USA 90:5873, 1993).
- One measure of similarity provided by BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance.
- P(N) the smallest sum probability
- a nucleic acid is considered similar to a references sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.
- protein and nucleic acid sequence homologies are evaluated using the Basic Local Alignment Search Tool (“BLAST”)
- BLAST Basic Local Alignment Search Tool
- five specific BLAST programs are used to perform the following task:
- the BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as “high-scoring segment pairs,” between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database.
- High-scoring segment pairs are preferably identified (i.e., aligned) by means of a scoring matrix, many of which are known in the art.
- the scoring matrix used is the BLOSUM62 matrix (Gonnet et al., Science 256:1443-1445, 1992; Henikoff and Henikoff, Proteins 17:49-61, 1993).
- the PAM or PAM250 matrices may also be used (see, e.g., Schwartz and Dayhoff, eds., 1978 , Matrices for Detecting Distance Relationships: Atlas of Protein Sequence and Structure , Washington: National Biomedical Research Foundation).
- BLAST programs are accessible through the U.S. National Library of Medicine, e.g., at www.ncbi.nlm.nih.gov.
- the parameters used with the above algorithms may be adapted depending on the sequence length and degree of homology studied. In some embodiments, the parameters may be the default parameters used by the algorithms in the absence of instructions from the user.
- substantially pure polypeptide is meant a synthase polypeptide (e.g., a chalcone synthase) which has been separated from components which naturally accompany it.
- the polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated.
- the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, synthase polypeptide.
- a substantially pure synthase polypeptide may be obtained, for example, by extraction from a natural source; by expression of a recombinant nucleic acid encoding an synthase polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method (e.g., column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis).
- One aspect of the invention resides in obtaining crystals of the synthase polypeptide chalcone synthase of sufficient quality to determine the three dimensional (tertiary) structure of the protein by X-ray diffraction methods.
- the knowledge obtained concerning the three-dimensional structure of chalcone synthase can be used in the determination of the three dimensional structure of other synthase polypeptides in the polyketide synthesis pathway.
- the structural coordinates of chalcone synthase can be used to develop new polyketide synthesis; enzymes or synthase inhibitors using various computer models.
- novel polyketide synthases can be engineered.
- small molecules which mimic or are capable of interacting with a functional domain of a synthase molecule, can be designed and synthesized to modulate chalcone synthase, pyrone synthase, and other polyketide synthase biological functions as well as the biological functions of other polyketide synthases.
- the invention provides a method of “rational” enzyme or drug design.
- Another approach to “rational” enzyme or drug design is based on a lead compound that is discovered using high throughput screens; the lead compound is further modified based on a crystal structure of the binding regions of the molecule in question. Accordingly, another aspect of the invention is to provide related protein sequences or material which is a starting material in the rational design of new synthases or drugs which lead to the synthesis of new polyketides or modify the polyketide synthesis pathway.
- Active Site refers to a site in a synthase defined by amino acid residues that interact with substrate and facilitate a biosynthetic reaction that allows one or more products to be produced.
- An active site is comprised of ⁇ -carbon atoms that are indirectly linked via peptide bonds and have the structural coordinates disclosed in Table 1 ⁇ 2.3 angstroms.
- Other active site amino acids for chalcone synthase include C164, H303, and N336.
- the position in three-dimensional space of an ⁇ -carbon at the active site of a synthase and of R-groups associated therewith can be determined using techniques such as three-dimensional modeling, X-ray crystallography, and/or techniques associated therewith.
- Altered substrate specificity includes a change in the ability of a mutant synthase to produce a polyketide product as compared to a non-mutated synthase. Altered substrate specificity may include the ability of a synthase to exhibit different enzymatic parameters relative to a non-mutated synthase (K m , V max . etc), use different substrates, and/or produce products that are different from those of known non-native synthases.
- “Structure coordinates” refers to Cartesian coordinates (x, y, and z positions) derived from mathematical equations involving Fourier synthesis as determined from patterns obtained via diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a polyketide synthase molecule in crystal form. Diffraction data are used to calculate electron density maps of repeating protein units in the crystal (unit cell). Electron density maps are used to establish the positions of individual atoms within a crystal's unit cell.
- crystal structure coordinates refers to mathematical coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a synthase polypeptide (e.g., a chalcone synthase protein molecule) in crystal form.
- the diffraction data are used to calculate an electron density map of the repeating unit of the crystal.
- the electron density maps are used to establish the positions of the individual atoms within the unit cell of the crystal.
- the coordinates of the cynthase polypeptide can also be obtained by means of computational analysis.
- selenomethionine substitution refers to the method of producing a chemically modified form of the crystal of a synthase (e.g., a chalcone synthase).
- the synthase protein is expressed by bacteria in media that is depleted in methionine and supplement with selenomethionine.
- Selenium is thereby incorporated into the crystal in place of methionine sulfurs.
- the location(s) of selenium are determined by X-ray diffraction analysis of the crystal. This information is used to generate the phase information used to construct a three-dimensional structure of the protein.
- Heavy atom derivatization refers to a method of producing a chemically modified form of a synthase crystal.
- a crystal is soaked in a solution containing heavy atom salts or organometallic compounds, e.g., lead chloride, gold thiomalate, thimerosal, uranyl acetate, and the like, which can diffuse through the crystal and bind to the protein's surface.
- Locations of the bound heavy atoms can be determined by X-ray diffraction analysis of the soaked crystal. This information is then used to construct phase information which can then be used to construct three-dimensional structures of the enzyme as described in Blundel, T. L., and Johnson, N. L., Protein Crystallography, Academic Press (1976), which is incorporated herein by reference.
- Unit cell refers to a basic parallelepiped shaped block. Regular assembly of such blocks may construct the entire volume of a crystal. Each unit cell comprises a complete representation of the unit pattern, the repetition of which builds up the crystal.
- “Mutagenesis” refers to the changing of one R-group for another as defined herein. This can be most easily performed by changing the coding sequence of the nucleic acid encoding the amino acid residue. In the context of the present invention, mutagenesis does not change the carbon coordinates beyond the limits defined herein.
- Space Group refers to the arrangement of symmetry elements within a crystal.
- Molecular replacement refers to generating a preliminary model of a polyketide synthase whose structural coordinates are unknown, by orienting and positioning a molecule whose structural coordinates are known within the unit cell of the unknown crystal so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This in turn can be subject to any of the several forms of refinement to provide a final, accurate structure of the unknown crystal (Lattman, E., 1985, in Methods in Enzymology, 11 5.55-77; Rossmann, M G., ed., “The Molecular Replacement Method” 1972, Int, Sci. Rev.
- a “synthase” or a “polyketide synthase” includes any one of a family of enzymes that catalyze the formation of polyketide compounds.
- Polyketide synthases are generally homodimers, with each monomer being enzymatically active.
- Substrate refers to the Coenzyme-A (CoA) thioesters that are acted on by the polyketide synthases and mutants thereof disclosed herein, such as malonyl-CoA, coumaroyl-CoA, hexamoyl-CoA, and the like.
- the present invention relates to crystallized polyketide synthases and mutants hereof from which the position of specific ⁇ -carbon atoms and R-groups associated herewith comprising the active site can be determined in three-dimensional space.
- the invention also relates to structural coordinates of said polyketide synthases, use of said structural coordinates to develop structural information related to polyketide synthase homologues, mutants, and the like, and to crystal forms of such synthases.
- the invention provides a method whereby said ⁇ -carbon structural coordinates specifically determined for atoms comprising the active site of said synthase, as shown in Table 1 and including C164, H303, and N336, can be used to develop synthases wherein R-groups associated with active site ⁇ -carbon atoms are different from the R-groups found in native CHS, e.g., are mutant synthases.
- the present invention provides for production of mutant polyketide synthases based on the structural information provided herein and for use of said mutant synthases to make a variety of polyketide compounds using a variety of substrates.
- the present invention further provides, for the first time, crystals of several polyketide synthases, as exemplified by chalcone synthase (CHS; PDB Accession No. 1B15), stilbene synthase (STS), and pyrone synthase (PS); see Table 3 for coordinates of PS (“molecule” denoted in the table refers to the particular monomer of the PS dimer). Also provided are coordinates for crystals which are grown in the presence and absence of substrate and substrate analogues, thus allowing definition of the structural or atomic coordinates associated therewith. Said structural coordinates allow determination of the carbon atoms comprising the active site, R-groups associated therewith, and the interaction of said ⁇ -carbons and said R-groups with each other.
- CHS chalcone synthase
- STS stilbene synthase
- PS pyrone synthase
- Table 3 for coordinates of PS (“molecule” denoted in the table refers to the particular monomer of the PS dimer).
- Table 4 identifies various substrates and substrate analogues that were grown with chalcone synthase as well as their PDB accession numbers, all of which are incorporated herein by reference in their entirety.
- the crystals of the present invention belong to the tetragonal space group.
- Crystal structures are preferably obtained at a resolution of about 1.56 angstroms to about 3 angstroms for a polyketide synthase in the presence and in the absence of bound substrate or substrate analog. Coordinates for a polyketide synthase in the absence of a substrate bound in the active site have been deposited at the Brookhaven National Laboratory Protein Data Bank, accession number 1CGK. Those skilled in the art understand that a set of structure coordinates determined by X-ray crystallography is not without standard error.
- FIG. 2 a A schematic representation of the three-dimensional shape of a CHS homodimer is shown in FIG. 2 a , which was prepared by MOLSCRIPT (Kraulis, J. Appl. Crystallogr. 24:946-950, 1991).
- CHS functions as a homodimer of two 42 kDa polypeptides.
- the structure of CHS reveals that the enzyme forms a symmetric dimer with each monomer related by a 2-fold crystallographic axis.
- the dimer interface buries approximately 1580 angstroms with interactions occurring along a fairly flat surface. Two distinct structural features delineate the ends of this interface. First, the N-terminal helix of monomer A entwines with the corresponding helix of monomer B.
- a tight loop containing a cis-peptide bond between Met 137 and Pro 138 exposes the methionine sidechain as a knob on the monomer surface. Across the interface, Met 137 protrudes into a hole found in the surface of the adjoining monomer to form part of the cyclization pocket (discussed below).
- the CHS homodimer contains two functionally independent active sites (Tropf, et al., J. Biol. Chem. 270:7922-7928, 1995). Consistent with this information, bound CoA thioesters and product analogs occupy both active sites of the homodimer in the CHS complex structures. These structures identify the location of the active site at the cleft between the upper and lower domains of each monomer. Each active site consists almost entirely of residues from a single monomer, with Met 137 from the adjoining monomer being the only exception. A detailed description of the active site structure is presented in the Examples section, below.
- An isolated, polyketide synthase of the invention comprises at least fourteen active site ⁇ -carbons having the structural coordinates of Table 1 ⁇ 2.3 angstroms.
- the active site ⁇ -carbons of Table 1 generally are not all contiguous, i.e., are not adjacent to one another in the primary amino acid sequence of a polyketide synthase due to intervening amino acid residues between various active site ⁇ -carbons. Nevertheless, it should be appreciated that certain active site ⁇ -carbons can be adjacent to one another in some instances. Active site ⁇ -carbons are numbered in Table 1 for convenience only and may be situated in any suitable order in the primary amino acid sequence that achieves the structural coordinates given in Table 1.
- R-groups, linked to active site ⁇ -carbons can facilitate the formation of one or more desired reaction products.
- the combination of R-groups selected for use in a synthase can be any combination other than the ordered arrangements of R-groups found in known native isolated polyketide synthases.
- R-groups found on active site ⁇ -carbons are those found in naturally occurring amino acids. In some embodiments, however, R-groups other than those found in naturally occurring amino acids can be used.
- the present invention permits the use of molecular design techniques to design, select, and synthesize genes encoding mutant polyketide synthases that produce different and/or novel polyketide compounds using substrates.
- Mutant proteins of the present invention and nucleic acids encoding the same can be designed by genetic manipulation based on structural information about polyketide synthases. For example, one or more R-groups associated with the active site ⁇ -carbon atoms of CHS can be changed by altering the nucleotide sequence of the corresponding CHS gene, thus making one or more mutant polyketide synthases.
- Such genetic manipulations can be guided by structural information concerning the R-groups found in the active site ⁇ -carbons when substrate is bound to the protein upon crystallization.
- Mutant proteins of the present invention may be prepared in a number of ways available to the skilled artisan.
- the gene encoding wild-type CHS may be mutated at those sites identified herein as corresponding to amino acid residues identified in the active site by means currently available to the artisan skilled in molecular biology techniques. Said techniques include oligonucleotide-directed mutagenesis, deletion, chemical mutagenesis, and the like.
- the protein encoded by the mutant gene is then produced by expressing the gene in, for example, a bacterial or plant expression system.
- polyketide synthase mutants may be generated by site specific-replacement of a particular amino acid with an unnaturally occurring amino acid.
- polyketide synthase mutants may be generated through replacement of an amino acid residue or a particular cysteine or methionine residue with selenocysteine or selenomethionine. This may be achieved by growing a host organism capable of expressing either the wild-type or mutant polypeptide on a growth medium depleted of natural cysteine or methionine or both and growing on medium enriched with either selenocysteine, selenomethionine, or both.
- nucleic acids encoding said polyketide synthase can be synthetically produced using oligonucleotides having overlapping regions, said oligonucleotides being degenerate at specific bases so that mutations are induced.
- nucleic acid sequences encoding a mutated polyketide synthase can be produced by the methods described herein, or any alternative methods available to the skilled artisan.
- A+T rich sequences within the genes introduced into plants may result in aberrant transcription of the gene(s).
- other regulatory sequences residing in the transcribed mRNA e.g. polyadenylation signal sequences (AAUAAA) or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing
- AAUAAA polyadenylation signal sequences
- RNA instability may lead to RNA instability. Therefore, one goal in the design of genes is to generate nucleic acid sequences that have a G+C content that affords mRNA stability and translation accuracy for a particular expression system.
- the new gene sequence can be analyzed for restriction enzyme sites as well as other sites that could affect transcription such as exon:intron junctions, polyA addition signals, or RNA polymerase termination signals.
- Genes encoding polyketide synthases can be placed in an appropriate vector, depending on the artisan's interest, and can be expressed using a suitable expression system.
- An expression vector typically includes elements that permit replication of said vector within the host cell and may contain one or more phenotypic markers for selection of cells containing said gene.
- the expression vector will typically contain sequences that control expression such as promoter sequences, ribosome binding sites, and translational initiation and termination sequences. Expression vectors may also contain elements such as subgenomic promoters, a repressor gene or various activator genes.
- the artisan may also choose to include nucleic acid sequences that result in secretion of the gene product, movement of said product to a particular organelle such as a plant plastid (see U.S. Pat. Nos. 4,762,785; 5,451,513 and 5,545,817, which are incorporated herein by reference) or other sequences that increase the ease of peptide purification, such as an affinity tag.
- expression control sequences are useful in expressing the mutated polyketide synthases when operably linked thereto.
- expression control sequences include, for example, the early and late promoters of SV40 for animal cells, the lac system, the trp system, major operator and promoter systems of phage S, and the control regions of coat proteins, particularly those from RNA viruses in plants.
- a useful transcriptional control sequence is the T7 RNA polymerase binding promoter, which can be incorporated into a pET vector as described by Studier et al., (1990) Methods Enzymology, 185:60-89, which is incorporated herein by reference.
- a desired gene should be operably linked to the expression control sequence and maintain the appropriate reading frame to permit production of the desired polyketide synthase.
- Any of a wide variety of well-known expression vectors are of use to the present invention. These include, for example, vectors comprising segments of chromosomal, non-chromosomal and synthetic DNA sequences such as those derived from SV40, bacterial plasmids including those from E.
- coli such as col E1, pCR1, pBR322 and derivatives thereof, pMB9), wider host range plasmids such as RP4, phage DNA such as phage S, NM989, M13, and other such systems as described by Sambrook et al., (Molecular Cloning, A Laboratory Manual, 2 nd Ed. (1989) Cold Spring Harbor Laboratory Press), which is incorporated herein by reference.
- host cells are available for expressing synthase mutants of the present invention.
- Such host cells include, for example, bacteria such as E. coli, Bacillus and Streptomyces , fungi, yeast, animal cells, plant cells, insect cells, and the like.
- Preferred embodiments of the present invention include chalcone synthase mutants that are expressed in E. coli or in plant cells. Said plant cells can either be in suspension culture or a transgenic plant as further described herein.
- genes encoding synthases of the present invention can be expressed in transgenic plant cells.
- vectors containing the nucleic acid construct encoding polyketide synthases and mutants thereof are inserted into the plant genome.
- these recombinant vectors are capable of stable integration into the plant genome.
- One variable in making a transgenic plant is the choice of a selectable marker.
- a selectable marker is used to identify transformed cells against a high background of untransformed cells. The preference for a particular marker is at the discretion of the artisan, but any of the selectable markers may be used along with any other gene not listed herein that could function as a selectable marker.
- selectable markers include aminoglycoside phosphotransferase gene of transposon Tn5 (Aph 11) (which encodes resistance to the antibiotics kanamycin), neomycin, G418, as well as those genes which code for resistance or tolerance to glyphosate, hygromycin, methotrexate, phosphinothricin, imidazolinones, sulfonylureas, triazolophyrimidine herbicides, such as chlorosulfuron, bromoxynil, dalapon, and the like.
- a reporter gene may be used with a selectable marker. Reporter genes allow the detection of transformed cells and may be used at the discretion of the artisan. A list of these reporter genes is provided in K. Wolsing et al., 1988, Ann. Rev. Genetics, 22:421.
- Said genes are expressed either by promoters expressing in all tissues at all times (constitutive promoters), by promoters expressing in specific tissues (tissue-specific promoters), promoters expressing at specific stages of development (developmental promoters), and/or promoter expression in response to a stimulus or stimuli (inducible promoters). The choice of these is at the discretion of the artisan.
- Plant cells may also be transformed using Agrobacterium , technology (see, for example, U.S. Pat. Nos. 5,177,010 to University of Toledo, 5,104,310 to Texas A&M, U.S. Pat. Nos. 5,149,645, 5,469,976, 5,464,763, 4,940,838, and 4,693,976 to Schilperoot, European Patent Applications 116718, 290799, 320500 to Max Planck, European Patent Applications 604662, 627752 and U.S. Pat.
- Viral vector expression systems can also be used such as those described in U.S. Pat. Nos. 5,316,931, 5,589,367, 5,811,653, and 5,866,785 to BioSource, which are incorporated herein by reference.
- tissue that is contacted with the genes of interest may vary as well. Suitable tissue includes, for examples embryonic tissue, callus tissue, hypocotyl, meristem, and the like. Almost all plant tissues may be transformed during de-differentiation using the appropriate techniques described herein.
- a gene encoding a mutant polyketide synthase is preferably incorporated into a gene transfer vector adapted to express said gene in a plant cell by including in the vector an expression control sequence (plant promoter regulatory element).
- plant promoter regulatory elements include promoter regulatory elements from a variety of sources can be used efficiently in plant cells to express foreign genes.
- promoter regulatory elements of bacterial origin such as the octopine synthase promoter, the nopaline synthase promoter, the mannopine synthase promoter, and the like, may be used.
- Promoters of viral origin such as the cauliflower mosaic virus (35S and 198) are also desirable.
- Plant promoter regulatory elements also include ribulose-1,6-bisphosphate carboxylase small subunit promoter, beta-conglycinin promoter, phaseolin promoter, ADH promoter, heat-shock promoters, tissue specific promoters, and the like. Numerous promoters are available to skilled artisans for use at their discretion.
- the protein obtained therefrom can be purified so that structural analysis, modeling, and/or biochemical analysis can be performed, as exemplified herein.
- the nature of the protein obtained can be dependent on the expression system used.
- genes, when expressed in mammalian or other eukaryotic cells may contain latent signal sequences that may result in glycosylation, phosphorylation, or other post-translational modifications, which may or may not alter function. Therefore, a preferred embodiment of the present invention is the expression of mutant synthase genes in E. coli calls.
- proteins can be easily purified using techniques common to the person having ordinary skill in the art of protein biochemistry, such as, for example, techniques described in Colligan at al., (1997) Current Protocols in Protein Science, Chanda, V. B., Ed., John Wiley & Sons, Inc., which is incorporated herein by reference. Such techniques often include the use of cation-exchange or anion-exchange chromatography, gel filtration-size exclusion chromatography, and the like. Another technique that may be commonly used is affinity chromatography. Affinity chromatography can include the use of antibodies, substrate analogs, or histidine residues (His-tag technology).
- mutants of the present invention may be characterized by any of several different properties.
- such mutants may have altered active site surface charges of one or more charge units.
- said mutants may have altered substrate specificity or product capability relative to a non-mutated polyketide synthase.
- the present invention allows for the characterization of polyketide synthase mutants by crystallization followed by X-ray diffraction.
- Polypeptide crystallization occurs in solutions where the polypeptide concentration exceeds it solubility maximum (i.e., the polypeptide solution is supersaturated). Such solutions may be restored to equilibrium by reducing the polypeptide concentration, preferably through precipitation of the polypeptide crystals.
- polypeptides may be induced to crystallize from supersaturated solutions by adding agents that alter the polypeptide surface charges or perturb the interaction between the polypeptide and bulk water to promote associations that lead to crystallization.
- precipitants are often used to decrease the solubility of the polypeptide in a concentrated solution by forming an energetically unfavorable precipitating layer around the polypeptide molecules (Weber, Advances in Protein Chemistry, 41:1-36, 1991).
- other materials are sometimes added to the polypeptide crystallization solution. These include buffers to adjust the pH of the solution and salts to reduce the solubility of the polypeptide.
- Various precipitants are known in the art and include the following: ethanol, 3-ethyl-2-4 pentanediol, and many of the polyglycols, such as polyethylene glycol.
- polypeptide crystallization methods include the following techniques: batch, hanging drop, seed initiation, and dialysis. In each of these methods, it is important to promote continued crystallization after nucleation by maintaining a supersaturated solution.
- batch method polypeptide is mixed with precipitants to achieve supersaturation, the vessel is sealed, and set aside until crystals appear.
- dialysis method polypeptide is retained in a sealed dialysis membrane that is placed into a solution containing precipitant. Equilibration across the membrane increases the polypeptide and precipitant concentrations thereby causing the polypeptide to reach supersaturation levels.
- an initial polypeptide mixture is created by adding a precipitant to a concentrated polypeptide solution.
- concentrations of the polypeptide and precipitants are such that in this initial form, the polypeptide does not crystallize,
- a small drop of this mixture is placed on a glass slide that is inverted and suspended over a reservoir of a second solution.
- the system is then sealed.
- the second solution contains a higher concentration of precipitant or other dehydrating agent.
- the difference in the precipitant concentrations causes the protein solution to have a higher vapor pressure than the solution. Since the system containing the two solutions is sealed, an equilibrium is established, and water from the polypeptide mixture transfers to the second solution. This equilibrium increases the polypeptide and precipitant concentration in the polypeptide solution. At the critical concentration of polypeptide and precipitant, a crystal of the polypeptide will form.
- Another method of crystallization introduces a nucleation site into a concentrated polypeptide solution.
- a concentrated polypeptide solution is prepared and a seed crystal of the polypeptide is introduced into this solution. If the concentration of the polypeptide and any precipitants are correct, the seed crystal will provide a nucleation site around which a larger crystal forms.
- the crystals of the present invention are formed in hanging drops with (15% PEG 8000; 200 mM magnesium acetate or magnesium chloride, 100 mM 3-(N-morpholino)-2-hydroxypropanesulfonic acid (pH 7.0), 1 mM dithiothreitol as precipitant).
- Some proteins may be recalcitrant to crystallization.
- several techniques are available to the skilled artisan. Quite often the removal of polypeptide segments at the amino or caroxy terminal end of the protein is necessary to produce crystalline protein samples. Said procedures involve either the treatment of the protein with one of several proteases including trypsin, chymotrypsin, substilisin, and the like. This treatment often results in the removal of flexible polypeptide segments that are likely to negatively affect crystallization.
- the removal of coding sequences from the protein's gene facilitates the recombinant expression of shortened proteins that can be screened for crystallization.
- the crystals so produced have a wide range of uses.
- high quality crystals are suitable for X-ray or neutron diffraction analysis to determine the three-dimensional structure of a mutant polyketide synthase and to design additional mutants thereof.
- crystallization can serve as a further purification method.
- a polypeptide or protein will crystallize from a heterogeneous mixture into crystals. Isolation of such crystals by filtration, centrifugation, etc., followed by redissolving the polypeptide affords a purified solution suitable for use in growing the high-quality crystals needed for diffraction studies.
- the high-quality crystals may also be dissolved in water and then formulated to provide an aqueous solution having other uses as desired.
- synthases may crystallize in more than one crystal form
- the structural coordinates of ⁇ -carbons of an active site determined from a synthase or portions thereof, as provided by this invention are particularly useful to solve the structure of other crystal forms of synthases.
- Said structural coordinates, as provided herein, may also be used to solve the structure of synthases having ⁇ -carbons positioned within the active sites in a manner similar to the wild-type, yet having R-groups that may or may not be identical.
- the structural coordinates disclosed herein may be used to determine the structure of the crystalline form of other proteins with significant amino acid or structural homology to any functional domain of a synthase.
- One method that may be employed for such purpose is molecular replacement.
- the unknown crystal structure whether it is another crystal form of a synthase, a synthase having a mutated active site, or the crystal of some other protein with significant sequence and/or structural homology to a polyketide synthase may be determined using the coordinates given in Table 1.
- This method provides sufficient structural form for the unknown crystal more efficiently than attempting to determine such information ab initio.
- this method can be used to determine whether or not a given polyketide synthase in question falls within the scope of this invention.
- polyketide syntheses and mutants thereof may be crystallized in the presence or absence of substrates and substrate analogs.
- the crystal structures of a series of complexes may then be solved by molecular replacement and compared to that of the wild-type to assist in determination of suitable replacements for R-groups within the active site, thus making synthase mutants according to the present invention.
- All mutants of the present inventions may be modeled using the information disclosed herein without necessarily having to crystallize and solve the structure for each and every mutant.
- one skilled in the art may use one of several specialized computer programs to assist in the process of designing synthases having mutated active sites relative to the wild-type. Examples of such programs include: GRID (Goodford, 1985, J. Mod. Chem., 28:849-857), MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function and Genetics, 11:29-34); AUTODOCK (Goodsell and Olsen, 1990, Proteins. Structure, Fumtion, and Genetics, 8:195-202); and DOCK (Kuntz et al., 1982, J.
- MODELLER is a computer program often used for homology or comparative modeling of the three-dimensional structure of a protein.
- a sequence to be modeled is aligned with one or more known related structures and the MODELLER program is used to calculate a full-atom model, based on optimum satisfaction of spatial restraints.
- Such restraints can include, inter alia, homologous structures, site-directed mutagenesis, fluorescence spectroscopy, NMR experiments, or atom-atom potentials of mean force.
- the present invention enables polyketide synthase mutants to be made and the crystal structure thereof to be solved. Moreover, by virtue of the present invention, the location of the active site and the interface of substrate therewith permit the identification of desirable R-groups for mutagenesis.
- the three-dimensional coordinates of the polyketide synthase provided herein may additionally be used to predict the activity and or substrate specificity of a protein whose primary amino acid sequence suggests that it may have polyketide synthase activity.
- the family of CHS-related enzymes is defined, in part, by the presence of four highly conserved amino acid residues, Cys 64 , Phe 215 , His 303 , and Asn 336 . More than 150 enzymes having these conserved residues have been identified to date, including several bacterial proteins. The functions, substrates, and products of many of these enzymes remains unknown.
- structural comparisons of CHS can be made with a putative enzyme. Differences between the two would provide the skilled artisan with information regarding the activity and/or substrate specificity of the putative enzyme. This procedure is demonstrated in the Examples section below.
- a method of predicting the activity and/or substrate specificity of a putative polyketide synthase comprising (a) generating a three-dimensional representation of a known polyketide synthase using three-dimensional coordinate data, (b) generating a predicted three-dimensional representation of a putative polyketide synthase, and (c) comparing the representation of the known polyketide synthase with the representation of the putative polyketide synthase, wherein the differences between the two representations are predictive of activity and/or substrate specificity of the putative polyketide synthase.
- a method of identifying a potential substrate of a polyketide synthase comprising (a) defining the active site of the polyketide synthase based on the atomic coordinates of said polyketide synthase, (b) identifying a potential substrate that fits the defined active site, and (c) contacting the polyketide synthase with the potential substrate of (b) and determining the activity thereon.
- Techniques for computer modeling and structural comparisons similar to those described herein for predicting putative polyketide synthase activity and/or substrate specificity can be used to identify novel substrates for polyketide synthases.
- the structural coordinates and three-dimensional models disclosed herein can be used to design or identify polyketide synthase inhibitors.
- potential inhibitor structures can be modeled with the polyketide synthase active site and those that appear to interact therewith can subsequently be tested in activity assays in the presence of substrate.
- the crystal structure data provided herein can be used in the design of new or improved inhibitors, substrates or binding agents.
- the synthase polypeptide coordinates can be superimposed onto other available coordinates of similar enzymes to identify modifications in the active sites of the enzymes to create novel byproducts of enzymatic activity or to modulate polyketide synthesis.
- the synthase polypeptide coordinates can be superimposed onto other available coordinates of similar enzymes which have substrates or inhibitors bound to them to give an approximation of the way these and related substrates or inhibitors might bind to a synthase.
- Computer programs are widely available that are capable of carrying out the activities necessary to design agents using the crystal structure information provided herein. Examples include, but are not limited to, the computer programs listed below:
- various general purpose machines may be used with programs written in accordance with the teachings herein, or it may be more convenient to construct more specialized apparatus to perform the operations.
- the embodiment is implemented in one or more computer programs executing on programmable systems each comprising at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device.
- the program is executed on the processor to perform the functions described herein.
- Each such program may be implemented in any desired computer language (including machine, assembly, high level procedural, object oriented programming languages, or the like) to communicate with a computer system.
- the language may be a compiled or interpreted language.
- the computer program will typically be stored on a storage media or device (e.g., ROM, CD-ROM, or magnetic or optical media) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein.
- the system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.
- Embodiments of the invention include systems (e.g., internet based systems), particularly computer systems which store and manipulate the coordinate and sequence information described herein.
- a computer system 100 is illustrated in block diagram form in FIG. 9 .
- a computer system refers to the hardware components, software components, and data storage components used to analyze the coordinates and sequences as set forth in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, and Table 3.
- the computer system 100 typically includes a processor for processing, accessing and manipulating the sequence data.
- the processor 105 can be any well-known type of central processing unit, such as, for example, the Pentium III from Intel Corporation, or similar processor from Sun, Motorola, Compaq, AMD or International Business Machines.
- the computer system 100 is a general purpose system that comprises the processor 105 and one or more internal data storage components 110 for storing data, and one or more data retrieving devices for retrieving the data stored on the data storage components.
- the processor 105 and one or more internal data storage components 110 for storing data, and one or more data retrieving devices for retrieving the data stored on the data storage components.
- a skilled artisan can readily appreciate that any one of the currently available computer systems are suitable.
- the computer system 100 includes a processor 105 connected to a bus which is connected to a main memory 115 (preferably implemented as RAM) and one or more internal data storage devices 110 , such as a hard drive and/or other computer readable media having data recorded thereon.
- the computer system 100 further includes one or more data retrieving device 118 for reading the data stored on the internal data storage devices 110 .
- the data retrieving device 118 may represent, for example, a floppy disk drive, a compact disk drive, a magnetic tape drive, or a modem capable of connection to a remote data storage system (e.g., via the internet) etc.
- the internal data storage device 110 is a removable computer readable medium such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded thereon.
- the computer system 100 may advantageously include or be programmed by appropriate software for reading the control logic and/or the data from the data storage component once inserted in the data retrieving device.
- the computer system 100 includes a display 120 which is used to display output to a computer user. It should also be noted that the computer system 100 can be linked to other computer systems 125 a - c in a network or wide area network to provide centralized access to the computer system 100 .
- Software for accessing and processing the coordinate and sequences described herein, may reside in main memory 115 during execution.
- the present invention permits the use of molecular design techniques to design, select and synthesize novel enzymes, chemical entities and compounds, including inhibitory compounds, capable of binding to a polyketide synthase polypeptide (e.g., a chalcone synthase polypeptide), in whole or in part.
- a polyketide synthase polypeptide e.g., a chalcone synthase polypeptide
- PKSs polyketide synthases
- polyketide synthase polypeptide crystal is probed with molecules composed of a variety of different chemical entities to determine optimal sites for interaction between candidate binding molecules (e.g., substrates) and the polyketide synthase (e.g., chalcone synthase).
- candidate binding molecules e.g., substrates
- polyketide synthase e.g., chalcone synthase
- an approach made possible and enabled by this invention is to screen computationally small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to a polyketide synthase polypeptide or fragment thereof.
- the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy.
- chalcone synthase is one member of a family of polyketide synthase polypeptides, many of which have similar functional activity, many polyketide synthase polypeptides may crystallize in more than one crystal form, the structure coordinates of chalcone synthase, or portions thereof, as provided by this invention are particularly useful to solve the structure, function or activity of other crystal forms of polyketide synthase molecules. They may also be used to solve the structure of a polyketide synthase or a chalcone synthase mutant.
- the unknown crystal structure whether it is another polyketide synthase crystal form, a polyketide synthase or chalcone synthase mutant, or a polyketide synthase complexed with a substrate or other molecule, or the crystal of some other protein with significant amino acid sequence homology to any polyketide synthase polypeptide, may be determined using the structure coordinates as provided in Accession Nos. 1BI5, 1D6F, 1D6J, 1D6I, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information ab initio.
- a polyketide synthase or chalcone synthase polypeptide mutant may be crystallized in association or complex with known polyketide synthase binding agents, substrates, or inhibitors.
- the crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of wild-type polyketide synthase molecules. Potential sites for modification within the synthase molecule may thus be identified. This information provides an additional tool for determining the most efficient binding interactions between a polyketide synthase and a chemical entity, substrate or compound.
- All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined to 2-3 ⁇ resolution X-ray data to an R value of about 0.20 or less using computer software, such as X-PLOR (Yale University, 1992, distributed by Molecular Simulations, Inc.). See, e.g., Blundel & Johnson, supra; Methods in Enzymology, vol. 114 and 115, H. W. Wyckoff et al., eds., Academic Press (1985).
- This information may thus be used to optimize known classes of polyketide synthase substrates or binding agents (e.g., inhibitors), and to design and synthesize novel classes of polyketide synthases, substrates, and binding agents (e.g., inhibitors).
- binding agents e.g., inhibitors
- substrates, compounds or binding agents that bind to or inhibit a polyketide synthase polypeptide generally involves consideration of two factors.
- the substrate, compound or binding agent must be capable of physically and structurally associating with a polyketide synthase molecule.
- Non-covalent molecular interactions important in the association of a polyketide synthase with a substrate include hydrogen bonding, van der Waals and hydrophobic interactions, and the like.
- the substrate, compound or binding agent must be able to assume a conformation that allows it to associate with a polyketide synthase molecule. Although certain portions of the substrate, compound or binding agent will not directly participate in this association, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency.
- Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of the binding site, e.g., active site or accessory binding site of a polyketide synthase (e.g., a chalcone synthase polypeptide), or the spacing between functional groups of a substrate or compound comprising several chemical entities that directly interact with a polyketide synthase.
- the potential binding effect of a substrate or chemical compound on a polyketide synthase or the activity a newly synthesized or mutated polyketide synthase might have on a known substrate may be analyzed prior to its actual synthesis and testing by the use of computer modeling techniques. For example, if the theoretical structure of the given substrate or compound suggests insufficient interaction and association between it and a polyketide synthase, synthesis and testing of the compound may be obviated. However, if computer modeling indicates a strong interaction, the molecule may then be tested for its ability to bind to, initiate catalysis or elongation of a polyketide by a polyketide synthase.
- Methods of assaying for polyketide synthase activity are known in the art (as identified and discussed herein). Methods for assaying the effect of a newly created polyketide synthase or a potential substrate or binding agent can be performed in the presence of a known binding agent or polyketide synthase. For example, the effect of the potential binding agent can be assayed by measuring the ability of the potential binding agent to compete with a known substrate.
- a mutagenized synthase, novel synthase, substrate or other binding compound of an polyketide synthase may be computationally evaluated and designed by means of a series of steps in which chemical entities or fragments are screened and selected for their ability to associate with the individual binding pockets or other areas of the polyketide synthase.
- One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a polyketide synthase and more particularly with the individual binding pockets of a chalcone synthase polypeptide.
- This process may begin by visual inspection of, for example, the active site on the computer screen based on the coordinates in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3.
- Selected fragments or substrates or chemical entities may then be positioned in a variety of orientations, or docked, within an individual birding pocket of a polyketide synthase. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics forcefields, such as CHARMM and AMBER.
- Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:
- GRID (Goodford, P. J., “A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules”, J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
- MCSS Clustering, A. and M. Karplus, “Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method.” Proteins: Structure. Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, Mass.
- AUTODOCK (Goodsell, D. S, and A. J. Olsen, “Automated Docking of Substrates to Proteins by Simulated Annealing”, Proteins: Structure. Function, and Genetics, 8, pp. 195-202 (1990)).
- AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.
- DOCK (Kuntz, I. D. et al., “A Geometric Approach to Macromolecule-Ligand Interactions”, J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.
- suitable substrates, chemical entities or fragments have been selected, they can be assembled into a single polypeptide, compound or binding agent (e.g., an inhibitor). Assembly may be performed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of the molecules as set forth in Accession Nos. 1BI5, 1D6F, 1D6T, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3. This would be followed by manual model building using software such as Quanta or Sybyl.
- CAVEAT (Bartlett, P. A. et al., “CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules”. In “Molecular Recognition in Chemical and Biological Problems”, Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, Calif.
- 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Martin, Y. C., “3D Database Searching in Drug Design”, J. Med. Chem., 35, pp. 2145-2154 (1992)).
- substrates, inhibitors or other polyketide synthase interactions may be designed as a whole or “de novo” using either an empty active site or optionally including some portion(s) of known substrates, binding agents or inhibitors.
- LUDI Bohm, H.-J., “The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors”, J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Biosym Technologies, San Diego, Calif.
- LEGEND (Nishibata, Y. and A. Itai, Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations, Burlington, Mass.
- a substrate or compound designed or selected as a polyketide binding agent may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target site.
- Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions.
- the sum of all electrostatic interactions between the binding agent and the polyketide synthase when the binding agent is bound to the polyketide synthase preferably make a neutral or favorable contribution to the enthalpy of binding.
- substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, e.g., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group.
- Such substituted chemical compounds may then be analyzed for efficiency of fit to a polyketide synthase substrate or fit of a modified substrate to a polyketide synthase having a structure defined by the coordinates in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3, by the same computer methods described, above.
- pyrone synthase and chalcone synthase have conserved residues present within their active sites (as described more fully below). Accordingly, modification to the active site of chalcone synthase or a chalcone synthase substrate can be extrapolated to other conserved members of the polyketide family of synthases such as, for example, pyrone synthase.
- Functional fragments of polyketide synthase polypeptides such as, for example, fragments of chalcone synthase can be designed based on the crystal structure and atomic coordinates described herein. Fragments of a chalcone synthase polypeptide and the fragment's corresponding atomic coordinates can be used in the modeling described herein. In addition, such fragments may be used to design novel substrates or modified active sites to create new diverse polyketides.
- the crystal structure and atomic coordinates allow for the design of novel polyketide synthases and novel polyketide synthase substrates.
- the development of new polyketide synthases will lead to the development a biodiverse repertoire of polyketides for use as antibiotics, anti-cancer agents, anti-fungal agents and other therapeutic agents as described herein or known in the art.
- In vitro assay systems for production and determination of activity are known in the art.
- antibiotic activities of novel polyketides can be measured by any number of anti-microbial techniques currently used in hospitals and laboratories.
- anticancer activity can be determined by contacting cells having a cell proliferative disorder with a newly synthesized polyketide and measuring the proliferation or apoptosis of the cells before and after contact with the polyketide.
- apoptosis assays are provided in the following references: Lymphocyte: C. J. Li et al., Science, 268:429-431, 1995; D. Gibellini et al., Br. J. Haematol. 89:24-33, 1995; S. J. Martin et al., J. Immunol. 152:330-42, 1994; C. Terai et al., J. Clin Invest. 87:1710-5, 1991; J.
- product of novel polyketides or polyketide synthases can be carried out in culture.
- mammalian expression constructs carrying polyketide synthases can be introduced into various cell lines such as CHO, 3T3, HL60, Rat-1, or Jurkart cells, for example.
- SF21 insect cells may be used in which case the polyketide synthase gene is expressed using an insect heat shock promoter.
- the invention provides a method for determining the ability of the substrate or agent to be acted upon by a polyketide synthase.
- the method includes contacting components comprising the substrate or agent and a polyketide synthase polypeptide, or a recombinant cell expressing a polyketide synthase polypeptide, under conditions sufficient to allow the substrate or agent to interact and determining the affect of the agent on the activity of the polypeptide.
- the term “affect”, as used herein, encompasses any means by which protein activity can be modulated, and includes measuring the interaction of the agent with the polyketide synthase molecule by physical means including, for example, fluorescence detection of the binding of an agent to the polypeptide.
- agents can include, for example, polypeptides, peptidomimetics, chemical compounds, small molecules, substrates and biologic agents as described herein. Examples of small molecules include but are not limited to small peptides or peptide-like molecules.
- Contacting or incubating includes conditions which allow contact between the test agent or substrate and a polyketide synthase or modified polyketide synthase polypeptide or a cell expressing a polyketide synthase or modified polyketide synthase polypeptide.
- Contacting includes in solution and in solid phase.
- the substrate or test agent may optionally be a combinatorial library for screening a plurality of substrates or test agents. Agents identified in the method of the invention can be further evaluated by chromatography, cloning, sequencing, and the like.
- N-terminal His8-tagged CHS was expressed in BL21(DE3) E. coli cells. Cells were harvested and lysed by sonication. His-tagged CHS was purified from bacterial sonicates using a NI-NTA (Qiagen) column. Thrombin digest removed the His-tag and the protein was passed over another NI-NTA column and a benzamidine-Sepharose (Pharmacia) column. The final purification step used a Superdex 200 16/60 (Pharmacia) column.
- CHS crystals wild-type and C 164 S mutant were grown by vapor diffusion at 4° C. in 2 ⁇ l drops containing a 1:1 mixture of 25 mg/ml protein and crystallization buffer (2.2-2.4 M ammonium sulfate and 0.1 M PIPES, pH 6.5) in the presence or absence of 5 mM DTT. Prior to freezing at 105° K., crystals were stabilized in 40% (v/v) PEG400, 0.1 M PIPES pH 6.5), ad 0.050-0.075 M ammonium sulfate. This cryoprotectant was used for heavy atom soaks. Likewise, all substrate and product analog complexes were obtained by soaking crystals in cryoprotectant containing 10-20 mM of the compound.
- X-ray diffraction data were collected at 105° K using a DIP2000 imaging plate system (Mac-Science Corporation, Japan) and CuK radiation produced by a rotating anode operated at 45 kV and 100 mA and equipped with double focusing Pt/Ni coated mirrors.
- Data were indexed and integrated using DENZO (Otwinowski & Minor, Meth. Enzymol. 276:307-326, 1997) and scaled with SCALEPACK (Otwinowski & Minor, Meth. Enzymol. 276:307-326, 1997).
- the heavy atom derivative datasets were scaled against the native dataset with SCALEIT (CCP4 Suite: Programs for protein crystallography, Acta Crystallogr. D 50:760-763, 1994).
- MIRAS was used to solve the structure of native CHS using native data set 1 (1.8 ⁇ ). Initial phasing was performed with derivative datasets including reflections to 2.3 ⁇ resolution. Heavy atom positions for the Hg(OAc) 2 derivative were estimated by inspection of difference Patterson maps using the program XTALVIEW (MeRee, J. Mol. Graph. 10:44-46, 1992) and initially refined with MLPHARE (Otwinowski, Z. in CCP4 Proc. 80-88, Daresbury Laboratory, Warrington, UK, 1991). Heavy atom positions for the additional derivative data sets were determined by difference Fourier analysis using phases calculated from the Hg(OAc) 2 data set and the Hg positions. These sites were confirmed by inspection of difference Patterson maps.
- the program O (Jones, et al., Acta Crystallogr. D 49:148-157, 1993) was used for model building and graphical display of the molecules and electron-density maps.
- the experimental map for the native 1 dataset at 1.8 ⁇ was of high quality and allowed unambiguous modeling of residues 3 to 389.
- the model was first refined with REFMAC (Murshudov, et al., Acta Crystallogr. D 53:240-255, 1997) and ARP (Lamzin & Wilson, Acta Crystallogr. D 49:129-147, 1993) against the native 1 dataset. This was followed by manual adjustments using I2F o -F c l difference maps.
- Recombinant alfalfa CHS2 was expressed in E. coli , affinity purified using an N-terminal poly-His linker, and crystallized.
- the structure of wild-type CHS was determined using multiple isomorphous replacement supplemented with anomalous scattering (MIRAS) (Table X).
- MIRAS anomalous scattering
- the final 1.56 ⁇ resolution apoenzyme model of CHS included 2982 protein atoms and 355 water molecules.
- the structures of a series of complexes were obtained by difference Fourier analysis. First, a crystal of a mutant (C 164 S) was soaked with malonyl-CoA. This mutant retains limited catalytic activity, and the resulting acetyl-CoA complex yields insight on the decarboxylation reaction.
- CHS functions as a homodimer of two 42 kDa polypeptides.
- the structure of CHS revealed that the enzyme forms a symmetric dimer with each monomer related by a 2-fold crystallographic axis (See FIGS. 2 a and 2 b ).
- the dimer interface buries approximately 1580 ⁇ 2 with interactions occurring along a fairly flat surface.
- Two distinct structural features delineate the ends of this interface.
- First, the N-terminal helix of monomer A entwines with the corresponding helix of monomer B.
- Second, a tight loop containing a cis-peptide bond between Met 137 and Pro 138 exposes the methionine sidechain as a knob on the monomer surface. Across the interface, Met 137 protrudes into a hole found in the surface of the adjoining monomer to form part of the cyclization pocket.
- Each CHS monomer consists of two structural domains (see FIG. 3 ).
- the upper domain exhibits an xBxBx pseudo-symmetric motif originally observed in thiolase from Saccharomyces cerevisiae (Mathieu, et al, Structure 2:797-808, 1994).
- the upper domains of CHS and thiolase are superimposable with a r.m.s. deviation of 3.3 ⁇ for 266 equivalent C-atoms.
- Both enzymes use a cysteine as a nucleophile and shuttle reaction intermediates via CoA molecules.
- CHS condenses a p-coumaroyl- and three malonyl-CoA molecules through an iterative series of reactions, whereas thiolase generates two acetyl-CoA molecules from acetoacetyl-CoA and free CoA.
- the drastic structural differences in the lower domain of CHS create a larger active site than that of thiolase and provide space for the polyketide reaction intermediates required for chalcone formation.
- the CHS homodimer contains two functionally independent active sites. Consistent with this information, bound CoA thioesters and product analogs occupy both active sites of the homodimer in the CHS complex structures. These structures identify the location of the active site at the cleft between the upper and lower domains of each monomer. Each active site consists almost entirely of residues from a single monomer with Met 137 from the adjoining monomer being the only exception. There are remarkably few chemically reactive residues in the active site. Four residues conserved in all the known CHS-related enzymes (Cys 164 , Phe 215 , His 303 , and Asn 336 ) define the active site.
- Cys 164 apparently serves as the nucleophile and as the attachment site for polyketide intermediates as previously suggested for both CHS and STS (Lanz, et al., J. Biol. Chem. 266:9971-9976, 1991). His 303 most likely acts as a general base during the generation of a nucleophilic thiolate anion from Cys 164 , since the N of His 303 is within hydrogen bonding distance of the sulfur of Cys 164 . Phe 215 and Asn 336 may function in the decarboxylation reaction, as discussed below. Topologically, three interconnected cavities intersect with these four residues and form the active site architecture of CHS. These cavities include a CoA-binding tunnel, a coumaroyl-binding pocket, and a cyclization pocket.
- the CoA-binding tunnel is 16 angstroms long and links the surrounding solvent with the buried active site. Binding of the CoA moiety in this tunnel positions substrates at the active site, as observed in the C 164 S mutant (described in greater detail below) complexed with malonyl- or hexanoyl-CoA.
- the conformation of the CoA molecules bound to CHS resembles that observed in other CoA binding enzymes.
- the adenosine nucleoside is in the 2′-endo conformation with an anti-glycosidic bond torsion angle.
- Lys 55 , Arg 58 , and Lys 62 hydrogen bond with two phosphates of CoA.
- Both naringenin and resveratrol bind at the active site end of the CoA-binding tunnel.
- the interactions observed in the naringenin and resveratrol complexes define the coumaroyl-binding and cyclization pockets (see FIG. 5 ).
- the space to the lower left of the CoA-binding tunnel's end serves as the coumaroyl-binding pocket. Residues of this pocket (Ser 133 , Glu 192 , Thr 194 , Thr 197 , and Ser 336 ) surround the coumaroyl-derived portion of the bound naringenin and resveratrol molecules and interact primarily through van der Waals contacts.
- the carbonyl oxygen of Gly 216 hydrogen bonds to the phenolic oxygen of both naringenin and resveratrol and the hydroxyl of Thr 197 interacts with the carbonyl of naringenin derived from coumaroyl-CoA.
- the identity of the residues in this pocket likely contributes to the preference for coumaroyl-CoA as a substrate for parsley CHS over other cinnamoyl-CoA starter molecules, like caffeoyl- or feruloyl-CoA.
- the surface topology of the cyclization pocket dictates how the malonyl-derived portion of the polyketide is folded and how the stereochemistry of the cyclization reaction leading to chalcone formation in CHS and resveratrol formation in STS is controlled.
- the position of the CoA thioesters and product analogs in the CHS active site suggest binding modes for substrates and intermediates in the polyketide elongation mechanism that are consistent with the known product specificity of CHS.
- the stereochemical features of the substrate and product analog complexes elucidate the roles of Cys 164 , Phe 215 , His 303 , and Asn 336 in the reaction mechanism. Utilizing structural constraints derived from the available complexes, the following reaction sequence is proposed (see FIG. 6 ).
- Cys 164 After p-coumaroyl-CoA binds to CHS, Cys 164 , activated by His 303 , attacks the thioester linkage, transferring the coumaroyl moiety to Cys 164 , (Monoketide Intermediate). Asn 336 hydrogen bonds with the carbonyl oxygen of the thioester further stabilizing formation of the tetrahedral reaction intermediate. CoA then dissociates from the enzyme, leaving a coumaroyl-thioester at Cys 164 . Binding of the first malonyl-CoA positions the bridging methylene carbon of the malonyl moiety near the carbonyl carbon of the covalently attached coumaroyl-thioester.
- Asn 336 appears to play a crucial role in the decarboxylation reaction. Structural evidence shows that the decarboxylation reaction does not require transfer of the malonyl moiety to Cys 164 as originally indicated by C0 2 exchange assays. Decarboxylation occurs without Cys 164 , since the C 164 S mutant produces acetyl-CoA as determined crystallographically and confirmed by a functional assay. In the hexanoyl-CoA complex, the side chain amide of Asn 336 provides a hydrogen bond to the carbonyl oxygen of the thioester. This interaction would stabilize the enolate anion resulting from decarboxylation of malonyl-CoA (see FIG. 6 ). At the same time, the lack of formal positive charge at Asn 336 may preserve the partial carbanion character of this resonance-stabilized anion, and thus the nucleophilicity of the carbanion form.
- Phe 215 in the catalytic mechanism is subtler than that of Asn 336 . Its position in both CoA complexes suggests that it provide van der Waals interactions for substrate binding. However, its conservation in bacterial enzymes related to CHS that do not make flavonoids or stilbenes may indicate a more general catalytic role for Phe 215 . Its position near the acetyl moiety of the malonyl-CoA complex suggests that it participates in decarboxylation by favoring conversion of the negatively charged carboxyl group to a neutral carbon dioxide molecule.
- FIG. 7A depicts the addition of the third malonyl-CoA molecule as a three-dimensional model.
- the position of the coumaroyl ring in the modeled triketide intermediate is as observed in the naringenin and resveratrol complexes.
- the coumaroyl-binding pocket locks this moiety in position, while the acetate units added in subsequent chain extension steps bend to fill the cyclization pocket.
- the backbone of bound hexanoyl-CoA provides a guide for modeling the triketide reaction intermediate attached to Cys 164 .
- the cyclization reaction catalyzed by CHS is an intramolecular Claisen condensation encompassing the three acetate units derived from three malonyl-CoAs.
- the nucleophilic methylene group nearest the coumaroyl moiety attacks the carbonyl carbon of the thioester linked to Cys 164 .
- Ring closure proceeds through an internal proton transfer from the nucleophilic carbon to the carbonyl oxygen.
- Modeling of the tetraketide intermediate in a conformation leading to chalcone formation places one of the acidic protons of the nucleophilic carbon (C6) proximal to the target carbonyl (C1) (see FIG. 7B ).
- CHR chalcone reductase
- CHS and STS use the same precursor molecules and reaction mechanism to create a common tetraketide intermediate. Each enzyme must then impart a different folded conformation on this intermediate to facilitate the different cyclization reactions that yield chalcone and resveratrol.
- the three-dimensional structure of STS remains unknown, determination of the CHS structure allows speculation about the basis for the intramolecular aldol condensation and cyclization reaction catalyzed by STS.
- This alternate pathway involves nucleophilic attack of the methylene group (C2) nearest the thioester linkage to Cys 164 on the carbonyl carbon (C7) of the coumaroyl moiety (see FIG. 7 c ).
- the cyclization pocket of CHS accommodates the newly cyclized ring of naringenin more easily than that of resveratrol.
- Strand ⁇ 1d (residues 253 to 259) moves slightly to enlarge the cyclization pocket in the resveratrol complex compared to the naringenin complex.
- Two residues that consistently vary between CHS-like and STS-like enzymes, Asp 255 and Leu 268 move closer together in the resveratrol complex as ⁇ 1d shifts position. Sequence variations of the solvent exposed residues of strands ⁇ 1d and ⁇ 2d may determine the conformation of the tetraketide intermediate before ring formation. Therefore, alterations in the surface topology of the cyclization pocket, mediated partially by the position of strand ⁇ 1d, may affect the stereochemistry of the cyclization reaction and modulate product selectivity.
- sequence databases include approximately 150 plant enzyme sequences classified as CHS like proteins. The substrate and product specificity of a majority of these sequences remains to be determined. In addition, the high sequence similarity of all plant sequences complicates classification of these sequences as authentic CHS, STS, ACS, or BBS enzymes. The information provided by the three-dimensional structure of CHS should make new substrate and product specificity more readily discernible from sequence information.
- GCHS2 Gerbera hybrids
- This variation in reaction specificity results from striking steric differences in the coumaroyl binding and cyclization pockets that substantially reduce the volume of both pockets from 923 ⁇ 3 in CHS to 269 ⁇ 3 in GCHS2, Side chain variation at positions 197 and 338 alter the coumaroyl binding pocket, while the identity of residue 256 dictates major steric changes in the cychzation pocket.
- the reduced size of these pockets in GCHS2 suggests that fewer than three acetate additions will occur, and that a CoA thioester with an acyl moiety smaller than p-coumaroyl initiates the reaction.
- Stilbene synthase from Pinus strubus was overexpressed in E. coli as an octahistidyl N-terminal fusion protein, purified to >90% homogeneity by metal affinity and gel filtration chromatography, and crystallized in the preparation lacking the N-terminal polyhistidine tag (removed by thrombin cleavage) from 13% (w/v) polyethylene glycol (PEG8000), 0.05 M MOPSO, 0.3 M ammonium acetate at pH 7.0.
- This STS is 396 amino acids in length and, like alfalfa CHS exists as a homodimer in solution.
- a partial data set on a frozen crystal (!))K) has been collected to 2.7 ⁇ .
- 2-Pyrone synthase (2-PS) from Gerbera hybrida was expressed and purified from E. coli in a similar manner to CHS and STS. Crystals were obtained from 1.5 M ammonium sulfate. 011 M Na + -succinate, 0.002 M ITT at pH 5.5.
- 2-Pyrone synthase (2-PS) from Gerbera hybrida forms a triketide from an acetyl-CoA initiator and two acetyl-CoA ⁇ -carbanions derived from decarboxylation of two malonyl-CoAs that cyclizes into the 6-methyl-4-hydroxy-2-pyrone.
- alfalfa chalcone synthase 2 (CHS2; 74% amino acid sequence identity to 2-PS)
- a homology model of 2-PS based on the structure of CHS suggested that the 2-PS initiation/elongation cavity is smaller than that of CHS. A smaller cavity would account for the terminal formation of a triketide intermediate prior to cyclization by 2-PS.
- 2-PS was expressed in E. coli , purified and crystallized as described above. Gerbera hybrida 2-PS was expressed in E. coli using the pHIS8 vector and was purified as described for CHS. 2-PS crystals grew at 4° C. in hanging-drops containing a 1:1 mixture of 25 mg ml ⁇ 1 protein and crystallization buffer (1.5 M ammonium sulfate, 50 mM succinic acid (pH 5.5), and 5 mM DTT).
- the 2-PS dimerization surface buries 1805 ⁇ 2 of surface area per monomer and a loop containing a cis-peptide bond between Met 142 and Pro 143 allows the methionine of one monomer to protrude into the adjoining monomer's active site.
- dimerization allows formation of the complete 2-PS active site.
- Acetoacetyl-CoA is a reaction intermediate of 2-PS. Electron density for the ligand is well defined in the 2-PS active site and shows that the acetoacetyl moiety extends from the CoA pantetheine arm into a large internal cavity. The electron density also reveals oxidation of the catalytic cysteine's (Cys 169 ) sulfhydryl to sulfinic acid (—SO 2 H). This oxidation state prevents formation of a covalent acetoacetyl-enzyme complex but allows trapping of the bound acetoacetyl-CoA intermediate.
- the 2-PS active site cavity consists of twenty-seven residues from one monomer and Met 142 from the adjoining monomer.
- Phe 220 and Phe 270 mark the boundary between the CoA binding site and the initiation/elongation cavity.
- Cys 169 , His 308 , and Asn 341 form the catalytic center of 2-PS. These residues are conserved in all homodimeric iterative PKSs. Based on this, catalytic roles were proposed for each residue that are analogous to the corresponding residues in CHS.
- Cys 169 acts as the nucleophile in the reaction and as the attachment site for the elongating polyketide chain.
- Leu 202 and Ile 343 occlude the portion of the 2-PS cavity corresponding to the coumaroyl-binding site of CHS.
- Replacement of Gly 256 in CHS by Leu 261 , in 2-PS severely reduces the size of the active site cavity.
- Substitution of Met 259 in 2-PS for Ile 254 in CHS produces a modest alteration in cavity volume.
- the initiation elongation cavity of CHS was altered by mutagenesis to resemble that of 2-PS.
- the resulting mutant proteins were screened for activity using either p-coumaroyl-CoA or acetyl-CoA as starter molecules.
- Activities of 2-PS, CHS, and the CHS mutants were determined by monitoring product formation using a TLC-based radiometric assay. Assay conditions were 100 mM Hepes (pH 7.0), 30 ⁇ M starter-CoA (either p-coumaroyl-CoA or acetyl-CoA), and 60 ⁇ M [ 14 C]-malonyl-CoA (50,000 cpm) in 100 ⁇ l at 25° C. Reactions were quenched with 5% acetic acid, extracted with ethyl acetate, and applied to TLC plates and developed. Due to the spontaneous cyclization of chalcone into the flavanone naringenin, activities of CHS are referenced to naringenin formation.
- Extracts were analyzed on a Hewlett-Packard HP1100 MSD single quadrupole mass spectrometer coupled to a Zorbax SB-C 18 column (5 ⁇ m, 2.1 mm ⁇ 150 mm).
- HPLC conditions were as follows: gradient system from 0 to 100% methanol in water (each containing 0.2% acetic acid) within 10 min; flow rate 0.25 ml min ⁇ 1 .
- the numbers show m/z values with relative intensities in parenthesis. The observed fragmentation matches previously published data.
- the size of the cavity in 2-PS and CHS confers starter molecule specificity.
- 2-PS accepts acetyl-CoA but does not use p-coumaroyl-CoA.
- the constricted 2-PS active site excludes the bulky coumaroyl group.
- incubation of 2-PS in the presence of coumaroyl-CoA and malonyl-CoA yields methylpyrone produced from three malonyl-CoA molecules.
- the larger initiation/elongation cavity of CHS allows for different sized aliphatic and aromatic starter molecules to be used in vitro with varying efficiencies.
- CHS exhibits a 230-fold preference for p-coumaroyl-CoA versus acetyl-CoA. Alterations in the active site cavity of CHS, affect starter molecule preference.
- the CHS I254M mutant is functionally comparable to wild-type enzyme with a modest reduction in specific activity.
- the T197L and S338I mutants exhibit 10-fold and 3-fold preferences, respectively, for coumaroyl-CoA. Moreover, both form a distinct product using coumaroyl-CoA as a starter molecule. In contrast, the G256L mutant favors acetyl-CoA 3-fold. Like 2-PS, the CHS T197L/G256L/S338I (3 ⁇ ) mutant only accepts acetyl-CoA (or malonyl-CoA) as the starter molecule.
- CTAS forms the same enzyme-bound tetraketide as CHS but does not catalyze the final cyclization reaction. Comparison of these two enzymes reveals that substitution of Thr 197 in CHS with an asparagine in CTAS may prevent the covalently-bound tetraketide intermediate from undergoing cyclization into chalcone.
- ACS uses N-methylanthranoyl-CoA as a starting substrate to produce the alkaloid acridone. Three differences between CHS (Thr 132 , Ser 133 , and Phe 265 ) and ACS (Ser 132 , Ala 133 , and Val 265 ) may alter starter molecule specificity.
- Thr 137 , Ala 138 , Thr 199 , Leu 202 , Met 259 , Leu 261 , Leu 268 , Pro 304 , and Ile 343 of 2-PS are replaced by Cys 106 , Thr 107 , Cys 168 , Cys 171 , Ile 228 , Tyr 230 , Phe 237 , Ala 261 , and Ala 295 , respectively, in the rppA protein.
- Models of the rppA protein based on the 2-PS and CHS structures show that cavity volume is 1145 ⁇ 3 in the rppA protein versus 274 ⁇ 3 in 2-PS (or 923 ⁇ in CHS).
- Manipulation of the active site through amino acid substitutions offers a strategy for increasing the molecular diversity of polyketide formation through both the choice of starter molecule and the number of subsequent condensation steps.
- reaction mechanism for polyketide formation and the structural basis for controlling polyketide length described here may be shared with other more complex iterative (e.g., actinorhodin (act) PKS and tetracenomycin (tcm) PKS) and modular PKSs (e.g., 6-deoxyerythronolide B synthase (DEBS)).
- complex iterative e.g., actinorhodin (act) PKS and tetracenomycin (tcm) PKS
- modular PKSs e.g., 6-deoxyerythronolide B synthase (DEBS)
- the structural similarity of the 2-PS, CHS, and KAS II active sites, the sequence homology of KAS II and the ketosynthases of act PKS, tcm PKS, and DEBS, and mutagenesis studies of CHS and act PKS demonstrating similar roles for the catalytic residues of each protein indicate that a conserved active site architecture catalyzes similar
- the volume of the active site cavities in other PKSs likely limits the size of the final polyketide.
- act PKS and tcm PKS generate octaketide and decaketide products, respectively, at a single active site. This suggests that the active site cavities of these PKSs differ in size, and are larger than those of 2-PS or CHS.
- the ketosynthases of different DEBS modules accept polyketide intermediates ranging in length from five to twelve carbons.
- Modular PKSs like DEBS, use an assembly-line system in which an individual module catalyzes one elongation reaction and passes the growing polyketide to the next module.
- ketosynthase domains of DEBS are functionally permissive, modulation of active site volume in each module's ketosynthase would provide selectivity for the proper sized intermediate at each elongation step. Structural differences among PKSs alter the volume of the initiation/elongation cavity to allow discrimination between starter molecules and to vary the number of elongation steps to ultimately direct the nature and length of the polyketide product.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention comprises crystalline polyketide synthases, isolated non-native polyketide synthases having the structural coordinates of said crystalline polyketide synthases, and nucleic acids encoding such non-native polyketide synthases. Also disclosed are methods of predicting the activity and/or substrated specificity of putative polyketide synthase, methods of identifying potential polyetide synthase substrates, and methods of identifying potential polyketide synthase inhibitors.
Description
- The present invention relates to methods for designing mutant polyketide synthases, and to predicting the activity and/or substrate specificity of putative native and mutant polyketide synthases. The present invention further relates to methods for identifying polyketide synthase substrates and/or inhibitors.
- Advances in molecular biology have allowed the development of biological agents useful in modulating protein or nucleic acid activity or expression, respectively. Many of these advances are based on identifying the primary sequence of the molecule to be modulated. For example, determining the nucleic acid sequence of DNA or RNA allows the development of antisense or ribozyme molecules. Similarly, identifying the primary sequence allows for the identification of sequences that may be useful in creating monoclonal antibodies. However, often the primary sequence of a protein is insufficient to develop therapeutic or diagnostic molecules due to the secondary, tertiary or quartenary structure of the protein from which the primary sequence is obtained. The process of designing potent and specific inhibitors or activators has improved with the arrival of techniques for determining the three-dimensional structure of an enzyme or polypeptide to be modulated.
- The phenylpropanoid synthetic pathway in plants produces a class of compounds know as anthocyanins, which are used for a variety of applications. Anthocyanins are involved in pigmentation and protection against UV photodamage, synthesis of anti-microbial phytoalexins, and are flavonoid inducers of Rhizobium modulation genes 1-4. As medicinal natural products, the phenylpropanoids exhibit cancer chemopreventive activity, as well as anti-mitotic, estrogenic, anti-malarial, anti-oxidant, and antiasthmatic activities. The benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the dietary importance of these compounds. Chalcone synthase (CHS), a polyketide synthase, plays an essential role in the biosynthesis of plant phenylpropanoids.
- An improvement in the understanding of the structure/function of these enzymes would allow for the exploitation of the synthetic capabilities of known enzymes for production of useful new chemical compounds, or allow for the creation of novel non-native enzymes having new synthetic capabilities. A need exists, therefore, for a detailed understanding of the molecular basis of the chemical reactions involved in polyketide synthesis. The present invention addresses this and related needs.
- In accordance with the present invention there are presented crystalline polyketide synthases and the three-dimensional coordinates derived therefrom. Three-dimensional coordinates have been obtained for an active form of chalcone synthase and several inactive mutants thereof, both with and without substrate or substrate analog. Similar results have been obtained for the polyketide synthases stilbene synthase and pyrone synthase.
- One aspect of the present invention that is made possible by results described herein is that the three-dimensional properties of polyketide synthase proteins are determined, in particular the three-dimensional properties of the active site. The invention features specific coordinates of at least fourteen a carbon atoms defined for the active site in three-dimensional space. R-groups attached to said α-carbons are defined such that mutants can be made by changing at least one R-group found in the synthase active site. Such mutants may have unique and useful properties. Thus, in another embodiment of the invention, there are provided isolated non-native (e.g., mutant) synthase(s) having at least fourteen active site α-carbons having the structural coordinates disclosed herein and one or more R-groups other than those found in native chalcone synthase(s).
- The three-dimensional coordinates disclosed herein can be employed in a variety of methods. The polyketide synthase used in the crystallization studies disclosed herein is a chalcone synthase derived from Medicago sataiva (alfalfa). A large number of proteins have been isolated and sequenced which have primary amino acid sequence similar to that of chalcone synthase, but for which substrate specificity and/or product is unknown. Thus, in another embodiment of the present invention, there are provided methods for predicting the activity and/or substrate specificity of a putative polyketide synthase. There are further provided methods for identifying potential substrates for a polyketide synthase, as well as inhibitors thereof.
- Other aspects, embodiments, advantages, and features of the present invention will become apparent from the following specification.
-
FIG. 1A presents the chemical structures of chalcone, naringenin, resveratrol, and cerulenin.FIG. 1B presents final SIGMAA-weighted 2Fo-Fc electron density map of the CHS-resveratrol complex in the vicinity of the resveratrol binding site. The map is contoured at 1σ. -
FIG. 2A shows a ribbon representation of the CHS homodimer. The approximate alpha carbon positions of Met 137 from each of the monomers are labeled accordingly. Naringenin completely fills the coumaroyl-binding and cyclization pockets while the CoA binding tunnels are highlighted by black arrows. Produced with MOLSCRIPT and rendered with POV-Ray.FIG. 2B presents a stereoview of the monomer's alpha carbon backbone. The orientation of the left-hand monomer is exactly the same as inFIG. 2A . Every twenty residues are numbered starting withresidue 3 and include the C-terminal residue, 389. -
FIG. 3 shows a comparison of chalcone synthase and 3-ketoacyl-CoA thiolase. Ribbon view of the CHS monomer is oriented perpendicular to the dimer interface. The active site cysteine (Cys 164) and the location of bound CoA are rendered as ball and stick models. In addition, strands β1d and β2d of the cyclization pocket are noted. The reaction catalyzed by CHS is illustrated with the coumaroyl- and malonyl-derived portions of chalcone, respectively. The thiolase monomer is depicted in the same orientation as CHS with the Active site cysteine (Cys 125) modeled and the reaction of thiolase as indicated. Figure prepared with MOLSCRIPT and rendered with POV-Ray. -
FIG. 4 collectively shows structures of CHS-Acyl-CoA complexes. The ribbon diagram in panelFIG. 4A (on the top left) is the same asFIG. 2A . The CoA binding region depicted in stereo is bounded by a black box in the upper ribbon diagram. Close-up stereoviews of the C164S mutant CoA binding region for the malonyl- and hexanoyl-CoA complexes are depicted inFIGS. 4B and 4C , respectively. This mutant retains decarboxylation activity and an acetyl-CoA complex is observed crystallographically for the malonyl-CoA complex. In each complex, placement of the Met 137 loop originating from the dyad-related molecule spatially defines one wall of the cyclization pocket. Hydrogen bonds are depicted as spheres. Figure prepared with MOLSCRIPT and rendered with POV-Ray. -
FIG. 5A shows the CHS-naringenin complex viewed down the CoA-binding tunnel. The ribbon diagram at the top left has been rotated 90 degrees around the y-axis from the orientation shown inFIG. 2A . This view approximates the global orientation of the CHS dimer used for the close-up view of the natingenin binding site depicted in stereo. Again, the black box highlights the region of CHS shown in stereo close-up. Hydrogen bonds are depicted as dashed cylinders.FIG. 5B illustrates a comparison of the CHS apoenzyme, CHS-naringenin, and CHS-resveratrol structures. Protein backbone atoms for the three refined structures (apoenzyme, naringenin, and resveratrol) were superimposed by least squares fit in O. The position of bound naringenin and resveratrol are shown. For reference, a modeled low energy conformation of chalcone is indicated by dashed cylinders. Strands β1d and β2d for each complex are also depicted (seeFIG. 3 ). β2d does not change in all the complexes examined, but β1d moves in the CHS-resveratrol complex.FIG. 5C presents representative sequence alignment of the β1d-β2d region is given with positions 255, 266, and 268 highlighted. The first three sequences follow a CHS-like cyclization pathway, while the last three use the STS-cyclization pathway. Figure prepared with MOLSCRIPT and rendered with POV-Ray. -
FIG. 6 presents the proposed reaction mechanism for chalcone synthesis. The three boxed regions labeled 1, 2, and 3 depict the addition of acetate units derived from malonyl-CoA during the elongation of polyketide intermediates. Box I is depicted in expanded fashion to illustrate the mechanistic details governing the decarboxylation, enolization, and condensation phase of ketide elongation. Smaller black arrows depict the flow of electrons. Each acetate unit of the malonyl-CoA thioesters is coded to emphasize the portions of chalcone derived from each of three elongation reactions using malonyl-CoA. Cyclization and aromatization of the enzyme bound tetraketide leads to formation of chalcone. Hydrogen bonds are shown as dashed lines. Coenzyme A is symbolized as a circle. -
FIG. 7 collectively presents three-dimensional models of the elongation and cyclization reaction in CHS and STS. Views are shown in stereo.FIG. 7A illustrates the elongation of the triketide covalently attached to Cys 164 by the acetyl-CoA carbanion produces the tetraketide CoA thioester reaction intermediate that subsequently reattaches to Cys 164.FIG. 7B illustrates the folding of the tetraketide intermediate in CHS positions the oxygen of C1 near the hydrogen of C6 facilitating internal proton transfer and expulsion of chalcone upon cyclization.FIG. 7C illustrates alternate folding of the tetraketide intermediate and positioning of the oxygen of C7 near the hydrogen of C2 in STS allows formation of resveratrol using an internal proton transfer followed by hydrolysis and decarboxylation. Rendered and dashed lines illustrate potential hydrogen bonding interactions. Figure prepared with MOLSCREPIT and rendered with POV-Ray. -
FIG. 8 presents a comparison of the active site volumes of CHS and GCHS2. The active site volumes available for binding ketide intermediates were calculated with VOID00 for the CHS-COA complex and for a homology model of GCHS2 with CoA. The cavities are shown as a wire mesh. The homology model of GCHS2 was generated using MODELER and the volume calculated and displayed as for CHS. The numbering scheme is for alfalfa CHS homodimer. Figure prepared with MOLSCRIPT and rendered with POV-Ray. -
FIG. 9 shows an example of a computer system in block diagram form. - The phenylpropanoid synthetic pathway in plants produces a class of compounds know as anthocyanins, which are used for a variety of applications. Anthocyanins are involved in pigmentation and protection against UV photodamage, synthesis of anti-microbial phytoalexins, and are flavonoid inducers of Rhizobium modulation genes 1-4. As medicinal natural products, the phenylpropanoids exhibit cancer chemopreventive activity, as well as anti-mitotic, estrogenic, anti-malarial, anti-oxidant, and antiasthmatic activities. The benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the dietary importance of these compounds.
- Polyketides are a large class of compounds and include a broad range of antibiotics, immunosuppressants and anticancer agents which together account for sales of over $5 billion per year. Polyketides are molecules which are an extremely rich source of bioactivities, including antibiotics (e.g., tetracyclines and erythromycin), anti-cancer agents (e.g., daunomycin), immunosuppressants (e.g., FK506 and rapamycin), and veterinary products (e.g., monensin) and the like. Many polyketides (produced by polyketide synthases) are valuable as therapeutic agents. Polyketide synthases are multifunctional enzymes that catalyze the biosynthesis of a huge variety of carbon chains differing in length and patterns of functionality and cyclization.
- Chalcone synthase (CHS), a polyketide synthase, plays an essential role in the biosynthesis of plant phenylpropanoids. CHS supplies 4,2′,4′,6′-tetrahydroxychalcone (chalcone) to downstream enzymes that synthesize a diverse set of flavonoid phytoalexins and anthocyanin pigments. Synthesis of chalcone by CHS involves the sequential condensation of one p-coumaroyl- and three malonyl-Coenzyme-A (CoA) molecules (Kreuzaler and Hahlbrock, Eur. J. Biochem. 205-213, 1975). After initial capture of the p-coumaroyl moiety, each subsequent condensation step begins with decarboxylation of malonyl-CoA at the CHS active site; the resulting acetyl-CoA carbanion then serves as the nucleophile for chain elongation.
- Ultimately, these reactions generate a tetraketide intermediate that cyclizes by a Claisen condensation into a hydroxylated aromatic ring system. This mechanism mirrors those of the fatty acid and polyketide synthases but with significant differences. CHS uses CoA-thioesters for shuttling substrates and intermediate polyketides instead of the acyl carrier proteins used by the fatty acid synthases. Also, unlike these enzymes, which function as either multichain or multimodular enzyme complexes catalyzing distinct reactions at different active sites, CHS functions as a unimodular polyketide synthase and carries out a series of decarboxylation, condensation, cyclization, and aromatization reactions at a single active site.
- A number of plant polyketide synthases related to CHS by sequence identity, including stilbene synthase (STS), bibenzyl synthase (BBS), and acridone synthase (ACS), share a common chemical mechanism, but differ from CHS in their substrate specificity and/or in the stereochemistry of the polyketide cyclization reaction. For example, STS condenses one coumaroyl- and three malonyl-CoA molecules, like CHS, but synthesizes resveratrol (resveratrol) through a structurally distinct cyclization intermediate.
- While the cloning of nearly 150 CHS-related genes, and characterization of some of these proteins, provides insight into their biological function, it remains unclear how these enzymes perform multiple decarboxylation and condensation reactions and how they dictate the stereochemistry of the final polyketide cyclization reaction. Furthermore, despite significant advances in the biosynthetic manipulation of structurally complex and biologically important natural products, there remains a lack of structural information on polyketide synthases from any source.
- As used herein, “naturally occurring amino acid” and “naturally occurring R-group” includes L-isomers of the twenty amino acids naturally occurring in proteins. Naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, and lysine. Unless specially indicated, all amino acids referred to in this application are in the L-form.
- “Unnatural amino acid” and “unnatural R-group” includes amino acids that are not naturally found in proteins. Examples of unnatural amino acids included herein are racemic mixtures of selenocysteine and selenomethionine. In addition, unnatural amino acids include the D or L forms of, for example, nor-leucine, para-nitrophenylalanine, homophenylalanine, para-fluorophenylalanine, 3-amino-2-benzylpropionic acid, homoarginines, D-phenylalanine, and the like.
- “R-group” refers to the substituent attached to the α-carbon of an amino acid residue. An R-group is an important determinant of the overall chemical character of an amino acid. There are twenty natural R-groups found in proteins, which make up the twenty naturally occurring amino acids.
- “α-carbon” refers to the chiral carbon atom found in an amino acid residue. Typically, four substituents will be covalently bound to said α-carbon including an amine group, a carboxylic acid group, a hydrogen atom, and an R-group.
- “Positively charged amino acid” and “positively charged R-group” includes any naturally occurring or unnatural amino acid having a positively charged side chain under normal physiological conditions. Examples of positively charged, naturally occurring amino acids include arginine, lysine, histidine, and the like.
- “Negatively charged amino acid” and “negatively charged R-group” includes any naturally occurring or unnatural amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged, naturally occurring amino acids include aspartic acid, glutamic acid, and the like.
- “Hydrophobic amino acid” and “hydrophobic R-group” includes any naturally occurring or unnatural amino acid having an uncharged, nonpolar side chain that is relatively insoluble in water. Examples of naturally occurring hydrophobic amino acids are alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, methionine, and the like.
- “Hydrophilic amino acid” and “hydrophilic R-group” includes any naturally occurring or unnatural amino acid having a charged polar side chain that is relatively soluble in water. Examples of naturally occurring hydrophilic amino acids include serine, threonine, tyrosine, asparagine, glutamine, cysteine, and the like.
- “Mutant” or “mutated synthase” refers to a polyketide synthase polypeptide, having the three-dimensional coordinates as set forth in Protein Data Bank (PDB) Accession No. 1BI5 (the content of which is incorporated herein by reference in its entirety), and having R-groups on each α-carbon other than the prescribed arrangements of R-groups associated with each α-carbon of a known isolated polyketide synthase (Accession No. 1BI5). Examples of mutant or mutated synthase polypeptides include those having Protein Data Base Accession No. 1D6F, 1K6I, and 1D6H (the content of which are incorporated herein by reference in their entirety). Access to the foregoing information in the Protein Data Bank can be found at www.rcsb.org.
- The R-groups of known isolated polyketide synthases can be readily determined by consulting sequence databases well known in the art, such as, for example, Genbank. Additional R-groups found inside and/or outside of the active site may or may not be the same. R-groups may be a natural R-group, unnatural R-group, hydrophobic R-group, hydrophilic R-group, positively charged R-group, negatively charged R-group, and the like. The term “mutant” only refers to the configuration of R-groups within the active site; therefore, mutations outside of the residues found in the active site are not considered to be mutants in light of the present invention.
- “Nonmutated synthase” includes a synthase wherein no R-group(s) are changed relative to the active site of CHS (see, for example, PDB Accession No. 1BI5). A nonmutated synthase according to the present invention may or may not have amino acid residues outside of the active site that are the same as those taught for native CHS. In addition, a nonmutated synthase is a synthase having an active site comprising α-carbons having the coordinates as given in Table 1 and having the arrangements of R-groups associated with α-carbons as given in Table 1.
TABLE 1 Structural Cartesian coordinates of α-carbons found in the active site of a polyketide synthase of the present invention. Active Site-Carbon Number X Position Y Position Z Position Amino Acid 1 25.378 49.320 57.979 Thr 132 2 26.089 45.704 56.981 Ser 133 3 35.423 42.296 66.622 Met 137* 4 25.212 49.977 62.196 Gln 161 5 22.745 44.120 51.193 Thr 194 6 19.022 42.892 54.600 Thr 197 7 13.850 48.144 50.791 Gly 211 8 22.118 48.048 46.357 Gly 216 9 13.001 54.666 59.688 Ile 254 10 16.434 48.819 61.334 Gly 256 11 18.715 43.328 59.526 Leu 263 12 13.943 47.516 57.567 Phe 265 13 9.252 52.715 57.456 Leu 267 14 23.141 53.552 52.148 Ser 338
*Met 137 from the second monomer
- “Non-native” or “non-native synthase” refers to synthase proteins that are not found in nature, whether isolated or not. A non-native synthase may, for example, be a mutated synthase (see, for example, PDB Accession No. 1D6F, 1D6I and 1D6H).
- “Native” or “native synthase” refers to synthase proteins that are produced in nature, e.g., are not mutants (see, for example, PDB Accession No. 1BI5).
- “Isolated” refers to a protein or nucleic acid that has been identified and separated from its natural environment. Contaminant components of its natural environment may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In one embodiment, the isolated molecule, in the case of a protein, will be purified to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence or to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or silver stain. In the case of a nucleic acid the isolated molecule will preferably be purified to a degree sufficient to obtain a nucleic acid sequence using standard sequencing methods.
- “Degenerate variations thereof” refers to changing a gene sequence using the degenerate nature of the genetic code to encode proteins having the same amino acid sequence yet having a different gene sequence. For example, polyketide synthases of the present invention are based on amino acid sequences. Degenerate gene variations thereof can be made encoding the same protein due to the plasticity of the genetic code, as described herein.
- “Expression” refers to transcription of a gene or nucleic acid sequence, stable accumulation of nucleic acid, and the translation of that nucleic acid to a polypeptide sequence. Expression of genes also involves transcription of the gene to make RNA, processing of RNA into mRNA in eukaryotic systems, and translation of mRNA into proteins. It is not necessary for the genes to integrate into the genome of a cell in order to achieve expression. This definition in no way limits expression to a particular system or to being confined to cells or a particular cell type and is meant to include cellular, transient, in vitro, in vivo, and viral expression systems in both prokaryotic, eukaryotic cells, and the like.
- “Foreign” or “heterologous” genes refers to a gene encoding a protein whose exact amino acid sequence is not normally found in the host cell.
- “Promoter” and “promoter regulatory element”, and the like, refers to a nucleotide sequence element within a nucleic acid fragment or gene that controls We expression of that gene. These can also include expression control sequences. Promoter regulatory elements, and the like, from a variety of sources can be used efficiently to promote gene expression. Promoter regulatory elements are meant to include constitutive, tissue-specific, developmental-specific, inducible, subgenomic promoters, and the like. Promoter regulatory elements may also include certain enhancer elements or silencing elements that improve or regulate transcriptional efficiency. Promoter regulatory elements are recognized by RNA polymerases, promote the binding thereof, and facilitate RNA transcription.
- A polypeptide is a chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation or phosphorylation). A polypeptide or protein refers to a polymer in which the monomers are amino acid residues, which are joined together through amide bonds. When the amino acids are alpha-amino acids, either the L-optical isomer or the D-optical isomer can be used, the L-isomers being typical. A synthase polypeptide of the invention is intended to encompass an amino acid sequence as set forth in SEQ ID NO:1 (see, Table 2) or SEQ ID NO:1 having one or more of the following mutations: C164A, H303Q, and N336A, mutants, variants and conservative substitutions thereof comprising L- or D-amino acids and include modified sequences such as glycoproteins.
TABLE 2 (SEQ ID NO:1) MVSVSEIRKA QRAEGPATIL AIGTANPANC VEQSTYPDFY FKITNSEHKT ELKEKFQRMC DKSMIKRRYM YLTEEILKEN PNVCEYMAPS LDARQDMVVV EVPRLGKEAA VKAIKEWGQP KSKITHLIVC TTSGVDMPGA DYQLTKLLGL RPYVKRYMMY QQGXFAGGTV LRLAKDLAEN NKGARVLVVC SEVTAVTFRG PSDTHLDSLV GQALFGDGAA ALIVGSDPVP EIEKPIFEMV WTAQTIAPDS EGAIDGHLRE AGLTFHLLKD VPGIVSKNIT KALVEAFEPL GISDYNSIFW IAHPGGPAIL DQVEQKLALK PEKMNATREV LSEYGNMSSA CVLFILDEMR KKSTQNGLKT TGEGLEWGVL FGFGPGLTIE TVVLRSVAI - Accordingly, the polypeptides of the invention are intended to cover naturally occurring proteins, as well as those which are recombinantly or synthetically synthesized. Polypeptide or protein fragments are also encompassed by the invention. Fragments can have the same or substantially the same amino acid sequence as the naturally occurring protein. A polypeptide or peptide having substantially the same sequence means that an amino acid sequence is largely, but not entirely, the same, but retains a functional activity of the sequence to which it is related. In general polypeptides of the invention include peptides, or full-length protein, that contains substitutions, deletions, or insertions into the protein backbone, that would still have an approximately 70%-90% homology to the original protein over the corresponding portion. A yet greater degree of departure from homology is allowed if like-amino acids, i.e. conservative amino acid substitutions, do not count as a change in the sequence.
- A polypeptide may be substantially related but for a conservative variation, such polypeptides being encompassed by the invention. A conservative variation denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acids, or glutamine for asparagine, and the like. Other illustrative examples of conservative substitutions include the changes of: alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine, glutamine, or glutamate; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; valine to isoleucine or leucine, and the like. The term “conservative variation” also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.
- Modifications and substitutions are not limited to replacement of amino acids. For a variety of purposes, such as increased stability, solubility, or configuration concerns, one skilled in the art will recognize the need to introduce, (by deletion, replacement, or addition) other modifications. Examples of such other modifications include incorporation of rare amino acids, dextra-amino acids, glycosylation sites, cytosine for specific disulfide bridge formation. The modified peptides can be chemically synthesized, or the isolated gene can be site-directed mutagenized, or a synthetic gene can be synthesized and expressed in bacteria, yeast, baculovirus, tissue culture and so on.
- Chalcone synthase polypeptides of the invention include synthase polypeptides from plants, prokaryotes, eukaryotes, including, for example, invertebrates, mammals and humans and include sequences as set forth in SEQ ID NO:1, as well as sequences that have at least 70% homology to the sequence of SEQ ED NO: 1, fragments, variants, or conservative substitutions of any of the foregoing sequences.
- The term “variant” refers to polypeptides modified at one or more amino acid residues yet still retain the biological activity of a synthase polypeptide. Variants can be produced by any number of means known in the art, including, for example, methods such as, for example, error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR mutagenesis, and the like, as well as any combination thereof.
- By “substantially identical” is meant a polypeptide or nucleic acid exhibiting at least 50%, preferably 85%, more preferably 90%, and most preferably 95% homology to a reference amino acid or nucleic acid sequence.
- Homology or identity is often measured using sequence analysis software (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705). Such software matches similar sequences by assigning degrees of homology to various deletions, substitutions and other modifications. The terms “homology” and “identity” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same when compared and aligned for maximum correspondence over a comparison window or designated region as measured using any number of sequence comparison algorithms or by manual alignment and visual inspection.
- For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
- A “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequence for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g. by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443, 1970, by the search for similarity method of Person & Lipman, Proc. Nat'l. Acad. Sci. USA 5:2444, 1988, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and T FASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection. Other algorithms for determining homology or identity include, for example, in addition to a BLAST program (Basic Local Alignment Search Tool at the National Center for Biological Information), ALIGN, AMAS (Analysis of Multiply Aligned Sequences), AMPS (Protein Multiple Sequence Alignment), ASSET (Aligned Segment Statistical Evaluation Tool), BANDS, BESTSCOR, BIOSCAN, (Biological Sequence Comparative Analysis Node), BLIMPS (BLocks IMProved Searcher), FASTA, Intervals & Points, BMB, CLUSTAL V, CLUSTAL W, CONSENSUS, LCONSENSUS, WCONSENSUS, Smith-Waterman algorithm, DARWIN, Las Vegas algorithm, FNAT (Forced Nucleotide Alignment Tool), Framealign, Framesearch, DYNAMIC, FILTER, FSAP (Fristensky Sequence Analysis Package), GAP (Global Alignment Program), GENAL, GIBBS, GenQuest, ISSC (Sensitive Sequence Comparison), LALIGN (Local Sequence Alignment), LCP (Local Content Program), MACAW (Multiple Alignment Construction & Analysis Workbench), MAP (Multiple Alignment Program), MBLKP, MBLKN, PIMA (Pattern-Induced Multi-sequence Alignment), SAGA (Sequence Alignment by Genetic Algorithm) and WHAT-IF. Such alignment programs can also be used to screen genome databases to identify polynucleotide sequences having substantially identical sequences. A number of genome databases are available, for example, a substantial portion of the human genome is available as part of the Human Genome Sequencing Project (J. Roach, http:///weber.u.Washington.edu/˜roach/human_genome_progress 2.html) (Gibbs, 1995). At least twenty-one other genomes have already been sequenced, including, for example, M. genitalium (Fraser et al., 1995), M. jannaschii (Bult et al., 1996), H. influenzae (Fleischmann et al., 1995), E. coli (Blattner et al., 1997), and yeast (S. cerevisiae) (Mewes et al., 1997), and D. melanogaster (Adams et al., 2000). Significant progress has also been made in sequencing the genomes of model organism, such as mouse, C. elegans, and Arabadopsis sp. Several databases containing genomic information annotated with some functional information are maintained by different organization, and are accessible via the internet, for example, http://wwwtigr.org/tdb; http://www.genetics.wisc.edu; http://genome-www.stanford.edu/˜ball; http://hiv-web.lanl.gov; http://www.ncbi.nlm.nih.gov; http://www.ebi.ac.uk; http://Pasteur.fr/other/biology; and http://wwww.genome.wi.mit.edu.
- One example of a useful algorithm is BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402, 1977, and Altschul et al., J. Mol. Biol. 215:403-410, 1990, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=−4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectations (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 8:10915, 1989) alignments (B) of 50, expectation (E) of 10, M=5, N=−4, and a comparison of both strands.
- The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Natl. Acad. Sci. USA 90:5873, 1993). One measure of similarity provided by BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a references sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.
- In one embodiment, protein and nucleic acid sequence homologies are evaluated using the Basic Local Alignment Search Tool (“BLAST”) In particular, five specific BLAST programs are used to perform the following task:
-
- (1) BLASTP and BLAST3 compare an amino acid query sequence against a protein sequence database;
- (2) BLASTN compares a nucleotide query sequence against a nucleotide sequence database;
- (3) BLASTX compares the six-frame conceptual translation products of a query nucleotide sequence (both strands) against a protein sequence database;
- (4) TBLASTN compares a query protein sequence against a nucleotide sequence database translated in all six reading frames (both strands); and
- (5) TBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.
- The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as “high-scoring segment pairs,” between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. High-scoring segment pairs are preferably identified (i.e., aligned) by means of a scoring matrix, many of which are known in the art. Preferably, the scoring matrix used is the BLOSUM62 matrix (Gonnet et al., Science 256:1443-1445, 1992; Henikoff and Henikoff, Proteins 17:49-61, 1993). Less preferably, the PAM or PAM250 matrices may also be used (see, e.g., Schwartz and Dayhoff, eds., 1978, Matrices for Detecting Distance Relationships: Atlas of Protein Sequence and Structure, Washington: National Biomedical Research Foundation). BLAST programs are accessible through the U.S. National Library of Medicine, e.g., at www.ncbi.nlm.nih.gov.
- The parameters used with the above algorithms may be adapted depending on the sequence length and degree of homology studied. In some embodiments, the parameters may be the default parameters used by the algorithms in the absence of instructions from the user.
- By a “substantially pure polypeptide” is meant a synthase polypeptide (e.g., a chalcone synthase) which has been separated from components which naturally accompany it. Typically, the polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, synthase polypeptide. A substantially pure synthase polypeptide may be obtained, for example, by extraction from a natural source; by expression of a recombinant nucleic acid encoding an synthase polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method (e.g., column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis).
- One aspect of the invention resides in obtaining crystals of the synthase polypeptide chalcone synthase of sufficient quality to determine the three dimensional (tertiary) structure of the protein by X-ray diffraction methods. The knowledge obtained concerning the three-dimensional structure of chalcone synthase can be used in the determination of the three dimensional structure of other synthase polypeptides in the polyketide synthesis pathway. The structural coordinates of chalcone synthase can be used to develop new polyketide synthesis; enzymes or synthase inhibitors using various computer models. Based on the structural coordinates of the chalcone synthase polypeptide (e.g., the three dimensional protein structure), as described herein, novel polyketide synthases can be engineered. In addition, small molecules which mimic or are capable of interacting with a functional domain of a synthase molecule, can be designed and synthesized to modulate chalcone synthase, pyrone synthase, and other polyketide synthase biological functions as well as the biological functions of other polyketide synthases. Accordingly, in one embodiment, the invention provides a method of “rational” enzyme or drug design. Another approach to “rational” enzyme or drug design is based on a lead compound that is discovered using high throughput screens; the lead compound is further modified based on a crystal structure of the binding regions of the molecule in question. Accordingly, another aspect of the invention is to provide related protein sequences or material which is a starting material in the rational design of new synthases or drugs which lead to the synthesis of new polyketides or modify the polyketide synthesis pathway.
- “Active Site” refers to a site in a synthase defined by amino acid residues that interact with substrate and facilitate a biosynthetic reaction that allows one or more products to be produced. An active site is comprised of α-carbon atoms that are indirectly linked via peptide bonds and have the structural coordinates disclosed in Table 1±2.3 angstroms. Other active site amino acids for chalcone synthase include C164, H303, and N336. The position in three-dimensional space of an α-carbon at the active site of a synthase and of R-groups associated therewith can be determined using techniques such as three-dimensional modeling, X-ray crystallography, and/or techniques associated therewith.
- “Altered substrate specificity” includes a change in the ability of a mutant synthase to produce a polyketide product as compared to a non-mutated synthase. Altered substrate specificity may include the ability of a synthase to exhibit different enzymatic parameters relative to a non-mutated synthase (Km, Vmax. etc), use different substrates, and/or produce products that are different from those of known non-native synthases.
- “Structure coordinates” refers to Cartesian coordinates (x, y, and z positions) derived from mathematical equations involving Fourier synthesis as determined from patterns obtained via diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a polyketide synthase molecule in crystal form. Diffraction data are used to calculate electron density maps of repeating protein units in the crystal (unit cell). Electron density maps are used to establish the positions of individual atoms within a crystal's unit cell. The term “crystal structure coordinates” refers to mathematical coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a synthase polypeptide (e.g., a chalcone synthase protein molecule) in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are used to establish the positions of the individual atoms within the unit cell of the crystal. The crystal structure coordinates of a synthase can be obtained from a chalcone synthase protein crystal having space group P3221 (a=b=97.54 Å, c=65.52 with a single monomer per asymmetric unit). The coordinates of the cynthase polypeptide can also be obtained by means of computational analysis.
- The term “selenomethionine substitution” refers to the method of producing a chemically modified form of the crystal of a synthase (e.g., a chalcone synthase). The synthase protein is expressed by bacteria in media that is depleted in methionine and supplement with selenomethionine. Selenium is thereby incorporated into the crystal in place of methionine sulfurs. The location(s) of selenium are determined by X-ray diffraction analysis of the crystal. This information is used to generate the phase information used to construct a three-dimensional structure of the protein.
- “Heavy atom derivatization” refers to a method of producing a chemically modified form of a synthase crystal. In practice, a crystal is soaked in a solution containing heavy atom salts or organometallic compounds, e.g., lead chloride, gold thiomalate, thimerosal, uranyl acetate, and the like, which can diffuse through the crystal and bind to the protein's surface. Locations of the bound heavy atoms can be determined by X-ray diffraction analysis of the soaked crystal. This information is then used to construct phase information which can then be used to construct three-dimensional structures of the enzyme as described in Blundel, T. L., and Johnson, N. L., Protein Crystallography, Academic Press (1976), which is incorporated herein by reference.
- “Unit cell” refers to a basic parallelepiped shaped block. Regular assembly of such blocks may construct the entire volume of a crystal. Each unit cell comprises a complete representation of the unit pattern, the repetition of which builds up the crystal.
- “Mutagenesis” refers to the changing of one R-group for another as defined herein. This can be most easily performed by changing the coding sequence of the nucleic acid encoding the amino acid residue. In the context of the present invention, mutagenesis does not change the carbon coordinates beyond the limits defined herein.
- “Space Group” refers to the arrangement of symmetry elements within a crystal.
- “Molecular replacement” refers to generating a preliminary model of a polyketide synthase whose structural coordinates are unknown, by orienting and positioning a molecule whose structural coordinates are known within the unit cell of the unknown crystal so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This in turn can be subject to any of the several forms of refinement to provide a final, accurate structure of the unknown crystal (Lattman, E., 1985, in Methods in Enzymology, 11 5.55-77; Rossmann, M G., ed., “The Molecular Replacement Method” 1972, Int, Sci. Rev. Ser., No. 13, Gordon & Breach, New York). Using structure coordinates of the polyketide synthase provided in
FIG. 1 molecular replacement may be used to determine the structural coordinates of a crystalline mutant, homologue, or a different crystal form of polyketide synthase. - A “synthase” or a “polyketide synthase” includes any one of a family of enzymes that catalyze the formation of polyketide compounds. Polyketide synthases are generally homodimers, with each monomer being enzymatically active.
- “Substrate” refers to the Coenzyme-A (CoA) thioesters that are acted on by the polyketide synthases and mutants thereof disclosed herein, such as malonyl-CoA, coumaroyl-CoA, hexamoyl-CoA, and the like.
- The present invention relates to crystallized polyketide synthases and mutants hereof from which the position of specific α-carbon atoms and R-groups associated herewith comprising the active site can be determined in three-dimensional space. The invention also relates to structural coordinates of said polyketide synthases, use of said structural coordinates to develop structural information related to polyketide synthase homologues, mutants, and the like, and to crystal forms of such synthases. Furthermore, the invention, as disclosed herein, provides a method whereby said α-carbon structural coordinates specifically determined for atoms comprising the active site of said synthase, as shown in Table 1 and including C164, H303, and N336, can be used to develop synthases wherein R-groups associated with active site α-carbon atoms are different from the R-groups found in native CHS, e.g., are mutant synthases. In addition, the present invention provides for production of mutant polyketide synthases based on the structural information provided herein and for use of said mutant synthases to make a variety of polyketide compounds using a variety of substrates.
- The present invention further provides, for the first time, crystals of several polyketide synthases, as exemplified by chalcone synthase (CHS; PDB Accession No. 1B15), stilbene synthase (STS), and pyrone synthase (PS); see Table 3 for coordinates of PS (“molecule” denoted in the table refers to the particular monomer of the PS dimer). Also provided are coordinates for crystals which are grown in the presence and absence of substrate and substrate analogues, thus allowing definition of the structural or atomic coordinates associated therewith. Said structural coordinates allow determination of the carbon atoms comprising the active site, R-groups associated therewith, and the interaction of said α-carbons and said R-groups with each other. For example, Table 4 identifies various substrates and substrate analogues that were grown with chalcone synthase as well as their PDB accession numbers, all of which are incorporated herein by reference in their entirety.
TABLE 3 Atom Atom Type Res. # X Y Z OCC B Molec 1 N GLY 20 32.834 42.457 65.617 1.00 27.09 A 2 CA GLY 20 33.866 41.428 65.356 1.00 23.93 A 3 C GLY 20 33.175 40.130 64.906 1.00 21.83 A 4 O GLY 20 31.967 40.073 64.809 1.00 20.10 A 5 N LEU 21 34.001 39.120 64.701 1.00 19.92 A 6 CA LEU 21 33.519 37.812 64.301 1.00 21.97 A 7 CB LEU 21 34.698 36.928 63.924 1.00 20.90 A 8 CG LEU 21 35.592 37.425 62.769 1.00 25.38 A 9 CD2 LEU 21 34.861 37.362 61.428 1.00 26.08 A 10 CD1 LEU 21 36.862 36.561 62.728 1.00 24.02 A 11 C LEU 21 32.710 37.113 65.406 1.00 22.68 A 12 O LEU 21 33.076 37.172 66.591 1.00 21.48 A 13 N ALA 22 31.662 36.430 64.988 1.00 19.98 A 14 CA ALA 22 30.941 35.520 65.863 1.00 19.22 A 15 CB ALA 22 29.897 34.702 65.083 1.00 16.98 A 16 C ALA 22 31.951 34.602 66.522 1.00 18.97 A 17 O ALA 22 32.771 33.961 65.852 1.00 19.26 A 18 N THR 23 31.887 34.515 67.854 1.00 17.74 A 19 CA THR 23 32.840 33.659 68.577 1.00 15.74 A 20 CB THR 23 33.699 34.563 69.497 1.00 17.10 A 21 OG1 THR 23 34.155 35.652 68.678 1.00 16.29 A 22 CG2 THR 23 34.824 33.809 70.184 1.00 18.53 A 23 C THR 23 32.138 32.654 69.465 1.00 16.14 A 24 O THR 23 31.100 32.951 70.060 1.00 15.79 A 25 N ILE 24 32.680 31.455 69.500 1.00 15.97 A 26 CA ILE 24 32.183 30.385 70.313 1.00 18.48 A 27 CB ILE 24 32.620 29.024 69.816 1.00 17.83 A 28 CG2 ILE 24 32.097 27.975 70.825 1.00 18.50 A 29 CG1 ILE 24 32.052 28.700 68.408 1.00 18.53 A 30 CD1 ILE 24 32.633 27.424 67.841 1.00 16.89 A 31 C ILE 24 32.790 30.650 71.729 1.00 20.41 A 32 O ILE 24 34.005 30.764 71.810 1.00 19.04 A 33 N LEU 25 31.928 30.814 72.709 1.00 20.83 A 34 CA LEU 25 32.236 31.175 74.068 1.00 20.33 A 35 CB LEU 25 31.368 32.388 74.458 1.00 19.36 A 36 CG LEU 25 31.475 33.620 73.571 1.00 19.02 A 37 CD2 LEU 25 32.876 34.236 73.516 1.00 19.47 A 38 CD1 LEU 25 30.514 34.693 74.104 1.00 17.79 A 39 C LEU 25 32.009 30.093 75.092 1.00 19.34 A 40 O LEU 25 32.480 30.255 76.215 1.00 17.65 A 41 N ALA 26 31.231 29.051 74.796 1.00 17.56 A 42 CA ALA 26 31.065 27.958 75.712 1.00 18.21 A 43 CB ALA 26 30.071 28.315 76.844 1.00 16.77 A 44 C ALA 26 30.487 26.777 74.961 1.00 20.23 A 45 O ALA 26 29.882 26.972 73.895 1.00 18.85 A 46 N ILE 27 30.855 25.588 75.429 1.00 18.15 A 47 CA ILE 27 30.356 24.366 74.843 1.00 19.79 A 48 CB ILE 27 31.390 23.696 73.930 1.00 18.91 A 49 CG2 ILE 27 30.719 22.521 73.240 1.00 17.49 A 50 CG1 ILE 27 31.984 24.650 72.859 1.00 17.58 A 51 CD1 ILE 27 33.157 24.057 72.094 1.00 17.89 A 52 C ILE 27 29.968 23.380 75.929 1.00 19.93 A 53 O ILE 27 30.842 23.024 76.725 1.00 20.00 A 54 N GLY 28 28.798 22.788 75.853 1.00 19.91 A 55 CA GLY 28 28.297 21.759 76.759 1.00 18.80 A 56 C GLY 28 27.802 20.540 75.993 1.00 20.61 A 57 O GLY 28 27.170 20.667 74.905 1.00 19.24 A 58 N THR 29 28.111 19.333 76.457 1.00 16.87 A 59 CA THR 29 27.545 18.133 75.816 1.00 19.02 A 60 CB THR 29 28.603 17.320 75.080 1.00 20.16 A 61 OG1 THR 29 29.629 16.843 75.950 1.00 21.21 A 62 CG2 THR 29 29.373 18.154 74.032 1.00 20.41 A 63 C THR 29 26.787 17.267 76.813 1.00 20.90 A 64 O THR 29 27.106 17.274 78.025 1.00 22.12 A 65 N ALA 30 25.942 16.358 76.393 1.00 17.49 A 66 CA ALA 30 25.211 15.395 77.185 1.00 17.35 A 67 CB ALA 30 23.866 15.947 77.664 1.00 14.17 A 68 C ALA 30 24.876 14.187 76.310 1.00 18.08 A 69 O ALA 30 24.631 14.306 75.082 1.00 17.60 A 70 N THR 31 24.696 13.046 76.908 1.00 19.58 A 71 CA THR 31 24.246 11.823 76.246 1.00 19.85 A 72 CB THR 31 25.412 10.856 76.014 1.00 21.41 A 73 OG1 THR 31 26.049 10.534 77.282 1.00 26.09 A 74 CG2 THR 31 26.542 11.344 75.122 1.00 19.56 A 75 C THR 31 23.225 11.139 77.136 1.00 22.26 A 76 O THR 31 23.198 11.407 78.329 1.00 20.45 A 77 N PRO 32 22.355 10.302 76.602 1.00 21.50 A 78 CA PRO 32 21.537 9.421 77.401 1.00 21.71 A 79 CD PRO 32 22.201 10.080 75.137 1.00 21.81 A 80 CB PRO 32 20.893 8.493 76.344 1.00 19.90 A 81 CG PRO 32 20.880 9.325 75.091 1.00 21.81 A 82 C PRO 32 22.424 8.561 78.299 1.00 22.41 A 83 O PRO 32 23.584 8.337 77.979 1.00 22.75 A 84 N PRO 33 21.905 8.074 79.421 1.00 24.52 A 85 CA PRO 33 22.653 7.254 80.353 1.00 26.49 A 86 CD PRO 33 20.524 8.372 79.888 1.00 24.57 A 87 CB PRO 33 21.713 7.159 81.571 1.00 26.31 A 88 CG PRO 33 20.346 7.355 81.014 1.00 27.68 A 89 C PRO 33 23.045 5.870 79.845 1.00 27.55 A 90 O PRO 33 24.179 5.435 80.070 1.00 28.73 A 91 N ASN 34 22.175 5.154 79.163 1.00 29.66 A 92 CA ASN 34 22.410 3.783 78.649 1.00 32.41 A 93 CB ASN 34 21.101 3.280 78.056 1.00 36.26 A 94 CG ASN 34 20.948 2.142 77.083 1.00 38.95 A 95 OD1 ASN 34 21.662 1.127 77.183 1.00 39.62 A 96 ND2 ASN 34 19.989 2.192 76.138 1.00 35.37 A 97 C ASN 34 23.523 3.807 77.609 1.00 32.31 A 98 O ASN 34 23.469 4.526 76.610 1.00 29.54 A 99 N CYS 35 24.576 3.052 77.829 1.00 30.93 A 100 CA CYS 35 25.723 2.919 76.965 1.00 31.69 A 101 CB CYS 35 26.917 3.153 77.906 1.00 35.11 A 102 SG CYS 35 28.474 3.296 77.056 1.00 37.85 A 103 C CYS 35 25.768 1.499 76.438 1.00 31.58 A 104 O CYS 35 25.523 0.623 77.272 1.00 31.97 A 105 N VAL 36 26.041 1.225 75.182 1.00 30.94 A 106 CA VAL 36 26.161 −0.144 74.669 1.00 31.93 A 107 CB VAL 36 25.047 −0.605 73.706 1.00 32.84 A 108 CG1 VAL 36 25.372 −1.969 73.087 1.00 33.47 A 109 CG2 VAL 36 23.689 −0.721 74.407 1.00 33.32 A 110 C VAL 36 27.500 −0.299 73.944 1.00 31.29 A 111 O VAL 36 27.768 0.506 73.036 1.00 30.05 A 112 N ALA 37 28.310 −1.286 74.343 1.00 30.79 A 113 CA ALA 37 29.594 −1.466 73.680 1.00 29.79 A 114 CB ALA 37 30.543 −2.436 74.385 1.00 29.23 A 115 C ALA 37 29.342 −1.982 72.250 1.00 28.16 A 116 O ALA 37 28.620 −2.955 72.083 1.00 26.46 A 117 N GLN 38 30.143 −1.521 71.312 1.00 28.15 A 118 CA GLN 38 30.007 −1.958 69.912 1.00 27.67 A 119 CB GLN 38 30.846 −1.049 69.021 1.00 28.50 A 120 CG GLN 38 30.657 −1.221 67.506 1.00 26.41 A 121 CD GLN 38 29.350 −0.581 67.053 1.00 27.26 A 122 OE1 GLN 38 28.360 −0.689 67.767 1.00 26.46 A 123 NE2 GLN 38 29.296 0.067 65.877 1.00 25.63 A 124 C GLN 38 30.382 −3.409 69.734 1.00 29.10 A 125 O GLN 38 29.688 −4.212 69.107 1.00 27.00 A 126 N ALA 39 31.355 −3.895 70.531 1.00 31.28 A 127 CA ALA 39 31.738 −5.301 70.547 1.00 31.16 A 128 CB ALA 39 32.950 −5.519 71.488 1.00 32.49 A 129 C ALA 39 30.592 −6.189 71.009 1.00 32.31 A 130 O ALA 39 30.519 −7.353 70.605 1.00 34.94 A 131 N ASP 40 29.574 −5.650 71.681 1.00 31.27 A 132 CA ASP 40 28.403 −6.433 72.036 1.00 32.18 A 133 CB ASP 40 28.042 −6.187 73.503 1.00 33.60 A 134 CG ASP 40 29.167 −6.530 74.462 1.00 35.07 A 135 OD1 ASP 40 29.914 −7.480 74.174 1.00 35.48 A 136 OD2 ASP 40 29.312 −5.832 75.481 1.00 36.82 A 137 C ASP 40 27.156 −6.106 71.203 1.00 30.15 A 138 O ASP 40 26.137 −6.760 71.362 1.00 27.91 A 139 N TYR 41 27.225 −5.055 70.383 1.00 29.82 A 140 CA TYR 41 26.045 −4.632 69.634 1.00 27.44 A 141 CB TYR 41 26.336 −3.302 68.891 1.00 28.10 A 142 CG TYR 41 24.958 −2.680 68.620 1.00 28.23 A 143 CD1 TYR 41 24.354 −1.940 69.628 1.00 28.38 A 144 CD2 TYR 41 24.306 −2.853 67.404 1.00 26.85 A 145 CE1 TYR 41 23.104 −1.367 69.427 1.00 30.06 A 146 CE2 TYR 41 23.066 −2.289 67.183 1.00 27.54 A 147 CZ TYR 41 22.468 −1.558 68.190 1.00 30.20 A 148 OH TYR 41 21.230 −0.987 68.015 1.00 31.22 A 149 C TYR 41 25.416 −5.639 68.706 1.00 26.97 A 150 O TYR 41 24.185 −5.796 68.753 1.00 24.64 A 151 N ALA 42 26.191 −6.432 67.949 1.00 27.02 A 152 CA ALA 42 25.599 −7.424 67.061 1.00 27.20 A 153 CB ALA 42 26.651 −8.140 66.232 1.00 26.68 A 154 C ALA 42 24.723 −8.413 67.805 1.00 28.00 A 155 O ALA 42 23.616 −8.774 67.405 1.00 26.11 A 156 N ASP 43 25.240 −8.969 68.907 1.00 30.84 A 157 CA ASP 43 24.475 −9.891 69.734 1.00 31.33 A 158 CB ASP 43 25.385 −10.470 70.825 1.00 34.03 A 159 CG ASP 43 26.273 −11.584 70.276 1.00 36.27 A 160 OD1 ASP 43 27.305 −11.885 70.905 1.00 37.42 A 161 OD2 ASP 43 25.960 −12.163 69.214 1.00 37.57 A 162 C ASP 43 23.237 −9.246 70.351 1.00 30.78 A 163 O ASP 43 22.130 −9.796 70.356 1.00 31.39 A 164 N TYR 44 23.350 −8.026 70.836 1.00 28.82 A 165 CA TYR 44 22.211 −7.302 71.395 1.00 30.46 A 166 CB TYR 44 22.687 −5.932 71.934 1.00 31.63 A 167 CG TYR 44 21.497 −5.043 72.238 1.00 34.09 A 168 CD1 TYR 44 20.706 −5.350 73.352 1.00 34.43 A 169 CD2 TYR 44 21.139 −3.967 71.435 1.00 33.42 A 170 CE1 TYR 44 19.606 −4.577 73.661 1.00 35.43 A 171 CE2 TYR 44 20.031 −3.205 71.749 1.00 35.16 A 172 CZ TYR 44 19.266 −3.514 72.859 1.00 35.11 A 173 OH TYR 44 18.149 −2.773 73.173 1.00 36.24 A 174 C TYR 44 21.124 −7.090 70.351 1.00 28.76 A 175 O TYR 44 19.933 −7.443 70.461 1.00 29.56 A 176 N TYR 45 21.556 −6.598 69.182 1.00 28.20 A 177 CA TYR 45 20.616 −6.219 68.115 1.00 25.74 A 178 CB TYR 45 21.435 −5.417 67.073 1.00 26.31 A 179 CG TYR 45 20.733 −5.127 65.770 1.00 25.68 A 180 CD1 TYR 45 19.830 −4.066 65.699 1.00 25.75 A 181 CD2 TYR 45 20.938 −5.887 64.626 1.00 26.97 A 182 CE1 TYR 45 19.165 −3.757 64.534 1.00 26.81 A 183 CE2 TYR 45 20.273 −5.584 63.439 1.00 27.53 A 184 CZ TYR 45 19.389 −4.531 63.406 1.00 26.52 A 185 OH TYR 45 18.722 −4.205 62.248 1.00 25.82 A 186 C TYR 45 19.800 −7.359 67.578 1.00 25.23 A 187 O TYR 45 18.547 −7.365 67.499 1.00 25.18 A 188 N PHE 46 20.460 −8.466 67.240 1.00 25.33 A 189 CA PHE 46 19.805 −9.655 66.710 1.00 26.13 A 190 CB PHE 46 20.872 −10.562 66.065 1.00 25.99 A 191 CG PHE 46 21.118 −10.169 64.623 1.00 24.71 A 192 CD1 PHE 46 21.993 −9.158 64.295 1.00 24.42 A 193 CD2 PHE 46 20.408 −10.779 63.609 1.00 25.49 A 194 CE1 PHE 46 22.221 −8.832 62.952 1.00 24.01 A 195 CE2 PHE 46 20.609 −10.411 62.272 1.00 26.54 A 196 CZ PHE 46 21.473 −9.380 61.941 1.00 22.32 A 197 C PHE 46 18.980 −10.383 67.767 1.00 28.00 A 198 O PHE 46 17.944 −10.985 67.459 1.00 29.01 A 199 N ARG 47 19.297 −10.167 69.014 1.00 27.89 A 200 CA ARG 47 18.537 −10.764 70.120 1.00 29.09 A 201 CB ARG 47 19.399 −10.735 71.377 1.00 31.22 A 202 CG ARG 47 18.961 −11.670 72.511 1.00 32.64 A 203 CD ARG 47 19.652 −11.266 73.821 1.00 34.71 A 204 NE ARG 47 18.780 −10.430 74.611 1.00 36.52 A 205 CZ ARG 47 19.000 −9.232 75.181 1.00 36.76 A 206 NH1 ARG 47 20.169 −8.598 75.167 1.00 36.52 A 207 NH2 ARG 47 18.003 −8.579 75.805 1.00 38.61 A 208 C ARG 47 17.230 −9.970 70.323 1.00 29.38 A 209 O ARG 47 16.130 −10.531 70.338 1.00 27.87 A 210 N VAL 48 17.371 −8.614 70.501 1.00 31.39 A 211 CA VAL 48 16.155 −7.803 70.723 1.00 31.67 A 212 CB VAL 48 16.483 −6.382 71.230 1.00 32.60 A 213 CG1 VAL 48 17.272 −6.551 72.529 1.00 34.07 A 214 CG2 VAL 48 17.262 −5.532 70.225 1.00 31.26 A 215 C VAL 48 15.235 −7.692 69.524 1.00 31.64 A 216 O VAL 48 14.027 −7.461 69.678 1.00 31.80 A 217 N THR 49 15.773 −7.869 68.326 1.00 30.64 A 218 CA THR 49 14.909 −7.845 67.137 1.00 31.47 A 219 CB THR 49 15.625 −7.226 65.928 1.00 29.40 A 220 OG1 THR 49 16.731 −8.068 65.630 1.00 28.79 A 221 CG2 THR 49 16.076 −5.809 66.244 1.00 29.44 A 222 C THR 49 14.501 −9.264 66.767 1.00 32.37 A 223 O THR 49 13.890 −9.440 65.735 1.00 31.92 A 224 N LYS 50 14.803 −10.271 67.599 1.00 35.30 A 225 CA LYS 50 14.352 −11.635 67.379 1.00 36.93 A 226 CB LYS 50 12.830 −11.671 67.617 1.00 39.91 A 227 CG LYS 50 12.448 −11.295 69.053 1.00 43.14 A 228 CD LYS 50 10.925 −11.120 69.148 1.00 46.09 A 229 CE LYS 50 10.531 −10.612 70.521 1.00 48.94 A 230 NZ LYS 50 9.159 −11.061 70.920 1.00 51.49 A 231 C LYS 50 14.703 −12.190 65.998 1.00 36.27 A 232 O LYS 50 13.882 −12.803 65.304 1.00 35.23 A 233 N SER 51 15.952 −11.983 65.588 1.00 34.72 A 234 CA SER 51 16.357 −12.292 64.227 1.00 36.62 A 235 CB SER 51 16.761 −11.007 63.490 1.00 35.$$ A 236 OG SER 51 15.632 −10.153 63.401 1.00 35.75 A 237 C SER 51 17.530 −13.264 64.196 1.00 37.21 A 238 O SER 51 18.250 −13.326 63.202 1.00 35.82 A 239 N GLU 52 17.644 −14.064 65.250 1.00 37.90 A 240 CA GLU 52 18.726 −15.024 65.378 1.00 41.24 A 241 CB GLU 52 18.664 −15.821 66.687 1.00 41.73 A 242 CG GLU 52 18.714 −14.913 67.912 1.00 43.24 A 243 CD GLU 52 20.093 −14.326 68.139 1.00 43.08 A 244 OE1 GLU 52 20.922 −14.295 67.206 1.00 43.85 A 245 OE2 GLU 52 20.335 −13.886 69.276 1.00 42.33 A 246 C GLU 52 18.852 −16.016 64.237 1.00 41.56 A 247 O GLU 52 19.962 −16.418 63.923 1.00 41.47 A 248 N HIS 53 17.765 −16.368 63.591 1.00 43.15 A 249 CA HIS 53 17.757 −17.277 62.462 1.00 46.02 A 250 ND1 HIS 53 15.020 −15.790 63.161 1.00 57.14 A 251 CG HIS 53 15.414 −16.524 62.053 1.00 55.58 A 252 CB HIS 53 16.321 −17.714 62.158 1.00 50.66 A 253 NE2 HIS 53 14.105 −14.866 61.430 1.00 57.55 A 254 CD2 HIS 53 14.842 −15.934 60.966 1.00 57.42 A 255 CE1 HIS 53 14.232 −14.810 62.745 1.00 58.02 A 256 C HIS 53 18.409 −16.654 61.237 1.00 44.57 A 257 O HIS 53 18.924 −17.441 60.437 1.00 44.24 A 258 N MET 54 18.572 −15.331 61.178 1.00 41.09 A 259 CA MET 54 19.348 −14.712 60.113 1.00 40.86 A 260 CB MET 54 18.865 −13.279 59.877 1.00 39.34 A 261 CG MET 54 17.345 −13.172 59.756 1.00 38.82 A 262 SD MET 54 16.834 −11.433 59.565 1.00 38.46 A 263 CE MET 54 15.087 −11.625 59.282 1.00 39.63 A 264 C MET 54 20.843 −14.743 60.444 1.00 38.70 A 265 O MET 54 21.471 −13.709 60.604 1.00 36.96 A 266 N VAL 55 21.423 −15.930 60.471 1.00 37.47 A 267 CA VAL 55 22.806 −16.179 60.826 1.00 38.20 A 268 CB VAL 55 23.074 −17.704 60.781 1.00 37.95 A 269 CG1 VAL 55 24.539 −18.029 60.988 1.00 37.15 A 270 CG2 VAL 55 22.200 −18.366 61.852 1.00 38.75 A 271 C VAL 55 23.808 −15.423 59.964 1.00 37.34 A 272 O VAL 55 24.678 −14.746 60.485 1.00 35.85 A 273 N ASP 56 23.671 −15.506 58.651 1.00 37.85 A 274 CA ASP 56 24.592 −14.871 57.712 1.00 40.33 A 275 CB ASP 56 24.342 −15.403 56.297 1.00 44.16 A 276 CG ASP 56 24.760 −16.863 56.131 1.00 48.56 A 277 OD1 ASP 56 25.297 −17.563 57.035 1.00 49.83 A 278 OD2 ASP 56 24.494 −17.330 54.992 1.00 50.70 A 279 C ASP 56 24.537 −13.352 57.759 1.00 38.30 A 280 O ASP 56 25.568 −12.680 57.818 1.00 38.20 A 281 N LEU 57 23.340 −12.789 57.909 1.00 35.70 A 282 CA LEU 57 23.179 −11.369 58.144 1.00 34.76 A 283 CB LEU 57 21.700 −10.988 58.141 1.00 36.41 A 284 CG LEU 57 21.328 −9.731 57.367 1.00 38.75 A 285 CD2 LEU 57 19.810 −9.657 57.233 1.00 39.19 A 286 CD1 LEU 57 21.984 −9.704 55.983 1.00 38.62 A 287 C LEU 57 23.777 −10.975 59.492 1.00 31.73 A 288 O LEU 57 24.409 −9.936 59.642 1.00 30.50 A 289 N LYS 58 23.517 −11.816 60.504 1.00 30.83 A 290 CA LYS 58 24.186 −11.616 61.791 1.00 29.23 A 291 CB LYS 58 23.802 −12.695 62.816 1.00 29.15 A 292 CG LYS 58 24.327 −12.284 64.198 1.00 29.77 A 293 CD LYS 58 23.767 −13.189 65.296 1.00 28.95 A 294 CE LYS 58 24.413 −12.778 66.620 1.00 29.21 A 295 NZ LYS 58 23.929 −13.667 67.738 1.00 30.34 A 296 C LYS 58 25.691 −11.592 61.599 1.00 28.39 A 297 O LYS 58 26.412 −10.672 62.017 1.00 26.22 A 298 N GLU 59 26.223 −12.590 60.873 1.00 28.92 A 299 CA GLU 59 27.676 −12.592 60.652 1.00 30.78 A 300 CB GLU 59 28.071 −13.810 59.789 1.00 36.02 A 301 CG GLU 59 28.228 −15.069 60.615 1.00 41.00 A 302 CD GLU 59 29.133 −14.949 61.820 1.00 43.84 A 303 OE1 GLU 59 30.081 −14.148 61.926 1.00 46.35 A 304 OE2 GLU 59 28.890 −15.739 62.770 1.00 47.23 A 305 C GLU 59 28.131 −11.334 59.950 1.00 28.91 A 306 O GLU 59 29.200 −10.804 60.211 1.00 26.29 A 307 N LYS 60 27.365 −10.903 58.932 1.00 27.65 A 308 CA LYS 60 27.756 −9.676 58.235 1.00 28.35 A 309 CB LYS 60 26.908 −9.608 56.978 1.00 31.60 A 310 CG LYS 60 26.369 −8.247 56.605 1.00 34.59 A 311 CD LYS 60 27.107 −7.755 55.389 1.00 36.17 A 312 CE LYS 60 26.120 −7.195 54.355 1.00 34.07 A 313 NZ LYS 60 26.854 −7.291 53.037 1.00 30.49 A 314 C LYS 60 27.622 −8.441 59.120 1.00 27.63 A 315 O LYS 60 28.495 −7.592 59.158 1.00 25.96 A 316 N PHE 61 26.605 −8.378 59.980 1.00 27.76 A 317 CA PHE 61 26.533 −7.279 60.954 1.00 27.20 A 318 CB PHE 61 25.175 −7.344 61.691 1.00 26.83 A 319 CG PHE 61 24.870 −6.020 62.361 1.00 25.57 A 320 CD1 PHE 61 24.793 −4.848 61.636 1.00 23.19 A 321 CD2 PHE 61 24.705 −5.974 63.742 1.00 25.42 A 322 CE1 PHE 61 24.589 −3.642 62.279 1.00 22.77 A 323 CE2 PHE 61 24.431 −4.765 64.394 1.00 24.47 A 324 CZ PHE 61 24.410 −3.600 63.658 1.00 23.21 A 325 C PHE 61 27.706 −7.291 61.918 1.00 27.60 A 326 O PHE 61 28.204 −6.228 62.306 1.00 25.06 A 327 N LYS 62 28.248 −8.470 62.281 1.00 28.63 A 328 CA LYS 62 29.440 −8.434 63.161 1.00 30.01 A 329 CB LYS 62 29.817 −9.798 63.712 1.00 33.50 A 330 CG LYS 62 28.933 −10.363 64.817 1.00 36.21 A 331 CD LYS 62 29.313 −11.795 65.201 1.00 39.57 A 332 CE LYS 62 28.868 −12.139 66.632 1.00 42.71 A 333 NZ LYS 62 28.743 −13.618 66.867 1.00 43.80 A 334 C LYS 62 30.633 −7.820 62.432 1.00 27.66 A 335 O LYS 62 31.408 −7.040 62.961 1.00 25.63 A 336 N ARG 63 30.812 −8.129 61.160 1.00 28.40 A 337 CA ARG 63 31.886 −7.532 60.345 1.00 26.83 A 338 CB ARG 63 31.923 −8.166 58.949 1.00 28.80 A 339 CG ARG 63 32.205 −9.760 58.860 1.00 31.04 A 340 CD ARG 63 32.605 −10.075 57.429 1.00 31.67 A 341 NE ARG 63 31.458 −10.007 56.496 1.00 31.18 A 342 CZ ARG 63 30.568 −10.993 56.412 1.00 33.98 A 343 NH1 ARG 63 30.675 −12.080 57.183 1.00 33.69 A 344 NH2 ARG 63 29.552 −10.945 55.537 1.00 35.02 A 345 C ARG 63 31.725 −6.028 60.234 1.00 26.47 A 346 O ARG 63 32.707 −5.281 60.285 1.00 27.57 A 347 N ILE 64 30.517 −5.531 59.967 1.00 26.34 A 348 CA ILE 64 30.285 −4.079 59.832 1.00 25.94 A 349 CB ILE 64 28.797 −3.821 59.461 1.00 25.49 A 350 CG2 ILE 64 28.386 −2.381 59.606 1.00 25.16 A 351 CG1 ILE 64 28.502 −4.295 58.011 1.00 24.16 A 352 CD1 ILE 64 27.030 −4.611 57.772 1.00 20.75 A 353 C ILE 64 30.604 −3.364 61.149 1.00 26.57 A 354 O ILE 64 31.299 −2.343 61.183 1.00 25.13 A 355 N CYS 65 30.119 −3.920 62.268 1.00 25.79 A 356 CA CYS 65 30.373 −3.275 63.569 1.00 29.16 A 357 CB CYS 65 29.703 −4.001 64.744 1.00 27.03 A 358 SG CYS 65 27.900 −3.813 64.788 1.00 27.03 A 359 C CYS 65 31.870 −3.230 63.861 1.00 29.65 A 360 O CYS 65 32.384 −2.241 64.393 1.00 27.74 A 361 N GLU 66 32.557 −4.333 63.495 1.00 32.64 A 362 CA GLU 66 34.017 −4.324 63.693 1.00 34.70 A 363 CB GLU 66 34.616 −5.684 63.344 1.00 38.03 A 364 CG GLU 66 36.078 −5.831 63.720 1.00 42.01 A 365 CD GLU 66 37.051 −5.375 62.644 1.00 45.51 A 366 OE1 GLU 66 36.749 −5.306 61.421 1.00 45.11 A 367 OE2 GLU 66 38.211 −5.061 63.034 1.00 47.20 A 368 C GLU 66 34.645 −3.235 62.842 1.00 33.45 A 369 O GLU 66 35.633 −2.642 63.271 1.00 34.26 A 370 N LYS 67 34.187 −2.990 61.610 1.00 31.58 A 371 CA LYS 67 34.775 −1.966 60.759 1.00 30.20 A 372 CB LYS 67 34.159 −2.078 59.335 1.00 30.36 A 373 CG LYS 67 34.698 −3.350 58.673 1.00 31.77 A 374 CD LYS 67 36.139 −3.095 58.230 1.00 30.35 A 375 CE LYS 67 36.519 −4.248 57.282 1.00 32.61 A 376 NZ LYS 67 37.969 −4.223 56.965 1.00 31.38 A 377 C LYS 67 34.530 −0.539 61.207 1.00 28.50 A 378 O LYS 67 35.301 0.330 60.826 1.00 26.35 A 379 N THR 68 33.485 −0.253 61.990 1.00 28.16 A 380 CA THR 68 33.117 1.117 62.321 1.00 26.38 A 381 CB THR 68 31.755 1.142 63.079 1.00 28.00 A 382 OG1 THR 68 31.822 0.406 64.297 1.00 25.98 A 383 CG2 THR 68 30.640 0.516 62.232 1.00 26.36 A 384 C THR 68 34.127 1.962 63.067 1.00 26.03 A 385 O THR 68 34.035 3.198 63.074 1.00 23.26 A 386 N ALA 69 35.020 1.367 63.862 1.00 25.08 A 387 CA ALA 69 35.959 2.110 64.689 1.00 26.12 A 388 CB ALA 69 36.881 3.014 63.885 1.00 24.83 A 389 C ALA 69 35.146 2.920 65.730 1.00 25.89 A 390 O ALA 69 35.516 4.026 66.108 1.00 25.89 A 391 N ILE 70 34.088 2.282 66.214 1.00 25.60 A 392 CA ILE 70 33.264 2.842 67.291 1.00 25.62 A 393 CB ILE 70 31.757 2.933 66.959 1.00 24.18 A 394 CG2 ILE 70 30.904 3.310 68.168 1.00 21.69 A 395 CG1 ILE 70 31.559 3.928 65.795 1.00 22.58 A 396 CD1 ILE 70 30.160 3.904 65.163 1.00 20.62 A 397 C ILE 70 33.454 1.913 68.493 1.00 25.45 A 398 O ILE 70 33.249 0.715 68.340 1.00 23.85 A 399 N LYS 71 33.762 2.463 69.667 1.00 26.85 A 400 CA LYS 71 33.835 1.597 70.865 1.00 28.48 A 401 CB LYS 71 34.913 2.162 71.797 1.00 31.60 A 402 CG LYS 71 35.196 1.430 73.078 1.00 34.19 A 403 CD LYS 71 36.308 2.012 73.935 1.00 36.61 A 404 CE LYS 71 37.382 2.812 73.249 1.00 38.89 A 405 NZ LYS 71 38.738 2.685 73.870 1.00 42.37 A 406 C LYS 71 32.506 1.455 71.584 1.00 27.13 A 407 O LYS 71 32.183 0.367 72.087 1.00 27.37 A 408 N LYS 72 31.724 2.520 71.728 1.00 25.23 A 409 CA LYS 72 30.442 2.474 72.414 1.00 25.15 A 410 CB LYS 72 30.572 2.715 73.924 1.00 26.70 A 411 CG LYS 72 31.332 3.981 74.244 1.00 28.08 A 412 CD LYS 72 31.600 4.138 75.752 1.00 31.06 A 413 CE LYS 72 32.583 5.268 75.965 1.00 34.19 A 414 NZ LYS 72 32.080 6.648 75.842 1.00 30.79 A 415 C LYS 72 29.588 3.650 71.915 1.00 24.42 A 416 O LYS 72 30.117 4.578 71.299 1.00 20.97 A 417 N ARG 73 28.302 3.536 72.187 1.00 22.40 A 418 CA ARG 73 27.331 4.559 71.833 1.00 23.39 A 419 CB ARG 73 26.539 4.093 70.579 1.00 22.84 A 420 CG ARG 73 27.403 4.138 69.304 1.00 23.07 A 421 CD ARG 73 26.641 3.582 68.115 1.00 24.33 A 422 NE ARG 73 26.448 2.175 67.974 1.00 21.31 A 423 CZ ARG 73 25.538 1.589 67.211 1.00 22.61 A 424 NH1 ARG 73 25.470 0.280 67.165 1.00 21.98 A 425 NH2 ARG 73 24.660 2.250 66.446 1.00 23.67 A 426 C ARG 73 26.362 4.735 73.009 1.00 21.07 A 427 O ARG 73 25.989 3.699 73.545 1.00 20.95 A 428 N TYR 74 25.869 5.907 73.273 1.00 20.99 A 429 CA TYR 74 24.812 6.072 74.270 1.00 20.56 A 430 CB TYR 74 25.038 7.416 74.957 1.00 21.25 A 431 CG TYR 74 26.352 7.376 75.718 1.00 23.79 A 432 CD1 TYR 74 27.511 7.806 75.099 1.00 25.16 A 433 CD2 TYR 74 26.369 6.913 77.030 1.00 23.96 A 434 CE1 TYR 74 28.712 7.779 75.806 1.00 27.20 A 435 CE2 TYR 74 27.563 6.900 77.752 1.00 24.67 A 436 CZ TYR 74 28.701 7.327 77.131 1.00 26.17 A 437 OH TYR 74 29.894 7.334 77.795 1.00 28.39 A 438 C TYR 74 23.464 6.090 73.583 1.00 20.11 A 439 O TYR 74 23.401 6.600 72.434 1.00 22.54 A 440 N LEU 75 22.467 5.355 74.035 1.00 20.26 A 441 CA LEU 75 21.201 5.266 73.291 1.00 22.57 A 442 CB LEU 75 21.119 3.864 72.671 1.00 22.46 A 443 CG LEU 75 22.251 3.500 71.686 1.00 22.93 A 444 CD2 LEU 75 21.988 4.281 70.390 1.00 22.07 A 445 CD1 LEU 75 22.304 1.995 71.423 1.00 22.36 A 446 C LEU 75 20.032 5.489 74.242 1.00 24.64 A 447 O LEU 75 19.972 4.805 75.265 1.00 23.88 A 448 N ALA 76 19.129 6.383 73.895 1.00 22.83 A 449 CA ALA 76 17.935 6.662 74.660 1.00 24.54 A 450 CB ALA 76 17.287 7.977 74.206 1.00 22.44 A 451 C ALA 76 16.935 5.535 74.428 1.00 24.70 A 452 O ALA 76 16.159 5.190 75.303 1.00 25.26 A 453 N LEU 77 17.018 4.839 73.284 1.00 23.09 A 454 CA LEU 77 16.187 3.672 73.024 1.00 22.26 A 455 CB LEU 77 16.375 3.085 71.623 1.00 23.19 A 456 CG LEU 77 15.196 2.566 70.826 1.00 25.81 A 457 CD2 LEU 77 13.985 2.125 71.624 1.00 24.97 A 458 CD1 LEU 77 15.597 1.526 69.775 1.00 26.58 A 459 C LEU 77 16.565 2.512 73.969 1.00 22.32 A 460 O LEU 77 17.692 2.038 73.916 1.00 21.09 A 461 N THR 78 15.602 1.990 74.719 1.00 23.09 A 462 CA THR 78 15.918 0.875 75.627 1.00 23.42 A 463 CB THR 78 15.463 1.118 77.082 1.00 23.04 A 464 OG1 THR 78 14.015 1.098 77.049 1.00 21.65 A 465 CG2 THR 78 15.990 2.406 77.693 1.00 22.61 A 466 C THR 78 15.313 −0.421 75.135 1.00 23.97 A 467 O THR 78 14.357 −0.475 74.363 1.00 21.55 A 468 N GLU 79 15.805 −1.535 75.697 1.00 25.13 A 469 CA GLU 79 15.223 −2.840 75.440 1.00 25.90 A 470 CB GLU 79 16.075 −3.912 76.147 1.00 29.42 A 471 CG GLU 79 15.500 −5.306 75.879 1.00 32.50 A 472 CD GLU 79 16.417 −6.432 76.330 1.00 33.94 A 473 OE1 GLU 79 17.572 −6.275 76.719 1.00 33.93 A 474 OE2 GLU 79 15.928 −7.572 76.300 1.00 34.93 A 475 C GLU 79 13.786 −2.939 75.909 1.00 26.56 A 476 O GLU 79 12.933 −3.542 75.219 1.00 26.00 A 477 N ASP 80 13.469 −2.306 77.047 1.00 25.28 A 478 CA ASP 80 12.130 −2.360 77.604 1.00 26.58 A 479 CB ASP 80 11.991 −1.707 78.992 1.00 29.59 A 480 CG ASP 80 12.565 −2.545 80.145 1.00 34.54 A 481 OD1 ASP 80 13.268 −3.561 80.003 1.00 36.70 A 482 OD2 ASP 80 12.324 −2.141 81.293 1.00 35.94 A 483 C ASP 80 11.185 −1.624 76.630 1.00 23.74 A 484 O ASP 80 10.052 −1.982 76.364 1.00 20.67 A 485 N TYR 81 11.655 −0.470 76.146 1.00 21.73 A 486 CA TYR 81 10.830 0.280 75.179 1.00 21.01 A 487 CB TYR 81 11.538 1.572 74.807 1.00 22.38 A 488 CG TYR 81 10.553 2.569 74.238 1.00 20.79 A 489 CD1 TYR 81 9.658 3.258 75.038 1.00 22.40 A 490 CD2 TYR 81 10.539 2.777 72.863 1.00 21.60 A 491 CE1 TYR 81 8.774 4.180 74.482 1.00 22.22 A 492 CE2 TYR 81 9.653 3.680 72.284 1.00 21.70 A 493 CZ TYR 81 8.780 4.368 73.083 1.00 21.39 A 494 OH TYR 81 7.857 5.281 72.616 1.00 16.70 A 495 C TYR 81 10.538 −0.518 73.927 1.00 21.01 A 496 O TYR 81 9.414 −0.513 73.417 1.00 23.40 A 497 N LEU 82 11.502 −1.279 73.447 1.00 22.80 A 498 CA LEU 82 11.360 −2.117 72.269 1.00 25.21 A 499 CB LEU 82 12.729 −2.691 71.876 1.00 25.32 A 500 CG LEU 82 13.677 −1.731 71.130 1.00 25.98 A 501 CD2 LEU 82 13.000 −1.237 69.843 1.00 24.58 A 502 CD1 LEU 82 14.986 −2.446 70.884 1.00 26.48 A 503 C LEU 82 10.427 −3.297 72.489 1.00 26.98 A 504 O LEU 82 9.554 −3.654 71.680 1.00 26.48 A 505 N GLN 83 10.470 −3.811 73.739 1.00 27.34 A 506 CA GLN 83 9.551 −4.924 74.047 1.00 27.90 A 507 CB GLN 83 10.054 −5.610 75.334 1.00 34.21 A 508 CG GLN 83 11.214 −6.537 75.052 1.00 43.19 A 509 CD GLN 83 11.745 −7.361 76.215 1.00 48.60 A 510 OE1 GLN 83 11.137 −7.539 77.284 1.00 52.11 A 511 NE2 GLN 83 12.957 −7.920 76.033 1.00 48.78 A 512 C GLN 83 8.140 −4.386 74.173 1.00 23.34 A 513 O GLN 83 7.165 −5.046 73.827 1.00 23.48 A 514 N GLU 84 7.989 −3.150 74.641 1.00 21.80 A 515 CA GLU 84 6.664 −2.532 74.774 1.00 24.16 A 516 CB GLU 84 6.714 −1.345 75.751 1.00 27.24 A 517 CG GLU 84 7.145 −1.787 77.172 1.00 35.14 A 518 CD GLU 84 7.088 −0.745 78.267 1.00 38.58 A 519 OE1 GLU 84 6.536 0.370 78.077 1.00 42.49 A 520 OE2 GLU 84 7.598 −0.973 79.396 1.00 39.80 A 521 C GLU 84 6.119 −2.062 73.410 1.00 24.58 A 522 O GLU 84 4.910 −1.871 73.194 1.00 22.41 A 523 N ASN 85 7.041 −1.795 72.475 1.00 20.65 A 524 CA ASN 85 6.620 −1.284 71.143 1.00 22.51 A 525 CB ASN 85 7.195 0.155 71.062 1.00 20.97 A 526 CG ASN 85 6.600 1.055 72.157 1.00 23.78 A 527 OD1 ASN 85 7.224 1.315 73.225 1.00 24.08 A 528 ND2 ASN 85 5.402 1.527 71.973 1.00 22.00 A 529 C ASN 85 7.201 −2.159 70.073 1.00 22.06 A 530 O ASN 85 8.196 −1.765 69.417 1.00 22.54 A 531 N PRO 86 6.768 −3.408 69.944 1.00 22.24 A 532 CA PRO 86 7.455 −4.412 69.147 1.00 22.73 A 533 CD PRO 86 5.579 −4.002 70.612 1.00 23.00 A 534 CB PRO 86 6.642 −5.700 69.362 1.00 21.97 A 535 CG PRO 86 5.268 −5.173 69.702 1.00 22.61 A 536 C PRO 86 7.574 −4.119 67.655 1.00 21.69 A 537 O PRO 86 8.435 −4.678 66.960 1.00 21.61 A 538 N THR 87 6.700 −3.276 67.148 1.00 21.21 A 539 CA THR 87 6.722 −2.936 65.704 1.00 22.08 A 540 CB THR 87 5.501 −2.171 65.242 1.00 22.22 A 541 OG1 THR 87 5.367 −0.934 65.949 1.00 20.60 A 542 CG2 THR 87 4.223 −3.026 65.356 1.00 24.78 A 543 C THR 87 7.946 −2.127 65.342 1.00 22.35 A 544 O THR 87 8.374 −2.191 64.187 1.00 22.21 A 545 N MET 88 8.672 −1.544 66.313 1.00 21.23 A 546 CA MET 88 9.949 −0.933 66.036 1.00 24.04 A 547 CB MET 88 10.510 −0.178 67.257 1.00 22.23 A 548 CG MET 88 9.720 1.118 67.459 1.00 22.19 A 549 SD MET 88 10.285 2.038 68.920 1.00 22.06 A 550 CE MET 88 11.960 2.446 68.441 1.00 20.27 A 551 C MET 88 10.972 −1.939 65.533 1.00 25.74 A 552 O MET 88 11.933 −1.517 64.887 1.00 25.43 A 553 N CYS 89 10.841 −3.217 65.850 1.00 28.09 A 554 CA CYS 89 11.782 −4.230 65.434 1.00 31.78 A 555 CB CYS 89 11.943 −5.303 66.544 1.00 31.86 A 556 SG CYS 89 12.464 −4.554 68.102 1.00 33.92 A 557 C CYS 89 11.381 −4.988 64.175 1.00 32.89 A 558 O CYS 89 12.193 −5.791 63.718 1.00 33.74 A 559 N GLU 90 10.199 −4.765 63.654 1.00 35.14 A 560 CA GLU 90 9.642 −5.420 62.477 1.00 35.99 A 561 CB GLU 90 8.163 −5.761 62.680 1.00 39.05 A 562 CG GLU 90 7.781 −6.609 63.870 1.00 43.25 A 563 CD GLU 90 6.323 −6.617 64.296 1.00 45.32 A 564 OE1 GLU 90 5.381 −6.341 63.517 1.00 45.87 A 565 OE2 GLU 90 6.084 −6.930 65.499 1.00 46.74 A 566 C GLU 90 9.827 −4.495 61.266 1.00 35.00 A 567 O GLU 90 9.299 −3.382 61.198 1.00 30.90 A 568 N PHE 91 10.664 −4.939 60.336 1.00 35.74 A 569 CA PHE 91 11.073 −4.068 59.227 1.00 37.10 A 570 CB PHE 91 12.146 −4.707 58.353 1.00 37.29 A 571 CG PHE 91 12.830 −3.748 57.416 1.00 37.01 A 572 CD1 PHE 91 13.960 −3.053 57.790 1.00 37.87 A 573 CD2 PHE 91 12.304 −3.526 56.152 1.00 37.36 A 574 CE1 PHE 91 14.568 −2.151 56.927 1.00 38.21 A 575 CE2 PHE 91 12.896 −2.622 55.278 1.00 37.76 A 576 CZ PHE 91 14.012 −1.925 55.677 1.00 38.01 A 577 C PHE 91 9.837 −3.535 58.508 1.00 37.33 A 578 O PHE 91 8.908 −4.199 58.081 1.00 37.45 A 579 N MET 92 9.721 −2.218 58.577 1.00 37.74 A 580 CA MET 92 8.643 −1.430 58.010 1.00 39.99 A 581 CB MET 92 8.708 −1.524 56.475 1.00 42.01 A 582 CG MET 92 10.005 −0.872 55.965 1.00 44.68 A 583 SD MET 92 10.124 0.894 56.343 1.00 48.32 A 584 CE MET 92 11.755 0.952 57.098 1.00 47.67 A 585 C MET 92 7.246 −1.634 58.579 1.00 38.29 A 586 O MET 92 6.265 −1.145 57.986 1.00 37.09 A 587 N ALA 93 7.088 −2.278 59.744 1.00 33.03 A 588 CA ALA 93 5.776 −2.292 60.378 1.00 30.77 A 589 CB ALA 93 5.784 −3.241 61.579 1.00 30.88 A 590 C ALA 93 5.566 −0.833 60.801 1.00 26.21 A 591 O ALA 93 6.519 −0.061 60.984 1.00 26.39 A 592 N PRO 94 4.339 −0.414 60.993 1.00 25.45 A 593 CA PRO 94 4.001 0.911 61.454 1.00 24.71 A 594 CD PRO 94 3.138 −1.282 60.866 1.00 27.05 A 595 CB PRO 94 2.498 0.937 61.426 1.00 24.24 A 596 CG PRO 94 2.063 −0.488 61.540 1.00 27.58 A 597 C PRO 94 4.586 1.134 62.853 1.00 23.01 A 598 O PRO 94 4.182 0.405 63.771 1.00 22.00 A 599 N SER 95 5.380 2.177 63.030 1.00 21.95 A 600 CA SER 95 6.074 2.390 64.307 1.00 19.65 A 601 CB SER 95 7.371 1.567 64.279 1.00 17.85 A 602 OG SER 95 8.170 1.976 63.168 1.00 19.02 A 603 C SER 95 6.433 3.842 64.540 1.00 21.19 A 604 O SER 95 6.984 4.232 65.590 1.00 20.42 A 605 N LEU 96 6.014 4.734 63.620 1.00 19.13 A 606 CA LEU 96 6.309 6.159 63.800 1.00 18.01 A 607 CB LEU 96 5.732 6.987 62.625 1.00 15.73 A 608 CG LEU 96 6.021 8.495 62.787 1.00 18.09 A 609 CD2 LEU 96 5.344 9.254 61.649 1.00 19.36 A 610 CD1 LEU 96 7.517 8.788 62.715 1.00 17.55 A 611 C LEU 96 5.786 6.727 65.121 1.00 17.50 A 612 O LEU 96 6.447 7.588 65.720 1.00 16.57 A 613 N ASN 97 4.572 6.396 65.508 1.00 17.74 A 614 CA ASN 97 3.962 6.946 66.729 1.00 17.67 A 615 CB ASN 97 2.536 6.418 66.878 1.00 18.54 A 616 CG ASN 97 1.559 6.945 65.844 1.00 20.15 A 617 OD1 ASN 97 0.373 6.530 65.830 1.00 22.49 A 618 ND2 ASN 97 1.996 7.888 65.040 1.00 14.75 A 619 C ASN 97 4.789 6.539 67.971 1.00 17.57 A 620 O ASN 97 5.114 7.411 68.765 1.00 17.20 A 621 N ALA 98 5.239 5.299 68.063 1.00 17.89 A 622 CA ALA 98 6.116 4.874 69.156 1.00 19.90 A 623 CB ALA 98 6.459 3.382 69.117 1.00 18.51 A 624 C ALA 98 7.418 5.641 69.147 1.00 18.57 A 625 O ALA 98 8.035 6.005 70.196 1.00 18.22 A 626 N ARG 99 8.000 5.788 67.939 1.00 15.38 A 627 CA ARG 99 9.198 6.584 67.808 1.00 15.91 A 628 CB ARG 99 9.736 6.561 66.322 1.00 17.77 A 629 CG ARG 99 9.922 5.102 65.894 1.00 18.85 A 630 CD ARG 99 10.377 5.051 64.441 1.00 17.09 A 631 NE ARG 99 10.364 3.734 63.832 1.00 17.08 A 632 CZ ARG 99 11.483 3.005 63.837 1.00 19.23 A 633 NH1 ARG 99 12.582 3.470 64.438 1.00 15.98 A 634 NH2 ARG 99 11.439 1.825 63.211 1.00 21.09 A 635 C ARG 99 9.010 8.007 68.270 1.00 14.62 A 636 O ARG 99 9.813 8.566 69.052 1.00 16.83 A 637 N GLN 100 8.013 8.687 67.759 1.00 14.76 A 638 CA GLN 100 7.755 10.093 68.096 1.00 15.89 A 639 CB GLN 100 6.471 10.518 67.386 1.00 16.39 A 640 CG GLN 100 6.589 10.774 65.861 1.00 16.04 A 641 CD GLN 100 7.193 12.136 65.634 1.00 14.40 A 642 OE1 GLN 100 6.499 12.946 65.003 1.00 21.02 A 643 NE2 GLN 100 8.372 12.458 66.071 1.00 14.10 A 644 C GLN 100 7.475 10.202 69.622 1.00 15.87 A 645 O GLN 100 7.777 11.189 70.280 1.00 17.94 A 646 N ASP 101 6.725 9.238 70.173 1.00 16.61 A 647 CA ASP 101 6.404 9.336 71.629 1.00 19.76 A 648 CB ASP 101 5.522 8.146 72.016 1.00 20.02 A 649 CG ASP 101 4.103 8.330 71.534 1.00 19.83 A 650 OD1 ASP 101 3.727 9.441 71.188 1.00 17.95 A 651 OD2 ASP 101 3.359 7.357 71.523 1.00 24.70 A 652 C ASP 101 7.715 9.313 72.423 1.00 20.87 A 653 O ASP 101 7.824 10.021 73.446 1.00 27.99 A 654 N LEU 102 8.774 8.667 71.954 1.00 19.31 A 655 CA LEU 102 10.082 8.718 72.603 1.00 16.53 A 656 CB LEU 102 10.931 7.530 72.208 1.00 18.29 A 657 CG LEU 102 12.276 7.281 72.888 1.00 19.63 A 658 CD2 LEU 102 13.256 8.393 72.584 1.00 25.96 A 659 CD1 LEU 102 13.019 6.034 72.414 1.00 20.49 A 660 C LEU 102 10.752 10.043 72.329 1.00 19.62 A 661 O LEU 102 11.269 10.746 73.227 1.00 17.52 A 662 N VAL 103 10.980 10.374 71.032 1.00 18.18 A 663 CA VAL 103 11.888 11.468 70.699 1.00 15.75 A 664 CB VAL 103 12.449 11.309 69.236 1.00 18.04 A 665 CG1 VAL 103 13.122 9.941 69.142 1.00 14.19 A 666 CG2 VAL 103 11.350 11.445 68.181 1.00 13.15 A 667 C VAL 103 11.299 12.833 70.858 1.00 13.49 A 668 O VAL 103 12.044 13.813 71.001 1.00 13.92 A 669 N VAL 104 9.981 13.018 70.850 1.00 14.88 A 670 CA VAL 104 9.346 14.321 71.017 1.00 14.37 A 671 CB VAL 104 7.856 14.282 70.698 1.00 18.72 A 672 CG1 VAL 104 7.102 15.492 71.202 1.00 17.65 A 673 CG2 VAL 104 7.622 14.322 69.122 1.00 16.40 A 674 C VAL 104 9.589 14.926 72.420 1.00 17.96 A 675 O VAL 104 9.844 16.140 72.563 1.00 16.58 A 676 N THR 105 9.657 14.018 73.414 1.00 14.93 A 677 CA THR 105 10.082 14.554 74.730 1.00 18.23 A 678 CB THR 105 9.356 13.736 75.842 1.00 18.83 A 679 OG1 THR 105 9.653 12.375 75.611 1.00 20.03 A 680 CG2 THR 105 7.843 13.834 75.729 1.00 19.34 A 681 C THR 105 11.581 14.428 74.919 1.00 17.76 A 682 O THR 105 12.297 15.321 75.390 1.00 16.74 A 683 N GLY 106 12.156 13.355 74.408 1.00 18.35 A 684 CA GLY 106 13.588 13.075 74.646 1.00 20.22 A 685 C GLY 106 14.573 14.040 74.076 1.00 17.61 A 686 O GLY 106 15.617 14.427 74.619 1.00 18.07 A 687 N VAL 107 14.283 14.500 72.828 1.00 18.39 A 688 CA VAL 107 15.253 15.382 72.150 1.00 14.98 A 689 CB VAL 107 14.794 15.578 70.688 1.00 15.76 A 690 CG1 VAL 107 15.372 16.793 70.033 1.00 12.18 A 691 CG2 VAL 107 15.172 14.301 69.879 1.00 14.81 A 692 C VAL 107 15.409 16.665 72.929 1.00 14.08 A 693 O VAL 107 16.524 17.141 73.159 1.00 14.20 A 694 N PRO 108 14.341 17.395 73.241 1.00 14.43 A 695 CA PRO 108 14.438 18.640 73.962 1.00 16.42 A 696 CD PRO 108 12.948 17.026 72.949 1.00 16.38 A 697 CB PRO 108 13.039 19.206 73.945 1.00 17.29 A 698 CG PRO 108 12.103 18.080 73.638 1.00 17.10 A 699 C PRO 108 15.030 18.462 75.375 1.00 17.39 A 700 O PRO 108 15.717 19.340 75.899 1.00 16.11 A 701 N MET 109 14.681 17.377 76.050 1.00 18.23 A 702 CA MET 109 15.216 17.142 77.417 1.00 19.54 A 703 CB MET 109 14.579 15.892 78.030 1.00 18.80 A 704 CG MET 109 15.141 15.705 79.453 1.00 24.55 A 705 SD MET 109 14.681 17.096 80.458 1.00 30.03 A 706 CE MET 109 12.892 17.062 80.237 1.00 23.66 A 707 C MET 109 16.726 16.932 77.368 1.00 19.02 A 708 O MET 109 17.498 17.514 78.126 1.00 17.91 A 709 N LEU 110 17.197 16.076 76.453 1.00 18.49 A 710 CA LEU 110 18.611 15.843 76.232 1.00 18.20 A 711 CB LEU 110 18.821 14.757 75.163 1.00 18.64 A 712 CG LEU 110 20.275 14.405 74.813 1.00 19.58 A 713 CD2 LEU 110 20.325 13.371 73.673 1.00 18.33 A 714 CD1 LEU 110 20.970 13.816 76.051 1.00 18.07 A 715 C LEU 110 19.337 17.100 75.806 1.00 18.48 A 716 O LEU 110 20.433 17.435 76.297 1.00 20.76 A 717 N GLY 111 18.711 17.945 74.981 1.00 16.22 A 718 CA GLY 111 19.304 19.235 74.604 1.00 14.18 A 719 C GLY 111 19.371 20.178 75.812 1.00 16.43 A 720 O GLY 111 20.299 20.948 76.061 1.00 15.13 A 721 N LYS 112 18.371 20.116 76.685 1.00 15.61 A 722 CA LYS 112 18.401 20.945 77.898 1.00 16.57 A 723 CB LYS 112 17.103 20.710 78.684 1.00 18.18 A 724 CG LYS 112 16.987 21.680 79.892 1.00 20.77 A 725 CD LYS 112 16.318 20.904 81.048 1.00 22.71 A 726 CE LYS 112 17.323 19.962 81.667 1.00 27.09 A 727 NZ LYS 112 16.687 19.337 82.890 1.00 32.10 A 728 C LYS 112 19.597 20.512 78.747 1.00 14.36 A 729 O LYS 112 20.258 21.371 79.299 1.00 16.03 A 730 N GLU 113 19.915 19.227 78.831 1.00 17.89 A 731 CA GLU 113 21.055 18.838 79.690 1.00 19.13 A 732 CB GLU 113 21.089 17.313 79.820 1.00 22.35 A 733 CG GLU 113 19.889 16.849 80.643 1.00 27.59 A 734 CD GLU 113 19.575 15.381 80.477 1.00 30.72 A 735 OE1 GLU 113 20.383 14.636 79.816 1.00 34.90 A 736 OE2 GLU 113 18.516 14.896 81.021 1.00 33.21 A 737 C GLU 113 22.372 19.390 79.154 1.00 20.94 A 738 O GLU 113 23.264 19.789 79.915 1.00 15.83 A 739 N ALA 114 22.498 19.420 77.852 1.00 17.27 A 740 CA ALA 114 23.708 19.962 77.235 1.00 16.41 A 741 CB ALA 114 23.731 19.648 75.742 1.00 13.77 A 742 C ALA 114 23.749 21.485 77.439 1.00 14.62 A 743 O ALA 114 24.791 22.066 77.757 1.00 13.91 A 744 N ALA 115 22.598 22.115 77.260 1.00 13.33 A 745 CA ALA 115 22.480 23.585 77.361 1.00 13.34 A 746 CB ALA 115 21.060 24.038 77.044 1.00 13.34 A 747 C ALA 115 22.825 24.103 78.766 1.00 16.12 A 748 O ALA 115 23.455 25.153 78.930 1.00 14.73 A 749 N VAL 116 22.393 23.380 79.782 1.00 16.09 A 750 CA VAL 116 22.668 23.795 81.168 1.00 17.57 A 751 CB VAL 116 22.046 22.819 82.168 1.00 16.56 A 752 CG1 VAL 116 22.547 23.031 83.602 1.00 16.83 A 753 CG2 VAL 116 20.521 22.936 82.249 1.00 14.36 A 754 C VAL 116 24.182 23.858 81.387 1.00 16.32 A 755 O VAL 116 24.702 24.791 82.013 1.00 17.09 A 756 N LYS 117 24.861 22.859 80.850 1.00 18.67 A 757 CA LYS 117 26.324 22.751 80.965 1.00 19.95 A 758 CB LYS 117 26.822 21.443 80.365 1.00 20.22 A 759 CG LYS 117 26.532 20.235 81.251 1.00 23.41 A 760 CD LYS 117 27.018 18.925 80.638 1.00 25.60 A 761 CE LYS 117 26.247 17.704 81.136 1.00 27.45 A 762 NZ LYS 117 26.879 16.439 80.735 1.00 27.56 A 763 C LYS 117 27.024 23.902 80.231 1.00 19.45 A 764 O LYS 117 27.988 24.489 80.726 1.00 17.34 A 765 N ALA 118 26.549 24.220 79.039 1.00 17.17 A 766 CA ALA 118 27.157 25.309 78.250 1.00 15.71 A 767 CB ALA 118 26.501 25.415 76.875 1.00 17.47 A 768 C ALA 118 26.985 26.651 78.976 1.00 15.84 A 769 O ALA 118 27.908 27.466 79.068 1.00 16.06 A 770 N ILE 119 25.792 26.861 79.486 1.00 18.12 A 771 CA ILE 119 25.446 28.109 80.181 1.00 18.00 A 772 CB ILE 119 23.937 28.145 80.409 1.00 19.24 A 773 CG2 ILE 119 23.498 29.252 81.368 1.00 18.79 A 774 CG1 ILE 119 23.163 28.373 79.109 1.00 18.13 A 775 CD1 ILE 119 21.670 28.086 79.241 1.00 16.38 A 776 C ILE 119 26.190 28.215 81.517 1.00 18.79 A 777 O ILE 119 26.612 29.301 81.913 1.00 20.34 A 778 N ASP 120 26.457 27.099 82.123 0.50 19.78 A 779 CA ASP 120 27.191 27.069 83.392 0.50 21.23 A 780 CB ASP 120 27.043 25.701 84.032 0.50 21.61 A 781 CG ASP 120 25.743 25.622 84.821 0.50 23.09 A 782 OD1 ASP 120 25.277 24.484 85.185 0.50 25.77 A 783 OD2 ASP 120 25.114 26.712 85.115 0.50 24.50 A 784 C ASP 120 28.652 27.452 83.140 0.50 21.63 A 785 O ASP 120 29.263 28.203 83.913 0.50 20.32 A 778 N 2ASP 120 26.430 27.095 82.148 0.50 18.97 A 779 CA 2ASP 120 27.176 27.073 83.414 0.50 19.78 A 780 CB 2ASP 120 27.105 25.691 84.055 0.50 18.04 A 781 CG 2ASP 120 27.823 25.634 85.402 0.50 18.53 A 782 OD 12ASP 120 27.378 26.311 86.405 0.50 18.96 A 783 OD 22ASP 120 28.811 24.912 85.525 0.50 14.37 A 784 C 2ASP 120 28.633 27.483 83.139 0.50 20.73 A 785 O 2ASP 120 29.225 28.289 83.868 0.50 19.80 A 794 N GLU 121 29.255 26.892 82.096 1.00 20.48 A 795 CA GLU 121 30.577 27.296 81.668 1.00 19.07 A 796 CB GLU 121 31.089 26.472 80.454 1.00 20.06 A 797 CG GLU 121 32.459 27.012 79.979 1.00 21.09 A 798 CD GLU 121 32.816 26.412 78.600 1.00 22.32 A 799 OE1 GLU 121 32.182 25.479 78.093 1.00 21.05 A 800 OE2 GLU 121 33.843 26.890 78.072 1.00 22.00 A 801 C GLU 121 30.625 28.776 81.369 1.00 20.81 A 802 O GLU 121 31.521 29.554 81.776 1.00 20.90 A 803 N TRP 122 29.653 29.236 80.583 1.00 18.77 A 804 CA TRP 122 29.584 30.620 80.181 1.00 18.63 A 805 CB TRP 122 28.334 30.801 79.294 1.00 16.48 A 806 CG TRP 122 28.155 32.174 78.726 1.00 16.28 A 807 CD2 TRP 122 26.923 32.873 78.518 1.00 15.79 A 808 CD1 TRP 122 29.116 32.990 78.194 1.00 16.70 A 809 NE1 TRP 122 28.583 34.161 77.731 1.00 16.88 A 810 CE2 TRP 122 27.211 34.093 77.901 1.00 15.08 A 811 CE3 TRP 122 25.577 32.560 78.829 1.00 17.00 A 812 CZ2 TRP 122 26.262 35.047 77.609 1.00 13.22 A 813 CZ3 TRP 122 24.614 33.522 78.531 1.00 13.93 A 814 CH2 TRP 122 24.969 34.717 77.916 1.00 13.27 A 815 C TRP 122 29.538 31.499 81.441 1.00 21.18 A 816 O TRP 122 30.143 32.595 81.471 1.00 21.65 A 817 N GLY 123 28.546 31.276 82.290 1.00 21.20 A 818 CA GLY 123 28.464 31.926 83.601 1.00 20.30 A 819 C GLY 123 27.636 33.178 83.633 1.00 22.55 A 820 O GLY 123 27.223 33.591 84.711 1.00 23.03 A 821 N LEU 124 27.214 33.734 82.476 1.00 19.56 A 822 CA LEU 124 26.387 34.911 82.452 1.00 18.14 A 823 CB LEU 124 26.671 35.733 81.199 1.00 23.08 A 824 CG LEU 124 27.898 36.660 81.262 1.00 24.54 A 825 CD2 LEU 124 27.913 37.634 80.089 1.00 23.57 A 826 CD1 LEU 124 29.206 35.864 81.321 1.00 24.28 A 827 C LEU 124 24.926 34.504 82.604 1.00 18.48 A 828 O LEU 124 24.566 33.340 82.410 1.00 18.76 A 829 N PRO 125 24.055 35.423 82.938 1.00 19.11 A 830 CA PRO 125 22.654 35.144 83.097 1.00 20.89 A 831 CD PRO 125 24.389 36.861 83.156 1.00 19.83 A 832 CB PRO 125 22.040 36.459 83.557 1.00 21.21 A 833 CG PRO 125 23.163 37.368 83.904 1.00 23.77 A 834 C PRO 125 22.003 34.619 81.809 1.00 21.34 A 835 O PRO 125 22.193 35.136 80.694 1.00 21.43 A 836 N LYS 126 21.174 33.600 81.942 1.00 19.50 A 837 CA LYS 126 20.433 32.982 80.835 1.00 21.62 A 838 CB LYS 126 19.846 31.624 81.228 1.00 20.60 A 839 CG LYS 126 18.716 31.656 82.265 1.00 24.65 A 840 CD LYS 126 18.268 30.231 82.580 1.00 24.08 A 841 CE LYS 126 17.293 30.086 83.743 1.00 27.19 A 842 NZ LYS 126 16.268 31.128 83.772 1.00 28.11 A 843 C LYS 126 19.451 33.949 80.210 1.00 20.79 A 844 O LYS 126 19.057 33.887 79.024 1.00 19.00 A 845 N SER 127 19.054 35.006 80.960 1.00 18.95 A 846 CA SER 127 18.198 36.061 80.448 1.00 19.28 A 847 CB SER 127 17.769 37.070 81.561 1.00 18.43 A 848 OG SER 127 18.972 37.718 81.982 1.00 20.37 A 849 C SER 127 18.880 36.875 79.350 1.00 19.12 A 850 O SER 127 18.226 37.612 78.598 1.00 19.26 A 851 N LYS 128 20.207 36.775 79.241 1.00 18.44 A 852 CA LYS 128 20.934 37.466 78.202 1.00 19.59 A 853 CB LYS 128 22.371 37.809 78.645 1.00 22.71 A 854 CG LYS 128 22.360 38.988 79.650 1.00 28.47 A 855 CD LYS 128 23.798 39.358 80.030 1.00 33.65 A 856 CE LYS 128 23.837 40.734 80.699 1.00 37.84 A 857 NZ LYS 128 25.066 40.919 81.542 1.00 40.83 A 858 C LYS 128 20.970 36.648 76.886 1.00 17.61 A 859 O LYS 128 21.654 37.100 75.975 1.00 17.90 A 860 N ILE 129 20.492 35.446 76.817 1.00 16.00 A 861 CA ILE 129 20.418 34.665 75.559 1.00 15.86 A 862 CB ILE 129 20.184 33.196 75.852 1.00 14.94 A 863 CG2 ILE 129 19.853 32.386 74.563 1.00 13.22 A 864 CG1 ILE 129 21.464 32.641 76.525 1.00 15.39 A 865 CD1 ILE 129 21.251 31.266 77.182 1.00 12.48 A 866 C ILE 129 19.323 35.309 74.719 1.00 16.47 A 867 O ILE 129 18.190 35.359 75.206 1.00 15.12 A 868 N THR 130 19.660 35.830 73.526 1.00 14.40 A 869 CA THR 130 18.674 36.537 72.722 1.00 15.90 A 870 CB THR 130 19.356 37.780 72.073 1.00 16.78 A 871 OG1 THR 130 20.588 37.405 71.457 1.00 14.61 A 872 CG2 THR 130 19.600 38.797 73.226 1.00 20.14 A 873 C THR 130 18.116 35.718 71.552 1.00 14.97 A 874 O THR 130 17.072 36.074 71.030 1.00 13.58 A 875 N HIS 131 18.817 34.672 71.133 1.00 14.54 A 876 CA HIS 131 18.460 33.849 69.997 1.00 14.88 A 877 ND1 HIS 131 19.656 36.778 68.871 1.00 14.87 A 878 CG HIS 131 19.134 35.633 68.252 1.00 14.61 A 879 CB HIS 131 19.347 34.251 68.754 1.00 11.60 A 880 NE2 HIS 131 18.565 37.480 67.118 1.00 12.92 A 881 CD2 HIS 131 18.458 36.092 67.140 1.00 10.98 A 882 CE1 HIS 131 19.361 37.852 68.159 1.00 15.43 A 883 C HIS 131 18.769 32.417 70.382 1.00 15.66 A 884 O HIS 131 19.744 32.127 71.106 1.00 14.95 A 885 N LEU 132 17.935 31.487 69.947 1.00 11.48 A 886 CA LEU 132 18.046 30.095 70.167 1.00 13.97 A 887 CB LEU 132 16.883 29.525 71.004 1.00 11.50 A 888 CG LEU 132 16.800 28.010 71.055 1.00 13.95 A 889 CD2 LEU 132 15.496 27.637 71.783 1.00 12.94 A 890 CD1 LEU 132 17.976 27.318 71.746 1.00 13.85 A 891 C LEU 132 17.915 29.322 68.823 1.00 14.21 A 892 O LEU 132 16.909 29.490 68.133 1.00 12.57 A 893 N ILE 133 18.927 28.543 68.531 1.00 16.16 A 894 CA ILE 133 18.880 27.710 67.311 1.00 14.73 A 895 CB ILE 133 20.145 27.803 66.434 1.00 14.29 A 896 CG2 ILE 133 20.083 26.754 65.321 1.00 13.55 A 897 CG1 ILE 133 20.306 29.227 65.887 1.00 12.77 A 898 CD1 ILE 133 21.732 29.488 65.391 1.00 13.14 A 899 C ILE 133 18.758 26.263 67.829 1.00 14.02 A 900 O ILE 133 19.669 25.807 68.529 1.00 15.60 A 901 N PHE 134 17.637 25.617 67.546 1.00 12.75 A 902 CA PHE 134 17.508 24.222 67.961 1.00 14.31 A 903 CB PHE 134 16.173 23.968 68.718 1.00 13.08 A 904 CG PHE 134 16.243 22.661 69.465 1.00 14.84 A 905 CD1 PHE 134 16.267 22.700 70.896 1.00 13.62 A 906 CD2 PHE 134 16.177 21.453 68.831 1.00 13.56 A 907 CE1 PHE 134 16.304 21.485 71.584 1.00 12.53 A 908 CE2 PHE 134 16.288 20.257 69.520 1.00 15.13 A 909 CZ PHE 134 16.360 20.278 70.926 1.00 14.68 A 910 C PHE 134 17.524 23.349 66.693 1.00 15.71 A 911 O PHE 134 16.787 23.619 65.706 1.00 16.42 A 912 N CYS 135 18.358 22.353 66.708 1.00 15.75 A 913 CA CYS 135 18.522 21.499 65.502 1.00 16.73 A 914 CB CYS 135 19.884 21.859 64.834 1.00 15.26 A 915 SG CYS 135 20.328 20.732 63.445 1.00 15.19 A 916 C CYS 135 18.465 20.056 65.836 1.00 15.01 A 917 O CYS 135 19.009 19.629 66.880 1.00 13.86 A 918 N THR 136 17.663 19.285 65.092 1.00 13.11 A 919 CA THR 136 17.623 17.854 65.246 1.00 12.65 A 920 CB THR 136 16.572 17.458 66.335 1.00 11.65 A 921 OG1 THR 136 16.660 16.068 66.616 1.00 10.20 A 922 CG2 THR 136 15.131 17.740 65.909 1.00 9.93 A 923 C THR 136 17.249 17.186 63.922 1.00 14.69 A 924 O THR 136 16.870 17.854 62.950 1.00 16.07 A 925 N THR 137 17.383 15.874 63.928 1.00 12.78 A 926 CA THR 137 17.043 15.032 62.777 1.00 15.31 A 927 CB THR 137 18.310 14.389 62.186 1.00 15.76 A 928 OG1 THR 137 19.338 15.362 62.046 1.00 14.12 A 929 CG2 THR 137 18.077 13.777 60.800 1.00 17.92 A 930 C THR 137 16.079 13.931 63.231 1.00 16.12 A 931 O THR 137 15.720 13.030 62.467 1.00 15.44 A 932 N ALA 138 15.649 14.027 64.484 1.00 14.51 A 933 CA ALA 138 14.776 12.996 65.074 1.00 15.90 A 934 CB ALA 138 15.496 12.320 66.243 1.00 16.72 A 935 C ALA 138 13.447 13.566 65.597 1.00 16.75 A 936 O ALA 138 13.405 14.229 66.644 1.00 16.22 A 937 N GLY 139 12.400 13.265 64.836 1.00 15.47 A 938 CA GLY 139 11.003 13.646 65.154 1.00 16.54 A 939 C GLY 139 10.724 15.135 64.881 1.00 13.58 A 940 O GLY 139 11.632 15.933 64.641 1.00 16.14 A 941 N VAL 140 9.439 15.447 64.906 1.00 12.00 A 942 CA VAL 140 8.917 16.821 64.769 1.00 14.02 A 943 CB VAL 140 8.583 17.186 63.313 1.00 14.96 A 944 CG1 VAL 140 9.745 16.964 62.348 1.00 14.96 A 945 CG2 VAL 140 7.402 16.393 62.754 1.00 15.30 A 946 C VAL 140 7.642 16.903 65.587 1.00 11.68 A 947 O VAL 140 7.008 15.887 65.877 1.00 15.88 A 948 N ASP 141 7.288 18.095 65.956 1.00 12.22 A 949 CA ASP 141 6.082 18.329 66.748 1.00 14.96 A 950 CB ASP 141 6.343 17.905 68.200 1.00 15.56 A 951 CG ASP 141 5.068 17.708 69.024 1.00 18.13 A 952 OD1 ASP 141 4.036 17.140 68.502 1.00 19.29 A 953 OD2 ASP 141 5.026 18.111 70.249 1.00 18.44 A 954 C ASP 141 5.777 19.796 66.672 1.00 15.17 A 955 O ASP 141 6.630 20.646 66.329 1.00 16.33 A 956 N MET 142 4.573 20.198 67.043 1.00 12.47 A 957 CA MET 142 4.163 21.576 67.107 1.00 12.35 A 958 CB MET 142 3.274 22.034 65.937 1.00 12.65 A 959 CG MET 142 3.849 21.519 64.560 1.00 13.17 A 960 SD MET 142 2.778 22.129 63.249 1.00 17.73 A 961 CE MET 142 3.238 23.820 63.168 1.00 12.70 A 962 C MET 142 3.430 21.833 68.425 1.00 14.69 A 963 O MET 142 2.530 21.028 68.630 1.00 11.86 A 964 N PRO 143 3.862 22.750 69.210 1.00 15.28 A 965 CA PRO 143 5.051 23.558 69.203 1.00 13.24 A 966 CD PRO 143 3.201 23.007 70.527 1.00 16.57 A 967 CB PRO 143 5.128 24.447 70.428 1.00 16.21 A 968 CG PRO 143 3.868 24.173 71.156 1.00 17.09 A 969 C PRO 143 6.270 22.671 69.122 1.00 11.50 A 970 O PRO 143 6.231 21.479 69.430 1.00 11.80 A 971 N GLY 144 7.360 23.233 68.554 1.00 12.53 A 972 CA GLY 144 8.509 22.371 68.317 1.00 14.94 A 973 C GLY 144 9.454 22.196 69.510 1.00 15.09 A 974 O GLY 144 9.214 22.737 70.580 1.00 15.08 A 975 N ALA 145 10.535 21.443 69.291 1.00 13.80 A 976 CA ALA 145 11.507 21.238 70.340 1.00 14.14 A 977 CB ALA 145 12.609 20.293 69.930 1.00 12.47 A 978 C ALA 145 12.124 22.560 70.844 1.00 15.66 A 979 O ALA 145 12.599 22.643 71.986 1.00 16.32 A 980 N ASP 146 12.118 23.600 70.015 1.00 13.22 A 981 CA ASP 146 12.685 24.908 70.430 1.00 15.87 A 982 CB ASP 146 12.738 25.912 69.268 1.00 14.01 A 983 CG ASP 146 11.381 26.189 68.621 1.00 15.41 A 984 OD1 ASP 146 10.555 25.222 68.427 1.00 13.88 A 985 OD2 ASP 146 11.069 27.386 68.257 1.00 14.80 A 986 C ASP 146 11.848 25.508 71.565 1.00 16.26 A 987 O ASP 146 12.383 26.053 72.542 1.00 13.83 A 988 N TYR 147 10.545 25.393 71.410 1.00 15.62 A 989 CA TYR 147 9.603 25.906 72.404 1.00 17.56 A 990 CB TYR 147 8.168 25.788 71.901 1.00 19.53 A 991 CG TYR 147 7.155 25.905 73.035 1.00 21.75 A 992 CD1 TYR 147 6.720 27.164 73.453 1.00 22.18 A 993 CD2 TYR 147 6.675 24.750 73.659 1.00 21.43 A 994 CE1 TYR 147 5.808 27.271 74.503 1.00 24.05 A 995 CE2 TYR 147 5.764 24.859 74.715 1.00 22.89 A 996 CZ TYR 147 5.332 26.121 75.137 1.00 25.54 A 997 OH TYR 147 4.451 26.235 76.165 1.00 26.85 A 998 C TYR 147 9.747 25.121 73.716 1.00 15.68 A 999 O TYR 147 9.762 25.699 74.810 1.00 17.55 A 1000 N GLN 148 9.854 23.800 73.597 1.00 14.99 A 1001 CA GLN 148 10.007 22.931 74.782 1.00 17.49 A 1002 CB GLN 148 10.130 21.449 74.400 1.00 16.80 A 1003 CG GLN 148 8.907 20.883 73.674 1.00 19.62 A 1004 CD GLN 148 7.584 21.077 74.426 1.00 22.64 A 1005 OE1 GLN 148 7.583 21.469 75.592 1.00 17.96 A 1006 NE2 GLN 148 6.440 20.831 73.808 1.00 18.78 A 1007 C GLN 148 11.278 23.313 75.549 1.00 18.28 A 1008 O GLN 148 11.298 23.343 76.787 1.00 16.95 A 1009 N LEU 149 12.325 23.605 74.786 1.00 16.52 A 1010 CA LEU 149 13.630 23.968 75.363 1.00 16.17 A 1011 CB LEU 149 14.715 24.128 74.302 1.00 17.15 A 1012 CG LEU 149 16.068 24.444 74.947 1.00 18.85 A 1013 CD2 LEU 149 17.171 24.749 73.939 1.00 20.01 A 1014 CD1 LEU 149 16.590 23.296 75.816 1.00 17.08 A 1015 C LEU 149 13.560 25.293 76.138 1.00 16.77 A 1016 O LEU 149 14.180 25.447 77.198 1.00 13.50 A 1017 N VAL 150 12.816 26.246 75.606 1.00 14.16 A 1018 CA VAL 150 12.653 27.557 76.263 1.00 18.01 A 1019 CB VAL 150 11.792 28.485 75.406 1.00 18.11 A 1020 CG1 VAL 150 11.328 29.731 76.168 1.00 17.86 A 1021 CG2 VAL 150 12.526 28.994 74.163 1.00 15.15 A 1022 C VAL 150 11.982 27.372 77.636 1.00 19.70 A 1023 O VAL 150 12.395 27.973 78.635 1.00 19.11 A 1024 N LYS 151 10.961 26.534 77.638 1.00 17.83 A 1025 CA LYS 151 10.164 26.208 78.842 1.00 21.77 A 1026 CB LYS 151 9.010 25.297 78.420 1.00 24.68 A 1027 CG LYS 151 8.072 24.921 79.561 1.00 30.91 A 1028 CD LYS 151 6.971 23.958 79.115 1.00 34.30 A 1029 CE LYS 151 5.718 24.044 79.983 1.00 37.33 A 1030 NZ LYS 151 4.774 22.947 79.728 1.00 38.19 A 1031 C LYS 151 11.031 25.487 79.880 1.00 21.42 A 1032 O LYS 151 11.128 25.883 81.027 1.00 19.15 A 1033 N LEU 152 11.742 24.446 79.471 1.00 17.46 A 1034 CA LEU 152 12.633 23.653 80.236 1.00 21.09 A 1035 CB LEU 152 13.200 22.522 79.373 1.00 22.56 A 1036 CG LEU 152 12.813 21.079 79.538 1.00 27.28 A 1037 CD2 LEU 152 12.742 20.286 78.238 1.00 25.41 A 1038 CD1 LEU 152 11.558 20.840 80.389 1.00 29.19 A 1039 C LEU 152 13.763 24.480 80.833 1.00 23.13 A 1040 O LEU 152 14.106 24.209 81.996 1.00 20.16 A 1041 N LEU 153 14.358 25.403 80.070 1.00 18.40 A 1042 CA LEU 153 15.503 26.119 80.574 1.00 20.40 A 1043 CB LEU 153 16.382 26.485 79.359 1.00 20.57 A 1044 CG LEU 153 17.877 26.358 79.291 1.00 24.59 A 1045 CD2 LEU 153 18.308 26.399 77.813 1.00 22.59 A 1046 CD1 LEU 153 18.411 25.111 80.019 1.00 23.12 A 1047 C LEU 153 15.101 27.398 81.283 1.00 19.64 A 1048 O LEU 153 15.945 27.971 81.967 1.00 17.34 A 1049 N GLY 154 13.914 27.915 81.043 1.00 17.94 A 1050 CA GLY 154 13.496 29.218 81.518 1.00 19.41 A 1051 C GLY 154 14.175 30.350 80.739 1.00 20.74 A 1052 O GLY 154 14.546 31.389 81.322 1.00 19.81 A 1053 N LEU 155 14.299 30.195 79.399 1.00 18.06 A 1054 CA LEU 155 14.766 31.359 78.612 1.00 15.78 A 1055 CB LEU 155 15.148 30.916 77.196 1.00 14.66 A 1056 CG LEU 155 16.221 29.829 77.137 1.00 16.04 A 1057 CD2 LEU 155 17.522 30.344 77.738 1.00 13.61 A 1058 CD1 LEU 155 16.555 29.414 75.701 1.00 17.31 A 1059 C LEU 155 13.675 32.397 78.493 1.00 16.11 A 1060 O LEU 155 12.512 32.103 78.776 1.00 15.33 A 1061 N SER 156 14.004 33.608 78.057 1.00 14.91 A 1062 CA SER 156 13.052 34.662 77.854 1.00 15.86 A 1063 CB SER 156 13.735 35.930 77.301 1.00 16.39 A 1064 OG SER 156 12.766 36.841 76.777 1.00 19.30 A 1065 C SER 156 11.985 34.196 76.887 1.00 19.09 A 1066 O SER 156 12.285 33.526 75.906 1.00 17.54 A 1067 N PRO 157 10.716 34.489 77.156 1.00 20.48 A 1068 CA PRO 157 9.620 34.161 76.291 1.00 18.95 A 1069 CD PRO 157 10.268 35.254 78.374 1.00 20.56 A 1070 CB PRO 157 8.354 34.731 76.945 1.00 19.94 A 1071 CG PRO 157 8.761 35.066 78.359 1.00 24.08 A 1072 C PRO 157 9.825 34.836 74.935 1.00 16.61 A 1073 O PRO 157 9.197 34.433 73.935 1.00 16.75 A 1074 N SER 158 10.577 35.929 74.902 1.00 15.33 A 1075 CA SER 158 10.845 36.681 73.714 1.00 16.28 A 1076 CB SER 158 10.896 38.175 74.113 1.00 14.87 A 1077 OG SER 158 9.537 38.540 74.283 1.00 16.79 A 1078 C SER 158 12.142 36.283 73.006 1.00 17.03 A 1079 O SER 158 12.630 37.122 72.222 1.00 16.14 A 1080 N VAL 159 12.735 35.168 73.382 1.00 16.44 A 1081 CA VAL 159 13.966 34.735 72.740 1.00 17.16 A 1082 CB VAL 159 14.577 33.517 73.432 1.00 15.62 A 1083 CG1 VAL 159 13.754 32.261 73.262 1.00 16.89 A 1084 CG2 VAL 159 15.983 33.232 72.875 1.00 17.19 A 1085 C VAL 159 13.586 34.422 71.247 1.00 18.63 A 1086 O VAL 159 12.501 33.899 70.964 1.00 15.76 A 1087 N LYS 160 14.497 34.792 70.343 1.00 17.02 A 1088 CA LYS 160 14.195 34.594 68.899 1.00 16.47 A 1089 CB LYS 160 14.946 35.648 68.051 1.00 17.21 A 1090 CG LYS 160 14.129 36.945 67.956 1.00 18.56 A 1091 CD LYS 160 14.968 38.011 67.176 1.00 19.23 A 1092 CE LYS 160 14.133 39.270 66.945 1.00 22.12 A 1093 NZ LYS 160 14.866 40.323 66.149 1.00 18.24 A 1094 C LYS 160 14.629 33.212 68.520 1.00 15.67 A 1095 O LYS 160 15.775 32.823 68.712 1.00 13.89 A 1096 N ARG 161 13.722 32.382 68.017 1.00 16.27 A 1097 CA ARG 161 13.994 31.006 67.744 1.00 15.63 A 1098 CB ARG 161 12.920 30.092 68.418 1.00 14.77 A 1099 CG ARG 161 12.859 30.457 69.955 1.00 13.42 A 1100 CD ARG 161 11.629 29.691 70.465 1.00 15.07 A 1101 NE ARG 161 10.485 30.516 70.367 1.00 16.22 A 1102 CZ ARG 161 9.230 30.233 70.015 1.00 15.96 A 1103 NH1 ARG 161 8.942 29.048 69.548 1.00 15.82 A 1104 NH2 ARG 161 8.378 31.242 70.124 1.00 13.11 A 1105 C ARG 161 14.081 30.571 66.279 1.00 15.67 A 1106 O ARG 161 13.536 31.211 65.414 1.00 16.22 A 1107 N TYR 162 14.886 29.535 66.068 1.00 13.46 A 1108 CA TYR 162 15.183 29.022 64.699 1.00 14.97 A 1109 CB TYR 162 16.603 29.451 64.219 1.00 12.61 A 1110 CG TYR 162 16.719 30.966 64.212 1.00 15.38 A 1111 CD1 TYR 162 16.990 31.658 65.423 1.00 13.80 A 1112 CD2 TYR 162 16.410 31.745 63.117 1.00 13.23 A 1113 CE1 TYR 162 16.851 33.033 65.496 1.00 13.36 A 1114 CE2 TYR 162 16.385 33.119 63.142 1.00 14.86 A 1115 CZ TYR 162 16.591 33.775 64.371 1.00 14.39 A 1116 OH TYR 162 16.511 35.148 64.453 1.00 11.49 A 1117 C TYR 162 15.086 27.512 64.810 1.00 12.99 A 1118 O TYR 162 15.963 26.894 65.399 1.00 16.13 A 1119 N MET 163 13.928 26.973 64.441 1.00 13.54 A 1120 CA MET 163 13.702 25.539 64.663 1.00 11.42 A 1121 CB MET 163 12.225 25.362 65.030 1.00 12.72 A 1122 CG MET 163 11.753 23.939 65.240 1.00 13.77 A 1123 SD MET 163 12.554 23.120 66.666 1.00 14.60 A 1124 CE MET 163 13.550 21.883 65.892 1.00 14.05 A 1125 C MET 163 14.051 24.763 63.396 1.00 15.21 A 1126 O MET 163 13.257 24.841 62.437 1.00 9.57 A 1127 N LEU 164 15.169 24.076 63.480 1.00 12.99 A 1128 CA LEU 164 15.733 23.268 62.412 1.00 15.09 A 1129 CB LEU 164 17.233 23.559 62.323 1.00 13.13 A 1130 CG LEU 164 17.587 25.043 62.253 1.00 16.94 A 1131 CD2 LEU 164 16.854 25.783 61.134 1.00 17.73 A 1132 CD1 LEU 164 19.081 25.277 62.002 1.00 19.46 A 1133 C LEU 164 15.472 21.773 62.629 1.00 15.31 A 1134 O LEU 164 16.150 21.115 63.428 1.00 16.41 A 1135 N TYR 165 14.489 21.302 61.875 1.00 13.24 A 1136 CA TYR 165 14.031 19.901 61.897 1.00 12.58 A 1137 CB TYR 165 12.494 19.860 61.889 1.00 13.09 A 1138 CG TYR 165 11.838 19.868 63.280 1.00 13.99 A 1139 CD1 TYR 165 12.277 18.989 64.279 1.00 15.08 A 1140 CD2 TYR 165 10.781 20.751 63.548 1.00 13.57 A 1141 CE1 TYR 165 11.658 18.992 65.539 1.00 15.28 A 1142 CE2 TYR 165 10.162 20.752 64.804 1.00 14.15 A 1143 CZ TYR 165 10.599 19.872 65.799 1.00 15.62 A 1144 OH TYR 165 9.995 19.872 67.019 1.00 15.74 A 1145 C TYR 165 14.508 19.150 60.634 1.00 13.25 A 1146 O TYR 165 14.711 19.763 59.572 1.00 12.61 A 1147 N GLN 166 14.658 17.838 60.813 1.00 13.51 A 1148 CA GLN 166 15.057 16.877 59.749 1.00 16.56 A 1149 CB GLN 166 13.934 16.754 58.711 1.00 16.59 A 1150 CG GLN 166 13.819 15.349 58.130 1.00 14.49 A 1151 CD GLN 166 13.619 14.297 59.214 1.00 18.48 A 1152 OE1 GLN 166 14.376 13.332 59.281 1.00 23.45 A 1153 NE2 GLN 166 12.635 14.435 60.083 1.00 11.19 A 1154 C GLN 166 16.305 17.349 59.003 1.00 18.25 A 1155 O GLN 166 16.386 17.232 57.772 1.00 16.01 A 1156 N GLN 167 17.258 17.839 59.778 1.00 14.94 A 1157 CA GLN 167 18.472 18.490 59.238 1.00 15.04 A 1158 CB GLN 167 19.053 19.437 60.279 1.00 14.35 A 1159 CG GLN 167 18.094 20.593 60.611 1.00 11.77 A 1160 CD GLN 167 17.858 21.565 59.441 1.00 15.34 A 1161 OE1 GLN 167 18.805 22.183 58.950 1.00 13.72 A 1162 NE2 GLN 167 16.637 21.751 58.967 1.00 14.07 A 1163 C GLN 167 19.556 17.508 58.748 1.00 16.24 A 1164 O GLN 167 20.109 17.669 57.658 1.00 18.12 A 1165 N GLY 168 19.908 16.510 59.531 1.00 14.08 A 1166 CA GLY 168 20.893 15.502 59.065 1.00 13.80 A 1167 C GLY 168 22.334 15.870 59.376 1.00 15.39 A 1168 O GLY 168 22.695 16.824 60.095 1.00 15.87 A 1169 N CYS 169 23.253 15.041 58.924 1.00 16.61 A 1170 CA CYS 169 24.682 15.033 59.298 1.00 16.82 A 1171 CB CYS 169 25.392 13.842 58.674 1.00 17.31 A 1172 SG CYS 169 25.104 12.267 59.615 1.00 21.12 A 1173 C CYS 169 25.514 16.259 58.887 1.00 17.71 A 1174 O CYS 169 26.670 16.404 59.292 1.00 17.95 A 1177 N ALA 170 25.000 17.157 58.089 1.00 15.93 A 1178 CA ALA 170 25.814 18.331 57.718 1.00 16.42 A 1179 CB ALA 170 25.609 18.686 56.245 1.00 16.83 A 1180 C ALA 170 25.422 19.552 58.565 1.00 15.01 A 1181 O ALA 170 26.081 20.595 58.520 1.00 12.25 A 1182 N ALA 171 24.404 19.320 59.459 1.00 13.18 A 1183 CA ALA 171 23.796 20.439 60.092 1.00 15.70 A 1184 CB ALA 171 22.323 20.192 60.450 1.00 14.62 A 1185 C ALA 171 24.522 20.972 61.337 1.00 13.32 A 1186 O ALA 171 24.239 22.106 61.766 1.00 16.93 A 1187 N GLY 172 25.605 20.304 61.727 1.00 14.02 A 1188 CA GLY 172 26.464 20.929 62.776 1.00 14.32 A 1189 C GLY 172 27.204 22.091 62.113 1.00 16.85 A 1190 O GLY 172 27.435 23.150 62.690 1.00 15.28 A 1191 N GLY 173 27.475 21.983 60.779 1.00 15.85 A 1192 CA GLY 173 28.015 23.142 60.031 1.00 14.31 A 1193 C GLY 173 26.917 24.195 59.844 1.00 13.19 A 1194 O GLY 173 27.078 25.405 60.058 1.00 14.41 A 1195 N THR 174 25.696 23.736 59.546 1.00 14.08 A 1196 CA THR 174 24.559 24.669 59.387 1.00 14.30 A 1197 CB THR 174 23.256 23.908 59.150 1.00 14.77 A 1198 OG1 THR 174 23.371 22.999 58.044 1.00 16.92 A 1199 CG2 THR 174 21.994 24.718 58.884 1.00 13.40 A 1200 C THR 174 24.387 25.619 60.573 1.00 12.21 A 1201 O THR 174 24.172 26.823 60.469 1.00 11.17 A 1202 N VAL 175 24.253 25.072 61.798 1.00 12.71 A 1203 CA VAL 175 23.972 25.900 62.985 1.00 11.72 A 1204 CB VAL 175 23.782 25.045 64.260 1.00 9.02 A 1205 CG1 VAL 175 22.608 24.053 64.123 1.00 8.41 A 1206 CG2 VAL 175 24.965 24.150 64.598 1.00 9.19 A 1207 C VAL 175 25.053 26.949 63.145 1.00 12.00 A 1208 O VAL 175 24.783 28.079 63.531 1.00 14.66 A 1209 N LEU 176 26.321 26.603 62.868 1.00 10.98 A 1210 CA LEU 176 27.388 27.587 63.021 1.00 14.02 A 1211 CB LEU 176 28.774 26.955 62.842 1.00 14.19 A 1212 CG LEU 176 29.087 25.850 63.873 1.00 17.06 A 1213 CD2 LEU 176 29.215 26.495 65.278 1.00 18.24 A 1214 CD1 LEU 176 30.354 25.076 63.597 1.00 15.24 A 1215 C LEU 176 27.214 28.669 61.980 1.00 14.29 A 1216 O LEU 176 27.468 29.825 62.221 1.00 14.46 A 1217 N ARG 177 26.849 28.243 60.752 1.00 13.39 A 1218 CA ARG 177 26.635 29.238 59.649 1.00 13.19 A 1219 CB ARG 177 26.339 28.381 58.383 1.00 10.10 A 1220 CG ARG 177 25.772 29.254 57.250 1.00 12.26 A 1221 CD ARG 177 25.868 28.471 55.943 1.00 12.34 A 1222 NE ARG 177 25.193 27.181 55.925 1.00 11.28 A 1223 CZ ARG 177 23.867 27.101 55.696 1.00 10.47 A 1224 NH1 ARG 177 23.120 28.157 55.494 1.00 14.49 A 1225 NH2 ARG 177 23.223 25.969 55.624 1.00 12.71 A 1226 C ARG 177 25.557 30.211 59.969 1.00 11.64 A 1227 O ARG 177 25.600 31.430 59.752 1.00 12.90 A 1228 N LEU 178 24.429 29.643 60.505 1.00 13.45 A 1229 CA LEU 178 23.350 30.539 60.953 1.00 12.99 A 1230 CB LEU 178 22.125 29.678 61.304 1.00 14.12 A 1231 CG LEU 178 20.929 30.356 61.974 1.00 15.67 A 1232 CD2 LEU 178 19.757 29.384 62.173 1.00 15.35 A 1233 CD1 LEU 178 20.337 31.455 61.031 1.00 16.46 A 1234 C LEU 178 23.703 31.380 62.177 1.00 14.59 A 1235 O LEU 178 23.447 32.558 62.244 1.00 10.66 A 1236 N ALA 179 24.311 30.780 63.228 1.00 15.25 A 1237 CA ALA 179 24.626 31.617 64.424 1.00 15.23 A 1238 CB ALA 179 25.331 30.699 65.446 1.00 14.84 A 1239 C ALA 179 25.567 32.747 64.126 1.00 14.68 A 1240 O ALA 179 25.504 33.869 64.599 1.00 11.42 A 1241 N LYS 180 26.496 32.500 63.150 1.00 16.39 A 1242 CA LYS 180 27.444 33.589 62.797 1.00 16.05 A 1243 CB LYS 180 28.389 33.004 61.699 1.00 17.99 A 1244 CG LYS 180 29.171 34.095 60.937 1.00 18.86 A 1245 CD LYS 180 30.424 33.429 60.340 1.00 20.68 A 1246 CE LYS 180 31.167 34.451 59.505 1.00 21.58 A 1247 NZ LYS 180 32.094 35.357 60.253 1.00 18.53 A 1248 C LYS 180 26.758 34.834 62.307 1.00 16.60 A 1249 O LYS 180 27.022 35.991 62.690 1.00 15.08 A 1250 N ASP 181 25.747 34.703 61.412 1.00 12.78 A 1251 CA ASP 181 25.033 35.864 60.910 1.00 13.37 A 1252 CB ASP 181 24.129 35.506 59.687 1.00 14.96 A 1253 CG ASP 181 24.955 35.406 58.367 1.00 18.01 A 1254 OD1 ASP 181 25.922 36.128 58.171 1.00 17.53 A 1255 OD2 ASP 181 24.596 34.523 57.518 1.00 16.78 A 1256 C ASP 181 24.159 36.504 61.998 1.00 14.64 A 1257 O ASP 181 24.037 37.711 62.116 1.00 14.14 A 1258 N LEU 182 23.464 35.676 62.791 1.00 13.09 A 1259 CA LEU 182 22.647 36.267 63.882 1.00 14.86 A 1260 CB LEU 182 21.940 35.130 64.632 1.00 14.93 A 1261 CG LEU 182 21.095 34.159 63.851 1.00 13.65 A 1262 CD2 LEU 182 19.988 34.928 63.166 1.00 13.56 A 1263 CD1 LEU 182 20.487 33.085 64.754 1.00 14.92 A 1264 C LEU 182 23.510 36.991 64.913 1.00 13.35 A 1265 O LEU 182 23.267 38.149 65.233 1.00 16.44 A 1266 N ALA 183 24.642 36.381 65.294 1.00 14.86 A 1267 CA ALA 183 25.462 37.136 66.296 1.00 17.00 A 1268 CB ALA 183 26.553 36.188 66.788 1.00 17.27 A 1269 C ALA 183 26.025 38.414 65.744 1.00 17.58 A 1270 O ALA 183 26.111 39.473 66.378 1.00 16.18 A 1271 N GLU 184 26.560 38.361 64.491 1.00 16.77 A 1272 CA GLU 184 27.232 39.496 63.886 1.00 17.91 A 1273 CB GLU 184 28.123 39.113 62.670 1.00 17.73 A 1274 CG GLU 184 29.387 38.347 63.096 1.00 16.98 A 1275 CD GLU 184 30.040 37.632 61.910 1.00 16.92 A 1276 OE1 GLU 184 29.602 37.871 60.746 1.00 16.69 A 1277 OE2 GLU 184 30.968 36.851 62.189 1.00 16.83 A 1278 C GLU 184 26.295 40.607 63.446 1.00 18.12 A 1279 O GLU 184 26.702 41.773 63.532 1.00 17.46 A 1280 N ASN 185 25.035 40.318 63.153 1.00 16.96 A 1281 CA ASN 185 24.107 41.367 62.780 1.00 17.76 A 1282 CB ASN 185 23.063 40.888 61.747 1.00 16.68 A 1283 CG ASN 185 22.468 42.081 61.003 1.00 17.01 A 1284 OD1 ASN 185 23.233 42.919 60.513 1.00 15.96 A 1285 ND2 ASN 185 21.149 42.265 60.951 1.00 15.43 A 1286 C ASN 185 23.328 41.964 63.955 1.00 18.03 A 1287 O ASN 185 22.731 43.013 63.716 1.00 18.68 A 1288 N ASN 186 23.371 41.368 65.135 1.00 17.08 A 1289 CA ASN 186 22.608 41.863 66.288 1.00 18.13 A 1290 CB ASN 186 21.572 40.807 66.699 1.00 16.10 A 1291 CG ASN 186 20.523 40.578 65.611 1.00 18.64 A 1292 OD1 ASN 186 19.547 41.299 65.579 1.00 19.86 A 1293 ND2 ASN 186 20.682 39.594 64.747 1.00 14.98 A 1294 C ASN 186 23.499 42.226 67.487 1.00 18.41 A 1295 O ASN 186 24.114 41.367 68.114 1.00 17.04 A 1296 N LYS 187 23.815 43.507 67.599 1.00 20.13 A 1297 CA LYS 187 24.735 43.999 68.612 1.00 25.18 A 1298 CB LYS 187 24.825 45.515 68.465 1.00 29.17 A 1299 CG LYS 187 25.281 46.242 69.710 1.00 36.89 A 1300 CD LYS 187 26.705 46.759 69.568 1.00 40.48 A 1301 CE LYS 187 26.622 48.236 69.176 1.00 42.38 A 1302 NZ LYS 187 27.043 49.080 70.346 1.00 44.71 A 1303 C LYS 187 24.293 43.578 70.027 1.00 21.89 A 1304 O LYS 187 23.147 43.753 70.387 1.00 21.34 A 1305 N GLY 188 25.201 42.940 70.743 1.00 22.90 A 1306 CA GLY 188 24.942 42.452 72.108 1.00 22.17 A 1307 C GLY 188 24.279 41.090 72.129 1.00 23.50 A 1308 O GLY 188 24.146 40.430 73.170 1.00 20.50 A 1309 N SER 189 23.977 40.511 70.908 1.00 17.92 A 1310 CA SER 189 23.208 39.275 70.958 1.00 16.34 A 1311 CB SER 189 22.596 38.969 69.534 1.00 17.81 A 1312 OG SER 189 23.703 38.733 68.684 1.00 17.96 A 1313 C SER 189 24.062 38.132 71.413 1.00 16.41 A 1314 O SER 189 25.284 38.081 71.236 1.00 14.81 A 1315 N ARG 190 23.377 37.146 72.057 1.00 13.48 A 1316 CA ARG 190 24.074 35.932 72.446 1.00 15.78 A 1317 CB ARG 190 24.387 35.898 73.980 1.00 15.30 A 1318 CG ARG 190 25.474 36.948 74.311 1.00 13.88 A 1319 CD ARG 190 26.866 36.358 74.045 1.00 14.87 A 1320 NE ARG 190 27.965 37.244 74.479 1.00 15.65 A 1321 CZ ARG 190 28.310 38.313 73.779 1.00 19.62 A 1322 NH1 ARG 190 27.701 38.627 72.589 1.00 19.54 A 1323 NH2 ARG 190 29.389 39.040 74.102 1.00 17.37 A 1324 C ARG 190 23.168 34.787 72.015 1.00 15.73 A 1325 O ARG 190 22.016 34.631 72.455 1.00 14.59 A 1326 N VAL 191 23.774 33.904 71.215 1.00 17.00 A 1327 CA VAL 191 23.000 32.845 70.579 1.00 16.41 A 1328 CB VAL 191 23.477 32.589 69.110 1.00 16.72 A 1329 CG1 VAL 191 22.585 31.538 68.437 1.00 17.65 A 1330 CG2 VAL 191 23.506 33.925 68.368 1.00 15.63 A 1331 C VAL 191 23.314 31.535 71.285 1.00 14.89 A 1332 O VAL 191 24.477 31.161 71.305 1.00 16.89 A 1333 N LEU 192 22.278 30.833 71.640 1.00 13.18 A 1334 CA LEU 192 22.388 29.495 72.157 1.00 14.87 A 1335 CB LEU 192 21.339 29.259 73.258 1.00 15.46 A 1336 CG LEU 192 21.225 27.836 73.770 1.00 14.61 A 1337 CD2 LEU 192 20.226 27.716 74.951 1.00 13.51 A 1338 CD1 LEU 192 22.565 27.288 74.246 1.00 15.01 A 1339 C LEU 192 22.035 28.561 70.981 1.00 14.56 A 1340 O LEU 192 20.963 28.662 70.425 1.00 15.45 A 1341 N ILE 193 22.942 27.654 70.681 1.00 14.79 A 1342 CA ILE 193 22.789 26.668 69.667 1.00 14.89 A 1343 CB ILE 193 24.110 26.468 68.853 1.00 16.51 A 1344 CG2 ILE 193 24.031 25.107 68.138 1.00 16.50 A 1345 CG1 ILE 193 24.419 27.631 67.941 1.00 17.44 A 1346 CD1 ILE 193 25.800 27.406 67.296 1.00 15.17 A 1347 C ILE 193 22.575 25.355 70.404 1.00 14.33 A 1348 O ILE 193 23.389 25.066 71.298 1.00 16.41 A 1349 N VAL 194 21.534 24.615 70.077 1.00 12.33 A 1350 CA VAL 194 21.446 23.263 70.571 1.00 13.58 A 1351 CB VAL 194 20.284 23.160 71.617 1.00 14.48 A 1352 CG1 VAL 194 20.089 21.727 72.073 1.00 13.80 A 1353 CG2 VAL 194 20.576 24.108 72.783 1.00 14.46 A 1354 C VAL 194 21.168 22.237 69.459 1.00 15.13 A 1355 O VAL 194 20.115 22.302 68.808 1.00 14.72 A 1356 N CYS 195 22.058 21.275 69.288 1.00 14.44 A 1357 CA CYS 195 21.840 20.129 68.445 1.00 16.01 A 1358 CB CYS 195 23.012 19.805 67.449 1.00 14.49 A 1359 SG CYS 195 23.288 21.237 66.355 1.00 14.90 A 1360 C CYS 195 21.621 18.905 69.326 1.00 15.76 A 1361 O CYS 195 22.498 18.457 70.095 1.00 17.80 A 1362 N SER 196 20.512 18.230 69.122 1.00 15.08 A 1363 CA SER 196 20.194 17.064 69.931 1.00 15.38 A 1364 CB SER 196 19.267 17.612 71.050 1.00 14.75 A 1365 OG SER 196 18.738 16.521 71.723 1.00 15.86 A 1366 C SER 196 19.588 15.963 69.093 1.00 14.38 A 1367 O SER 196 18.577 16.134 68.396 1.00 12.93 A 1368 N GLU 197 20.252 14.821 69.090 1.00 14.38 A 1369 CA GLU 197 19.909 13.695 68.263 1.00 15.07 A 1370 CB GLU 197 21.097 13.510 67.286 1.00 13.16 A 1371 CG GLU 197 21.425 14.751 66.442 1.00 13.62 A 1372 CD GLU 197 20.440 14.885 65.267 1.00 15.07 A 1373 OE1 GLU 197 19.321 14.316 65.326 1.00 13.89 A 1374 OE2 GLU 197 20.778 15.640 64.309 1.00 14.15 A 1375 C GLU 197 19.705 12.424 69.072 1.00 16.83 A 1376 O GLU 197 20.486 11.959 69.907 1.00 14.52 A 1377 N ILE 198 18.557 11.810 68.811 1.00 17.45 A 1378 CA ILE 198 18.225 10.502 69.365 1.00 19.36 A 1379 CB ILE 198 16.999 10.591 70.293 1.00 18.13 A 1380 CG2 ILE 198 16.549 9.194 70.648 1.00 16.69 A 1381 CG1 ILE 198 17.415 11.418 71.536 1.00 19.63 A 1382 CD1 ILE 198 16.404 11.432 72.627 1.00 20.82 A 1383 C ILE 198 17.917 9.599 68.162 1.00 18.68 A 1384 O ILE 198 16.932 9.889 67.485 1.00 19.71 A 1385 N THR 199 18.669 8.546 68.000 1.00 20.32 A 1386 CA THR 199 18.566 7.649 66.867 1.00 20.53 A 1387 CB THR 199 19.908 6.914 66.663 1.00 21.13 A 1388 OG1 THR 199 20.133 6.001 67.771 1.00 22.12 A 1389 CG2 THR 199 21.040 7.914 66.532 1.00 19.49 A 1390 C THR 199 17.489 6.604 66.896 1.00 21.10 A 1391 O THR 199 17.331 5.862 65.920 1.00 21.48 A 1392 N ALA 200 16.593 6.623 67.874 1.00 20.86 A 1393 CA ALA 200 15.422 5.794 67.919 1.00 20.57 A 1394 CB ALA 200 14.586 6.016 69.159 1.00 17.68 A 1395 C ALA 200 14.528 5.992 66.662 1.00 20.56 A 1396 O ALA 200 13.901 5.003 66.291 1.00 17.87 A 1389 N ILE 201 14.547 7.157 66.115 0.50 18.88 A 1390 CA ILE 201 13.719 7.458 64.936 0.50 17.99 A 1391 CB ILE 201 13.789 8.952 64.592 0.50 16.30 A 1392 CG2 ILE 201 15.132 9.358 63.985 0.50 16.91 A 1393 CG1 ILE 201 12.719 9.394 63.580 0.50 14.60 A 1394 CD1 ILE 201 11.286 9.202 64.089 0.50 11.06 A 1395 C ILE 201 14.173 6.625 63.720 0.50 17.10 A 1396 O ILE 201 13.389 6.383 62.788 0.50 18.59 A 1389 N 2ILE 201 14.461 7.125 66.061 0.50 21.70 A 1390 CA 2ILE 201 13.570 7.231 64.885 0.50 22.76 A 1391 CB 2ILE 201 13.310 8.649 64.373 0.50 25.16 A 1392 CG 22ILE 201 12.019 9.250 64.939 0.50 26.21 A 1393 CG 12ILE 201 14.427 9.629 64.673 0.50 25.65 A 1394 CD 12ILE 201 15.720 9.309 63.921 0.50 24.86 A 1395 C 2ILE 201 14.119 6.461 63.693 0.50 20.27 A 1396 O 2ILE 201 13.383 6.161 62.745 0.50 21.36 A 1413 N LEU 202 15.425 6.166 63.668 1.00 18.05 A 1414 CA LEU 202 15.958 5.380 62.578 1.00 18.89 A 1415 CB LEU 202 17.156 6.013 61.864 1.00 18.54 A 1416 CG LEU 202 18.292 6.576 62.683 1.00 21.58 A 1417 CD2 LEU 202 19.114 7.548 61.835 1.00 23.11 A 1418 CD1 LEU 202 19.180 5.447 63.207 1.00 23.74 A 1419 C LEU 202 16.372 3.959 62.913 1.00 19.82 A 1420 O LEU 202 16.979 3.290 62.059 1.00 17.73 A 1421 N PHE 203 16.030 3.486 64.099 1.00 17.98 A 1422 CA PHE 203 16.279 2.073 64.420 1.00 18.62 A 1423 CB PHE 203 15.884 1.869 65.914 1.00 20.06 A 1424 CG PHE 203 16.111 0.444 66.338 1.00 19.04 A 1425 CD1 PHE 203 15.077 −0.457 66.334 1.00 19.36 A 1426 CD2 PHE 203 17.365 0.075 66.797 1.00 21.11 A 1427 CE1 PHE 203 15.269 −1.767 66.759 1.00 22.06 A 1428 CE2 PHE 203 17.564 −1.245 67.228 1.00 20.23 A 1429 CZ PHE 203 16.526 −2.143 67.219 1.00 21.46 A 1430 C PHE 203 15.403 1.154 63.588 1.00 19.66 A 1431 O PHE 203 14.192 1.422 63.431 1.00 21.19 A 1432 N HIS 204 15.926 0.051 63.083 1.00 18.97 A 1433 CA HIS 204 15.164 −0.889 62.266 1.00 22.20 A 1434 ND1 HIS 204 13.226 0.964 60.442 1.00 19.42 A 1435 CG HIS 204 14.587 0.752 60.363 1.00 19.49 A 1436 CB HIS 204 15.203 −0.575 60.729 1.00 19.31 A 1437 NE2 HIS 204 14.099 2.829 59.844 1.00 21.11 A 1438 CD2 HIS 204 15.140 1.937 59.994 1.00 19.11 A 1439 CE1 HIS 204 12.945 2.213 60.115 1.00 20.21 A 1440 C HIS 204 15.725 −2.304 62.461 1.00 21.64 A 1441 O HIS 204 16.945 −2.480 62.553 1.00 21.58 A 1442 N GLY 205 14.849 −3.303 62.435 1.00 21.09 A 1443 CA GLY 205 15.291 −4.707 62.453 1.00 23.18 A 1444 C GLY 205 15.947 −5.065 61.114 1.00 24.77 A 1445 O GLY 205 16.032 −4.267 60.168 1.00 25.98 A 1446 N PRO 206 16.644 −6.190 61.054 1.00 25.87 A 1447 CA PRO 206 17.458 −6.545 59.904 1.00 27.34 A 1448 CD PRO 206 16.742 −7.204 62.137 1.00 26.44 A 1449 CB PRO 206 18.398 −7.619 60.444 1.00 27.19 A 1450 CG PRO 206 17.584 −8.280 61.507 1.00 26.88 A 1451 C PRO 206 16.617 −7.054 58.768 1.00 29.39 A 1452 O PRO 206 15.548 −7.658 58.967 1.00 30.52 A 1453 N ASN 207 17.039 −6.756 57.545 1.00 31.69 A 1454 CA ASN 207 16.328 −7.260 56.358 1.00 32.51 A 1455 CB ASN 207 15.114 −6.402 56.029 1.00 33.65 A 1456 CG ASN 207 14.435 −6.828 54.729 1.00 35.71 A 1457 OD1 ASN 207 14.943 −6.533 53.648 1.00 35.08 A 1458 ND2 ASN 207 13.310 −7.515 54.771 1.00 34.18 A 1459 C ASN 207 17.302 −7.345 55.168 1.00 33.19 A 1460 O ASN 207 17.979 −6.366 54.821 1.00 29.39 A 1461 N GLU 208 17.310 −8.541 54.610 1.00 35.87 A 1462 CA GLU 208 18.174 −8.962 53.489 1.00 39.04 A 1463 CB GLU 208 17.633 −10.223 52.845 1.00 45.25 A 1464 CG GLU 208 18.171 −11.507 53.439 1.00 51.38 A 1465 CD GLU 208 17.231 −12.656 53.137 1.00 55.49 A 1466 OE1 GLU 208 16.975 −12.963 51.911 1.00 55.90 A 1467 OE2 GLU 208 16.679 −13.292 54.105 1.00 59.14 A 1468 C GLU 208 18.217 −7.998 52.308 1.00 36.43 A 1469 O GLU 208 19.268 −7.797 51.687 1.00 35.95 A 1470 N ASN 209 17.074 −7.441 51.993 1.00 34.14 A 1471 CA ASN 209 16.938 −6.577 50.818 1.00 34.13 A 1472 CB ASN 209 15.522 −6.698 50.279 1.00 37.32 A 1473 CG ASN 209 15.163 −8.157 50.012 1.00 39.65 A 1474 OD1 ASN 209 15.910 −8.850 49.320 1.00 40.89 A 1475 ND2 ASN 209 14.070 −8.676 50.533 1.00 39.96 A 1476 C ASN 209 17.276 −5.115 51.130 1.00 32.88 A 1477 O ASN 209 17.180 −4.237 50.270 1.00 32.04 A 1478 N HIS 210 17.679 −4.841 52.354 1.00 31.55 A 1479 CA HIS 210 18.060 −3.464 52.732 1.00 30.75 A 1480 ND1 HIS 210 14.723 −3.581 52.479 1.00 34.00 A 1481 CG HIS 210 15.677 −2.583 52.636 1.00 34.22 A 1482 CB HIS 210 16.921 −2.790 53.503 1.00 32.00 A 1483 NE2 HIS 210 14.076 −1.906 51.315 1.00 34.55 A 1484 CD2 HIS 210 15.246 −1.527 51.891 1.00 34.19 A 1485 CE1 HIS 210 13.779 −3.129 51.675 1.00 33.70 A 1486 C HIS 210 19.335 −3.500 53.572 1.00 29.56 A 1487 O HIS 210 19.313 −3.274 54.785 1.00 27.00 A 1488 N LEU 211 20.435 −3.774 52.892 1.00 27.70 A 1489 CA LEU 211 21.737 −3.913 53.553 1.00 28.08 A 1490 CB LEU 211 22.744 −4.590 52.630 1.00 27.02 A 1491 CG LEU 211 22.351 −6.031 52.294 1.00 29.47 A 1492 CD2 LEU 211 22.327 −6.959 53.513 1.00 30.67 A 1493 CD1 LEU 211 23.297 −6.685 51.286 1.00 29.25 A 1494 C LEU 211 22.293 −2.583 54.019 1.00 26.99 A 1495 O LEU 211 23.056 −2.576 54.983 1.00 24.96 A 1496 N ASP 212 21.908 −1.479 53.384 1.00 27.06 A 1497 CA ASP 212 22.377 −0.158 53.810 1.00 26.42 A 1498 CB ASP 212 22.061 0.892 52.762 1.00 26.67 A 1499 CG ASP 212 20.705 0.831 52.114 1.00 26.42 A 1500 OD1 ASP 212 19.920 −0.127 52.306 1.00 26.01 A 1501 OD2 ASP 212 20.376 1.811 51.396 1.00 26.03 A 1502 C ASP 212 21.683 0.226 55.132 1.00 25.93 A 1503 O ASP 212 22.225 0.860 56.034 1.00 23.85 A 1504 N SER 213 20.410 −0.169 55.210 1.00 25.35 A 1505 CA SER 213 19.657 0.004 56.454 1.00 28.05 A 1506 CB SER 213 18.169 −0.310 56.239 1.00 29.07 A 1507 OG SER 213 17.504 −0.103 57.466 1.00 34.43 A 1508 C SER 213 20.269 −0.842 57.571 1.00 27.93 A 1509 O SER 213 20.327 −0.407 58.727 1.00 27.08 A 1510 N LEU 214 20.842 −2.005 57.258 1.00 26.89 A 1511 CA LEU 214 21.562 −2.810 58.245 1.00 26.87 A 1512 CB LEU 214 21.833 −4.241 57.732 1.00 25.91 A 1513 CG LEU 214 22.581 −5.164 58.693 1.00 27.85 A 1514 CD2 LEU 214 23.032 −6.438 57.972 1.00 26.84 A 1515 CD1 LEU 214 21.682 −5.519 59.887 1.00 24.51 A 1516 C LEU 214 22.657 −2.137 58.664 1.00 25.66 A 1517 O LEU 214 23.122 −1.961 59.870 1.00 23.41 A 1518 N VAL 215 23.617 −1.571 57.715 1.00 24.14 A 1519 CA VAL 215 24.837 −0.863 58.008 1.00 24.72 A 1520 CB VAL 215 25.566 −0.287 56.771 1.00 25.01 A 1521 CG1 VAL 215 26.611 0.742 57.174 1.00 21.78 A 1522 CG2 VAL 215 26.240 −1.392 55.945 1.00 26.32 A 1523 C VAL 215 24.533 0.295 58.950 1.00 24.78 A 1524 O VAL 215 25.259 0.482 59.939 1.00 25.77 A 1525 N ALA 216 23.443 1.009 58.663 1.00 22.29 A 1526 CA ALA 216 23.021 2.120 59.478 1.00 22.75 A 1527 CB ALA 216 21.743 2.766 58.928 1.00 22.71 A 1528 C ALA 216 22.722 1.774 60.943 1.00 23.23 A 1529 O ALA 216 22.973 2.640 61.770 1.00 20.20 A 1530 N GLN 217 22.412 0.526 61.287 1.00 24.45 A 1531 CA GLN 217 22.177 0.159 62.695 1.00 24.33 A 1532 CB GLN 217 21.419 −1.166 62.722 1.00 23.47 A 1533 CG GLN 217 20.120 −1.190 61.895 1.00 24.28 A 1534 CD GLN 217 19.244 0.031 62.195 1.00 24.61 A 1535 OE1 GLN 217 18.890 0.212 63.378 1.00 22.76 A 1536 NE2 GLN 217 18.951 0.862 61.205 1.00 19.95 A 1537 C GLN 217 23.472 0.162 63.501 1.00 25.07 A 1538 O GLN 217 23.441 0.169 64.758 1.00 26.55 A 1539 N ALA 218 24.616 0.201 62.826 1.00 22.34 A 1540 CA ALA 218 25.916 0.220 63.470 1.00 23.77 A 1541 CB ALA 218 26.896 −0.742 62.787 1.00 22.04 A 1542 C ALA 218 26.550 1.591 63.530 1.00 22.94 A 1543 O ALA 218 27.586 1.694 64.221 1.00 23.52 A 1544 N LEU 219 26.005 2.632 62.876 1.00 20.23 A 1545 CA LEU 219 26.816 3.853 62.773 1.00 20.51 A 1546 CB LEU 219 26.501 4.568 61.419 1.00 21.57 A 1547 CG LEU 219 26.846 3.797 60.116 1.00 23.93 A 1548 CD2 LEU 219 28.345 3.552 60.007 1.00 23.19 A 1549 CD1 LEU 219 26.443 4.588 58.861 1.00 22.16 A 1550 C LEU 219 26.567 4.911 63.838 1.00 20.63 A 1551 O LEU 219 27.411 5.786 64.020 1.00 22.27 A 1552 N PHE 220 25.307 5.047 64.276 1.00 18.63 A 1553 CA PHE 220 24.840 6.263 64.910 1.00 18.81 A 1554 CB PHE 220 23.429 6.607 64.343 1.00 19.71 A 1555 CG PHE 220 23.451 6.886 62.842 1.00 19.21 A 1556 CD1 PHE 220 22.923 5.928 61.969 1.00 18.79 A 1557 CD2 PHE 220 24.015 8.040 62.364 1.00 18.11 A 1558 CE1 PHE 220 22.944 6.174 60.588 1.00 19.76 A 1559 CE2 PHE 220 24.023 8.299 60.982 1.00 22.11 A 1560 CZ PHE 220 23.516 7.348 60.110 1.00 20.52 A 1561 C PHE 220 24.662 6.123 66.429 1.00 17.23 A 1562 O PHE 220 24.062 5.140 66.839 1.00 14.86 A 1563 N GLY 221 24.914 7.207 67.127 1.00 19.72 A 1564 CA GLY 221 24.738 7.156 68.607 1.00 22.07 A 1565 C GLY 221 23.953 8.443 68.933 1.00 23.22 A 1566 O GLY 221 23.705 9.294 68.031 1.00 20.48 A 1567 N ASP 222 23.608 8.517 70.219 1.00 21.18 A 1568 CA ASP 222 22.810 9.647 70.715 1.00 18.61 A 1569 CB ASP 222 21.625 9.171 71.574 1.00 17.56 A 1570 CG ASP 222 20.686 8.258 70.871 1.00 19.05 A 1571 OD1 ASP 222 20.865 7.974 69.631 1.00 19.17 A 1572 OD2 ASP 222 19.735 7.705 71.479 1.00 20.12 A 1573 C ASP 222 23.581 10.656 71.492 1.00 16.80 A 1574 O ASP 222 24.528 10.296 72.204 1.00 18.14 A 1575 N GLY 223 23.198 11.939 71.329 1.00 16.62 A 1576 CA GLY 223 23.863 13.007 72.027 1.00 16.89 A 1577 C GLY 223 23.341 14.403 71.684 1.00 18.35 A 1578 O GLY 223 22.634 14.608 70.699 1.00 19.09 A 1579 N ALA 224 23.716 15.348 72.540 1.00 16.74 A 1580 CA ALA 224 23.382 16.765 72.339 1.00 15.69 A 1581 CB ALA 224 22.184 17.191 73.187 1.00 15.29 A 1582 C ALA 224 24.574 17.641 72.719 1.00 16.88 A 1583 O ALA 224 25.284 17.362 73.696 1.00 16.03 A 1584 N ALA 225 24.748 18.662 71.915 1.00 17.12 A 1585 CA ALA 225 25.781 19.675 72.125 1.00 17.04 A 1586 CB ALA 225 26.822 19.628 71.005 1.00 17.62 A 1587 C ALA 225 25.107 21.039 72.133 1.00 16.59 A 1588 O ALA 225 24.143 21.276 71.394 1.00 16.15 A 1589 N ALA 226 25.619 21.901 72.974 1.00 14.82 A 1590 CA ALA 226 25.105 23.266 73.101 1.00 14.36 A 1591 CB ALA 226 24.302 23.405 74.395 1.00 15.96 A 1592 C ALA 226 26.277 24.237 73.106 1.00 15.68 A 1593 O ALA 226 27.324 23.977 73.709 1.00 16.67 A 1594 N LEU 227 26.079 25.338 72.426 1.00 14.94 A 1595 CA LEU 227 27.102 26.376 72.311 1.00 15.69 A 1596 CB LEU 227 27.635 26.458 70.871 1.00 15.95 A 1597 CG LEU 227 28.772 25.490 70.547 1.00 18.96 A 1598 CD2 LEU 227 29.427 25.789 69.191 1.00 19.61 A 1599 CD1 LEU 227 28.306 24.038 70.472 1.00 21.33 A 1600 C LEU 227 26.510 27.745 72.569 1.00 14.11 A 1601 O LEU 227 25.330 27.989 72.297 1.00 15.41 A 1602 N ILE 228 27.345 28.596 73.096 1.00 14.17 A 1603 CA ILE 228 27.012 30.006 73.236 1.00 14.85 A 1604 CB ILE 228 27.267 30.526 74.651 1.00 18.48 A 1605 CG2 ILE 228 26.980 32.030 74.778 1.00 19.00 A 1606 CG1 ILE 228 26.412 29.838 75.718 1.00 19.80 A 1607 CD1 ILE 228 24.934 30.231 75.668 1.00 16.73 A 1608 C ILE 228 27.912 30.731 72.252 1.00 15.99 A 1609 O ILE 228 29.141 30.575 72.293 1.00 14.79 A 1610 N VAL 229 27.286 31.478 71.376 1.00 15.18 A 1611 CA VAL 229 28.003 32.237 70.344 1.00 15.14 A 1612 CB VAL 229 27.635 31.739 68.949 1.00 16.86 A 1613 CG1 VAL 229 28.226 32.615 67.839 1.00 14.92 A 1614 CG2 VAL 229 28.124 30.320 68.673 1.00 14.91 A 1615 C VAL 229 27.623 33.703 70.402 1.00 15.54 A 1616 O VAL 229 26.450 34.056 70.565 1.00 16.90 A 1617 N GLY 230 28.626 34.534 70.256 1.00 15.38 A 1618 CA GLY 230 28.415 35.976 70.275 1.00 15.59 A 1619 C GLY 230 29.611 36.714 69.662 1.00 14.62 A 1620 O GLY 230 30.710 36.182 69.655 1.00 15.54 A 1621 N SER 231 29.365 37.939 69.206 1.00 15.66 A 1622 CA SER 231 30.393 38.816 68.696 1.00 18.35 A 1623 CB SER 231 29.874 39.655 67.476 1.00 19.73 A 1624 OG SER 231 29.673 38.784 66.362 1.00 20.99 A 1625 C SER 231 30.744 39.837 69.801 1.00 17.97 A 1626 O SER 231 29.907 40.112 70.654 1.00 18.04 A 1627 N GLY 232 31.911 40.446 69.789 1.00 17.80 A 1628 CA GLY 232 32.231 41.445 70.839 1.00 19.53 A 1629 C GLY 232 32.215 40.831 72.236 1.00 19.73 A 1630 O GLY 232 31.435 41.187 73.120 1.00 22.75 A 1631 N PRO 233 33.015 39.819 72.495 1.00 20.79 A 1632 CA PRO 233 33.130 39.161 73.784 1.00 22.44 A 1633 CD PRO 233 34.020 39.273 71.545 1.00 21.24 A 1634 CB PRO 233 34.172 38.049 73.590 1.00 21.15 A 1635 CG PRO 233 34.400 37.954 72.120 1.00 21.44 A 1636 C PRO 233 33.604 40.149 74.864 1.00 22.27 A 1637 O PRO 233 34.330 41.141 74.640 1.00 19.50 A 1638 N HIS 234 32.901 40.097 76.002 1.00 22.16 A 1639 CA HIS 234 33.339 40.937 77.165 1.00 23.15 A 1640 ND1 HIS 234 29.958 41.328 76.884 1.00 35.17 A 1641 CG HIS 234 31.078 41.977 77.390 1.00 30.81 A 1642 CB HIS 234 32.182 41.269 78.102 1.00 27.51 A 1643 NE2 HIS 234 29.741 43.370 76.323 1.00 35.82 A 1644 CD2 HIS 234 30.941 43.265 77.019 1.00 35.34 A 1645 CE1 HIS 234 29.175 42.190 76.256 1.00 34.13 A 1646 C HIS 234 34.418 40.103 77.832 1.00 20.60 A 1647 O HIS 234 34.116 39.200 78.630 1.00 19.16 A 1648 N LEU 235 35.651 40.448 77.520 1.00 16.35 A 1649 CA LEU 235 36.796 39.635 77.925 1.00 18.16 A 1650 CB LEU 235 38.083 40.119 77.236 1.00 18.81 A 1651 CG LEU 235 38.000 40.095 75.692 1.00 21.47 A 1652 CD2 LEU 235 37.807 38.679 75.168 1.00 21.10 A 1653 CD1 LEU 235 39.310 40.642 75.081 1.00 21.54 A 1654 C LEU 235 37.066 39.504 79.428 1.00 17.07 A 1655 O LEU 235 37.672 38.503 79.830 1.00 17.50 A 1656 N ALA 236 36.583 40.438 80.209 1.00 19.10 A 1657 CA ALA 236 36.751 40.302 81.675 1.00 21.23 A 1658 CB ALA 236 36.162 41.556 82.316 1.00 20.52 A 1659 C ALA 236 36.064 39.026 82.109 1.00 20.15 A 1660 O ALA 236 36.467 38.329 83.046 1.00 20.26 A 1661 N VAL 237 34.912 38.674 81.517 1.00 19.13 A 1662 CA VAL 237 34.101 37.552 82.009 1.00 17.70 A 1663 CB VAL 237 32.801 38.109 82.621 1.00 16.79 A 1664 CG1 VAL 237 33.087 39.149 83.738 1.00 17.70 A 1665 CG2 VAL 237 31.887 38.838 81.616 1.00 18.15 A 1666 C VAL 237 33.776 36.489 80.979 1.00 20.33 A 1667 O VAL 237 33.406 35.369 81.379 1.00 20.85 A 1668 N GLU 238 33.953 36.754 79.675 1.00 20.13 A 1669 CA GLU 238 33.642 35.691 78.681 1.00 20.82 A 1670 CB GLU 238 32.698 36.229 77.592 1.00 21.43 A 1671 CG GLU 238 31.368 36.751 78.026 1.00 20.52 A 1672 CD GLU 238 30.490 37.238 76.859 1.00 22.45 A 1673 OE1 GLU 238 30.889 38.201 76.181 1.00 20.38 A 1674 OE2 GLU 238 29.398 36.671 76.665 1.00 21.83 A 1675 C GLU 238 34.926 35.177 78.082 1.00 19.34 A 1676 O GLU 238 35.877 35.955 77.983 1.00 21.58 A 1677 N ARG 239 35.009 33.910 77.733 1.00 21.12 A 1678 CA ARG 239 36.216 33.263 77.257 1.00 22.23 A 1679 CB ARG 239 36.524 32.072 78.207 1.00 25.73 A 1680 CG ARG 239 37.759 31.259 77.923 1.00 30.57 A 1681 CD ARG 239 38.148 30.209 78.941 1.00 35.65 A 1682 NE ARG 239 37.243 29.095 79.152 1.00 39.77 A 1683 CZ ARG 239 37.280 27.784 79.297 1.00 42.53 A 1684 NH1 ARG 239 38.385 27.022 79.243 1.00 42.40 A 1685 NH2 ARG 239 36.137 27.097 79.519 1.00 42.16 A 1686 C ARG 239 36.026 32.719 75.832 1.00 19.54 A 1687 O ARG 239 35.664 31.556 75.686 1.00 18.01 A 1688 N PRO 240 36.545 33.430 74.842 1.00 20.95 A 1689 CA PRO 240 36.590 32.962 73.452 1.00 18.08 A 1690 CD PRO 240 36.999 34.836 74.914 1.00 21.55 A 1691 CB PRO 240 37.390 34.047 72.724 1.00 21.14 A 1692 CG PRO 240 36.962 35.309 73.449 1.00 21.46 A 1693 C PRO 240 37.277 31.643 73.337 1.00 19.07 A 1694 O PRO 240 38.297 31.353 73.986 1.00 19.18 A 1695 N ILE 241 36.721 30.753 72.523 1.00 18.31 A 1696 CA ILE 241 37.291 29.428 72.275 1.00 19.83 A 1697 CB ILE 241 36.234 28.333 72.548 1.00 19.49 A 1698 CG2 ILE 241 36.878 26.957 72.345 1.00 19.51 A 1699 CG1 ILE 241 35.632 28.482 73.949 1.00 20.96 A 1700 CD1 ILE 241 34.579 27.465 74.392 1.00 19.62 A 1701 C ILE 241 37.791 29.336 70.829 1.00 21.55 A 1702 O ILE 241 38.882 28.859 70.512 1.00 19.61 A 1703 N PHE 242 36.934 29.754 69.894 1.00 20.18 A 1704 CA PHE 242 37.174 29.805 68.462 1.00 21.43 A 1705 CB PHE 242 36.689 28.534 67.733 1.00 18.71 A 1706 CG PHE 242 37.494 27.318 68.067 1.00 20.98 A 1707 CD1 PHE 242 38.802 27.211 67.612 1.00 21.85 A 1708 CD2 PHE 242 36.968 26.314 68.866 1.00 19.93 A 1709 CE1 PHE 242 39.558 26.106 67.927 1.00 22.01 A 1710 CE2 PHE 242 37.725 25.213 69.185 1.00 20.01 A 1711 CZ PHE 242 39.028 25.096 68.707 1.00 23.41 A 1712 C PHE 242 36.346 30.925 67.827 1.00 21.27 A 1713 O PHE 242 35.205 31.172 68.262 1.00 21.03 A 1714 N GLU 243 36.884 31.605 66.819 1.00 21.66 A 1715 CA GLU 243 36.073 32.593 66.108 1.00 21.05 A 1716 CB GLU 243 36.812 33.838 65.740 1.00 23.06 A 1717 CG GLU 243 37.306 34.658 66.935 1.00 26.19 A 1718 CD GLU 243 38.280 35.712 66.421 1.00 28.12 A 1719 OE1 GLU 243 39.310 35.317 65.866 1.00 28.85 A 1720 OE2 GLU 243 37.934 36.889 66.576 1.00 29.67 A 1721 C GLU 243 35.556 31.867 64.822 1.00 20.93 A 1722 O GLU 243 36.297 31.031 64.298 1.00 19.28 A 1723 N ILE 244 34.369 32.235 64.370 1.00 20.74 A 1724 CA ILE 244 33.792 31.627 63.147 1.00 18.87 A 1725 CB ILE 244 32.303 31.303 63.242 1.00 19.41 A 1726 CG2 ILE 244 31.879 30.417 62.045 1.00 17.16 A 1727 CG1 ILE 244 31.924 30.529 64.535 1.00 19.59 A 1728 CD1 ILE 244 30.399 30.611 64.826 1.00 19.07 A 1729 C ILE 244 34.152 32.547 61.977 1.00 16.35 A 1730 O ILE 244 33.588 33.605 61.829 1.00 16.20 A 1731 N VAL 245 35.191 32.157 61.222 1.00 17.78 A 1732 CA VAL 245 35.720 33.000 60.151 1.00 18.85 A 1733 CB VAL 245 37.140 32.519 59.749 1.00 19.07 A 1734 CG1 VAL 245 37.680 33.512 58.717 1.00 19.26 A 1735 CG2 VAL 245 38.073 32.496 60.995 1.00 20.02 A 1736 C VAL 245 34.866 33.034 58.877 1.00 16.35 A 1737 O VAL 245 34.518 34.094 58.380 1.00 17.59 A 1738 N SER 246 34.580 31.860 58.307 1.00 15.50 A 1739 CA SER 246 33.761 31.847 57.092 1.00 15.90 A 1740 CB SER 246 34.758 32.000 55.872 1.00 17.77 A 1741 OG SER 246 35.465 30.750 55.794 1.00 18.94 A 1742 C SER 246 33.005 30.556 57.051 1.00 16.37 A 1743 O SER 246 33.348 29.541 57.697 1.00 14.51 A 1744 N THR 247 31.898 30.536 56.278 1.00 15.35 A 1745 CA THR 247 31.083 29.353 56.113 1.00 16.46 A 1746 CB THR 247 29.760 29.445 56.919 1.00 16.78 A 1747 OG1 THR 247 29.052 30.622 56.477 1.00 17.47 A 1748 CG2 THR 247 30.077 29.665 58.403 1.00 16.52 A 1749 C THR 247 30.694 29.237 54.622 1.00 18.21 A 1750 O THR 247 30.504 30.205 53.889 1.00 16.99 A 1735 N ASP 248 30.618 28.005 54.197 0.50 18.71 A 1736 CA ASP 248 30.218 27.675 52.827 0.50 19.09 A 1737 CB ASP 248 31.440 27.391 51.944 0.50 19.78 A 1738 CG ASP 248 32.410 28.566 51.812 0.50 20.71 A 1739 OD1 ASP 248 31.968 29.747 51.547 0.50 21.41 A 1740 OD2 ASP 248 33.677 28.369 51.963 0.50 23.49 A 1741 C ASP 248 29.379 26.409 52.848 0.50 19.03 A 1742 O ASP 248 29.599 25.514 53.671 0.50 18.88 A 1735 N 2ASP 248 30.604 28.004 54.204 0.50 18.31 A 1736 CA 2ASP 248 30.193 27.679 52.839 0.50 18.44 A 1737 CB 2ASP 248 31.407 27.434 51.937 0.50 18.29 A 1738 CG 2ASP 248 31.017 26.889 50.555 0.50 18.92 A 1739 OD 12ASP 248 30.690 27.704 49.608 0.50 18.93 A 1740 OD 22ASP 248 31.012 25.617 50.335 0.50 19.50 A 1741 C 2ASP 248 29.358 26.413 52.864 0.50 18.56 A 1742 O 2ASP 248 29.566 25.532 53.705 0.50 18.48 A 1767 N GLN 249 28.356 26.417 51.935 1.00 18.12 A 1768 CA GLN 249 27.549 25.224 51.800 1.00 15.48 A 1769 CB GLN 249 26.099 25.564 52.196 1.00 14.70 A 1770 CG GLN 249 25.215 24.313 52.232 1.00 17.53 A 1771 CD GLN 249 23.779 24.633 52.622 1.00 18.03 A 1772 OE1 GLN 249 23.386 25.788 52.526 1.00 20.85 A 1773 NE2 GLN 249 22.986 23.664 53.058 1.00 16.17 A 1774 C GLN 249 27.516 24.887 50.297 1.00 17.28 A 1775 O GLN 249 27.276 25.811 49.490 1.00 16.93 A 1752 N THR 250 27.724 23.697 49.878 0.50 18.63 A 1753 CA THR 250 27.626 23.389 48.445 0.50 19.72 A 1754 CB THR 250 28.923 23.758 47.706 0.50 20.75 A 1755 OG1 THR 250 28.976 23.090 46.452 0.50 20.74 A 1756 CG2 THR 250 30.197 23.409 48.469 0.50 19.75 A 1757 C THR 250 27.254 21.928 48.211 0.50 19.36 A 1758 O THR 250 27.694 21.020 48.928 0.50 20.20 A 1752 N 2THR 250 27.757 23.701 49.893 0.50 17.80 A 1753 CA 2THR 250 27.697 23.337 48.471 0.50 18.17 A 1754 CB 2THR 250 29.094 23.333 47.827 0.50 17.92 A 1755 OG 12THR 250 29.903 22.324 48.410 0.50 19.85 A 1756 CG 22THR 250 29.837 24.663 47.974 0.50 13.72 A 1757 C 2THR 250 27.085 21.959 48.296 0.50 18.46 A 1758 O 2THR 250 27.144 21.111 49.195 0.50 19.35 A 1790 N ILE 251 26.420 21.812 47.160 1.00 18.11 A 1791 CA ILE 251 25.899 20.518 46.744 1.00 18.91 A 1792 CB ILE 251 24.566 20.777 46.018 1.00 21.43 A 1793 CG2 ILE 251 24.079 19.563 45.255 1.00 21.91 A 1794 CG1 ILE 251 23.458 21.230 47.008 1.00 19.84 A 1795 CD1 ILE 251 22.343 21.902 46.184 1.00 21.62 A 1796 C ILE 251 26.917 19.804 45.865 1.00 20.29 A 1797 O ILE 251 27.373 20.421 44.904 1.00 18.39 A 1798 N LEU 252 27.242 18.561 46.132 1.00 19.21 A 1799 CA LEU 252 28.247 17.856 45.333 1.00 21.24 A 1800 CB LEU 252 28.874 16.732 46.167 1.00 20.16 A 1801 CG LEU 252 29.544 17.115 47.496 1.00 22.74 A 1802 CD2 LEU 252 30.589 18.196 47.306 1.00 20.38 A 1803 CD1 LEU 252 30.144 15.834 48.104 1.00 21.35 A 1804 C LEU 252 27.540 17.343 44.067 1.00 21.53 A 1805 O LEU 252 26.496 16.711 44.166 1.00 20.81 A 1806 N PRO 253 28.125 17.540 42.891 1.00 23.96 A 1807 CA PRO 253 27.503 17.137 41.637 1.00 24.00 A 1808 CD PRO 253 29.384 18.295 42.669 1.00 24.04 A 1809 CB PRO 253 28.477 17.645 40.537 1.00 27.26 A 1810 CG PRO 253 29.758 17.845 41.256 1.00 26.43 A 1811 C PRO 253 27.321 15.652 41.520 1.00 21.79 A 1812 O PRO 253 28.160 14.836 41.927 1.00 23.62 A 1813 N ASP 254 26.184 15.233 40.995 1.00 20.90 A 1814 CA ASP 254 25.847 13.868 40.696 1.00 22.65 A 1815 CB ASP 254 26.866 13.340 39.636 1.00 24.22 A 1816 CG ASP 254 26.758 14.178 38.352 1.00 23.48 A 1817 OD1 ASP 254 25.656 14.260 37.820 1.00 23.35 A 1818 OD2 ASP 254 27.702 14.827 37.926 1.00 24.65 A 1819 C ASP 254 25.915 12.933 41.901 1.00 23.89 A 1820 O ASP 254 26.435 11.817 41.786 1.00 20.61 A 1821 N THR 255 25.475 13.405 43.084 1.00 23.24 A 1822 CA THR 255 25.539 12.504 44.271 1.00 22.38 A 1823 CB THR 255 26.529 13.102 45.269 1.00 22.65 A 1824 OG1 THR 255 26.047 14.426 45.616 1.00 21.38 A 1825 CG2 THR 255 27.937 13.179 44.660 1.00 21.77 A 1826 C THR 255 24.185 12.406 44.964 1.00 25.76 A 1827 O THR 255 24.060 11.927 46.099 1.00 24.90 A 1828 N GLU 256 23.128 12.826 44.279 1.00 26.04 A 1829 CA GLU 256 21.798 12.886 44.836 1.00 30.86 A 1830 CB GLU 256 20.747 13.428 43.862 1.00 32.70 A 1831 CG GLU 256 19.388 13.594 44.527 1.00 36.12 A 1832 CD GLU 256 18.316 14.007 43.540 1.00 38.83 A 1833 OE1 GLU 256 17.152 13.468 43.598 1.00 40.66 A 1834 OE2 GLU 256 18.588 14.893 42.648 1.00 38.96 A 1835 C GLU 256 21.320 11.539 45.377 1.00 31.91 A 1836 O GLU 256 20.679 11.464 46.430 1.00 31.93 A 1837 N LYS 257 21.633 10.469 44.689 1.00 31.65 A 1838 CA LYS 257 21.152 9.147 45.116 1.00 35.38 A 1839 CB LYS 257 21.043 8.222 43.910 1.00 39.99 A 1840 CG LYS 257 19.783 8.517 43.089 1.00 45.71 A 1841 CD LYS 257 19.467 7.440 42.058 1.00 51.11 A 1842 CE LYS 257 18.956 8.012 40.735 1.00 53.47 A 1843 NZ LYS 257 18.536 6.968 39.790 1.00 56.09 A 1844 C LYS 257 22.049 8.525 46.211 1.00 32.87 A 1845 O LYS 257 21.790 7.419 46.698 1.00 34.25 A 1846 N ALA 258 23.082 9.246 46.612 1.00 29.70 A 1847 CA ALA 258 24.024 8.771 47.656 1.00 30.43 A 1848 CB ALA 258 25.138 9.793 47.873 1.00 28.35 A 1849 C ALA 258 23.323 8.565 49.021 1.00 27.90 A 1850 O ALA 258 23.576 7.571 49.723 1.00 24.05 A 1851 N MET 259 22.464 9.523 49.368 1.00 25.76 A 1852 CA MET 259 21.726 9.522 50.658 1.00 25.87 A 1853 C MET 259 20.309 10.047 50.545 1.00 21.93 A 1854 O MET 259 20.083 11.221 50.262 1.00 23.58 A 1855 CB MET 259 22.297 10.527 51.653 1.00 27.22 A 1856 CG MET 259 23.705 10.233 52.098 1.00 28.27 A 1857 SD MET 259 24.372 11.515 53.127 1.00 27.33 A 1858 CE MET 259 26.025 11.066 53.579 1.00 25.33 A 1859 N LYS 260 19.358 9.201 50.793 1.00 20.47 A 1860 CA LYS 260 17.965 9.639 50.800 1.00 21.83 A 1861 CB LYS 260 17.256 9.175 49.537 1.00 23.80 A 1862 CG LYS 260 17.673 9.960 48.296 1.00 29.10 A 1863 CD LYS 260 16.888 9.531 47.064 1.00 31.39 A 1864 CE LYS 260 17.270 10.303 45.807 1.00 35.56 A 1865 NZ LYS 260 16.189 10.333 44.812 1.00 38.58 A 1866 C LYS 260 17.292 9.033 52.028 1.00 19.21 A 1867 O LYS 260 17.425 7.840 52.275 1.00 22.29 A 1868 N LEU 261 16.617 9.836 52.822 1.00 18.40 A 1869 CA LEU 261 15.950 9.346 54.038 1.00 17.05 A 1870 CB LEU 261 16.720 9.682 55.307 1.00 17.21 A 1871 CG LEU 261 18.166 9.207 55.474 1.00 17.40 A 1872 CD2 LEU 261 18.529 9.086 56.953 1.00 16.95 A 1873 CD1 LEU 261 19.166 10.165 54.847 1.00 14.73 A 1874 C LEU 261 14.536 9.894 54.066 1.00 16.09 A 1875 O LEU 261 14.295 11.071 53.924 1.00 14.50 A 1876 N HIS 262 13.548 9.015 54.169 1.00 18.30 A 1877 CA HIS 262 12.152 9.422 54.155 1.00 17.72 A 1878 ND1 HIS 262 12.566 9.673 51.142 1.00 20.05 A 1879 CG HIS 262 12.138 8.533 51.792 1.00 18.58 A 1880 CB HIS 262 11.354 8.626 53.085 1.00 16.72 A 1881 NE2 HIS 262 13.145 7.985 49.930 1.00 19.75 A 1882 CD2 HIS 262 12.555 7.478 51.069 1.00 18.88 A 1883 CE1 HIS 262 13.214 9.296 50.004 1.00 21.26 A 1884 C HIS 262 11.489 9.117 55.512 1.00 18.43 A 1885 O HIS 262 11.784 8.058 56.049 1.00 18.61 A 1886 N LEU 263 10.662 10.047 55.954 1.00 17.01 A 1887 CA LEU 263 9.960 9.835 57.216 1.00 17.04 A 1888 CB LEU 263 9.816 11.174 57.973 1.00 16.64 A 1889 CG LEU 263 9.255 10.958 59.426 1.00 18.78 A 1890 CD2 LEU 263 9.028 12.298 60.090 1.00 17.69 A 1891 CD1 LEU 263 10.301 10.149 60.221 1.00 19.19 A 1892 C LEU 263 8.608 9.231 56.922 1.00 16.73 A 1893 O LEU 263 7.741 9.921 56.377 1.00 17.57 A 1894 N ARG 264 8.469 7.931 57.163 1.00 16.36 A 1895 CA ARG 264 7.290 7.216 56.840 1.00 17.70 A 1896 CB ARG 264 7.666 6.046 55.898 1.00 20.34 A 1897 CG ARG 264 8.681 6.392 54.814 1.00 22.37 A 1898 CD ARG 264 7.994 7.130 53.685 1.00 20.91 A 1899 NE ARG 264 7.169 6.277 52.808 1.00 20.51 A 1900 CZ ARG 264 6.362 6.843 51.895 1.00 21.14 A 1901 NH1 ARG 264 6.375 8.164 51.651 1.00 20.32 A 1902 NH2 ARG 264 5.603 6.053 51.159 1.00 20.22 A 1903 C ARG 264 6.594 6.569 58.039 1.00 20.22 A 1904 O ARG 264 7.133 6.659 59.146 1.00 18.39 A 1905 N GLU 265 5.471 5.899 57.772 1.00 17.87 A 1906 CA GLU 265 4.790 5.177 58.862 1.00 18.98 A 1907 CB GLU 265 3.556 4.407 58.303 1.00 16.37 A 1908 CG GLU 265 2.643 5.476 57.656 1.00 20.82 A 1909 CD GLU 265 1.563 4.861 56.766 1.00 20.66 A 1910 OE1 GLU 265 1.377 3.645 56.795 1.00 23.15 A 1911 OE2 GLU 265 0.921 5.616 56.020 1.00 22.61 A 1912 C GLU 265 5.686 4.230 59.613 1.00 18.25 A 1913 O GLU 265 5.444 3.929 60.795 1.00 18.46 A 1914 N GLY 266 6.722 3.688 58.977 1.00 17.26 A 1915 CA GLY 266 7.650 2.792 59.615 1.00 18.12 A 1916 C GLY 266 8.861 3.481 60.227 1.00 17.40 A 1917 O GLY 266 9.778 2.748 60.603 1.00 18.01 A 1918 N GLY 267 8.923 4.798 60.337 1.00 19.74 A 1919 CA GLY 267 10.100 5.458 60.917 1.00 20.63 A 1920 C GLY 267 10.931 6.092 59.768 1.00 23.03 A 1921 O GLY 267 10.497 6.138 58.616 1.00 20.28 A 1922 N LEU 268 12.159 6.507 60.072 1.00 21.36 A 1923 CA LEU 268 13.016 7.215 59.122 1.00 21.05 A 1924 CB LEU 268 13.981 8.145 59.834 1.00 19.19 A 1925 CG LEU 268 14.897 9.032 58.962 1.00 17.54 A 1926 CD2 LEU 268 15.779 9.886 59.886 1.00 17.15 A 1927 CD1 LEU 268 14.092 9.876 57.984 1.00 15.58 A 1928 C LEU 268 13.778 6.178 58.285 1.00 21.30 A 1929 O LEU 268 14.628 5.448 58.813 1.00 23.77 A 1930 N THR 269 13.451 6.101 57.003 1.00 20.14 A 1931 CA THR 269 14.056 5.101 56.137 1.00 22.90 A 1932 CB THR 269 13.254 4.873 54.836 1.00 22.70 A 1933 OG1 THR 269 13.291 6.065 54.053 1.00 21.45 A 1934 CG2 THR 269 11.798 4.570 55.199 1.00 23.44 A 1935 C THR 269 15.479 5.461 55.734 1.00 24.41 A 1936 O THR 269 15.836 6.604 55.954 1.00 26.06 A 1937 N PHE 270 16.186 4.525 55.142 1.00 25.77 A 1938 CA PHE 270 17.545 4.694 54.678 1.00 30.89 A 1939 CB PHE 270 18.501 3.800 55.499 1.00 33.60 A 1940 CG PHE 270 19.068 4.507 56.692 1.00 35.25 A 1941 CD1 PHE 270 18.543 4.341 57.962 1.00 38.30 A 1942 CD2 PHE 270 20.116 5.377 56.499 1.00 36.35 A 1943 CE1 PHE 270 19.093 5.083 59.039 1.00 38.64 A 1944 CE2 PHE 270 20.654 6.118 57.517 1.00 37.80 A 1945 CZ PHE 270 20.149 5.938 58.791 1.00 38.59 A 1946 C PHE 270 17.781 4.204 53.238 1.00 31.79 A 1947 O PHE 270 17.292 3.178 52.744 1.00 33.03 A 1948 N GLN 271 18.437 5.045 52.478 1.00 29.75 A 1949 CA GLN 271 19.027 4.697 51.203 1.00 30.30 A 1950 CB GLN 271 18.181 5.184 50.041 1.00 32.83 A 1951 CG GLN 271 18.831 5.074 48.669 1.00 37.28 A 1952 CD GLN 271 17.923 5.507 47.534 1.00 40.09 A 1953 OE1 GLN 271 16.699 5.314 47.556 1.00 42.51 A 1954 NE2 GLN 271 18.436 6.098 46.459 1.00 40.55 A 1955 C GLN 271 20.424 5.351 51.253 1.00 28.39 A 1956 O GLN 271 20.552 6.564 51.138 1.00 27.71 A 1957 N LEU 272 21.442 4.552 51.472 1.00 26.34 A 1958 CA LEU 272 22.799 5.037 51.618 1.00 28.19 A 1959 CB LEU 272 23.205 4.847 53.103 1.00 33.12 A 1960 CG LEU 272 24.627 5.314 53.406 1.00 36.66 A 1961 CD2 LEU 272 25.100 4.817 54.771 1.00 38.65 A 1962 CD1 LEU 272 24.712 6.845 53.320 1.00 37.49 A 1963 C LEU 272 23.744 4.251 50.704 1.00 27.33 A 1964 O LEU 272 23.845 3.036 50.830 1.00 25.84 A 1965 N HIS 273 24.286 4.916 49.706 1.00 27.33 A 1966 CA HIS 273 25.070 4.272 48.676 1.00 29.58 A 1967 ND1 HIS 273 24.991 3.934 45.256 1.00 40.32 A 1968 CG HIS 273 25.820 4.402 46.267 1.00 37.43 A 1969 CB HIS 273 25.274 5.178 47.455 1.00 32.70 A 1970 NE2 HIS 273 26.990 3.337 44.776 1.00 40.36 A 1971 CD2 HIS 273 27.079 4.017 45.948 1.00 37.90 A 1972 CE1 HIS 273 25.742 3.297 44.378 1.00 39.49 A 1973 C HIS 273 26.452 3.926 49.230 1.00 27.34 A 1974 O HIS 273 27.034 4.676 50.023 1.00 24.81 A 1975 N ARG 274 26.940 2.800 48.779 1.00 27.13 A 1976 CA ARG 274 28.222 2.245 49.217 1.00 29.59 A 1977 CB ARG 274 28.436 0.897 48.543 1.00 32.73 A 1978 CG ARG 274 29.796 0.285 48.852 1.00 36.33 A 1979 CD ARG 274 29.676 −1.035 49.605 1.00 38.66 A 1980 NE ARG 274 30.959 −1.586 50.043 1.00 38.59 A 1981 CZ ARG 274 31.496 −2.756 49.633 1.00 39.92 A 1982 NH1 ARG 274 30.899 −3.560 48.742 1.00 39.98 A 1983 NH2 ARG 274 32.670 −3.218 50.095 1.00 39.32 A 1984 C ARG 274 29.427 3.145 48.864 1.00 27.69 A 1985 O ARG 274 30.477 3.097 49.514 1.00 27.09 A 1986 N ASP 275 29.301 3.971 47.837 1.00 24.66 A 1987 CA ASP 275 30.438 4.816 47.405 1.00 26.48 A 1988 CB ASP 275 30.422 5.042 45.901 1.00 30.30 A 1989 CG ASP 275 30.708 3.772 45.112 1.00 35.19 A 1990 OD1 ASP 275 30.244 3.654 43.918 1.00 36.99 A 1991 OD2 ASP 275 31.402 2.826 45.645 1.00 37.66 A 1992 C ASP 275 30.424 6.199 48.051 1.00 22.09 A 1993 O ASP 275 31.151 7.111 47.643 1.00 19.23 A 1994 N VAL 276 29.611 6.369 49.060 1.00 20.27 A 1995 CA VAL 276 29.544 7.666 49.723 1.00 18.96 A 1996 CB VAL 276 28.626 7.596 50.945 1.00 19.63 A 1997 CG1 VAL 276 28.923 8.677 51.989 1.00 19.71 A 1998 CG2 VAL 276 27.148 7.782 50.573 1.00 17.53 A 1999 C VAL 276 30.971 8.126 50.086 1.00 18.02 A 2000 O VAL 276 31.380 9.252 49.782 1.00 17.63 A 2001 N PRO 277 31.831 7.331 50.754 1.00 18.36 A 2002 CA PRO 277 33.169 7.800 51.096 1.00 20.79 A 2003 CD PRO 277 31.512 5.973 51.202 1.00 19.97 A 2004 CB PRO 277 33.785 6.649 51.849 1.00 19.99 A 2005 CG PRO 277 32.739 5.555 51.962 1.00 19.83 A 2006 C PRO 277 33.974 8.293 49.891 1.00 23.03 A 2007 O PRO 277 34.726 9.302 50.018 1.00 21.62 A 2008 N LEU 278 33.872 7.665 48.735 1.00 21.57 A 2009 CA LEU 278 34.644 8.143 47.555 1.00 24.35 A 2010 CB LEU 278 34.625 7.099 46.431 1.00 26.62 A 2011 CG LEU 278 35.651 5.976 46.594 1.00 29.87 A 2012 CD2 LEU 278 37.099 6.467 46.565 1.00 27.31 A 2013 CD1 LEU 278 35.542 4.920 45.486 1.00 31.37 A 2014 C LEU 278 34.025 9.394 46.975 1.00 23.03 A 2015 O LEU 278 34.757 10.207 46.395 1.00 24.13 A 2016 N MET 279 32.699 9.537 47.109 1.00 20.09 A 2017 CA MET 279 32.098 10.793 46.607 1.00 20.81 A 2018 CB MET 279 30.585 10.759 46.763 1.00 21.80 A 2019 CG MET 279 29.956 9.554 46.087 1.00 21.49 A 2020 SD MET 279 28.158 9.596 46.311 1.00 22.74 A 2021 CE MET 279 27.814 7.886 45.932 1.00 22.20 A 2022 C MET 279 32.620 11.950 47.432 1.00 21.26 A 2023 O MET 279 32.843 13.056 46.902 1.00 21.41 A 2024 N VAL 280 32.755 11.735 48.762 1.00 21.29 A 2025 CA VAL 280 33.337 12.833 49.548 1.00 22.70 A 2026 CB VAL 280 33.288 12.488 51.071 1.00 23.91 A 2027 CG1 VAL 280 34.082 13.494 51.898 1.00 22.39 A 2028 CG2 VAL 280 31.841 12.468 51.575 1.00 22.09 A 2029 C VAL 280 34.770 13.083 49.071 1.00 24.53 A 2030 O VAL 280 35.252 14.214 48.931 1.00 23.97 A 2031 N ALA 281 35.564 12.025 48.891 1.00 25.87 A 2032 CA ALA 281 36.967 12.124 48.489 1.00 27.38 A 2033 CB ALA 281 37.578 10.723 48.367 1.00 27.95 A 2034 C ALA 281 37.174 12.837 47.160 1.00 28.59 A 2035 O ALA 281 38.056 13.701 47.016 1.00 29.65 A 2036 N LYS 282 36.300 12.572 46.189 1.00 26.22 A 2037 CA LYS 282 36.368 13.223 44.907 1.00 25.90 A 2038 CB LYS 282 35.300 12.698 43.925 1.00 27.70 A 2039 CG LYS 282 35.153 13.575 42.651 1.00 30.25 A 2040 CD LYS 282 33.857 13.278 41.920 1.00 29.84 A 2041 CE LYS 282 33.593 14.185 40.715 1.00 32.26 A 2042 NZ LYS 282 32.243 13.849 40.139 1.00 30.29 A 2043 C LYS 282 36.254 14.726 45.103 1.00 25.93 A 2044 O LYS 282 36.845 15.456 44.303 1.00 23.37 A 2045 N ASN 283 35.502 15.227 46.092 1.00 25.52 A 2046 CA ASN 283 35.211 16.644 46.193 1.00 25.46 A 2047 CB ASN 283 33.668 16.812 46.435 1.00 25.21 A 2048 CG ASN 283 32.881 16.340 45.229 1.00 26.49 A 2049 OD1 ASN 283 32.704 17.126 44.310 1.00 25.47 A 2050 ND2 ASN 283 32.380 15.100 45.189 1.00 27.38 A 2051 C ASN 283 35.863 17.400 47.333 1.00 24.11 A 2052 O ASN 283 35.665 18.622 47.353 1.00 24.47 A 2053 N ILE 284 36.517 16.739 48.251 1.00 25.53 A 2054 CA ILE 284 36.995 17.393 49.477 1.00 26.10 A 2055 CB ILE 284 37.328 16.279 50.494 1.00 26.34 A 2056 CG2 ILE 284 38.653 15.582 50.160 1.00 26.45 A 2057 CG1 ILE 284 37.371 16.753 51.938 1.00 26.40 A 2058 CD1 ILE 284 36.089 17.363 52.446 1.00 26.64 A 2059 C ILE 284 38.133 18.365 49.270 1.00 28.21 A 2060 O ILE 284 38.064 19.553 49.667 1.00 26.93 A 2061 N GLU 285 39.048 18.054 48.349 1.00 28.53 A 2062 CA GLU 285 40.191 18.985 48.139 1.00 30.46 A 2063 CB GLU 285 41.241 18.332 47.222 1.00 33.52 A 2064 CG GLU 285 42.182 19.313 46.561 1.00 39.10 A 2065 CD GLU 285 43.388 19.749 47.365 1.00 42.79 A 2066 OE1 GLU 285 43.645 19.212 48.464 1.00 42.80 A 2067 OE2 GLU 285 44.117 20.670 46.879 1.00 44.61 A 2068 C GLU 285 39.716 20.340 47.698 1.00 26.56 A 2069 O GLU 285 40.175 21.419 48.100 1.00 25.80 A 2070 N ASN 286 38.666 20.341 46.873 1.00 27.41 A 2071 CA ASN 286 38.041 21.556 46.370 1.00 29.50 A 2072 CB ASN 286 36.931 21.113 45.424 1.00 35.35 A 2073 CG ASN 286 36.487 22.141 44.428 1.00 40.87 A 2074 OD1 ASN 286 36.837 22.003 43.230 1.00 45.15 A 2075 ND2 ASN 286 35.717 23.121 44.856 1.00 42.56 A 2076 C ASN 286 37.392 22.389 47.486 1.00 26.71 A 2077 O ASN 286 37.308 23.617 47.475 1.00 22.59 A 2078 N ALA 287 36.790 21.654 48.434 1.00 24.05 A 2079 CA ALA 287 36.132 22.320 49.573 1.00 23.78 A 2080 CB ALA 287 35.286 21.334 50.345 1.00 22.36 A 2081 C ALA 287 37.225 22.964 50.432 1.00 22.30 A 2082 O ALA 287 37.135 24.138 50.758 1.00 24.71 A 2083 N ALA 288 38.280 22.228 50.704 1.00 23.39 A 2084 CA ALA 288 39.407 22.804 51.436 1.00 25.71 A 2085 CB ALA 288 40.468 21.729 51.625 1.00 24.55 A 2086 C ALA 288 40.000 24.044 50.791 1.00 25.87 A 2087 O ALA 288 40.250 25.078 51.440 1.00 24.50 A 2088 N GLU 289 40.198 23.985 49.463 1.00 27.07 A 2089 CA GLU 289 40.813 25.091 48.741 1.00 28.27 A 2090 CB GLU 289 41.130 24.674 47.271 1.00 30.88 A 2091 CG GLU 289 42.340 23.762 47.245 1.00 35.87 A 2092 CD GLU 289 42.625 23.071 45.921 1.00 40.56 A 2093 OE1 GLU 289 43.791 22.653 45.702 1.00 41.51 A 2094 OE2 GLU 289 41.708 22.906 45.088 1.00 41.76 A 2095 C GLU 289 39.981 26.346 48.695 1.00 26.52 A 2096 O GLU 289 40.511 27.452 48.830 1.00 25.15 A 2097 N LYS 290 38.676 26.199 48.535 1.00 23.69 A 2098 CA LYS 290 37.769 27.340 48.480 1.00 27.51 A 2099 CB LYS 290 36.399 26.882 48.005 1.00 29.38 A 2100 CG LYS 290 35.240 27.853 48.135 1.00 35.53 A 2101 CD LYS 290 33.949 27.292 47.545 1.00 38.73 A 2102 CE LYS 290 32.844 28.342 47.436 1.00 40.40 A 2103 NZ LYS 290 31.560 27.684 47.011 1.00 41.39 A 2104 C LYS 290 37.714 28.054 49.844 1.00 26.14 A 2105 O LYS 290 37.657 29.278 49.879 1.00 24.24 A 2106 N ALA 291 37.891 27.296 50.919 1.00 24.46 A 2107 CA ALA 291 37.895 27.866 52.249 1.00 27.44 A 2108 CB ALA 291 37.595 26.760 53.264 1.00 26.18 A 2109 C ALA 291 39.262 28.465 52.626 1.00 27.57 A 2110 O ALA 291 39.365 29.545 53.217 1.00 27.36 A 2111 N LEU 292 40.304 27.720 52.266 1.00 26.84 A 2112 CA LEU 292 41.624 28.202 52.710 1.00 28.86 A 2113 CB LEU 292 42.422 26.986 53.134 1.00 26.99 A 2114 CG LEU 292 41.871 26.217 54.337 1.00 28.38 A 2115 CD2 LEU 292 42.008 27.044 55.607 1.00 27.89 A 2116 CD1 LEU 292 42.631 24.899 54.444 1.00 26.16 A 2117 C LEU 292 42.459 29.033 51.744 1.00 30.46 A 2118 O LEU 292 43.188 29.940 52.207 1.00 30.17 A 2119 N SER 293 42.120 29.018 50.451 1.00 31.81 A 2120 CA SER 293 42.870 29.851 49.495 1.00 32.75 A 2121 CB SER 293 42.477 29.604 48.025 1.00 32.73 A 2122 OG SER 293 43.153 28.418 47.645 1.00 34.17 A 2123 C SER 293 42.776 31.324 49.779 1.00 33.36 A 2124 O SER 293 43.801 31.999 49.867 1.00 34.00 A 2125 N PRO 294 41.603 31.876 50.029 1.00 34.41 A 2126 CA PRO 294 41.480 33.287 50.381 1.00 35.42 A 2127 CD PRO 294 40.295 31.190 50.023 1.00 34.17 A 2128 CB PRO 294 39.981 33.501 50.548 1.00 34.86 A 2129 CG PRO 294 39.306 32.337 49.921 1.00 34.65 A 2130 C PRO 294 42.254 33.690 51.638 1.00 36.84 A 2131 O PRO 294 42.481 34.881 51.909 1.00 36.47 A 2132 N LEU 295 42.650 32.745 52.486 1.00 36.49 A 2133 CA LEU 295 43.429 32.991 53.683 1.00 37.02 A 2134 CB LEU 295 42.980 32.003 54.763 1.00 37.27 A 2135 CG LEU 295 41.820 32.354 55.702 1.00 38.92 A 2136 CD2 LEU 295 41.008 31.102 56.046 1.00 38.57 A 2137 CD1 LEU 295 40.896 33.423 55.171 1.00 38.29 A 2138 C LEU 295 44.925 32.827 53.416 1.00 36.97 A 2139 O LEU 295 45.766 32.870 54.320 1.00 36.24 A 2140 N GLY 296 45.308 32.560 52.176 1.00 36.33 A 2141 CA GLY 296 46.679 32.361 51.749 1.00 36.08 A 2142 C GLY 296 47.255 31.058 52.254 1.00 37.21 A 2143 O GLY 296 48.472 30.915 52.457 1.00 37.99 A 2144 N ILE 297 46.402 30.060 52.501 1.00 36.81 A 2145 CA ILE 297 46.904 28.802 53.050 1.00 37.30 A 2146 CB ILE 297 46.311 28.486 54.420 1.00 38.48 A 2147 CG2 ILE 297 45.103 29.359 54.728 1.00 40.59 A 2148 CG1 ILE 297 45.928 27.017 54.562 1.00 38.31 A 2149 CD1 ILE 297 46.901 26.269 55.416 1.00 40.48 A 2150 C ILE 297 46.727 27.683 52.035 1.00 37.13 A 2151 O ILE 297 45.686 27.505 51.409 1.00 37.08 A 2152 N THR 298 47.803 26.927 51.890 1.00 36.87 A 2153 CA THR 298 47.896 25.847 50.940 1.00 38.72 A 2154 CB THR 298 48.874 26.221 49.786 1.00 39.90 A 2155 OG1 THR 298 50.117 26.627 50.374 1.00 39.12 A 2156 CG2 THR 298 48.278 27.325 48.927 1.00 39.83 A 2157 C THR 298 48.369 24.568 51.589 1.00 39.07 A 2158 O THR 298 48.122 23.494 51.045 1.00 42.28 A 2159 N ASP 299 49.004 24.662 52.740 1.00 39.02 A 2160 CA ASP 299 49.496 23.468 53.436 1.00 38.76 A 2161 CB ASP 299 50.764 23.831 54.194 1.00 38.63 A 2162 CG ASP 299 51.295 22.758 55.103 1.00 39.09 A 2163 OD1 ASP 299 50.863 21.591 55.031 1.00 37.72 A 2164 OD2 ASP 299 52.141 23.059 55.976 1.00 41.89 A 2165 C ASP 299 48.408 22.909 54.362 1.00 38.43 A 2166 O ASP 299 48.184 23.476 55.430 1.00 38.49 A 2167 N TRP 300 47.826 21.767 54.023 1.00 37.66 A 2168 CA TRP 300 46.745 21.149 54.790 1.00 37.33 A 2169 CB TRP 300 46.076 20.035 54.030 1.00 35.24 A 2170 CG TRP 300 45.615 20.311 52.635 1.00 33.53 A 2171 CD2 TRP 300 45.171 21.538 52.062 1.00 33.67 A 2172 CD1 TRP 300 45.493 19.374 51.649 1.00 33.49 A 2173 NE1 TRP 300 45.028 19.958 50.493 1.00 33.28 A 2174 CE2 TRP 300 44.800 21.288 50.730 1.00 34.25 A 2175 CE3 TRP 300 45.057 22.846 52.553 1.00 35.18 A 2176 CZ2 TRP 300 44.346 22.285 49.865 1.00 33.41 A 2177 CZ3 TRP 300 44.620 23.849 51.709 1.00 34.28 A 2178 CH2 TRP 300 44.241 23.551 50.385 1.00 34.92 A 2179 C TRP 300 47.202 20.714 56.182 1.00 37.49 A 2180 O TRP 300 46.418 20.813 57.163 1.00 36.40 A 2181 N ASN 301 48.477 20.306 56.332 1.00 34.48 A 2182 CA ASN 301 48.922 19.946 57.672 1.00 35.00 A 2183 CB ASN 301 50.144 19.029 57.661 1.00 37.31 A 2184 CG ASN 301 49.728 17.606 57.329 1.00 38.68 A 2185 OD1 ASN 301 48.920 16.951 57.987 1.00 37.57 A 2186 ND2 ASN 301 50.350 17.099 56.273 1.00 40.93 A 2187 C ASN 301 49.175 21.173 58.550 1.00 32.26 A 2188 O ASN 301 49.400 20.997 59.751 1.00 31.10 A 2189 N SER 302 49.106 22.389 58.010 1.00 31.87 A 2190 CA SER 302 49.245 23.552 58.893 1.00 32.12 A 2191 CB SER 302 49.849 24.731 58.135 1.00 29.88 A 2192 OG SER 302 48.880 25.107 57.168 1.00 32.74 A 2193 C SER 302 47.906 23.992 59.499 1.00 30.90 A 2194 O SER 302 47.842 25.052 60.118 1.00 31.20 A 2195 N VAL 303 46.822 23.230 59.362 1.00 30.13 A 2196 CA VAL 303 45.553 23.653 59.934 1.00 28.77 A 2197 CB VAL 303 44.522 24.168 58.925 1.00 31.98 A 2198 CG1 VAL 303 45.062 25.161 57.904 1.00 32.26 A 2199 CG2 VAL 303 43.857 23.026 58.191 1.00 31.24 A 2200 C VAL 303 44.978 22.498 60.741 1.00 26.82 A 2201 O VAL 303 45.415 21.362 60.526 1.00 27.14 A 2202 N PHE 304 44.090 22.798 61.685 1.00 24.01 A 2203 CA PHE 304 43.475 21.704 62.438 1.00 23.42 A 2204 CB PHE 304 43.325 22.054 63.911 1.00 23.36 A 2205 CG PHE 304 42.463 23.232 64.237 1.00 22.32 A 2206 CD1 PHE 304 42.945 24.512 64.179 1.00 20.79 A 2207 CD2 PHE 304 41.127 23.039 64.629 1.00 24.15 A 2208 CE1 PHE 304 42.161 25.609 64.468 1.00 19.60 A 2209 CE2 PHE 304 40.346 24.133 64.947 1.00 21.08 A 2210 CZ PHE 304 40.842 25.414 64.847 1.00 20.44 A 2211 C PHE 304 42.147 21.355 61.776 1.00 24.89 A 2212 O PHE 304 41.627 22.140 60.992 1.00 25.71 A 2213 N TRP 305 41.666 20.119 61.929 1.00 25.44 A 2214 CA TRP 305 40.584 19.613 61.118 1.00 25.60 A 2215 CB TRP 305 41.051 18.536 60.093 1.00 25.55 A 2216 CG TRP 305 41.959 19.100 59.049 1.00 26.83 A 2217 CD2 TRP 305 41.615 19.672 57.775 1.00 28.73 A 2218 CD1 TRP 305 43.318 19.207 59.176 1.00 27.96 A 2219 NE1 TRP 305 43.822 19.826 58.065 1.00 28.93 A 2220 CE2 TRP 305 42.806 20.120 57.187 1.00 29.39 A 2221 CE3 TRP 305 40.405 19.893 57.104 1.00 27.51 A 2222 CZ2 TRP 305 42.852 20.773 55.956 1.00 30.39 A 2223 CZ3 TRP 305 40.462 20.535 55.866 1.00 29.88 A 2224 CH2 TRP 305 41.657 20.981 55.292 1.00 30.23 A 2225 C TRP 305 39.556 18.924 61.998 1.00 24.39 A 2226 O TRP 305 39.918 18.180 62.892 1.00 25.90 A 2227 N MET 306 38.308 19.223 61.746 1.00 22.65 A 2228 CA MET 306 37.198 18.610 62.475 1.00 22.14 A 2229 CB MET 306 36.522 19.736 63.268 1.00 22.15 A 2230 CG MET 306 37.433 20.356 64.335 1.00 23.61 A 2231 SD MET 306 37.057 22.087 64.614 1.00 24.09 A 2232 CE MET 306 37.738 22.767 63.079 1.00 25.77 A 2233 C MET 306 36.287 18.000 61.412 1.00 20.50 A 2234 O MET 306 35.608 18.766 60.735 1.00 21.18 A 2235 N VAL 307 36.296 16.682 61.268 1.00 19.97 A 2236 CA VAL 307 35.652 16.070 60.113 1.00 20.97 A 2237 CB VAL 307 36.711 15.240 59.325 1.00 22.15 A 2238 CG1 VAL 307 36.059 14.606 58.100 1.00 21.56 A 2239 CG2 VAL 307 37.843 16.138 58.808 1.00 19.03 A 2240 C VAL 307 34.481 15.226 60.556 1.00 18.76 A 2241 O VAL 307 34.671 14.319 61.368 1.00 18.36 A 2242 N HIS 308 33.288 15.563 60.066 1.00 17.69 A 2243 CA HIS 308 32.137 14.752 60.516 1.00 19.07 A 2244 ND1 HIS 308 29.082 14.287 61.340 1.00 19.45 A 2245 CG HIS 308 29.736 14.291 60.117 1.00 18.52 A 2246 CB HIS 308 30.860 15.253 59.823 1.00 17.91 A 2247 NE2 HIS 308 28.252 12.647 60.143 1.00 17.30 A 2248 CD2 HIS 308 29.273 13.240 59.426 1.00 18.98 A 2249 CE1 HIS 308 28.161 13.317 61.296 1.00 20.93 A 2250 C HIS 308 32.401 13.295 60.187 1.00 22.00 A 2251 O HIS 308 32.541 12.856 59.015 1.00 21.78 A 2252 N PRO 309 32.393 12.441 61.212 1.00 20.32 A 2253 CA PRO 309 32.739 11.051 61.029 1.00 20.18 A 2254 CD PRO 309 32.301 12.831 62.657 1.00 20.49 A 2255 CB PRO 309 33.298 10.657 62.401 1.00 20.80 A 2256 CG PRO 309 32.498 11.496 63.364 1.00 20.59 A 2257 C PRO 309 31.508 10.289 60.609 1.00 21.81 A 2258 O PRO 309 30.997 9.378 61.269 1.00 19.24 A 2259 N GLY 310 31.103 10.445 59.323 1.00 23.24 A 2260 CA GLY 310 29.864 9.839 58.832 1.00 20.51 A 2261 C GLY 310 30.019 8.326 58.903 1.00 20.61 A 2262 O GLY 310 29.087 7.565 59.191 1.00 20.56 A 2263 N GLY 311 31.239 7.863 58.784 1.00 22.70 A 2264 CA GLY 311 31.640 6.482 59.010 1.00 22.41 A 2265 C GLY 311 33.177 6.532 59.055 1.00 26.15 A 2266 O GLY 311 33.732 7.545 58.622 1.00 23.11 A 2267 N ARG 312 33.801 5.449 59.542 1.00 25.15 A 2268 CA ARG 312 35.267 5.453 59.517 1.00 28.00 A 2269 CB ARG 312 35.781 4.146 60.150 1.00 28.47 A 2270 CG ARG 312 37.279 4.127 60.410 1.00 29.38 A 2271 CD ARG 312 37.969 2.814 60.029 1.00 29.48 A 2272 NE ARG 312 38.075 2.653 58.576 1.00 29.65 A 2273 CZ ARG 312 37.412 1.794 57.833 1.00 29.04 A 2274 NH1 ARG 312 36.549 0.931 58.375 1.00 29.66 A 2275 NH2 ARG 312 37.562 1.804 56.502 1.00 29.86 A 2276 C ARG 312 35.838 5.655 58.110 1.00 28.09 A 2277 O ARG 312 36.840 6.360 57.932 1.00 26.45 A 2278 N ALA 313 35.194 5.140 57.044 1.00 27.48 A 2279 CA ALA 313 35.761 5.264 55.709 1.00 28.44 A 2280 CB ALA 313 35.090 4.311 54.721 1.00 25.75 A 2281 C ALA 313 35.789 6.710 55.238 1.00 27.78 A 2282 O ALA 313 36.738 7.113 54.545 1.00 28.88 A 2283 N ILE 314 34.847 7.571 55.640 1.00 25.33 A 2284 CA ILE 314 34.863 8.967 55.278 1.00 24.23 A 2285 CB ILE 314 33.593 9.715 55.711 1.00 24.88 A 2286 CG2 ILE 314 33.746 11.217 55.572 1.00 22.43 A 2287 CG1 ILE 314 32.389 9.150 54.926 1.00 25.63 A 2288 CD1 ILE 314 31.038 9.696 55.366 1.00 26.50 A 2289 C ILE 314 36.096 9.645 55.864 1.00 25.33 A 2290 O ILE 314 36.752 10.462 55.193 1.00 24.16 A 2291 N LEU 315 36.403 9.283 57.131 1.00 23.77 A 2292 CA LEU 315 37.587 9.932 57.718 1.00 24.34 A 2293 CB LEU 315 37.682 9.524 59.191 1.00 24.34 A 2294 CG LEU 315 36.536 10.054 60.091 1.00 25.06 A 2295 CD2 LEU 315 36.454 11.569 60.006 1.00 22.52 A 2296 CD1 LEU 315 36.748 9.592 61.524 1.00 24.58 A 2297 C LEU 315 38.801 9.473 56.901 1.00 23.99 A 2298 O LEU 315 39.630 10.293 56.546 1.00 20.41 A 2299 N ASP 316 38.963 8.169 56.724 1.00 25.26 A 2300 CA ASP 316 40.110 7.646 55.941 1.00 27.56 A 2301 CB ASP 316 39.995 6.111 55.767 1.00 26.73 A 2302 CG ASP 316 40.093 5.400 57.101 1.00 25.66 A 2303 OD1 ASP 316 40.437 6.079 58.096 1.00 26.87 A 2304 OD2 ASP 316 39.785 4.201 57.261 1.00 25.95 A 2305 C ASP 316 40.253 8.299 54.580 1.00 29.51 A 2306 O ASP 316 41.380 8.689 54.209 1.00 28.40 A 2307 N GLN 317 39.156 8.489 53.828 1.00 28.98 A 2308 CA GLN 317 39.264 9.121 52.514 1.00 29.43 A 2309 CB GLN 317 37.937 9.114 51.714 1.00 29.81 A 2310 CG GLN 317 37.628 7.668 51.398 1.00 32.45 A 2311 CD GLN 317 38.330 7.080 50.206 1.00 34.76 A 2312 OE1 GLN 317 38.009 5.889 50.034 1.00 38.92 A 2313 NE2 GLN 317 39.119 7.750 49.373 1.00 31.51 A 2314 C GLN 317 39.679 10.565 52.579 1.00 28.51 A 2315 O GLN 317 40.430 11.043 51.730 1.00 26.77 A 2316 N VAL 318 39.127 11.279 53.564 1.00 27.55 A 2317 CA VAL 318 39.453 12.700 53.695 1.00 26.01 A 2318 CB VAL 318 38.562 13.398 54.731 1.00 26.17 A 2319 CG1 VAL 318 39.100 14.786 55.062 1.00 24.19 A 2320 CG2 VAL 318 37.127 13.456 54.194 1.00 27.01 A 2321 C VAL 318 40.931 12.801 54.056 1.00 27.36 A 2322 O VAL 318 41.718 13.524 53.435 1.00 27.34 A 2323 N GLU 319 41.346 11.967 55.006 1.00 26.26 A 2324 CA GLU 319 42.771 11.972 55.396 1.00 29.48 A 2325 CB GLU 319 42.954 10.913 56.476 1.00 28.76 A 2326 CG GLU 319 44.416 10.778 56.949 1.00 32.30 A 2327 CD GLU 319 44.448 9.601 57.916 1.00 33.55 A 2328 OE1 GLU 319 44.618 8.445 57.486 1.00 34.82 A 2329 OE2 GLU 319 44.106 9.866 59.086 1.00 34.46 A 2330 C GLU 319 43.714 11.668 54.210 1.00 31.27 A 2331 O GLU 319 44.646 12.423 53.936 1.00 29.97 A 2332 N ARG 320 43.391 10.658 53.421 1.00 31.97 A 2333 CA ARG 320 44.195 10.228 52.281 1.00 33.54 A 2334 CB ARG 320 43.670 8.895 51.721 1.00 37.94 A 2335 CG ARG 320 44.016 8.642 50.246 1.00 45.02 A 2336 CD ARG 320 43.689 7.210 49.851 1.00 49.77 A 2337 NE ARG 320 42.634 7.130 48.855 1.00 54.74 A 2338 CZ ARG 320 42.006 6.021 48.473 1.00 57.64 A 2339 NH1 ARG 320 42.255 4.813 48.976 1.00 58.10 A 2340 NH2 ARG 320 41.067 6.113 47.529 1.00 59.70 A 2341 C ARG 320 44.214 11.277 51.180 1.00 31.57 A 2342 O ARG 320 45.260 11.735 50.748 1.00 26.69 A 2343 N LYS 321 43.041 11.746 50.781 1.00 30.54 A 2344 CA LYS 321 42.931 12.731 49.718 1.00 31.32 A 2345 CB LYS 321 41.453 12.882 49.303 1.00 29.88 A 2346 CG LYS 321 41.257 13.275 47.879 1.00 32.75 A 2347 CD LYS 321 41.347 12.186 46.811 1.00 31.59 A 2348 CE LYS 321 41.170 12.810 45.427 1.00 30.86 A 2349 NZ LYS 321 40.794 11.823 44.359 1.00 28.78 A 2350 C LYS 321 43.601 14.039 50.087 1.00 32.09 A 2351 O LYS 321 44.231 14.651 49.185 1.00 30.42 A 2352 N LEU 322 43.548 14.487 51.336 1.00 28.45 A 2353 CA LEU 322 44.237 15.726 51.708 1.00 31.61 A 2354 CB LEU 322 43.526 16.418 52.905 1.00 31.98 A 2355 CG LEU 322 42.063 16.787 52.652 1.00 32.26 A 2356 CD2 LEU 322 41.968 17.752 51.468 1.00 31.43 A 2357 CD1 LEU 322 41.400 17.356 53.890 1.00 30.97 A 2358 C LEU 322 45.687 15.492 52.143 1.00 32.01 A 2359 O LEU 322 46.375 16.423 52.562 1.00 32.31 A 2360 N ASN 323 46.106 14.241 52.199 1.00 33.80 A 2361 CA ASN 323 47.422 13.770 52.591 1.00 33.98 A 2362 CB ASN 323 48.475 14.261 51.561 1.00 35.66 A 2363 CG ASN 323 49.791 13.511 51.684 1.00 38.31 A 2364 OD1 ASN 323 49.908 12.416 52.265 1.00 38.69 A 2365 ND2 ASN 323 50.842 14.144 51.159 1.00 40.45 A 2366 C ASN 323 47.771 14.239 53.999 1.00 34.07 A 2367 O ASN 323 48.867 14.696 54.276 1.00 29.61 A 2368 N LEU 324 46.797 14.196 54.919 1.00 32.49 A 2369 CA LEU 324 47.006 14.645 56.276 1.00 31.44 A 2370 CB LEU 324 45.659 14.630 57.024 1.00 30.01 A 2371 CG LEU 324 44.538 15.505 56.458 1.00 29.87 A 2372 CD2 LEU 324 45.051 16.888 56.068 1.00 29.03 A 2373 CD1 LEU 324 43.382 15.665 57.456 1.00 28.63 A 2374 C LEU 324 48.003 13.734 56.980 1.00 32.17 A 2375 O LEU 324 47.906 12.515 56.758 1.00 31.89 A 2376 N LYS 325 48.830 14.261 57.884 1.00 32.78 A 2377 CA LYS 325 49.671 13.326 58.647 1.00 36.55 A 2378 CB LYS 325 50.820 13.917 59.442 1.00 38.31 A 2379 CG LYS 325 50.604 15.247 60.115 1.00 40.84 A 2380 CD LYS 325 51.767 16.183 59.765 1.00 43.98 A 2381 CE LYS 325 51.719 17.381 60.709 1.00 45.41 A 2382 NZ LYS 325 52.075 16.951 62.089 1.00 46.52 A 2383 C LYS 325 48.795 12.493 59.587 1.00 36.64 A 2384 O LYS 325 47.635 12.774 59.821 1.00 35.10 A 2385 N ALA 326 49.375 11.426 60.088 1.00 37.18 A 2386 CA ALA 326 48.791 10.409 60.914 1.00 40.51 A 2387 C ALA 326 47.837 10.816 62.029 1.00 39.91 A 2388 O ALA 326 46.852 10.108 62.288 1.00 41.58 A 2389 CB ALA 326 49.955 9.618 61.562 1.00 41.19 A 2390 N ASP 327 48.110 11.891 62.740 1.00 39.91 A 2391 CA ASP 327 47.194 12.211 63.844 1.00 39.02 A 2392 CB ASP 327 48.055 12.451 65.095 1.00 43.42 A 2393 CG ASP 327 49.181 13.445 64.877 1.00 46.52 A 2394 OD1 ASP 327 50.142 13.411 65.694 1.00 50.17 A 2395 OD2 ASP 327 49.190 14.258 63.933 1.00 47.69 A 2396 C ASP 327 46.335 13.405 63.535 1.00 35.51 A 2397 O ASP 327 45.697 13.856 64.489 1.00 35.04 A 2398 N LYS 328 46.284 13.931 62.295 1.00 31.04 A 2399 CA LYS 328 45.477 15.122 62.094 1.00 29.47 A 2400 CB LYS 328 45.546 15.701 60.680 1.00 29.91 A 2401 CG LYS 328 46.875 16.254 60.230 1.00 31.30 A 2402 CD LYS 328 47.479 17.280 61.208 1.00 30.94 A 2403 CE LYS 328 46.703 18.557 61.104 1.00 30.10 A 2404 NZ LYS 328 47.380 19.763 61.595 1.00 28.00 A 2405 C LYS 328 44.002 14.872 62.475 1.00 26.36 A 2406 O LYS 328 43.378 15.790 63.011 1.00 26.83 A 2407 N LEU 329 43.456 13.707 62.207 1.00 24.37 A 2408 CA LEU 329 42.034 13.458 62.500 1.00 24.60 A 2409 CB LEU 329 41.499 12.602 61.342 1.00 23.58 A 2410 CG LEU 329 41.496 13.306 59.962 1.00 23.22 A 2411 CD2 LEU 329 41.130 14.772 60.091 1.00 24.27 A 2412 CD1 LEU 329 40.574 12.571 58.994 1.00 21.79 A 2413 C LEU 329 41.773 12.827 63.849 1.00 23.51 A 2414 O LEU 329 40.705 12.252 64.112 1.00 23.49 A 2415 N ARG 330 42.712 12.929 64.785 1.00 23.97 A 2416 CA ARG 330 42.611 12.245 66.074 1.00 24.74 A 2417 CB ARG 330 43.819 12.671 66.957 1.00 26.92 A 2418 CG ARG 330 43.810 11.773 68.211 1.00 31.36 A 2419 CD ARG 330 44.166 12.556 69.457 1.00 34.14 A 2420 NE ARG 330 43.514 13.854 69.571 1.00 35.61 A 2421 CZ ARG 330 42.415 14.135 70.285 1.00 35.45 A 2422 NH1 ARG 330 41.721 13.283 71.017 1.00 32.02 A 2423 NH2 ARG 330 41.988 15.386 70.304 1.00 35.69 A 2424 C ARG 330 41.330 12.541 66.858 1.00 21.83 A 2425 O ARG 330 40.580 11.694 67.327 1.00 22.99 A 2426 N ALA 331 41.054 13.810 67.005 1.00 22.43 A 2427 CA ALA 331 39.861 14.311 67.695 1.00 25.05 A 2428 CB ALA 331 39.918 15.826 67.723 1.00 22.22 A 2429 C ALA 331 38.584 13.791 67.027 1.00 23.68 A 2430 O ALA 331 37.659 13.410 67.765 1.00 23.98 A 2431 N SER 332 38.559 13.754 65.671 1.00 22.34 A 2432 CA SER 332 37.361 13.275 64.986 1.00 21.43 A 2433 CB SER 332 37.334 13.597 63.469 1.00 21.01 A 2434 OG SER 332 37.614 14.946 63.212 1.00 22.05 A 2435 C SER 332 37.186 11.789 65.222 1.00 22.98 A 2436 O SER 332 36.098 11.271 65.497 1.00 21.41 A 2437 N ARG 333 38.323 11.058 65.137 1.00 21.37 A 2438 CA ARG 333 38.268 9.620 65.365 1.00 22.97 A 2439 CB ARG 333 39.604 8.913 65.055 1.00 23.23 A 2440 CG ARG 333 39.931 8.909 63.568 1.00 24.76 A 2441 CD ARG 333 41.272 8.258 63.259 1.00 24.33 A 2442 NE ARG 333 41.692 8.483 61.878 1.00 28.03 A 2443 CZ ARG 333 41.188 7.825 60.832 1.00 25.05 A 2444 NH1 ARG 333 40.249 6.885 61.001 1.00 25.05 A 2445 NH2 ARG 333 41.568 8.043 59.568 1.00 26.62 A 2446 C ARG 333 37.935 9.305 66.813 1.00 21.56 A 2447 O ARG 333 37.314 8.273 67.116 1.00 19.77 A 2448 N HIS 334 38.363 10.199 67.673 1.00 23.45 A 2449 CA HIS 334 38.137 10.049 69.102 1.00 24.49 A 2450 ND1 HIS 334 39.373 10.257 72.270 1.00 32.33 A 2451 CG HIS 334 38.572 10.993 71.400 1.00 29.22 A 2452 CB HIS 334 38.881 11.104 69.907 1.00 26.66 A 2453 NE2 HIS 334 37.772 11.085 73.427 1.00 31.50 A 2454 CD2 HIS 334 37.567 11.508 72.152 1.00 30.73 A 2455 CE1 HIS 334 38.849 10.342 73.481 1.00 31.69 A 2456 C HIS 334 36.641 10.147 69.435 1.00 22.86 A 2457 O HIS 334 36.090 9.344 70.186 1.00 19.91 A 2558 N VAL 335 35.895 11.125 68.906 1.00 22.31 A 2459 CA VAL 335 34.474 11.147 69.315 1.00 21.53 A 2460 CB VAL 335 33.777 12.523 69.238 1.00 24.33 A 2461 CG1 VAL 335 34.734 13.707 69.272 1.00 21.74 A 2462 CG2 VAL 335 32.872 12.708 68.024 1.00 23.21 A 2463 C VAL 335 33.683 10.054 68.578 1.00 21.01 A 2464 O VAL 335 32.677 9.556 69.084 1.00 20.79 A 2465 N LEU 336 34.141 9.648 67.405 1.00 20.22 A 2466 CA LEU 336 33.480 8.538 66.675 1.00 19.73 A 2467 CB LEU 336 34.195 8.272 65.345 1.00 18.76 A 2468 CG LEU 336 33.700 7.015 64.627 1.00 20.45 A 2469 CD2 LEU 336 34.552 6.652 63.407 1.00 21.80 A 2470 CD1 LEU 336 32.268 7.149 64.106 1.00 19.22 A 2471 C LEU 336 33.557 7.265 67.510 1.00 19.35 A 2472 O LEU 336 32.595 6.487 67.586 1.00 19.60 A 2473 N SER 337 34.715 7.112 68.111 1.00 21.45 A 2474 CA SER 337 35.045 5.950 68.934 1.00 22.61 A 2475 CB SER 337 36.524 5.992 69.325 1.00 24.30 A 2476 OG SER 337 36.847 4.864 70.124 1.00 24.53 A 2477 C SER 337 34.223 5.914 70.225 1.00 21.12 A 2478 O SER 337 33.638 4.885 70.583 1.00 21.62 A 2479 N GLU 338 34.185 7.040 70.897 1.00 23.28 A 2480 CA GLU 338 33.539 7.135 72.211 1.00 24.08 A 2481 CB GLU 338 34.158 8.283 73.009 1.00 25.54 A 2482 CG GLU 338 35.646 8.063 73.308 1.00 28.48 A 2483 CD GLU 338 35.896 6.904 74.277 1.00 31.99 A 2484 OE1 GLU 338 34.960 6.520 75.077 1.00 32.49 A 2485 OE2 GLU 338 37.042 6.311 74.295 1.00 35.71 A 2486 C GLU 338 32.016 7.368 72.142 1.00 24.98 A 2487 O GLU 338 31.289 7.101 73.109 1.00 22.51 A 2488 N TYR 339 31.510 7.851 71.012 1.00 22.37 A 2489 CA TYR 339 30.068 8.187 70.920 1.00 21.48 A 2490 CB TYR 339 29.868 9.700 70.855 1.00 22.32 A 2491 CG TYR 339 30.391 10.422 72.084 1.00 22.93 A 2492 CD1 TYR 339 31.653 11.018 72.053 1.00 23.01 A 2493 CD2 TYR 339 29.604 10.485 73.235 1.00 22.61 A 2494 CE1 TYR 339 32.139 11.673 73.187 1.00 24.15 A 2495 CE2 TYR 339 30.091 11.137 74.370 1.00 25.87 A 2496 CZ TYR 339 31.359 11.729 74.347 1.00 24.94 A 2497 OH TYR 339 31.830 12.360 75.453 1.00 24.91 A 2498 C TYR 339 29.354 7.673 69.667 1.00 21.23 A 2499 O TYR 339 28.117 7.599 69.632 1.00 21.39 A 2500 N GLY 340 30.114 7.335 68.654 1.00 20.88 A 2501 CA GLY 340 29.532 6.927 67.362 1.00 18.86 A 2502 C GLY 340 29.198 8.210 66.595 1.00 18.29 A 2503 O GLY 340 29.529 9.317 67.031 1.00 16.14 A 2504 N ASN 341 28.557 8.071 65.457 1.00 18.02 A 2505 CA ASN 341 28.178 9.237 64.631 1.00 16.44 A 2506 CB ASN 341 27.851 8.744 63.203 1.00 16.49 A 2507 CG ASN 341 27.258 9.802 62.246 1.00 19.40 A 2508 OD1 ASN 341 26.919 10.909 62.657 1.00 16.32 A 2509 ND2 ASN 341 27.112 9.512 60.958 1.00 17.00 A 2510 C ASN 341 26.946 9.900 65.254 1.00 15.55 A 2511 O ASN 341 25.865 9.327 65.169 1.00 17.14 A 2512 N LEU 342 27.075 11.088 65.794 1.00 15.07 A 2513 CA LEU 342 26.022 11.805 66.477 1.00 16.85 A 2514 CB LEU 342 26.592 12.599 67.636 1.00 16.75 A 2515 CG LEU 342 27.392 11.768 68.685 1.00 18.49 A 2516 CD2 LEU 342 26.407 11.099 69.637 1.00 16.92 A 2517 CD1 LEU 342 28.336 12.687 69.441 1.00 17.96 A 2518 C LEU 342 25.251 12.791 65.588 1.00 16.54 A 2519 O LEU 342 24.662 13.772 66.027 1.00 13.14 A 2520 N ILE 343 25.253 12.490 64.282 1.00 16.77 A 2521 CA ILE 343 24.483 13.293 63.336 1.00 16.34 A 2522 CB ILE 343 22.976 12.937 63.360 1.00 18.49 A 2523 CG2 ILE 343 22.340 13.465 62.050 1.00 19.03 A 2524 CG1 ILE 343 22.726 11.440 63.507 1.00 18.92 A 2525 CD1 ILE 343 21.287 10.952 63.369 1.00 18.26 A 2526 C ILE 343 24.758 14.742 63.478 1.00 13.00 A 2527 O ILE 343 25.974 15.082 63.555 1.00 14.01 A 2528 N SER 344 23.791 15.673 63.583 1.00 13.53 A 2529 CA SER 344 24.153 17.063 63.587 1.00 14.89 A 2530 CB SER 344 22.943 18.003 63.525 1.00 15.82 A 2531 OG SER 344 22.078 17.781 64.661 1.00 14.68 A 2532 C SER 344 24.999 17.567 64.748 1.00 16.89 A 2533 O SER 344 25.569 18.661 64.663 1.00 13.77 A 2534 N ALA 345 24.957 16.858 65.866 1.00 18.14 A 2535 CA ALA 345 25.788 17.298 66.982 1.00 19.06 A 2536 CB ALA 345 25.213 16.583 68.249 1.00 17.68 A 2537 C ALA 345 27.233 16.820 66.881 1.00 16.99 A 2538 O ALA 345 28.076 17.324 67.643 1.00 16.29 A 2539 N CYS 346 27.530 15.852 66.029 1.00 15.85 A 2540 CA CYS 346 28.821 15.219 65.984 1.00 17.48 A 2541 CB CYS 346 28.847 14.025 65.003 1.00 16.24 A 2542 SG CYS 346 30.177 12.841 65.409 1.00 18.64 A 2543 C CYS 346 30.039 16.118 65.840 1.00 18.21 A 2544 O CYS 346 30.962 16.058 66.714 1.00 16.36 A 2545 N VAL 347 29.990 17.100 64.942 1.00 17.34 A 2546 CA VAL 347 31.124 18.004 64.761 1.00 16.15 A 2547 CB VAL 347 31.090 18.801 63.461 1.00 18.24 A 2548 CG1 VAL 347 31.320 17.867 62.227 1.00 16.79 A 2549 CG2 VAL 347 29.802 19.570 63.224 1.00 15.47 A 2550 C VAL 347 31.275 18.953 65.952 1.00 17.90 A 2551 O VAL 347 32.346 19.518 66.204 1.00 17.22 A 2552 N LEU 348 30.182 19.204 66.681 1.00 15.91 A 2553 CA LEU 348 30.253 20.114 67.818 1.00 17.68 A 2554 CB LEU 348 28.876 20.665 68.165 1.00 15.93 A 2555 CG LEU 348 28.097 21.309 67.004 1.00 17.02 A 2556 CD2 LEU 348 28.818 22.548 66.483 1.00 11.37 A 2557 CD1 LEU 348 26.677 21.632 67.473 1.00 14.02 A 2558 C LEU 348 30.922 19.412 69.020 1.00 17.18 A 2559 O LEU 348 31.665 20.089 69.723 1.00 18.34 A 2560 N PHE 349 30.772 18.110 69.128 1.00 17.77 A 2561 CA PHE 349 31.489 17.315 70.110 1.00 20.37 A 2562 CB PHE 349 31.015 15.893 70.220 1.00 18.65 A 2563 CG PHE 349 29.812 15.572 71.076 1.00 17.81 A 2564 CD1 PHE 349 29.953 14.617 72.071 1.00 17.47 A 2565 CD2 PHE 349 28.573 16.149 70.840 1.00 16.73 A 2566 CE1 PHE 349 28.867 14.245 72.866 1.00 18.81 A 2567 CE2 PHE 349 27.469 15.824 71.627 1.00 15.30 A 2568 CZ PHE 349 27.627 14.882 72.611 1.00 18.64 A 2569 C PHE 349 32.981 17.269 69.715 1.00 22.63 A 2570 O PHE 349 33.861 17.384 70.582 1.00 22.63 A 2571 N ILE 350 33.242 17.259 68.400 1.00 20.47 A 2572 CA ILE 350 34.634 17.300 67.944 1.00 20.13 A 2573 CB ILE 350 34.781 16.955 66.449 1.00 19.92 A 2574 CG2 ILE 350 36.212 17.189 65.981 1.00 21.91 A 2575 CG1 ILE 350 34.380 15.492 66.269 1.00 22.03 A 2576 CD1 ILE 350 34.185 14.955 64.863 1.00 23.33 A 2577 C ILE 350 35.241 18.642 68.284 1.00 18.34 A 2578 O ILE 350 36.392 18.731 68.748 1.00 20.71 A 2579 N ILE 351 34.563 19.759 68.097 1.00 15.23 A 2580 CA ILE 351 35.113 21.067 68.451 1.00 15.59 A 2581 CB ILE 351 34.097 22.179 68.172 1.00 16.23 A 2582 CG2 ILE 351 34.523 23.540 68.748 1.00 14.52 A 2583 CG1 ILE 351 33.911 22.394 66.616 1.00 16.07 A 2584 CD1 ILE 351 32.700 23.304 66.417 1.00 15.18 A 2585 C ILE 351 35.478 21.063 69.958 1.00 19.03 A 2586 O ILE 351 36.524 21.547 70.378 1.00 17.54 A 2587 N ASP 352 34.642 20.452 70.794 1.00 18.73 A 2588 CA ASP 352 34.905 20.482 72.268 1.00 19.86 A 2589 CB ASP 352 33.659 19.938 72.959 1.00 17.51 A 2590 CG ASP 352 33.525 20.315 74.445 1.00 17.73 A 2591 OD1 ASP 352 34.064 21.359 74.764 1.00 20.03 A 2592 OD2 ASP 352 32.878 19.514 75.136 1.00 17.82 A 2593 C ASP 352 36.104 19.593 72.585 1.00 22.16 A 2594 O ASP 352 36.945 19.946 73.433 1.00 22.49 A 2595 N GLU 353 36.201 18.459 71.890 1.00 20.10 A 2596 CA GLU 353 37.297 17.530 72.035 1.00 22.22 A 2597 CB GLU 353 37.123 16.241 71.218 1.00 23.12 A 2598 CG GLU 353 38.322 15.323 71.138 1.00 23.80 A 2599 CD GLU 353 38.731 14.792 72.519 1.00 25.95 A 2600 OE1 GLU 353 37.898 14.679 73.443 1.00 24.69 A 2601 OE2 GLU 353 39.914 14.463 72.701 1.00 25.95 A 2602 C GLU 353 38.598 18.227 71.651 1.00 23.07 A 2603 O GLU 353 39.573 18.148 72.444 1.00 24.34 A 2604 N VAL 354 38.657 18.959 70.560 1.00 21.51 A 2605 CA VAL 354 39.856 19.673 70.127 1.00 20.65 A 2606 CB VAL 354 39.648 20.396 68.779 1.00 20.92 A 2607 CG1 VAL 354 40.714 21.402 68.410 1.00 18.47 A 2608 CG2 VAL 354 39.581 19.346 67.669 1.00 23.03 A 2609 C VAL 354 40.340 20.686 71.169 1.00 22.28 A 2610 O VAL 354 41.538 20.670 71.535 1.00 19.37 A 2611 N ARG 355 39.451 21.570 71.612 1.00 20.07 A 2612 CA ARG 355 39.862 22.582 72.574 1.00 24.19 A 2613 CB ARG 355 38.877 23.731 72.704 1.00 24.81 A 2614 CG ARG 355 37.463 23.391 73.154 1.00 23.80 A 2615 CD ARG 355 37.299 23.779 74.644 1.00 22.79 A 2616 NE ARG 355 36.008 23.331 75.162 1.00 19.75 A 2617 CZ ARG 355 35.280 24.057 76.030 1.00 21.29 A 2618 NH1 ARG 355 34.110 23.545 76.472 1.00 19.74 A 2619 NH2 ARG 355 35.690 25.217 76.527 1.00 17.69 A 2620 C ARG 355 40.188 21.966 73.940 1.00 24.08 A 2621 O ARG 355 41.151 22.428 74.534 1.00 25.32 A 2622 N LYS 356 39.526 20.953 74.421 1.00 25.09 A 2623 CA LYS 356 39.799 20.338 75.708 1.00 27.74 A 2624 CB LYS 356 38.648 19.409 76.094 1.00 27.24 A 2625 CG LYS 356 37.390 20.203 76.475 1.00 25.79 A 2626 CD LYS 356 36.454 19.214 77.179 1.00 29.05 A 2627 CE LYS 356 35.190 19.974 77.619 1.00 32.78 A 2628 NZ LYS 356 34.318 19.032 78.386 1.00 36.70 A 2629 C LYS 356 41.121 19.569 75.655 1.00 30.43 A 2630 O LYS 356 41.947 19.680 76.565 1.00 27.52 A 2631 N ARG 357 41.361 18.817 74.564 1.00 31.05 A 2632 CA ARG 357 42.621 18.093 74.421 1.00 32.46 A 2633 CB ARG 357 42.658 17.059 73.321 1.00 36.01 A 2634 CG ARG 357 43.890 16.170 73.277 1.00 39.76 A 2635 CD ARG 357 44.016 15.262 74.483 1.00 43.81 A 2636 NE ARG 357 43.568 13.887 74.253 1.00 47.60 A 2637 CZ ARG 357 44.317 13.006 73.567 1.00 50.39 A 2638 NH1 ARG 357 45.498 13.408 73.091 1.00 50.63 A 2639 NH2 ARG 357 43.900 11.761 73.354 1.00 52.74 A 2640 C ARG 357 43.768 19.101 74.263 1.00 31.49 A 2641 O ARG 357 44.814 18.907 74.929 1.00 29.47 A 2642 N SER 358 43.528 20.233 73.605 1.00 27.94 A 2643 CA SER 358 44.568 21.220 73.356 1.00 27.83 A 2644 CB SER 358 44.117 22.313 72.371 1.00 26.50 A 2645 OG SER 358 43.865 21.734 71.075 1.00 25.38 A 2646 C SER 358 45.012 21.905 74.649 1.00 31.76 A 2647 O SER 358 46.189 22.262 74.821 1.00 30.11 A 2648 N MET 359 44.041 22.135 75.526 1.00 33.43 A 2649 CA MET 359 44.364 22.748 76.811 1.00 36.99 A 2650 CB MET 359 43.176 23.519 77.375 1.00 40.55 A 2651 CG MET 359 42.966 24.791 76.524 1.00 45.08 A 2652 SD MET 359 41.623 25.802 77.145 1.00 52.35 A 2653 CE MET 359 40.359 24.601 77.538 1.00 48.97 A 2654 C MET 359 44.954 21.716 77.750 1.00 35.16 A 2655 O MET 359 45.929 22.078 78.412 1.00 35.83 A 2656 N ALA 360 44.537 20.467 77.757 1.00 33.61 A 2657 CA ALA 360 45.113 19.439 78.600 1.00 34.48 A 2658 CB ALA 360 44.333 18.138 78.562 1.00 32.76 A 2659 C ALA 360 46.574 19.153 78.219 1.00 36.33 A 2660 O ALA 360 47.415 18.788 79.060 1.00 36.62 A 2661 N GLU 361 46.928 19.300 76.949 1.00 35.22 A 2662 CA GLU 361 48.292 19.058 76.489 1.00 35.33 A 2663 CB GLU 361 48.299 18.568 75.036 1.00 34.20 A 2664 CG GLU 361 47.649 17.207 74.839 1.00 36.67 A 2665 CD GLU 361 47.522 16.832 73.369 1.00 36.07 A 2666 OE1 GLU 361 47.550 17.741 72.512 1.00 36.35 A 2667 OE2 GLU 361 47.428 15.624 73.088 1.00 37.56 A 2668 C GLU 361 49.150 20.315 76.612 1.00 34.08 A 2669 O GLU 361 50.302 20.258 76.180 1.00 32.86 A 2670 N GLY 362 48.604 21.464 76.988 1.00 32.03 A 2671 CA GLY 362 49.379 22.684 77.031 1.00 32.94 A 2672 C GLY 362 49.730 23.307 75.688 1.00 33.44 A 2673 O GLY 362 50.705 24.087 75.585 1.00 33.68 A 2674 N LYS 363 48.944 23.049 74.654 1.00 30.95 A 2675 CA LYS 363 49.193 23.643 73.341 1.00 32.10 A 2676 CB LYS 363 48.229 23.096 72.281 1.00 34.04 A 2677 CG LYS 363 48.245 21.589 72.100 1.00 36.23 A 2678 CD LYS 363 49.675 21.121 71.840 1.00 40.53 A 2679 CE LYS 363 49.688 19.986 70.821 1.00 42.21 A 2680 NZ LYS 363 51.049 19.831 70.240 1.00 43.78 A 2681 C LYS 363 49.095 25.150 73.474 1.00 29.77 A 2682 O LYS 363 48.453 25.687 74.384 1.00 29.55 A 2683 N SER 364 49.667 25.870 72.534 1.00 28.95 A 2684 CA SER 364 49.649 27.325 72.569 1.00 28.77 A 2685 CB SER 364 50.729 27.912 71.645 1.00 29.69 A 2686 OG SER 364 50.550 27.443 70.314 1.00 30.42 A 2687 C SER 364 48.325 27.920 72.116 1.00 26.66 A 2688 O SER 364 48.166 29.123 72.216 1.00 23.83 A 2689 N THR 365 47.454 27.155 71.452 1.00 26.85 A 2690 CA THR 365 46.173 27.691 70.993 1.00 25.37 A 2691 CB THR 365 46.096 28.110 69.509 1.00 26.90 A 2692 OG1 THR 365 45.908 26.904 68.742 1.00 22.84 A 2693 CG2 THR 365 47.305 28.882 68.987 1.00 26.67 A 2694 C THR 365 45.075 26.655 71.253 1.00 24.62 A 2695 O THR 365 45.373 25.479 71.461 1.00 25.62 A 2696 N THR 366 43.801 27.030 71.180 1.00 23.49 A 2697 CA THR 366 42.722 26.047 71.360 1.00 24.17 A 2698 CB THR 366 41.362 26.761 71.570 1.00 22.41 A 2699 OG1 THR 366 41.195 27.696 70.499 1.00 20.38 A 2700 CG2 THR 366 41.325 27.528 72.880 1.00 23.95 A 2701 C THR 366 42.551 25.109 70.164 1.00 23.10 A 2702 O THR 366 41.855 24.097 70.270 1.00 21.41 A 2703 N GLY 367 43.239 25.382 69.057 1.00 22.88 A 2704 CA GLY 367 43.148 24.484 67.903 1.00 22.96 A 2705 C GLY 367 44.462 23.746 67.678 1.00 23.68 A 2706 O GLY 367 45.163 23.892 66.672 1.00 22.45 A 2707 N GLU 368 44.834 22.922 68.642 1.00 22.76 A 2708 CA GLU 368 45.999 22.046 68.632 1.00 25.26 A 2709 CB GLU 368 45.767 20.982 67.542 1.00 24.97 A 2710 CG GLU 368 44.482 20.181 67.744 1.00 26.24 A 2711 CD GLU 368 44.200 19.090 66.749 1.00 26.19 A 2712 OE1 GLU 368 44.799 19.074 65.643 1.00 26.16 A 2713 OE2 GLU 368 43.352 18.215 67.011 1.00 26.44 A 2714 C GLU 368 47.336 22.762 68.438 1.00 25.87 A 2715 O GLU 368 48.273 22.206 67.826 1.00 25.65 A 2716 N GLY 369 47.399 24.010 68.859 1.00 25.80 A 2717 CA GLY 369 48.594 24.836 68.723 1.00 28.34 A 2718 C GLY 369 48.656 25.551 67.394 1.00 29.47 A 2719 O GLY 369 49.620 26.270 67.121 1.00 30.88 A 2720 N LEU 370 47.682 25.345 66.514 1.00 28.55 A 2721 CA LEU 370 47.632 25.953 65.206 1.00 28.68 A 2722 CB LEU 370 47.219 24.933 64.126 1.00 25.24 A 2723 CG LEU 370 48.087 23.679 64.134 1.00 27.19 A 2724 CD2 LEU 370 49.529 24.028 63.719 1.00 29.09 A 2725 CD1 LEU 370 47.540 22.629 63.195 1.00 26.28 A 2726 C LEU 370 46.665 27.127 65.176 1.00 29.14 A 2727 O LEU 370 45.843 27.293 66.083 1.00 27.98 A 2697 N ASP 371 46.750 27.902 64.150 0.50 29.30 A 2698 CA ASP 371 45.960 29.126 64.033 0.50 31.31 A 2699 CB ASP 371 46.715 30.157 63.207 0.50 32.70 A 2700 CG ASP 371 45.933 31.454 63.035 0.50 34.21 A 2701 OD1 ASP 371 45.675 32.198 64.055 0.50 35.27 A 2702 OD2 ASP 371 45.528 31.795 61.862 0.50 35.82 A 2703 C ASP 371 44.570 28.897 63.404 0.50 30.67 A 2704 O ASP 371 43.543 29.244 63.998 0.50 27.92 A 2697 N 2ASP 371 46.705 27.911 64.141 0.50 28.99 A 2698 CA 2ASP 371 45.915 29.152 64.058 0.50 30.87 A 2699 CB 2ASP 371 46.688 30.233 63.325 0.50 31.47 A 2700 CG 2ASP 371 47.790 30.848 64.182 0.50 32.85 A 2701 OD 12ASP 371 48.045 30.362 65.347 0.50 33.88 A 2702 OD 22ASP 371 48.466 31.846 63.731 0.50 31.60 A 2703 C 2ASP 371 44.563 29.022 63.333 0.50 30.36 A 2704 O 2ASP 371 43.571 29.636 63.734 0.50 28.09 A 2744 N CYS 372 44.499 28.323 62.182 1.00 31.05 A 2745 CA CYS 372 43.222 28.150 61.491 1.00 30.84 A 2746 CB CYS 372 43.281 28.726 60.043 1.00 34.75 A 2747 SG CYS 372 43.230 30.538 60.118 1.00 46.77 A 2748 C CYS 372 42.771 26.726 61.387 1.00 27.81 A 2749 O CYS 372 43.602 25.821 61.490 1.00 27.51 A 2750 N GLY 373 41.450 26.476 61.320 1.00 25.16 A 2751 CA GLY 373 40.983 25.098 61.238 1.00 22.49 A 2752 C GLY 373 39.745 25.033 60.343 1.00 22.07 A 2753 O GLY 373 39.087 26.034 60.091 1.00 20.72 A 2754 N VAL 374 39.481 23.816 59.886 1.00 22.47 A 2755 CA VAL 374 38.398 23.580 58.973 1.00 22.27 A 2756 CB VAL 374 38.881 23.065 57.564 1.00 23.26 A 2757 CG1 VAL 374 37.691 22.725 56.672 1.00 22.41 A 2758 CG2 VAL 374 39.791 24.099 56.930 1.00 20.89 A 2759 C VAL 374 37.529 22.467 59.506 1.00 19.69 A 2760 O VAL 374 38.008 21.392 59.810 1.00 21.40 A 2761 N LEU 375 36.263 22.800 59.562 1.00 18.61 A 2762 CA LEU 375 35.227 21.858 59.985 1.00 20.84 A 2763 CB LEU 375 34.399 22.581 61.033 1.00 19.48 A 2764 CG LEU 375 32.960 22.370 61.454 1.00 24.36 A 2765 CD2 LEU 375 32.919 21.718 62.834 1.00 22.14 A 2766 CD1 LEU 375 31.916 21.827 60.498 1.00 21.76 A 2767 C LEU 375 34.377 21.505 58.762 1.00 17.93 A 2768 O LEU 375 34.032 22.409 57.997 1.00 17.39 A 2769 N PHE 376 34.069 20.233 58.631 1.00 19.38 A 2770 CA PHE 376 33.245 19.746 57.542 1.00 20.03 A 2771 CB PHE 376 34.008 18.709 56.672 1.00 20.69 A 2772 CG PHE 376 35.113 19.254 55.790 1.00 20.74 A 2773 CD1 PHE 376 36.372 18.688 55.794 1.00 20.92 A 2774 CD2 PHE 376 34.850 20.293 54.922 1.00 21.20 A 2775 CE1 PHE 376 37.362 19.182 54.955 1.00 21.74 A 2776 CE2 PHE 376 35.843 20.804 54.074 1.00 21.65 A 2777 CZ PHE 376 37.105 20.254 54.097 1.00 21.09 A 2778 C PHE 376 32.073 18.946 58.116 1.00 18.85 A 2779 O PHE 376 32.268 18.040 58.913 1.00 20.24 A 2780 N GLY 377 30.907 19.186 57.573 1.00 17.84 A 2781 CA GLY 377 29.708 18.411 57.740 1.00 17.39 A 2782 C GLY 377 29.323 17.792 56.379 1.00 17.57 A 2783 O GLY 377 29.396 18.495 55.368 1.00 17.23 A 2784 N PHE 378 28.794 16.596 56.360 1.00 17.66 A 2785 CA PHE 378 28.372 15.939 55.104 1.00 19.03 A 2786 CB PHE 378 29.288 14.720 54.791 1.00 17.54 A 2787 CG PHE 378 30.774 15.021 54.880 1.00 18.27 A 2788 CD1 PHE 378 31.344 15.928 53.999 1.00 19.70 A 2789 CD2 PHE 378 31.589 14.415 55.812 1.00 19.70 A 2790 CE1 PHE 378 32.702 16.237 54.051 1.00 19.69 A 2791 CE2 PHE 378 32.959 14.670 55.856 1.00 18.59 A 2792 CZ PHE 378 33.499 15.599 54.985 1.00 19.25 A 2793 C PHE 378 26.956 15.424 55.248 1.00 21.11 A 2794 O PHE 378 26.691 14.692 56.206 1.00 19.64 A 2795 N GLY 379 26.024 15.749 54.358 1.00 18.60 A 2796 CA GLY 379 24.655 15.284 54.458 1.00 18.83 A 2797 C GLY 379 23.975 15.169 53.088 1.00 19.23 A 2798 O GLY 379 24.676 15.268 52.089 1.00 16.57 A 2799 N PRO 380 22.687 14.846 53.111 1.00 19.92 A 2800 CA PRO 380 21.945 14.539 51.903 1.00 18.57 A 2801 CD PRO 380 21.881 14.551 54.326 1.00 17.09 A 2802 CB PRO 380 20.519 14.257 52.418 1.00 19.08 A 2803 CG PRO 380 20.764 13.671 53.814 1.00 20.08 A 2804 C PRO 380 22.017 15.713 50.940 1.00 17.30 A 2805 O PRO 380 22.112 16.861 51.324 1.00 16.43 A 2806 N GLY 381 22.008 15.392 49.637 1.00 18.61 A 2807 CA GLY 381 22.098 16.455 48.592 1.00 16.07 A 2808 C GLY 381 23.079 15.812 47.579 1.00 19.93 A 2809 O GLY 381 22.724 15.621 46.442 1.00 17.52 A 2810 N MET 382 24.286 15.299 47.676 1.00 18.83 A 2811 CA MET 382 25.114 15.363 48.821 1.00 21.67 A 2812 CB MET 382 26.411 14.578 48.884 1.00 23.56 A 2813 CG MET 382 26.037 13.128 49.240 1.00 29.90 A 2814 SD MET 382 27.518 12.143 49.463 1.00 35.81 A 2815 CE MET 382 28.502 13.200 50.530 1.00 31.30 A 2816 C MET 382 25.391 16.852 49.094 1.00 20.54 A 2817 O MET 382 25.740 17.563 48.151 1.00 19.09 A 2818 N THR 383 25.422 17.229 50.361 1.00 16.12 A 2819 CA THR 383 25.811 18.613 50.712 1.00 18.02 A 2820 CB THR 383 24.769 19.341 51.545 1.00 19.74 A 2821 OG1 THR 383 23.538 19.502 50.835 1.00 19.72 A 2822 CG2 THR 383 25.173 20.731 52.001 1.00 19.59 A 2823 C THR 383 27.086 18.606 51.564 1.00 19.79 A 2824 O THR 383 27.168 17.778 52.534 1.00 17.85 A 2825 N VAL 384 27.977 19.564 51.364 1.00 18.96 A 2826 CA VAL 384 29.141 19.665 52.260 1.00 19.75 A 2827 CB VAL 384 30.529 19.605 51.599 1.00 22.71 A 2828 CG1 VAL 384 31.692 19.729 52.581 1.00 22.63 A 2829 CG2 VAL 384 30.661 18.336 50.801 1.00 24.06 A 2830 C VAL 384 29.020 21.048 52.896 1.00 18.08 A 2831 O VAL 384 28.778 22.056 52.209 1.00 17.98 A 2832 N GLU 385 29.123 21.079 54.223 1.00 14.18 A 2833 CA GLU 385 29.202 22.419 54.848 1.00 13.89 A 2834 CB GLU 385 28.299 22.479 56.077 1.00 15.16 A 2835 CG GLU 385 26.828 22.363 55.676 1.00 16.58 A 2836 CD GLU 385 26.015 23.584 55.983 1.00 15.38 A 2837 OE1 GLU 385 26.525 24.650 56.402 1.00 18.10 A 2838 OE2 GLU 385 24.794 23.421 55.817 1.00 17.03 A 2839 C GLU 385 30.674 22.620 55.247 1.00 14.43 A 2840 O GLU 385 31.204 21.689 55.853 1.00 17.77 A 2841 N THR 386 31.314 23.707 54.914 1.00 15.61 A 2842 CA THR 386 32.715 23.927 55.296 1.00 16.74 A 2843 CB THR 386 33.586 24.168 53.992 1.00 17.73 A 2844 OG1 THR 386 33.355 22.983 53.252 1.00 16.29 A 2845 CG2 THR 386 35.063 24.191 54.418 1.00 18.77 A 2846 C THR 386 32.855 25.164 56.150 1.00 17.03 A 2847 O THR 386 32.420 26.231 55.696 1.00 17.70 A 2848 N VAL 387 33.308 25.006 57.417 1.00 16.84 A 2849 CA VAL 387 33.355 26.208 58.276 1.00 17.13 A 2850 CB VAL 387 32.508 25.999 59.558 1.00 17.99 A 2851 CG1 VAL 387 32.637 27.193 60.514 1.00 15.01 A 2852 CG2 VAL 387 31.034 25.779 59.133 1.00 17.10 A 2853 C VAL 387 34.809 26.463 58.678 1.00 16.46 A 2854 O VAL 387 35.443 25.504 59.132 1.00 17.67 A 2855 N VAL 388 35.297 27.687 58.527 1.00 16.92 A 2856 CA VAL 388 36.665 27.944 58.972 1.00 19.66 A 2857 CB VAL 388 37.421 28.938 58.054 1.00 19.90 A 2858 CG1 VAL 388 38.737 29.427 58.644 1.00 21.93 A 2859 CG2 VAL 388 37.676 28.243 56.695 1.00 20.21 A 2860 C VAL 388 36.588 28.537 60.402 1.00 19.79 A 2861 O VAL 388 35.822 29.461 60.655 1.00 17.73 A 2862 N LEU 389 37.399 27.914 61.275 1.00 20.60 A 2863 CA LEU 389 37.505 28.438 62.639 1.00 22.00 A 2864 CB LEU 389 37.299 27.352 63.703 1.00 19.81 A 2865 CG LEU 389 35.932 26.671 63.609 1.00 19.87 A 2866 CD2 LEU 389 34.804 27.686 63.712 1.00 15.50 A 2867 CD1 LEU 389 35.782 25.592 64.677 1.00 21.26 A 2868 C LEU 339 38.914 29.027 62.848 1.00 22.61 A 2869 O LEU 389 39.864 28.586 62.198 1.00 20.80 A 2870 N ARG 390 38.985 30.137 63.579 1.00 21.65 A 2871 CA ARG 390 40.274 30.670 64.007 1.00 23.48 A 2872 CB ARG 390 40.412 32.176 63.883 1.00 24.20 A 2873 CG ARG 390 41.852 32.677 64.157 1.00 26.37 A 2874 CD ARG 390 41.913 34.112 63.640 1.00 33.41 A 2875 NE ARG 390 41.855 34.138 62.177 1.00 36.49 A 2876 CZ ARG 390 41.265 34.873 61.257 1.00 39.62 A 2877 NH1 ARG 390 41.529 34.522 59.979 1.00 40.06 A 2878 NH2 ARG 390 40.440 35.914 61.389 1.00 37.97 A 2879 C ARG 390 40.420 30.284 65.499 1.00 23.63 A 2880 O ARG 390 39.512 30.603 66.269 1.00 21.29 A 2881 N SER 391 41.536 29.674 65.881 1.00 24.10 A 2882 CA SER 391 41.746 29.309 67.293 1.00 24.53 A 2883 CB SER 391 42.907 28.303 67.371 1.00 25.80 A 2884 OG SER 391 44.106 29.024 67.101 1.00 25.49 A 2885 C SER 391 42.092 30.535 68.131 1.00 24.44 A 2886 O SER 391 42.241 31.627 67.583 1.00 22.85 A 2887 N VAL 392 42.135 30.383 69.462 1.00 25.39 A 2888 CA VAL 392 42.446 31.497 70.350 1.00 27.60 A 2889 CB VAL 392 41.215 31.668 71.270 1.00 29.90 A 2890 CG1 VAL 392 41.584 32.214 72.641 1.00 31.86 A 2891 CG2 VAL 392 40.138 32.520 70.627 1.00 29.27 A 2892 C VAL 392 43.719 31.104 71.129 1.00 28.19 A 2893 O VAL 392 43.979 29.932 71.429 1.00 23.40 A 2894 N ARG 393 44.605 32.061 71.379 1.00 34.51 A 2895 CA ARG 393 45.871 31.761 72.064 1.00 41.77 A 2896 CB ARG 393 46.813 32.969 72.070 1.00 46.60 A 2897 CG ARG 393 47.466 33.185 70.719 1.00 53.03 A 2898 CD ARG 393 48.179 34.530 70.632 1.00 58.41 A 2899 NE ARG 393 48.674 34.709 69.265 1.00 63.01 A 2900 CZ ARG 393 49.502 35.647 68.825 1.00 65.65 A 2901 NH1 ARG 393 49.991 36.596 69.618 1.00 66.46 A 2902 NH2 ARG 393 49.820 35.628 67.530 1.00 66.47 A 2903 C ARG 393 45.641 31.358 73.525 1.00 44.97 A 2904 O ARG 393 44.855 32.011 74.195 1.00 41.97 A 2905 N VAL 394 46.289 30.263 73.934 1.00 48.90 A 2906 CA VAL 394 46.116 29.830 75.336 1.00 55.03 A 2907 CB VAL 394 46.234 28.285 75.569 1.00 54.72 A 2908 CG1 VAL 394 45.934 28.121 77.130 1.00 54.65 A 2909 CG2 VAL 394 45.001 27.594 74.873 1.00 53.65 A 2910 C VAL 394 47.334 30.484 76.041 1.00 59.46 A 2911 O VAL 394 48.501 30.187 75.818 1.00 60.03 A 2912 N THR 395 46.953 31.493 76.808 1.00 64.60 A 2913 CA THR 395 47.832 32.357 77.563 1.00 68.25 A 2914 CB THR 395 49.039 31.639 78.196 1.00 69.16 A 2915 OG1 THR 395 48.622 30.751 79.246 1.00 68.72 A 2916 CG2 THR 395 50.000 32.654 78.802 1.00 69.44 A 2917 C THR 395 48.231 33.576 76.731 1.00 68.88 A 2918 O THR 395 48.680 33.459 75.570 1.00 71.94 A 2919 OXT THR 395 48.680 33.459 75.570 1.00 71.94 A 2920 C8 AAC 396 29.088 −0.939 53.568 1.00 30.42 A 2921 N9 AAC 396 28.436 −2.108 53.270 1.00 32.14 A 2922 C4 AAC 396 27.290 −1.711 52.572 1.00 31.69 A 2923 C5 AAC 396 27.345 −0.331 52.498 1.00 30.04 A 2924 N7 AAC 396 28.425 0.168 53.194 1.00 30.04 A 2925 N3 AAC 396 26.249 −2.559 52.247 1.00 31.41 A 2926 C2 AAC 396 25.326 −1.874 51.601 1.00 30.53 A 2927 N1 AAC 396 25.230 −0.512 51.586 1.00 29.51 A 2928 C6 AAC 396 26.161 0.334 52.104 1.00 29.32 A 2929 N6 AAC 396 26.039 1.687 52.072 1.00 27.37 A 2930 C1′ AAC 396 28.970 −3.654 53.307 1.00 32.51 A 2931 C2′ AAC 396 30.145 −4.137 52.566 1.00 34.01 A 2932 O2′ AAC 396 29.559 −4.403 51.369 1.00 34.33 A 2933 C3′ AAC 396 30.770 −5.048 53.614 1.00 33.21 A 2934 O3′ AAC 396 30.180 −6.436 53.741 1.00 35.60 A 2935 C4′ AAC 396 30.447 −4.539 55.074 1.00 32.68 A 2936 O4′ AAC 396 29.243 −3.659 54.745 1.00 31.75 A 2937 C5′ AAC 396 31.558 −3.523 55.492 1.00 33.23 A 2938 O5′ AAC 396 32.462 −3.135 54.341 1.00 34.84 A 2939 P1 AAC 396 33.757 −3.149 54.009 1.00 35.11 A 2940 O11 AAC 396 33.972 −2.682 52.617 1.00 36.07 A 2941 O12 AAC 396 34.138 −4.565 54.285 1.00 34.22 A 2942 O6 AAC 396 34.317 −2.148 55.094 1.00 33.48 A 2943 P2 AAC 396 34.629 −0.608 55.274 1.00 31.67 A 2944 O21 AAC 396 34.091 0.157 54.141 1.00 29.47 A 2945 O22 AAC 396 36.088 −0.404 55.453 1.00 31.91 A 2946 O7 AAC 396 34.078 −0.103 56.587 1.00 33.38 A 2947 CPB AAC 396 32.613 −0.372 56.779 1.00 31.59 A 2948 CPA AAC 396 31.930 1.012 57.138 1.00 32.98 A 2949 CP7 AAC 396 32.377 2.047 56.089 1.00 32.64 A 2950 CP9 AAC 396 32.449 1.368 58.564 1.00 32.37 A 2951 CP8 AAC 396 30.388 0.907 57.120 1.00 31.38 A 2952 OP3 AAC 396 31.895 1.652 54.775 1.00 34.88 A 2953 CP6 AAC 396 31.780 3.481 56.251 1.00 32.61 A 2954 OP2 AAC 396 32.472 4.317 56.895 1.00 30.58 A 2955 NP2 AAC 396 30.924 3.796 55.273 1.00 31.11 A 2956 CP5 AAC 396 30.358 5.220 55.331 1.00 32.05 A 2957 CP4 AAC 396 29.035 5.178 56.067 1.00 32.87 A 2958 CP3 AAC 396 28.213 6.418 55.771 1.00 32.93 A 2959 OP1 AAC 396 27.905 6.418 54.570 1.00 32.85 A 2960 NP1 AAC 396 27.858 7.297 56.675 1.00 29.26 A 2961 CP2 AAC 396 27.034 8.515 56.304 1.00 28.60 A 2962 CP1 AAC 396 25.597 8.467 56.855 1.00 30.84 A 2963 S AAC 396 24.755 9.968 56.383 1.00 33.02 A 2964 P3 AAC 396 30.702 −7.962 53.720 1.00 35.35 A 2965 O31 AAC 396 31.571 −8.202 54.889 1.00 34.33 A 2966 O32 AAC 396 31.470 −8.265 52.484 1.00 35.06 A 2967 O33 AAC 396 29.270 −8.684 53.804 1.00 36.14 A 2968 C51 AAC 396 23.138 9.614 56.893 1.00 35.73 A 2969 C52 AAC 396 22.130 10.649 56.436 1.00 37.65 A 2970 O51 AAC 396 22.832 8.462 57.127 1.00 37.20 A 2971 C53 AAC 396 21.523 11.431 57.594 1.00 38.75 A 2972 C54 AAC 396 20.940 10.674 58.762 1.00 37.79 A 2973 O52 AAC 396 21.600 12.643 57.568 1.00 38.80 A 2974 N GLY 20 22.008 49.110 54.402 1.00 30.13 B 2975 CA GLY 20 20.729 49.727 54.903 1.00 23.69 B 2976 C GLY 20 19.882 48.505 55.299 1.00 20.92 B 2977 O GLY 20 20.366 47.374 55.403 1.00 20.99 B 2978 N LEU 21 18.625 48.779 55.519 1.00 17.75 B 2979 CA LEU 21 17.682 47.768 55.953 1.00 20.77 B 2980 CB LEU 21 16.341 48.472 56.276 1.00 18.00 B 2981 CG LEU 21 16.409 49.431 57.481 1.00 21.40 B 2982 CD2 LEU 21 16.626 48.688 58.810 1.00 22.33 B 2983 CD1 LEU 21 15.145 50.253 57.628 1.00 19.17 B 2984 C LEU 21 17.474 46.714 54.869 1.00 22.13 B 2985 O LEU 21 17.475 47.035 53.636 1.00 19.43 B 2986 N ALA 22 17.267 45.485 55.356 1.00 19.59 B 2987 CA ALA 22 16.823 44.426 54.424 1.00 20.74 B 2988 CB ALA 22 16.533 43.123 55.166 1.00 18.92 B 2989 C ALA 22 15.560 44.925 53.725 1.00 19.75 B 2990 O ALA 22 14.654 45.395 54.407 1.00 17.56 B 2991 N THR 23 15.480 44.835 52.391 1.00 18.28 B 2992 CA THR 23 14.275 45.344 51.708 1.00 17.46 B 2993 CB THR 23 14.750 46.493 50.788 1.00 20.38 B 2994 OG1 THR 23 15.430 47.452 51.592 1.00 16.94 B 2995 CG2 THR 23 13.662 47.179 49.971 1.00 19.14 B 2996 C THR 23 13.654 44.271 50.813 1.00 18.33 B 2997 O THR 23 14.392 43.481 50.195 1.00 18.10 B 2998 N ILE 24 12.338 44.231 50.809 1.00 15.97 B 2999 CA ILE 24 11.616 43.299 49.966 1.00 16.44 B 3000 CB ILE 24 10.167 43.151 50.443 1.00 16.72 B 3001 CG2 ILE 24 9.347 42.355 49.421 1.00 16.82 B 3002 CG1 ILE 24 10.141 42.392 51.809 1.00 17.90 B 3003 CD1 ILE 24 8.737 42.488 52.399 1.00 14.92 B 3004 C ILE 24 11.634 43.907 48.544 1.00 15.66 B 3005 O ILE 24 11.206 45.046 48.453 1.00 16.75 B 3006 N LEU 25 12.196 43.200 47.566 1.00 17.77 B 3007 CA LEU 25 12.300 43.723 46.203 1.00 18.64 B 3008 CB LEU 25 13.748 43.484 45.728 1.00 17.20 B 3009 CG LEU 25 14.865 44.002 46.651 1.00 17.92 B 3010 CD2 LEU 25 14.838 45.532 46.690 1.00 17.51 B 3011 CD1 LEU 25 16.263 43.583 45.185 1.00 20.19 B 3012 C LEU 25 11.376 43.094 45.186 1.00 19.91 B 3013 O LEU 25 11.280 43.565 44.022 1.00 20.36 B 3014 N ALA 26 10.742 41.976 45.526 1.00 18.68 B 3015 CA ALA 26 9.828 41.315 44.601 1.00 18.32 B 3016 CB ALA 26 10.581 40.597 43.452 1.00 15.20 B 3017 C ALA 26 9.007 40.302 45.374 1.00 18.51 B 3018 O ALA 26 9.484 39.724 46.363 1.00 18.01 B 3019 N ILE 27 7.758 40.130 44.969 1.00 15.99 B 3020 CA ILE 27 6.897 39.116 45.522 1.00 18.77 B 3021 CB ILE 27 5.792 39.725 46.452 1.00 17.13 B 3022 CG2 ILE 27 4.978 38.593 47.077 1.00 18.32 B 3023 CG1 ILE 27 6.452 40.581 47.537 1.00 20.55 B 3024 CD1 ILE 27 5.551 41.593 48.206 1.00 21.37 B 3025 C ILE 27 6.199 38.314 44.451 1.00 16.71 B 3026 O ILE 27 5.447 38.959 43.663 1.00 19.13 B 3027 N GLY 28 6.238 36.988 44.527 1.00 17.02 B 3028 CA GLY 28 5.416 36.216 43.587 1.00 18.19 B 3029 C GLY 28 4.584 35.165 44.304 1.00 21.13 B 3030 O GLY 28 5.026 34.712 45.367 1.00 19.81 B 3031 N THR 29 3.373 34.841 43.855 1.00 16.70 B 3032 CA THR 29 2.547 33.832 44.503 1.00 19.55 B 3033 CB THR 29 1.326 34.437 45.216 1.00 19.77 B 3034 OG1 THR 29 0.531 35.210 44.302 1.00 19.35 B 3035 CG2 THR 29 1.778 35.415 46.306 1.00 16.94 B 3036 C THR 29 2.025 32.802 43.504 1.00 20.47 B 3037 O THR 29 1.910 33.080 42.300 1.00 18.54 B 3038 N ALA 30 1.632 31.632 43.978 1.00 18.73 B 3039 CA ALA 30 1.112 30.563 43.133 1.00 19.51 B 3040 CB ALA 30 2.219 29.593 42.702 1.00 16.21 B 3041 C ALA 30 0.154 29.747 44.000 1.00 21.06 B 3042 O ALA 30 0.300 29.656 45.242 1.00 17.27 B 3043 N THR 31 −0.779 29.058 43.380 1.00 18.81 B 3044 CA THR 31 −1.678 28.138 44.037 1.00 20.19 B 3045 CB THR 31 −3.071 28.716 44.280 1.00 21.90 B 3046 OG1 THR 31 −3.684 29.108 43.030 1.00 24.53 B 3047 CG2 THR 31 −3.097 30.004 45.138 1.00 20.79 B 3048 C THR 31 −1.860 26.921 43.132 1.00 21.99 B 3049 O THR 31 −1.635 27.056 41.944 1.00 20.19 B 3050 N PRO 32 −2.230 25.791 43.694 1.00 20.90 B 3051 CA PRO 32 −2.705 24.671 42.935 1.00 20.90 B 3052 CD PRO 32 −2.474 25.621 45.182 1.00 19.82 B 3053 CB PRO 32 −3.136 23.641 43.982 1.00 20.86 B 3054 CG PRO 32 −2.397 24.104 45.236 1.00 19.96 B 3055 C PRO 32 −3.900 25.112 42.079 1.00 20.14 B 3056 O PRO 32 −4.609 26.075 42.354 1.00 18.10 B 3057 N PRO 33 −4.067 24.465 40.936 1.00 21.96 B 3058 CA PRO 33 −5.117 24.826 39.982 1.00 25.39 B 3059 CD PRO 33 −3.227 23.355 40.446 1.00 22.41 B 3060 CB PRO 33 −4.754 23.994 38.740 1.00 24.65 B 3061 CG PRO 33 −4.085 22.781 39.334 1.00 26.31 B 3062 C PRO 33 −6.536 24.549 40.458 1.00 25.18 B 3063 O PRO 33 −7.360 25.395 40.193 1.00 28.12 B 3064 N ASN 34 −6.852 23.480 41.129 1.00 27.34 B 3065 CA ASN 34 −8.170 23.081 41.645 1.00 30.08 B 3066 CB ASN 34 −8.087 21.643 42.171 1.00 33.39 B 3067 CG ASN 34 −9.127 21.074 43.106 1.00 37.83 B 3068 OD1 ASN 34 −10.314 21.422 43.003 1.00 39.25 B 3069 ND2 ASN 34 −8.801 21.176 44.064 1.00 35.81 B 3070 C ASN 34 −8.642 24.013 42.766 1.00 30.65 B 3071 O ASN 34 −7.999 24.199 43.797 1.00 26.27 B 3072 N CYS 35 −9.758 24.681 42.536 1.00 28.97 B 3073 CA CYS 35 −10.386 25.618 43.431 1.00 30.72 B 3074 CB CYS 35 −10.683 26.843 42.553 1.00 32.78 B 3075 SG CYS 35 −11.330 28.291 43.356 1.00 34.81 B 3076 C CYS 35 −11.733 25.077 43.899 1.00 30.56 B 3077 O CYS 35 −12.564 24.726 43.026 1.00 28.14 B 3078 N VAL 36 −12.010 25.115 45.195 1.00 27.43 B 3079 CA VAL 36 −13.350 24.723 45.675 1.00 29.87 B 3080 CB VAL 36 −13.365 23.513 46.620 1.00 29.99 B 3081 CG1 VAL 36 −14.794 23.072 46.955 1.00 32.05 B 3082 CG2 VAL 36 −12.676 22.281 46.041 1.00 29.23 B 3083 C VAL 36 −13.999 25.907 46.381 1.00 31.35 B 3084 O VAL 36 −13.382 26.519 47.293 1.00 30.21 B 3085 N ALA 37 −15.257 26.231 46.004 1.00 28.89 B 3086 CA ALA 37 −15.946 27.341 46.634 1.00 28.81 B 3087 CB ALA 37 −17.171 27.768 45.838 1.00 30.11 B 3088 C ALA 37 −16.333 26.966 48.066 1.00 28.01 B 3089 O ALA 37 −16.783 25.827 48.269 1.00 27.02 B 3090 N GLN 38 −16.248 27.912 49.003 1.00 28.89 B 3091 CA GLN 38 −16.540 27.550 50.409 1.00 28.43 B 3092 CB GLN 38 −16.187 28.665 51.390 1.00 28.73 B 3093 CG GLN 38 −16.180 28.249 52.872 1.00 27.51 B 3094 CD GLN 38 −15.036 27.352 53.262 1.00 25.61 B 3095 OE1 GLN 38 −14.701 26.373 52.601 1.00 24.71 B 3096 NE2 GLN 38 −14.350 27.608 54.384 1.00 23.66 B 3097 C GLN 38 −18.013 27.191 50.566 1.00 29.33 B 3098 O GLN 38 −18.363 26.188 51.189 1.00 28.34 B 3099 N ALA 39 −18.862 27.896 49.808 1.00 30.07 B 3100 CA ALA 39 −20.295 27.570 49.781 1.00 32.70 B 3101 CB ALA 39 −21.051 28.568 48.896 1.00 33.57 B 3102 C ALA 39 −20.549 26.146 49.335 1.00 30.85 B 3103 O ALA 39 −21.575 25.584 49.736 1.00 33.70 B 3104 N ASP 40 −19.654 25.458 48.632 1.00 30.62 B 3105 CA ASP 40 −19.846 24.065 48.267 1.00 29.06 B 3106 CB ASP 40 −19.346 23.872 46.817 1.00 32.72 B 3107 CG ASP 40 −20.099 24.688 45.790 1.00 35.29 B 3108 OD1 ASP 40 −21.243 25.084 46.048 1.00 34.36 B 3109 OD2 ASP 40 −19.515 24.952 44.704 1.00 38.39 B 3110 C ASP 40 −19.066 23.072 49.111 1.00 27.10 B 3111 O ASP 40 −19.184 21.847 48.934 1.00 25.64 B 3112 N TYR 41 −18.180 23.572 49.983 1.00 26.33 B 3113 CA TYR 41 −17.195 22.686 50.602 1.00 25.45 B 3114 CB TYR 41 −16.073 23.513 51.318 1.00 25.80 B 3115 CG TYR 41 −14.950 22.533 51.647 1.00 26.69 B 3116 CD1 TYR 41 −14.085 22.167 50.613 1.00 26.77 B 3117 CD2 TYR 41 −14.762 21.968 52.905 1.00 26.47 B 3118 CE1 TYR 41 −13.046 21.271 50.818 1.00 28.14 B 3119 CE2 TYR 41 −13.722 21.066 53.108 1.00 27.32 B 3120 CZ TYR 41 −12.866 20.718 52.081 1.00 29.44 B 3121 OH TYR 41 −11.814 19.812 52.248 1.00 28.72 B 3122 C TYR 41 −17.755 21.608 51.498 1.00 23.95 B 3123 O TYR 41 −17.316 20.448 51.464 1.00 24.60 B 3124 N ALA 42 −18.755 21.934 52.316 1.00 25.56 B 3125 CA ALA 42 −19.353 20.914 53.201 1.00 25.76 B 3126 CB ALA 42 −20.399 21.581 54.090 1.00 23.78 B 3127 C ALA 42 −19.950 19.750 52.450 1.00 25.97 B 3128 O ALA 42 −19.747 18.556 52.753 1.00 25.39 B 3129 N ASP 43 −20.672 20.055 51.369 1.00 28.67 B 3130 CA ASP 43 −21.195 18.932 50.555 1.00 30.08 B 3131 CB ASP 43 −22.081 19.541 49.448 1.00 33.25 B 3132 CG ASP 43 −23.443 19.995 49.962 1.00 34.98 B 3133 OD1 ASP 43 −23.930 19.541 51.007 1.00 33.60 B 3134 OD2 ASP 43 −24.052 20.858 49.282 1.00 37.96 B 3135 C ASP 43 −20.077 18.126 49.912 1.00 28.64 B 3136 O ASP 43 −20.097 16.901 49.768 1.00 27.36 B 3137 N TYR 44 −19.069 18.830 49.357 1.00 28.91 B 3138 CA TYR 44 −17.962 18.107 48.738 1.00 29.90 B 3139 CB TYR 44 −16.920 19.101 48.198 1.00 32.45 B 3140 CG TYR 44 −15.594 18.433 47.876 1.00 36.36 B 3141 CD1 TYR 44 −15.510 17.544 46.812 1.00 38.54 B 3142 CD2 TYR 44 −14.450 18.690 48.616 1.00 37.35 B 3143 CE1 TYR 44 −14.303 16.943 46.499 1.00 40.28 B 3144 CE2 TYR 44 −13.243 18.088 48.318 1.00 38.41 B 3145 CZ TYR 44 −13.180 17.217 47.251 1.00 40.38 B 3146 OH TYR 44 −12.000 16.594 46.922 1.00 41.35 B 3147 C TYR 44 −17.309 17.225 49.814 1.00 29.19 B 3148 O TYR 44 −17.130 16.030 49.643 1.00 28.55 B 3149 N TYR 45 −17.041 17.861 50.971 1.00 27.03 B 3150 CA TYR 45 −16.320 17.107 52.017 1.00 28.04 B 3151 CB TYR 45 −15.961 18.141 53.101 1.00 25.24 B 3152 CG TYR 45 −15.311 17.594 54.340 1.00 25.61 B 3153 CD1 TYR 45 −13.997 17.145 54.389 1.00 22.93 B 3154 CD2 TYR 45 −16.070 17.545 55.522 1.00 26.50 B 3155 CE1 TYR 45 −13.450 16.662 55.568 1.00 24.89 B 3156 CE2 TYR 45 −15.537 17.056 56.687 1.00 25.61 B 3157 CZ TYR 45 −14.229 16.633 56.720 1.00 25.35 B 3158 OH TYR 45 −13.730 16.155 57.908 1.00 23.72 B 3159 C TYR 45 −17.099 15.943 52.584 1.00 27.22 B 3160 O TYR 45 −16.593 14.809 52.694 1.00 30.23 B 3161 N PHE 46 −18.371 16.127 52.930 1.00 27.26 B 3162 CA PHE 46 −19.157 14.990 53.453 1.00 28.58 B 3163 CB PHE 46 −20.503 15.493 53.995 1.00 27.85 B 3164 CG PHE 46 −20.284 15.803 55.472 1.00 28.38 B 3165 CD1 PHE 46 −19.704 16.990 55.864 1.00 26.34 B 3166 CD2 PHE 46 −20.516 14.804 56.398 1.00 28.14 B 3167 CE1 PHE 46 −19.442 17.225 57.225 1.00 28.56 B 3168 CE2 PHE 46 −20.251 15.026 57.754 1.00 28.29 B 3169 CZ PHE 46 −19.667 16.226 58.153 1.00 27.36 B 3170 C PHE 46 −19.290 13.874 52.422 1.00 29.55 B 3171 O PHE 46 −19.223 12.708 52.785 1.00 29.91 B 3172 N ARG 47 −19.341 14.236 51.138 1.00 29.92 B 3173 CA ARG 47 −19.427 13.212 50.087 1.00 29.82 B 3174 CB ARG 47 −19.768 13.867 48.727 1.00 28.68 B 3175 CG ARG 47 −19.805 12.878 47.555 1.00 31.40 B 3176 CD ARG 47 −20.229 13.545 46.253 1.00 28.95 B 3177 NE ARG 47 −19.376 14.627 45.753 1.00 27.46 B 3178 CZ ARG 47 −18.239 14.330 45.107 1.00 26.32 B 3179 NH1 ARG 47 −17.870 13.079 44.917 1.00 26.37 B 3180 NH2 ARG 47 −17.457 15.269 44.656 1.00 27.46 B 3181 C ARG 47 −18.103 12.488 49.936 1.00 27.74 B 3182 O ARG 47 −18.094 11.272 50.065 1.00 26.68 B 3183 N VAL 48 −16.999 13.213 49.690 1.00 27.28 B 3184 CA VAL 48 −15.751 12.483 49.452 1.00 28.74 B 3185 CB VAL 48 −14.552 13.314 48.955 1.00 31.08 B 3186 CG1 VAL 48 −14.846 13.784 47.514 1.00 33.19 B 3187 CG2 VAL 48 −14.201 14.486 49.857 1.00 29.64 B 3188 C VAL 48 −15.314 11.665 50.651 1.00 28.98 B 3189 O VAL 48 −14.649 10.649 50.437 1.00 27.72 B 3190 N THR 49 −15.681 12.057 51.888 1.00 27.61 B 3191 CA THR 49 −15.250 11.197 52.992 1.00 29.14 B 3192 CB THR 49 −14.989 12.056 54.245 1.00 28.59 B 3193 OG1 THR 49 −16.199 12.664 54.686 1.00 26.82 B 3194 CG2 THR 49 −13.963 13.139 53.910 1.00 27.89 B 3195 C THR 49 −16.256 10.105 53.263 1.00 32.25 B 3196 O THR 49 −16.096 9.393 54.257 1.00 31.58 B 3197 N LYS 50 −17.316 9.954 52.453 1.00 33.83 B 3198 CA LYS 50 −18.345 8.930 52.695 1.00 34.87 B 3199 CB LYS 50 −17.738 7.539 52.490 1.00 38.11 B 3200 CG LYS 50 −17.129 7.347 51.099 1.00 40.70 B 3201 CD LYS 50 −16.452 5.998 51.021 1.00 43.30 B 3202 CE LYS 50 −15.934 5.688 49.621 1.00 45.65 B 3203 NZ LYS 50 −15.174 4.391 49.724 1.00 47.82 B 3204 C LYS 50 −18.992 9.033 54.076 1.00 34.08 B 3205 O LYS 50 −19.219 8.064 54.802 1.00 32.77 B 3206 N SER 51 −19.385 10.260 54.426 1.00 34.52 B 3207 CA SER 51 −19.846 10.562 55.778 1.00 35.62 B 3208 CB SER 51 −18.856 11.573 56.414 1.00 34.18 B 3209 OG SER 51 −17.677 10.861 56.762 1.00 34.96 B 3210 C SER 51 −21.228 11.171 55.798 1.00 35.96 B 3211 O SER 51 −21.654 11.789 56.778 1.00 35.28 B 3212 N GLU 52 −21.971 10.990 54.709 1.00 38.89 B 3213 CA GLU 52 −23.324 11.491 54.550 1.00 40.11 B 3214 CB GLU 52 −23.888 11.133 53.179 1.00 42.33 B 3215 CG GLU 52 −23.062 11.610 51.985 1.00 44.09 B 3216 CD GLU 52 −23.205 13.088 51.724 1.00 44.87 B 3217 OE1 GLU 52 −23.541 13.849 52.668 1.00 46.28 B 3218 OE2 GLU 52 −22.968 13.566 50.594 1.00 45.42 B 3219 C GLU 52 −24.241 11.004 55.662 1.00 40.31 B 3220 O GLU 52 −25.200 11.724 55.960 1.00 40.09 B 3221 N HIS 53 −23.973 9.890 56.338 1.00 40.63 B 3222 CA HIS 53 −24.778 9.462 57.468 1.00 43.33 B 3223 ND1 HIS 53 −22.007 7.845 57.264 1.00 48.85 B 3224 CG HIS 53 −23.034 7.812 58.209 1.00 48.87 B 3225 CB HIS 53 −24.475 8.000 57.818 1.00 45.61 B 3226 NE2 HIS 53 −21.114 7.488 59.199 1.00 49.66 B 3227 CD2 HIS 53 −22.472 7.597 59.426 1.00 48.98 B 3228 CE1 HIS 53 −20.866 7.646 57.906 1.00 49.30 B 3229 C HIS 53 −24.600 10.323 58.714 1.00 42.97 B 3230 O HIS 53 −25.449 10.299 59.615 1.00 40.95 B 3231 N MET 54 −23.592 11.193 58.787 1.00 42.06 B 3232 CA MET 54 −23.458 12.143 59.895 1.00 40.37 B 3233 CB MET 54 −21.976 12.374 60.166 1.00 39.25 B 3234 CG MET 54 −21.129 11.124 60.065 1.00 39.07 B 3235 SD MET 54 −19.432 11.463 60.564 1.00 39.03 B 3236 CE MET 54 −18.719 9.834 60.604 1.00 35.38 B 3237 C MET 54 −24.133 13.462 59.580 1.00 40.50 B 3238 O MET 54 −23.466 14.491 59.412 1.00 39.96 B 3239 N VAL 55 −25.469 13.469 59.515 1.00 40.70 B 3240 CA VAL 55 −26.225 14.645 59.127 1.00 41.24 B 3241 CB VAL 55 −27.725 14.281 58.965 1.00 42.54 B 3242 CG1 VAL 55 −28.247 13.754 60.298 1.00 43.06 B 3243 CG2 VAL 55 −28.566 15.460 58.510 1.00 41.18 B 3244 C VAL 55 −26.083 15.834 60.050 1.00 41.69 B 3245 O VAL 55 −26.072 16.971 59.552 1.00 41.62 B 3246 N ASP 56 −26.044 15.625 61.365 1.00 41.89 B 3247 CA ASP 56 −25.971 16.772 62.276 1.00 42.82 B 3248 CB ASP 56 −26.318 16.428 63.725 1.00 43.88 B 3249 CG ASP 56 −27.747 15.911 63.870 1.00 47.81 B 3250 OD1 ASP 56 −27.958 14.828 64.467 1.00 48.73 B 3251 OD2 ASP 56 −28.711 16.529 63.373 1.00 48.34 B 3252 C ASP 56 −24.580 17.408 62.166 1.00 39.80 B 3253 O ASP 56 −24.486 18.615 62.022 1.00 39.83 B 3254 N LEU 57 −23.543 16.580 62.126 1.00 38.46 B 3255 CA LEU 57 −22.168 17.052 61.960 1.00 36.70 B 3256 CB LEU 57 −21.208 15.880 62.088 1.00 37.93 B 3257 CG LEU 57 −19.852 16.167 62.727 1.00 39.44 B 3258 CD2 LEU 57 −18.891 15.025 62.463 1.00 39.45 B 3259 CD1 LEU 57 −20.011 16.406 64.231 1.00 39.49 B 3260 C LEU 57 −21.963 17.783 60.639 1.00 33.97 B 3261 O LEU 57 −21.405 18.892 60.616 1.00 31.33 B 3262 N LYS 58 −22.726 17.365 59.613 1.00 33.24 B 3263 CA LYS 58 −22.690 18.074 58.335 1.00 31.91 B 3264 CB LYS 58 −23.447 17.288 57.253 1.00 35.05 B 3265 CG LYS 58 −23.342 17.963 55.885 1.00 35.27 B 3266 CD LYS 58 −23.785 17.004 54.788 1.00 36.99 B 3267 CE LYS 58 −24.081 17.788 53.522 1.00 38.02 B 3268 NZ LYS 58 −24.138 16.923 52.309 1.00 38.14 B 3269 C LYS 58 −23.278 19.454 58.476 1.00 31.37 B 3270 O LYS 58 −22.764 20.468 57.989 1.00 29.09 B 3271 N GLU 59 −24.409 19.515 59.214 1.00 31.49 B 3272 CA GLU 59 −25.049 20.784 59.484 1.00 31.48 B 3273 CB GLU 59 −26.360 20.582 60.291 1.00 35.68 B 3274 CG GLU 59 −27.406 19.802 59.503 1.00 38.94 B 3275 CD GLU 59 −28.727 19.621 60.251 1.00 42.98 B 3276 OE1 GLU 59 −29.707 19.210 59.577 1.00 42.91 B 3277 OE2 GLU 59 −28.801 19.894 61.476 1.00 42.63 B 3278 C GLU 59 −24.105 21.696 60.260 1.00 30.72 B 3279 O GLU 59 −23.912 22.872 59.932 1.00 32.00 B 3280 N LYS 60 −23.491 21.165 61.306 1.00 30.16 B 3281 CA LYS 60 −22.491 21.947 62.046 1.00 30.01 B 3282 CB LYS 60 −21.904 21.105 63.180 1.00 29.34 B 3283 CG LYS 60 −20.962 21.874 64.113 1.00 32.39 B 3284 CD LYS 60 −20.162 20.902 64.990 1.00 32.36 B 3285 CE LYS 60 −19.334 21.694 66.003 1.00 32.30 B 3286 NZ LYS 60 −20.240 22.234 67.082 1.00 33.44 B 3287 C LYS 60 −21.401 22.411 61.071 1.00 28.68 B 3288 O LYS 60 −21.051 23.593 61.041 1.00 28.77 B 3289 N PHE 61 −20.857 21.511 60.248 1.00 28.77 B 3290 CA PHE 61 −19.768 21.971 59.340 1.00 27.65 B 3291 CB PHE 61 −19.149 20.737 58.667 1.00 28.31 B 3292 CG PHE 61 −17.881 21.034 57.904 1.00 26.08 B 3293 CD1 PHE 61 −16.802 21.661 58.507 1.00 25.71 B 3294 CD2 PHE 61 −17.803 20.688 56.559 1.00 26.70 B 3295 CE1 PHE 61 −15.652 21.924 57.767 1.00 26.72 B 3296 CE2 PHE 61 −16.640 20.942 55.817 1.00 26.65 B 3297 CZ PHE 61 −15.557 21.547 56.438 1.00 26.34 B 3298 C PHE 61 −20.246 23.020 58.376 1.00 28.42 B 3299 O PHE 61 −19.525 23.965 58.031 1.00 29.26 B 3300 N LYS 62 −21.524 22.978 57.941 1.00 30.24 B 3301 CA LYS 62 −22.085 24.038 57.103 1.00 30.16 B 3302 CB LYS 62 −23.503 23.658 56.642 1.00 33.40 B 3303 CG LYS 62 −23.487 22.673 55.470 1.00 37.25 B 3304 CD LYS 62 −24.767 22.671 54.634 1.00 40.54 B 3305 CE LYS 62 −24.615 21.717 53.443 1.00 42.98 B 3306 NZ LYS 62 −25.897 21.037 53.065 1.00 44.54 B 3307 C LYS 62 −22.072 25.367 57.817 1.00 29.01 B 3308 O LYS 62 −21.648 26.436 57.326 1.00 27.79 B 3309 N ARG 63 −22.452 25.314 59.097 1.00 28.86 B 3310 CA ARG 63 −22.337 26.528 59.927 1.00 27.90 B 3311 CB ARG 63 −22.897 26.276 61.337 1.00 29.43 B 3312 CG ARG 63 −24.422 26.185 61.444 1.00 31.90 B 3313 CD ARG 63 −24.926 26.273 62.879 1.00 30.70 B 3314 NE ARG 63 −24.460 25.182 63.711 1.00 32.36 B 3315 CZ ARG 63 −24.895 23.936 68.817 1.00 33.89 B 3316 NH1 ARG 63 −25.922 23.479 63.102 1.00 34.24 B 3317 NH2 ARG 63 −24.339 23.077 64.678 1.00 32.87 B 3318 C ARG 63 −20.884 26.992 60.005 1.00 27.06 B 3319 O ARG 63 −20.596 28.194 59.911 1.00 26.93 B 3320 N ILE 64 −19.951 26.093 60.300 1.00 26.97 B 3321 CA ILE 64 −18.535 26.513 60.439 1.00 26.26 B 3322 CB ILE 64 −17.663 25.318 60.850 1.00 26.23 B 3323 CG2 ILE 64 −16.163 25.617 60.649 1.00 26.15 B 3324 CG1 ILE 64 −17.861 24.910 62.322 1.00 23.46 B 3325 CD1 ILE 64 −17.695 23.413 62.551 1.00 24.95 B 3326 C ILE 64 −18.036 27.210 59.168 1.00 26.51 B 3327 O ILE 64 −17.593 28.372 59.180 1.00 24.26 B 3328 N CYS 65 −18.293 26.615 57.993 1.00 27.01 B 3329 CA CYS 65 −17.876 27.214 56.701 1.00 27.04 B 3330 CB CYS 65 −18.262 26.250 55.579 1.00 25.72 B 3331 SG CYS 65 −17.351 24.706 55.530 1.00 25.28 B 3332 C CYS 65 −18.406 28.602 56.422 1.00 29.22 B 3333 O CYS 65 −17.714 29.576 56.015 1.00 29.00 B 3334 N GLU 66 −19.687 28.816 56.728 1.00 31.33 B 3235 CA GLU 66 −20.340 30.110 56.626 1.00 33.56 B 3336 CB GLU 66 −21.838 29.998 56.951 1.00 38.70 B 3337 CG GLU 66 −22.626 31.310 56.818 1.00 44.46 B 3338 CD GLU 66 −22.492 32.285 58.008 1.00 48.62 B 3339 OE1 GLU 66 −22.430 31.859 59.224 1.00 50.47 B 3340 OE2 GLU 66 −22.447 33.556 57.778 1.00 51.14 B 3341 C GLU 66 −19.693 31.168 57.526 1.00 31.74 B 3342 O GLU 66 −19.672 32.358 57.200 1.00 32.67 B 3343 N LYS 67 −19.155 30.746 58.648 1.00 31.14 B 3344 CA LYS 67 −18.549 31.692 59.602 1.00 28.65 B 3345 CB LYS 67 −18.497 31.085 61.002 1.00 29.43 B 3346 CG LYS 67 −19.869 30.994 61.664 1.00 29.62 B 3347 CD LYS 67 −20.304 32.306 62.313 1.00 30.86 B 3348 CE LYS 67 −21.584 32.167 63.134 1.00 30.74 B 3349 NZ LYS 67 −22.186 33.465 63.467 1.00 32.87 B 3350 C LYS 67 −17.101 32.068 59.231 1.00 27.59 B 3351 O LYS 67 −16.571 33.089 59.681 1.00 25.43 B 3352 N THR 68 −16.463 31.256 58.407 1.00 26.27 B 3353 CA THR 68 −15.030 31.461 58.081 1.00 24.43 B 3354 CB THR 68 −14.459 30.287 57.286 1.00 26.33 B 3355 OG1 THR 68 −15.189 30.094 56.086 1.00 27.29 B 3356 CG2 THR 68 −14.489 28.974 58.066 1.00 25.30 B 3357 C THR 68 −14.739 32.730 57.259 1.00 23.11 B 3358 O THR 68 −13.604 33.223 57.234 1.00 21.42 B 3359 N ALA 69 −15.738 33.258 56.590 1.00 20.18 B 3360 CA ALA 69 −15.548 34.442 55.727 1.00 18.52 B 3361 CB ALA 69 −15.085 35.649 56.546 1.00 19.83 B 3362 C ALA 69 −14.500 34.146 54.642 1.00 18.65 B 3363 O ALA 69 −13.726 35.027 54.240 1.00 20.80 B 3364 N ILE 70 −14.509 32.897 54.212 1.00 18.29 B 3365 CA ILE 70 −13.647 32.403 53.123 1.00 21.02 B 3366 CB ILE 70 −12.964 31.092 53.536 1.00 18.84 B 3367 CG2 ILE 70 −12.215 30.419 52.383 1.00 20.42 B 3368 CG1 ILE 70 −11.932 31.266 54.651 1.00 15.48 B 3369 CD1 ILE 70 −11.397 29.933 55.184 1.00 11.80 B 3370 C ILE 70 −14.539 32.136 51.911 1.00 22.83 B 3371 O ILE 70 −15.544 31.424 52.006 1.00 22.84 B 3372 N LYS 71 −14.185 32.709 50.776 1.00 25.05 B 3373 CA LYS 71 −15.000 32.535 49.558 1.00 28.31 B 3374 CB LYS 71 −14.842 33.714 48.602 1.00 31.87 B 3375 CG LYS 71 −15.875 33.684 47.469 1.00 36.10 B 3376 CD LYS 71 −16.151 35.062 46.870 1.00 39.24 B 3377 CE LYS 71 −15.029 35.543 45.950 1.00 41.09 B 3378 NZ LYS 71 −15.126 36.972 45.626 1.00 43.39 B 3379 C LYS 71 −14.614 31.257 48.805 1.00 27.83 B 3380 O LYS 71 −15.477 30.508 48.329 1.00 29.51 B 3381 N LYS 72 −15.321 31.026 48.703 1.00 27.04 B 3382 CA LYS 72 −12.797 29.846 47.997 1.00 25.00 B 3383 CB LYS 72 −12.757 30.116 46.492 1.00 25.89 B 3384 CG LYS 72 −11.981 31.385 46.138 1.00 27.61 B 3385 CD LYS 72 −12.203 31.838 44.695 1.00 28.83 B 3386 CE LYS 72 −10.904 32.213 43.980 1.00 31.01 B 3387 NZ LYS 72 −10.114 33.213 44.712 1.00 27.64 B 3388 C LYS 72 −11.383 29.522 48.473 1.00 22.26 B 3389 O LYS 72 −10.731 30.351 49.122 1.00 20.01 B 3390 N ARG 73 −10.968 28.315 48.123 1.00 21.60 B 3391 CA ARG 73 −9.637 27.786 48.463 1.00 22.36 B 3392 CB ARG 73 −9.707 26.935 49.737 1.00 22.83 B 3393 CG ARG 73 −9.954 27.764 50.996 1.00 22.90 B 3394 CD ARG 73 −10.971 27.134 51.947 1.00 24.84 B 3395 NE ARG 73 −10.648 25.750 52.247 1.00 21.88 B 3396 CZ ARG 73 −11.387 24.791 52.828 1.00 24.18 B 3397 NH1 ARG 73 −12.644 24.923 53.218 1.00 23.73 B 3398 NH2 ARG 73 −10.817 23.640 53.204 1.00 21.04 B 3399 C ARG 73 −9.117 26.879 47.346 1.00 23.89 B 3400 O ARG 73 −9.870 26.102 46.748 1.00 22.54 B 3401 N TYR 74 −7.830 27.005 47.084 1.00 21.64 B 3402 CA TYR 74 −7.151 26.146 46.106 1.00 20.49 B 3403 CB TYR 74 −6.076 26.933 45.369 1.00 20.77 B 3404 CG TYR 74 −6.654 28.117 44.605 1.00 23.34 B 3405 CD1 TYR 74 −6.728 29.367 45.222 1.00 22.80 B 3406 CD2 TYR 74 −7.113 27.946 43.295 1.00 22.88 B 3407 CE1 TYR 74 −7.254 30.455 44.526 1.00 23.26 B 3408 CE2 TYR 74 −7.637 29.036 42.597 1.00 24.52 B 3409 CZ TYR 74 −7.706 30.290 43.212 1.00 23.93 B 3410 OH TYR 74 −8.212 31.351 42.531 1.00 28.25 B 3411 C TYR 74 −6.548 24.980 46.876 1.00 19.76 B 3412 O TYR 74 −5.942 25.162 47.940 1.00 19.96 B 3413 N LEU 75 −6.730 23.797 46.339 1.00 17.38 B 3414 CA LEU 75 −6.272 22.579 47.011 1.00 21.26 B 3415 CB LEU 75 −7.476 21.856 47.611 1.00 20.25 B 3416 CG LEU 75 −8.226 22.703 48.637 1.00 22.33 B 3417 CD2 LEU 75 −7.463 22.831 49.956 1.00 23.14 B 3418 CD1 LEU 75 −9.599 22.132 48.991 1.00 22.43 B 3419 C LEU 75 −5.587 21.627 46.043 1.00 21.70 B 3420 O LEU 75 −6.103 21.328 44.962 1.00 23.22 B 3421 N ALA 76 −4.429 21.157 46.464 1.00 22.49 B 3422 CA ALA 76 −3.651 20.202 45.670 1.00 21.99 B 3423 CB ALA 76 −2.206 20.162 46.154 1.00 21.36 B 3424 C ALA 76 −4.281 18.802 45.783 1.00 23.24 B 3425 O ALA 76 −4.180 17.985 44.864 1.00 22.78 B 3426 N LEU 77 −4.914 18.554 46.929 1.00 20.26 B 3427 CA LEU 77 −5.626 17.275 47.211 1.00 21.63 B 3428 CB LEU 77 −6.206 17.309 48.634 1.00 21.08 B 3429 CG LEU 77 −6.036 16.032 49.475 1.00 24.27 B 3430 CD2 LEU 77 −6.094 14.731 48.678 1.00 22.09 B 3431 CD1 LEU 77 −7.115 15.900 50.566 1.00 21.69 B 3432 C LEU 77 −6.836 17.157 46.285 1.00 19.11 B 3433 O LEU 77 −7.734 18.003 46.317 1.00 18.26 B 3434 N THR 78 −6.864 16.120 45.480 1.00 21.33 B 3435 CA THR 78 −7.988 15.904 44.551 1.00 21.80 B 3436 CB THR 78 −7.474 15.584 43.151 1.00 20.95 B 3437 OG1 THR 78 −6.745 14.365 43.168 1.00 20.65 B 3438 CG2 THR 78 −6.546 16.664 42.592 1.00 20.30 B 3439 C THR 78 −8.826 14.713 45.004 1.00 21.99 B 3440 O THR 78 −8.404 13.919 45.855 1.00 17.00 B 3441 N GLU 79 −9.997 14.621 44.412 1.00 22.12 B 3442 CA GLU 79 −10.936 13.534 44.694 1.00 22.76 B 3443 CB GLU 79 −12.213 13.714 43.881 1.00 24.76 B 3444 CG GLU 79 −13.136 14.782 44.455 1.00 31.51 B 3445 CD GLU 79 −14.507 14.796 43.788 1.00 30.88 B 3446 OE1 GLU 79 −15.170 13.698 43.658 1.00 30.99 B 3447 OE2 GLU 79 −14.999 15.906 43.357 1.00 36.51 B 3448 C GLU 79 −10.315 12.197 44.303 1.00 21.27 B 3449 O GLU 79 −10.510 11.178 44.977 1.00 21.71 B 3450 N ASP 80 −9.576 12.243 43.213 1.00 20.55 B 3451 CA ASP 80 −8.928 11.052 42.659 1.00 21.74 B 3452 CB ASP 80 −8.315 11.365 41.300 1.00 26.25 B 3453 CG ASP 80 −9.287 11.078 40.154 1.00 30.13 B 3454 OD1 ASP 80 −10.537 10.879 40.408 1.00 31.09 B 3455 OD2 ASP 80 −8.861 11.036 38.939 1.00 31.25 B 3456 C ASP 80 −7.849 10.525 43.607 1.00 20.12 B 3457 O ASP 80 −7.704 9.314 43.808 1.00 20.55 B 3458 N TYR 81 −7.084 11.423 44.198 1.00 19.89 B 3459 CA TYR 81 −6.031 10.988 45.123 1.00 18.16 B 3460 CB TYR 81 −5.151 12.153 45.578 1.00 18.76 B 3461 CG TYR 81 −3.806 11.662 46.131 1.00 17.78 B 3462 CD1 TYR 81 −2.817 11.184 45.258 1.00 17.92 B 3463 CD2 TYR 81 −3.565 11.678 47.511 1.00 20.47 B 3464 CE1 TYR 81 −1.597 10.717 45.766 1.00 20.28 B 3465 CE2 TYR 81 −2.347 11.208 48.018 1.00 17.69 B 3466 CZ TYR 81 −1.363 10.726 47.146 1.00 19.66 B 3467 OH TYR 81 −0.182 10.265 47.640 1.00 17.94 B 3468 C TYR 81 −6.663 10.316 46.349 1.00 16.11 B 3469 O TYR 81 −6.168 9.296 46.846 1.00 19.25 B 3470 N LEU 82 −7.761 10.898 46.809 1.00 18.19 B 3471 CA LEU 82 −8.492 10.389 47.987 1.00 21.62 B 3472 CB LEU 82 −9.627 11.340 48.368 1.00 21.73 B 3473 CG LEU 182 −9.140 12.596 49.100 1.00 23.08 B 3474 CD2 LEU 182 −8.426 12.291 50.419 1.00 20.64 B 3475 CD1 LEU 82 −10.277 13.555 49.459 1.00 22.06 B 3476 C LEU 82 −9.086 9.002 47.699 1.00 24.53 B 3477 O LEU 82 −9.129 8.125 48.571 1.00 23.60 B 3478 N GLN 83 −9.542 8.823 46.473 1.00 24.67 B 3479 CA GLN 83 −10.128 7.545 46.045 1.00 25.38 B 3480 CB GLN 83 −10.772 7.691 44.664 1.00 30.84 B 3481 CG GLN 83 −11.992 8.615 44.677 1.00 36.26 B 3482 CD GLN 83 −12.652 8.778 43.305 1.00 41.57 B 3483 OE1 GLN 83 −12.031 8.495 42.282 1.00 42.90 B 3484 NE2 GLN 83 −13.892 9.228 43.219 1.00 40.48 B 3485 C GLN 83 −9.036 6.473 45.993 1.00 22.06 B 3486 O GLN 83 −9.267 5.303 46.314 1.00 19.52 B 3487 N GLU 84 −7.856 6.909 45.591 1.00 22.33 B 3488 CA GLU 84 −6.691 6.020 45.457 1.00 24.13 B 3489 CB GLU 84 −5.659 6.654 44.508 1.00 29.31 B 3490 CG GLU 84 −6.195 6.801 43.076 1.00 32.81 B 3491 CD GLU 84 −5.261 7.533 42.093 1.00 36.95 B 3492 OE1 GLU 84 −4.152 8.052 42.493 1.00 39.75 B 3493 OE2 GLU 84 −5.591 7.629 40.844 1.00 37.73 B 3494 C GLU 84 −6.045 5.757 46.832 1.00 23.11 B 3495 O GLU 84 −5.334 4.766 47.030 1.00 22.74 B 3496 N ASN 85 −6.305 6.653 47.764 1.00 20.46 B 3497 CA ASN 85 −5.740 6.574 49.127 1.00 22.14 B 3498 CB ASN 85 −4.637 7.635 49.246 1.00 22.52 B 3499 CG ASN 85 −3.539 7.471 48.183 1.00 24.04 B 3500 OD1 ASN 85 −2.645 6.642 48.353 1.00 26.52 B 3501 ND2 ASN 85 −3.552 8.211 47.087 1.00 20.49 B 3502 C ASN 85 −6.871 6.812 50.134 1.00 19.09 B 3503 O ASN 85 −6.929 7.869 50.779 1.00 22.00 B 3504 N PRO 86 −7.777 5.823 50.317 1.00 20.37 B 3505 CA PRO 86 −9.004 5.986 51.119 1.00 22.52 B 3506 CD PRO 86 −7.621 4.488 49.726 1.00 22.90 B 3507 CB PRO 86 −9.684 4.645 51.046 1.00 22.61 B 3508 CG PRO 86 −8.809 3.721 50.223 1.00 23.46 B 3509 C PRO 86 −8.753 6.261 52.570 1.00 24.83 B 3510 O PRO 86 −9.589 6.949 53.233 1.00 27.06 B 3511 N THR 87 −7.676 5.711 53.003 1.00 24.46 B 3512 CA THR 87 −7.224 5.756 54.379 1.00 26.64 B 3513 CB THR 87 −5.949 4.918 54.348 1.00 28.38 B 3514 OG1 THR 87 −6.082 3.795 55.204 1.00 29.91 B 3515 CG2 THR 87 −4.696 5.683 54.699 1.00 20.93 B 3516 C THR 87 −7.125 7.240 54.852 1.00 25.88 B 3517 O THR 87 −7.262 7.564 56.044 1.00 25.42 B 3518 N MET 88 −6.920 8.147 53.905 1.00 25.14 B 3519 CA MET 88 −6.837 9.592 54.201 1.00 24.00 B 3520 CB MET 88 −6.437 10.384 52.951 1.00 23.65 B 3521 CG MET 88 −4.962 10.208 52.585 1.00 21.30 B 3522 SD MET 88 −4.397 11.362 51.354 1.00 22.70 B 3523 CE MET 88 −4.716 13.026 51.897 1.00 14.99 B 3524 C MET 88 −8.197 10.131 54.692 1.00 26.77 B 3525 O MET 88 −8.272 11.161 55.368 1.00 24.35 B 3526 N CYS 89 −9.275 9.430 54.355 1.00 28.86 B 3527 CA CYS 89 −10.634 9.881 54.742 1.00 33.14 B 3528 CB CYS 89 −11.652 9.565 53.651 1.00 33.44 B 3529 SG CYS 89 −11.320 10.475 52.067 1.00 33.88 B 3530 C CYS 89 −11.138 9.210 56.035 1.00 36.39 B 3531 O CYS 89 −12.164 9.609 56.602 1.00 36.77 B 3532 N GLU 90 −10.429 8.193 56.493 1.00 37.83 B 3533 CA GLU 90 −10.822 7.464 57.722 1.00 39.76 B 3534 CB GLU 90 −10.530 5.976 57.586 1.00 41.89 B 3535 CG GLU 90 −10.914 5.423 56.221 1.00 47.23 B 3536 CD GLU 90 −10.194 4.122 55.885 1.00 49.56 B 3537 OE1 GLU 90 −9.423 3.567 56.757 1.00 50.81 B 3538 OE2 GLU 90 −10.364 3.581 54.730 1.00 52.36 B 3539 C GLU 90 −10.044 7.989 58.919 1.00 39.25 B 3540 O GLU 90 −8.825 7.797 59.023 1.00 36.90 B 3541 N PHE 91 −10.773 8.627 59.803 1.00 39.48 B 3542 CA PHE 91 −10.181 9.247 60.980 1.00 41.22 B 3543 CB PHE 91 −11.257 9.705 61.962 1.00 41.26 B 3544 CG PHE 91 −10.731 10.830 62.846 1.00 41.77 B 3545 CD1 PHE 91 −10.719 12.152 62.378 1.00 41.67 B 3546 CD2 PHE 91 −10.241 10.529 64.114 1.00 41.52 B 3547 CE1 PHE 91 −10.197 13.171 63.185 1.00 42.64 B 3548 CE2 PHE 91 −9.712 11.544 64.918 1.00 41.82 B 3549 CZ PHE 91 −9.689 12.865 64.454 1.00 43.06 B 3550 C PHE 91 −9.181 8.298 61.674 1.00 40.11 B 3551 O PHE 91 −9.541 7.203 62.137 1.00 38.76 B 3552 N MET 92 −7.964 8.810 61.669 1.00 40.90 B 3553 CA MET 92 −6.756 8.240 62.298 1.00 42.30 B 3554 CB MET 92 −6.922 8.184 63.809 1.00 45.50 B 3555 CG MET 92 −6.813 9.574 64.455 1.00 48.55 B 3556 SD MET 92 −5.374 10.491 63.932 1.00 52.06 B 3557 CE MET 92 −5.856 11.803 62.829 1.00 50.56 B 3558 C MET 92 −6.344 6.844 61.774 1.00 39.48 B 3559 O MET 92 −5.652 6.078 62.462 1.00 38.76 B 3560 N ALA 93 −6.751 6.502 60.566 1.00 33.86 B 3561 CA ALA 93 −6.259 5.267 59.929 1.00 28.92 B 3562 CB ALA 93 −7.151 4.893 58.740 1.00 28.58 B 3563 C ALA 93 −4.829 5.597 59.482 1.00 24.00 B 3564 O ALA 93 −4.475 6.779 59.352 1.00 24.33 B 3565 N PRO 94 −3.913 4.649 59.222 1.00 23.16 B 3566 CA PRO 94 −2.555 5.007 58.805 1.00 24.97 B 3567 CD PRO 94 −4.177 3.214 59.313 1.00 24.94 B 3568 CB PRO 94 −1.853 3.683 58.656 1.00 24.03 B 3569 CG PRO 94 −2.870 2.587 58.921 1.00 25.46 B 3570 C PRO 94 −2.618 5.644 57.448 1.00 23.80 B 3571 O PRO 94 −3.178 5.014 56.508 1.00 22.80 B 3572 N SER 95 −2.070 6.836 57.278 1.00 20.76 B 3573 CA SER 95 −2.154 7.500 55.953 1.00 21.62 B 3574 CB SER 95 −3.448 8.307 55.863 1.00 19.16 B 3575 OG SER 95 −3.519 9.222 56.949 1.00 22.28 B 3576 C SER 95 −0.995 8.481 55.709 1.00 20.95 B 3577 O SER 95 −1.043 9.263 54.758 1.00 16.39 B 3578 N LEU 96 −0.046 8.552 56.654 1.00 17.56 B 3579 CA LEU 96 1.080 9.424 56.446 1.00 17.73 B 3580 CB LEU 96 2.103 9.253 57.589 1.00 16.08 B 3581 CG LEU 96 3.280 10.249 57.467 1.00 17.92 B 3582 CD2 LEU 96 4.268 9.936 58.606 1.00 18.52 B 3583 CD1 LEU 96 2.838 11.689 57.558 1.00 17.61 B 3584 C LEU 96 1.813 9.125 55.113 1.00 16.99 B 3585 O LEU 96 2.327 10.088 54.586 1.00 16.66 B 3586 N ASN 97 2.105 7.878 54.759 1.00 18.09 B 3587 CA ASN 97 2.853 7.600 53.537 1.00 18.88 B 3588 CB ASN 97 3.082 6.088 53.331 1.00 18.39 B 3589 CG ASN 97 3.946 5.496 54.431 1.00 19.50 B 3590 OD1 ASN 97 4.562 6.212 55.213 1.00 18.63 B 3591 ND2 ASN 97 4.066 4.178 54.433 1.00 19.87 B 3592 C ASN 97 2.176 8.190 52.295 1.00 18.30 B 3593 O ASN 97 2.882 8.871 51.540 1.00 17.58 B 9594 N ALA 98 0.878 8.102 52.167 1.00 19.70 B 3595 CA ALA 98 0.097 8.722 51.085 1.00 20.62 B 3596 CB ALA 98 −1.383 8.349 51.171 1.00 18.93 B 3597 C ALA 98 0.178 10.236 51.134 1.00 20.78 B 3598 O ALA 98 0.296 10.916 50.093 1.00 18.66 B 3599 N ARG 99 0.082 10.825 52.357 1.00 16.74 B 3600 CA ARG 99 0.260 12.255 52.446 1.00 16.82 B 3601 CB ARG 99 0.044 12.787 53.895 1.00 16.52 B 3602 CG ARG 99 −1.419 12.583 54.302 1.00 20.92 B 3603 CD ARG 99 −1.621 12.631 55.803 1.00 19.06 B 3604 NE ARG 99 −2.864 12.011 56.311 1.00 19.61 B 3605 CZ ARG 99 −3.997 12.693 56.318 1.00 18.62 B 3606 NH1 ARG 99 −4.087 13.931 55.823 1.00 18.56 B 3607 NH2 ARG 99 −5.079 12.123 56.851 1.00 22.65 B 3608 C ARG 99 1.647 12.710 51.977 1.00 16.01 B 3609 O ARG 99 1.754 13.711 51.284 1.00 15.15 B 3610 N GLN 100 2.689 12.074 52.483 1.00 15.37 B 3611 CA GLN 100 4.052 12.421 52.139 1.00 16.70 B 3612 CB GLN 100 4.998 11.468 52.858 1.00 15.63 B 3613 CG GLN 100 5.091 11.699 54.391 1.00 16.85 B 3614 CD GLN 100 6.155 12.731 54.679 1.00 14.79 B 3615 OE1 GLN 100 7.229 12.413 55.226 1.00 19.37 B 3616 NE2 GLN 100 5.894 13.950 54.297 1.00 13.40 B 3617 C GLN 100 4.259 12.246 50.616 1.00 19.58 B 3618 O GLN 100 4.960 13.028 49.977 1.00 19.18 B 3619 N ASP 101 3.674 11.182 50.061 1.00 19.09 B 3620 CA ASP 101 3.804 10.974 48.619 1.00 23.21 B 3621 CB ASP 101 3.140 9.653 48.219 1.00 21.63 B 3622 CG ASP 101 4.041 8.544 48.692 1.00 23.42 B 3623 OD1 ASP 101 5.237 8.713 49.026 1.00 23.05 B 3624 OD2 ASP 101 3.570 7.417 48.716 1.00 25.55 B 3625 C ASP 101 3.272 12.181 47.866 1.00 23.52 B 3626 O ASP 101 3.964 12.531 46.902 1.00 27.58 B 3627 N LEU 102 2.221 12.858 48.283 1.00 21.41 B 3628 CA LEU 102 1.773 14.076 47.645 1.00 21.13 B 3629 CB LEU 102 0.365 14.429 48.148 1.00 22.49 B 3630 CG LEU 102 −0.719 14.969 47.244 1.00 25.86 B 3631 CD2 LEU 102 −0.230 15.575 45.936 1.00 22.99 B 3632 CD1 LEU 102 −1.777 15.837 47.887 1.00 23.24 B 3633 C LEU 102 2.661 15.269 47.949 1.00 18.50 B 3634 O LEU 102 3.124 16.027 47.084 1.00 15.10 B 3635 N VAL 103 2.771 15.633 49.228 1.00 16.27 B 3636 CA VAL 103 3.469 16.877 49.594 1.00 15.16 B 3637 CB VAL 103 3.174 17.330 51.057 1.00 16.22 B 3638 CG1 VAL 103 1.664 17.503 51.115 1.00 16.14 B 3639 CG2 VAL 103 3.685 16.265 52.039 1.00 17.61 B 3640 C VAL 103 4.969 16.889 49.413 1.00 14.13 B 3641 O VAL 103 5.475 18.019 49.242 1.00 16.57 B 3642 N VAL 104 5.700 15.810 49.419 1.00 13.95 B 3643 CA VAL 104 7.159 15.836 49.257 1.00 15.58 B 3644 CB VAL 104 7.781 14.480 49.613 1.00 18.18 B 3645 CG1 VAL 104 9.208 14.278 49.122 1.00 18.90 B 3646 CG2 VAL 104 7.778 14.409 15.183 1.00 17.37 B 3647 C VAL 104 7.551 16.307 47.837 1.00 18.14 B 3648 O VAL 104 8.523 17.070 47.718 1.00 16.71 B 3649 N THR 105 6.710 16.024 46.847 1.00 14.70 B 3650 CA THR 105 7.037 16.606 45.508 1.00 18.73 B 3651 CB THR 105 6.757 15.551 44.420 1.00 20.56 B 3652 OG1 THR 105 5.379 15.258 44.561 1.00 22.45 B 3653 CG2 THR 105 7.455 14.225 44.640 1.00 18.83 B 3654 C THR 105 6.171 17.837 45.343 1.00 16.87 B 3655 O THR 105 6.590 18.911 44.917 1.00 15.67 B 3656 N GLY 106 4.926 17.804 45.845 1.00 17.08 B 3657 CA GLY 106 4.009 18.958 45.686 1.00 15.04 B 3658 C GLY 106 4.554 20.276 46.177 1.00 16.72 B 3659 O GLY 106 4.402 21.388 45.604 1.00 14.12 B 3660 N VAL 107 5.157 20.223 47.400 1.00 14.76 B 3661 CA VAL 107 5.493 21.467 48.096 1.00 12.62 B 3662 CB VAL 107 5.833 21.140 49.586 1.00 13.87 B 3663 CG1 VAL 107 6.694 22.259 50.147 1.00 12.26 B 3664 CG2 VAL 107 4.536 20.989 50.402 1.00 12.29 B 3665 C VAL 107 6.582 22.191 47.332 1.00 8.49 B 3666 O VAL 107 6.511 23.407 47.078 1.00 11.80 B 3667 N PRO 108 7.674 21.564 46.995 1.00 11.13 B 3668 CA PRO 108 8.738 22.249 46.244 1.00 13.03 B 3669 CD PRO 108 8.030 20.167 47.314 1.00 11.98 B 3670 CB PRO 108 9.881 21.276 46.221 1.00 14.96 B 3671 CG PRO 108 9.373 19.937 46.672 1.00 14.09 B 3672 C PRO 108 8.248 22.686 44.846 1.00 14.75 B 3673 O PRO 108 8.700 23.764 44.357 1.00 14.99 B 3674 N MET 109 7.454 21.855 44.195 1.00 15.61 B 3675 CA MET 109 6.925 22.248 42.853 1.00 18.33 B 3676 CB MET 109 6.203 21.093 42.175 1.00 20.39 B 3677 CG MET 109 7.038 19.955 41.666 1.00 25.95 B 3678 SD MET 109 7.845 20.136 40.010 1.00 32.81 B 3679 CE MET 109 7.322 21.779 39.636 1.00 9.69 B 3680 C MET 109 6.056 23.481 42.878 1.00 17.89 B 3681 O MET 109 6.242 24.436 42.097 1.00 17.42 B 3682 N LEU 110 5.114 23.641 43.826 1.00 17.16 B 3683 CA LEU 110 4.337 24.836 44.023 1.00 16.55 B 3684 CB LEU 110 3.398 24.742 44.228 1.00 18.81 B 3685 CG LEU 110 1.993 25.234 45.279 1.00 22.87 B 3686 CD2 LEU 110 1.598 26.372 44.346 1.00 20.44 B 3687 CD1 LEU 110 1.416 25.406 46.675 1.00 18.22 B 3688 C LEU 110 5.252 25.999 44.394 1.00 15.66 B 3689 O LEU 110 5.045 27.150 43.989 1.00 17.04 B 3690 N GLY 111 6.234 25.742 45.248 1.00 13.74 B 3691 CA GLY 111 7.166 26.840 45.661 1.00 12.36 B 3692 C GLY 111 7.929 27.331 44.384 1.00 13.67 B 3693 O GLY 111 8.185 28.535 44.230 1.00 14.57 B 3694 N LYS 112 8.380 26.429 43.534 1.00 13.85 B 3695 CA LYS 112 9.083 26.871 42.300 1.00 15.97 B 3696 CB LYS 112 9.404 25.577 41.506 1.00 17.11 B 3697 CG LYS 112 10.259 25.800 40.255 1.00 19.11 B 3698 CD LYS 112 9.866 24.819 39.132 1.00 22.92 B 3699 CE LYS 112 8.518 25.307 38.571 1.00 25.00 B 3700 NZ LYS 112 8.040 24.390 37.463 1.00 29.56 B 3701 C LYS 112 8.194 27.809 41.497 1.00 14.17 B 3702 O LYS 112 8.645 28.821 40.925 1.00 16.44 B 3703 N GLU 113 6.905 27.506 41.360 1.00 16.44 B 3704 CA GLU 113 5.999 28.347 40.568 1.00 18.98 B 3705 CB GLU 113 4.598 27.718 40.523 1.00 20.29 B 3706 CG GLU 113 4.716 26.355 39.814 1.00 26.33 B 3707 CD GLU 113 3.450 25.543 39.850 1.00 30.51 B 3708 OE1 GLU 113 2.453 26.088 40.363 1.00 32.97 B 3709 OE2 GLU 113 3.469 24.372 39.401 1.00 32.07 B 3710 C GLU 113 5.940 29.758 41.105 1.00 18.82 B 3711 O GLU 113 5.968 30.776 40.398 1.00 14.21 B 3712 N ALA 114 5.826 29.871 42.452 1.00 16.47 B 3713 CA ALA 114 5.851 31.233 43.020 1.00 15.22 B 3714 CB ALA 114 5.549 31.121 44.535 1.00 15.63 B 3715 C ALA 114 7.223 31.849 42.825 1.00 10.70 B 3716 O ALA 114 7.346 33.059 42.621 1.00 13.91 B 3717 N ALA 115 8.294 31.104 43.001 1.00 11.13 B 3718 CA ALA 115 9.627 31.678 42.960 1.00 11.73 B 3719 CB ALA 115 10.620 30.551 43.272 1.00 11.44 B 3720 C ALA 115 9.995 32.182 41.534 1.00 13.25 B 3721 O ALA 115 10.562 33.247 41.379 1.00 12.18 B 3722 N VAL 116 9.506 31.445 40.532 1.00 14.93 B 3723 CA VAL 116 9.740 31.963 39.142 1.00 16.26 B 3724 CB VAL 116 9.111 30.988 38.122 1.00 17.09 B 3725 CG1 VAL 116 9.033 31.537 36.668 1.00 17.13 B 3726 CG2 VAL 116 9.980 29.733 38.100 1.00 17.69 B 3727 C VAL 116 9.129 33.334 38.971 1.00 17.01 B 3728 O VAL 116 9.738 34.250 38.418 1.00 18.24 B 3729 N LYS 117 7.908 33.529 39.490 1.00 18.30 B 3730 CA LYS 117 7.255 34.835 39.360 1.00 19.80 B 3731 CB LYS 117 5.810 34.793 39.887 1.00 16.76 B 3732 CG LYS 117 4.990 33.768 39.096 1.00 17.71 B 3733 CD LYS 117 3.540 33.813 39.556 1.00 20.14 B 3734 CE LYS 117 2.755 32.582 39.050 1.00 21.53 B 3735 NZ LYS 117 1.364 32.553 39.597 1.00 20.89 B 3736 C LYS 117 8.012 35.925 40.102 1.00 19.46 B 3737 O LYS 117 8.135 37.056 39.612 1.00 18.30 B 3738 N ALA 118 8.482 35.601 41.311 1.00 18.05 B 3739 CA ALA 118 9.255 36.602 42.058 1.00 17.77 B 3740 CB ALA 118 9.626 36.045 43.456 1.00 18.31 B 3741 C ALA 118 10.523 36.964 41.282 1.00 15.24 B 3742 O ALA 118 10.868 38.122 41.231 1.00 14.63 B 3743 N ILE 119 11.258 36.005 40.792 1.00 14.72 B 3744 CA ILE 119 12.501 36.173 40.069 1.00 18.19 B 3745 CB ILE 119 13.102 34.775 39.765 1.00 17.26 B 3746 CG2 ILE 119 14.281 34.889 38.784 1.00 17.26 B 3747 CG1 ILE 119 13.654 34.186 41.096 1.00 18.79 B 3748 CD1 ILE 119 14.055 32.715 40.937 1.00 17.54 B 3749 C ILE 119 12.289 36.979 38.760 1.00 19.59 B 3750 O ILE 119 13.059 37.877 38.470 1.00 20.21 B 3751 N ASP 120 11.186 36.719 38.090 1.00 20.62 B 3752 CA ASP 120 10.810 37.469 36.882 1.00 23.17 B 3753 CB ASP 120 9.577 36.841 36.232 1.00 21.94 B 3754 CG ASP 120 9.936 35.591 35.463 1.00 21.88 B 3755 OD1 ASP 120 9.058 34.818 35.026 1.00 25.46 B 3756 OD2 ASP 120 11.105 35.302 35.269 1.00 22.59 B 3757 C ASP 120 10.485 38.895 37.254 1.00 22.73 B 3758 O ASP 120 10.885 39.814 36.555 1.00 20.95 B 3759 N GLU 121 9.724 39.123 38.369 1.00 18.54 B 3760 CA GLU 121 9.479 40.507 38.702 1.00 17.30 B 3761 CB GLU 121 8.466 40.604 39.888 1.00 17.31 B 3762 CG GLU 121 8.541 41.968 40.550 1.00 18.93 B 3763 CD GLU 121 7.682 42.145 41.799 1.00 18.71 B 3764 OE1 GLU 121 7.084 41.230 42.354 1.00 18.98 B 3765 OE2 GLU 121 7.474 43.302 42.175 1.00 20.98 B 3766 C GLU 121 10.790 41.200 39.005 1.00 18.89 B 3767 O GLU 121 11.038 42.381 38.667 1.00 18.49 B 3768 N TRP 122 11.628 40.520 39.838 1.00 20.02 B 3769 CA TRP 122 12.885 41.167 40.274 1.00 18.53 B 3770 CB TRP 122 13.600 40.230 41.227 1.00 15.57 B 3771 CG TRP 122 14.963 40.579 41.739 1.00 15.73 B 3772 CD2 TRP 122 16.105 39.697 41.830 1.00 17.08 B 3773 CD1 TRP 122 15.397 41.759 42.256 1.00 15.07 B 3774 NE1 TRP 122 16.706 41.665 42.632 1.00 16.21 B 3775 CE2 TRP 122 17.162 40.416 42.388 1.00 16.20 B 3776 CE3 TRP 122 16.328 38.365 41.459 1.00 18.05 B 3777 CZ2 TRP 122 18.442 39.883 42.586 1.00 18.57 B 3778 CZ3 TRP 122 17.576 37.828 41.663 1.00 20.98 B 3779 CH2 TRP 122 18.620 38.587 42.237 1.00 20.09 B 3780 C TRP 122 13.725 41.503 39.025 1.00 21.21 B 3781 O TRP 122 14.425 42.510 39.032 1.00 19.09 B 3782 N GLY 123 13.902 40.536 38.089 1.00 20.57 B 3783 CA GLY 123 14.458 40.851 36.771 1.00 21.40 B 3784 C GLY 123 15.940 40.632 36.651 1.00 24.57 B 3785 O GLY 123 16.522 40.777 35.566 1.00 25.85 B 3786 N LEU 124 16.635 40.314 37.742 1.00 20.73 B 3787 CA LEU 124 18.065 40.067 37.759 1.00 19.80 B 3788 CB LEU 124 18.708 40.617 39.040 1.00 21.58 B 3789 CG LEU 124 19.051 42.117 38.993 1.00 23.70 B 3790 CD2 LEU 124 19.563 42.678 40.330 1.00 23.32 B 3791 CD1 LEU 124 17.873 42.977 38.544 1.00 24.78 B 3792 C LEU 124 18.354 38.592 37.589 1.00 19.77 B 3793 O LEU 124 17.457 37.799 37.853 1.00 19.79 B 3794 N PRO 125 19.570 38.236 37.228 1.00 20.42 B 3795 CA PRO 125 19.936 36.861 37.051 1.00 22.86 B 3796 CD PRO 125 20.662 39.172 36.902 1.00 23.62 B 3797 CB PRO 125 21.363 36.893 36.550 1.00 22.60 B 3798 CG PRO 125 21.722 38.309 36.274 1.00 26.47 B 3799 C PRO 125 19.768 36.095 38.372 1.00 22.74 B 3800 O PRO 125 20.269 36.477 39.430 1.00 21.45 B 3801 N LYS 126 19.305 34.852 38.295 1.00 22.24 B 3802 CA LYS 126 19.005 33.962 39.401 1.00 22.86 B 3803 CB LYS 126 18.124 32.803 38.957 1.00 21.06 B 3804 CG LYS 126 18.929 31.758 38.167 1.00 23.82 B 3805 CD LYS 126 17.961 30.789 37.457 1.00 22.32 B 3806 CE LYS 126 18.845 29.884 36.561 1.00 22.15 B 3807 NZ LYS 126 17.961 28.791 36.027 1.00 24.49 B 3808 C LYS 126 20.307 33.530 40.074 1.00 22.44 B 3809 O LYS 126 20.382 33.087 41.219 1.00 21.24 B 3771 N SER 127 21.377 33.758 39.322 0.50 22.04 B 3772 CA SER 127 22.744 33.422 39.735 0.50 21.83 B 3773 CB SER 127 23.690 33.643 38.551 0.50 22.82 B 3774 OG SER 127 25.038 33.511 38.964 0.50 23.43 B 3775 C SER 127 23.167 34.313 40.913 0.50 21.05 B 3776 O SER 127 24.060 33.968 41.696 0.50 19.60 B 3771 N 2SER 127 21.411 33.697 39.339 0.50 19.47 B 3772 CA 2SER 127 22.756 33.339 39.826 0.50 17.14 B 3773 CB 2SER 127 23.775 33.421 38.687 0.50 14.50 B 3774 OG 2SER 127 23.950 34.771 38.291 0.50 7.29 B 3775 C 2SER 127 23.181 34.295 40.956 0.50 18.17 B 3776 O 2SER 127 24.097 34.012 41.735 0.50 16.66 B 3822 N LYS 128 22.533 35.469 41.031 1.00 19.04 B 3823 CA LYS 128 22.783 36.427 42.081 1.00 20.72 B 3824 CB LYS 128 22.502 37.849 41.671 1.00 23.49 B 3825 CG LYS 128 23.389 38.410 40.542 1.00 30.20 B 3826 CD LYS 128 23.026 39.874 40.340 1.00 33.60 B 3827 CE LYS 128 23.822 40.578 39.232 1.00 37.82 B 3828 NZ LYS 128 25.202 40.880 39.721 1.00 39.55 B 3829 C LYS 128 21.986 36.062 43.377 1.00 21.66 B 3830 O LYS 128 22.241 36.770 44.382 1.00 20.03 B 3831 N ILE 129 21.230 34.978 43.388 1.00 18.10 B 3832 CA ILE 129 20.581 34.590 44.680 1.00 16.54 B 3833 CB ILE 129 19.316 33.782 44.401 1.00 15.71 B 3834 CG2 ILE 129 18.718 33.127 45.663 1.00 11.23 B 3835 CG1 ILE 129 18.307 34.710 43.694 1.00 13.07 B 3836 CD1 ILE 129 17.061 33.962 43.180 1.00 15.51 B 3837 C ILE 129 21.608 33.872 45.536 1.00 16.68 B 3838 O ILE 129 22.165 32.871 45.084 1.00 15.39 B 3839 N THR 130 21.957 34.462 46.705 1.00 15.34 B 3840 CA THR 130 23.024 33.843 47.513 1.00 14.69 B 3841 CB THR 130 23.876 34.966 48.174 1.00 14.81 B 3842 OG1 THR 130 23.019 35.931 48.807 1.00 13.89 B 3843 CG2 THR 130 24.706 35.623 47.041 1.00 17.84 B 3844 C THR 130 22.560 32.969 48.666 1.00 14.07 B 3845 O THR 130 23.308 32.122 49.204 1.00 16.08 B 3846 N HIS 131 21.310 33.169 49.095 1.00 15.00 B 3847 CA HIS 131 20.714 32.452 50.195 1.00 13.80 B 3848 ND1 HIS 131 22.691 34.795 51.389 1.00 13.62 B 3849 CG HIS 131 21.955 33.803 52.010 1.00 13.18 B 3850 CB HIS 131 20.636 33.364 51.471 1.00 10.47 B 3851 NE2 HIS 131 23.869 34.135 53.120 1.00 13.50 B 3852 CD2 HIS 131 22.700 33.398 53.113 1.00 12.01 B 3853 CE1 HIS 131 23.806 35.011 52.079 1.00 15.38 B 3854 C HIS 131 19.298 32.060 49.795 1.00 12.63 B 3855 O HIS 131 18.634 32.863 49.200 1.00 13.50 B 3856 N LEU 132 18.831 30.924 50.313 1.00 13.69 B 3857 CA LEU 132 17.473 30.501 50.116 1.00 13.61 B 3858 CB LEU 132 17.465 29.221 49.300 1.00 10.62 B 3859 CG LEU 132 16.188 28.382 49.191 1.00 14.13 B 3860 CD2 LEU 132 16.455 27.089 48.383 1.00 13.36 B 3861 CD1 LEU 132 15.047 29.149 48.528 1.00 13.56 B 3862 C LEU 132 16.859 30.046 51.484 1.00 12.52 B 3863 O LEU 132 17.454 29.195 52.156 1.00 12.11 B 3864 N ILE 133 15.703 30.529 51.771 1.00 14.80 B 3865 CA ILE 133 14.955 30.109 52.986 1.00 14.31 B 3866 CB ILE 133 14.503 31.334 53.827 1.00 13.70 B 3867 CG2 ILE 133 13.588 30.819 54.982 1.00 12.52 B 3868 CG1 ILE 133 15.708 32.115 54.373 1.00 11.45 B 3869 CD1 ILE 133 15.251 33.498 54.892 1.00 11.04 B 3870 C ILE 133 13.698 29.400 52.468 1.00 12.62 B 3871 O ILE 133 12.926 30.087 51.772 1.00 13.96 B 3872 N PHE 134 13.557 28.112 52.687 1.00 11.67 B 3873 CA PHE 134 12.387 27.393 52.260 1.00 13.85 B 3874 CB PHE 134 12.714 26.049 51.589 1.00 12.44 B 3875 CG PHE 134 11.558 25.525 50.779 1.00 15.70 B 3876 CD1 PHE 134 11.633 25.605 49.361 1.00 15.31 B 3877 CD2 PHE 134 10.465 24.922 51.345 1.00 13.44 B 3878 CE1 PHE 134 10.524 25.216 48.602 1.00 13.92 B 3879 CE2 PHE 134 9.372 24.541 50.599 1.00 16.57 B 3880 CZ PHE 134 9.395 24.662 49.177 1.00 15.48 B 3881 C PHE 134 11.600 27.049 53.534 1.00 15.97 B 3882 O PHE 134 12.189 26.468 54.472 1.00 17.75 B 3883 N CYS 135 10.317 27.448 53.505 1.00 15.45 B 3884 CA CYS 135 9.525 27.205 54.713 1.00 15.67 B 3885 CB CYS 135 9.230 28.599 55.339 1.00 13.03 B 3886 SG CYS 135 8.086 28.444 56.781 1.00 16.09 B 3887 C CYS 135 8.214 26.506 54.398 1.00 15.14 B 3888 O CYS 135 7.553 26.840 53.391 1.00 14.64 B 3889 N THR 136 7.863 25.473 55.117 1.00 13.63 B 3890 CA THR 136 6.561 24.815 54.979 1.00 12.82 B 3891 CB THR 136 6.643 23.692 53.922 1.00 12.52 B 3892 OG1 THR 136 5.357 23.124 53.577 1.00 11.56 B 3893 CG2 THR 136 7.466 22.493 54.370 1.00 11.76 B 3894 C THR 136 6.142 24.172 56.325 1.00 15.90 B 3895 O THR 136 6.981 23.951 57.241 1.00 15.74 B 3896 N THR 137 4.918 23.685 56.351 1.00 12.71 B 3897 CA THR 137 4.337 22.970 57.499 1.00 15.88 B 3898 CB THR 137 3.199 23.846 58.086 1.00 16.07 B 3899 OG1 THR 137 3.652 25.180 58.268 1.00 12.64 B 3900 CG2 THR 137 2.703 23.341 59.442 1.00 17.89 B 3901 C THR 137 3.803 21.607 57.027 1.00 16.70 B 3902 O THR 137 3.213 20.843 57.800 1.00 15.33 B 3903 N ALA 138 4.045 21.306 55.754 1.00 14.66 B 3904 CA ALA 138 3.515 20.073 55.135 1.00 16.54 B 3905 CB ALA 138 2.639 20.440 53.934 1.00 16.96 B 3906 C ALA 138 4.617 19.108 54.641 1.00 17.90 B 3907 O ALA 138 5.237 19.333 53.590 1.00 18.24 B 3908 N GLY 139 4.797 18.047 55.433 1.00 16.63 B 3909 CA GLY 139 5.744 16.930 55.156 1.00 16.95 B 3910 C GLY 139 7.213 17.318 55.420 1.00 14.53 B 3911 O GLY 139 7.534 18.479 55.683 1.00 15.64 B 3912 N VAL 140 8.063 16.293 55.362 1.00 11.63 B 3913 CA VAL 140 9.539 16.427 55.474 1.00 13.84 B 3914 CB VAL 140 10.068 16.286 56.910 1.00 13.57 B 3915 CG1 VAL 140 9.407 17.238 57.900 1.00 14.46 B 3916 CG2 VAL 140 9.903 14.878 57.479 1.00 13.38 B 3917 C VAL 140 10.187 15.325 54.649 1.00 12.93 B 3918 O VAL 140 9.553 14.310 54.338 1.00 17.79 B 3919 N ASP 141 11.436 15.542 54.315 1.00 11.30 B 3920 CA ASP 141 12.199 14.589 53.500 1.00 12.34 B 3921 CB ASP 141 11.666 14.626 52.064 1.00 12.43 B 3922 CG ASP 141 12.068 13.405 51.242 1.00 15.41 B 3923 OD1 ASP 141 12.095 12.240 51.790 1.00 16.79 B 3924 OD2 ASP 141 12.381 13.541 50.000 1.00 18.27 B 3925 C ASP 141 13.674 14.980 53.510 1.00 10.73 B 3926 O ASP 141 14.030 16.115 53.838 1.00 13.73 B 3927 N MET 142 14.519 14.031 53.152 1.00 12.08 B 3928 CA MET 142 15.977 14.258 53.095 1.00 12.54 B 3929 CB MET 142 16.665 13.534 54.250 1.00 12.42 B 3930 CG MET 142 16.027 13.847 55.607 1.00 14.21 B 3931 SD MET 142 16.996 13.260 56.976 1.00 17.74 B 3932 CE MET 142 18.395 14.329 57.212 1.00 14.81 B 3933 C MET 142 16.518 13.753 51.747 1.00 14.99 B 3934 O MET 142 16.298 12.575 51.633 1.00 13.32 B 3935 N PRO 143 17.168 14.569 50.956 1.00 15.48 B 3936 CA PRO 143 17.386 15.952 50.963 1.00 14.25 B 3937 CD PRO 143 17.681 14.048 49.648 1.00 15.23 B 3938 CB PRO 143 17.922 16.387 49.585 1.00 15.85 B 3939 CG PRO 143 18.496 15.137 49.018 1.00 16.12 B 3940 C PRO 143 16.059 16.669 51.159 1.00 13.65 B 3941 O PRO 143 15.046 16.034 50.841 1.00 13.35 B 3942 N GLY 144 16.011 17.906 51.657 1.00 12.74 B 3943 CA GLY 144 14.736 18.559 51.848 1.00 14.31 B 3944 C GLY 144 14.163 19.311 50.635 1.00 16.74 B 3945 O GLY 144 14.744 19.323 49.539 1.00 15.00 B 3946 N ALA 145 13.024 19.963 50.870 1.00 14.69 B 3947 CA ALA 145 12.360 20.742 49.851 1.00 16.45 B 3948 CB ALA 145 11.001 21.327 50.283 1.00 11.78 B 3949 C ALA 145 13.284 21.862 49.365 1.00 19.61 B 3950 O ALA 145 13.128 22.261 48.195 1.00 16.59 B 3951 N ASP 146 14.180 22.370 50.228 1.00 17.60 B 3952 CA ASP 146 15.134 23.390 49.763 1.00 18.57 B 3953 CB ASP 146 16.007 23.868 50.924 1.00 18.75 B 3954 CG ASP 146 16.880 22.821 51.582 1.00 17.58 B 3955 OD1 ASP 146 16.448 21.685 51.824 1.00 15.16 B 3956 OD2 ASP 146 18.073 23.072 51.863 1.00 16.33 B 3957 C ASP 146 16.048 22.859 48.646 1.00 18.92 B 3958 O ASP 146 16.314 23.574 47.647 1.00 17.71 B 3959 N TYR 147 16.551 21.644 48.806 1.00 18.73 B 3960 CA TYR 147 17.408 21.022 47.785 1.00 19.64 B 3961 CB TYR 147 17.912 19.647 48.251 1.00 20.61 B 3962 CG TYR 147 18.494 18.797 47.138 1.00 20.41 B 3963 CD1 TYR 147 19.822 18.953 46.757 1.00 21.27 B 3964 CD2 TYR 147 17.714 17.888 46.456 1.00 20.47 B 3965 CE1 TYR 147 20.376 18.182 45.758 1.00 23.19 B 3966 CE2 TYR 147 18.229 17.143 45.413 1.00 21.89 B 3967 CZ TYR 147 19.566 17.297 45.083 1.00 24.50 B 3968 OH TYR 147 20.091 16.548 44.065 1.00 27.67 B 3969 C TYR 147 16.567 20.859 46.524 1.00 19.01 B 3970 O TYR 147 17.125 21.097 45.442 1.00 16.71 B 3971 N GLN 148 15.339 20.338 46.702 1.00 17.26 B 3972 CA GLN 148 14.500 20.165 45.529 1.00 17.98 B 3973 CB GLN 148 13.155 19.513 45.800 1.00 18.27 B 3974 CG GLN 148 13.239 18.213 46.580 1.00 18.49 B 3975 CD GLN 148 13.942 17.102 45.857 1.00 20.89 B 3976 OE1 GLN 148 14.271 17.217 44.645 1.00 19.88 B 3977 NE2 GLN 148 14.188 15.962 46.529 1.00 17.86 B 3978 C GLN 148 14.258 21.474 44.775 1.00 19.24 B 3979 O GLN 148 14.315 21.503 43.516 1.00 17.75 B 3980 N LEU 149 14.073 22.586 45.489 1.00 16.00 B 3981 CA LEU 149 13.885 23.879 44.884 1.00 16.60 B 3982 CB LEU 149 13.565 24.981 45.874 1.00 19.06 B 3983 CG LEU 149 12.552 26.080 45.648 1.00 22.52 B 3984 CD2 LEU 149 11.949 26.222 44.259 1.00 18.04 B 3985 CD1 LEU 149 13.010 27.450 46.157 1.00 19.02 B 3986 C LEU 149 15.121 24.303 44.105 1.00 17.15 B 3987 O LEU 149 14.996 24.881 42.998 1.00 14.65 B 3988 N VAL 150 16.318 24.197 44.657 1.00 17.09 B 3989 CA VAL 150 17.492 24.627 43.893 1.00 20.33 B 3990 CB VAL 150 18.833 24.701 44.611 1.00 22.76 B 3991 CG1 VAL 150 18.725 24.838 46.133 1.00 19.08 B 3992 CG2 VAL 150 19.885 23.730 44.138 1.00 23.75 B 3993 C VAL 150 17.620 23.854 42.558 1.00 20.24 B 3994 O VAL 150 18.023 24.474 41.566 1.00 18.63 B 3995 N LYS 151 17.357 22.565 42.591 1.00 18.77 B 3996 CA LYS 151 17.432 21.733 41.387 1.00 23.02 B 3997 CB LYS 151 17.289 20.272 41.809 1.00 26.22 B 3998 CG LYS 151 17.340 19.281 40.655 1.00 31.92 B 3999 CD LYS 151 17.313 17.833 41.158 1.00 35.35 B 4000 CE LYS 151 17.095 16.899 39.977 1.00 38.72 B 4001 NZ LYS 151 16.732 15.510 40.368 1.00 40.45 B 4002 C LYS 151 16.347 22.157 40.397 1.00 22.83 B 4003 O LYS 151 16.602 22.340 39.197 1.00 21.60 B 4004 N LEU 152 15.135 22.388 40.901 1.00 18.66 B 4005 CA LEU 152 14.031 22.838 40.101 1.00 20.27 B 4006 CB LEU 152 12.710 22.942 40.869 1.00 18.41 B 4007 CG LEU 152 12.055 21.606 41.224 1.00 20.69 B 4008 CD2 LEU 152 11.777 20.767 39.966 1.00 20.82 B 4009 CD1 LEU 152 10.743 21.748 41.980 1.00 20.71 B 4010 C LEU 152 14.334 24.174 39.434 1.00 20.96 B 4011 O LEU 152 13.898 24.429 38.289 1.00 17.97 B 4012 N LEU 153 14.860 25.139 40.188 1.00 17.62 B 4013 CA LEU 153 15.090 26.448 39.656 1.00 18.67 B 4014 CB LEU 153 15.113 27.525 40.772 1.00 18.54 B 4015 CG LEU 153 13.801 27.873 41.437 1.00 21.12 B 4016 CD2 LEU 153 12.835 28.385 40.361 1.00 21.73 B 4017 CD1 LEU 153 14.086 28.944 42.521 1.00 18.00 B 4018 C LEU 153 16.448 26.607 38.957 1.00 18.37 B 4019 O LEU 153 16.610 27.671 38.360 1.00 16.57 B 4020 N GLY 154 17.373 25.682 39.144 1.00 16.87 B 4021 CA GLY 154 18.735 25.830 38.659 1.00 19.10 B 4022 C GLY 154 19.551 26.891 39.420 1.00 21.21 B 4023 O GLY 154 20.314 27.728 38.876 1.00 17.48 B 4024 N LEU 155 19.371 26.925 40.779 1.00 18.68 B 4025 CA LEU 155 20.067 27.957 41.524 1.00 16.73 B 4026 CB LEU 155 19.511 28.195 42.947 1.00 17.33 B 4027 CG LEU 155 18.089 28.739 42.990 1.00 18.53 B 4028 CD2 LEU 155 17.948 30.088 42.289 1.00 14.57 B 4029 CD1 LEU 155 17.592 28.954 44.424 1.00 18.35 B 4030 C LEU 155 21.502 27.466 41.709 1.00 15.61 B 4031 O LEU 155 21.814 26.294 41.461 1.00 15.82 B 4032 N SER 156 22.364 28.347 42.143 1.00 16.10 B 4033 CA SER 156 23.761 27.979 42.394 1.00 17.10 B 4034 CB SER 156 24.503 29.164 43.010 1.00 17.29 B 4035 OG SER 156 25.755 28.741 43.526 1.00 19.70 B 4036 C SER 156 23.809 26.790 43.369 1.00 19.78 B 4037 O SER 156 23.096 26.770 44.387 1.00 19.11 B 4038 N PRO 157 24.606 25.738 43.092 1.00 20.69 B 4039 CA PRO 157 24.751 24.620 44.010 1.00 20.98 B 4040 CD PRO 157 25.386 25.629 41.857 1.00 24.06 B 4041 CB PRO 157 25.663 23.656 43.289 1.00 22.99 B 4042 CG PRO 157 26.029 24.277 41.954 1.00 26.97 B 4043 C PRO 157 25.367 25.061 45.321 1.00 18.59 B 4044 O PRO 157 25.312 24.278 46.321 1.00 16.51 B 4045 N SER 158 25.931 26.262 45.315 1.00 15.55 B 4046 CA SER 158 26.589 26.829 46.508 1.00 15.78 B 4047 CB SER 158 27.912 27.494 46.129 1.00 16.03 B 4048 OG SER 158 28.903 26.496 45.929 1.00 19.38 B 4049 C SER 158 25.698 27.871 47.210 1.00 14.51 B 4050 O SER 158 26.160 28.654 48.048 1.00 15.60 B 4051 N VAL 159 24.418 27.891 46.868 1.00 15.32 B 4052 CA VAL 159 23.476 28.808 47.539 1.00 16.28 B 4053 CB VAL 159 22.115 28.783 46.845 1.00 18.85 B 4054 CG1 VAL 159 21.381 27.456 47.026 1.00 18.11 B 4055 CG2 VAL 159 21.168 29.871 47.362 1.00 18.08 B 4056 C VAL 159 23.358 28.337 49.028 1.00 14.43 B 4057 O VAL 159 23.384 27.162 49.311 1.00 14.48 B 4058 N LYS 160 23.404 29.274 49.965 1.00 15.01 B 4059 CA LYS 160 23.265 28.918 51.398 1.00 14.62 B 4060 CB LYS 160 23.819 30.055 52.286 1.00 12.92 B 4061 CG LYS 160 25.364 29.932 52.258 1.00 16.86 B 4062 CD LYS 160 25.946 31.113 53.073 1.00 19.51 B 4063 CE LYS 160 27.425 30.781 53.328 1.00 22.56 B 4064 NZ LYS 160 28.082 31.954 54.012 1.00 23.85 B 4065 C LYS 160 21.809 28.709 51.739 1.00 11.89 B 4066 O LYS 160 21.015 29.592 51.502 1.00 16.13 B 4067 N ARG 161 21.442 27.560 52.268 1.00 13.89 B 4068 CA ARG 161 20.056 27.201 52.491 1.00 13.32 B 4069 CB ARG 161 19.838 25.813 51.845 1.00 15.41 B 4070 CG ARG 161 20.039 25.987 50.298 1.00 14.72 B 4071 CD ARG 161 19.982 24.565 49.751 1.00 17.76 B 4072 NE ARG 161 21.232 23.881 49.799 1.00 18.42 B 4073 CZ ARG 161 21.439 22.631 50.214 1.00 19.63 B 4074 NH1 ARG 161 20.545 21.803 50.732 1.00 19.49 B 4075 NH2 ARG 161 22.679 22.215 50.091 1.00 17.19 B 4076 C ARG 161 19.645 27.069 53.960 1.00 15.16 B 4077 O ARG 161 20.500 26.898 54.811 1.00 13.02 B 4078 N TYR 162 18.384 27.386 54.235 1.00 14.69 B 4079 CA TYR 162 17.778 27.412 55.579 1.00 15.19 B 4080 CB TYR 162 17.548 28.876 56.044 1.00 12.87 B 4081 CG TYR 162 18.884 29.590 56.047 1.00 17.46 B 4082 CD1 TYR 162 19.346 30.166 54.832 1.00 18.22 B 4083 CD2 TYR 162 19.743 29.587 57.114 1.00 15.37 B 4084 CE1 TYR 162 20.636 30.675 54.725 1.00 18.15 B 4085 CE2 TYR 162 20.998 30.152 57.047 1.00 18.00 B 4086 CZ TYR 162 21.457 30.678 55.838 1.00 18.75 B 4087 OH TYR 162 22.718 31.197 55.742 1.00 15.82 B 4088 C TYR 162 16.477 26.633 55.469 1.00 12.63 B 4089 O TYR 162 15.534 27.175 54.891 1.00 12.26 B 4090 N MET 163 16.504 25.347 55.794 1.00 11.79 B 4091 CA MET 163 15.323 24.518 55.566 1.00 10.61 B 4092 CB MET 163 15.736 23.119 55.177 1.00 11.00 B 4093 CG MET 163 14.681 22.041 54.967 1.00 13.38 B 4094 SD MET 163 13.633 22.462 53.513 1.00 14.69 B 4095 CE MET 163 12.076 22.822 54.259 1.00 15.70 B 4096 C MET 163 14.426 24.539 56.819 1.00 13.04 B 4097 O MET 163 14.803 23.911 57.803 1.00 10.67 B 4098 N LEU 164 13.322 25.245 56.711 1.00 10.75 B 4099 CA LEU 164 12.401 25.344 57.836 1.00 13.62 B 4100 CB LEU 164 12.033 26.797 57.972 1.00 9.42 B 4101 CG LEU 164 13.204 27.778 57.991 1.00 11.22 B 4102 CD2 LEU 164 14.160 27.441 59.168 1.00 11.90 B 4103 CD1 LEU 164 12.699 29.208 58.119 1.00 12.06 B 4104 C LEU 164 11.181 24.457 57.667 1.00 13.25 B 4105 O LEU 164 10.297 24.801 56.870 1.00 14.17 B 4106 N TYR 165 11.170 23.345 58.378 1.00 11.58 B 4107 CA TYR 165 10.071 22.417 58.360 1.00 12.91 B 4108 CB TYR 165 10.715 21.024 58.356 1.00 14.17 B 4109 CG TYR 165 10.993 20.431 56.983 1.00 16.40 B 4110 CD1 TYR 165 10.019 20.425 55.997 1.00 14.42 B 4111 CD2 TYR 165 12.233 19.860 56.727 1.00 15.87 B 4112 CE1 TYR 165 10.306 19.865 54.749 1.00 15.74 B 4113 CE2 TYR 165 12.515 19.284 55.511 1.00 17.46 B 4114 CZ TYR 165 11.536 19.303 54.522 1.00 16.09 B 4115 OH TYR 165 11.844 18.754 53.306 1.00 15.51 B 4116 C TYR 165 9.179 22.465 59.639 1.00 15.72 B 4117 O TYR 165 9.624 22.937 60.669 1.00 14.13 B 4118 N GLN 166 7.953 22.041 59.464 1.00 15.27 B 4119 CA GLN 166 6.925 21.948 60.475 1.00 16.47 B 4120 CB GLN 166 7.300 20.779 61.448 1.00 17.57 B 4121 CG GLN 166 6.035 20.172 62.121 1.00 15.02 B 4122 CD GLN 166 5.209 19.481 61.039 1.00 19.41 B 4123 OE1 GLN 166 3.974 19.675 60.933 1.00 23.78 B 4124 NE2 GLN 166 5.823 18.751 60.159 1.00 14.10 B 4125 C GLN 166 6.779 23.277 61.172 1.00 17.19 B 4126 O GLN 166 6.732 23.328 62.400 1.00 17.83 B 4127 N GLN 167 6.599 24.364 60.416 1.00 15.33 B 4128 CA GLN 167 6.768 25.691 60.950 1.00 14.50 B 4129 CB GLN 167 7.478 26.633 59.969 1.00 13.31 B 4130 CG GLN 167 8.910 26.209 59.712 1.00 12.29 B 4131 CD GLN 167 9.882 26.490 60.882 1.00 14.10 B 4132 OE1 GLN 167 9.991 27.627 61.346 1.00 16.04 B 4133 NE2 GLN 167 10.684 25.468 61.202 1.00 14.15 B 4134 C GLN 167 5.469 26.312 61.429 1.00 17.24 B 4135 O GLN 167 5.526 27.061 62.431 1.00 17.67 B 4136 N GLY 168 4.351 26.064 60.787 1.00 14.58 B 4137 CA GLY 168 3.075 26.597 61.180 1.00 13.86 B 4138 C GLY 168 2.876 28.061 60.889 1.00 14.55 B 4139 O GLY 168 3.556 28.794 60.162 1.00 14.79 B 4140 N CSD 169 1.679 28.595 61.368 1.00 14.63 B 4141 CA CSD 169 1.151 29.891 61.068 1.00 15.32 B 4142 CB CSD 169 −0.314 30.034 61.451 1.00 15.26 B 4143 SG CSD 169 −1.445 28.797 60.749 1.00 18.83 B 4144 C CSD 169 1.842 31.150 61.523 1.00 16.05 B 4145 O CSD 169 1.478 32.204 60.949 1.00 19.74 B 4146 OD1 CSD 169 −2.304 29.596 61.102 1.00 29.98 B 4147 OD2 CSD 169 −1.735 27.340 61.201 1.00 29.91 B 4148 N ALA 170 2.841 31.159 62.375 1.00 14.11 B 4149 CA ALA 170 3.557 32.429 62.584 1.00 15.04 B 4150 CB ALA 170 4.094 32.429 64.055 1.00 12.79 B 4151 C ALA 170 4.749 32.582 61.636 1.00 12.99 B 4152 O ALA 170 5.405 33.630 61.710 1.00 12.65 B 4153 N ALA 171 5.062 31.549 60.824 1.00 12.80 B 4154 CA ALA 171 6.321 31.472 60.150 1.00 13.82 B 4155 CB ALA 171 6.710 30.063 59.688 1.00 13.84 B 4156 C ALA 171 6.520 32.369 58.919 1.00 12.96 B 4157 O ALA 171 7.665 32.562 58.496 1.00 14.95 B 4158 N GLY 172 5.494 33.072 58.472 1.00 13.38 B 4159 CA GLY 172 5.613 34.140 57.526 1.00 14.64 B 4160 C GLY 172 6.401 35.275 58.204 1.00 17.82 B 4161 O GLY 172 7.195 35.990 57.566 1.00 15.56 B 4162 N GLY 173 6.159 35.494 59.531 1.00 14.07 B 4163 CA GLY 173 7.035 36.391 60.271 1.00 13.12 B 4164 C GLY 173 8.426 35.844 60.453 1.00 13.41 B 4165 O GLY 173 9.432 36.571 60.226 1.00 13.75 B 4166 N THR 174 8.518 34.516 60.695 1.00 13.80 B 4167 CA THR 174 9.851 33.931 60.889 1.00 16.34 B 4168 CB THR 174 9.705 32.413 61.072 1.00 16.10 B 4169 OG1 THR 174 8.763 32.177 62.132 1.00 16.09 B 4170 CG2 THR 174 11.005 31.719 61.429 1.00 13.71 B 4171 C THR 174 10.743 34.166 59.656 1.00 15.77 B 4172 O THR 174 11.950 34.449 59.778 1.00 12.21 B 4173 N VAL 175 10.135 33.979 58.440 1.00 14.73 B 4174 CA VAL 175 11.040 34.031 57.264 1.00 12.67 B 4175 CB VAL 175 10.428 33.481 55.984 1.00 9.99 B 4176 CG1 VAL 175 10.131 31.981 56.153 1.00 8.69 B 4177 CG2 VAL 175 9.074 34.126 55.663 1.00 7.67 B 4178 C VAL 175 11.567 35.457 57.107 1.00 10.97 B 4179 O VAL 175 12.715 35.616 56.683 1.00 14.18 B 4180 N LEU 176 10.744 36.452 57.348 1.00 11.34 B 4181 CA LEU 176 11.146 37.852 57.284 1.00 14.55 B 4182 CB LEU 176 9.932 38.748 57.449 1.00 16.10 B 4183 CG LEU 176 8.851 38.597 56.357 1.00 20.08 B 4184 CD2 LEU 176 9.477 38.939 55.004 1.00 20.87 B 4185 CD1 LEU 176 7.659 39.490 56.615 1.00 18.48 B 4186 C LEU 176 12.204 38.154 58.334 1.00 14.60 B 4187 O LEU 176 13.225 38.814 58.052 1.00 13.72 B 4188 N ARG 177 11.989 37.637 59.562 1.00 14.11 B 4189 CA ARG 177 13.035 37.819 60.615 1.00 11.32 B 4190 CB ARG 177 12.440 37.125 61.879 1.00 11.84 B 4191 CG ARG 177 13.463 37.052 63.039 1.00 10.17 B 4192 CD ARG 177 12.575 36.798 64.308 1.00 10.62 B 4193 NE ARG 177 11.849 35.547 64.299 1.00 9.67 B 4194 CZ ARG 177 12.308 34.343 64.503 1.00 10.77 B 4195 NH1 ARG 177 13.600 34.147 64.768 1.00 14.32 B 4196 NH2 ARG 177 11.548 33.268 64.517 1.00 13.53 B 4197 C ARG 177 14.384 37.265 60.283 1.00 10.45 B 4198 O ARG 177 15.477 37.897 60.453 1.00 11.55 B 4199 N LEU 178 14.432 36.029 59.766 1.00 12.38 B 4200 CA LEU 178 15.626 35.379 59.269 1.00 13.93 B 4201 CB LEU 178 15.389 33.915 58.876 1.00 13.12 B 4202 CG LEU 178 16.561 33.133 58.286 1.00 13.30 B 4203 CD2 LEU 178 16.148 31.669 58.010 1.00 13.86 B 4204 CD1 LEU 178 17.777 33.097 59.247 1.00 13.76 B 4205 C LEU 178 16.230 36.152 58.070 1.00 14.61 B 4206 O LEU 178 17.436 36.374 58.000 1.00 11.90 B 4207 N ALA 179 15.446 36.396 57.004 1.00 15.55 B 4208 CA ALA 179 16.003 37.056 55.817 1.00 15.86 B 4209 CB ALA 179 14.861 37.312 54.792 1.00 15.94 B 4210 C ALA 179 16.606 38.423 56.114 1.00 16.96 B 4211 O ALA 179 17.615 38.838 55.565 1.00 17.41 B 4212 N LYS 180 15.988 39.189 57.028 1.00 17.85 B 4213 CA LYS 180 16.568 40.453 57.494 1.00 15.94 B 4214 CB LYS 180 15.667 41.086 58.560 1.00 19.01 B 4215 CG LYS 180 16.295 42.352 59.178 1.00 17.50 B 4216 CD LYS 180 15.147 43.189 59.748 1.00 18.63 B 4217 CE LYS 180 15.715 44.188 60.760 1.00 17.33 B 4218 NZ LYS 180 16.291 45.411 60.149 1.00 15.67 B 4219 C LYS 180 17.996 40.304 57.985 1.00 16.75 B 4220 O LYS 180 18.892 41.039 57.514 1.00 14.40 B 4221 N ASP 181 18.322 39.325 58.833 1.00 15.83 B 4222 CA ASP 181 19.697 39.191 59.317 1.00 14.80 B 4223 CB ASP 181 19.735 38.260 60.541 1.00 17.26 B 4224 CG ASP 181 19.301 38.908 61.876 1.00 16.08 B 4225 OD1 ASP 181 19.535 40.104 62.061 1.00 17.86 B 4226 OD2 ASP 181 18.712 38.258 62.743 1.00 15.80 B 4227 C ASP 181 20.653 38.688 58.227 1.00 16.10 B 4228 O ASP 181 21.795 39.120 58.095 1.00 16.73 B 4229 N LEU 182 20.259 37.715 57.430 1.00 15.21 B 4230 CA LEU 182 21.100 37.248 56.316 1.00 16.66 B 4231 CB LEU 182 20.380 36.146 55.547 1.00 16.39 B 4232 CG LEU 182 19.886 34.942 56.342 1.00 17.06 B 4233 CD2 LEU 182 21.100 34.312 57.009 1.00 17.01 B 4234 CD1 LEU 182 19.172 33.904 55.496 1.00 17.11 B 4235 C LEU 182 21.434 38.389 55.353 1.00 14.47 B 4236 O LEU 182 22.614 38.578 55.050 1.00 17.95 B 4237 N ALA 183 20.461 39.166 54.954 1.00 15.14 B 4238 CA ALA 183 20.652 40.215 53.938 1.00 17.15 B 4239 CB ALA 183 19.292 40.789 53.562 1.00 17.03 B 4240 C ALA 183 21.510 41.323 54.476 1.00 18.42 B 4241 O ALA 183 22.395 41.831 53.811 1.00 16.11 B 4242 N GLU 184 21.258 41.701 55.766 1.00 17.74 B 4243 CA GLU 184 22.048 42.768 56.366 1.00 18.53 B 4244 CB GLU 184 21.300 43.366 57.609 1.00 17.38 B 4245 CG GLU 184 20.080 44.190 57.135 1.00 18.66 B 4246 CD GLU 184 19.120 44.521 58.271 1.00 20.82 B 4247 OE1 GLU 184 19.502 44.277 59.444 1.00 19.61 B 4248 OE2 GLU 184 17.986 45.018 58.047 1.00 19.07 B 4249 C GLU 184 23.441 42.360 56.778 1.00 16.95 B 4250 O GLU 184 24.337 43.246 56.764 1.00 17.24 B 4251 N ASN 185 23.699 41.086 57.024 1.00 13.32 B 4252 CA ASN 185 25.053 40.743 57.464 1.00 15.62 B 4253 CB ASN 185 25.065 39.580 58.508 1.00 14.79 B 4254 CG ASN 185 26.403 39.531 59.220 1.00 14.88 B 4255 OD1 ASN 185 26.860 40.582 59.674 1.00 15.45 B 4256 ND2 ASN 185 27.144 38.441 59.247 1.00 15.11 B 4257 C ASN 185 25.903 40.412 56.248 1.00 19.35 B 4258 O ASN 185 27.106 40.302 56.402 1.00 17.69 B 4259 N ASN 186 25.286 40.205 55.038 1.00 19.17 B 4260 CA ASN 186 26.122 39.734 53.916 1.00 18.94 B 4261 CB ASN 186 25.660 38.331 53.524 1.00 19.49 B 4262 CG ASN 186 25.905 37.278 54.601 1.00 20.76 B 4263 OD1 ASN 186 26.931 36.628 54.616 1.00 19.30 B 4264 ND2 ASN 186 24.894 37.120 55.464 1.00 15.38 B 4265 C ASN 186 26.069 40.686 52.728 1.00 20.75 B 4266 O ASN 186 25.009 40.908 52.110 1.00 19.20 B 4267 N LYS 187 27.113 41.511 52.646 1.00 21.83 B 4268 CA LYS 187 27.157 42.526 51.601 1.00 25.25 B 4269 CB LYS 187 28.511 43.248 51.653 1.00 29.81 B 4270 CG LYS 187 28.575 44.332 50.603 1.00 36.57 B 4271 CD LYS 187 29.598 45.433 50.924 1.00 41.20 B 4272 CE LYS 187 29.104 46.675 50.149 1.00 43.93 B 4273 NZ LYS 187 27.758 47.038 50.715 1.00 47.95 B 4274 C LYS 187 26.917 41.925 50.215 1.00 21.96 B 4275 O LYS 187 27.485 40.901 49.880 1.00 21.53 B 4276 N GLY 188 25.966 42.457 49.477 1.00 24.02 B 4277 CA GLY 188 25.673 42.019 48.104 1.00 22.40 B 4278 C GLY 188 24.674 40.876 48.095 1.00 23.25 B 4279 O GLY 188 24.196 40.436 47.028 1.00 20.66 B 4280 N SER 189 24.256 40.404 49.313 1.00 17.56 B 4281 CA SER 189 23.515 39.145 49.256 1.00 14.19 B 4282 CB SER 189 23.551 38.426 50.639 1.00 13.25 B 4283 OG SER 189 22.876 39.291 51.554 1.00 13.20 B 4284 C SER 189 22.109 39.436 48.806 1.00 15.05 B 4285 O SER 189 21.571 40.532 48.958 1.00 17.38 B 4286 N ARG 190 21.487 38.445 48.182 1.00 14.62 B 4287 CA ARG 190 20.096 38.511 47.766 1.00 15.71 B 4288 CB ARG 190 19.897 38.718 46.217 1.00 13.97 B 4289 CG ARG 190 20.434 40.137 45.851 1.00 13.63 B 4290 CD ARG 190 19.361 41.172 46.158 1.00 14.77 B 4291 NE ARG 190 19.686 42.563 45.843 1.00 17.01 B 4292 CZ ARG 190 20.443 43.380 46.550 1.00 20.81 B 4293 NH1 ARG 190 21.162 42.937 47.632 1.00 19.67 B 4294 NH2 ARG 190 20.572 44.652 46.200 1.00 15.95 B 4295 C ARG 190 19.454 37.199 48.194 1.00 14.14 B 4296 O ARG 190 19.804 36.099 47.792 1.00 14.54 B 4297 N VAL 191 18.414 37.349 49.012 1.00 15.36 B 4298 CA VAL 191 17.760 36.199 49.639 1.00 12.79 B 4299 CB VAL 191 17.461 36.518 51.153 1.00 14.80 B 4300 CG1 VAL 191 16.898 35.281 51.866 1.00 15.86 B 4301 CG2 VAL 191 18.744 37.016 51.804 1.00 12.63 B 4302 C VAL 191 16.425 35.919 48.977 1.00 12.57 B 4303 O VAL 191 15.569 36.765 48.870 1.00 15.60 B 4304 N LEU 192 16.254 34.676 48.573 1.00 13.56 B 4305 CA LEU 192 15.004 34.147 48.089 1.00 13.98 B 4306 CB LEU 192 15.196 33.091 46.984 1.00 11.83 B 4307 CG LEU 192 13.955 32.395 46.462 1.00 11.19 B 4308 CD2 LEU 192 14.314 31.376 45.351 1.00 12.26 B 4309 CD1 LEU 192 12.912 33.384 45.934 1.00 11.62 B 4310 C LEU 192 14.313 33.410 49.255 1.00 12.76 B 4311 O LEU 192 14.776 32.434 49.806 1.00 12.16 B 4312 N ILE 193 13.131 33.883 49.540 1.00 14.99 B 4313 CA ILE 193 12.253 33.305 50.553 1.00 14.26 B 4314 CB ILE 193 11.539 34.395 51.365 1.00 15.44 B 4315 CG2 ILE 193 10.399 33.757 52.157 1.00 15.15 B 4316 CG1 ILE 193 12.573 35.095 52.283 1.00 15.62 B 4317 CD1 ILE 193 11.926 36.312 52.946 1.00 16.17 B 4318 C ILE 193 11.136 32.571 49.790 1.00 15.15 B 4319 O ILE 193 10.528 33.172 48.912 1.00 17.37 B 4320 N VAL 194 10.932 31.311 50.091 1.00 14.25 B 4321 CA VAL 194 9.762 30.613 49.656 1.00 13.35 B 4322 CB VAL 194 10.191 29.433 48.700 1.00 14.38 B 4323 CG1 VAL 194 8.965 28.675 48.213 1.00 13.71 B 4324 CG2 VAL 194 10.993 29.982 47.503 1.00 12.10 B 4325 C VAL 194 9.026 29.930 50.816 1.00 14.29 B 4326 O VAL 194 9.570 29.017 51.418 1.00 15.09 B 4327 N CYS 195 7.741 30.304 50.991 1.00 13.22 B 4328 CA CYS 195 6.880 29.553 51.870 1.00 13.97 B 4329 CB CYS 195 6.053 30.454 52.825 1.00 13.41 B 4330 SG CYS 195 7.200 31.332 53.970 1.00 13.51 B 4331 C CYS 195 5.940 28.750 50.981 1.00 12.18 B 4332 O CYS 195 5.167 29.357 50.230 1.00 14.80 B 4333 N SER 196 5.786 27.474 51.172 1.00 14.50 B 4334 CA SER 196 4.895 26.697 50.348 1.00 13.53 B 4335 CB SER 196 5.703 25.956 49.252 1.00 13.31 B 4336 OG SER 196 4.731 25.204 48.538 1.00 15.99 B 4337 C SER 196 4.115 25.682 51.194 1.00 14.19 B 4338 O SER 196 4.712 24.852 51.890 1.00 12.43 B 4339 N GLU 197 2.801 25.854 51.117 1.00 12.15 B 4340 CA GLU 197 1.949 25.019 51.989 1.00 14.71 B 4341 CB GLU 197 1.229 25.971 52.957 1.00 12.55 B 4342 CG GLU 197 2.212 26.780 53.826 1.00 12.64 B 4343 CD GLU 197 2.723 25.947 54.994 1.00 13.06 B 4344 OE1 GLU 197 2.769 24.708 54.939 1.00 12.15 B 4345 OE2 GLU 197 3.182 26.579 55.977 1.00 12.05 B 4346 C GLU 197 0.907 24.245 51.209 1.00 15.35 B 4347 O GLU 197 0.119 24.817 50.424 1.00 15.96 B 4348 N ILE 198 0.849 22.954 51.481 1.00 14.10 B 4349 CA ILE 198 −0.172 22.062 51.017 1.00 15.54 B 4350 CB ILE 198 0.382 21.039 49.982 1.00 17.24 B 4351 CG2 ILE 198 −0.677 19.984 49.684 1.00 14.51 B 4352 CG1 ILE 198 0.746 21.854 48.680 1.00 17.38 B 4353 CD1 ILE 198 1.479 20.936 47.707 1.00 17.59 B 4354 C ILE 198 −0.921 21.398 52.165 1.00 16.49 B 4355 O ILE 198 −0.372 20.539 52.858 1.00 16.18 B 4356 N THR 199 −2.205 21.756 52.307 1.00 17.00 B 4357 CA THR 199 −2.983 21.232 53.431 1.00 19.19 B 4358 CB THR 199 −4.254 22.122 53.649 1.00 19.78 B 4359 OG1 THR 199 −5.150 21.959 52.526 1.00 21.03 B 4360 CG2 THR 199 −3.805 23.546 53.817 1.00 18.34 B 4361 C THR 199 −3.406 19.808 53.390 1.00 18.73 B 4362 O THR 199 −3.991 19.378 54.389 1.00 20.23 B 4363 N ALA 200 −3.032 18.966 52.437 1.00 17.18 B 4364 CA ALA 200 −3.293 17.567 52.378 1.00 16.00 B 4365 CB ALA 200 −2.716 16.854 51.158 1.00 16.69 B 4366 C ALA 200 −2.722 16.809 53.619 1.00 19.26 B 4367 O ALA 200 −3.231 15.757 53.967 1.00 12.21 B 4368 N ILE 201 −1.612 17.337 54.180 1.00 16.68 B 4369 CA ILE 201 −1.007 16.728 55.362 1.00 18.76 B 4370 CB ILE 201 0.304 17.474 55.700 1.00 16.90 B 4371 CG2 ILE 201 0.016 18.875 56.251 1.00 18.55 B 4372 CG1 ILE 201 1.280 16.784 56.650 1.00 20.46 B 4373 CD1 ILE 201 1.753 15.422 56.130 1.00 18.57 B 4374 C ILE 201 −1.960 16.730 56.559 1.00 15.39 B 4375 O ILE 201 −1.810 15.844 57.397 1.00 16.53 B 4376 N LEU 202 −2.902 17.650 56.652 1.00 16.21 B 4377 CA LEU 202 −3.835 17.728 57.754 1.00 21.36 B 4378 CB LEU 202 −3.592 19.031 58.485 1.00 23.96 B 4379 CG LEU 202 −4.019 20.405 58.098 1.00 28.83 B 4380 CD2 LEU 202 −5.087 20.500 57.035 1.00 28.62 B 4381 CD1 LEU 202 −2.821 21.317 57.825 1.00 30.75 B 4382 C LEU 202 −5.310 17.525 57.462 1.00 22.61 B 4383 O LEU 202 −6.194 17.799 58.275 1.00 19.31 B 4384 N PHE 203 −5.629 17.079 56.251 1.00 22.50 B 4385 CA PHE 203 −6.982 16.715 55.860 1.00 20.37 B 4386 CB PHE 203 −7.012 16.398 54.339 1.00 20.23 B 4387 CG PHE 203 −8.352 15.853 53.883 1.00 20.06 B 4388 CD1 PHE 203 −8.609 14.510 53.948 1.00 18.64 B 4389 CD2 PHE 203 −9.284 16.690 53.311 1.00 20.57 B 4390 CE1 PHE 203 −9.842 13.981 53.547 1.00 21.29 B 4391 CE2 PHE 203 −10.503 16.156 52.883 1.00 22.67 B 4392 CZ PHE 203 −10.795 14.783 52.990 1.00 19.78 B 4393 C PHE 203 −7.402 15.465 56.633 1.00 18.11 B 4394 O PHE 203 −6.679 14.478 56.768 1.00 19.21 B 4395 N HIS 204 −8.612 15.480 57.181 1.00 18.25 B 4396 CA HIS 204 −9.105 14.326 57.953 1.00 20.33 B 4397 ND1 HIS 204 −6.645 13.362 59.835 1.00 19.25 B 4398 CG HIS 204 −7.412 14.477 59.880 1.00 20.81 B 4399 CB HIS 204 −8.873 14.493 59.484 1.00 19.67 B 4400 NE2 HIS 204 −5.336 14.915 60.477 1.00 21.13 B 4401 CD2 HIS 204 −6.588 15.472 60.301 1.00 21.97 B 4402 CE1 HIS 204 −5.415 13.646 60.176 1.00 21.17 B 4403 C HIS 204 −10.615 14.228 57.741 1.00 20.16 B 4404 O HIS 204 −11.284 15.242 57.578 1.00 22.41 B 4405 N GLY 205 −11.145 13.023 57.795 1.00 23.54 B 4406 CA GLY 205 −12.584 12.827 57.732 1.00 24.24 B 4407 C GLY 205 −13.205 13.258 59.062 1.00 26.72 B 4408 O GLY 205 −12.514 13.592 60.020 1.00 25.43 B 4409 N PRO 206 −14.533 13.398 59.071 1.00 29.13 B 4410 CA PRO 206 −15.254 13.891 60.219 1.00 30.03 B 4411 CD PRO 206 −15.440 13.080 57.932 1.00 29.68 B 4412 CB PRO 206 −16.639 14.259 59.690 1.00 31.08 B 4413 CG PRO 206 −16.819 13.450 58.454 1.00 32.10 B 4414 C PRO 206 −15.313 12.905 61.364 1.00 31.36 B 4415 O PRO 206 −15.395 11.692 61.190 1.00 33.66 B 4416 N ASN 207 −15.222 13.421 62.582 1.00 32.19 B 4417 CA ASN 207 −15.349 12.570 63.767 1.00 32.89 B 4418 CB ASN 207 −14.021 11.922 64.099 1.00 35.19 B 4419 CG ASN 207 −14.147 11.102 65.387 1.00 36.73 B 4420 OD1 ASN 207 −14.218 9.881 65.296 1.00 36.20 B 4421 ND2 ASN 207 −14.231 11.812 66.507 1.00 35.51 B 4422 C ASN 207 −15.897 13.406 64.917 1.00 33.85 B 4423 O ASN 207 −15.367 14.435 65.341 1.00 29.88 B 4424 N ALA 208 −17.054 12.971 65.422 1.00 35.11 B 4425 CA ALA 208 −17.849 13.627 66.447 1.00 36.05 B 4426 C ALA 208 −17.072 13.998 67.693 1.00 35.44 B 4427 O ALA 208 −17.409 14.992 68.318 1.00 37.83 B 4428 CB ALA 208 −19.035 12.722 66.862 1.00 36.08 B 4429 N ASN 209 −16.042 13.280 68.084 1.00 37.00 B 4430 CA ASN 209 −15.220 13.565 69.233 1.00 39.36 B 4431 CB ASN 209 −14.483 12.300 69.705 1.00 43.23 B 4432 CG ASN 209 −15.411 11.124 69.843 1.00 47.10 B 4433 OD1 ASN 209 −16.521 11.246 70.386 1.00 48.34 B 4434 ND2 ASN 209 −15.021 9.956 69.351 1.00 50.28 B 4435 C ASN 209 −14.106 14.582 68.963 1.00 39.10 B 4436 O ASN 209 −13.268 14.824 69.859 1.00 36.18 B 4437 N HIS 210 −13.946 14.940 67.682 1.00 36.31 B 4438 CA HIS 210 −12.852 15.852 67.359 1.00 36.10 B 4439 ND1 HIS 210 −10.048 14.222 68.273 1.00 38.38 B 4440 CG HIS 210 −11.110 14.011 67.418 1.00 37.24 B 4441 CB HIS 210 −11.763 15.090 66.606 1.00 36.59 B 4442 NE2 HIS 210 −10.500 12.139 68.386 1.00 37.27 B 4443 CD2 HIS 210 −11.400 12.690 67.518 1.00 36.88 B 4444 CE1 HIS 210 −9.706 13.084 68.853 1.00 38.15 B 4445 C HIS 210 −13.402 17.025 66.588 1.00 33.97 B 4446 O HIS 210 −13.100 17.184 65.415 1.00 32.73 B 4447 N LEU 211 −14.174 17.876 67.263 1.00 31.22 B 4448 CA LEU 211 −14.756 19.025 66.584 1.00 30.65 B 4449 CB LEU 211 −15.922 19.582 67.415 1.00 31.31 B 4450 CG LEU 211 −16.990 18.529 67.788 1.00 33.04 B 4451 CD2 LEU 211 −17.760 18.036 66.566 1.00 32.52 B 4452 CD1 LEU 211 −17.972 19.040 68.848 1.00 31.68 B 4453 C LEU 211 −13.696 20.046 66.181 1.00 29.64 B 4454 O LEU 211 −13.918 20.865 65.279 1.00 26.09 B 4455 N ASP 212 −12.556 20.106 66.903 1.00 28.39 B 4456 CA ASP 212 −11.536 21.099 66.535 1.00 26.92 B 4457 CB ASP 212 −10.460 21.241 67.600 1.00 27.92 B 4458 CG ASP 212 −9.945 19.948 68.192 1.00 27.65 B 4459 OD1 ASP 212 −10.461 18.838 67.974 1.00 27.95 B 4460 OD2 ASP 212 −8.961 20.022 68.973 1.00 27.71 B 4461 C ASP 212 −10.937 20.655 65.185 1.00 26.20 B 4462 O ASP 212 −10.730 21.467 64.293 1.00 25.48 B 4463 N SER 213 −10.739 19.365 65.008 1.00 25.13 B 4464 CA SER 213 −10.322 18.789 63.751 1.00 27.51 B 4465 CB SER 213 −10.133 17.276 63.869 1.00 26.98 B 4466 OG SER 213 −9.376 16.834 62.750 1.00 32.33 B 4467 C SER 213 −11.308 19.063 62.614 1.00 28.19 B 4468 O SER 213 −10.856 19.339 61.484 1.00 26.21 B 4469 N LEU 214 −12.609 19.062 62.939 1.00 27.08 B 4470 CA LEU 214 −13.609 19.371 61.912 1.00 26.77 B 4471 CB LEU 214 −15.053 19.166 62.403 1.00 28.10 B 4472 CG LEU 214 −16.159 19.393 61.349 1.00 28.20 B 4473 CD2 LEU 214 −17.536 19.343 62.046 1.00 30.09 B 4474 CD1 LEU 214 −16.064 18.273 60.324 1.00 26.98 B 4475 C LEU 214 −13.500 20.819 61.490 1.00 25.85 B 4476 O LEU 214 −13.590 21.198 60.314 1.00 23.18 B 4477 N VAL 215 −13.363 21.687 62.503 1.00 23.90 B 4478 CA VAL 215 −13.231 23.111 62.261 1.00 23.37 B 4479 CB VAL 215 −13.112 23.971 63.525 1.00 23.34 B 4480 CG1 VAL 215 −12.673 25.397 63.229 1.00 20.26 B 4481 CG2 VAL 215 −14.451 24.021 64.288 1.00 25.40 B 4482 C VAL 215 −12.023 23.342 61.339 1.00 23.58 B 4483 O VAL 215 −12.121 24.202 60.472 1.00 22.67 B 4484 N ALA 216 −10.937 22.618 61.570 1.00 22.55 B 4485 CA ALA 216 −9.715 22.759 60.797 1.00 22.68 B 4486 CB ALA 216 −8.704 21.736 61.360 1.00 23.19 B 4487 C ALA 216 −9.913 22.460 59.310 1.00 22.95 B 4488 O ALA 216 −9.207 23.048 58.504 1.00 20.51 B 4489 N GLN 217 −10.822 21.575 58.954 1.00 21.68 B 4490 CA GLN 217 −11.191 21.251 57.572 1.00 24.69 B 4491 CB GLN 217 −12.134 20.032 57.533 1.00 24.18 B 4492 CG GLN 217 −11.556 18.851 58.303 1.00 25.26 B 4493 CD GLN 217 −10.116 18.545 57.946 1.00 26.41 B 4494 OE1 GLN 217 −9.790 18.449 56.762 1.00 24.12 B 4495 NE2 GLN 217 −9.241 18.364 58.947 1.00 23.75 B 4496 C GLN 217 −11.813 22.373 56.767 1.00 23.78 B 4497 O GLN 217 −11.779 22.355 55.521 1.00 24.24 B 4498 N ALA 218 −12.276 23.424 57.415 1.00 20.67 B 4499 CA ALA 218 −12.817 24.588 56.748 1.00 21.53 B 4500 CB ALA 218 −14.054 25.052 57.549 1.00 23.45 B 4501 C ALA 218 −11.837 25.747 56.677 1.00 20.66 B 4502 O ALA 218 −12.146 26.740 56.022 1.00 22.63 B 4503 N LEU 219 −10.715 25.702 57.416 1.00 18.68 B 4504 CA LEU 219 −9.909 26.882 57.570 1.00 19.47 B 4505 CB LEU 219 −9.145 26.825 58.942 1.00 18.91 B 4506 CG LEU 219 −10.037 26.789 60.198 1.00 21.08 B 4507 CD2 LEU 219 −10.925 28.016 60.331 1.00 20.43 B 4508 CD1 LEU 219 −9.132 26.792 61.458 1.00 20.16 B 4509 C LEU 219 −8.833 27.161 56.511 1.00 19.17 B 4510 O LEU 219 −8.508 28.323 56.309 1.00 21.06 B 4511 N PHE 220 −8.145 26.148 56.049 1.00 19.83 B 4512 CA PHE 220 −6.873 26.238 55.376 1.00 19.95 B 4513 CB PHE 220 −5.901 25.187 55.953 1.00 18.15 B 4514 CG PHE 220 −5.679 25.255 57.455 1.00 19.86 B 4515 CD1 PHE 220 −6.328 24.358 58.290 1.00 18.28 B 4516 CD2 PHE 220 −4.939 26.286 58.002 1.00 19.81 B 4517 CE1 PHE 220 −6.205 24.482 59.692 1.00 19.83 B 4518 CE2 PHE 220 −4.760 26.391 59.391 1.00 23.21 B 4519 CZ PHE 220 −5.401 25.476 60.229 1.00 20.13 B 4520 C PHE 220 −6.986 25.993 53.865 1.00 19.57 B 4521 O PHE 220 −7.588 24.990 53.457 1.00 17.92 B 4522 N GLY 221 −6.146 26.768 53.161 1.00 20.10 B 4523 CA GLY 221 −6.032 26.501 51.716 1.00 18.64 B 4524 C GLY 221 −4.550 26.418 51.354 1.00 20.22 B 4525 O GLY 221 −3.693 26.584 52.246 1.00 14.78 B 4526 N ASP 222 −4.303 26.051 50.080 1.00 17.81 B 4527 CA ASP 222 −2.948 25.837 49.590 1.00 15.49 B 4528 CB ASP 222 −2.864 24.580 48.675 1.00 15.81 B 4529 CG ASP 222 −3.288 23.347 49.408 1.00 17.74 B 4530 OD1 ASP 222 −3.586 23.384 50.652 1.00 18.97 B 4531 OD2 ASP 222 −3.374 22.273 48.797 1.00 18.32 B 4532 C ASP 222 −2.372 26.987 48.828 1.00 14.88 B 4533 O ASP 222 −3.120 27.652 48.085 1.00 17.37 B 4534 N GLY 223 −1.046 27.224 48.932 1.00 14.43 B 4535 CA GLY 223 −0.490 28.359 48.200 1.00 15.06 B 4536 C GLY 223 0.990 28.461 48.442 1.00 17.49 B 4537 O GLY 223 1.432 27.950 49.507 1.00 15.78 B 4538 N ALA 224 1.700 29.227 47.632 1.00 13.37 B 4539 CA ALA 224 3.102 29.468 47.953 1.00 13.80 B 4540 CB ALA 224 4.098 28.580 47.233 1.00 14.95 B 4541 C ALA 224 3.401 30.902 47.587 1.00 16.27 B 4542 O ALA 224 2.750 31.424 46.672 1.00 15.25 B 4543 N ALA 225 4.222 31.521 48.423 1.00 14.47 B 4544 CA ALA 225 4.677 32.875 48.161 1.00 15.02 B 4545 CB ALA 225 4.129 33.882 49.156 1.00 16.77 B 4546 C ALA 225 6.190 32.880 48.111 1.00 15.87 B 4547 O ALA 225 6.859 32.196 48.926 1.00 14.87 B 4548 N ALA 226 6.769 33.734 47.254 1.00 13.33 B 4549 CA ALA 226 8.209 33.816 47.152 1.00 13.75 B 4550 CB ALA 226 8.802 33.161 45.896 1.00 13.91 B 4551 C ALA 226 8.598 35.280 47.167 1.00 15.62 B 4552 O ALA 226 7.872 36.126 46.616 1.00 17.43 B 4553 N LEU 227 9.677 35.596 47.892 1.00 14.60 B 4554 CA LEU 227 10.089 36.990 47.945 1.00 14.38 B 4555 CB LEU 227 9.963 37.569 49.368 1.00 17.61 B 4556 CG LEU 227 8.613 38.091 49.833 1.00 17.91 B 4557 CD2 LEU 227 8.694 38.832 51.164 1.00 18.91 B 4558 CD1 LEU 227 7.665 36.907 49.927 1.00 18.08 B 4559 C LEU 227 11.580 37.083 47.610 1.00 13.22 B 4560 O LEU 227 12.295 36.151 47.952 1.00 13.64 B 4561 N ILE 228 12.055 38.203 47.088 1.00 14.27 B 4562 CA ILE 228 13.477 38.487 46.965 1.00 14.63 B 4563 CB ILE 228 13.922 39.043 45.582 1.00 16.79 B 4564 CG2 ILE 228 15.381 39.487 45.613 1.00 15.68 B 4565 CG1 ILE 228 13.660 37.954 44.508 1.00 16.16 B 4566 CD1 ILE 228 14.595 36.753 44.642 1.00 17.11 B 4567 C ILE 228 13.752 39.586 48.022 1.00 14.29 B 4568 O ILE 228 13.008 40.554 48.078 1.00 14.75 B 4569 N VAL 229 14.784 39.411 48.845 1.00 15.28 B 4570 CA VAL 229 15.076 40.381 49.912 1.00 16.09 B 4571 CB VAL 229 14.743 39.799 51.307 1.00 16.66 B 4572 CG1 VAL 229 15.267 40.706 52.425 1.00 16.72 B 4573 CG2 VAL 229 13.228 39.551 51.444 1.00 15.55 B 4574 C VAL 229 16.559 40.717 49.872 1.00 14.72 B 4575 O VAL 229 17.385 39.845 49.691 1.00 15.04 B 4576 N GLY 230 16.891 41.990 50.035 1.00 14.63 B 4577 CA GLY 230 18.323 42.287 50.038 1.00 15.35 B 4578 C GLY 230 18.439 43.690 50.666 1.00 13.66 B 4579 O GLY 230 17.498 44.456 50.586 1.00 14.33 B 4580 N SER 231 19.645 44.041 51.070 1.00 13.97 B 4581 CA SER 231 19.952 45.371 51.523 1.00 15.98 B 4582 CB SER 231 20.991 45.316 52.687 1.00 14.94 B 4583 OG SER 231 20.274 44.737 53.802 1.00 17.50 B 4584 C SER 231 20.666 46.119 50.385 1.00 17.76 B 4585 O SER 231 21.247 45.407 49.544 1.00 17.44 B 4586 N GLY 232 20.668 47.439 50.443 1.00 17.64 B 4587 CA GLY 232 21.461 48.143 49.423 1.00 21.35 B 4588 C GLY 232 20.916 47.928 48.002 1.00 21.72 B 4589 O GLY 232 21.655 47.442 47.155 1.00 22.80 B 4590 N PRO 233 19.675 48.249 47.730 1.00 21.24 B 4591 CA PRO 233 19.092 48.084 46.435 1.00 22.08 B 4592 CD PRO 233 18.696 48.793 48.716 1.00 24.18 B 4593 CB PRO 233 17.620 48.319 46.596 1.00 22.49 B 4594 CG PRO 233 17.426 48.985 47.913 1.00 24.32 B 4595 C PRO 233 19.731 48.966 45.358 1.00 23.61 B 4596 O PRO 233 20.127 50.120 45.544 1.00 23.70 B 4597 N HIS 234 19.912 48.360 44.185 1.00 23.26 B 4598 CA HIS 234 20.456 49.160 43.035 1.00 25.59 B 4599 ND1 HIS 234 22.480 46.369 43.308 1.00 36.45 B 4600 CG HIS 234 22.400 47.631 42.760 1.00 34.08 B 4601 CB HIS 234 21.150 48.164 42.113 1.00 29.49 B 4602 NE2 HIS 234 24.413 47.262 43.570 1.00 37.58 B 4603 CD2 HIS 234 23.617 48.186 42.931 1.00 36.49 B 4604 CE1 HIS 234 23.691 46.180 43.802 1.00 37.67 B 4605 C HIS 234 19.246 49.814 42.403 1.00 23.40 B 4606 O HIS 234 18.578 49.156 41.574 1.00 21.79 B 4607 N LEU 235 18.901 51.021 42.810 1.00 18.81 B 4608 CA LEU 235 17.636 51.633 42.434 1.00 20.01 B 4609 CB LEU 235 17.533 52.978 43.124 1.00 21.02 B 4610 CG LEU 235 17.572 52.902 44.667 1.00 24.52 B 4611 CD2 LEU 235 16.400 52.135 45.242 1.00 22.44 B 4612 CD1 LEU 235 17.568 54.336 45.202 1.00 25.00 B 4613 C LEU 235 17.338 51.823 40.943 1.00 20.03 B 4614 O LEU 235 16.155 51.945 40.563 1.00 19.96 B 4615 N ALA 236 18.360 51.915 40.105 1.00 19.87 B 4616 CA ALA 236 17.982 52.005 38.653 1.00 21.88 B 4617 CB ALA 236 19.244 52.318 37.890 1.00 22.39 B 4618 C ALA 236 17.308 50.705 38.224 1.00 20.16 B 4619 O ALA 236 16.498 50.743 37.287 1.00 21.64 B 4620 N VAL 237 17.633 49.525 38.743 1.00 18.36 B 4621 CA VAL 237 17.088 48.251 38.264 1.00 21.06 B 4622 CB VAL 237 18.149 47.357 37.605 1.00 22.43 B 4623 CG1 VAL 237 18.923 48.123 36.501 1.00 22.33 B 4624 CG2 VAL 237 19.193 46.875 38.617 1.00 21.47 B 4625 C VAL 237 16.320 47.409 39.274 1.00 23.18 B 4626 O VAL 237 15.517 46.553 38.862 1.00 20.17 B 4627 N GLU 238 16.532 47.678 40.575 1.00 23.12 B 4628 CA GLU 238 15.717 46.968 41.592 1.00 24.28 B 4629 CB GLU 238 16.573 46.412 42.756 1.00 20.87 B 4630 CG GLU 238 17.547 45.322 42.328 1.00 22.37 B 4631 CD GLU 238 18.508 44.782 43.383 1.00 21.53 B 4632 OE1 GLU 238 19.213 45.594 44.013 1.00 21.50 B 4633 OE2 GLU 238 18.638 43.542 43.508 1.00 20.73 B 4634 C GLU 238 14.668 47.930 42.114 1.00 23.86 B 4635 O GLU 238 14.928 49.131 42.206 1.00 26.30 B 4636 N ARG 239 13.500 47.445 42.482 1.00 25.15 B 4637 CA ARG 239 12.408 48.245 42.998 1.00 25.86 B 4638 CB ARG 239 11.225 47.996 42.064 1.00 30.88 B 4639 CG ARG 239 9.888 48.635 42.354 1.00 37.20 B 4640 CD ARG 239 9.027 48.768 41.085 1.00 42.07 B 4641 NE ARG 239 8.117 47.635 40.971 1.00 46.99 B 4642 CZ ARG 239 7.975 46.768 39.976 1.00 49.94 B 4644 NH1 ARG 239 7.059 45.790 40.047 1.00 49.43 B 4643 NH2 ARG 239 8.743 46.867 38.874 1.00 51.54 B 4645 C ARG 239 11.980 47.845 44.426 1.00 23.77 B 4646 O ARG 239 11.099 46.999 44.587 1.00 20.90 B 4647 N PRO 240 12.408 48.616 45.405 1.00 21.88 B 4648 CA PRO 240 11.962 48.377 46.791 1.00 22.18 B 4649 CD PRO 240 13.553 49.537 45.400 1.00 23.80 B 4650 CB PRO 240 12.570 49.513 47.603 1.00 23.53 B 4651 CG PRO 240 13.816 49.902 46.861 1.00 24.77 B 4652 C PRO 240 10.458 48.477 46.877 1.00 22.38 B 4653 O PRO 240 9.789 49.344 46.311 1.00 23.13 B 4654 N ILE 241 9.883 47.575 47.635 1.00 21.04 B 4655 CA ILE 241 8.470 47.539 47.964 1.00 18.55 B 4656 CB ILE 241 7.865 46.177 47.673 1.00 18.72 B 4657 CG2 ILE 241 6.354 46.207 47.855 1.00 17.22 B 4658 CG1 ILE 241 8.257 45.697 46.248 1.00 17.91 B 4659 CD1 ILE 241 7.763 44.285 45.958 1.00 19.18 B 4660 C ILE 241 8.327 47.861 49.467 1.00 21.37 B 4661 O ILE 241 7.483 48.704 49.794 1.00 21.17 B 4662 N PHE 242 9.103 47.245 50.366 1.00 19.00 B 4663 CA PHE 242 9.008 47.549 51.777 1.00 21.33 B 4664 CB PHE 242 8.031 46.667 52.600 1.00 19.86 B 4665 CG PHE 242 6.569 46.842 52.271 1.00 19.00 B 4666 CD1 PHE 242 5.872 47.952 52.680 1.00 20.22 B 4667 CD2 PHE 242 5.902 45.898 51.512 1.00 19.55 B 4668 CE1 PHE 242 4.518 48.133 52.362 1.00 19.56 B 4669 CE2 PHE 242 4.563 46.078 51.186 1.00 19.20 B 4670 CZ PHE 242 3.873 47.177 51.607 1.00 17.64 B 4671 C PHE 242 10.376 47.282 52.401 1.00 21.54 B 4672 O PHE 242 11.055 46.394 51.894 1.00 20.44 B 4673 N GLU 243 10.699 48.070 53.433 1.00 20.95 B 4674 CA GLU 243 11.948 47.754 54.148 1.00 20.26 B 4675 CB GLU 243 12.557 49.082 54.594 1.00 23.58 B 4676 CG GLU 243 13.077 49.907 53.400 1.00 26.69 B 4677 CD GLU 243 13.781 51.146 53.920 1.00 30.46 B 4678 OE1 GLU 243 13.132 52.026 54.543 1.00 32.78 B 4679 OE2 GLU 243 14.999 51.197 53.750 1.00 30.83 B 4680 C GLU 243 11.526 46.987 55.433 1.00 19.80 B 4681 O GLU 243 10.442 47.304 55.920 1.00 18.51 B 4682 N ILE 244 12.295 46.075 55.954 1.00 18.47 B 4683 CA ILE 244 11.955 45.333 57.181 1.00 20.25 B 4684 CB ILE 244 12.401 43.868 57.101 1.00 19.02 B 4685 CG2 ILE 244 11.838 43.071 58.309 1.00 17.85 B 4686 CG1 ILE 244 11.931 43.284 55.746 1.00 17.69 B 4687 CD1 ILE 244 12.590 41.934 55.415 1.00 16.92 B 4688 C ILE 244 12.689 46.071 58.321 1.00 18.43 B 4689 O ILE 244 13.909 46.028 58.391 1.00 19.97 B 4690 N VAL 245 11.984 46.828 59.103 1.00 19.22 B 4691 CA VAL 245 12.499 47.686 60.171 1.00 18.08 B 4692 CB VAL 245 11.439 48.736 60.578 1.00 19.80 B 4693 CG1 VAL 245 11.979 49.666 61.669 1.00 18.28 B 4694 CG2 VAL 245 11.087 49.596 59.330 1.00 22.69 B 4695 C VAL 245 12.924 46.920 61.412 1.00 18.38 B 4696 O VAL 245 14.098 47.031 61.843 1.00 18.98 B 4697 N SER 246 12.034 46.083 61.921 1.00 17.27 B 4698 CA SER 246 12.373 45.309 63.145 1.00 18.32 B 4699 CB SER 246 12.079 46.190 64.417 1.00 17.08 B 4700 OG SER 246 10.656 46.389 64.402 1.00 16.05 B 4701 C SER 246 11.497 44.099 63.232 1.00 15.69 B 4702 O SER 246 10.431 43.979 62.604 1.00 15.37 B 4703 N THR 247 11.944 43.067 63.969 1.00 17.49 B 4704 CA THR 247 11.206 41.813 64.093 1.00 17.94 B 4705 CB THR 247 11.874 40.706 63.264 1.00 18.33 B 4706 OG1 THR 247 13.257 40.548 63.674 1.00 18.76 B 4707 CG2 THR 247 11.887 41.109 61.776 1.00 16.41 B 4708 C THR 247 11.215 41.411 65.587 1.00 21.08 B 4709 O THR 247 12.203 41.716 66.268 1.00 21.65 B 4710 N ASP 248 10.087 40.998 66.102 1.00 18.99 B 4711 CA ASP 248 10.043 40.506 67.481 1.00 20.27 B 4712 CB ASP 248 9.209 41.452 68.360 1.00 19.31 B 4713 CG ASP 248 9.724 42.860 68.406 1.00 23.48 B 4714 OD1 ASP 248 10.953 42.990 68.662 1.00 25.47 B 4715 OD2 ASP 248 8.968 43.866 68.227 1.00 25.53 B 4716 C ASP 248 9.447 39.119 67.406 1.00 18.31 B 4717 O ASP 248 8.597 38.848 66.529 1.00 17.06 B 4718 N GLN 249 9.811 38.250 68.355 1.00 15.25 B 4719 CA GLN 249 9.058 37.000 68.484 1.00 14.33 B 4720 CB GLN 249 9.920 35.822 68.053 1.00 14.91 B 4721 CG GLN 249 9.131 34.535 67.927 1.00 14.29 B 4722 CD GLN 249 10.002 33.361 67.594 1.00 15.87 B 4723 OE1 GLN 249 11.214 33.498 67.835 1.00 20.00 B 4724 NE2 GLN 249 9.452 32.259 67.103 1.00 14.13 B 4725 C GLN 249 8.769 36.772 69.979 1.00 19.39 B 4726 O GLN 249 9.706 37.032 70.759 1.00 19.23 B 4727 N THR 250 7.561 36.367 70.339 1.00 19.32 B 4728 CA THR 250 7.315 36.159 71.779 1.00 19.87 B 4729 CB THR 250 6.773 37.389 72.527 1.00 21.59 B 4730 OG1 THR 250 7.683 38.481 72.307 1.00 28.35 B 4731 CG2 THR 250 6.983 37.166 74.051 1.00 18.89 B 4732 C THR 250 6.319 35.038 71.977 1.00 18.75 B 4733 O THR 250 5.428 34.865 71.142 1.00 20.02 B 4734 N ILE 251 6.403 34.338 73.096 1.00 17.68 B 4735 CA ILE 251 5.474 33.306 73.502 1.00 16.89 B 4736 CB ILE 251 6.238 32.151 74.147 1.00 18.89 B 4737 CG2 ILE 251 5.264 31.172 74.834 1.00 18.52 B 4738 CG1 ILE 251 7.169 31.378 73.226 1.00 16.02 B 4739 CD1 ILE 251 8.288 30.632 74.067 1.00 15.23 B 4740 C ILE 251 4.433 33.911 74.466 1.00 20.13 B 4741 O ILE 251 4.769 34.618 75.425 1.00 17.32 B 4742 N LEU 252 3.157 33.767 74.176 1.00 18.45 B 4743 CA LEU 252 2.066 34.321 74.976 1.00 19.07 B 4744 CB LEU 252 0.774 34.286 74.175 1.00 19.46 B 4745 CG LEU 252 0.396 35.463 73.278 1.00 23.24 B 4746 CD2 LEU 252 −0.436 34.990 72.112 1.00 21.25 B 4747 CD1 LEU 252 1.508 36.394 72.882 1.00 23.75 B 4748 C LEU 252 1.877 33.442 76.244 1.00 18.19 B 4749 O LEU 252 1.836 32.204 76.181 1.00 17.28 B 4750 N PRO 253 1.931 34.084 77.404 1.00 18.72 B 4751 CA PRO 253 1.871 33.337 78.656 1.00 19.30 B 4752 CD PRO 253 1.946 35.524 77.633 1.00 19.70 B 4753 CB PRO 253 2.007 34.415 79.738 1.00 20.88 B 4754 CG PRO 253 1.469 35.648 79.089 1.00 23.61 B 4755 C PRO 253 0.618 32.514 78.761 1.00 18.39 B 4756 O PRO 253 −0.418 32.946 78.274 1.00 20.01 B 4757 N ASP 254 0.699 31.301 79.292 1.00 17.80 B 4758 CA ASP 254 −0.433 30.459 79.586 1.00 19.42 B 4759 CB ASP 254 −1.281 31.191 80.662 1.00 20.10 B 4760 CG ASP 254 −0.420 31.437 81.902 1.00 21.35 B 4761 OD1 ASP 254 −0.125 32.573 82.229 1.00 24.83 B 4762 OD2 ASP 254 −0.004 30.451 82.485 1.00 23.09 B 4763 C ASP 254 −1.326 30.155 78.392 1.00 21.18 B 4764 O ASP 254 −2.512 29.857 78.582 1.00 18.72 B 4765 N THR 255 −0.693 29.973 77.208 1.00 20.77 B 4766 CA THR 255 −1.488 29.570 76.040 1.00 20.62 B 4767 CB THR 255 −1.491 30.706 75.020 1.00 19.84 B 4768 OG1 THR 255 −0.108 30.933 74.638 1.00 22.29 B 4769 CG2 THR 255 −2.078 31.975 75.567 1.00 17.24 B 4770 C THR 255 −0.914 28.333 75.379 1.00 23.88 B 4771 O THR 255 −1.322 27.957 74.270 1.00 24.06 B 4772 N GLU 256 −0.161 27.518 76.091 1.00 24.98 B 4773 CA GLU 256 0.400 26.312 75.484 1.00 28.54 B 4774 CB GLU 256 1.353 25.581 76.416 1.00 28.97 B 4775 CG GLU 256 1.916 24.280 75.757 1.00 32.11 B 4776 CD GLU 256 2.856 23.589 76.744 1.00 34.01 B 4777 OE1 GLU 256 3.578 24.233 77.533 1.00 34.39 B 4778 OE2 GLU 256 2.934 22.359 76.755 1.00 38.83 B 4779 C GLU 256 −0.655 25.350 74.953 1.00 30.36 B 4780 O GLU 256 −0.459 24.781 73.858 1.00 29.20 B 4781 N LYS 257 −1.807 25.254 75.618 1.00 29.61 B 4782 CA LYS 257 −2.880 24.389 75.134 1.00 31.41 B 4783 CB LYS 257 −3.962 24.226 76.251 1.00 33.87 B 4784 CG LYS 257 −4.745 25.533 76.410 1.00 37.41 B 4785 CD LYS 257 −5.474 25.653 77.752 1.00 40.71 B 4786 CE LYS 257 −6.368 26.895 77.668 1.00 42.65 B 4787 NZ LYS 257 −7.353 26.923 78.786 1.00 44.31 B 4788 C LYS 257 −3.592 24.923 73.907 1.00 28.64 B 4789 O LYS 257 −4.535 24.304 73.415 1.00 30.31 B 4790 N ALA 258 −3.389 26.174 73.532 1.00 26.22 B 4791 CA ALA 258 −4.085 26.740 72.402 1.00 26.57 B 4792 CB ALA 258 −3.496 28.091 72.058 1.00 25.14 B 4793 C ALA 258 −3.971 25.820 71.162 1.00 25.74 B 4794 O ALA 258 −4.987 25.614 70.519 1.00 23.24 B 4795 N MET 259 −2.743 25.414 70.804 1.00 24.83 B 4796 CA MET 259 −2.558 24.626 69.586 1.00 24.97 B 4797 C MET 259 −1.424 23.629 69.654 1.00 22.87 B 4798 O MET 259 −0.266 23.943 69.985 1.00 21.95 B 4799 CB MET 259 −2.372 25.468 68.335 1.00 27.17 B 4800 CG MET 259 −2.036 26.893 68.507 1.00 31.07 B 4801 SD MET 259 −1.716 27.869 67.058 1.00 27.58 B 4802 CE MET 259 −2.943 29.164 67.238 1.00 27.63 B 4803 N LYS 260 −1.799 22.390 69.465 1.00 20.37 B 4804 CA LYS 260 −0.861 21.301 69.406 1.00 22.25 B 4805 CB LYS 260 −0.885 20.387 70.631 1.00 25.95 B 4806 CG LYS 260 −0.545 21.132 71.927 1.00 29.48 B 4807 CD LYS 260 −0.438 20.128 73.087 1.00 31.73 B 4808 CE LYS 260 −0.473 20.914 74.395 1.00 34.61 B 4809 NZ LYS 260 0.575 20.474 75.367 1.00 37.61 B 4810 C LYS 260 −1.180 20.491 68.149 1.00 23.25 B 4811 O LYS 260 −2.358 20.209 67.870 1.00 22.97 B 4812 N LEU 261 −0.140 20.192 67.388 1.00 18.66 B 4813 CA LEU 261 −0.314 19.380 66.160 1.00 19.19 B 4814 CB LEU 261 −0.311 20.232 64.885 1.00 17.81 B 4815 CG LEU 261 −1.332 21.363 64.779 1.00 19.40 B 4816 CD2 LEU 261 −1.651 21.592 63.295 1.00 20.42 B 4817 CD1 LEU 261 −0.745 22.621 65.381 1.00 19.17 B 4818 C LEU 261 0.833 18.400 66.123 1.00 16.88 B 4819 O LEU 261 1.988 18.807 66.270 1.00 14.68 B 4820 N HIS 262 0.554 17.117 66.085 1.00 16.56 B 4821 CA HIS 262 1.503 16.049 66.123 1.00 15.24 B 4822 ND1 HIS 262 1.625 16.568 69.085 1.00 19.24 B 4823 CG HIS 262 0.770 15.663 68.504 1.00 19.32 B 4824 CB HIS 262 1.044 15.004 67.169 1.00 17.45 B 4825 NE2 HIS 262 −0.141 16.475 70.325 1.00 19.03 B 4826 CD2 HIS 262 −0.390 15.677 69.229 1.00 20.60 B 4827 CE1 HIS 262 1.076 16.990 70.237 1.00 20.53 B 4828 C HIS 262 1.577 15.306 64.756 1.00 18.43 B 4829 O HIS 262 0.525 15.030 64.192 1.00 18.48 B 4830 N LEU 263 2.791 14.947 64.349 1.00 17.35 B 4831 CA LEU 263 2.932 14.217 63.051 1.00 18.01 B 4832 CB LEU 263 4.127 14.711 62.235 1.00 18.24 B 4833 CG LEU 263 4.232 14.166 60.785 1.00 20.07 B 4834 CD2 LEU 263 5.537 14.610 60.120 1.00 19.19 B 4835 CD1 LEU 263 3.068 14.736 59.968 1.00 18.51 B 4836 C LEU 263 2.954 12.737 63.327 1.00 15.51 B 4837 O LEU 263 3.868 12.177 63.915 1.00 18.64 B 4838 N ARG 264 1.810 12.079 63.059 1.00 16.36 B 4839 CA ARG 264 1.621 10.682 63.421 1.00 17.97 B 4840 CB ARG 264 0.401 10.622 64.354 1.00 18.60 B 4841 CG ARG 264 0.297 11.651 65.444 1.00 22.94 B 4842 CD ARG 264 1.329 11.371 66.546 1.00 22.99 B 4843 NE ARG 264 0.805 10.246 67.392 1.00 22.21 B 4844 CZ ARG 264 1.569 9.755 68.375 1.00 23.91 B 4845 NH1 ARG 264 2.772 10.312 68.609 1.00 21.04 B 4846 NH2 ARG 264 1.170 8.752 69.133 1.00 23.70 B 4847 C ARG 264 1.321 9.833 62.183 1.00 18.71 B 4848 O ARG 264 1.180 10.358 61.045 1.00 19.40 B 4849 N GLU 265 1.144 8.552 62.383 1.00 18.65 B 4850 CA GLU 265 0.868 7.619 61.297 1.00 20.01 B 4851 CB GLU 265 0.747 6.181 61.842 1.00 18.81 B 4852 CG GLU 265 2.094 5.619 62.323 1.00 20.62 B 4853 CD GLU 265 1.927 4.549 63.405 1.00 22.60 B 4854 OE1 GLU 265 0.932 3.802 63.364 1.00 22.66 B 4855 OE2 GLU 265 2.845 4.350 64.218 1.00 20.42 B 4856 C GLU 265 −0.401 8.001 60.524 1.00 19.67 B 4857 O GLU 265 −0.517 7.643 59.349 1.00 19.98 B 4858 N GLY 266 −1.349 8.705 61.111 1.00 19.90 B 4859 CA GLY 266 −2.585 9.157 60.528 1.00 19.35 B 4860 C GLY 266 −2.557 10.572 59.965 1.00 19.40 B 4861 O GLY 266 −3.581 11.135 59.554 1.00 19.85 B 4862 N GLY 267 −1.365 11.167 59.892 1.00 19.43 B 4863 CA GLY 267 −1.241 12.525 59.343 1.00 20.17 B 4864 C GLY 267 −0.946 13.511 60.478 1.00 20.17 B 4865 O GLY 267 −0.585 13.130 61.594 1.00 19.59 B 4866 N LEU 268 −0.988 14.789 60.178 1.00 18.97 B 4867 CA LEU 268 −0.762 15.841 61.152 1.00 21.63 B 4868 CB LEU 268 −0.402 17.137 60.429 1.00 19.78 B 4869 CG LEU 268 −0.074 18.357 61.290 1.00 20.29 B 4870 CD2 LEU 268 0.211 19.555 60.382 1.00 18.85 B 4871 CD1 LEU 268 1.119 18.054 62.234 1.00 16.00 B 4872 C LEU 268 −2.057 16.011 61.959 1.00 22.49 B 4873 O LEU 268 −3.049 16.446 61.351 1.00 23.93 B 4874 N THR 269 −2.042 15.706 63.255 1.00 20.56 B 4875 CA THR 269 −3.252 15.807 64.064 1.00 21.29 B 4876 CB THR 269 −3.154 14.968 65.379 1.00 21.74 B 4877 OG1 THR 269 −2.214 15.681 66.180 1.00 20.22 B 4878 CG2 THR 269 −2.629 13.582 65.127 1.00 22.50 B 4879 C THR 269 −3.500 17.219 64.544 1.00 24.25 B 4880 O THR 269 −2.571 18.012 64.488 1.00 24.29 B 4881 N PHE 270 −4.688 17.529 65.067 1.00 25.87 B 4882 CA PHE 270 −5.070 18.864 65.476 1.00 31.34 B 4883 CB PHE 270 −6.166 19.305 65.483 1.00 35.31 B 4884 CG PHE 270 −5.748 20.288 63.453 1.00 37.32 B 4885 CD1 PHE 270 −5.602 19.976 62.109 1.00 41.39 B 4886 CD2 PHE 270 −5.516 21.582 63.840 1.00 38.00 B 4887 CE1 PHE 270 −5.182 20.955 61.208 1.00 41.19 B 4888 CE2 PHE 270 −5.119 22.571 62.989 1.00 39.05 B 4889 CZ PHE 270 −4.930 22.227 61.676 1.00 41.09 B 4890 C PHE 270 −5.676 18.977 66.873 1.00 34.01 B 4891 O PHE 270 −6.331 18.047 67.412 1.00 35.09 B 4892 N GLN 271 −5.144 19.903 67.662 1.00 32.32 B 4893 CA GLN 271 −5.707 20.246 68.971 1.00 30.70 B 4894 CB GLN 271 −4.865 19.770 70.136 1.00 34.37 B 4895 CG GLN 271 −5.390 20.206 71.513 1.00 38.69 B 4896 CD GLN 271 −4.616 19.515 72.638 1.00 39.85 B 4897 OE1 GLN 271 −4.175 18.365 72.522 1.00 40.73 B 4898 NE2 GLN 271 −4.417 20.204 73.761 1.00 40.59 B 4899 C GLN 271 −5.804 21.760 68.944 1.00 29.55 B 4900 O GLN 271 −4.772 22.432 68.988 1.00 30.22 B 4901 N LEU 272 −6.971 22.329 68.747 1.00 26.55 B 4902 CA LEU 272 −7.183 23.742 68.583 1.00 28.69 B 4903 CB LEU 272 −7.720 24.105 67.203 1.00 31.23 B 4904 CG LEU 272 −7.246 25.228 66.324 1.00 36.49 B 4905 CD2 LEU 272 −6.759 26.504 67.004 1.00 36.59 B 4906 CD1 LEU 272 −8.320 25.592 65.271 1.00 36.39 B 4907 C LEU 272 −8.238 24.220 69.595 1.00 28.44 B 4908 O LEU 272 −9.415 23.843 69.455 1.00 24.19 B 4909 N HIS 273 −7.736 25.027 70.534 1.00 25.56 B 4910 CA HIS 273 −8.663 25.539 71.542 1.00 26.63 B 4911 ND1 HIS 273 −8.590 25.102 74.753 1.00 34.69 B 4912 CG HIS 273 −8.633 26.161 73.892 1.00 32.95 B 4913 CB HIS 273 −7.797 26.215 72.646 1.00 28.30 B 4914 NE2 HIS 273 −10.052 26.478 75.526 1.00 35.08 B 4915 CD2 HIS 273 −9.561 27.046 74.366 1.00 33.09 B 4916 CE1 HIS 273 −9.453 25.329 75.739 1.00 34.70 B 4917 C HIS 273 −9.624 26.565 71.014 1.00 24.27 B 4918 O HIS 273 −9.253 27.528 70.305 1.00 21.53 B 4919 N ARG 274 −10.897 26.506 71.421 1.00 26.35 B 4920 CA ARG 274 −11.885 27.498 70.993 1.00 26.02 B 4921 CB ARG 274 −13.299 27.078 71.470 1.00 30.33 B 4922 CG ARG 274 −14.406 27.884 70.784 1.00 34.79 B 4923 CD ARG 274 −15.809 27.333 71.119 1.00 37.50 B 4924 NE ARG 274 −16.871 28.118 70.487 1.00 38.88 B 4925 CZ ARG 274 −18.172 27.994 70.777 1.00 40.68 B 4926 NH1 ARG 274 −18.541 27.099 71.700 1.00 39.89 B 4927 NH2 ARG 274 −19.089 28.742 70.154 1.00 38.89 B 4928 C ARG 274 −11.588 28.907 71.456 1.00 23.71 B 4929 O ARG 274 −12.007 29.877 70.823 1.00 22.59 B 4930 N ASP 275 −10.768 29.152 72.483 1.00 23.58 B 4931 CA ASP 275 −10.497 30.501 72.936 1.00 24.04 B 4932 CB ASP 275 −10.343 30.538 74.465 1.00 27.42 B 4933 CG ASP 275 −11.632 30.300 75.239 1.00 31.03 B 4934 OD1 ASP 275 −12.743 30.473 74.687 1.00 32.66 B 4935 OD2 ASP 275 −11.456 29.933 76.422 1.00 33.99 B 4936 C ASP 275 −9.237 31.107 72.328 1.00 22.28 B 4937 O ASP 275 −8.887 32.239 72.671 1.00 20.30 B 4938 N VAL 276 −8.754 30.506 71.227 1.00 21.31 B 4939 CA VAL 276 −7.590 31.114 70.567 1.00 18.63 B 4940 CB VAL 276 −7.141 30.306 69.325 1.00 19.27 B 4941 CG1 VAL 276 −6.304 31.145 68.349 1.00 21.02 B 4942 CG2 VAL 276 −6.400 29.081 69.808 1.00 18.70 B 4943 C VAL 276 −7.785 32.552 70.267 1.00 15.46 B 4944 O VAL 276 −6.921 33.346 70.606 1.00 16.12 B 4945 N PRO 277 −8.904 33.001 69.692 1.00 17.02 B 4946 CA PRO 277 −9.088 34.406 69.391 1.00 18.84 B 4947 CD PRO 277 −10.016 32.159 69.207 1.00 17.63 B 4948 CB PRO 277 −10.521 34.464 68.820 1.00 19.05 B 4949 CG PRO 277 −10.718 33.106 68.215 1.00 18.29 B 4950 C PRO 277 −8.906 35.279 70.621 1.00 19.45 B 4951 O PRO 277 −8.372 36.389 70.553 1.00 18.40 B 4952 N LEU 278 −9.543 34.876 71.735 1.00 19.69 B 4953 CA LEU 278 −9.411 35.668 72.990 1.00 20.31 B 4954 CB LEU 278 −10.361 35.068 74.035 1.00 22.50 B 4955 CG LEU 278 −11.868 35.358 73.838 1.00 25.67 B 4956 CD2 LEU 278 −12.104 36.848 73.863 1.00 26.14 B 4957 CD1 LEU 278 −12.735 34.631 74.880 1.00 25.47 B 4958 C LEU 278 −7.994 35.648 73.520 1.00 18.30 B 4959 O LEU 278 −7.545 36.608 74.150 1.00 19.70 B 4960 N MET 279 −7.252 34.541 73.319 1.00 19.49 B 4961 CA MET 279 −5.837 34.574 73.740 1.00 19.53 B 4962 CB MET 279 −5.202 33.205 73.600 1.00 19.87 B 4963 CG MET 279 −5.986 32.085 74.264 1.00 19.95 B 4964 SD MET 279 −5.197 30.502 73.968 1.00 22.16 B 4965 CE MET 279 −6.496 29.371 74.455 1.00 22.34 B 4966 C MET 279 −5.023 35.550 72.913 1.00 21.00 B 4967 O MET 279 −4.159 36.294 73.426 1.00 20.65 B 4968 N VAL 280 −5.405 35.759 71.635 1.00 20.55 B 4969 CA VAL 280 −4.738 36.800 70.853 1.00 19.11 B 4970 CB VAL 280 −5.061 36.677 69.321 1.00 20.89 B 4971 CG1 VAL 280 −4.516 37.881 68.551 1.00 19.38 B 4972 CG2 VAL 280 −4.493 35.369 68.775 1.00 18.88 B 4973 C VAL 280 −5.214 38.144 71.374 1.00 20.36 B 4974 O VAL 280 −4.408 39.065 71.561 1.00 18.34 B 4975 N ALA 281 −6.507 38.281 71.737 1.00 19.24 B 4976 CA ALA 281 −6.975 39.620 72.148 1.00 20.88 B 4977 CB ALA 281 −8.491 39.556 72.402 1.00 22.00 B 4978 C ALA 281 −6.293 40.164 73.395 1.00 20.35 B 4979 O ALA 281 −5.938 41.340 73.517 1.00 22.71 B 4980 N LYS 282 −6.003 39.261 74.326 1.00 20.86 B 4981 CA LYS 282 −5.389 39.607 75.600 1.00 22.27 B 4982 CB LYS 282 −5.374 38.346 76.506 1.00 21.78 B 4983 CG LYS 282 −4.629 38.624 77.830 1.00 25.23 B 4984 CD LYS 282 −4.444 37.340 78.625 1.00 24.84 B 4985 CE LYS 282 −3.471 37.568 79.802 1.00 26.57 B 4986 NZ LYS 282 −3.093 36.253 80.366 1.00 26.17 B 4987 C LYS 282 −3.973 40.126 75.411 1.00 23.61 B 4988 O LYS 282 −3.455 40.929 76.190 1.00 23.04 B 4989 N ASN 283 −3.257 39.565 74.431 1.00 22.39 B 4990 CA ASN 283 −1.846 39.928 74.252 1.00 21.71 B 4991 CB ASN 283 −1.121 38.583 73.976 1.00 21.25 B 4992 CG ASN 283 −1.243 37.725 75.255 1.00 23.44 B 4993 OD1 ASN 283 −0.471 37.967 76.191 1.00 23.77 B 4994 ND2 ASN 283 −2.088 36.721 75.343 1.00 21.55 B 4995 C ASN 283 −1.552 40.913 73.151 1.00 21.06 B 4996 O ASN 283 −0.396 41.341 73.072 1.00 21.73 B 4997 N ILE 284 −2.472 41.229 72.245 1.00 20.12 B 4998 CA ILE 284 −2.068 41.940 71.020 1.00 19.95 B 4999 CB ILE 284 −3.168 41.791 69.926 1.00 20.33 B 5000 CG2 ILE 284 −4.349 42.702 70.204 1.00 19.28 B 5001 CG1 ILE 284 −2.545 42.172 68.551 1.00 22.20 B 5002 CD1 ILE 284 −1.701 41.017 68.025 1.00 19.74 B 5003 C ILE 284 −1.685 43.374 71.172 1.00 18.24 B 5004 O ILE 284 −0.680 43.802 70.567 1.00 17.37 B 5005 N GLU 285 −2.223 44.176 72.104 1.00 19.63 B 5006 CA GLU 285 −1.807 45.548 72.254 1.00 19.85 B 5007 CB GLU 285 −2.656 46.404 73.204 1.00 23.34 B 5008 CG GLU 285 −4.113 46.332 72.892 1.00 28.25 B 5009 CD GLU 285 −4.950 46.886 74.064 1.00 30.04 B 5010 OE1 GLU 285 −5.555 46.026 74.748 1.00 30.75 B 5011 OE2 GLU 285 −4.905 48.109 74.215 1.00 28.37 B 5012 C GLU 285 −0.371 45.610 72.760 1.00 20.50 B 5013 O GLU 285 0.354 46.521 72.328 1.00 20.03 B 5014 N ASN 286 0.000 44.672 73.635 1.00 20.12 B 5015 CA ASN 286 1.409 44.689 74.075 1.00 20.92 B 5016 CB ASN 286 1.631 43.638 75.167 1.00 23.97 B 5017 CG ASN 286 0.951 43.931 76.494 1.00 27.46 B 5018 OD1 ASN 286 0.637 45.068 76.838 1.00 30.66 B 5019 ND2 ASN 286 0.716 42.905 77.291 1.00 30.06 B 5020 C ASN 286 2.358 44.405 72.910 1.00 18.86 B 5021 O ASN 286 3.454 44.955 72.867 1.00 18.21 B 5022 N ALA 287 2.023 43.529 71.960 1.00 18.22 B 5023 CA ALA 287 2.953 43.315 70.818 1.00 20.10 B 5024 CB ALA 287 2.511 42.080 70.016 1.00 19.75 B 5025 C ALA 287 3.021 44.544 69.926 1.00 18.86 B 5026 O ALA 287 4.084 44.973 69.485 1.00 21.40 B 5027 N ALA 288 1.931 45.242 69.672 1.00 19.69 B 5028 CA ALA 288 1.877 46.486 68.906 1.00 20.76 B 5029 CB ALA 288 0.407 46.944 68.814 1.00 18.71 B 5030 C ALA 288 2.708 47.586 69.534 1.00 21.70 B 5031 O ALA 288 3.608 48.189 68.957 1.00 21.81 B 5032 N GLU 289 2.515 47.753 70.868 1.00 23.39 B 5033 CA GLU 289 3.205 48.774 71.637 1.00 24.00 B 5034 CB GLU 289 2.681 48.845 73.114 1.00 27.17 B 5035 CG GLU 289 1.232 49.280 73.130 1.00 35.05 B 5036 CD GLU 289 0.407 49.305 74.411 1.00 39.46 B 5037 OE1 GLU 289 0.395 48.320 75.195 1.00 41.32 B 5038 OE2 GLU 289 −0.305 50.327 74.642 1.00 40.70 B 5039 C GLU 289 4.695 48.525 71.684 1.00 22.51 B 5040 O GLU 289 5.466 49.478 71.569 1.00 22.73 B 5041 N LYS 290 5.070 47.253 71.839 1.00 20.97 B 5042 CA LYS 290 6.487 46.923 71.888 1.00 22.45 B 5043 CB LYS 290 6.709 45.455 72.206 1.00 21.35 B 5044 CG LYS 290 8.158 45.018 72.272 1.00 26.33 B 5045 CD LYS 290 8.304 43.599 72.868 1.00 30.29 B 5046 CE LYS 290 9.796 43.226 72.880 1.00 30.50 B 5047 NZ LYS 290 9.952 41.875 73.506 1.00 31.52 B 5048 C LYS 290 7.137 47.258 70.529 1.00 22.29 B 5049 O LYS 290 8.279 47.671 70.537 1.00 20.37 B 5050 N ALA 291 6.420 47.025 69.425 1.00 22.31 B 5051 CA ALA 291 7.010 47.304 68.110 1.00 23.67 B 5052 CB ALA 291 6.223 46.530 67.045 1.00 22.69 B 5053 C ALA 291 7.015 48.776 67.683 1.00 22.63 B 5054 O ALA 291 7.965 49.262 67.026 1.00 20.29 B 5055 N LEU 292 5.959 49.466 68.074 1.00 21.09 B 5056 CA LEU 292 5.778 50.862 67.678 1.00 22.30 B 5057 CB LEU 292 4.285 51.008 67.371 1.00 20.82 B 5058 CG LEU 292 3.811 50.103 66.212 1.00 22.17 B 5059 CD2 LEU 292 4.468 50.583 64.907 1.00 21.85 B 5060 CD1 LEU 292 2.295 50.171 66.117 1.00 23.60 B 5061 C LEU 292 6.248 51.940 68.638 1.00 25.08 B 5062 O LEU 292 6.779 53.007 68.223 1.00 21.43 B 5063 N SER 293 6.298 51.610 69.948 1.00 24.60 B 5064 CA SER 293 6.843 52.638 70.869 1.00 28.76 B 5065 CB SER 293 6.729 52.236 72.353 1.00 27.81 B 5066 OG SER 293 5.327 52.280 72.664 1.00 31.12 B 5067 C SER 293 8.253 53.052 70.542 1.00 28.18 B 5068 O SER 293 8.565 54.245 70.546 1.00 29.17 B 5069 N PRO 294 9.184 52.185 70.179 1.00 30.83 B 5070 CA PRO 294 10.532 52.588 69.789 1.00 32.60 B 5071 CD PRO 294 9.014 50.707 70.150 1.00 30.64 B 5072 CB PRO 294 11.221 51.289 69.374 1.00 33.07 B 5073 CG PRO 294 10.446 50.226 70.086 1.00 32.36 B 5074 C PRO 294 10.590 53.579 68.631 1.00 35.35 B 5075 O PRO 294 11.626 54.234 68.415 1.00 34.68 B 5076 N LEU 295 9.536 53.638 67.818 1.00 34.49 B 5077 CA LEU 295 9.417 54.513 66.679 1.00 35.33 B 5078 CB LEU 295 8.662 53.766 65.560 1.00 37.28 B 5079 CG LEU 295 9.477 52.920 64.581 1.00 38.81 B 5080 CD2 LEU 295 8.746 51.638 64.198 1.00 39.17 B 5081 CD1 LEU 295 10.878 52.584 65.048 1.00 40.23 B 5082 C LEU 295 8.625 55.766 67.031 1.00 34.72 B 5083 O LEU 295 8.343 56.566 66.144 1.00 33.16 B 5084 N GLY 296 8.207 55.888 68.297 1.00 32.08 B 5085 CA GLY 296 7.417 57.025 68.714 1.00 30.94 B 5086 C GLY 296 6.003 56.960 68.177 1.00 29.68 B 5087 O GLY 296 5.339 57.979 68.025 1.00 30.58 B 5088 N ILE 297 5.504 55.781 67.829 1.00 28.93 B 5089 CA ILE 297 4.162 55.700 67.271 1.00 27.98 B 5090 CB ILE 297 4.196 54.756 66.055 1.00 29.23 B 5091 CG2 ILE 297 2.770 54.493 65.608 1.00 28.73 B 5092 CG1 ILE 297 5.134 55.385 65.002 1.00 29.11 B 5093 CD1 ILE 297 5.184 54.647 63.667 1.00 29.61 B 5094 C ILE 297 3.208 55.137 68.305 1.00 29.24 B 5095 O ILE 297 3.448 54.026 68.774 1.00 26.04 B 5096 N THR 298 2.129 55.872 68.586 1.00 28.94 B 5097 CA THR 298 1.171 55.364 69.577 1.00 31.35 B 5098 CB THR 298 1.160 56.274 70.828 1.00 33.69 B 5099 OG1 THR 298 1.076 57.636 70.377 1.00 34.34 B 5100 CG2 THR 298 2.431 56.102 71.635 1.00 34.41 B 5101 C THR 298 −0.233 55.324 69.014 1.00 30.57 B 5102 O THR 298 −1.145 54.760 69.629 1.00 32.05 B 5103 N ASP 299 −0.438 55.922 67.857 1.00 29.91 B 5104 CA ASP 299 −1.754 55.880 67.211 1.00 31.43 B 5105 CB ASP 299 −2.025 57.228 66.540 1.00 32.66 B 5106 CG ASP 299 −3.314 57.240 65.753 1.00 33.63 B 5107 OD1 ASP 299 −4.070 56.258 65.713 1.00 34.14 B 5108 OD2 ASP 299 −3.582 58.283 65.114 1.00 37.07 B 5109 C ASP 299 −1.794 54.717 66.221 1.00 30.88 B 5110 O ASP 299 −1.306 54.815 65.091 1.00 29.67 B 5111 N TRP 300 −2.507 53.654 66.575 1.00 29.51 B 5112 CA TRP 300 −2.663 52.451 65.798 1.00 29.64 B 5113 CB TRP 300 −3.461 51.372 66.511 1.00 28.99 B 5114 CG TRP 300 −3.030 51.004 67.903 1.00 32.00 B 5115 CD2 TRP 300 −1.724 51.098 68.469 1.00 31.35 B 5116 CD1 TRP 300 −3.848 50.537 68.900 1.00 30.36 B 5117 NE1 TRP 300 −3.124 50.326 70.052 1.00 30.99 B 5118 CE2 TRP 300 −1.816 50.637 69.801 1.00 33.33 B 5119 CE3 TRP 300 −0.484 51.486 67.982 1.00 33.69 B 5120 CZ2 TRP 300 −0.715 50.618 70.663 1.00 33.05 B 5121 CZ3 TRP 300 0.617 51.459 68.826 1.00 33.58 B 5122 CH2 TRP 300 0.480 51.026 70.145 1.00 34.60 B 5123 C TRP 300 −3.291 52.646 64.410 1.00 30.15 B 5124 O TRP 300 −3.070 51.810 63.516 1.00 27.40 B 5125 N ASN 301 −4.042 53.738 64.235 1.00 28.62 B 5126 CA ASN 301 −4.662 53.984 62.943 1.00 28.51 B 5127 CB ASN 301 −5.999 54.705 63.081 1.00 29.21 B 5128 CG ASN 301 −7.055 53.672 63.443 1.00 30.49 B 5129 OD1 ASN 301 −7.398 52.778 62.667 1.00 32.58 B 5130 ND2 ASN 301 −7.614 53.885 64.623 1.00 30.87 B 5131 C ASN 301 −3.746 54.771 62.024 1.00 28.08 B 5132 O ASN 301 −4.043 54.847 60.839 1.00 27.24 B 5133 N SER 302 −2.611 55.230 62.548 1.00 27.38 B 5134 CA SER 302 −1.657 55.926 61.691 1.00 28.99 B 5135 CB SER 302 −0.871 56.918 62.534 1.00 29.19 B 5136 OG SER 302 0.091 56.350 63.383 1.00 28.39 B 5137 C SER 302 −0.742 54.941 60.948 1.00 27.37 B 5138 O SER 302 0.178 55.410 60.274 1.00 28.02 B 5139 N VAL 303 −0.938 53.638 61.044 1.00 26.60 B 5140 CA VAL 303 −0.036 52.657 60.427 1.00 24.47 B 5141 CB VAL 303 0.927 51.952 61.382 1.00 26.94 B 5142 CG1 VAL 303 1.838 52.902 62.175 1.00 26.73 B 5143 CG2 VAL 303 0.177 51.030 62.353 1.00 23.00 B 5144 C VAL 303 −0.889 51.602 59.722 1.00 23.52 B 5145 O VAL 303 −2.086 51.588 60.015 1.00 23.22 B 5146 N PHE 304 −0.317 50.836 58.804 1.00 21.05 B 5147 CA PHE 304 −1.087 49.856 58.039 1.00 22.26 B 5148 CB PHE 304 −0.718 49.829 56.550 1.00 21.58 B 5149 CG PHE 304 0.724 49.572 56.199 1.00 22.76 B 5150 CD1 PHE 304 1.655 50.599 56.139 1.00 22.21 B 5151 CD2 PHE 304 1.141 48.296 55.854 1.00 25.40 B 5152 CE1 PHE 304 2.966 50.345 55.832 1.00 22.11 B 5153 CE2 PHE 304 2.477 48.048 55.529 1.00 24.12 B 5154 CZ PHE 304 3.393 49.072 55.509 1.00 23.69 B 5155 C PHE 304 −0.838 48.507 58.695 1.00 23.31 B 5156 O PHE 304 0.151 48.437 59.448 1.00 24.50 B 5157 N TRP 305 −1.717 47.552 58.594 1.00 23.36 B 5158 CA TRP 305 −1.655 46.298 59.330 1.00 24.97 B 5159 CB TRP 305 −2.870 46.216 60.328 1.00 24.89 B 5160 CG TRP 305 −2.765 47.319 61.334 1.00 25.03 B 5161 CD2 TRP 305 −2.010 47.280 62.562 1.00 25.82 B 5162 CD1 TRP 305 −3.232 48.600 61.221 1.00 25.61 B 5163 NE1 TRP 305 −2.827 49.342 62.298 1.00 24.83 B 5164 CE2 TRP 305 −2.106 48.538 63.149 1.00 24.79 B 5165 CE3 TRP 305 −1.288 46.258 63.219 1.00 24.79 B 5166 CZ2 TRP 305 −1.483 48.842 64.367 1.00 26.05 B 5167 CZ3 TRP 305 −0.721 46.562 64.445 1.00 24.46 B 5168 CH2 TRP 305 −0.777 47.838 64.998 1.00 25.19 B 5169 C TRP 305 −1.787 45.096 58.424 1.00 24.85 B 5170 O TRP 305 −2.672 45.104 57.578 1.00 26.94 B 5171 N MET 306 −0.972 44.077 58.531 1.00 21.95 B 5172 CA MET 306 −1.054 42.816 57.822 1.00 21.34 B 5173 CB MET 306 0.209 42.563 56.995 1.00 21.09 B 5174 CG MET 306 0.421 43.672 55.972 1.00 20.03 B 5175 SD MET 306 2.139 44.089 55.648 1.00 22.51 B 5176 CE MET 306 2.495 45.049 57.167 1.00 26.87 B 5177 C MET 306 −1.211 41.711 58.880 1.00 20.66 B 5178 O MET 306 −0.221 41.358 59.534 1.00 20.48 B 5179 N VAL 307 −2.402 41.163 59.023 1.00 20.73 B 5180 CA VAL 307 −2.707 40.294 60.137 1.00 18.05 B 5181 CB VAL 307 −3.902 40.811 61.011 1.00 17.93 B 5182 CG1 VAL 307 −4.095 39.898 62.206 1.00 18.14 B 5183 CG2 VAL 307 −3.687 42.236 61.425 1.00 18.06 B 5184 C VAL 307 −3.014 38.909 59.662 1.00 18.96 B 5185 O VAL 307 −3.948 38.717 58.893 1.00 19.14 B 5186 N HIS 308 −2.203 37.946 60.168 1.00 17.07 B 5187 CA HIS 308 −2.425 36.566 59.814 1.00 17.63 B 5188 ND1 HIS 308 −1.407 33.596 58.952 1.00 17.99 B 5189 CG HIS 308 −1.774 34.169 60.146 1.00 17.55 B 5190 CB HIS 308 −1.500 35.594 60.541 1.00 16.64 B 5191 NE2 HIS 308 −2.452 32.080 60.105 1.00 19.33 B 5192 CD2 HIS 308 −2.392 33.200 60.862 1.00 16.86 B 5193 CE1 HIS 308 −1.784 32.330 58.955 1.00 20.71 B 5194 C HIS 308 −3.862 36.171 60.146 1.00 20.15 B 5195 O HIS 308 −4.196 36.218 61.336 1.00 20.31 B 5196 N PRO 309 −4.609 35.703 59.157 1.00 19.60 B 5197 CA PRO 309 −6.036 35.406 59.367 1.00 18.69 B 5198 CD PRO 309 −4.216 35.666 57.711 1.00 17.25 B 5199 CB PRO 309 −6.662 35.672 57.992 1.00 18.47 B 5200 CG PRO 309 −5.542 35.330 57.035 1.00 19.57 B 5201 C PRO 309 −6.227 34.020 59.848 1.00 17.62 B 5202 O PRO 309 −6.848 33.191 59.186 1.00 20.03 B 5203 N GLY 310 −5.701 33.632 61.041 1.00 18.19 B 5204 CA GLY 310 −5.794 32.245 61.493 1.00 15.27 B 5205 C GLY 310 −7.267 31.831 61.383 1.00 15.92 B 5206 O GLY 310 −7.560 30.671 61.100 1.00 16.29 B 5207 N GLY 311 −8.160 32.765 61.656 1.00 17.99 B 5208 CA GLY 311 −9.596 32.551 61.436 1.00 20.00 B 5209 C GLY 311 −10.183 33.951 61.373 1.00 19.56 B 5210 O GLY 311 −9.534 34.864 61.873 1.00 20.74 B 5211 N ARG 312 −11.407 34.144 60.868 1.00 20.47 B 5212 CA ARG 312 −12.059 35.449 60.868 1.00 21.63 B 5213 CB ARG 312 −13.527 35.256 60.375 1.00 24.00 B 5214 CG ARG 312 −14.198 36.603 60.071 1.00 24.43 B 5215 CD ARG 312 −15.709 36.524 60.340 1.00 28.53 B 5216 NE ARG 312 −15.986 36.682 61.777 1.00 29.01 B 5217 CZ ARG 312 −16.395 35.674 62.557 1.00 30.38 B 5218 NH1 ARG 312 −16.772 34.499 62.084 1.00 29.87 B 5219 NH2 ARG 312 −16.516 35.880 63.870 1.00 29.12 B 5220 C ARG 312 −12.135 36.173 62.222 1.00 20.82 B 5221 O ARG 312 −11.958 37.366 62.433 1.00 21.21 B 5222 N ALA 313 −12.359 35.383 63.262 1.00 21.23 B 5223 CA ALA 313 −12.522 35.849 64.666 1.00 22.59 B 5224 CB ALA 313 −13.057 34.734 65.538 1.00 20.95 B 5225 C ALA 313 −11.200 36.359 65.219 1.00 20.52 B 5226 O ALA 313 −11.195 37.326 65.970 1.00 21.79 B 5227 N ILE 314 −10.091 35.774 64.710 1.00 20.33 B 5228 CA ILE 314 −8.813 36.388 65.138 1.00 20.36 B 5229 CB ILE 314 −7.647 35.495 64.674 1.00 20.12 B 5230 CG2 ILE 314 −6.334 36.309 64.729 1.00 21.33 B 5231 CG1 ILE 314 −7.638 34.216 65.466 1.00 20.77 B 5232 CD1 ILE 314 −6.582 33.203 65.035 1.00 24.17 B 5233 C ILE 314 −8.697 37.794 64.591 1.00 20.44 B 5234 O ILE 314 −8.270 38.752 65.252 1.00 22.07 B 5235 N LEU 315 −9.019 37.994 63.274 1.00 20.11 B 5236 CA LEU 315 −8.984 39.339 62.709 1.00 18.16 B 5237 CB LEU 315 −9.481 39.390 61.240 1.00 19.31 B 5238 CG LEU 315 −8.629 38.553 60.225 1.00 18.63 B 5239 CD2 LEU 315 −7.183 38.975 60.278 1.00 16.29 B 5240 CD1 LEU 315 −9.181 38.712 58.804 1.00 19.25 B 5241 C LEU 315 −9.871 40.276 63.539 1.00 18.51 B 5242 O LEU 315 −9.550 41.443 63.803 1.00 20.92 B 5243 N ASP 316 −11.070 39.827 63.846 1.00 17.94 B 5244 CA ASP 316 −12.060 40.658 64.535 1.00 21.13 B 5245 CB ASP 316 −13.352 39.852 64.669 1.00 22.57 B 5246 CG ASP 316 −14.070 39.660 63.321 1.00 25.48 B 5247 OD1 ASP 316 −13.674 40.262 62.282 1.00 24.54 B 5248 OD2 ASP 316 −15.020 38.860 63.289 1.00 23.59 B 5249 C ASP 316 −11.526 41.095 65.906 1.00 22.99 B 5250 O ASP 316 −11.613 42.276 66.275 1.00 21.67 B 5251 N GLN 317 −10.904 40.140 66.604 1.00 22.42 B 5252 CA GLN 317 −10.360 40.506 67.953 1.00 22.73 B 5253 CB GLN 317 −9.911 39.228 68.636 1.00 22.43 B 5254 CG GLN 317 −11.056 38.391 69.222 1.00 23.87 B 5255 CD GLN 317 −11.747 39.122 70.380 1.00 24.67 B 5256 OE1 GLN 317 −11.435 40.246 70.782 1.00 23.10 B 5257 NE2 GLN 317 −12.762 38.460 70.919 1.00 26.57 B 5258 C GLN 317 −9.238 41.497 67.816 1.00 23.11 B 5259 O GLN 317 −9.156 42.493 68.549 1.00 23.40 B 5260 N VAL 318 −8.397 41.338 66.756 1.00 22.30 B 5261 CA VAL 318 −7.305 42.320 66.610 1.00 21.68 B 5262 CB VAL 318 −6.277 41.896 65.529 1.00 20.13 B 5263 CG1 VAL 318 −5.305 43.002 65.214 1.00 19.83 B 5264 CG2 VAL 318 −5.580 40.612 65.982 1.00 21.31 B 5265 C VAL 318 −7.865 43.688 66.335 1.00 21.70 B 5266 O VAL 318 −7.373 44.694 66.872 1.00 19.93 B 5267 N GLU 318 −8.872 43.758 65.412 1.00 21.94 B 5268 CA GLU 319 −9.491 45.053 65.091 1.00 23.27 B 5269 CB GLU 319 −10.589 44.781 64.056 1.00 26.24 B 5270 CG GLU 319 −11.395 45.943 63.519 1.00 29.12 B 5271 CD GLU 319 −12.405 45.393 62.505 1.00 32.43 B 5272 OE1 GLU 319 −12.103 45.337 61.287 1.00 32.08 B 5273 OE2 GLU 319 −13.434 44.837 62.945 1.00 33.65 B 5274 C GLU 319 −10.168 45.698 66.325 1.00 22.56 B 5275 O GLU 319 −9.996 46.893 66.538 1.00 21.16 B 5276 N ARG 320 −10.779 44.858 67.154 1.00 21.69 B 5277 CA ARG 320 −11.410 45.381 68.390 1.00 23.35 B 5278 CB ARG 320 −12.202 44.246 69.060 1.00 23.74 B 5279 CG ARG 320 −12.782 44.760 70.420 1.00 25.66 B 5280 CD ARG 320 −13.698 43.703 71.016 1.00 25.35 B 5281 NE ARG 320 −12.941 42.596 71.621 1.00 26.01 B 5282 CZ ARG 320 −12.502 42.520 72.886 1.00 25.36 B 5283 NH1 ARG 320 −12.793 43.513 73.735 1.00 22.52 B 5284 NH2 ARG 320 −11.849 41.417 73.296 1.00 22.41 B 5285 C ARG 320 −10.374 45.888 69.365 1.00 24.31 B 5286 O ARG 320 −10.303 47.082 69.618 1.00 25.73 B 5287 N LYS 321 −9.399 45.049 69.751 1.00 24.51 B 5288 CA LYS 321 −8.379 45.431 70.734 1.00 25.04 B 5289 CB LYS 321 −7.697 44.101 71.190 1.00 26.27 B 5290 CG LYS 321 −8.653 43.378 72.207 1.00 26.39 B 5291 CD LYS 321 −8.195 43.887 73.557 1.00 30.28 B 5292 CE LYS 321 −9.029 43.942 74.743 1.00 31.04 B 5293 NZ LYS 321 −9.608 45.187 75.225 1.00 33.95 B 5294 C LYS 321 −7.472 46.540 70.285 1.00 26.90 B 5295 O LYS 321 −7.150 47.466 71.081 1.00 23.68 B 5296 N LEU 322 −7.238 46.718 68.961 1.00 23.57 B 5297 CA LEU 322 −6.435 47.852 68.517 1.00 24.43 B 5298 CB LEU 322 −5.438 47.544 67.382 1.00 24.57 B 5299 CG LEU 322 −4.381 46.474 67.731 1.00 25.26 B 5300 CD2 LEU 322 −3.464 46.950 68.854 1.00 25.41 B 5301 CD1 LEU 322 −3.551 46.075 66.505 1.00 25.95 B 5302 C LEU 322 −7.332 49.018 68.132 1.00 23.91 B 5303 O LEU 322 −6.806 50.057 67.724 1.00 22.61 B 5304 N ASN 323 −8.653 48.845 68.240 1.00 25.03 B 5305 CA ASN 323 −9.538 49.965 67.936 1.00 28.29 B 5306 CB ASN 323 −9.422 51.126 68.954 1.00 31.89 B 5307 CG ASN 323 −10.763 51.879 68.879 1.00 37.60 B 5308 OD1 ASN 323 −10.786 53.101 68.699 1.00 39.93 B 5309 ND2 ASN 323 −11.895 51.176 68.964 1.00 38.45 B 5310 C ASN 323 −9.313 50.519 66.521 1.00 28.33 B 5311 C ASN 323 −9.227 51.714 66.293 1.00 25.80 B 5312 N LEU 324 −9.202 49.604 65.567 1.00 28.13 B 5313 CA LEU 324 −8.933 49.902 64.180 1.00 29.48 B 5314 CB LEU 324 −8.423 48.575 63.569 1.00 28.51 B 5315 CG LEU 324 −6.923 48.372 63.396 1.00 30.27 B 5316 CD2 LEU 324 −6.565 46.882 63.341 1.00 28.32 B 5317 CD1 LEU 324 −6.002 49.137 64.326 1.00 27.79 B 5318 C LEU 324 −10.181 50.368 63.448 1.00 29.19 B 5319 O LEU 324 −11.238 49.776 63.601 1.00 27.17 B 5320 N LYS 325 −10.039 51.350 62.562 1.00 33.48 B 5321 CA LYS 325 −11.117 51.696 61.640 1.00 34.34 B 5322 CB LYS 325 −10.679 52.796 60.698 1.00 36.67 B 5323 CG LYS 325 −10.462 54.151 61.347 1.00 40.37 B 5324 CD LYS 325 −10.216 55.199 60.259 1.00 43.88 B 5325 CE LYS 325 −8.958 56.003 60.542 1.00 45.94 B 5326 NZ LYS 325 −8.243 56.352 59.268 1.00 48.86 B 5327 C LYS 325 −11.489 50.437 60.864 1.00 36.02 B 5328 O LYS 325 −10.691 49.501 60.657 1.00 32.28 B 5329 N GLU 326 −12.735 50.396 60.397 1.00 36.53 B 5330 CA GLU 326 −13.322 49.268 59.705 1.00 38.57 B 5331 CB GLU 326 −14.808 49.610 59.371 1.00 42.33 B 5332 CG GLU 326 −15.651 49.277 60.588 1.00 48.46 B 5333 CD GLU 326 −16.884 50.070 60.959 1.00 50.98 B 5334 OE1 GLU 326 −17.559 50.689 60.096 1.00 52.47 B 5335 OE2 GLU 326 −17.211 50.069 62.179 1.00 52.37 B 5336 C GLU 326 −12.635 48.741 58.449 1.00 35.41 B 5337 O GLU 326 −12.849 47.584 58.079 1.00 33.05 B 5338 N ASP 327 −11.855 49.565 57.779 1.00 33.65 B 5339 CA ASP 327 −11.150 49.105 56.597 1.00 36.31 B 5340 CB ASP 327 −11.257 50.183 55.507 1.00 39.96 B 5341 CG ASP 327 −10.669 51.502 55.930 1.00 45.67 B 5342 OD1 ASP 327 −10.291 51.751 57.100 1.00 48.30 B 5343 OD2 ASP 327 −10.657 52.409 55.062 1.00 49.05 B 5344 C ASP 327 −9.693 48.777 56.864 1.00 32.45 B 5345 O ASP 327 −9.055 48.309 55.915 1.00 30.64 B 5346 N LYS 328 −9.167 49.007 58.082 1.00 28.05 B 5347 CA LYS 328 −7.747 48.697 58.273 1.00 25.57 B 5348 CB LYS 328 −7.294 49.051 59.709 1.00 25.04 B 5349 CG LYS 328 −7.158 50.594 59.741 1.00 26.94 B 5350 CD LYS 328 −5.687 50.955 59.478 1.00 26.71 B 5351 CE LYS 328 −5.597 52.434 59.374 1.00 30.21 B 5352 NZ LYS 328 −4.359 52.984 58.773 1.00 29.75 B 5353 C LYS 328 −7.367 47.293 57.853 1.00 22.32 B 5354 O LYS 328 −6.269 47.121 57.305 1.00 21.65 B 5355 N LEU 329 −8.165 46.286 58.130 1.00 19.10 B 5356 CA LEU 329 −7.811 44.905 57.824 1.00 20.35 B 5357 CB LEU 329 −8.246 43.988 58.953 1.00 20.66 B 5358 CG LEU 329 −7.625 44.367 60.337 1.00 22.03 B 5359 CD2 LEU 329 −6.111 44.528 60.248 1.00 22.71 B 5360 CD1 LEU 329 −8.061 43.297 61.325 1.00 23.16 B 5361 C LEU 329 −8.349 44.383 56.493 1.00 20.28 B 5362 O LEU 329 −8.392 43.197 56.280 1.00 19.00 B 5363 N ARG 330 −8.760 45.279 55.610 1.00 23.20 B 5364 CA ARG 330 −9.284 44.875 54.303 1.00 24.04 B 5365 CB ARG 330 −9.453 46.132 53.424 1.00 26.77 B 5366 CG ARG 330 −10.046 45.772 52.057 1.00 31.36 B 5367 CD ARG 330 −9.558 46.633 50.901 1.00 33.97 B 5368 NE ARG 330 −8.123 46.497 50.624 1.00 35.77 B 5369 CZ ARG 330 −7.493 45.536 49.966 1.00 37.17 B 5370 NH1 ARG 330 −6.168 45.684 49.904 1.00 36.94 B 5371 NH2 ARG 330 −8.130 44.507 49.416 1.00 35.70 B 5372 C ARG 330 −8.352 43.901 53.612 1.00 21.92 B 5373 O ARG 330 −8.758 42.840 53.148 1.00 23.05 B 5374 N ALA 331 −7.062 44.251 53.487 1.00 23.62 B 5375 CA ALA 331 −6.152 43.396 52.711 1.00 22.13 B 5376 CB ALA 331 −4.805 44.092 52.541 1.00 20.83 B 5377 C ALA 331 −6.005 42.026 53.326 1.00 22.56 B 5378 O ALA 331 −5.973 41.014 52.634 1.00 19.86 B 5379 N SER 332 −6.054 41.933 54.683 1.00 20.56 B 5380 CA SER 332 −5.993 40.664 55.376 1.00 18.63 B 5381 CB SER 332 −5.796 40.926 56.918 1.00 19.54 B 5382 OG SER 332 −4.538 41.563 57.076 1.00 21.55 B 5383 C SER 332 −7.257 39.866 55.187 1.00 17.66 B 5384 O SER 332 −7.263 38.648 54.994 1.00 17.37 B 5385 N ARG 333 −8.407 40.587 55.268 1.00 17.66 B 5386 CA ARG 333 −9.653 39.840 55.053 1.00 19.55 B 5387 CB ARG 333 −10.859 40.731 55.411 1.00 22.26 B 5388 CG ARG 333 −10.991 41.072 56.906 1.00 22.49 B 5389 CD ARG 333 −12.232 41.922 57.195 1.00 23.61 B 5390 NE ARG 333 −12.174 42.505 58.557 1.00 23.67 B 5391 CZ ARG 333 −12.452 41.727 59.616 1.00 21.99 B 5392 NH1 ARG 333 −12.806 40.459 59.458 1.00 20.57 B 5393 NH2 ARG 333 −12.376 42.243 60.844 1.00 23.81 B 5394 C AEG 333 −9.750 39.432 53.566 1.00 17.99 B 5395 O ARG 333 −10.373 38.431 53.266 1.00 17.75 B 5396 N HIS 334 −9.270 40.276 52.665 1.00 20.00 B 5397 CA HIS 334 −9.342 39.895 51.221 1.00 21.81 B 5398 ND1 HIS 334 −9.552 41.251 48.032 1.00 29.33 B 5399 CG HIS 334 −8.665 40.805 48.969 1.00 27.40 B 5400 CB HIS 334 −8.819 41.098 50.436 1.00 24.11 B 5401 NE2 HIS 334 −8.080 40.166 46.964 1.00 29.21 B 5402 CD2 HIS 334 −7.713 40.103 48.291 1.00 27.91 B 5403 CE1 HIS 334 −9.180 40.853 46.829 1.00 29.04 B 5404 C HIS 334 −8.591 38.606 50.922 1.00 20.31 B 5405 O HIS 334 −9.089 37.653 50.282 1.00 18.30 B 5406 N VAL 335 −7.370 38.457 51.474 1.00 18.88 B 5407 CA VAL 335 −6.608 37.204 51.276 1.00 18.05 B 5408 CB VAL 335 −5.172 37.361 51.835 1.00 16.25 B 5409 CG1 VAL 335 −4.408 36.038 51.905 1.00 14.81 B 5410 CG2 VAL 335 −4.370 38.358 51.024 1.00 17.43 B 5411 C VAL 335 −7.352 36.022 51.845 1.00 18.69 B 5412 O VAL 335 −7.462 34.911 51.264 1.00 16.92 B 5413 N LEU 336 −7.857 36.177 53.089 1.00 18.84 B 5414 CA LEU 336 −8.618 35.068 53.695 1.00 19.92 B 5415 CB LEU 336 −9.112 35.538 55.092 1.00 18.93 B 5416 CG LEU 336 −10.066 34.551 55.785 1.00 19.29 B 5417 CD2 LEU 336 −10.662 35.253 57.023 1.00 19.97 B 5418 CD1 LEU 336 −9.366 33.235 56.203 1.00 18.15 B 5419 C LEU 336 −9.823 34.722 52.808 1.00 19.48 B 5420 O LEU 336 −10.203 33.582 52.645 1.00 20.21 B 5421 N SER 337 −10.528 35.740 52.296 1.00 20.81 B 5422 CA SER 337 −11.673 35.416 51.431 1.00 23.18 B 5423 CB SER 337 −12.370 36.729 51.034 1.00 24.45 B 5424 OG SER 337 −13.518 36.378 50.302 1.00 26.44 B 5425 C SER 337 −11.290 34.649 50.165 1.00 23.02 B 5426 O SER 337 −11.873 33.600 49.897 1.00 22.24 B 5427 N GLU 338 −10.259 35.081 49.455 1.00 22.57 B 5428 CA GLU 338 −9.929 34.488 48.138 1.00 23.78 B 5429 CB GLU 338 −9.131 35.534 47.340 1.00 25.65 B 5430 CG GLU 338 −9.970 36.764 47.019 1.00 29.62 B 5431 CD GLU 338 −11.085 36.437 46.034 1.00 33.44 B 5432 OE1 GLU 338 −11.086 35.397 45.350 1.00 34.88 B 5433 OE2 GLU 338 −12.028 37.240 45.911 1.00 35.93 B 5434 C GLU 338 −9.093 33.245 48.215 1.00 23.79 B 5435 O GLU 338 −9.026 32.430 47.283 1.00 22.08 B 5436 N TYR 339 −8.427 32.976 49.366 1.00 20.54 B 5437 CA TYR 339 −7.572 31.801 49.454 1.00 19.28 B 5438 CB TYR 339 −6.097 32.268 49.464 1.00 20.25 B 5439 CG TYR 339 −5.684 33.114 48.294 1.00 21.60 B 5440 CD1 TYR 339 −5.299 32.478 47.107 1.00 22.56 B 5441 CD2 TYR 339 −5.709 34.480 48.355 1.00 20.36 B 5442 CE1 TYR 339 −4.931 33.258 46.020 1.00 24.72 B 5443 CE2 TYR 339 −5.263 35.261 47.295 1.00 23.36 B 5444 CZ TYR 339 −4.936 34.617 46.110 1.00 24.79 B 5445 OH TYR 339 −4.534 35.348 45.019 1.00 27.21 B 5446 C TYR 339 −7.681 30.965 50.745 1.00 19.15 B 5447 O TYR 339 −7.009 29.946 50.763 1.00 16.70 B 5448 N GLY 340 −8.364 31.454 51.773 1.00 19.15 B 5449 CA GLY 340 −8.343 30.639 53.023 1.00 19.44 B 5450 C GLY 340 −7.039 31.024 53.756 1.00 18.69 B 5451 O GLY 340 −6.274 31.904 53.291 1.00 16.73 B 5452 N ASN 341 −6.834 30.345 54.877 1.00 17.38 B 5453 CA ASN 341 −5.644 30.512 55.712 1.00 17.00 B 5454 CB ASN 341 −5.971 29.944 57.141 1.00 15.71 B 5455 CG ASN 341 −4.786 29.996 58.098 1.00 22.10 B 5456 OD1 ASN 341 −3.607 30.225 57.760 1.00 20.41 B 5457 ND2 ASN 341 −5.035 29.790 59.417 1.00 18.04 B 5458 C ASN 341 −4.531 29.705 55.073 1.00 12.66 B 5459 O ASN 341 −4.573 28.497 55.103 1.00 13.74 B 5460 N LEU 342 −3.480 30.293 54.531 1.00 13.87 B 5461 CA LEU 342 −2.401 29.692 53.796 1.00 14.38 B 5462 CB LEU 342 −1.947 30.703 52.713 1.00 13.53 B 5463 CG LEU 342 −3.059 31.003 51.662 1.00 16.45 B 5464 CD2 LEU 342 −3.341 29.764 50.827 1.00 13.74 B 5465 CD1 LEU 342 −2.612 32.163 50.779 1.00 14.62 B 5466 C LEU 342 −1.176 29.399 54.666 1.00 16.21 B 5467 O LEU 342 −0.015 29.263 54.262 1.00 15.04 B 5468 N ILE 343 −1.460 29.262 55.970 1.00 15.11 B 5469 CA ILE 343 −0.383 28.954 56.925 1.00 12.87 B 5470 CB ILE 343 −0.128 27.445 56.926 1.00 15.47 B 5471 CG2 ILE 343 0.552 27.109 58.289 1.00 17.57 B 5472 CG1 ILE 343 −1.420 26.625 56.838 1.00 14.46 B 5473 CD1 ILE 343 −1.178 25.109 56.887 1.00 16.26 B 5474 C ILE 343 0.786 29.845 56.750 1.00 9.81 B 5475 O ILE 343 0.620 31.104 56.721 1.00 12.86 B 5476 N SER 344 2.035 29.387 56.667 1.00 12.79 B 5477 CA SER 344 3.187 30.285 56.635 1.00 15.12 B 5478 CB SER 344 4.537 29.588 56.676 1.00 17.57 B 5479 OG SER 344 4.777 28.651 55.605 1.00 15.67 B 5480 C SER 344 3.210 31.252 55.477 1.00 15.66 B 5481 O SER 344 3.799 32.325 55.634 1.00 14.54 B 5482 N ALA 345 2.565 30.927 54.352 1.00 16.70 B 5483 CA ALA 345 2.555 31.866 53.226 1.00 18.03 B 5484 CB ALA 345 2.162 31.047 51.946 1.00 15.91 B 5485 C ALA 345 1.499 32.946 53.339 1.00 17.12 B 5486 O ALA 345 1.627 33.940 52.626 1.00 17.06 B 5487 N CYS 346 0.507 32.815 54.229 1.00 16.09 B 5488 CA CYS 346 −0.582 33.775 54.299 1.00 16.82 B 5489 CB CYS 346 −1.665 33.372 55.326 1.00 15.07 B 5490 SG CYS 346 −3.346 33.982 54.889 1.00 16.25 B 5491 C CYS 346 −0.234 35.239 54.412 1.00 16.79 B 5492 O CYS 346 −0.687 36.081 53.561 1.00 13.66 B 5493 N VAL 347 0.621 35.631 55.385 1.00 13.44 B 5494 CA VAL 347 0.895 37.041 55.567 1.00 13.45 B 5495 CB VAL 347 1.646 37.422 56.860 1.00 15.94 B 5496 CG1 VAL 347 0.748 37.144 58.075 1.00 13.87 B 5497 CG2 VAL 347 2.913 36.572 57.036 1.00 12.41 B 5498 C VAL 347 1.700 37.559 54.355 1.00 14.78 B 5499 O VAL 347 1.654 38.775 54.099 1.00 14.01 B 5500 N LEU 348 2.447 36.691 53.694 1.00 15.03 B 5501 CA LEU 348 3.216 37.183 52.508 1.00 14.71 B 5502 CB LEU 348 4.233 36.090 52.165 1.00 13.20 B 5503 CG LEU 348 5.101 35.645 53.362 1.00 14.08 B 5504 CD2 LEU 348 5.873 36.854 53.911 1.00 11.50 B 5505 CD1 LEU 348 6.129 34.629 52.878 1.00 13.45 B 5506 C LEU 348 2.262 37.392 51.313 1.00 14.54 B 5507 O LEU 348 2.382 38.426 50.654 1.00 16.63 B 5508 N PHE 349 1.187 36.608 51.202 1.00 14.95 B 5509 CA PHE 349 0.129 37.022 50.248 1.00 17.74 B 5510 CB PHE 349 −1.008 36.024 50.119 1.00 15.15 B 5511 CG PHE 349 −0.761 34.816 49.245 1.00 15.70 B 5512 CD1 PHE 349 −1.616 34.488 48.192 1.00 15.27 B 5513 CD2 PHE 349 0.314 33.972 49.493 1.00 14.11 B 5514 CE1 PHE 349 −1.368 33.348 47.444 1.00 16.03 B 5515 CE2 PHE 349 0.557 32.856 48.765 1.00 13.96 B 5516 CZ PHE 349 −0.294 32.531 47.715 1.00 15.84 B 5517 C PHE 349 −0.464 38.351 50.665 1.00 19.78 B 5518 O PHE 349 −0.854 39.123 49.785 1.00 19.74 B 5519 N ILE 350 −0.519 38.684 51.986 1.00 17.56 B 5520 CA ILE 350 −1.132 39.939 52.372 1.00 17.74 B 5521 CB ILE 350 −1.558 39.872 53.868 1.00 20.05 B 5522 CG2 ILE 350 −1.921 41.274 54.361 1.00 20.52 B 5523 CG1 ILE 350 −2.707 38.902 54.050 1.00 21.14 B 5524 CD1 ILE 350 −2.920 38.374 55.478 1.00 22.04 B 5525 C ILE 350 −0.215 41.099 52.050 1.00 17.77 B 5526 O ILE 350 −0.623 42.184 51.627 1.00 17.64 B 5527 N ILE 351 1.112 40.911 52.209 1.00 15.39 B 5528 CA ILE 351 2.041 41.992 51.833 1.00 17.61 B 5529 CB ILE 351 3.483 41.508 52.029 1.00 17.55 B 5530 CG2 ILE 351 4.522 42.500 51.525 1.00 18.23 B 5531 CG1 ILE 351 3.766 41.162 53.517 1.00 19.15 B 5532 CD1 ILE 351 5.164 40.697 53.856 1.00 17.76 B 5533 C ILE 351 1.785 42.294 50.322 1.00 18.50 B 5534 O ILE 351 1.669 43.450 49.934 1.00 17.39 B 5535 N ASP 352 1.656 41.234 49.549 1.00 13.85 B 5536 CA ASP 352 1.474 41.464 48.063 1.00 19.00 B 5537 CB ASP 352 1.548 40.106 47.393 1.00 16.36 B 5538 CG ASP 352 1.879 40.216 45.870 1.00 17.87 B 5539 OD1 ASP 352 2.620 41.136 45.537 1.00 17.05 B 5540 OD2 ASP 352 1.552 39.234 45.190 1.00 17.08 B 5541 C ASP 352 0.200 42.220 47.749 1.00 18.60 B 5542 O ASP 352 0.182 43.149 46.939 1.00 21.09 B 5543 N GLU 353 −0.875 41.885 48.453 1.00 19.67 B 5544 CA GLU 353 −2.183 42.496 48.349 1.00 20.84 B 5545 CB GLU 353 −3.252 41.729 49.160 1.00 17.41 B 5546 CG GLU 353 −4.585 42.461 49.264 1.00 18.96 B 5547 CD GLU 353 −5.299 42.580 47.896 1.00 20.82 B 5548 OE1 GLU 353 −4.986 41.788 46.991 1.00 22.39 B 5549 OE2 GLU 353 −6.170 43.442 47.721 1.00 18.42 B 5550 C GLU 353 −2.148 43.966 48.707 1.00 21.56 B 5551 O GLU 353 −2.645 44.865 47.990 1.00 19.49 B 5552 N VAL 354 −1.529 44.254 49.870 1.00 21.53 B 5553 CA VAL 354 −1.359 45.637 50.269 1.00 19.53 B 5554 CB VAL 354 −0.630 45.761 51.630 1.00 19.84 B 5555 CG1 VAL 354 −0.323 47.206 51.960 1.00 17.36 B 5556 CG2 VAL 354 −1.557 45.178 52.690 1.00 19.82 B 5557 C VAL 354 −0.627 46.433 49.197 1.00 20.27 B 5558 O VAL 354 −1.080 47.545 48.852 1.00 20.16 B 5559 N ARG 355 0.531 45.958 48.734 1.00 19.44 B 5560 CA ARG 355 1.250 46.810 47.768 1.00 19.84 B 5561 CB ARG 355 2.721 46.412 47.684 1.00 19.29 B 5562 CG ARG 355 2.981 45.022 47.124 1.00 19.67 B 5563 CD ARG 355 3.288 45.092 45.607 1.00 20.57 B 5564 NE ARG 355 3.551 43.739 45.088 1.00 20.45 B 5565 CZ ARG 355 4.488 43.429 44.194 1.00 21.00 B 5566 NH1 ARG 355 4.602 42.143 43.898 1.00 18.29 B 5567 NH2 ARG 355 5.350 44.316 43.658 1.00 20.14 B 5568 C ARG 355 0.492 46.833 46.435 1.00 19.22 B 5569 O ARG 355 0.418 47.907 45.844 1.00 20.61 B 5570 N LYS 356 −0.157 45.763 46.019 1.00 20.34 B 5571 CA LYS 356 −0.839 45.853 44.690 1.00 24.47 B 5572 CB LYS 356 −1.229 44.485 44.141 1.00 21.60 B 5573 CG LYS 356 0.070 43.739 43.786 1.00 22.62 B 5574 CD LYS 356 −0.334 42.322 43.335 1.00 23.63 B 5575 CE LYS 356 0.907 41.662 42.714 1.00 27.97 B 5576 NZ LYS 356 0.502 40.324 42.167 1.00 30.54 B 5577 C LYS 356 −2.022 46.810 44.746 1.00 25.59 B 5578 O LYS 356 −2.201 47.685 43.892 1.00 23.97 B 5579 N ARG 357 −2.798 46.682 45.837 1.00 25.23 B 5580 CA ARG 357 −3.947 47.566 46.023 1.00 27.07 B 5581 CB ARG 357 −4.781 47.087 47.204 1.00 29.98 B 5582 CG ARG 357 −6.178 47.652 47.317 1.00 35.68 B 5583 CD ARG 357 −7.002 47.478 46.029 1.00 38.99 B 5584 NE ARG 357 −8.381 47.139 46.377 1.00 43.61 B 5585 CZ ARG 357 −8.810 45.887 46.232 1.00 45.64 B 5586 NH1 ARG 357 −7.882 45.063 45.749 1.00 47.63 B 5587 NH2 ARG 357 −10.027 45.488 46.532 1.00 45.96 B 5588 C ARG 357 −3.510 49.010 46.139 1.00 26.78 B 5589 O ARG 357 −4.176 49.875 45.544 1.00 25.31 B 5590 N SER 358 −2.412 49.299 46.835 1.00 22.91 B 5591 CA SER 358 −1.967 50.678 46.985 1.00 24.66 B 5592 CB SER 358 −0.732 50.694 47.910 1.00 23.49 B 5593 OG SER 358 −1.166 50.289 49.224 1.00 24.21 B 5594 C SER 358 −1.607 51.302 45.620 1.00 27.34 B 5595 O SER 358 −1.985 52.457 45.341 1.00 26.59 B 5596 N MET 359 −0.858 50.559 44.815 1.00 26.09 B 5597 CA MET 359 −0.523 51.022 43.465 1.00 30.84 B 5598 CB MET 359 0.399 50.042 42.754 1.00 33.37 B 5599 CG MET 359 1.786 49.827 43.339 1.00 38.48 B 5600 SD MET 359 2.611 51.373 43.748 1.00 45.78 B 5601 CE MET 359 3.869 51.528 42.477 1.00 46.83 B 5602 C MET 359 −1.805 51.181 42.632 1.00 30.24 B 5603 O MET 359 −1.950 52.156 41.885 1.00 30.09 B 5604 N ALA 360 −2.728 50.229 42.701 1.00 30.18 B 5605 CA ALA 360 −3.943 50.276 41.910 1.00 32.29 B 5606 CB ALA 360 −4.771 49.013 42.014 1.00 31.29 B 5607 C ALA 360 −4.767 51.506 42.313 1.00 34.93 B 5608 O ALA 360 −5.338 52.186 41.440 1.00 34.14 B 5609 N GLU 361 −4.830 51.830 43.601 1.00 33.11 B 5610 CA GLU 361 −5.603 52.981 44.033 1.00 33.75 B 5611 CB GLU 361 −5.950 52.889 45.524 1.00 34.64 B 5612 CG GLU 361 −7.009 51.862 45.846 1.00 38.36 B 5613 CD GLU 361 −7.184 51.611 47.342 1.00 40.23 B 5614 OE1 GLU 361 −6.414 52.155 48.169 1.00 41.96 B 5615 OE2 GLU 361 −8.084 50.819 47.709 1.00 40.25 B 5616 C GLU 361 −4.865 54.299 43.849 1.00 33.05 B 5617 O GLU 361 −5.419 55.320 44.263 1.00 33.22 B 5618 N GLY 362 −3.626 54.300 43.383 1.00 31.44 B 5619 CA GLY 362 −2.840 55.498 43.290 1.00 32.90 B 5620 C GLY 362 −2.459 56.088 44.636 1.00 32.35 B 5621 O GLY 362 −2.209 57.290 44.693 1.00 31.88 B 5622 N LYS 363 −2.171 55.284 45.668 1.00 31.50 B 5623 CA LYS 363 −1.670 55.864 46.921 1.00 30.05 B 5624 CB LYS 363 −1.644 54.791 48.023 1.00 30.86 B 5625 CG LYS 363 −3.040 54.215 48.216 1.00 33.25 B 5626 CD LYS 363 −3.979 55.369 48.550 1.00 35.05 B 5627 CE LYS 363 −4.775 55.105 49.814 1.00 37.36 B 5628 NZ LYS 363 −6.023 54.336 49.478 1.00 40.20 B 5629 C LYS 363 −0.298 56.434 46.770 1.00 28.83 B 5630 O LYS 363 0.489 55.922 45.979 1.00 26.37 B 5631 N SER 364 0.114 57.272 47.729 1.00 26.81 B 5632 CA SER 364 1.436 57.836 47.715 1.00 26.31 B 5633 CB SER 364 1.553 59.069 48.633 1.00 28.44 B 5634 OG SER 364 1.180 58.757 49.996 1.00 29.99 B 5635 C SER 364 2.500 56.828 48.155 1.00 25.84 B 5636 O SER 364 3.690 57.173 48.039 1.00 25.10 B 5637 N THR 365 2.127 55.708 48.768 1.00 24.01 B 5638 CA THR 365 3.170 54.793 49.260 1.00 23.87 B 5639 CB THR 365 3.595 54.923 50.744 1.00 24.26 B 5640 OG1 THR 365 2.599 54.302 51.577 1.00 22.66 B 5641 CG2 THR 365 3.809 56.344 51.255 1.00 24.18 B 5642 C THR 365 2.665 53.373 49.009 1.00 20.88 B 5643 O THR 365 1.461 53.211 48.843 1.00 21.82 B 5644 N THR 366 3.531 52.379 49.055 1.00 19.45 B 5645 CA THR 366 3.127 50.989 48.920 1.00 19.21 B 5646 CB THR 366 4.356 50.070 48.826 1.00 19.40 B 5647 OG1 THR 366 5.355 50.375 49.834 1.00 19.38 B 5648 CG2 THR 366 5.113 50.310 47.476 1.00 19.02 B 5649 C THR 366 2.321 50.536 50.146 1.00 20.36 B 5650 O THR 366 1.783 49.427 50.118 1.00 17.90 B 5651 N GLY 367 2.373 51.274 51.261 1.00 20.93 B 5652 CA GLY 367 1.638 50.740 52.463 1.00 22.97 B 5653 C GLY 367 0.374 51.547 52.679 1.00 26.02 B 5654 O GLY 367 0.262 52.285 53.679 1.00 27.99 B 5655 N GLU 368 −0.571 51.492 51.742 1.00 23.43 B 5656 CA GLU 368 −1.825 52.213 51.782 1.00 25.30 B 5657 CB GLU 368 −2.740 51.605 52.867 1.00 25.99 B 5658 CG GLU 368 −2.864 50.082 52.649 1.00 26.74 B 5659 CD GLU 368 −3.660 49.375 53.720 1.00 27.59 B 5660 OE1 GLU 368 −3.896 49.979 54.799 1.00 28.76 B 5661 OE2 GLU 368 −4.129 48.229 53.528 1.00 28.71 B 5662 C GLU 368 −1.687 53.709 51.963 1.00 25.50 B 5663 O GLU 368 −2.570 54.337 52.557 1.00 27.62 B 5664 N GLY 369 −0.681 54.348 51.399 1.00 23.87 B 5665 CA GLY 369 −0.372 55.750 51.575 1.00 25.69 B 5666 C GLY 369 0.250 56.102 52.936 1.00 26.59 B 5667 O GLY 369 0.609 57.262 53.147 1.00 25.34 B 5668 N LEU 370 0.505 55.138 53.818 1.00 26.36 B 5669 CA LEU 370 1.065 55.425 55.134 1.00 27.96 B 5670 CB LEU 370 0.305 54.613 56.159 1.00 28.99 B 5671 CG LEU 370 −0.934 55.141 56.879 1.00 32.83 B 5672 CD2 LEU 370 −1.958 54.032 57.020 1.00 31.97 B 5673 CD1 LEU 370 −1.577 56.404 56.350 1.00 31.33 B 5674 C LEU 370 2.549 55.042 55.156 1.00 28.04 B 5675 O LEU 370 3.002 54.292 54.267 1.00 25.33 B 5676 N ASP 371 3.284 55.512 56.155 1.00 25.78 B 5677 CA ASP 371 4.693 55.240 56.240 1.00 28.14 B 5678 CB ASP 371 5.406 56.400 56.980 1.00 31.72 B 5679 CG ASP 371 5.397 57.639 56.081 1.00 35.24 B 5680 OD1 ASP 371 5.239 57.540 54.829 1.00 36.93 B 5681 OD2 ASP 371 5.612 58.738 56.641 1.00 37.53 B 5682 C ASP 371 5.119 53.923 56.873 1.00 28.06 B 5683 O ASP 371 6.097 53.374 56.357 1.00 27.73 B 5684 N CYS 372 4.521 53.467 57.945 1.00 26.47 B 5685 CA CYS 372 4.957 52.294 58.676 1.00 27.36 B 5686 CB CYS 372 5.465 52.696 60.116 1.00 30.70 B 5687 SG CYS 372 7.205 53.185 59.931 1.00 44.11 B 5688 C CYS 372 3.823 51.329 58.851 1.00 23.53 B 5689 O CYS 372 2.683 51.773 58.776 1.00 23.11 B 5690 N GLY 373 4.083 50.033 58.853 1.00 23.03 B 5691 CA GLY 373 3.019 49.047 58.989 1.00 18.94 B 5692 C GLY 373 3.445 47.954 59.951 1.00 18.22 B 5693 O GLY 373 4.647 47.710 60.134 1.00 19.54 B 5694 N VAL 374 2.494 47.171 60.435 1.00 17.08 B 5695 CA VAL 374 2.871 46.075 61.344 1.00 16.30 B 5696 CB VAL 374 2.286 46.326 62.777 1.00 16.99 B 5697 CG1 VAL 374 2.416 45.059 63.638 1.00 20.31 B 5698 CG2 VAL 374 2.956 47.519 63.414 1.00 16.30 B 5699 C VAL 374 2.280 44.782 60.849 1.00 14.24 B 5700 O VAL 374 1.101 44.701 60.559 1.00 17.05 B 5701 N LEU 375 3.081 43.754 60.803 1.00 15.98 B 5702 CA LEU 375 2.644 42.427 60.368 1.00 16.70 B 5703 CB LEU 375 3.564 42.006 59.272 1.00 15.92 B 5704 CG LEU 375 4.091 40.684 58.767 1.00 22.02 B 5705 CD2 LEU 375 3.879 40.397 57.264 1.00 17.43 B 5706 CD1 LEU 375 3.941 39.445 59.608 1.00 19.27 B 5707 C LEU 375 2.676 41.465 61.571 1.00 18.05 B 5708 O LEU 375 3.693 41.521 62.292 1.00 16.00 B 5709 N PHE 376 1.639 40.658 61.680 1.00 17.80 B 5710 CA PHE 376 1.593 39.671 62.750 1.00 18.15 B 5711 CB PHE 376 0.371 39.904 63.685 1.00 17.61 B 5712 CG PHE 376 0.366 41.130 64.554 1.00 17.61 B 5713 CD1 PHE 376 −0.677 42.049 64.488 1.00 18.03 B 5714 CD2 PHE 376 1.379 41.351 65.481 1.00 18.64 B 5715 CE1 PHE 376 −0.708 43.188 65.298 1.00 18.81 B 5716 CE2 PHE 376 1.327 42.451 66.333 1.00 18.23 B 5717 CZ PHE 376 0.315 43.380 66.256 1.00 17.54 B 5718 C PHE 376 1.387 38.260 62.226 1.00 18.59 B 5719 O PHE 376 0.529 38.023 61.355 1.00 20.07 B 5720 N GLY 377 2.190 37.329 62.737 1.00 15.47 B 5721 CA GLY 377 2.020 35.901 62.468 1.00 16.40 B 5722 C GLY 377 1.637 35.252 63.842 1.00 18.96 B 5723 O GLY 377 2.159 35.695 64.854 1.00 17.94 B 5724 N PHE 378 0.750 34.276 63.879 1.00 17.37 B 5725 CA PHE 378 0.330 33.615 65.119 1.00 18.50 B 5726 CB PHE 378 −1.180 33.911 65.355 1.00 16.49 B 5727 CG PHE 378 −1.543 35.378 65.328 1.00 17.95 B 5728 CD1 PHE 378 −1.008 36.232 66.285 1.00 19.64 B 5729 CD2 PHE 378 −2.473 35.897 64.464 1.00 19.18 B 5730 CE1 PHE 378 −1.360 37.565 66.364 1.00 19.64 B 5731 CE2 PHE 378 −2.837 37.233 64.522 1.00 18.80 B 5732 CZ PHE 378 −2.295 38.100 65.467 1.00 19.16 B 5733 C PHE 378 0.461 32.116 64.999 1.00 21.02 B 5734 O PHE 378 −0.085 31.607 64.010 1.00 17.15 B 5735 N GLY 379 1.195 31.419 65.870 1.00 18.50 B 5736 CA GLY 379 1.310 29.967 65.746 1.00 16.05 B 5737 C GLY 379 1.477 29.269 67.103 1.00 18.11 B 5738 O GLY 379 1.224 29.923 68.128 1.00 13.64 B 5739 N PRO 380 1.698 27.981 67.076 1.00 16.69 B 5740 CA PRO 380 1.810 27.143 68.262 1.00 18.42 B 5741 CD PRO 380 1.817 27.123 65.851 1.00 17.87 B 5742 CB PRO 380 2.208 25.758 67.754 1.00 17.47 B 5743 CG PRO 380 1.525 25.751 66.384 1.00 17.91 B 5744 C PRO 380 2.873 27.669 69.228 1.00 17.32 B 5745 O PRO 380 3.789 28.431 68.937 1.00 15.87 B 5746 N GLY 381 2.380 27.682 70.496 1.00 17.73 B 5747 CA GLY 381 3.330 28.035 71.601 1.00 15.93 B 5748 C GLY 381 2.404 28.745 72.615 1.00 19.96 B 5749 O GLY 381 2.433 28.322 73.753 1.00 16.38 B 5750 N MET 382 1.457 29.648 72.505 1.00 17.53 B 5751 CA MET 382 1.169 30.444 71.371 1.00 20.52 B 5752 CB MET 382 −0.113 31.256 71.399 1.00 22.19 B 5753 CG MET 382 −1.299 30.362 70.985 1.00 26.18 B 5754 SD MET 382 −2.727 31.449 70.761 1.00 32.93 B 5755 CE MET 382 −2.158 32.688 69.628 1.00 27.98 B 5756 C MET 382 2.362 31.353 71.087 1.00 20.26 B 5757 O MET 382 2.926 31.939 72.035 1.00 20.98 B 5758 N THR 383 2.754 31.504 69.808 1.00 16.62 B 5759 CA THR 383 3.776 32.487 69.441 1.00 16.94 B 5760 CB THR 383 4.893 31.794 68.616 1.00 18.30 B 5761 OG1 THR 383 5.435 30.774 69.448 1.00 18.88 B 5762 CG2 THR 383 6.019 32.696 68.195 1.00 22.48 B 5763 C THR 383 3.178 33.600 68.606 1.00 17.58 B 5764 O THR 383 2.329 33.349 67.715 1.00 16.35 B 5765 N VAL 384 3.645 34.824 68.789 1.00 15.64 B 5766 CA VAL 384 3.293 35.954 67.931 1.00 15.95 B 5767 CB VAL 384 2.706 37.166 68.658 1.00 16.79 B 5768 CG1 VAL 384 2.348 38.316 67.731 1.00 14.79 B 5769 CG2 VAL 384 1.437 36.785 69.437 1.00 20.42 B 5770 C VAL 384 4.600 36.415 67.268 1.00 17.25 B 5771 O VAL 384 5.590 36.546 67.986 1.00 15.34 B 5772 N GLU 385 4.628 36.652 65.970 1.00 15.93 B 5773 CA GLU 385 5.803 37.249 65.345 1.00 15.57 B 5774 CB GLU 385 6.347 36.531 64.111 1.00 17.18 B 5775 CG GLU 385 6.769 35.108 64.574 1.00 15.17 B 5776 CD GLU 385 8.199 34.782 64.267 1.00 14.81 B 5777 OE1 GLU 385 8.997 35.669 63.884 1.00 17.65 B 5778 OE2 GLU 385 8.582 33.590 64.374 1.00 17.30 B 5779 C GLU 385 5.312 38.639 64.968 1.00 14.54 B 5780 O GLU 385 4.208 38.682 64.432 1.00 13.38 B 5781 N THR 386 6.076 39.655 65.321 1.00 14.53 B 5782 CA THR 386 5.612 41.011 65.010 1.00 15.70 B 5783 CB THR 386 5.389 41.810 66.331 1.00 14.93 B 5784 OG1 THR 386 4.345 41.085 67.016 1.00 13.01 B 5785 CG2 THR 386 4.828 43.180 65.969 1.00 18.33 B 5786 C THR 386 6.681 41.684 64.175 1.00 16.99 B 5787 O THR 386 7.803 41.803 64.640 1.00 18.66 B 5788 N VAL 387 6.425 41.983 62.916 1.00 17.17 B 5789 CA VAL 387 7.424 42.576 62.036 1.00 15.47 B 5790 CB VAL 387 7.542 41.744 60.737 1.00 17.25 B 5791 CG1 VAL 387 8.506 42.348 59.715 1.00 14.14 B 5792 CG2 VAL 387 7.871 40.298 61.076 1.00 16.11 B 5793 C VAL 387 7.006 43.998 61.692 1.00 16.18 B 5794 O VAL 387 5.859 44.154 61.228 1.00 18.67 B 5795 N VAL 388 7.905 44.989 61.840 1.00 15.51 B 5796 CA VAL 388 7.492 46.323 61.370 1.00 16.80 B 5797 CB VAL 388 8.007 47.489 62.229 1.00 18.85 B 5798 CG1 VAL 388 7.739 48.850 61.608 1.00 18.96 B 5799 CG2 VAL 388 7.348 47.475 63.649 1.00 17.50 B 5800 C VAL 388 8.054 46.524 59.936 1.00 17.03 B 5801 O VAL 388 9.223 46.185 59.694 1.00 15.43 B 5802 N LEU 389 7.204 47.053 59.075 1.00 17.33 B 5803 CA LEU 389 7.663 47.282 57.679 1.00 21.43 B 5804 CB LEU 389 6.629 46.538 56.807 1.00 19.43 B 5805 CG LEU 389 6.944 45.190 56.210 1.00 20.03 B 5806 CD2 LEU 389 5.720 44.326 55.988 1.00 24.09 B 5807 CD1 LEU 389 8.107 44.417 56.764 1.00 18.41 B 5808 C LEU 389 7.640 48.776 57.359 1.00 22.48 B 5809 O LEU 389 6.684 49.409 57.842 1.00 23.82 B 5810 N ARG 390 8.609 49.319 56.613 1.00 21.15 B 5811 CA ARG 390 8.450 50.711 56.201 1.00 23.63 B 5812 CB ARG 390 9.704 51.527 56.376 1.00 24.73 B 5813 CG ARG 390 9.523 53.027 56.166 1.00 28.86 B 5814 CD ARG 390 10.849 53.665 56.587 1.00 33.04 B 5815 NE ARG 390 10.748 53.623 58.056 1.00 39.70 B 5816 CZ ARG 390 11.635 53.406 59.003 1.00 41.83 B 5817 NH1 ARG 390 12.913 53.163 58.732 1.00 42.21 B 5818 NH2 ARG 390 11.191 53.429 60.265 1.00 43.28 B 5819 C ARG 390 8.065 50.720 54.705 1.00 24.27 B 5820 O ARG 390 8.725 50.052 53.923 1.00 22.53 B 5776 N SER 391 7.049 51.498 54.388 0.60 24.71 B 5777 CA SER 391 6.574 51.636 52.995 0.60 25.35 B 5778 CB SER 391 5.341 52.544 52.900 0.60 25.10 B 5779 OG SER 391 4.292 52.065 53.716 0.60 27.83 B 5780 C SER 391 7.627 52.319 52.134 0.60 24.39 B 5781 O SER 391 8.558 52.959 52.645 0.60 21.88 B 5776 N 2SER 391 7.051 51.444 54.373 0.40 23.03 B 5777 CA 2SER 391 6.591 51.532 52.978 0.40 22.31 B 5778 CB 2SER 391 5.260 52.277 52.904 0.40 19.63 B 5779 OG 2SER 391 5.425 53.608 53.370 0.40 16.14 B 5780 C 2SER 391 7.609 52.296 52.133 0.40 22.84 B 5781 O 2SER 391 8.490 52.991 52.661 0.40 21.30 B 5833 N VAL 392 7.379 52.266 50.840 1.00 25.27 B 5834 CA VAL 392 8.301 52.842 49.870 1.00 24.69 B 5835 CB VAL 392 8.910 51.880 48.857 1.00 24.47 B 5836 CG1 VAL 392 9.681 52.695 47.782 1.00 25.05 B 5837 CG2 VAL 392 9.956 51.001 49.538 1.00 23.37 B 5838 C VAL 392 7.443 53.929 49.183 1.00 28.14 B 5839 O VAL 392 6.285 53.803 48.807 1.00 24.87 B 5840 N ARG 393 8.071 55.076 49.196 1.00 33.33 B 5841 CA ARG 393 7.439 56.253 48.669 1.00 41.36 B 5842 CB ARG 393 8.174 57.532 49.050 1.00 44.63 B 5843 CG ARG 393 7.379 58.740 48.576 1.00 48.73 B 5844 CD ARG 393 7.291 59.792 49.682 1.00 52.29 B 5845 NE ARG 393 5.910 60.250 49.820 1.00 54.82 B 5846 CZ ARG 393 5.205 60.204 50.937 1.00 57.38 B 5847 NH1 ARG 393 5.726 59.726 52.067 1.00 57.43 B 5848 NH2 ARG 393 3.944 60.631 51.002 1.00 59.22 B 5849 C ARG 393 7.382 56.113 47.147 1.00 44.23 B 5850 O ARG 393 8.329 55.772 46.435 1.00 43.53 B 5851 N VAL 394 6.168 56.338 46.646 1.00 46.97 B 5852 CA VAL 394 5.966 56.264 45.214 1.00 50.68 B 5853 CB VAL 394 5.165 55.055 44.684 1.00 50.32 B 5854 CG1 VAL 394 5.853 53.737 45.032 1.00 51.04 B 5855 CG2 VAL 394 3.721 55.066 45.118 1.00 49.56 B 5856 C VAL 394 5.332 57.503 44.599 1.00 53.03 B 5857 OT VAL 394 5.552 57.739 43.379 1.00 54.09 B 5858 OXT VAL 394 5.105 58.606 45.112 1.00 55.26 B 5859 C8 AAC 395 −15.192 26.893 66.832 1.00 31.85 B 5860 N9 AAC 395 −15.934 25.758 67.103 1.00 32.08 B 5861 C4 AAC 395 −15.088 24.934 67.869 1.00 30.84 B 5862 C5 AAC 395 −13.832 25.530 67.809 1.00 30.43 B 5863 N7 AAC 395 −13.885 26.781 67.173 1.00 31.11 B 5864 N3 AAC 395 −15.294 23.593 68.102 1.00 30.53 B 5865 C2 AAC 395 −14.261 23.062 68.719 1.00 31.39 B 5866 N1 AAC 395 −12.944 23.490 68.590 1.00 30.31 B 5867 C6 AAC 395 −12.707 24.772 68.167 1.00 28.56 B 5868 N6 AAC 395 −11.444 25.259 68.054 1.00 27.76 B 5869 C1′ AAC 395 −17.565 25.621 67.019 1.00 33.80 B 5870 C2′ AAC 395 −18.568 26.410 67.757 1.00 33.92 B 5871 O2′ AAC 395 −18.460 25.742 68.939 1.00 35.53 B 5872 C3′ AAC 395 −19.659 26.490 66.695 1.00 34.93 B 5873 O3′ AAC 395 −20.567 25.398 66.547 1.00 37.60 B 5874 C4′ AAC 395 −19.026 26.473 65.246 1.00 34.24 B 5875 O4′ AAC 395 −17.686 25.823 65.578 1.00 31.70 B 5876 C5′ AAC 395 −18.654 27.909 64.805 1.00 34.89 B 5877 O5′ AAC 395 −18.589 28.914 66.006 1.00 36.12 B 5878 P1 AAC 395 −19.171 30.068 66.347 1.00 37.11 B 5879 O11 AAC 395 −18.851 30.453 67.744 1.00 36.83 B 5880 O12 AAC 395 −20.610 29.791 66.064 1.00 35.72 B 5881 O6 AAC 395 −18.515 31.021 65.274 1.00 34.92 B 5882 P2 AAC 395 −17.280 31.992 65.062 1.00 33.36 B 5883 O21 AAC 395 −16.471 31.770 66.293 1.00 30.55 B 5884 O22 AAC 395 −17.679 33.362 64.915 1.00 30.96 B 5885 O7 AAC 395 −16.646 31.579 63.771 1.00 32.38 B 5886 CPB AAC 395 −16.080 30.192 63.750 1.00 31.68 B 5887 CPA AAC 395 −14.542 30.319 63.372 1.00 30.89 B 5888 CP7 AAC 395 −13.888 31.248 64.422 1.00 31.27 B 5889 CP9 AAC 395 −14.489 30.884 61.936 1.00 30.17 B 5890 CP8 AAC 395 −13.807 28.985 63.475 1.00 30.74 B 5891 OP3 AAC 395 −14.107 30.729 65.756 1.00 32.31 B 5892 CP6 AAC 395 −12.343 31.291 64.332 1.00 31.20 B 5893 OP2 AAC 395 −11.876 32.045 63.433 1.00 29.03 B 5894 NP2 AAC 395 −11.624 30.543 65.153 1.00 32.06 B 5895 CP5 AAC 395 −10.533 29.754 64.393 1.00 33.24 B 5896 CP4 AAC 395 −9.228 30.266 64.907 1.00 33.51 B 5897 CP3 AAC 395 −8.159 29.225 64.583 1.00 33.61 B 5898 OP1 AAC 395 −7.893 28.716 65.682 1.00 32.17 B 5899 NP1 AAC 395 −7.229 29.455 63.650 1.00 30.09 B 5900 CP2 AAC 395 −5.812 29.049 64.048 1.00 28.37 B 5901 CP1 AAC 395 −5.272 27.710 63.569 1.00 30.17 B 5902 S AAC 395 −3.497 27.744 63.958 1.00 34.21 B 5903 P3 AAC 395 −22.168 25.197 66.560 1.00 36.14 B 5904 O31 AAC 395 −22.761 25.893 65.401 1.00 35.36 B 5905 O32 AAC 395 −22.781 25.733 67.803 1.00 36.64 B 5906 O33 AAC 395 −22.188 23.595 66.448 1.00 36.54 B 5907 C51 AAC 395 −3.048 26.178 63.366 1.00 32.89 B 5908 C52 AAC 395 −1.642 25.785 63.820 1.00 34.16 B 5909 O51 AAC 395 −3.937 25.359 63.416 1.00 32.53 B 5910 C53 AAC 395 −0.644 25.743 62.664 1.00 34.31 B 5911 C54 AAC 395 −0.798 24.634 61.645 1.00 31.81 B 5912 O52 AAC 395 0.489 26.137 62.899 1.00 34.83 B 5913 OW0 WAT 1 34.833 42.831 79.558 1.00 24.60 W 5914 OW0 WAT 2 3.851 18.304 58.076 1.00 15.19 W 5915 OW0 WAT 3 10.671 17.830 49.206 1.00 12.89 W 5916 OW0 WAT 4 10.141 17.602 68.259 1.00 12.07 W 5917 OW0 WAT 5 32.698 32.703 80.877 1.00 22.54 W 5918 OW0 WAT 6 28.164 16.600 62.904 1.00 18.35 W 5919 OW0 WAT 7 −8.681 23.005 55.960 1.00 23.89 W 5920 OW0 WAT 8 18.659 24.304 55.009 1.00 14.47 W 5921 OW0 WAT 9 37.188 5.906 65.616 1.00 21.40 W 5922 OW0 WAT 10 9.584 18.395 70.986 1.00 16.40 W 5923 OW0 WAT 11 17.062 36.363 62.243 1.00 11.16 W 5924 OW0 WAT 12 13.451 23.284 60.136 1.00 10.89 W 5925 OW0 WAT 13 24.265 17.082 39.849 1.00 31.15 W 5926 OW0 WAT 14 4.587 15.225 66.740 1.00 16.62 W 5927 OW0 WAT 15 2.745 19.417 70.978 1.00 18.45 W 5928 OW0 WAT 16 2.872 55.277 59.456 1.00 21.70 W 5929 OW0 WAT 17 7.130 19.586 71.177 1.00 14.85 W 5930 OW0 WAT 18 23.610 32.233 58.057 1.00 10.85 W 5931 OW0 WAT 19 13.279 44.644 42.430 1.00 23.27 W 5932 OW0 WAT 20 −5.728 46.578 54.624 1.00 21.51 W 5933 OW0 WAT 21 31.220 −7.039 65.899 1.00 35.39 W 5934 OW0 WAT 22 11.942 28.570 63.201 1.00 15.27 W 5935 OW0 WAT 23 12.975 12.459 62.075 1.00 16.09 W 5936 OW0 WAT 24 27.265 29.217 41.221 1.00 45.85 W 5937 OW0 WAT 25 −4.415 43.306 73.997 1.00 21.65 W 5938 OW0 WAT 26 4.080 28.969 63.728 1.00 17.36 W 5939 OW0 WAT 27 −0.674 37.643 45.198 1.00 26.53 W 5940 OW0 WAT 28 −12.011 31.967 59.137 1.00 21.56 W 5941 OW0 WAT 29 9.814 17.806 52.000 1.00 11.02 W 5942 OW0 WAT 30 32.277 16.861 75.083 1.00 22.34 W 5943 OW0 WAT 31 −5.887 8.918 58.081 1.00 24.91 W 5944 OW0 WAT 32 14.641 12.037 49.335 1.00 20.01 W 5945 OW0 WAT 33 −5.901 28.682 48.527 1.00 15.15 W 5946 OW0 WAT 34 9.867 33.328 71.420 1.00 16.19 W 5947 OW0 WAT 35 7.243 23.184 65.189 1.00 12.89 W 5948 OW0 WAT 36 12.471 22.810 36.544 1.00 22.46 W 5949 OW0 WAT 37 −4.886 4.535 51.739 1.00 21.52 W 5950 OW0 WAT 38 7.963 25.910 67.738 1.00 18.53 W 5951 OW0 WAT 39 7.137 18.587 51.905 1.00 14.48 W 5952 OW0 WAT 40 15.459 40.211 62.055 1.00 17.02 W 5953 OW0 WAT 41 6.682 20.285 57.647 1.00 12.75 W 5954 OW0 WAT 42 18.453 17.014 54.016 1.00 17.42 W 5955 OW0 WAT 43 15.988 17.744 55.089 1.00 14.59 W 5956 OW0 WAT 44 9.657 27.916 66.070 1.00 21.06 W 5957 OW0 WAT 45 5.409 25.121 66.215 1.00 19.96 W 5958 OW0 WAT 46 1.102 33.642 57.497 1.00 14.88 W 5959 OW0 WAT 47 9.921 11.878 53.540 1.00 18.78 W 5960 OW0 WAT 48 −1.104 35.179 81.753 1.00 20.52 W 5961 OW0 WAT 49 −4.358 19.825 49.529 1.00 18.00 W 5962 OW0 WAT 50 32.742 32.506 77.847 1.00 19.42 W 5963 OW0 WAT 51 10.471 30.328 64.937 1.00 22.26 W 5964 OW0 WAT 52 29.066 −6.518 67.728 1.00 29.12 W 5965 OW0 WAT 53 23.893 38.780 44.707 1.00 22.24 W 5966 OW0 WAT 54 36.495 37.126 69.107 1.00 25.16 W 5967 OW0 WAT 55 27.620 4.330 52.694 1.00 26.50 W 5968 OW0 WAT 56 2.961 34.006 59.532 1.00 14.45 W 5969 OW0 WAT 57 25.883 33.854 55.114 1.00 18.60 W 5970 OW0 WAT 58 23.934 24.479 48.784 1.00 17.20 W 5971 OW0 WAT 59 −11.213 45.118 57.839 1.00 30.98 W 5972 OW0 WAT 60 −0.796 29.899 40.488 1.00 21.41 W 5973 OW0 WAT 61 9.058 44.419 65.396 1.00 16.69 W 5974 OW0 WAT 62 33.639 20.536 47.167 1.00 26.62 W 5975 OW0 WAT 63 17.361 46.985 62.113 1.00 28.80 W 5976 OW0 WAT 64 28.774 26.262 56.335 1.00 16.05 W 5977 OW0 WAT 65 8.319 17.938 74.501 1.00 29.07 W 5978 OW0 WAT 66 22.954 26.285 83.799 1.00 27.43 W 5979 OW0 WAT 67 26.549 36.290 50.427 1.00 25.74 W 5980 OW0 WAT 68 21.904 42.229 51.024 1.00 14.99 W 5981 OW0 WAT 69 11.885 15.625 68.435 1.00 16.06 W 5982 OW0 WAT 70 3.727 3.076 66.509 1.00 17.85 W 5983 OW0 WAT 71 27.566 41.917 69.685 1.00 25.81 W 5984 OW0 WAT 72 33.346 −2.248 71.890 1.00 32.26 W 5985 OW0 WAT 73 16.793 34.027 77.388 1.00 14.06 W 5986 OW0 WAT 74 3.307 30.509 80.393 1.00 26.64 W 5987 OW0 WAT 75 13.567 3.944 75.261 1.00 27.89 W 5988 OW0 WAT 76 9.592 38.551 63.829 1.00 17.98 W 5989 OW0 WAT 77 9.389 45.293 42.566 1.00 30.18 W 5990 OW0 WAT 78 −5.191 21.436 42.415 1.00 25.88 W 5991 OW0 WAT 79 21.648 31.139 42.786 1.00 17.08 W 5992 OW0 WAT 80 19.191 21.778 54.198 1.00 20.38 W 5993 OW0 WAT 81 26.780 39.147 69.085 1.00 17.18 W 5994 OW0 WAT 82 8.246 10.309 52.119 1.00 16.38 W 5995 OW0 WAT 83 3.964 12.812 68.057 1.00 14.72 W 5996 OW0 WAT 84 −9.721 27.929 67.632 1.00 32.83 W 5997 OW0 WAT 85 −4.054 15.227 45.174 1.00 24.29 W 5998 OW0 WAT 86 18.075 5.893 70.745 1.00 16.23 W 5999 OW0 WAT 87 22.585 17.373 56.517 1.00 18.76 W 6000 OW0 WAT 88 26.487 8.160 71.794 1.00 18.93 W 6001 OW0 WAT 89 6.429 43.196 69.535 1.00 19.11 W 6002 OW0 WAT 90 17.488 39.092 65.113 1.00 19.91 W 6003 OW0 WAT 91 16.700 42.492 65.311 1.00 25.17 W 6004 OW0 WAT 92 −7.482 22.305 53.597 1.00 35.05 W 6005 OW0 WAT 93 39.257 16.047 46.333 1.00 21.17 W 6006 OW0 WAT 94 36.318 43.091 76.325 1.00 25.27 W 6007 OW0 WAT 95 −12.497 37.547 54.922 1.00 21.19 W 6008 OW0 WAT 96 21.901 12.704 48.744 1.00 22.39 W 6009 OW0 WAT 97 −4.916 44.148 56.306 1.00 19.43 W 6010 OW0 WAT 98 21.194 31.992 84.275 1.00 35.72 W 6011 OW0 WAT 99 33.840 39.368 68.085 1.00 21.99 W 6012 OW0 WAT 100 8.893 −0.172 62.082 1.00 22.49 W 6013 OW0 WAT 101 18.453 −4.480 57.253 1.00 25.92 W 6014 OW0 WAT 102 13.569 16.019 62.639 1.00 13.04 W 6015 OW0 WAT 103 22.781 39.492 75.427 1.00 21.42 W 6016 OW0 WAT 104 −7.834 44.025 77.416 1.00 33.20 W 6017 OW0 WAT 105 29.427 5.861 61.950 1.00 20.36 W 6018 OW0 WAT 106 3.539 0.402 69.939 1.00 29.39 W 6019 OW0 WAT 107 18.155 19.548 52.456 1.00 16.41 W 6020 OW0 WAT 108 27.601 18.356 60.638 1.00 17.86 W 6021 OW0 WAT 109 2.260 40.202 73.144 1.00 20.92 W 6022 OW0 WAT 110 −9.554 18.969 50.641 1.00 32.12 W 6023 OW0 WAT 111 4.563 −1.441 68.389 1.00 19.23 W 6024 OW0 WAT 112 48.869 20.302 51.779 1.00 37.00 W 6025 OW0 WAT 113 −4.533 52.328 56.005 1.00 27.04 W 6026 OW0 WAT 114 5.063 37.094 76.058 1.00 29.92 W 6027 OW0 WAT 115 −0.474 5.884 53.613 1.00 20.80 W 6028 OW0 WAT 116 19.360 40.801 69.648 1.00 23.52 W 6029 OW0 WAT 117 20.908 23.658 55.291 1.00 25.91 W 6030 OW0 WAT 118 −6.751 15.614 64.282 1.00 30.02 W 6031 OW0 WAT 119 14.215 52.423 37.362 1.00 24.66 W 6032 OW0 WAT 120 17.895 −2.536 59.148 1.00 30.62 W 6033 OW0 WAT 121 33.040 37.124 58.297 1.00 27.56 W 6034 OW0 WAT 122 34.452 25.507 50.774 1.00 20.94 W 6035 OW0 WAT 123 17.664 41.847 62.811 1.00 21.31 W 6036 OW0 WAT 124 5.485 30.235 37.732 1.00 18.76 W 6037 OW0 WAT 125 −1.898 7.686 64.040 1.00 19.63 W 6038 OW0 WAT 126 19.019 48.698 52.195 1.00 20.04 W 6039 OW0 WAT 127 −3.037 31.394 63.373 1.00 18.81 W 6040 OW0 WAT 128 15.630 33.770 81.050 1.00 22.48 W 6041 OW0 WAT 129 23.983 44.352 50.610 1.00 25.96 W 6042 OW0 WAT 130 28.110 28.669 50.206 1.00 15.08 W 6043 OW0 WAT 131 −1.806 43.291 75.344 1.00 22.63 W 6044 OW0 WAT 132 28.287 −8.666 69.293 1.00 26.47 W 6045 OW0 WAT 133 7.361 31.080 64.997 1.00 25.48 W 6046 OW0 WAT 134 20.560 41.099 75.976 1.00 35.84 W 6047 OW0 WAT 135 −10.673 19.682 54.611 1.00 27.63 W 6048 OW0 WAT 136 12.764 16.066 49.078 1.00 18.12 W 6049 OW0 WAT 137 15.512 38.206 71.556 1.00 22.76 W 6050 OW0 WAT 138 2.289 29.709 76.361 1.00 20.87 W 6051 OW0 WAT 139 27.607 12.017 56.955 1.00 21.54 W 6052 OW0 WAT 140 43.717 10.364 62.596 1.00 29.34 W 6053 OW0 WAT 141 22.855 3.440 64.232 1.00 24.50 W 6054 OW0 WAT 142 39.489 28.943 75.323 1.00 25.73 W 6055 OW0 WAT 143 18.435 3.949 68.723 1.00 22.83 W 6056 OW0 WAT 144 22.017 29.915 39.105 1.00 26.92 W 6057 OW0 WAT 145 −13.904 15.849 62.886 1.00 23.40 W 6058 OW0 WAT 146 6.078 39.444 68.567 1.00 16.60 W 6059 OW0 WAT 147 −12.455 45.712 55.387 1.00 35.99 W 6060 OW0 WAT 148 3.763 16.311 71.884 1.00 23.06 W 6061 OW0 WAT 149 6.607 34.616 35.798 1.00 32.25 W 6062 OW0 WAT 150 37.996 18.102 44.945 1.00 29.62 W 6063 OW0 WAT 151 −18.165 30.197 48.373 1.00 25.75 W 6064 OW0 WAT 152 0.334 27.287 79.026 1.00 25.74 W 6065 OW0 WAT 153 10.426 48.456 66.152 1.00 21.45 W 6066 OW0 WAT 154 42.624 16.000 65.750 1.00 23.86 W 6067 OW0 WAT 155 21.994 18.147 53.858 1.00 33.50 W 6068 OW0 WAT 156 5.902 2.366 75.530 1.00 33.17 W 6069 OW0 WAT 157 5.376 32.084 35.797 1.00 24.80 W 6070 OW0 WAT 158 −8.651 40.561 76.072 1.00 26.15 W 6071 OW0 WAT 159 39.188 37.368 82.781 1.00 20.48 W 6072 OW0 WAT 160 22.782 13.672 41.336 1.00 30.01 W 6073 OW0 WAT 161 37.432 31.274 53.879 1.00 30.11 W 6074 OW0 WAT 162 0.115 26.377 71.555 1.00 21.49 W 6075 OW0 WAT 163 −9.279 30.393 58.466 1.00 20.71 W 6076 OW0 WAT 164 11.812 38.952 70.093 1.00 19.45 W 6077 OW0 WAT 165 2.458 36.524 41.602 1.00 17.20 W 6078 OW0 WAT 166 24.043 16.000 43.768 1.00 20.41 W 6079 OW0 WAT 167 −10.836 9.248 37.324 1.00 26.50 W 6080 OW0 WAT 168 34.158 28.322 54.719 1.00 19.03 W 6081 OW0 WAT 169 32.094 4.009 61.407 1.00 25.39 W 6082 OW0 WAT 170 26.257 22.100 84.514 1.00 31.25 W 6083 OW0 WAT 171 46.745 27.485 60.597 1.00 34.82 W 6084 OW0 WAT 172 25.950 43.206 60.062 1.00 20.37 W 6085 OW0 WAT 173 20.805 0.002 65.679 1.00 27.85 W 6086 OW0 WAT 174 25.880 31.658 48.636 1.00 24.24 W 6087 OW0 WAT 175 −13.506 30.648 68.700 1.00 27.76 W 6088 OW0 WAT 176 −27.081 17.078 52.775 1.00 39.62 W 6089 OW0 WAT 177 11.897 10.452 76.116 1.00 33.79 W 6090 OW0 WAT 178 31.984 20.596 77.502 1.00 21.81 W 6091 OW0 WAT 179 31.263 23.432 51.610 1.00 28.51 W 6092 OW0 WAT 180 −9.334 11.074 57.951 1.00 29.02 W 6093 OW0 WAT 181 −9.108 37.796 76.331 1.00 25.66 W 6094 OW0 WAT 182 13.322 22.309 83.725 1.00 31.25 W 6095 OW0 WAT 183 11.411 53.118 52.752 1.00 33.70 W 6096 OW0 WAT 184 31.449 33.237 54.875 1.00 21.50 W 6097 OW0 WAT 185 9.316 40.307 71.495 1.00 35.01 W 6098 OW0 WAT 186 −1.455 46.987 41.262 1.00 31.30 W 6099 OW0 WAT 187 10.799 16.341 45.718 1.00 27.73 W 6100 OW0 WAT 188 2.431 16.354 44.235 1.00 29.77 W 6101 OW0 WAT 189 40.154 15.788 64.071 1.00 22.73 W 6102 OW0 WAT 190 14.480 43.993 65.344 1.00 22.77 W 6103 OW0 WAT 191 −2.708 4.486 50.103 1.00 29.87 W 6104 OW0 WAT 192 16.266 34.225 83.895 1.00 29.68 W 6105 OW0 WAT 193 30.042 19.201 78.626 1.00 20.84 W 6106 OW0 WAT 194 6.162 2.780 56.188 1.00 19.96 W 6107 OW0 WAT 195 20.208 −4.100 49.927 1.00 28.83 W 6108 OW0 WAT 196 22.288 17.539 42.394 1.00 37.62 W 6109 OW0 WAT 197 −10.889 16.942 43.054 1.00 39.10 W 6110 OW0 WAT 198 19.697 5.855 78.027 1.00 28.62 W 6111 OW0 WAT 199 −3.070 17.530 67.970 1.00 26.17 W 6112 OW0 WAT 200 40.226 8.346 46.786 1.00 29.69 W 6113 OW0 WAT 201 5.142 47.390 43.700 1.00 39.12 W 6114 OW0 WAT 202 31.834 2.228 51.752 1.00 26.81 W 6115 OW0 WAT 203 −9.914 17.902 47.896 1.00 40.67 W 6116 OW0 WAT 204 −2.162 38.220 47.524 1.00 27.58 W 6117 OW0 WAT 205 44.805 12.169 60.199 1.00 26.37 W 6118 OW0 WAT 206 8.359 29.487 63.202 1.00 25.97 W 6119 OW0 WAT 207 16.840 40.422 70.542 1.00 29.25 W 6120 OW0 WAT 208 21.655 33.310 36.146 1.00 23.78 W 6121 OW0 WAT 209 3.445 20.123 73.634 1.00 35.71 W 6122 OW0 WAT 210 18.407 39.731 34.326 1.00 33.49 W 6123 OW0 WAT 211 3.255 52.496 71.113 1.00 33.73 W 6124 OW0 WAT 212 25.600 35.124 85.875 1.00 36.77 W 6125 OW0 WAT 213 −4.727 39.032 47.138 1.00 28.37 W 6126 OW0 WAT 214 21.172 21.454 57.118 1.00 25.17 W 6127 OW0 WAT 215 34.539 30.838 81.709 1.00 33.94 W 6128 OW0 WAT 216 −10.221 46.773 60.237 1.00 27.21 W 6129 OW0 WAT 217 38.172 2.762 68.914 1.00 40.44 W 6130 OW0 WAT 218 44.142 26.777 49.116 1.00 35.71 W 6131 OW0 WAT 219 −6.259 19.466 51.558 1.00 28.80 W 6132 OW0 WAT 220 47.174 19.165 64.417 1.00 34.12 W 6133 OW0 WAT 221 21.010 52.696 43.788 1.00 26.03 W 6134 OW0 WAT 222 41.521 34.528 67.480 1.00 38.90 W 6135 OW0 WAT 223 34.878 29.192 77.557 1.00 25.70 W 6136 OW0 WAT 224 −21.727 22.843 51.038 1.00 27.64 W 6137 OW0 WAT 225 15.307 1.674 55.892 1.00 37.01 W 6138 OW0 WAT 226 12.946 44.417 67.528 1.00 35.45 W 6139 OW0 WAT 227 12.765 38.991 42.902 1.00 28.20 W 6140 OW0 WAT 228 29.044 33.405 51.941 1.00 34.10 W 6141 OW0 WAT 229 52.147 25.423 67.839 1.00 41.44 W 6142 OW0 WAT 230 24.831 31.270 83.962 1.00 35.33 W 6143 OW0 WAT 231 −4.319 54.016 68.997 1.00 39.00 W 6144 OW0 WAT 232 −11.830 22.280 70.889 1.00 38.46 W 6145 OW0 WAT 233 −11.980 7.355 49.262 1.00 28.37 W 6146 OW0 WAT 234 17.583 51.329 54.796 1.00 30.01 W 6147 OW0 WAT 235 9.776 48.268 73.002 1.00 30.25 W 6148 OW0 WAT 236 −16.035 40.160 60.590 1.00 28.16 W 6149 OW0 WAT 237 −1.405 3.513 62.408 1.00 25.71 W 6150 OW0 WAT 233 −4.314 47.702 50.798 1.00 26.80 W 6151 OW0 WAT 239 22.355 30.748 36.279 1.00 30.92 W 6152 OW0 WAT 240 −1.966 20.655 42.218 1.00 32.05 W 6153 OW0 WAT 241 18.480 −1.429 76.956 1.00 29.78 W 6154 OW0 WAT 242 9.409 9.978 49.436 1.00 32.49 W 6155 OW0 WAT 243 27.641 32.376 58.093 1.00 21.72 W 6156 OW0 WAT 244 −20.176 24.730 52.508 1.00 26.25 W 6157 OW0 WAT 245 −5.446 55.757 58.325 1.00 41.56 W 6158 OW0 WAT 246 28.817 42.022 72.611 1.00 29.75 W 6159 OW0 WAT 247 14.247 36.114 80.912 1.00 30.87 W 6160 OW0 WAT 248 21.386 51.826 40.788 1.00 34.48 W 6161 OW0 WAT 249 −1.422 53.965 72.266 1.00 40.79 W 6162 OW0 WAT 250 28.196 35.091 57.452 1.00 25.63 W 6163 OW0 WAT 251 −6.172 56.104 66.234 1.00 36.33 W 6164 OW0 WAT 252 −0.371 2.660 55.086 1.00 29.48 W 6165 OW0 WAT 253 25.280 13.418 79.944 1.00 27.74 W 6166 OW0 WAT 254 −15.928 29.812 68.788 1.00 34.21 W 6167 OW0 WAT 255 4.853 41.410 72.878 1.00 29.51 W 6169 OW0 WAT 257 15.700 38.269 78.845 1.00 31.14 W 6170 OW0 WAT 258 −13.951 35.748 69.430 1.00 38.64 W 6171 OW0 WAT 259 −0.528 28.082 82.338 1.00 37.27 W 6172 OW0 WAT 260 11.005 45.170 39.407 1.00 35.77 W 6173 OW0 WAT 261 27.583 −3.213 76.354 1.00 35.29 W 6174 OW0 WAT 262 24.221 34.640 35.344 1.00 37.78 W 6176 OW0 WAT 264 −13.254 31.131 78.123 1.00 52.24 W 6177 OW0 WAT 265 −14.010 40.718 68.831 1.00 44.51 W 6178 OW0 WAT 266 −1.866 58.341 49.387 1.00 31.53 W 6179 OW0 WAT 267 34.994 −2.704 69.976 1.00 44.49 W 6180 OW0 WAT 268 18.804 35.034 84.016 1.00 22.70 W 6181 OW0 WAT 269 −7.103 10.995 59.608 1.00 32.43 W 6182 OW0 WAT 270 37.460 30.477 47.652 1.00 33.62 W 6183 OW0 WAT 271 −16.645 24.523 44.105 1.00 38.25 W 6184 OW0 WAT 272 1.623 1.123 65.050 1.00 36.59 W 6185 OW0 WAT 273 25.204 32.775 44.416 1.00 38.94 W 6186 OW0 WAT 274 −13.731 43.977 65.708 1.00 36.13 W 6187 OW0 WAT 275 2.990 13.777 70.756 1.00 31.65 W 6188 OW0 WAT 276 10.495 51.445 44.812 1.00 33.61 W 6189 OW0 WAT 277 23.022 18.900 82.573 1.00 23.37 W 6190 OW0 WAT 278 29.535 14.226 76.815 1.00 32.39 W 6191 OW0 WAT 279 9.656 32.798 33.321 1.00 46.33 W 6192 OW0 WAT 280 41.048 20.359 79.208 1.00 30.26 W 6193 OW0 WAT 281 24.589 30.011 39.558 1.00 36.63 W 6194 OW0 WAT 282 40.022 33.138 75.589 1.00 27.95 W 6195 OW0 WAT 283 13.000 18.212 42.451 1.00 34.13 W 6196 OW0 WAT 284 −10.548 42.137 75.750 1.00 23.51 W 6197 OW0 WAT 285 43.830 18.352 63.046 1.00 22.87 W 6198 OW0 WAT 286 −13.181 38.699 57.329 1.00 20.83 W 6199 OW0 WAT 287 −4.039 48.668 57.394 1.00 20.92 W 6200 OW0 WAT 288 −11.752 16.128 61.206 1.00 25.84 W 6201 OW0 WAT 289 24.307 43.914 53.706 1.00 25.66 W 6202 OW0 WAT 290 29.396 2.615 53.358 1.00 32.00 W 6203 OW0 WAT 291 46.029 16.371 65.925 1.00 47.24 W 6204 OW0 WAT 292 15.408 6.086 52.268 1.00 25.75 W 6205 OW0 WAT 293 25.890 32.042 41.458 1.00 33.89 W 6206 OW0 WAT 294 −21.759 8.749 52.215 1.00 35.49 W 6207 OW0 WAT 295 −22.534 28.343 64.578 1.00 39.76 W 6208 OW0 WAT 296 −9.629 14.160 40.844 1.00 39.41 W 6209 OW0 WAT 297 15.662 46.297 64.617 1.00 29.98 W 6210 OW0 WAT 298 47.452 23.009 48.142 1.00 37.05 W 6211 OW0 WAT 299 30.906 25.511 86.969 1.00 28.57 W 6212 OW0 WAT 300 29.458 34.520 54.929 1.00 28.09 W 6213 OW0 WAT 301 12.248 −2.398 62.389 1.00 23.37 W 6214 OW0 WAT 302 6.586 40.900 70.776 1.00 28.66 W 6215 OW0 WAT 303 26.731 −5.212 51.241 1.00 37.60 W 6216 OW0 WAT 304 −2.065 9.188 66.877 1.00 40.14 W 6217 OW0 WAT 305 33.333 15.587 72.760 1.00 31.54 W 6218 OW0 WAT 306 6.619 27.578 69.359 1.00 32.54 W 6219 OW0 WAT 307 −2.349 26.244 78.298 1.00 35.66 W 6220 OW0 WAT 308 52.161 11.033 59.127 1.00 43.46 W 6221 OW0 WAT 309 1.147 16.876 73.569 1.00 40.10 W 6222 OW0 WAT 310 42.839 17.626 69.680 1.00 33.57 W 6223 OW0 WAT 311 9.714 7.252 49.380 1.00 42.23 W 6224 OW0 WAT 312 4.967 28.723 66.279 1.00 35.79 W 6225 OW0 WAT 313 22.707 −8.021 75.301 1.00 42.23 W 6226 OW0 WAT 314 38.612 10.518 44.983 1.00 32.90 W 6227 OW0 WAT 315 35.206 13.781 73.124 1.00 32.15 W 6228 OW0 WAT 316 17.281 0.430 53.047 1.00 36.65 W 6229 OW0 WAT 317 13.378 44.865 39.537 1.00 27.59 W 6230 OW0 WAT 318 9.368 38.921 77.170 1.00 32.10 W 6231 OW0 WAT 319 −12.157 28.821 67.114 1.00 35.73 W 6232 OW0 WAT 320 49.055 20.121 66.102 1.00 34.26 W 6233 OW0 WAT 321 51.483 24.423 70.909 1.00 35.24 W 6234 OW0 WAT 322 38.833 5.939 63.218 1.00 28.09 W 6235 OW0 WAT 323 9.860 18.263 76.668 1.00 45.65 W 6236 OW0 WAT 324 20.261 18.981 50.680 1.00 30.83 W 6237 OW0 WAT 325 23.190 21.257 55.046 1.00 27.34 W 6238 OW0 WAT 326 27.260 42.057 66.647 1.00 26.66 W 6239 OW0 WAT 327 41.413 8.984 68.636 1.00 34.58 W 6240 OW0 WAT 328 43.883 34.723 70.681 1.00 34.47 W 6241 OW0 WAT 329 −1.961 7.539 44.617 1.00 33.01 W 6242 OW0 WAT 330 4.158 57.025 60.984 1.00 39.08 W 6244 OW0 WAT 332 0.127 22.354 42.728 1.00 39.89 W 6245 OW0 WAT 333 36.937 39.106 65.589 1.00 32.97 W 6246 OW0 WAT 334 −14.238 45.891 59.784 1.00 37.45 W 6247 OW0 WAT 335 24.653 19.852 84.466 1.00 30.48 W 6248 OW0 WAT 336 11.415 11.665 48.239 1.00 26.80 W 6249 OW0 WAT 337 −15.878 36.234 51.704 1.00 36.48 W 6250 OW0 WAT 338 2.066 1.236 57.713 1.00 35.34 W 6251 OW0 WAT 339 1.824 21.102 43.644 1.00 37.35 W 6252 OW0 WAT 340 12.771 9.948 46.645 1.00 32.82 W 6253 OW0 WAT 341 −4.647 54.375 54.379 1.00 30.72 W 6254 OW0 WAT 342 6.100 38.052 38.122 1.00 32.64 W 6255 OW0 WAT 343 17.546 34.296 36.005 1.00 32.50 W 6256 OW0 WAT 344 27.816 0.717 70.109 1.00 35.00 W 6257 OW0 WAT 345 18.540 −0.224 72.022 1.00 34.20 W 6258 OW0 WAT 346 33.678 −6.833 55.722 1.00 33.65 W 6259 OW0 WAT 347 15.061 12.931 46.581 1.00 33.22 W 6260 OW0 WAT 348 −22.692 16.145 50.080 1.00 37.41 W 6261 OW0 WAT 349 11.124 −0.578 60.734 1.00 33.64 W 6262 OW0 WAT 350 12.477 −6.964 72.013 1.00 35.64 W 6263 OW0 WAT 351 −11.684 42.426 52.043 1.00 35.79 W 6264 OW0 WAT 352 10.749 18.011 43.616 1.00 38.78 W 6265 OW0 WAT 353 10.695 46.256 69.179 1.00 42.67 W 6266 OW0 WAT 354 −8.853 16.832 67.349 1.00 34.74 W 6267 OW0 WAT 355 12.718 41.696 70.240 1.00 30.82 W 6268 OW0 WAT 356 −8.930 59.166 59.077 1.00 34.34 W 6269 OW0 WAT 357 20.857 −14.210 57.229 1.00 32.95 W 6270 OW0 WAT 358 14.519 4.631 49.796 1.00 44.66 W 6271 OW0 WAT 359 2.073 57.881 57.424 1.00 30.86 W 6272 OW0 WAT 360 45.440 8.237 60.801 1.00 36.34 W 6273 OW0 WAT 361 14.230 54.142 70.351 1.00 49.59 W 6274 OW0 WAT 362 41.300 3.844 59.740 1.00 38.05 W 6275 OW0 WAT 363 −12.931 40.320 51.355 1.00 35.66 W 6276 OW0 WAT 364 15.587 49.538 62.357 1.00 36.31 W 6277 OW0 WAT 365 2.582 38.475 75.494 1.00 40.42 W 6278 OW0 WAT 366 27.548 −6.502 49.377 1.00 67.95 W 6279 OW0 WAT 367 4.518 0.719 57.381 1.00 53.38 W 6280 OW0 WAT 368 10.164 31.136 79.624 1.00 36.75 W 6281 OW0 WAT 369 13.547 17.475 39.984 1.00 37.62 W 6282 OW0 WAT 370 −13.129 26.596 50.289 1.00 32.71 W 6283 OW0 WAT 371 14.417 6.722 47.829 1.00 36.03 W 6284 OW0 WAT 372 0.306 24.495 40.705 1.00 33.44 W 6285 OW0 WAT 373 48.962 16.693 63.882 1.00 52.26 W 6286 OW0 WAT 374 10.444 55.766 49.842 1.00 36.16 W 6287 OW0 WAT 375 −17.810 34.487 50.989 1.00 41.30 W 6288 OW0 WAT 376 30.138 23.191 81.873 1.00 33.16 W 6289 OW0 WAT 377 40.462 3.629 62.961 1.00 42.45 W 6290 OW0 WAT 378 −1.654 41.668 78.407 1.00 40.16 W 6291 OW0 WAT 379 26.203 36.571 38.774 1.00 46.13 W 6292 OW0 WAT 380 −11.749 44.049 48.503 1.00 58.07 W 6293 OW0 WAT 381 42.715 21.571 81.086 1.00 40.66 W 6294 OW0 WAT 382 −4.286 50.046 49.483 1.00 32.45 W 6295 OW0 WAT 383 38.125 27.017 76.389 1.00 40.31 W 6296 OW0 WAT 384 −25.988 13.692 54.676 1.00 36.33 W 6297 OW0 WAT 385 −21.590 26.317 54.434 1.00 34.29 W 6298 OW0 WAT 386 4.989 40.169 40.784 1.00 38.89 W 6299 OW0 WAT 387 15.117 −1.463 79.524 1.00 36.96 W 6300 OW0 WAT 388 −0.974 24.536 37.927 1.00 33.02 W 6301 OW0 WAT 389 22.450 −12.684 69.847 1.00 36.96 W 6302 OW0 WAT 390 33.210 35.282 55.745 1.00 37.80 W 6303 OW0 WAT 391 23.977 −15.440 70.811 1.00 55.29 W 6304 OW0 WAT 392 21.334 3.772 66.357 1.00 38.55 W 6305 OW0 WAT 393 30.244 15.090 38.226 1.00 41.68 W 6306 OW0 WAT 394 23.254 10.269 42.142 1.00 39.03 W 6307 OW0 WAT 395 22.318 45.619 66.182 1.00 35.89 W 6308 OW0 WAT 396 −18.640 18.477 45.035 1.00 35.67 W 6309 OW0 WAT 397 2.400 2.514 52.539 1.00 45.90 W 6310 OW0 WAT 398 18.907 44.629 62.294 1.00 37.92 W 6311 OW0 WAT 399 19.662 12.004 79.473 1.00 27.97 W 6312 OW0 WAT 400 −26.603 12.790 62.874 1.00 44.82 W 6313 OW0 WAT 401 32.383 −0.500 51.742 1.00 40.74 W 6314 OW0 WAT 402 49.790 27.368 53.659 1.00 45.32 W 6316 OW0 WAT 404 33.541 23.998 47.310 1.00 48.59 W 6317 OW0 WAT 405 −27.662 21.197 64.058 1.00 51.73 W 6318 OW0 WAT 406 −0.339 4.153 67.759 1.00 42.33 W 6319 OW0 WAT 407 24.102 12.203 37.676 1.00 46.14 W 6320 OW0 WAT 408 −14.157 17.556 70.142 1.00 31.93 W 6321 OW0 WAT 409 −23.772 23.390 49.235 1.00 43.79 W 6322 OW0 WAT 410 12.752 −8.490 57.666 1.00 46.09 W 6323 OW0 WAT 411 35.604 −7.850 57.694 1.00 42.78 W 6324 OW0 WAT 412 15.177 45.155 36.456 1.00 35.30 W 6325 OW0 WAT 413 44.585 9.274 65.094 1.00 32.90 W 6326 OW0 WAT 414 18.417 10.786 77.471 1.00 31.40 W 6327 OW0 WAT 415 18.832 −10.822 78.328 1.00 33.25 W 6328 OW0 WAT 416 19.308 40.195 81.294 1.00 39.51 W 6329 OW0 WAT 417 −14.525 39.134 72.943 1.00 39.02 W 6330 OW0 WAT 418 5.809 3.047 51.152 1.00 40.12 W 6331 OW0 WAT 419 18.978 43.478 67.054 1.00 48.35 W 6332 OW0 WAT 420 −6.116 50.154 71.782 1.00 50.58 W 6333 OW0 WAT 421 35.294 −6.916 60.117 1.00 37.54 W 6334 OW0 WAT 422 21.103 41.861 71.424 1.00 31.29 W 6335 OW0 WAT 423 5.611 32.606 78.029 1.00 48.39 W 6336 OW0 WAT 424 30.155 37.320 57.973 1.00 38.66 W 6337 OW0 WAT 425 42.663 10.046 71.467 1.00 45.60 W 6338 OW0 WAT 426 20.843 55.374 41.943 1.00 47.33 W 6339 OW0 WAT 427 33.849 −6.515 52.009 1.00 51.92 W 6340 OW0 WAT 428 39.602 5.110 66.807 1.00 31.12 W 6341 OW0 WAT 429 13.310 42.107 72.700 1.00 45.86 W 6342 OW0 WAT 430 15.435 41.736 68.476 1.00 39.15 W 6343 OW0 WAT 431 −14.455 39.203 53.503 1.00 36.54 W 6344 OW0 WAT 432 −12.893 9.554 38.543 1.00 39.54 W 6345 OW0 WAT 433 −27.689 24.945 60.863 1.00 36.39 W 6346 OW0 WAT 434 19.352 −4.834 76.947 1.00 50.49 W 6347 OW0 WAT 435 −4.457 58.132 59.848 1.00 44.39 W 6348 OW0 WAT 436 35.946 42.040 72.721 1.00 32.88 W 6349 OW0 WAT 437 −22.989 29.806 60.462 1.00 44.66 W 6350 OW0 WAT 438 16.404 11.978 76.652 1.00 37.94 W 6351 OW0 WAT 439 17.511 8.401 78.247 1.00 36.58 W 6352 OW0 WAT 440 −11.978 24.278 73.130 1.00 44.22 W 6353 OW0 WAT 441 25.379 0.872 47.157 1.00 35.40 W 6354 OW0 WAT 442 29.502 41.009 54.163 1.00 35.29 W 6355 OW0 WAT 443 9.666 22.319 37.019 1.00 35.65 W 6356 OW0 WAT 444 38.197 −1.983 55.446 1.00 36.65 W 6357 OW0 WAT 445 2.334 57.846 63.873 1.00 39.83 W 6358 OW0 WAT 446 10.150 −6.515 70.874 1.00 40.39 W 6359 OW0 WAT 447 4.644 42.725 39.903 1.00 45.20 W 6360 OW0 WAT 448 26.881 38.528 48.647 1.00 31.60 W 6361 OW0 WAT 449 9.031 20.773 77.665 1.00 37.57 W 6362 OW0 WAT 450 6.993 28.067 36.574 1.00 36.29 W 6363 OW0 WAT 451 −13.241 37.909 47.895 1.00 33.95 W 6364 OW0 WAT 452 7.509 3.326 53.116 1.00 43.55 W 6365 OW0 WAT 453 15.904 50.283 51.263 1.00 32.48 W 6367 OW0 WAT 455 35.670 30.907 51.394 1.00 50.15 W 6369 OW0 WAT 457 −3.674 49.995 72.941 1.00 51.56 W 6370 OW0 WAT 458 −1.876 18.327 43.172 1.00 34.13 W 6371 OW0 WAT 459 40.383 6.878 68.945 1.00 50.63 W 6372 OW0 WAT 460 45.906 24.778 47.259 1.00 41.29 W 6373 OW0 WAT 461 3.785 37.924 39.424 1.00 39.64 W 6374 OW0 WAT 462 1.292 58.070 66.860 1.00 37.08 W 6375 OW0 WAT 463 −4.643 42.723 44.332 1.00 53.12 W 6376 OW0 WAT 464 17.139 −8.893 79.247 1.00 38.42 W 6377 OW0 WAT 465 11.910 −4.645 82.933 1.00 38.95 W 6378 OW0 WAT 466 −24.232 22.740 68.547 1.00 46.16 W 6379 OW0 WAT 467 27.793 37.520 46.319 1.00 49.80 W 6380 OW0 WAT 468 7.117 49.493 44.707 1.00 43.74 W 6381 OW0 WAT 469 45.294 13.104 46.764 1.00 46.87 W 6382 OW0 WAT 470 9.424 16.793 79.089 1.00 37.97 W 6383 OW0 WAT 471 9.793 −1.720 82.356 1.00 35.04 W 6384 OW0 WAT 472 −1.389 20.063 39.098 1.00 43.34 W 6385 OW0 WAT 473 16.787 13.212 80.501 1.00 47.28 W 6386 OW0 WAT 474 41.533 36.135 69.647 1.00 43.73 W 6387 OW0 WAT 475 −5.170 56.784 55.948 1.00 44.97 W 6388 OW0 WAT 476 27.423 −12.833 55.835 1.00 37.01 W 6389 OW0 WAT 477 38.584 36.991 59.464 1.00 40.79 W 6390 OW0 WAT 478 −27.987 8.862 59.618 1.00 53.66 W 6391 OW0 WAT 479 20.230 51.861 47.577 1.00 40.83 W 6392 OW0 WAT 480 −2.196 45.838 77.392 1.00 50.14 W 6393 OW0 WAT 481 −29.703 18.549 57.301 1.00 32.79 W 6394 OW0 WAT 482 44.386 5.769 58.325 1.00 51.23 W 6395 OW0 WAT 483 −18.073 22.355 68.898 1.00 41.13 W 6396 OW0 WAT 484 40.081 36.439 71.933 1.00 34.48 W 6397 OW0 WAT 485 27.500 39.480 77.384 1.00 45.20 W 6398 OW0 WAT 486 28.735 35.934 52.078 1.00 53.74 W 6399 OW0 WAT 487 42.987 7.871 66.681 1.00 44.15 W 6400 OW0 WAT 488 27.401 24.527 88.235 1.00 39.98 W 6401 OW0 WAT 489 11.264 33.188 81.869 1.00 42.28 W 6403 OW0 WAT 491 −0.260 35.857 40.950 1.00 45.35 W 6404 OW0 WAT 492 −20.071 29.067 53.331 1.00 55.04 W 6405 OW0 WAT 493 32.688 24.529 44.418 1.00 44.22 W 6406 OW0 WAT 494 −2.749 28.055 39.216 1.00 44.69 W 6407 OW0 WAT 495 −20.243 23.515 69.911 1.00 43.24 W 6408 OW0 WAT 496 −7.782 46.922 76.436 1.00 44.94 W 6409 OW0 WAT 497 −14.142 31.967 73.149 1.00 45.00 W 6410 OW0 WAT 498 5.220 21.008 77.195 1.00 46.89 W 6411 OW0 WAT 499 18.449 52.543 49.223 1.00 44.94 W 6412 OW0 WAT 500 5.606 51.045 75.120 1.00 43.08 W 6413 OW0 WAT 501 0.585 7.734 46.905 1.00 40.04 W 6414 OW0 WAT 502 0.646 12.691 70.758 1.00 44.19 W 6415 OW0 WAT 503 0.587 58.251 59.482 1.00 37.44 W 6416 OW0 WAT 504 26.265 37.621 44.223 1.00 42.27 W 6417 OW0 WAT 505 2.799 20.132 41.418 1.00 49.03 W 6418 OW0 WAT 506 19.618 0.551 69.717 1.00 35.91 W 6419 OW0 WAT 507 4.617 28.787 77.968 1.00 32.85 W 6420 OW0 WAT 508 40.487 36.867 63.836 1.00 33.53 W 6421 OW0 WAT 509 40.536 13.697 75.399 1.00 46.10 W 6422 OW0 WAT 510 −7.126 43.053 45.104 1.00 41.77 W 6423 OW0 WAT 511 36.064 28.929 82.495 1.00 64.61 W 6424 OW0 WAT 512 16.095 6.640 44.452 1.00 55.92 W 6425 OW0 WAT 513 12.402 32.185 83.832 1.00 56.64 W 6426 OW0 WAT 514 3.804 17.973 42.165 1.00 38.55 W 6427 OW0 WAT 515 15.129 14.995 43.155 1.00 34.59 W 6428 OW0 WAT 516 −12.895 48.759 65.920 1.00 46.55 W 6429 OW0 WAT 517 7.814 30.918 77.806 1.00 43.13 W 6430 OW0 WAT 518 15.378 44.589 68.748 1.00 47.42 W 6431 OW0 WAT 519 23.423 48.687 52.464 1.00 51.53 W 6432 OW0 WAT 520 8.730 28.031 34.552 1.00 45.00 W 6433 OW0 WAT 521 −5.694 45.025 43.601 1.00 52.66 W 6434 OW0 WAT 522 −13.465 9.596 59.350 1.00 46.34 W 6435 OW0 WAT 523 40.029 −0.641 57.082 1.00 59.65 W 6436 OW0 WAT 524 −16.093 33.826 74.072 1.00 34.99 W 6437 OW0 WAT 525 36.464 39.863 68.565 1.00 43.68 W 6438 OW0 WAT 526 51.637 13.562 55.466 1.00 49.68 W 6439 OW0 WAT 527 −1.692 33.877 43.605 1.00 45.70 W 6440 OW0 WAT 528 26.307 40.989 75.070 1.00 45.20 W 6441 OW0 WAT 529 21.836 43.211 42.723 1.00 33.95 W 6442 OW0 WAT 530 37.472 40.460 71.382 1.00 47.53 W 6443 OW0 WAT 531 26.392 44.450 65.042 1.00 37.05 W 6444 OW0 WAT 532 9.807 19.244 37.207 1.00 37.60 W 6445 OW0 WAT 533 −1.839 49.077 39.508 1.00 42.70 W 6446 OW0 WAT 534 40.926 35.494 74.588 1.00 44.27 W 6447 OW0 WAT 535 21.981 23.595 40.662 1.00 49.79 W 6448 OW0 WAT 536 12.398 50.065 65.683 1.00 39.01 W 6449 OW0 WAT 537 23.603 42.961 45.081 1.00 49.97 W 6450 OW0 WAT 538 −10.352 47.740 76.915 1.00 46.80 W 6451 OW0 WAT 539 −15.806 39.195 57.947 1.00 39.96 W 6452 OW0 WAT 541 14.503 −5.582 79.614 1.00 53.05 W 6453 OW0 WAT 542 0.684 18.258 44.653 1.00 33.50 W 6454 OW0 WAT 543 5.269 23.624 37.419 1.00 46.63 W 6455 OW0 WAT 544 14.440 −9.982 79.496 1.00 51.43 W 6456 OW0 WAT 545 13.044 −10.837 56.679 1.00 52.73 W 6457 OW0 WAT 546 −13.064 43.674 53.671 1.00 45.82 W 6458 OW0 WAT 547 24.822 10.978 80.940 1.00 44.36 W 6459 OW0 WAT 548 −12.481 48.719 70.168 1.00 41.45 W 6460 OW0 WAT 549 −3.052 4.179 44.889 1.00 58.63 W -
TABLE 4 Complex PDB Accession No. CHS-coA complex 1BQ6 CHS-malonyl-CoA complex 1GM1 CHS-hexanoyl-CoA comlex 1CHW CHS-naringenin complex 1CGK CHS-resveratrol complex 1CGZ - The crystals of the present invention belong to the tetragonal space group. The unit cell dimensions vary by a few angstroms between crystals but on average, chalcone synthase native crystals belong to space group P3221 with unit cell dimensions of a=b=97.54 Å; c=65.52 Å, a 90°, y=120° with a single monomer per asymmetric unit. Stilbene synthase crystals belong to space group C222 with unit cell dimensions of a=74.94 Å, b=86.63 Å, c=364.18 Å, α=β=γ=90°. Pyrone synthase crystals belong to space group P3121 with unit cell dimensions of a=82.15 Å, b=241.33 Å, α=β=90°, γ=120° with one PS dimer per asymmetric unit.
- Crystal structures are preferably obtained at a resolution of about 1.56 angstroms to about 3 angstroms for a polyketide synthase in the presence and in the absence of bound substrate or substrate analog. Coordinates for a polyketide synthase in the absence of a substrate bound in the active site have been deposited at the Brookhaven National Laboratory Protein Data Bank, accession number 1CGK. Those skilled in the art understand that a set of structure coordinates determined by X-ray crystallography is not without standard error. Therefore, for the purpose of this invention, any set of structure coordinates wherein the active site α-carbons of a polyketide synthase, synthase homologue, or mutants thereof, have a root mean square deviation less than ±2.3 angstroms when superimposed using the structural coordinates listed in Table 1 and PDB Accession No, 1BI5, shall be considered identical.
- A schematic representation of the three-dimensional shape of a CHS homodimer is shown in
FIG. 2 a, which was prepared by MOLSCRIPT (Kraulis, J. Appl. Crystallogr. 24:946-950, 1991). CHS functions as a homodimer of two 42 kDa polypeptides. The structure of CHS reveals that the enzyme forms a symmetric dimer with each monomer related by a 2-fold crystallographic axis. The dimer interface buries approximately 1580 angstroms with interactions occurring along a fairly flat surface. Two distinct structural features delineate the ends of this interface. First, the N-terminal helix of monomer A entwines with the corresponding helix of monomer B. Second, a tight loop containing a cis-peptide bond between Met137 and Pro138 exposes the methionine sidechain as a knob on the monomer surface. Across the interface, Met137 protrudes into a hole found in the surface of the adjoining monomer to form part of the cyclization pocket (discussed below). - The CHS homodimer contains two functionally independent active sites (Tropf, et al., J. Biol. Chem. 270:7922-7928, 1995). Consistent with this information, bound CoA thioesters and product analogs occupy both active sites of the homodimer in the CHS complex structures. These structures identify the location of the active site at the cleft between the upper and lower domains of each monomer. Each active site consists almost entirely of residues from a single monomer, with Met137 from the adjoining monomer being the only exception. A detailed description of the active site structure is presented in the Examples section, below.
- An isolated, polyketide synthase of the invention comprises at least fourteen active site α-carbons having the structural coordinates of Table 1 ±2.3 angstroms. The active site α-carbons of Table 1 generally are not all contiguous, i.e., are not adjacent to one another in the primary amino acid sequence of a polyketide synthase due to intervening amino acid residues between various active site α-carbons. Nevertheless, it should be appreciated that certain active site α-carbons can be adjacent to one another in some instances. Active site α-carbons are numbered in Table 1 for convenience only and may be situated in any suitable order in the primary amino acid sequence that achieves the structural coordinates given in Table 1.
- An appropriate combination of R-groups, linked to active site α-carbons can facilitate the formation of one or more desired reaction products. The combination of R-groups selected for use in a synthase can be any combination other than the ordered arrangements of R-groups found in known native isolated polyketide synthases. Typically, R-groups found on active site α-carbons are those found in naturally occurring amino acids. In some embodiments, however, R-groups other than those found in naturally occurring amino acids can be used.
- The present invention permits the use of molecular design techniques to design, select, and synthesize genes encoding mutant polyketide synthases that produce different and/or novel polyketide compounds using substrates. Mutant proteins of the present invention and nucleic acids encoding the same can be designed by genetic manipulation based on structural information about polyketide synthases. For example, one or more R-groups associated with the active site α-carbon atoms of CHS can be changed by altering the nucleotide sequence of the corresponding CHS gene, thus making one or more mutant polyketide synthases. Such genetic manipulations can be guided by structural information concerning the R-groups found in the active site α-carbons when substrate is bound to the protein upon crystallization.
- Mutant proteins of the present invention may be prepared in a number of ways available to the skilled artisan. For example, the gene encoding wild-type CHS may be mutated at those sites identified herein as corresponding to amino acid residues identified in the active site by means currently available to the artisan skilled in molecular biology techniques. Said techniques include oligonucleotide-directed mutagenesis, deletion, chemical mutagenesis, and the like. The protein encoded by the mutant gene is then produced by expressing the gene in, for example, a bacterial or plant expression system.
- Alternatively, polyketide synthase mutants may be generated by site specific-replacement of a particular amino acid with an unnaturally occurring amino acid. As such, polyketide synthase mutants may be generated through replacement of an amino acid residue or a particular cysteine or methionine residue with selenocysteine or selenomethionine. This may be achieved by growing a host organism capable of expressing either the wild-type or mutant polypeptide on a growth medium depleted of natural cysteine or methionine or both and growing on medium enriched with either selenocysteine, selenomethionine, or both. These and similar techniques are described in Sambrook et al., (Molecular Cloning, A Laboratory Manual, 2nd Ed. (1989) Cold Spring Harbor Laboratory Press).
- Another suitable method of creating mutant synthases of the present invention is based on a procedure described in Noel and Tsal (1989) J. Cell. Biochem., 40:309-320. In so doing, the nucleic acids encoding said polyketide synthase can be synthetically produced using oligonucleotides having overlapping regions, said oligonucleotides being degenerate at specific bases so that mutations are induced.
- According to the present invention, nucleic acid sequences encoding a mutated polyketide synthase can be produced by the methods described herein, or any alternative methods available to the skilled artisan. In designing the nucleic acid sequence of interest, it may be desirable to reengineer said gene for improved expression in a particular expression system. For example, it has been shown that many bacterially derived genes do not express well in plant systems. In some cases, plant-derived genes do not express well in bacteria. This phenomenon may be due to the non-optimal G+C content and/or A+T content of said gene relative to the expression system being used. For example, the very low G+C content of many bacterial genes results in the generation of sequences mimicking or duplicating plant gene control sequences that are highly A+T rich. The presence of A+T rich sequences within the genes introduced into plants (e.g., TATA box regions normally found in promoters) may result in aberrant transcription of the gene(s). In addition, the presence of other regulatory sequences residing in the transcribed mRNA (e.g. polyadenylation signal sequences (AAUAAA) or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing) may lead to RNA instability. Therefore, one goal in the design of genes is to generate nucleic acid sequences that have a G+C content that affords mRNA stability and translation accuracy for a particular expression system.
- Due to the plasticity afforded by the redundancy of the genetic code (i.e., some amino acids are specified by more than one codon), evolution of the genomes of different organisms or classes of organisms has resulted in differential usage of redundant codons. This “codon bias” is reflected in the mean base composition of protein coding regions. For example, organisms with relatively low G+C contents utilize codons having A or T in the third position of redundant codons, whereas those having higher G+C contents utilize codons having G or C in the third position. Therefore, in reengineering genes for expression, one may wish to determine the codon bias of the organism in which the gene is to be expressed. Looking at the usage of the codons as determined for genes of a particular organism deposited in GenBank can provide this information. After determining the bias thereof, the new gene sequence can be analyzed for restriction enzyme sites as well as other sites that could affect transcription such as exon:intron junctions, polyA addition signals, or RNA polymerase termination signals.
- Genes encoding polyketide synthases can be placed in an appropriate vector, depending on the artisan's interest, and can be expressed using a suitable expression system. An expression vector, as is well known in the art, typically includes elements that permit replication of said vector within the host cell and may contain one or more phenotypic markers for selection of cells containing said gene. The expression vector will typically contain sequences that control expression such as promoter sequences, ribosome binding sites, and translational initiation and termination sequences. Expression vectors may also contain elements such as subgenomic promoters, a repressor gene or various activator genes. The artisan may also choose to include nucleic acid sequences that result in secretion of the gene product, movement of said product to a particular organelle such as a plant plastid (see U.S. Pat. Nos. 4,762,785; 5,451,513 and 5,545,817, which are incorporated herein by reference) or other sequences that increase the ease of peptide purification, such as an affinity tag.
- A wide variety of expression control sequences are useful in expressing the mutated polyketide synthases when operably linked thereto. Such expression control sequences include, for example, the early and late promoters of SV40 for animal cells, the lac system, the trp system, major operator and promoter systems of phage S, and the control regions of coat proteins, particularly those from RNA viruses in plants. In E. coli, a useful transcriptional control sequence is the T7 RNA polymerase binding promoter, which can be incorporated into a pET vector as described by Studier et al., (1990) Methods Enzymology, 185:60-89, which is incorporated herein by reference.
- For expression, a desired gene should be operably linked to the expression control sequence and maintain the appropriate reading frame to permit production of the desired polyketide synthase. Any of a wide variety of well-known expression vectors are of use to the present invention. These include, for example, vectors comprising segments of chromosomal, non-chromosomal and synthetic DNA sequences such as those derived from SV40, bacterial plasmids including those from E. coli such as col E1, pCR1, pBR322 and derivatives thereof, pMB9), wider host range plasmids such as RP4, phage DNA such as phage S, NM989, M13, and other such systems as described by Sambrook et al., (Molecular Cloning, A Laboratory Manual, 2nd Ed. (1989) Cold Spring Harbor Laboratory Press), which is incorporated herein by reference.
- A wide variety of host cells are available for expressing synthase mutants of the present invention. Such host cells include, for example, bacteria such as E. coli, Bacillus and Streptomyces, fungi, yeast, animal cells, plant cells, insect cells, and the like. Preferred embodiments of the present invention include chalcone synthase mutants that are expressed in E. coli or in plant cells. Said plant cells can either be in suspension culture or a transgenic plant as further described herein.
- As stated previously, genes encoding synthases of the present invention can be expressed in transgenic plant cells. In order to produce transgenic plants, vectors containing the nucleic acid construct encoding polyketide synthases and mutants thereof are inserted into the plant genome. Preferably, these recombinant vectors are capable of stable integration into the plant genome. One variable in making a transgenic plant is the choice of a selectable marker. A selectable marker is used to identify transformed cells against a high background of untransformed cells. The preference for a particular marker is at the discretion of the artisan, but any of the selectable markers may be used along with any other gene not listed herein that could function as a selectable marker. Such selectable markers include aminoglycoside phosphotransferase gene of transposon Tn5 (Aph 11) (which encodes resistance to the antibiotics kanamycin), neomycin, G418, as well as those genes which code for resistance or tolerance to glyphosate, hygromycin, methotrexate, phosphinothricin, imidazolinones, sulfonylureas, triazolophyrimidine herbicides, such as chlorosulfuron, bromoxynil, dalapon, and the like. In addition to a selectable marker, it may be desirable to use a reporter gene. In some instances a reporter gene may be used with a selectable marker. Reporter genes allow the detection of transformed cells and may be used at the discretion of the artisan. A list of these reporter genes is provided in K. Wolsing et al., 1988, Ann. Rev. Genetics, 22:421.
- Said genes are expressed either by promoters expressing in all tissues at all times (constitutive promoters), by promoters expressing in specific tissues (tissue-specific promoters), promoters expressing at specific stages of development (developmental promoters), and/or promoter expression in response to a stimulus or stimuli (inducible promoters). The choice of these is at the discretion of the artisan.
- Several techniques exist for introducing foreign genes into plant cells, and for obtaining plants that stably maintain and express the introduced gene. Such techniques include acceleration of genetic material coated on a substrate directly into cells (U.S. Pat. No. 4,945,050 to Cornell): Plant cells may also be transformed using Agrobacterium, technology (see, for example, U.S. Pat. Nos. 5,177,010 to University of Toledo, 5,104,310 to Texas A&M, U.S. Pat. Nos. 5,149,645, 5,469,976, 5,464,763, 4,940,838, and 4,693,976 to Schilperoot, European Patent Applications 116718, 290799, 320500 to Max Planck, European Patent Applications 604662, 627752 and U.S. Pat. No. 5,591,616 to Japan Tobacco, European Patent Applications 0267159, 292435 and U.S. Pat. No. 5,231,01.q to Ciba-Geigy, U.S. Pat. Nos. 5,463,174 and 4,762,785 to Calgene, and U.S. Pat. Nos. 5,004,863 and 5,159,135 to Agracetus). Other transformation technologies include whiskers technology (see U.S. Pat. Nos. 5,302,523 and 5,464,765 to Zeneca). Electroporation technology has also been used to transform plants (see WO 87106614 to Boyce Thompson Institute, U.S. Pat. Nos. 5,472,869 and 5,384,253 to Dakalb, and WO 92/09696 and WO 93/21335 to Plant Genetic Systems, all which are incorporated by reference). Viral vector expression systems can also be used such as those described in U.S. Pat. Nos. 5,316,931, 5,589,367, 5,811,653, and 5,866,785 to BioSource, which are incorporated herein by reference.
- In addition to numerous technologies for transforming plants, the type of tissue that is contacted with the genes of interest may vary as well. Suitable tissue includes, for examples embryonic tissue, callus tissue, hypocotyl, meristem, and the like. Almost all plant tissues may be transformed during de-differentiation using the appropriate techniques described herein.
- Regardless of the transformation system used, a gene encoding a mutant polyketide synthase is preferably incorporated into a gene transfer vector adapted to express said gene in a plant cell by including in the vector an expression control sequence (plant promoter regulatory element). In addition to plant promoter regulatory elements, promoter regulatory elements from a variety of sources can be used efficiently in plant cells to express foreign genes. For example, promoter regulatory elements of bacterial origin, such as the octopine synthase promoter, the nopaline synthase promoter, the mannopine synthase promoter, and the like, may be used. Promoters of viral origin, such as the cauliflower mosaic virus (35S and 198) are also desirable. Plant promoter regulatory elements also include ribulose-1,6-bisphosphate carboxylase small subunit promoter, beta-conglycinin promoter, phaseolin promoter, ADH promoter, heat-shock promoters, tissue specific promoters, and the like. Numerous promoters are available to skilled artisans for use at their discretion.
- It should be understood that not all expression vectors and expression systems function in the same way to express the mutated gene sequences of the present invention. Neither do all host cells function equally well with the same expression system. However, one skilled in the art may make a selection among these vectors, expression control sequences, and host without undue experimentation and without departing from the scope of this invention.
- Once a synthase of the present invention is expressed, the protein obtained therefrom can be purified so that structural analysis, modeling, and/or biochemical analysis can be performed, as exemplified herein. The nature of the protein obtained can be dependent on the expression system used. For example, genes, when expressed in mammalian or other eukaryotic cells, may contain latent signal sequences that may result in glycosylation, phosphorylation, or other post-translational modifications, which may or may not alter function. Therefore, a preferred embodiment of the present invention is the expression of mutant synthase genes in E. coli calls. Once said proteins are expressed, they can be easily purified using techniques common to the person having ordinary skill in the art of protein biochemistry, such as, for example, techniques described in Colligan at al., (1997) Current Protocols in Protein Science, Chanda, V. B., Ed., John Wiley & Sons, Inc., which is incorporated herein by reference. Such techniques often include the use of cation-exchange or anion-exchange chromatography, gel filtration-size exclusion chromatography, and the like. Another technique that may be commonly used is affinity chromatography. Affinity chromatography can include the use of antibodies, substrate analogs, or histidine residues (His-tag technology).
- Once purified, mutants of the present invention may be characterized by any of several different properties. For example, such mutants may have altered active site surface charges of one or more charge units. In addition, said mutants may have altered substrate specificity or product capability relative to a non-mutated polyketide synthase.
- The present invention allows for the characterization of polyketide synthase mutants by crystallization followed by X-ray diffraction. Polypeptide crystallization occurs in solutions where the polypeptide concentration exceeds it solubility maximum (i.e., the polypeptide solution is supersaturated). Such solutions may be restored to equilibrium by reducing the polypeptide concentration, preferably through precipitation of the polypeptide crystals. Often polypeptides may be induced to crystallize from supersaturated solutions by adding agents that alter the polypeptide surface charges or perturb the interaction between the polypeptide and bulk water to promote associations that lead to crystallization.
- Compounds known as “precipitants” are often used to decrease the solubility of the polypeptide in a concentrated solution by forming an energetically unfavorable precipitating layer around the polypeptide molecules (Weber, Advances in Protein Chemistry, 41:1-36, 1991). In addition to precipitants, other materials are sometimes added to the polypeptide crystallization solution. These include buffers to adjust the pH of the solution and salts to reduce the solubility of the polypeptide. Various precipitants are known in the art and include the following: ethanol, 3-ethyl-2-4 pentanediol, and many of the polyglycols, such as polyethylene glycol.
- Commonly used polypeptide crystallization methods include the following techniques: batch, hanging drop, seed initiation, and dialysis. In each of these methods, it is important to promote continued crystallization after nucleation by maintaining a supersaturated solution. In the batch method, polypeptide is mixed with precipitants to achieve supersaturation, the vessel is sealed, and set aside until crystals appear. In the dialysis method, polypeptide is retained in a sealed dialysis membrane that is placed into a solution containing precipitant. Equilibration across the membrane increases the polypeptide and precipitant concentrations thereby causing the polypeptide to reach supersaturation levels.
- In the preferred hanging drop technique (McPherson, J. Biot Chem, 6300-6306, 1976), an initial polypeptide mixture is created by adding a precipitant to a concentrated polypeptide solution. The concentrations of the polypeptide and precipitants are such that in this initial form, the polypeptide does not crystallize, A small drop of this mixture is placed on a glass slide that is inverted and suspended over a reservoir of a second solution. The system is then sealed. Typically, the second solution contains a higher concentration of precipitant or other dehydrating agent. The difference in the precipitant concentrations causes the protein solution to have a higher vapor pressure than the solution. Since the system containing the two solutions is sealed, an equilibrium is established, and water from the polypeptide mixture transfers to the second solution. This equilibrium increases the polypeptide and precipitant concentration in the polypeptide solution. At the critical concentration of polypeptide and precipitant, a crystal of the polypeptide will form.
- Another method of crystallization introduces a nucleation site into a concentrated polypeptide solution. Generally, a concentrated polypeptide solution is prepared and a seed crystal of the polypeptide is introduced into this solution. If the concentration of the polypeptide and any precipitants are correct, the seed crystal will provide a nucleation site around which a larger crystal forms. In preferred embodiments, the crystals of the present invention are formed in hanging drops with (15% PEG 8000; 200 mM magnesium acetate or magnesium chloride, 100 mM 3-(N-morpholino)-2-hydroxypropanesulfonic acid (pH 7.0), 1 mM dithiothreitol as precipitant).
- Some proteins may be recalcitrant to crystallization. However, several techniques are available to the skilled artisan. Quite often the removal of polypeptide segments at the amino or caroxy terminal end of the protein is necessary to produce crystalline protein samples. Said procedures involve either the treatment of the protein with one of several proteases including trypsin, chymotrypsin, substilisin, and the like. This treatment often results in the removal of flexible polypeptide segments that are likely to negatively affect crystallization. Alternatively, the removal of coding sequences from the protein's gene facilitates the recombinant expression of shortened proteins that can be screened for crystallization.
- The crystals so produced have a wide range of uses. For example, high quality crystals are suitable for X-ray or neutron diffraction analysis to determine the three-dimensional structure of a mutant polyketide synthase and to design additional mutants thereof. In addition, crystallization can serve as a further purification method. In some instances, a polypeptide or protein will crystallize from a heterogeneous mixture into crystals. Isolation of such crystals by filtration, centrifugation, etc., followed by redissolving the polypeptide affords a purified solution suitable for use in growing the high-quality crystals needed for diffraction studies. The high-quality crystals may also be dissolved in water and then formulated to provide an aqueous solution having other uses as desired.
- Because synthases may crystallize in more than one crystal form, the structural coordinates of α-carbons of an active site determined from a synthase or portions thereof, as provided by this invention, are particularly useful to solve the structure of other crystal forms of synthases. Said structural coordinates, as provided herein, may also be used to solve the structure of synthases having α-carbons positioned within the active sites in a manner similar to the wild-type, yet having R-groups that may or may not be identical.
- Furthermore, the structural coordinates disclosed herein may be used to determine the structure of the crystalline form of other proteins with significant amino acid or structural homology to any functional domain of a synthase. One method that may be employed for such purpose is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of a synthase, a synthase having a mutated active site, or the crystal of some other protein with significant sequence and/or structural homology to a polyketide synthase may be determined using the coordinates given in Table 1. This method provides sufficient structural form for the unknown crystal more efficiently than attempting to determine such information ab initio. In addition, this method can be used to determine whether or not a given polyketide synthase in question falls within the scope of this invention.
- As further disclosed herein, polyketide syntheses and mutants thereof may be crystallized in the presence or absence of substrates and substrate analogs. The crystal structures of a series of complexes may then be solved by molecular replacement and compared to that of the wild-type to assist in determination of suitable replacements for R-groups within the active site, thus making synthase mutants according to the present invention.
- All mutants of the present inventions may be modeled using the information disclosed herein without necessarily having to crystallize and solve the structure for each and every mutant. For example, one skilled in the art may use one of several specialized computer programs to assist in the process of designing synthases having mutated active sites relative to the wild-type. Examples of such programs include: GRID (Goodford, 1985, J. Mod. Chem., 28:849-857), MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function and Genetics, 11:29-34); AUTODOCK (Goodsell and Olsen, 1990, Proteins. Structure, Fumtion, and Genetics, 8:195-202); and DOCK (Kuntz et al., 1982, J. Mot Biol., 161:269-288), and the like, as well as those discussed in the Examples below. In addition, specific computer programs are also available to evaluate specific substrate-active site interactions and the deformation energies and electrostatic interactions resulting therefrom. MODELLER is a computer program often used for homology or comparative modeling of the three-dimensional structure of a protein. A. Saii & T. L. Blundell. J. Mol. Biol. 234:779-815, 1993. A sequence to be modeled is aligned with one or more known related structures and the MODELLER program is used to calculate a full-atom model, based on optimum satisfaction of spatial restraints. Such restraints can include, inter alia, homologous structures, site-directed mutagenesis, fluorescence spectroscopy, NMR experiments, or atom-atom potentials of mean force.
- The present invention enables polyketide synthase mutants to be made and the crystal structure thereof to be solved. Moreover, by virtue of the present invention, the location of the active site and the interface of substrate therewith permit the identification of desirable R-groups for mutagenesis.
- The three-dimensional coordinates of the polyketide synthase provided herein may additionally be used to predict the activity and or substrate specificity of a protein whose primary amino acid sequence suggests that it may have polyketide synthase activity. The family of CHS-related enzymes is defined, in part, by the presence of four highly conserved amino acid residues, Cys64, Phe215, His303, and Asn336. More than 150 enzymes having these conserved residues have been identified to date, including several bacterial proteins. The functions, substrates, and products of many of these enzymes remains unknown. However, by employing the three-dimensional coordinates disclosed herein and computer modeling programs, structural comparisons of CHS can be made with a putative enzyme. Differences between the two would provide the skilled artisan with information regarding the activity and/or substrate specificity of the putative enzyme. This procedure is demonstrated in the Examples section below.
- Thus, in another embodiment of the invention, there is provided a method of predicting the activity and/or substrate specificity of a putative polyketide synthase comprising (a) generating a three-dimensional representation of a known polyketide synthase using three-dimensional coordinate data, (b) generating a predicted three-dimensional representation of a putative polyketide synthase, and (c) comparing the representation of the known polyketide synthase with the representation of the putative polyketide synthase, wherein the differences between the two representations are predictive of activity and/or substrate specificity of the putative polyketide synthase.
- In a further embodiment of the present invention, there is also provided a method of identifying a potential substrate of a polyketide synthase comprising (a) defining the active site of the polyketide synthase based on the atomic coordinates of said polyketide synthase, (b) identifying a potential substrate that fits the defined active site, and (c) contacting the polyketide synthase with the potential substrate of (b) and determining the activity thereon. Techniques for computer modeling and structural comparisons similar to those described herein for predicting putative polyketide synthase activity and/or substrate specificity can be used to identify novel substrates for polyketide synthases.
- In addition, the structural coordinates and three-dimensional models disclosed herein can be used to design or identify polyketide synthase inhibitors. Using the modeling techniques disclosed herein, potential inhibitor structures can be modeled with the polyketide synthase active site and those that appear to interact therewith can subsequently be tested in activity assays in the presence of substrate.
- Methods of using crystal structure data to design binding agents or substrates are known in the art. Thus, the crystal structure data provided herein can be used in the design of new or improved inhibitors, substrates or binding agents. For example, the synthase polypeptide coordinates can be superimposed onto other available coordinates of similar enzymes to identify modifications in the active sites of the enzymes to create novel byproducts of enzymatic activity or to modulate polyketide synthesis. Alternatively, the synthase polypeptide coordinates can be superimposed onto other available coordinates of similar enzymes which have substrates or inhibitors bound to them to give an approximation of the way these and related substrates or inhibitors might bind to a synthase. Alternatively, computer programs employed in the practice of rational drug design can be used to identify compounds that reproduce interaction characteristics similar to those found between a synthase polypeptide and a co-crystallized substrate. Furthermore, detailed knowledge of the nature of binding site interactions allows for the modification of compounds to alter or improve solubility, pharmacokinetics, etc. without affecting binding activity.
- Computer programs are widely available that are capable of carrying out the activities necessary to design agents using the crystal structure information provided herein. Examples include, but are not limited to, the computer programs listed below:
-
- Catalyst Databases™—an information retrieval program accessing chemical databases such as BioByte Master File, Derwent WDI and ACD;
- Catalyst/HYPO™—generates models of compounds and hypotheses to explain variations of activity with the structure of drug candidates;
- Ludi™—fits molecules into the active site of a protein by identifying and matching complementary polar and hydrophobic groups:
- Leapfrog™—“grows” new ligands using a genetic algorithm with parameters under the control of the user.
- In addition, various general purpose machines may be used with programs written in accordance with the teachings herein, or it may be more convenient to construct more specialized apparatus to perform the operations. However, preferably the embodiment is implemented in one or more computer programs executing on programmable systems each comprising at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. The program is executed on the processor to perform the functions described herein.
- Each such program may be implemented in any desired computer language (including machine, assembly, high level procedural, object oriented programming languages, or the like) to communicate with a computer system. In any case, the language may be a compiled or interpreted language. The computer program will typically be stored on a storage media or device (e.g., ROM, CD-ROM, or magnetic or optical media) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.
- Embodiments of the invention include systems (e.g., internet based systems), particularly computer systems which store and manipulate the coordinate and sequence information described herein. One example of a
computer system 100 is illustrated in block diagram form inFIG. 9 . As used herein, “a computer system” refers to the hardware components, software components, and data storage components used to analyze the coordinates and sequences as set forth in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, and Table 3. Thecomputer system 100 typically includes a processor for processing, accessing and manipulating the sequence data. Theprocessor 105 can be any well-known type of central processing unit, such as, for example, the Pentium III from Intel Corporation, or similar processor from Sun, Motorola, Compaq, AMD or International Business Machines. - Typically the
computer system 100 is a general purpose system that comprises theprocessor 105 and one or more internaldata storage components 110 for storing data, and one or more data retrieving devices for retrieving the data stored on the data storage components. A skilled artisan can readily appreciate that any one of the currently available computer systems are suitable. - In one particular embodiment, the
computer system 100 includes aprocessor 105 connected to a bus which is connected to a main memory 115 (preferably implemented as RAM) and one or more internaldata storage devices 110, such as a hard drive and/or other computer readable media having data recorded thereon. In some embodiments, thecomputer system 100 further includes one or moredata retrieving device 118 for reading the data stored on the internaldata storage devices 110. - The
data retrieving device 118 may represent, for example, a floppy disk drive, a compact disk drive, a magnetic tape drive, or a modem capable of connection to a remote data storage system (e.g., via the internet) etc. In some embodiments, the internaldata storage device 110 is a removable computer readable medium such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded thereon. Thecomputer system 100 may advantageously include or be programmed by appropriate software for reading the control logic and/or the data from the data storage component once inserted in the data retrieving device. - The
computer system 100 includes adisplay 120 which is used to display output to a computer user. It should also be noted that thecomputer system 100 can be linked to other computer systems 125 a-c in a network or wide area network to provide centralized access to thecomputer system 100. - Software for accessing and processing the coordinate and sequences described herein, (such as search tools, compare tools, and modeling tools etc.) may reside in
main memory 115 during execution. - For the first time, the present invention permits the use of molecular design techniques to design, select and synthesize novel enzymes, chemical entities and compounds, including inhibitory compounds, capable of binding to a polyketide synthase polypeptide (e.g., a chalcone synthase polypeptide), in whole or in part.
- One approach enabled by this invention, is to use the structure coordinates as set forth in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, and Table 3 to design new enzymes capable of synthesizing novel polyketides. For example, polyketide synthases (PKSs) generate molecular diversity in their products by utilizing different starter molecule sand by varying the final size of the polyketide chain. The structural coordinates disclosed herein allowed the elucidation of the nature by which PKSs achieve starter molecule selectivity and control polyketide chain length. By comparing the structure of chalcone synthase, which yields a tetraketide product to 2-pyrone synthases which forms a triketide product the invention demonstrated that 2-pyrone synthase maintains a smaller initiation/elongation cavity. Accordingly, generation of a chalcone synthase mutant with an active site sterically analogous to 2-pyrone synthase resulted in the synthesis of a polyketide product of a different size. As discussed more fully below, this invention allows for the strategic development and biosynthesis of more diverse polyketides and demonstrates a structural basis for control of polyketide chain length in other PKSs. In addition, the structural coordinates allow for the development of substrates or binding agents that bind to the polypeptide and alter the physical properties of the compounds in different ways, e.g., solubility.
- In another approach a polyketide synthase polypeptide crystal is probed with molecules composed of a variety of different chemical entities to determine optimal sites for interaction between candidate binding molecules (e.g., substrates) and the polyketide synthase (e.g., chalcone synthase).
- In another embodiment, an approach made possible and enabled by this invention, is to screen computationally small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to a polyketide synthase polypeptide or fragment thereof. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy. Meng, E. C. et al., J. Comp. Chem., 13, pp. 505-524 (1992).
- Because chalcone synthase is one member of a family of polyketide synthase polypeptides, many of which have similar functional activity, many polyketide synthase polypeptides may crystallize in more than one crystal form, the structure coordinates of chalcone synthase, or portions thereof, as provided by this invention are particularly useful to solve the structure, function or activity of other crystal forms of polyketide synthase molecules. They may also be used to solve the structure of a polyketide synthase or a chalcone synthase mutant.
- One method that may be employed for this purpose is molecular replacement. In this method, the unknown crystal structure, whether it is another polyketide synthase crystal form, a polyketide synthase or chalcone synthase mutant, or a polyketide synthase complexed with a substrate or other molecule, or the crystal of some other protein with significant amino acid sequence homology to any polyketide synthase polypeptide, may be determined using the structure coordinates as provided in Accession Nos. 1BI5, 1D6F, 1D6J, 1D6I, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3. This method will provide an accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information ab initio.
- In addition, in accordance with the present invention, a polyketide synthase or chalcone synthase polypeptide mutant may be crystallized in association or complex with known polyketide synthase binding agents, substrates, or inhibitors. The crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of wild-type polyketide synthase molecules. Potential sites for modification within the synthase molecule may thus be identified. This information provides an additional tool for determining the most efficient binding interactions between a polyketide synthase and a chemical entity, substrate or compound.
- All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined to 2-3 Å resolution X-ray data to an R value of about 0.20 or less using computer software, such as X-PLOR (Yale University, 1992, distributed by Molecular Simulations, Inc.). See, e.g., Blundel & Johnson, supra; Methods in Enzymology, vol. 114 and 115, H. W. Wyckoff et al., eds., Academic Press (1985). This information may thus be used to optimize known classes of polyketide synthase substrates or binding agents (e.g., inhibitors), and to design and synthesize novel classes of polyketide synthases, substrates, and binding agents (e.g., inhibitors).
- The design of substrates, compounds or binding agents that bind to or inhibit a polyketide synthase polypeptide according to the invention generally involves consideration of two factors. First, the substrate, compound or binding agent must be capable of physically and structurally associating with a polyketide synthase molecule. Non-covalent molecular interactions important in the association of a polyketide synthase with a substrate include hydrogen bonding, van der Waals and hydrophobic interactions, and the like.
- Second, the substrate, compound or binding agent must be able to assume a conformation that allows it to associate with a polyketide synthase molecule. Although certain portions of the substrate, compound or binding agent will not directly participate in this association, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of the binding site, e.g., active site or accessory binding site of a polyketide synthase (e.g., a chalcone synthase polypeptide), or the spacing between functional groups of a substrate or compound comprising several chemical entities that directly interact with a polyketide synthase.
- The potential binding effect of a substrate or chemical compound on a polyketide synthase or the activity a newly synthesized or mutated polyketide synthase might have on a known substrate may be analyzed prior to its actual synthesis and testing by the use of computer modeling techniques. For example, if the theoretical structure of the given substrate or compound suggests insufficient interaction and association between it and a polyketide synthase, synthesis and testing of the compound may be obviated. However, if computer modeling indicates a strong interaction, the molecule may then be tested for its ability to bind to, initiate catalysis or elongation of a polyketide by a polyketide synthase. Methods of assaying for polyketide synthase activity are known in the art (as identified and discussed herein). Methods for assaying the effect of a newly created polyketide synthase or a potential substrate or binding agent can be performed in the presence of a known binding agent or polyketide synthase. For example, the effect of the potential binding agent can be assayed by measuring the ability of the potential binding agent to compete with a known substrate.
- A mutagenized synthase, novel synthase, substrate or other binding compound of an polyketide synthase may be computationally evaluated and designed by means of a series of steps in which chemical entities or fragments are screened and selected for their ability to associate with the individual binding pockets or other areas of the polyketide synthase.
- One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a polyketide synthase and more particularly with the individual binding pockets of a chalcone synthase polypeptide. This process may begin by visual inspection of, for example, the active site on the computer screen based on the coordinates in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3. Selected fragments or substrates or chemical entities may then be positioned in a variety of orientations, or docked, within an individual birding pocket of a polyketide synthase. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics forcefields, such as CHARMM and AMBER.
- Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:
- 1. GRID (Goodford, P. J., “A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules”, J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
- 2. MCSS (Miranker, A. and M. Karplus, “Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method.” Proteins: Structure. Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, Mass.
- 3. AUTODOCK (Goodsell, D. S, and A. J. Olsen, “Automated Docking of Substrates to Proteins by Simulated Annealing”, Proteins: Structure. Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.
- 4. DOCK (Kuntz, I. D. et al., “A Geometric Approach to Macromolecule-Ligand Interactions”, J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.
- Once suitable substrates, chemical entities or fragments have been selected, they can be assembled into a single polypeptide, compound or binding agent (e.g., an inhibitor). Assembly may be performed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of the molecules as set forth in Accession Nos. 1BI5, 1D6F, 1D6T, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3. This would be followed by manual model building using software such as Quanta or Sybyl.
- Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:
- 1 CAVEAT (Bartlett, P. A. et al., “CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules”. In “Molecular Recognition in Chemical and Biological Problems”, Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, Calif.
- 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif.). This area is reviewed in Martin, Y. C., “3D Database Searching in Drug Design”, J. Med. Chem., 35, pp. 2145-2154 (1992)).
- 3. HOOK (available from Molecular Simulations, Burlington, Mass.).
- In addition to the method of building or identifying novel enzymes or a polyketide synthase substrate or binding agent in a step-wise fashion one fragment or chemical entity at a time as described above, substrates, inhibitors or other polyketide synthase interactions may be designed as a whole or “de novo” using either an empty active site or optionally including some portion(s) of known substrates, binding agents or inhibitors. These methods include:
- 1. LUDI (Bohm, H.-J., “The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors”, J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Biosym Technologies, San Diego, Calif.
- 2. LEGEND (Nishibata, Y. and A. Itai, Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations, Burlington, Mass.
- 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.).
- Other molecular modeling techniques may also be employed in accordance with this invention. See, e.g., Cohen, N. C. et al., “Molecular Modeling Software and Methods for Medicinal Chemistry”, J. Med. Chem., 33, pp. 883-894 (1990). See also, Navia, M. A. and M. A. Murcko, “The Use of Structural Information in Drug Design”, Current Opinions in Structural Biology, 2, pp. 202-210 (1992).
- Once a substrate, compound or binding agent has been designed or selected by the above methods, the efficiency with which that substrate, compound or binding agent may bind to a polyketide synthase may be tested and optimized by computational evaluation.
- A substrate or compound designed or selected as a polyketide binding agent may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target site. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the binding agent and the polyketide synthase when the binding agent is bound to the polyketide synthase, preferably make a neutral or favorable contribution to the enthalpy of binding.
- Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C (M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa., 1992); AMBER, version 4.0 (P. A. Kollman, University of California at San Francisco, 1994); QUANTA/CHARMM (Molecular Simulations, Inc., Burlington, Mass. 1994); and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif., 1994). These programs may be implemented, for example, using a Silicon Graphics workstation, IRIS 4D/35 or IBM RISC/6000 workstation model 550. Other hardware systems and software packages will be known to those skilled in the art of which the speed and capacity are continually modified
- Once a polyketide synthase, polyketide synthase substrate or polyketide synthase binding agent has been selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, e.g., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analyzed for efficiency of fit to a polyketide synthase substrate or fit of a modified substrate to a polyketide synthase having a structure defined by the coordinates in Accession Nos. 1BI5, 1D6F, 1D6I, 1D6H, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, Table 1, or Table 3, by the same computer methods described, above.
- Conserved regions of the polyketide family synthases lend themselves to the methods and compositions of the invention. For example, pyrone synthase and chalcone synthase have conserved residues present within their active sites (as described more fully below). Accordingly, modification to the active site of chalcone synthase or a chalcone synthase substrate can be extrapolated to other conserved members of the polyketide family of synthases such as, for example, pyrone synthase.
- Functional fragments of polyketide synthase polypeptides such as, for example, fragments of chalcone synthase can be designed based on the crystal structure and atomic coordinates described herein. Fragments of a chalcone synthase polypeptide and the fragment's corresponding atomic coordinates can be used in the modeling described herein. In addition, such fragments may be used to design novel substrates or modified active sites to create new diverse polyketides.
- In one embodiment of the present invention, the crystal structure and atomic coordinates allow for the design of novel polyketide synthases and novel polyketide synthase substrates. The development of new polyketide synthases will lead to the development a biodiverse repertoire of polyketides for use as antibiotics, anti-cancer agents, anti-fungal agents and other therapeutic agents as described herein or known in the art. In vitro assay systems for production and determination of activity are known in the art. For example, antibiotic activities of novel polyketides can be measured by any number of anti-microbial techniques currently used in hospitals and laboratories. In addition, anticancer activity can be determined by contacting cells having a cell proliferative disorder with a newly synthesized polyketide and measuring the proliferation or apoptosis of the cells before and after contact with the polyketide. Specific examples of apoptosis assays are provided in the following references: Lymphocyte: C. J. Li et al., Science, 268:429-431, 1995; D. Gibellini et al., Br. J. Haematol. 89:24-33, 1995; S. J. Martin et al., J. Immunol. 152:330-42, 1994; C. Terai et al., J. Clin Invest. 87:1710-5, 1991; J. Dhein et al., Nature 373:438-441, 1995; P. D. Katsikis et al., J. Exp. Med. 1815:2029-2036, 1995; Michael O. Westendorp et al., Nature 3:497, 1995; DeRossi et al., Virology 198:234-44, 1994. Fibroblasts: H. Vossbeck et al., Int. J. Cancer 61:92-97, 1995; S. Goruppi et al., Oncogene 9:1537-44, 1994; A. Fernandez et al., Oncogene 9:2009-17, 1994; E. A. Harrington et al., Embo J. 13:3286-3295, 1994; N. Itoh et al., J. Biol. Chem. 268:10932-7, 1993. Neuronal Cells: G. Melino et al., Mol. Cell. Biol. 14:6584-6596, 1994; D. M. Rosenbaum et al., Ann. Neurol. 36:864-870, 1994; N. Sato et al., J. Neurobiol 25:1227-1234, 1994; G. Ferrari et al., J. Neurosci. 1516:2857-2866, 1995; A. K. Talley et al., Mol. Cell. Biol. 1185:2359-2366, 1995; A. K. Talley et al., Mol. and Cell. Biol. 15:2359-2366, 1995; G. Walkinshaw et al., J. Clin. Invest. 95:2458-2464, 1995. Insect Cells: R. J. Clem et al., Science 254:1388-90, 1991; N. E. Crook et al., J. Virol. 67:2168-74, 1993; S. Rabizadeh et al., J. Neurochem. 61:2318-21, 1993; M. J. Birnbaum et al., J. Virol 68:2521-8, 1994; R. J. Clem et al., Mol. Cell. Biol. 14:5212-5222, (1994). Other assays are well within the ability of those of skill in the art.
- Product of novel polyketides or polyketide synthases can be carried out in culture. For example, mammalian expression constructs carrying polyketide synthases can be introduced into various cell lines such as CHO, 3T3, HL60, Rat-1, or Jurkart cells, for example. In addition, SF21 insect cells may be used in which case the polyketide synthase gene is expressed using an insect heat shock promoter.
- In another embodiment of the present invention, once a novel substrate or binding agent is developed by the computer methodology discussed above, the invention provides a method for determining the ability of the substrate or agent to be acted upon by a polyketide synthase. The method includes contacting components comprising the substrate or agent and a polyketide synthase polypeptide, or a recombinant cell expressing a polyketide synthase polypeptide, under conditions sufficient to allow the substrate or agent to interact and determining the affect of the agent on the activity of the polypeptide. The term “affect”, as used herein, encompasses any means by which protein activity can be modulated, and includes measuring the interaction of the agent with the polyketide synthase molecule by physical means including, for example, fluorescence detection of the binding of an agent to the polypeptide. Such agents can include, for example, polypeptides, peptidomimetics, chemical compounds, small molecules, substrates and biologic agents as described herein. Examples of small molecules include but are not limited to small peptides or peptide-like molecules.
- Contacting or incubating includes conditions which allow contact between the test agent or substrate and a polyketide synthase or modified polyketide synthase polypeptide or a cell expressing a polyketide synthase or modified polyketide synthase polypeptide. Contacting includes in solution and in solid phase. The substrate or test agent may optionally be a combinatorial library for screening a plurality of substrates or test agents. Agents identified in the method of the invention can be further evaluated by chromatography, cloning, sequencing, and the like.
- Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. The invention will now be described in greater detail by reference to the following non-limiting examples.
- Mutagenesis, expression, and purification. Alfalfa CHS2 cDNA (Junghans, H., et al, Plant Mol. Biol. 22:239-253, 1993) was subcloned into pHIS8 plasmid vector derived from pET-28a(+) (Novagen). PCR-based mutagenesis using the QuikChange system (Stratagene) generated the various mutants including C164S, C164D, H303A, H303Q, H303D, H303T, N336A, N336D, N336Q, N336H, F215S, F215Y and F215W. N-terminal His8-tagged CHS was expressed in BL21(DE3) E. coli cells. Cells were harvested and lysed by sonication. His-tagged CHS was purified from bacterial sonicates using a NI-NTA (Qiagen) column. Thrombin digest removed the His-tag and the protein was passed over another NI-NTA column and a benzamidine-Sepharose (Pharmacia) column. The final purification step used a Superdex 200 16/60 (Pharmacia) column.
- Crystallization. CHS crystals (wild-type and C164S mutant) were grown by vapor diffusion at 4° C. in 2 μl drops containing a 1:1 mixture of 25 mg/ml protein and crystallization buffer (2.2-2.4 M ammonium sulfate and 0.1 M PIPES, pH 6.5) in the presence or absence of 5 mM DTT. Prior to freezing at 105° K., crystals were stabilized in 40% (v/v) PEG400, 0.1 M PIPES pH 6.5), ad 0.050-0.075 M ammonium sulfate. This cryoprotectant was used for heavy atom soaks. Likewise, all substrate and product analog complexes were obtained by soaking crystals in cryoprotectant containing 10-20 mM of the compound.
- Data Collection and Processing. X-ray diffraction data were collected at 105° K using a DIP2000 imaging plate system (Mac-Science Corporation, Japan) and CuK radiation produced by a rotating anode operated at 45 kV and 100 mA and equipped with double focusing Pt/Ni coated mirrors. Native CHS crystals belong to space group P3221 with unit cell dimensions of a=b=97.54 Å; c=65.52 Å with a single monomer per asymmetric unit. Data were indexed and integrated using DENZO (Otwinowski & Minor, Meth. Enzymol. 276:307-326, 1997) and scaled with SCALEPACK (Otwinowski & Minor, Meth. Enzymol. 276:307-326, 1997). The heavy atom derivative datasets were scaled against the native dataset with SCALEIT (CCP4 Suite: Programs for protein crystallography, Acta Crystallogr. D 50:760-763, 1994).
- Structure determination. MIRAS was used to solve the structure of native CHS using native data set 1 (1.8 Å). Initial phasing was performed with derivative datasets including reflections to 2.3 Å resolution. Heavy atom positions for the Hg(OAc)2 derivative were estimated by inspection of difference Patterson maps using the program XTALVIEW (MeRee, J. Mol. Graph. 10:44-46, 1992) and initially refined with MLPHARE (Otwinowski, Z. in CCP4 Proc. 80-88, Daresbury Laboratory, Warrington, UK, 1991). Heavy atom positions for the additional derivative data sets were determined by difference Fourier analysis using phases calculated from the Hg(OAc)2 data set and the Hg positions. These sites were confirmed by inspection of difference Patterson maps. Final refinement of heavy atom parameters, identification of minor heavy atom binding sites, and phase-angle calculations were performed with the program SHARP (de La Fertelle, & Bricogne, Meth. Enzymol. 276:472-494, 1997). MIRAS phases were improved and extended to 1.8 Å by solvent flipping using the CCP4 program SOLOMON (Abrahams, & Leslie, Acta Crystallogr. D 52:30-42, 1996).
- Model building and refinement. The program O (Jones, et al., Acta Crystallogr. D 49:148-157, 1993) was used for model building and graphical display of the molecules and electron-density maps. The experimental map for the native 1 dataset at 1.8 Å was of high quality and allowed unambiguous modeling of
residues 3 to 389. The model was first refined with REFMAC (Murshudov, et al., Acta Crystallogr. D 53:240-255, 1997) and ARP (Lamzin & Wilson, Acta Crystallogr. D 49:129-147, 1993) against the native 1 dataset. This was followed by manual adjustments using I2Fo-Fcl difference maps. Water molecules introduced by ARP were edited using the I2Fo-Fcl and IFo-Fcl maps. A second refinement with SHELX-97 (Sheldrick & Schneider, Meth. Enzymol. 277:319-343, 1997) was then carried out against the native 2 data set to 1.56 Å resolution. Structures of CHS complexed with naringenin and resveratrol and the C164S mutant complexed with malonyl- and hexanoyl-CoA were obtained using difference Fourier methods and were refined with REFMAC and ARP. All structures were checked with PROCHECK (Laskowski, et al, J. AppL Crystallogr. 26:283-291, 1993). 91.3% of the residues in CHS are in the most favored regions of the Ramachandran plot, 8.4% in the additional allowed region, and 0.3% in the generously allowed region. - Three Dimensional Structure Determination and Description
- Recombinant alfalfa CHS2 was expressed in E. coli, affinity purified using an N-terminal poly-His linker, and crystallized. The structure of wild-type CHS was determined using multiple isomorphous replacement supplemented with anomalous scattering (MIRAS) (Table X). The final 1.56 Å resolution apoenzyme model of CHS included 2982 protein atoms and 355 water molecules. In addition, the structures of a series of complexes were obtained by difference Fourier analysis. First, a crystal of a mutant (C164S) was soaked with malonyl-CoA. This mutant retains limited catalytic activity, and the resulting acetyl-CoA complex yields insight on the decarboxylation reaction. The same mutant was also complexed with hexanoyl-CoA to mimic the structure of a linear polyketide-CoA reaction inter-mediate. Finally, two product analogs, naringenin and resveratrol (see
FIG. 1 ) were complexed with CHS to provide information on how the enzyme governs sequential addition of acetates to the coumaroyl moiety and how CHS controls the stereochemistry of the polyketide cyclization reaction. In plants, chalcone isomerase rapidly and stereospecifically converts chalcone to naringenin ((−)(2S)-5,7,4′-trihydroxyflavanone) through an additional ring closure. This reaction also occurs at a slower rate and non-stereospecifically in solution. As such, naringenin provides a suitable mimic of the CHS reaction product. Finally, since STS uses the same substrates as CHS but a different cyclization pathway for the biosynthesis of resveratrol, resveratrol was also soaked into CHS to investigate the structural features governing cyclization of the same substrates into two different products. - CHS functions as a homodimer of two 42 kDa polypeptides. The structure of CHS revealed that the enzyme forms a symmetric dimer with each monomer related by a 2-fold crystallographic axis (See
FIGS. 2 a and 2 b). The dimer interface buries approximately 1580 Å2 with interactions occurring along a fairly flat surface. Two distinct structural features delineate the ends of this interface. First, the N-terminal helix of monomer A entwines with the corresponding helix of monomer B. Second, a tight loop containing a cis-peptide bond between Met137 and Pro138 exposes the methionine sidechain as a knob on the monomer surface. Across the interface, Met137 protrudes into a hole found in the surface of the adjoining monomer to form part of the cyclization pocket. - Each CHS monomer consists of two structural domains (see
FIG. 3 ). The upper domain exhibits an xBxBx pseudo-symmetric motif originally observed in thiolase from Saccharomyces cerevisiae (Mathieu, et al, Structure 2:797-808, 1994). The upper domains of CHS and thiolase are superimposable with a r.m.s. deviation of 3.3 Å for 266 equivalent C-atoms. Both enzymes use a cysteine as a nucleophile and shuttle reaction intermediates via CoA molecules. However, CHS condenses a p-coumaroyl- and three malonyl-CoA molecules through an iterative series of reactions, whereas thiolase generates two acetyl-CoA molecules from acetoacetyl-CoA and free CoA. The drastic structural differences in the lower domain of CHS create a larger active site than that of thiolase and provide space for the polyketide reaction intermediates required for chalcone formation. - The CHS homodimer contains two functionally independent active sites. Consistent with this information, bound CoA thioesters and product analogs occupy both active sites of the homodimer in the CHS complex structures. These structures identify the location of the active site at the cleft between the upper and lower domains of each monomer. Each active site consists almost entirely of residues from a single monomer with Met137 from the adjoining monomer being the only exception. There are remarkably few chemically reactive residues in the active site. Four residues conserved in all the known CHS-related enzymes (Cys164, Phe215, His303, and Asn336) define the active site. Cys164 apparently serves as the nucleophile and as the attachment site for polyketide intermediates as previously suggested for both CHS and STS (Lanz, et al., J. Biol. Chem. 266:9971-9976, 1991). His303 most likely acts as a general base during the generation of a nucleophilic thiolate anion from Cys164, since the N of His303 is within hydrogen bonding distance of the sulfur of Cys164. Phe215 and Asn336 may function in the decarboxylation reaction, as discussed below. Topologically, three interconnected cavities intersect with these four residues and form the active site architecture of CHS. These cavities include a CoA-binding tunnel, a coumaroyl-binding pocket, and a cyclization pocket.
- The CoA-binding tunnel is 16 angstroms long and links the surrounding solvent with the buried active site. Binding of the CoA moiety in this tunnel positions substrates at the active site, as observed in the C164S mutant (described in greater detail below) complexed with malonyl- or hexanoyl-CoA. The conformation of the CoA molecules bound to CHS resembles that observed in other CoA binding enzymes. The adenosine nucleoside is in the 2′-endo conformation with an anti-glycosidic bond torsion angle. At the tunnel entrance, Lys55, Arg58, and Lys62 hydrogen bond with two phosphates of CoA. Apart from these interactions, and an additional hydrogen bond between the backbone amide nitrogen of Ala308 and the first carbonyl of the pantetheine moiety, van der Waals contacts dominate the remaining interactions between CHS and CoA. The pantetheine arm of the CoA extends into the enzyme positioning the terminally bound thioester-linked substrates near Cys164.
- Both naringenin and resveratrol bind at the active site end of the CoA-binding tunnel. The interactions observed in the naringenin and resveratrol complexes define the coumaroyl-binding and cyclization pockets (see
FIG. 5 ). The space to the lower left of the CoA-binding tunnel's end serves as the coumaroyl-binding pocket. Residues of this pocket (Ser133, Glu192, Thr194, Thr197, and Ser336) surround the coumaroyl-derived portion of the bound naringenin and resveratrol molecules and interact primarily through van der Waals contacts. However, the carbonyl oxygen of Gly216 hydrogen bonds to the phenolic oxygen of both naringenin and resveratrol and the hydroxyl of Thr197 interacts with the carbonyl of naringenin derived from coumaroyl-CoA. The identity of the residues in this pocket likely contributes to the preference for coumaroyl-CoA as a substrate for parsley CHS over other cinnamoyl-CoA starter molecules, like caffeoyl- or feruloyl-CoA. - In both the naringenin and resveratrol complexes, the malonyl-derived portion of each molecule occupies a large pocket adjacent to Cys164 suggesting this is where the polyketide reaction intermediate cyclizes into the new ring system and where aromatization of the ring occurs. The six-carbon chain of hexanoyl-CoA also binds in this pocket. Physically, the size of the pocket limits the number of acetate additions to three. Phe265 separates the coumaroyl-binding site from the cyclization pocket and may function as a mobile steric gate during successive rounds of polyketide elongation. Although a polyketide possesses a number of hydrogen bond acceptors through which specific interactions could aid in proper folding for the cyclization reaction, the residues of the cyclization pocket, including Thr132, Met137, Phe215, Ile254, Gly256, Phe265, and Pro375, provide few potential hydrogen bond donors. As in the coumaroyl-binding pocket, van der Waals contacts dominate the interaction between CHS and both naringenin and resveratrol. Thus, the surface topology of the cyclization pocket dictates how the malonyl-derived portion of the polyketide is folded and how the stereochemistry of the cyclization reaction leading to chalcone formation in CHS and resveratrol formation in STS is controlled.
- Reaction Mechanism
- The position of the CoA thioesters and product analogs in the CHS active site suggest binding modes for substrates and intermediates in the polyketide elongation mechanism that are consistent with the known product specificity of CHS. In addition, the stereochemical features of the substrate and product analog complexes elucidate the roles of Cys164, Phe215, His303, and Asn336 in the reaction mechanism. Utilizing structural constraints derived from the available complexes, the following reaction sequence is proposed (see
FIG. 6 ). - In the mechanism, binding of p-coumaroyl-CoA initiates the CHS reaction. Functional and structural evidence supports a coumaroyl-first mechanism over a malonyl-first one. Cerulenin, a potent irreversible inhibitor of CHS, covalently modifies Cys164 in CHS (Lanz, et al., J. Biol. Chem. 266:9971-9976, 1991). Preincubation of CHS with coumaroyl-CoA prevents inactivation by cerulenin, but pre-incubation with malonyl-CoA does not (Preisig-Mueller, et al., Biochemistry 36:8349-8358, 1997). Also, the location of the coumaroyl-derived portion of naringenin and resveratrol in the CHS complexes agrees with a coumaroyl first mechanism, since the presence of a triketide reaction intermediate attached to Cys164 would limit access to the coumaroyl-binding pocket.
- After p-coumaroyl-CoA binds to CHS, Cys164, activated by His303, attacks the thioester linkage, transferring the coumaroyl moiety to Cys164, (Monoketide Intermediate). Asn336 hydrogen bonds with the carbonyl oxygen of the thioester further stabilizing formation of the tetrahedral reaction intermediate. CoA then dissociates from the enzyme, leaving a coumaroyl-thioester at Cys164. Binding of the first malonyl-CoA positions the bridging methylene carbon of the malonyl moiety near the carbonyl carbon of the covalently attached coumaroyl-thioester. Decarboxylation of malonyl-CoA leads to carbanion formation. Resonance between the keto and enol species stabilizes the carbanion. Attack of this carbanion on the coumaroyl-thioester releases the thiolate anion of Cys164 and transfers the coumaroyl group to the acetyl moiety of the CoA thioester (Diketide CoA Thioester). Capture of this elongated diketide-CoA by Cys164, and release of CoA sets the stage for two additional rounds of elongation resulting in formation of the tetraketide reaction intermediate.
- Asn336 appears to play a crucial role in the decarboxylation reaction. Structural evidence shows that the decarboxylation reaction does not require transfer of the malonyl moiety to Cys164 as originally indicated by C02 exchange assays. Decarboxylation occurs without Cys164, since the C164S mutant produces acetyl-CoA as determined crystallographically and confirmed by a functional assay. In the hexanoyl-CoA complex, the side chain amide of Asn336 provides a hydrogen bond to the carbonyl oxygen of the thioester. This interaction would stabilize the enolate anion resulting from decarboxylation of malonyl-CoA (see
FIG. 6 ). At the same time, the lack of formal positive charge at Asn336 may preserve the partial carbanion character of this resonance-stabilized anion, and thus the nucleophilicity of the carbanion form. - The role of Phe215 in the catalytic mechanism is subtler than that of Asn336. Its position in both CoA complexes suggests that it provide van der Waals interactions for substrate binding. However, its conservation in bacterial enzymes related to CHS that do not make flavonoids or stilbenes may indicate a more general catalytic role for Phe215. Its position near the acetyl moiety of the malonyl-CoA complex suggests that it participates in decarboxylation by favoring conversion of the negatively charged carboxyl group to a neutral carbon dioxide molecule.
-
FIG. 7A depicts the addition of the third malonyl-CoA molecule as a three-dimensional model. The position of the coumaroyl ring in the modeled triketide intermediate is as observed in the naringenin and resveratrol complexes. The coumaroyl-binding pocket locks this moiety in position, while the acetate units added in subsequent chain extension steps bend to fill the cyclization pocket. The backbone of bound hexanoyl-CoA provides a guide for modeling the triketide reaction intermediate attached to Cys164. Based on the observed acetyl-CoA complex, a rotation of the acetyl group would place the terminal methylene of the decarboxylated malonyl-CoA in position for nucleophilic attack on the triketide thioester linkage resulting in formation of a tetraketide CoA thioester. - The cyclization reaction catalyzed by CHS is an intramolecular Claisen condensation encompassing the three acetate units derived from three malonyl-CoAs. During cyclization, the nucleophilic methylene group nearest the coumaroyl moiety attacks the carbonyl carbon of the thioester linked to Cys164. Ring closure proceeds through an internal proton transfer from the nucleophilic carbon to the carbonyl oxygen. Modeling of the tetraketide intermediate in a conformation leading to chalcone formation places one of the acidic protons of the nucleophilic carbon (C6) proximal to the target carbonyl (C1) (see
FIG. 7B ). Since there is no base capable of proton abstraction from the tetraketide, it is proposed that the intermediate itself provides the driving force for carbanion formation. Protonation of the carbonyl oxygen would also stabilize the negative charge on the tetrahedral intermediate. Breakdown of this tetrahedral intermediate expels the newly cyclized ring system from Cys164. Subsequent aromatization of the trione ring through a second series of facile internal proton transfers yields chalcone. - Although the cyclization reaction has been modeled as occurring via a polyketide intermediate attached to Cys164, it is possible that the reaction proceeds when the polyketide is attached to CoA. The rate of cyclization versus the rate of reattachment to Cys164 would dictate which of the two cyclization alternatives is mechanistically preferred.
- An important question in the biosynthesis of chalcones concerns the exchangeability of the polyketide reaction intermediates. In the presence of chalcone reductase (CHR), CHS produces 6-deoxychalcone (Welle & Grisebach, FEBS Lett. 236:22-225, 1988). Mechanistically, CHR must reduce a ketone on the polyketide intermediate before cyclization occurs. Based on the CHS structure, any polyketide attached to Cys164 would be inaccessible to CHR unless a drastic structural change occurs in CHS upon interaction with CHR. While this conformational change is possible, such a change is difficult to imagine given the buried nature of the CHS active site. This would argue for the presence of moderately exchangeable polyketide-CoA reaction intermediates. Consistent with this idea, a recently identified CHS-like enzyme from Pinus strobus involved in the biosynthesis of C-methylated chalcones is active only with a starter molecule that is sterically analogous to the diketide-CoA intermediate postulated to be formed after the first condensation reaction in CHS30. These results suggest that the enzymes involved in the biosynthesis of plant polyketides may require specific localization in the plant cell to allow efficient channeling of intermediates from one enzyme to another during the production of particular products.
- Cyclization Specificity of CHS and STS
- Both CHS and STS use the same precursor molecules and reaction mechanism to create a common tetraketide intermediate. Each enzyme must then impart a different folded conformation on this intermediate to facilitate the different cyclization reactions that yield chalcone and resveratrol. Although the three-dimensional structure of STS remains unknown, determination of the CHS structure allows speculation about the basis for the intramolecular aldol condensation and cyclization reaction catalyzed by STS. This alternate pathway involves nucleophilic attack of the methylene group (C2) nearest the thioester linkage to Cys164 on the carbonyl carbon (C7) of the coumaroyl moiety (see
FIG. 7 c). Again, modeling of the tetraketide intermediate in a conformation leading to cyclization suggests an internal proton transfer mechanism. Unlike CHS, this cyclization intermediate remains covalently attached to STS. Completion of the reaction sequence requires hydrolysis from Cys164, and an additional decarboxylation step prior to formation of resveratrol. These extra steps may account for the lower product formation rates observed with STS than with CHS (Schroeder J., et al., Biochemistry 37:8417-8425, 1998). Alternatively, the cyclization reaction may use a tetraketide-CoA thioester reaction intermediate, and subsequent hydrolysis and decarboxylation in solution. - The identity of the residue or residues involved in modulating between the intramolecular Claisen condensation in CHS and the aldol condensation in STS remains equivocal. The known CHS and STS enzymes exhibit no consistent differences in the residues lining the active site, although sequence variability between the CHS and STS enzymes does occur in the solvent exposed residues of strands β1d (residues 253 to 259) and β2d (residues 262-268) lining the cyclization pocket (see
FIGS. 5 b and 5 c). Comparison of the naringenin and resveratrol complexes provides a possible explanation for modulation of the cyclization stereochemistry. - The cyclization pocket of CHS accommodates the newly cyclized ring of naringenin more easily than that of resveratrol. Strand β1d (residues 253 to 259) moves slightly to enlarge the cyclization pocket in the resveratrol complex compared to the naringenin complex. Two residues that consistently vary between CHS-like and STS-like enzymes, Asp255 and Leu268, move closer together in the resveratrol complex as β1d shifts position. Sequence variations of the solvent exposed residues of strands β1d and β2d may determine the conformation of the tetraketide intermediate before ring formation. Therefore, alterations in the surface topology of the cyclization pocket, mediated partially by the position of strand β1d, may affect the stereochemistry of the cyclization reaction and modulate product selectivity.
- Structural Basis for Functionally Novel CHS-Like Enzymes
- Absolute conservation of Cys164, Phe215, His303, and Asn336 occurs in CHS-like sequences, including several bacterial proteins possessing very low (typically 20-30%) amino acid sequence identity. Moreover, all CHS-like proteins exhibit strong conservation of residues shaping the geometry of the active site (Pro131, Gly163, Gly167, Leu214, Asp217, Gly262, Pro304, Gly305, Gly306, Gly335, Gly374, Pro375, and Gly376). Although the functions of the bacterial CHS-like proteins remain unknown, these enzymes likely form polyketides or polyketide-CoA thioesters in a manner resembling CHS. However, steric differences resulting from sequence variation in both the coumaroyl-binding pocket and the cyclization pocket strongly suggest alternate substrate and product specificity in the bacterial enzymes.
- The sequence databases include approximately 150 plant enzyme sequences classified as CHS like proteins. The substrate and product specificity of a majority of these sequences remains to be determined. In addition, the high sequence similarity of all plant sequences complicates classification of these sequences as authentic CHS, STS, ACS, or BBS enzymes. The information provided by the three-dimensional structure of CHS should make new substrate and product specificity more readily discernible from sequence information.
- To illustrate the usefulness of structural information in identifying potentially new activities, a CHS-related sequence from Gerbera hybrids (GCHS2)32 that is 74% identical with alfalfa CHS2 was examined. Modeling the active site architecture of GCHS2 using the structure of alfalfa CHS2 as a template indicates that GCHS2 will not catalyze either the CHS-like or STS-like reaction (see
FIG. 8 ). This variation in reaction specificity results from striking steric differences in the coumaroyl binding and cyclization pockets that substantially reduce the volume of both pockets from 923 Å3 in CHS to 269 Å3 in GCHS2, Side chain variation at positions 197 and 338 alter the coumaroyl binding pocket, while the identity of residue 256 dictates major steric changes in the cychzation pocket. The reduced size of these pockets in GCHS2 suggests that fewer than three acetate additions will occur, and that a CoA thioester with an acyl moiety smaller than p-coumaroyl initiates the reaction. Recent functional characterization of GCHS2 confirms this prediction and demonstrates that this enzyme uses acetyl-CoA or benzoyl-CoA and two condensation reactions with malonyl-CoA to form pyrone products (Eckermann, et al., Nature 396:397-396, 1998). - Crystallization of Additional Polyketide Synthases
- Stilbene synthase from Pinus strubus was overexpressed in E. coli as an octahistidyl N-terminal fusion protein, purified to >90% homogeneity by metal affinity and gel filtration chromatography, and crystallized in the preparation lacking the N-terminal polyhistidine tag (removed by thrombin cleavage) from 13% (w/v) polyethylene glycol (PEG8000), 0.05 M MOPSO, 0.3 M ammonium acetate at pH 7.0. This STS is 396 amino acids in length and, like alfalfa CHS exists as a homodimer in solution. A partial data set on a frozen crystal (!))K) has been collected to 2.7 Å. The crystals belong to space group C222 with unit cell dimensions of a=74.94 Å, b=86.63 Å, c=364.18 Å, α=β=γ=90°.
- 2-Pyrone synthase (2-PS) from Gerbera hybrida was expressed and purified from E. coli in a similar manner to CHS and STS. Crystals were obtained from 1.5 M ammonium sulfate. 011 M Na+-succinate, 0.002 M ITT at pH 5.5.
- 2-Pyrone synthase (2-PS) from Gerbera hybrida forms a triketide from an acetyl-CoA initiator and two acetyl-CoA α-carbanions derived from decarboxylation of two malonyl-CoAs that cyclizes into the 6-methyl-4-hydroxy-2-pyrone. In comparison, alfalfa chalcone synthase 2 (CHS2; 74% amino acid sequence identity to 2-PS), condenses p-coumaroyl-CoA and three acetyl-CoA α-carbanions derived from decarboxylation of three malonyl-CoAs into a tetraketide that cyclizes into chalcone. A homology model of 2-PS based on the structure of CHS suggested that the 2-PS initiation/elongation cavity is smaller than that of CHS. A smaller cavity would account for the terminal formation of a triketide intermediate prior to cyclization by 2-PS.
- Expression, Purification and Crystallization of 2-PS.
- 2-PS was expressed in E. coli, purified and crystallized as described above. Gerbera hybrida 2-PS was expressed in E. coli using the pHIS8 vector and was purified as described for CHS. 2-PS crystals grew at 4° C. in hanging-drops containing a 1:1 mixture of 25 mg ml−1 protein and crystallization buffer (1.5 M ammonium sulfate, 50 mM succinic acid (pH 5.5), and 5 mM DTT). Before freezing at 105 K, crystals (P3121; unit cell dimensions a=82.15 Å, c=241.33 Å; one 2-PS dimer per asymmetric unit) were stepped through stabilizer (50 mM succinic acid (pH 5.5), 50 mM ammonium sulfate, and 5 mM DTT) containing 5 mM acetoacetyl-CoA and increasing concentrations of glycerol (30% (v/v) final). Diffraction data were collected using a DIP2030 imaging plate system and CuK radiation produced by a rotating anode (wavelength 1.54 Å). All images were processed with DENZO/SCALEPACK (Z. Otwinowski, W. Minor, Methods Enzymol. 276:307 (1997)). A total of 179,623 reflections were merged to give 60,824 unique reflections (98.2% complete overall to 2.05 Å and 98.1% complete in the highest resolution shell) with an Rsym=0.042 (0.206 in the highest resolution shell) and an I/_of 21.7 (4.5 in the highest resolution shell). The structure of 2-PS complexed with acetoacetyl-CoA was determined by molecular replacement using CHS as a search model and was refined to 2.05 Å resolution. The overall fold of 2-PS is the cicada motif found in CHS and O-ketoacyl synthase II (KAS II). In addition, the positions of the catalytic residues of 2-PS (Cys169, His30, and Asn341), CHS (Cys163, His303, Asn336), and KAS II (Cys163, His303, and His340) are structurally analogous. As expected from sequence homology, the structures of 2-PS and CHS are nearly identical and superimpose with a r.m.s. deviation of 0.64 Å for the two proteins' α-carbon atoms. Similar to CHS, the 2-PS dimerization surface buries 1805 Å2 of surface area per monomer and a loop containing a cis-peptide bond between Met142 and Pro143 allows the methionine of one monomer to protrude into the adjoining monomer's active site. Thus, dimerization allows formation of the complete 2-PS active site.
- Acetoacetyl-CoA is a reaction intermediate of 2-PS. Electron density for the ligand is well defined in the 2-PS active site and shows that the acetoacetyl moiety extends from the CoA pantetheine arm into a large internal cavity. The electron density also reveals oxidation of the catalytic cysteine's (Cys169) sulfhydryl to sulfinic acid (—SO2H). This oxidation state prevents formation of a covalent acetoacetyl-enzyme complex but allows trapping of the bound acetoacetyl-CoA intermediate. Extensive protein-ligand contacts position CoA at the entrance to the active site and orient the acetoacetyl moiety at the end of a 15 Å long tunnel that opens into a cavity that defines the initiation and elongation steps of polyketide formation.
- The 2-PS active site cavity consists of twenty-seven residues from one monomer and Met142 from the adjoining monomer. Phe220 and Phe270 mark the boundary between the CoA binding site and the initiation/elongation cavity. Near the CoA thioester, Cys169, His308, and Asn341 form the catalytic center of 2-PS. These residues are conserved in all homodimeric iterative PKSs. Based on this, catalytic roles were proposed for each residue that are analogous to the corresponding residues in CHS. Cys169 acts as the nucleophile in the reaction and as the attachment site for the elongating polyketide chain. Interaction between His308 and Cys169 maintains the thiolate required for condensation of the starter molecule. His308 and Asn341 catalyze malonyl-CoA decarboxylation and stabilize the transition states during the condensation steps by forming an oxyanion hole that accommodates the negatively charged tetravalent transition state. Following the first condensation reaction, a diketide remains attached to Cys169. The second malonyl-CoA then binds, undergoes decarboxylation, and the resulting nucleophilic acetyl-coA α-carbanion performs a second condensation reaction with the enzyme bound diketide, ultimately generating the triketide that cyclizes into methylpyrone.
- Comparison of the initiation/elongation cavities of 2-PS and CHS reveal four amino acid differences. In 2-PS, Leu202, Met259, Leu261, and Ile343 replace Thr197, Ile254, Gly256, and Ser338, respectively, of CHS. These four substitutions reduce cavity volume from 923 Å3 in CHS to 274 Å3 in 2-PS. A model of methylpyrone in the 2-PS cavity, based on the position of acetoacetyl-CoA, emphasizes the volume change compared to the CHS-naringenin complex (Accession No. 1CGK). Leu202 and Ile343 occlude the portion of the 2-PS cavity corresponding to the coumaroyl-binding site of CHS. Replacement of Gly256 in CHS by Leu261, in 2-PS severely reduces the size of the active site cavity. Substitution of Met259 in 2-PS for Ile254 in CHS produces a modest alteration in cavity volume. To examine the functional importance of these amino acid differences, the initiation elongation cavity of CHS was altered by mutagenesis to resemble that of 2-PS. The resulting mutant proteins were screened for activity using either p-coumaroyl-CoA or acetyl-CoA as starter molecules. Activities of 2-PS, CHS, and the CHS mutants were determined by monitoring product formation using a TLC-based radiometric assay. Assay conditions were 100 mM Hepes (pH 7.0), 30 μM starter-CoA (either p-coumaroyl-CoA or acetyl-CoA), and 60 μM [14C]-malonyl-CoA (50,000 cpm) in 100 μl at 25° C. Reactions were quenched with 5% acetic acid, extracted with ethyl acetate, and applied to TLC plates and developed. Due to the spontaneous cyclization of chalcone into the flavanone naringenin, activities of CHS are referenced to naringenin formation.
- The x-ray crystal structures of 2-PS and CHS imply that the size of the active site cavity limits polyketide length and modulates folding of the polyketide chain. Wild-type CHS venerates the tetraketide chalcone and 2-PS produces the triketide methylpyrone. Likewise, the CHS I254M mutant also yields chalcone. Interestingly, the T197L, G256L, and S338I mutants do not form chalcone. Crystallographic analysis of the G256L and S338I mutants demonstrates that the substituted side-chains adopt conformations similar to the corresponding residues in 2-PS without altering the position of the protein backbone. Since the T197L, G256L, and S338I mutants altered product formation, a CHS triple mutant was generated. Consistent with the proposal that cavity volume dictates polyketide length, the T197L/G256L/S338I mutant produces only methylpyrone, as confirmed by liquid chromatography/mass spectroscopy (LC/MS). LC/MS/MS analysis was performed by the Mass Spectroscopy facility of the Scripps Research Institute. Scaled-up assays (2 ml reaction volume) with the CHS T197L/G256L/S338I mutant and 2-PS were performed. Extracts were analyzed on a Hewlett-Packard HP1100 MSD single quadrupole mass spectrometer coupled to a Zorbax SB-C18 column (5 μm, 2.1 mm×150 mm). HPLC conditions were as follows: gradient system from 0 to 100% methanol in water (each containing 0.2% acetic acid) within 10 min; flow rate 0.25 ml min−1. LC/MS/MS data from both reactions were identical: 6-methyl-4-hydroxy-2-pyrone, Rt=5.068 min; [M-H]− 125 (41); [M-H—CO2]− 81 (100). The numbers show m/z values with relative intensities in parenthesis. The observed fragmentation matches previously published data.
- In addition, the size of the cavity in 2-PS and CHS confers starter molecule specificity. 2-PS accepts acetyl-CoA but does not use p-coumaroyl-CoA. Structurally, the constricted 2-PS active site excludes the bulky coumaroyl group. As such, incubation of 2-PS in the presence of coumaroyl-CoA and malonyl-CoA yields methylpyrone produced from three malonyl-CoA molecules. In comparison, the larger initiation/elongation cavity of CHS allows for different sized aliphatic and aromatic starter molecules to be used in vitro with varying efficiencies. CHS exhibits a 230-fold preference for p-coumaroyl-CoA versus acetyl-CoA. Alterations in the active site cavity of CHS, affect starter molecule preference. The CHS I254M mutant is functionally comparable to wild-type enzyme with a modest reduction in specific activity. The T197L and S338I mutants exhibit 10-fold and 3-fold preferences, respectively, for coumaroyl-CoA. Moreover, both form a distinct product using coumaroyl-CoA as a starter molecule. In contrast, the G256L mutant favors acetyl-CoA 3-fold. Like 2-PS, the CHS T197L/G256L/S338I (3×) mutant only accepts acetyl-CoA (or malonyl-CoA) as the starter molecule.
- Functional diversity among other homodimeric iterative PKSs, like p-coumaroyltriacetic acid synthase (CTAS), acridone synthase (ACS), and the rppA protein from Streptomyces griseus, likely results from variations of residues lining the initiation/elongation cavity. As demonstrated, positions 197, 256, and 338 distinguish between tetraketide products derived from a final Claisen condensation in wild-type CHS and triketide products derived from an enolate-directed condensation in the CHS triple mutant. Although CHS, CTAS, and ACS generate tetraketides, each enzyme differs in either the cyclization reaction or in the identity of the starter molecule. CTAS forms the same enzyme-bound tetraketide as CHS but does not catalyze the final cyclization reaction. Comparison of these two enzymes reveals that substitution of Thr 197 in CHS with an asparagine in CTAS may prevent the covalently-bound tetraketide intermediate from undergoing cyclization into chalcone. ACS uses N-methylanthranoyl-CoA as a starting substrate to produce the alkaloid acridone. Three differences between CHS (Thr132, Ser133, and Phe265) and ACS (Ser132, Ala133, and Val265) may alter starter molecule specificity. In ACS, these changes likely widen the portion of the cavity corresponding to the p-coumaroyl-binding site in CHS to accommodate N-methylanthranoyl-CoA binding. Comparative changes in the active site cavity allow formation of longer polyketides. The rppA protein forms a pentaketide from five acetates derived from malonyl-CoA decarboxylation. Thr137, Ala138, Thr199, Leu202, Met259, Leu261, Leu268, Pro304, and Ile343 of 2-PS are replaced by Cys106, Thr107, Cys168, Cys171, Ile228, Tyr230, Phe237, Ala261, and Ala295, respectively, in the rppA protein. Models of the rppA protein based on the 2-PS and CHS structures show that cavity volume is 1145 Å3 in the rppA protein versus 274 Å3 in 2-PS (or 923 Å in CHS). Manipulation of the active site through amino acid substitutions offers a strategy for increasing the molecular diversity of polyketide formation through both the choice of starter molecule and the number of subsequent condensation steps.
- The reaction mechanism for polyketide formation and the structural basis for controlling polyketide length described here may be shared with other more complex iterative (e.g., actinorhodin (act) PKS and tetracenomycin (tcm) PKS) and modular PKSs (e.g., 6-deoxyerythronolide B synthase (DEBS)). The structural similarity of the 2-PS, CHS, and KAS II active sites, the sequence homology of KAS II and the ketosynthases of act PKS, tcm PKS, and DEBS, and mutagenesis studies of CHS and act PKS demonstrating similar roles for the catalytic residues of each protein indicate that a conserved active site architecture catalyzes similar reactions in these enzymes.
- As in 2-PS and CHS, the volume of the active site cavities in other PKSs likely limits the size of the final polyketide. For example, act PKS and tcm PKS generate octaketide and decaketide products, respectively, at a single active site. This suggests that the active site cavities of these PKSs differ in size, and are larger than those of 2-PS or CHS. Similarly, the ketosynthases of different DEBS modules accept polyketide intermediates ranging in length from five to twelve carbons. Modular PKSs, like DEBS, use an assembly-line system in which an individual module catalyzes one elongation reaction and passes the growing polyketide to the next module. Although the ketosynthase domains of DEBS are functionally permissive, modulation of active site volume in each module's ketosynthase would provide selectivity for the proper sized intermediate at each elongation step. Structural differences among PKSs alter the volume of the initiation/elongation cavity to allow discrimination between starter molecules and to vary the number of elongation steps to ultimately direct the nature and length of the polyketide product.
- While the foregoing has been presented with reference to particular embodiments of the invention, it will be appreciated by those skilled in the art that changes in these embodiments may be made without departing from the principles and spirit of the invention, the scope of which is defined by the appended claims.
Claims (20)
1. A nucleic acid encoding a polyketide synthase comprising at least fourteen active site α-carbons having the structural coordinates of Table 1.
2. The nucleic acid of claim 1 , wherein the amino acid located at position 164 is alanine or serine.
3. The nucleic acid of claim 1 , wherein the amino acid located at position 303 is alanine, asparagine, glutamine, aspartic acid, or threonine.
4. The nucleic acid of claim 1 , wherein the amino acid located at position 336 is a lysine, alanine, aspartic acid, glutamine, or histidine.
5. The nucleic acid of claim 1 , wherein the amino acid located at position 215 is serine, tyrosine, or tryptophan.
6. The nucleic acid of claim 1 , wherein the polyketide synthase has atomic coordinates as set forth in PDB Accession Nos: 1BI5, 1 BQ6, 1CML, 1CHW, 1CGK, 1CGZ, 1D6F, 1D6I, or 1D6H.
7. An isolated polyketide synthase encoded by the nucleic acid of claim 1 .
8. An isolated polyketide synthase encoded by the nucleic acid of claim 2 .
9. An isolated polyketide synthase encoded by the nucleic acid of claim 3 .
10. An isolated polyketide synthase encoded by the nucleic acid of claim 4 .
11. An isolated polyketide synthase encoded by the nucleic acid of claim 5 .
12. An isolated polyketide synthase encoded by the nucleic acid of claim 6 .
13. A method of identifying a potential substrate of a polyketide synthase according to claim 7 , said method comprising:
(a) defining the active site of said polyketide synthase based on a plurality of atomic coordinates of said polyketide synthase,
(b) identifying a potential substrate that fits the active site of (a) with the polyketide synthase, and
(c) contacting the polyketide synthase with the potential substrate and determining its activity thereon.
14. The method of claim 13 , wherein the polyketide synthase is chalcone synthase, stilbene synthase, or pyrone synthase.
15. The method of claim 13 , wherein the polyketide synthase is a mutant of a known polyketide synthase selected from chalcone synthase, stilbene synthase, or pyrone synthase.
16. The method of claim 13 , wherein the plurality of atomic coordinates are as set forth in PDB Accession Nos: 1BI5, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, 1D6F, 1D6I, 1D6H, or portions thereof.
17. A method of identifying a potential inhibitor of a polyketide synthase according to claim 7 , said method comprising:
(a) defining the active site of said polyketide synthase based on a plurality of atomic coordinates of said polyketide synthase,
(b) contacting a potential compound that fits the active site of (a) with the polyketide synthase in the presence of a substrate, and
(c) determining the ability of said compound to inhibit the activity of said polyketide synthase on said substrate.
18. The method of claim 17 , wherein the polyketide synthase is chalcone synthase, stilbene synthase, or pyrone synthase.
19. The method of claim 17 , wherein the polyketide synthase is a mutant of a known polyketide synthase selected from chalcone synthase, stilbene synthase, or pyrone synthase.
20. The method of claim 17 , wherein the plurality of atomic coordinates are as set forth in PDB Accession Nos: 1BI5, 1BQ6, 1CML, 1CHW, 1CGK, 1CGZ, 1D6F, 1D6I, 1D6H, or portions thereof.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/748,424 US20070298438A1 (en) | 1999-07-27 | 2007-05-14 | Methods and compositions for determining enzymatic activity |
US12/690,079 US20100317030A1 (en) | 1999-07-27 | 2010-01-19 | Methods and compositions for determining enzymatic activity |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14589899P | 1999-07-27 | 1999-07-27 | |
PCT/US2000/020674 WO2001007579A2 (en) | 1999-07-27 | 2000-07-27 | Methods and compositions for determining enzymatic activity |
US3191802A | 2002-09-24 | 2002-09-24 | |
US11/748,424 US20070298438A1 (en) | 1999-07-27 | 2007-05-14 | Methods and compositions for determining enzymatic activity |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/020674 Division WO2001007579A2 (en) | 1999-07-27 | 2000-07-27 | Methods and compositions for determining enzymatic activity |
US3191802A Division | 1999-07-27 | 2002-09-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/690,079 Division US20100317030A1 (en) | 1999-07-27 | 2010-01-19 | Methods and compositions for determining enzymatic activity |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070298438A1 true US20070298438A1 (en) | 2007-12-27 |
Family
ID=22515032
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/031,918 Expired - Lifetime US7217557B1 (en) | 1999-07-27 | 2000-07-27 | Three-dimensional structure of polyketide synthases |
US11/748,424 Abandoned US20070298438A1 (en) | 1999-07-27 | 2007-05-14 | Methods and compositions for determining enzymatic activity |
US12/690,079 Abandoned US20100317030A1 (en) | 1999-07-27 | 2010-01-19 | Methods and compositions for determining enzymatic activity |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/031,918 Expired - Lifetime US7217557B1 (en) | 1999-07-27 | 2000-07-27 | Three-dimensional structure of polyketide synthases |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/690,079 Abandoned US20100317030A1 (en) | 1999-07-27 | 2010-01-19 | Methods and compositions for determining enzymatic activity |
Country Status (3)
Country | Link |
---|---|
US (3) | US7217557B1 (en) |
AU (1) | AU6500600A (en) |
WO (1) | WO2001007579A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001007579A2 (en) | 1999-07-27 | 2001-02-01 | The Salk Institute For Biological Studies | Methods and compositions for determining enzymatic activity |
US7792645B2 (en) | 2000-08-30 | 2010-09-07 | The Salk Institute For Biological Studies | Three-dimensional structure of chalcone isomerase and methods of use thereof |
US7384759B2 (en) | 2000-12-11 | 2008-06-10 | The Salk Institute For Biological Studies | Methods and compositions for determinig enzymatic activity and specificity of chalcone O-methyltransferases |
AU2002245133A1 (en) | 2000-12-15 | 2002-07-30 | The Salk Institute For Biological Studies | Methods of producing polyketide synthase mutants and compositions and uses thereof |
JP4694966B2 (en) | 2002-07-30 | 2011-06-08 | ジェネンコー・インターナショナル・インク | Formulations that reduce aerosol production |
JP3734463B2 (en) * | 2002-08-09 | 2006-01-11 | 錦湖石油化學株式會▲社▼ | Gene sequence encoding dominant negative chalcone synthase and use thereof |
US8993714B2 (en) * | 2007-10-26 | 2015-03-31 | Imiplex Llc | Streptavidin macromolecular adaptor and complexes thereof |
US9102526B2 (en) | 2008-08-12 | 2015-08-11 | Imiplex Llc | Node polypeptides for nanostructure assembly |
US9285363B2 (en) | 2009-05-11 | 2016-03-15 | Imiplex Llc | Method of protein nanostructure fabrication |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5712146A (en) * | 1993-09-20 | 1998-01-27 | The Leland Stanford Junior University | Recombinant combinatorial genetic library for the production of novel polyketides |
WO2001007579A2 (en) | 1999-07-27 | 2001-02-01 | The Salk Institute For Biological Studies | Methods and compositions for determining enzymatic activity |
-
2000
- 2000-07-27 WO PCT/US2000/020674 patent/WO2001007579A2/en active Application Filing
- 2000-07-27 AU AU65006/00A patent/AU6500600A/en not_active Abandoned
- 2000-07-27 US US10/031,918 patent/US7217557B1/en not_active Expired - Lifetime
-
2007
- 2007-05-14 US US11/748,424 patent/US20070298438A1/en not_active Abandoned
-
2010
- 2010-01-19 US US12/690,079 patent/US20100317030A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US7217557B1 (en) | 2007-05-15 |
WO2001007579A2 (en) | 2001-02-01 |
WO2001007579A3 (en) | 2001-08-16 |
US20100317030A1 (en) | 2010-12-16 |
AU6500600A (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100317030A1 (en) | Methods and compositions for determining enzymatic activity | |
US20120096581A1 (en) | Methods of producing polyketide synthase mutants and compositions and uses thereof | |
Ferrer et al. | Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis | |
AU2004242423B2 (en) | Synthases | |
US7361483B2 (en) | Aromatic prenyltransferases, nucleic acids encoding same and uses therefor | |
US20090011400A1 (en) | Substrate switched ammonia lyases and mutases | |
Yang et al. | Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa | |
US20090062286A1 (en) | Crystal Structure of SMYD3 Protein | |
WO2004063715A2 (en) | Methods of using crystal structure of carboxyltransferase domain of acetyl-coa carboxylase, modulators thereof, and computer methods | |
US8002891B2 (en) | Crystallization of C-Jun N-Terminal Kinase 3 (JNK3) | |
US10745674B2 (en) | Polyketide synthase variants and uses thereof | |
US8247205B2 (en) | Chalcone isomerase polypeptides and crystals thereof | |
WO2004090106A2 (en) | Crystal structures of human pim-1 kinase protein complexes and binding pockets thereof, and uses thereof in drug design | |
CA2352036A1 (en) | Crystal structure of antibiotics bound to the 30s ribosome and its use | |
US7966133B2 (en) | Method of identifying a potential substrates of an O-methyltransferase | |
WO1999057253A2 (en) | Crystallizable jnk complexes | |
US7444273B1 (en) | Crystallization of aurora/LPL1P-related kinase | |
US7076372B1 (en) | Crystal structure of MvaS | |
WO2005007842A2 (en) | Crystal structure of cdp-me kinase and antimicrobal target | |
JP2003505014A (en) | Novel FabH enzyme, composition capable of binding to the enzyme, and method of using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SALK INSTITUTE FOR BIOLOGICAL STUDIES;REEL/FRAME:035233/0564 Effective date: 20150310 |