US20070295085A1 - Liquid Level and Density Measurement Device - Google Patents
Liquid Level and Density Measurement Device Download PDFInfo
- Publication number
- US20070295085A1 US20070295085A1 US11/842,695 US84269507A US2007295085A1 US 20070295085 A1 US20070295085 A1 US 20070295085A1 US 84269507 A US84269507 A US 84269507A US 2007295085 A1 US2007295085 A1 US 2007295085A1
- Authority
- US
- United States
- Prior art keywords
- liquid
- float
- density
- transducer
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/76—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats characterised by the construction of the float
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/64—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
- G01F23/72—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
- G01N9/10—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials
- G01N9/12—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials by observing the depth of immersion of the bodies, e.g. hydrometers
Definitions
- This invention relates to a device for measuring the level and density of a liquid in a tank, such as an underground petroleum storage tank.
- Magnetostrictive transducers are widely used for the liquid level measurement. See, for example, Koski et al., U.S. Pat. No. 4,839,590.
- Koski et al. discloses a measurement device for precision measurement of a liquid level in an underground storage tank that, in combination with a temperature measurement, allows detecting very small leaks from the tank. There is also a need for an accurate product density measurement in the same containers where the level is being measured.
- a widely known method of density measurement is based on the hydrostatic principle that the weight loss of an object in a liquid equals the weight of the liquid displaced.
- the method is used in hydrometers where a relatively large weighted lower portion of a body is completely immersed into a liquid and a tall narrow upper section with a scale sticks out above the surface.
- the immersion depth of the hydrometer is in an inverse proportion to the liquid density.
- the hydrometer will float higher in a heavy liquid and lower in a light liquid.
- the sensitivity of the hydrometer is in an inverse proportion with a cross section of the upper section. The narrower this part is, the more sensitive the hydrometer is.
- the measurement range of the hydrometer is in direct proportion with the height of upper part. The taller that part is, the larger measurement range is.
- the level measurement float is relatively less sensitive to liquid density variation and the liquid density float 17 is relatively more sensitive to liquid density variation.
- the liquid density float 17 is made in the form of an immersed cylinder 16 and four narrow vertical rods 15 that are located on top of the cylinder around its perimeter and extend above the surface. In essence, it is a group of four hydrometers connected together.
- the diameter of the density float 17 should be large enough to allow the liquid level float to freely move between the rods 15 .
- shape of the density measurement float allows minimizing its diameter. This is achieved by making the upper part of the density float substantially in the form of a hollow cylinder with an external diameter smaller than the opening diameter of the tank and an internal diameter larger than external diameter of the level float.
- FIGS. 1 a , 1 b and 1 c are respective top, side and perspective views of a prior art liquid density measurement device.
- FIGS. 2 a , 2 b and 2 c are respective top, side and perspective views of a density float of the liquid level and density measurement device according to the invention.
- FIGS. 3 a and 3 b are side sectional views of the liquid level and density measurement device of FIGS. 2 a and 2 b , illustrating the float positions in liquids of different densities.
- a liquid level and density measurement device, generally designated 20 is illustrated in FIGS. 2 a , 2 b , 2 c , 3 a and 3 b .
- the liquid level and density measurement device 20 comprises a conventional, elongated magnetostrictive transducer 21 and first and second transducer magnets 24 a and 24 b .
- the first transducer magnet 24 a is embedded into a liquid density float 22 , which is relatively more sensitive to liquid density variations.
- the second transducer magnet 24 b is embedded in a liquid level float 23 , which is relatively less sensitive to liquid density variations.
- the floats 22 , 23 can freely move along the transducer 21 .
- the liquid level float 23 is used for liquid level measurement, and the liquid density 22 is used for liquid density measurement.
- the liquid density float 22 has a lower part 26 completely immersed into a liquid 28 and an upper part 30 partially immersed into the liquid 28 .
- the upper part 30 is made substantially in the form of a hollow cylinder, with an internal diameter defining a cavity 30 a .
- the internal diameter of the cavity 30 a is dimensioned larger than the external diameter of the liquid level float 23 . Therefore the liquid density float 22 can move up and down without touching the liquid level float 23 .
- the liquid density float 22 is shown in a relatively more dense liquid in FIG. 3 a and in a relatively less dense liquid in FIG. 3 b .
- the difference in height “d” is indicative of the relative difference of the densities of the two liquids.
- the liquid density float 22 preferably is made of a low density material with a ballast at the bottom.
- the lower part 26 preferably has a diameter of approximately 95 mm.
- the upper part preferably has an outer diameter of 95 mm and an inner diameter of approximately 72 mm.
- the liquid level float is preferably made of a low density material. It has a diameter preferably of approximately 72 mm.
- Openings 34 are provided through the upper part 30 to permit fluid to flow into the cavity 30 a.
- the generally cylindrical upper part 30 of the liquid density float 22 has circumferentially more mass than does the prior art liquid density float, its diameter can be reduced to permit insertion through a typical four inch tank opening.
- the upper part 30 of the liquid density float 22 may be other than cylindrical. For example it may have a taper due to its formation during a molding process.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Level Indicators Using A Float (AREA)
Abstract
A liquid level and density measurement device is disclosed. The device comprises an elongated magnetostrictive transducer and at least two transducer magnets embedded into floats that can freely move along a transducer. One float is relatively more sensitive to liquid density variation than the other float. The less sensitive float is used for liquid level measurement and the more sensitive float is used for liquid density measurement. The liquid density float has a lower part completely immersed into a liquid and an upper part partially immersed into a liquid. The upper part is made substantially in the form of a hollow cylinder with an internal diameter larger than the external diameter of the liquid level float. Therefore the liquid density float can move up and down without touching the liquid level float.
Description
- This invention relates to a device for measuring the level and density of a liquid in a tank, such as an underground petroleum storage tank.
- Magnetostrictive transducers are widely used for the liquid level measurement. See, for example, Koski et al., U.S. Pat. No. 4,839,590. Koski et al., discloses a measurement device for precision measurement of a liquid level in an underground storage tank that, in combination with a temperature measurement, allows detecting very small leaks from the tank. There is also a need for an accurate product density measurement in the same containers where the level is being measured.
- A widely known method of density measurement is based on the hydrostatic principle that the weight loss of an object in a liquid equals the weight of the liquid displaced. The method is used in hydrometers where a relatively large weighted lower portion of a body is completely immersed into a liquid and a tall narrow upper section with a scale sticks out above the surface. The immersion depth of the hydrometer is in an inverse proportion to the liquid density. The hydrometer will float higher in a heavy liquid and lower in a light liquid. The sensitivity of the hydrometer is in an inverse proportion with a cross section of the upper section. The narrower this part is, the more sensitive the hydrometer is. The measurement range of the hydrometer is in direct proportion with the height of upper part. The taller that part is, the larger measurement range is.
- There are also devices that combine level and density measurement in one magnetostrictive transducer. See, for example, Nyce et al., U.S. Pat. No. 5,253,522, and Russian patent RU 2138028.
- The device disclosed in the Russian patent, and as generally illustrated in
FIGS. 1 a, 1 b and 1 c, includes aliquid density float 17, and a liquid level measurement float (not shown). The level measurement float is relatively less sensitive to liquid density variation and theliquid density float 17 is relatively more sensitive to liquid density variation. Theliquid density float 17 is made in the form of animmersed cylinder 16 and four narrowvertical rods 15 that are located on top of the cylinder around its perimeter and extend above the surface. In essence, it is a group of four hydrometers connected together. The diameter of thedensity float 17 should be large enough to allow the liquid level float to freely move between therods 15. - Size is one drawback of such a device. As discussed above, magnetostrictive transducers are widely used for leak detection in underground tanks. Such leak detection requires reliable measurement of very small changes of the liquid level, in the range of 0.001 inches (0.025 mm) or less. To achieve this type of resolution, the float for the level measurement should be heavy enough and therefore large enough to overcome the friction between the float and the body of the transducer, otherwise an effect known as “stiction” can mask a leak. At the same time, standard openings in the tanks for the transducer installation are typically four inches (100 mm) in diameter or less, which limits the permitted diameter of the float. To increase the tank opening size would be expensive.
- To be able to combine level and density measurement into one transducer installed into a standard tank opening, without compromising leak detection capabilities, requires a density float to take as small portion of the opening diameter as possible and leave sufficient room for the level float.
- In accordance with the invention, shape of the density measurement float allows minimizing its diameter. This is achieved by making the upper part of the density float substantially in the form of a hollow cylinder with an external diameter smaller than the opening diameter of the tank and an internal diameter larger than external diameter of the level float.
-
FIGS. 1 a, 1 b and 1 c are respective top, side and perspective views of a prior art liquid density measurement device. -
FIGS. 2 a, 2 b and 2 c are respective top, side and perspective views of a density float of the liquid level and density measurement device according to the invention. -
FIGS. 3 a and 3 b are side sectional views of the liquid level and density measurement device ofFIGS. 2 a and 2 b, illustrating the float positions in liquids of different densities. - While this invention is susceptible of embodiment in many different forms, there will be described herein in detail, a specific embodiment thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiment illustrated.
- A liquid level and density measurement device, generally designated 20, is illustrated in
FIGS. 2 a, 2 b, 2 c, 3 a and 3 b. The liquid level anddensity measurement device 20 comprises a conventional, elongatedmagnetostrictive transducer 21 and first andsecond transducer magnets first transducer magnet 24 a is embedded into aliquid density float 22, which is relatively more sensitive to liquid density variations. Thesecond transducer magnet 24 b is embedded in aliquid level float 23, which is relatively less sensitive to liquid density variations. Thefloats transducer 21. Theliquid level float 23 is used for liquid level measurement, and theliquid density 22 is used for liquid density measurement. - The
liquid density float 22 has alower part 26 completely immersed into a liquid 28 and anupper part 30 partially immersed into the liquid 28. Theupper part 30 is made substantially in the form of a hollow cylinder, with an internal diameter defining acavity 30 a. The internal diameter of thecavity 30 a is dimensioned larger than the external diameter of theliquid level float 23. Therefore theliquid density float 22 can move up and down without touching theliquid level float 23. - The
liquid density float 22 is shown in a relatively more dense liquid inFIG. 3 a and in a relatively less dense liquid inFIG. 3 b. The difference in height “d” is indicative of the relative difference of the densities of the two liquids. - The
liquid density float 22 preferably is made of a low density material with a ballast at the bottom. Thelower part 26 preferably has a diameter of approximately 95 mm. The upper part preferably has an outer diameter of 95 mm and an inner diameter of approximately 72 mm. - The liquid level float is preferably made of a low density material. It has a diameter preferably of approximately 72 mm.
-
Openings 34 are provided through theupper part 30 to permit fluid to flow into thecavity 30 a. - Because the generally cylindrical
upper part 30 of theliquid density float 22 has circumferentially more mass than does the prior art liquid density float, its diameter can be reduced to permit insertion through a typical four inch tank opening. - The
upper part 30 of theliquid density float 22 may be other than cylindrical. For example it may have a taper due to its formation during a molding process. - From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the Claims.
Claims (8)
1. A device for placement in a tank of liquid for determining the level and density of the liquid in the tank, the device comprising:
a liquid density sensing float having a lower base portion and an upper portion extending substantially continuously about a periphery of the base portion and defining a cavity;
a liquid level sensing float disposed in the cavity; and
circuitry for determining the height of the density sensing float and the level sensing float.
2. The device of claim 1 wherein the density sensing float and the level sensing float include a magnet and the circuitry includes a magnetostrictive transducer.
3. The device of claim 2 wherein the density sensing float and the level sensing float include an aperture to slidably receive the magnetostrictive transducer.
4. The device of claim 1 wherein the density sensing float is dimensioned to fit through a four inch opening into the tank.
5. The device of claim 1 wherein the upper portion is substantially cylindrical.
6. A device for placement in an underground liquid storage tank, the device to determine the level and density of liquid in the tank, the device comprising:
a magnetostrictive transducer to be generally vertically disposed in the tank;
a liquid density sensing float having a lower base portion and a generally cylindrical upper portion extending substantially continuously about a periphery of the base portion and defining a cavity, wherein the density sensing float includes a magnet and the base portion has a bore to slidably receive the transducer;
a liquid level sensing float slidably disposed in the cavity and having a bore to slidably receive the transducer, wherein the level sensing float includes a magnet; and
circuitry coupled to the transducer for determining the position of the magnets relative to the transducer.
7. A system for measuring the height and density of a liquid comprising:
an underground storage tank containing the liquid and having a nominally four inch opening;
a magnetostrictive transducer generally vertically disposed in the tank;
a liquid density sensing float having a lower base portion and a generally cylindrical upper portion extending substantially continuously about a periphery of the base portion and defining a cavity, wherein the density sensing float includes a magnet and the base portion has a bore slidably receiving the transducer;
a liquid level sensing float slidably disposed in the cavity and having a bore slidably receiving the transducer, wherein the level sensing float includes a magnet; and
circuitry coupled to the transducer for determining the position of the magnets relative to the transducer.
8. A liquid level and density measurement device comprising an elongated magnetostrictive transducer and at least two transducer magnets embedded into a liquid density float and a liquid level float and spaced along a transducer, wherein the liquid density float is more sensitive to liquid density variations than the liquid level float, and the liquid density float has a lower part completely immersed into a liquid wherein the improvement comprises:
an upper part of the liquid density float partially immersed into the liquid is made substantially in the form of hollow cylinder with an internal diameter larger than the external diameter of the liquid level float.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/842,695 US20070295085A1 (en) | 2006-06-22 | 2007-08-21 | Liquid Level and Density Measurement Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/472,897 US7278311B1 (en) | 2006-01-05 | 2006-06-22 | Liquid level and density measurement device |
US11/842,695 US20070295085A1 (en) | 2006-06-22 | 2007-08-21 | Liquid Level and Density Measurement Device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/472,897 Continuation US7278311B1 (en) | 2006-01-05 | 2006-06-22 | Liquid level and density measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070295085A1 true US20070295085A1 (en) | 2007-12-27 |
Family
ID=38562020
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/472,897 Active US7278311B1 (en) | 2006-01-05 | 2006-06-22 | Liquid level and density measurement device |
US11/842,695 Abandoned US20070295085A1 (en) | 2006-06-22 | 2007-08-21 | Liquid Level and Density Measurement Device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/472,897 Active US7278311B1 (en) | 2006-01-05 | 2006-06-22 | Liquid level and density measurement device |
Country Status (1)
Country | Link |
---|---|
US (2) | US7278311B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060266113A1 (en) * | 2005-05-31 | 2006-11-30 | Veeder-Root Company | Fuel density measuring device, system, and method using magnetostrictive probe bouyancy |
US20110187529A1 (en) * | 2008-09-18 | 2011-08-04 | Fafnir Gmbh | Method for monitoring the quality of a fuel comprising alcohol in a storage tank |
CN103954531A (en) * | 2014-05-21 | 2014-07-30 | 范明军 | Device for driving density measurement part to move up and down |
US20150259100A1 (en) * | 2014-03-11 | 2015-09-17 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device for indicating the filling level of a container |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2196781B1 (en) | 2008-12-11 | 2011-10-05 | FAFNIR GmbH | Device and procedure to determine the density of a liquid |
US8539828B2 (en) * | 2009-01-06 | 2013-09-24 | Veeder-Root Company | Magnetostrictive liquid density detector |
US8878682B2 (en) | 2009-10-16 | 2014-11-04 | Franklin Fueling Systems, Inc. | Method and apparatus for detection of phase separation in storage tanks using a float sensor |
US8656774B2 (en) * | 2009-11-24 | 2014-02-25 | Veeder-Root Company | Phase separation detector for fuel storage tank |
US8601867B2 (en) * | 2010-07-26 | 2013-12-10 | Veeder-Root Company | Magnetostrictive probe having phase separation float assembly |
GB201106405D0 (en) * | 2011-04-15 | 2011-06-01 | Rolls Royce Plc | Inspection of pipe interior |
GB201106404D0 (en) | 2011-04-15 | 2011-06-01 | Rolls Royce Plc | Determination of pipe internal cross sectional area |
US9037423B2 (en) * | 2013-01-22 | 2015-05-19 | Ambroise Prinstil | Fuel storage tank water detector with triggered density |
US10288469B2 (en) | 2013-03-12 | 2019-05-14 | Franklin Fueling Systems, Llc | Magnetostrictive transducer |
WO2021252953A1 (en) | 2020-06-11 | 2021-12-16 | Franklin Fueling Systems, Llc | Fuel/water separator probe |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155254A (en) * | 1977-11-21 | 1979-05-22 | Kaiser Aerospace & Electronics Corp. | Volume and density indicator system for liquids in tanks |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1169028B (en) | 1981-01-29 | 1987-05-20 | Cise Spa | FLOATING EQUIPMENT FOR DIFFERENTIAL LEVEL MEASUREMENT |
US4839590A (en) | 1987-09-24 | 1989-06-13 | Magnetek Controls | Piezoelectric actuator for magnetostrictive linear displacement measuring device |
US5253522A (en) | 1991-07-11 | 1993-10-19 | Mts Systems Corporation | Apparatus for determining fluid level and fluid density |
RU2138028C1 (en) | 1998-08-05 | 1999-09-20 | Зао "Нтф Новинтех" | Device measuring level and density |
-
2006
- 2006-06-22 US US11/472,897 patent/US7278311B1/en active Active
-
2007
- 2007-08-21 US US11/842,695 patent/US20070295085A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155254A (en) * | 1977-11-21 | 1979-05-22 | Kaiser Aerospace & Electronics Corp. | Volume and density indicator system for liquids in tanks |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060266113A1 (en) * | 2005-05-31 | 2006-11-30 | Veeder-Root Company | Fuel density measuring device, system, and method using magnetostrictive probe bouyancy |
US20070282540A1 (en) * | 2005-05-31 | 2007-12-06 | Veeder-Root Company | Fuel density measuring device, system, and method using magnetostrictive probe buoyancy |
US7403860B2 (en) * | 2005-05-31 | 2008-07-22 | Veeder-Root Company | Method using magnetostrictive probe buoyancy for detecting fuel density |
US7454969B2 (en) | 2005-05-31 | 2008-11-25 | Veeder-Root Company | Fuel density measuring device, system, and method using magnetostrictive probe bouyancy |
US20110187529A1 (en) * | 2008-09-18 | 2011-08-04 | Fafnir Gmbh | Method for monitoring the quality of a fuel comprising alcohol in a storage tank |
US20150259100A1 (en) * | 2014-03-11 | 2015-09-17 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device for indicating the filling level of a container |
US9694941B2 (en) * | 2014-03-11 | 2017-07-04 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Device for indicating the filling level of a container |
CN103954531A (en) * | 2014-05-21 | 2014-07-30 | 范明军 | Device for driving density measurement part to move up and down |
Also Published As
Publication number | Publication date |
---|---|
US7278311B1 (en) | 2007-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7278311B1 (en) | Liquid level and density measurement device | |
EP1979722B1 (en) | Liquid level and density measurement device | |
US4646560A (en) | System and method for leak detection in liquid storage tanks | |
CA1138670A (en) | Method for leakage measurement | |
US4155254A (en) | Volume and density indicator system for liquids in tanks | |
US4281534A (en) | Sensor for measuring leakage | |
CN105675437B (en) | Displacement difference solution density measuring device and its measuring method | |
CN212378849U (en) | Liquid level detection device, liquid storage device and unmanned equipment | |
USRE31884E (en) | Method for leakage measurement | |
US5444383A (en) | Device, system and method for measuring an interface between two fluids | |
CN104949739B (en) | Device for field calibration large scale liquid level sensor | |
US4375765A (en) | Level indicating device | |
KR200377152Y1 (en) | Liquid quantity sensing device | |
CN216433184U (en) | Liquid level metering device | |
KR20240062338A (en) | Fluid density measuring device for fuel tank | |
US1292276A (en) | Viscosimeter. | |
CN208223604U (en) | A kind of easy Dewar bottle liquid nitrogen level measuring device | |
JPS60179607A (en) | Connecting tube type settlement meter | |
RU2284480C2 (en) | Transmitter | |
SU1548710A1 (en) | Device for determining coeffcient of surface tension of liquid | |
JPS5935800Y2 (en) | Macro pore measuring device | |
RU2190206C1 (en) | Device for allowance test of density of liquids | |
SU1578587A1 (en) | Device for determining capillary constant of liquid | |
SU800657A2 (en) | Float-type level gauge | |
CA1286523C (en) | Apparatus and method for determining rate of leakage of liquid from and into tanks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |