US20070292454A1 - Therapeutic calcium phosphate particles and methods of manufacture and use - Google Patents
Therapeutic calcium phosphate particles and methods of manufacture and use Download PDFInfo
- Publication number
- US20070292454A1 US20070292454A1 US11/732,596 US73259607A US2007292454A1 US 20070292454 A1 US20070292454 A1 US 20070292454A1 US 73259607 A US73259607 A US 73259607A US 2007292454 A1 US2007292454 A1 US 2007292454A1
- Authority
- US
- United States
- Prior art keywords
- particle
- particles
- calcium phosphate
- partially
- modifying agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title claims abstract description 262
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 80
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 44
- 239000001506 calcium phosphate Substances 0.000 title claims description 61
- 229910000389 calcium phosphate Inorganic materials 0.000 title claims description 61
- 235000011010 calcium phosphates Nutrition 0.000 title claims description 61
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000000463 material Substances 0.000 claims abstract description 111
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 95
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 87
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 76
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 57
- 230000000890 antigenic effect Effects 0.000 claims abstract description 47
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 42
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 42
- 239000002157 polynucleotide Substances 0.000 claims abstract description 42
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 42
- 238000000576 coating method Methods 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 34
- 108010073336 immunoenhancing factor Proteins 0.000 claims abstract description 29
- 238000013270 controlled release Methods 0.000 claims abstract description 15
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 68
- 239000000427 antigen Substances 0.000 claims description 58
- 102000036639 antigens Human genes 0.000 claims description 58
- 108091007433 antigens Proteins 0.000 claims description 58
- 239000000243 solution Substances 0.000 claims description 53
- 108020004414 DNA Proteins 0.000 claims description 41
- 230000002163 immunogen Effects 0.000 claims description 38
- 229940125396 insulin Drugs 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 36
- 108090001061 Insulin Proteins 0.000 claims description 32
- 102000004877 Insulin Human genes 0.000 claims description 32
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 30
- 229960005486 vaccine Drugs 0.000 claims description 29
- 241000700605 Viruses Species 0.000 claims description 26
- 239000000725 suspension Substances 0.000 claims description 25
- 239000002202 Polyethylene glycol Substances 0.000 claims description 23
- 210000004027 cell Anatomy 0.000 claims description 23
- 229920001223 polyethylene glycol Polymers 0.000 claims description 23
- 229920001184 polypeptide Polymers 0.000 claims description 23
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 22
- 201000008827 tuberculosis Diseases 0.000 claims description 22
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 claims description 19
- 241000701044 Human gammaherpesvirus 4 Species 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 17
- 239000001509 sodium citrate Substances 0.000 claims description 17
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 17
- 101000976075 Homo sapiens Insulin Proteins 0.000 claims description 16
- 239000001110 calcium chloride Substances 0.000 claims description 16
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 16
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 claims description 16
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 14
- 239000000443 aerosol Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 239000013598 vector Substances 0.000 claims description 13
- 208000009889 Herpes Simplex Diseases 0.000 claims description 10
- 230000036961 partial effect Effects 0.000 claims description 10
- 108091061960 Naked DNA Proteins 0.000 claims description 9
- 241000700584 Simplexvirus Species 0.000 claims description 8
- 230000002238 attenuated effect Effects 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 8
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 239000013600 plasmid vector Substances 0.000 claims description 8
- 241000894006 Bacteria Species 0.000 claims description 7
- 241000233866 Fungi Species 0.000 claims description 7
- 241000701806 Human papillomavirus Species 0.000 claims description 7
- 229940088597 hormone Drugs 0.000 claims description 7
- 239000005556 hormone Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 102000015696 Interleukins Human genes 0.000 claims description 6
- 108010063738 Interleukins Proteins 0.000 claims description 6
- 241000713311 Simian immunodeficiency virus Species 0.000 claims description 6
- 206010022000 influenza Diseases 0.000 claims description 6
- 210000004072 lung Anatomy 0.000 claims description 6
- 230000000813 microbial effect Effects 0.000 claims description 6
- 239000001488 sodium phosphate Substances 0.000 claims description 6
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 6
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 6
- 210000000987 immune system Anatomy 0.000 claims description 5
- 241000701022 Cytomegalovirus Species 0.000 claims description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 4
- 230000037396 body weight Effects 0.000 claims description 4
- 108010006025 bovine growth hormone Proteins 0.000 claims description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 229940047122 interleukins Drugs 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 206010009944 Colon cancer Diseases 0.000 claims description 3
- 102000004127 Cytokines Human genes 0.000 claims description 3
- 108090000695 Cytokines Proteins 0.000 claims description 3
- 102000013462 Interleukin-12 Human genes 0.000 claims description 3
- 108010065805 Interleukin-12 Proteins 0.000 claims description 3
- 102000000588 Interleukin-2 Human genes 0.000 claims description 3
- 108010002350 Interleukin-2 Proteins 0.000 claims description 3
- 206010037742 Rabies Diseases 0.000 claims description 3
- 241000702670 Rotavirus Species 0.000 claims description 3
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 claims description 3
- 230000000692 anti-sense effect Effects 0.000 claims description 3
- 159000000007 calcium salts Chemical class 0.000 claims description 3
- 208000029742 colonic neoplasm Diseases 0.000 claims description 3
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 claims description 3
- 206010014599 encephalitis Diseases 0.000 claims description 3
- 229940117681 interleukin-12 Drugs 0.000 claims description 3
- 201000004792 malaria Diseases 0.000 claims description 3
- 201000005962 mycosis fungoides Diseases 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 claims description 3
- 210000004777 protein coat Anatomy 0.000 claims description 3
- 235000000346 sugar Nutrition 0.000 claims description 3
- 108020000946 Bacterial DNA Proteins 0.000 claims description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims description 2
- 241000193403 Clostridium Species 0.000 claims description 2
- 108091034117 Oligonucleotide Proteins 0.000 claims description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 2
- 241000589516 Pseudomonas Species 0.000 claims description 2
- 241000235070 Saccharomyces Species 0.000 claims description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 claims description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 claims description 2
- 150000001719 carbohydrate derivatives Chemical class 0.000 claims description 2
- 150000001720 carbohydrates Chemical class 0.000 claims description 2
- 235000014633 carbohydrates Nutrition 0.000 claims description 2
- 229920002521 macromolecule Polymers 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 230000008488 polyadenylation Effects 0.000 claims description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 claims description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 claims 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- 108700003860 Bacterial Genes Proteins 0.000 claims 1
- 239000004698 Polyethylene Substances 0.000 claims 1
- 241000191940 Staphylococcus Species 0.000 claims 1
- 241000194017 Streptococcus Species 0.000 claims 1
- 208000006454 hepatitis Diseases 0.000 claims 1
- 231100000283 hepatitis Toxicity 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 241000712461 unidentified influenza virus Species 0.000 claims 1
- 239000007771 core particle Substances 0.000 abstract description 131
- 239000011149 active material Substances 0.000 abstract description 9
- 239000000969 carrier Substances 0.000 abstract description 6
- 239000012646 vaccine adjuvant Substances 0.000 abstract description 6
- 229940124931 vaccine adjuvant Drugs 0.000 abstract description 6
- 238000002965 ELISA Methods 0.000 description 47
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 38
- 241000699670 Mus sp. Species 0.000 description 28
- 238000002255 vaccination Methods 0.000 description 21
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 16
- 239000008103 glucose Substances 0.000 description 16
- 230000003053 immunization Effects 0.000 description 16
- 238000002649 immunization Methods 0.000 description 16
- 239000003814 drug Substances 0.000 description 14
- 239000002671 adjuvant Substances 0.000 description 13
- 239000011162 core material Substances 0.000 description 13
- 230000028993 immune response Effects 0.000 description 13
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- 239000011575 calcium Substances 0.000 description 12
- 229910052791 calcium Inorganic materials 0.000 description 12
- 238000011068 loading method Methods 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 description 11
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 244000052769 pathogen Species 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000013268 sustained release Methods 0.000 description 9
- 239000012730 sustained-release form Substances 0.000 description 9
- 229940124597 therapeutic agent Drugs 0.000 description 9
- 108010041986 DNA Vaccines Proteins 0.000 description 8
- 229940021995 DNA vaccine Drugs 0.000 description 8
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 8
- 230000002766 immunoenhancing effect Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 229940037003 alum Drugs 0.000 description 7
- 238000007912 intraperitoneal administration Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 229940092253 ovalbumin Drugs 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 108010058846 Ovalbumin Proteins 0.000 description 5
- 229940022005 RNA vaccine Drugs 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 108010067390 Viral Proteins Proteins 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 108700021021 mRNA Vaccine Proteins 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 241000282412 Homo Species 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000012460 protein solution Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 241000701083 Bovine alphaherpesvirus 1 Species 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 235000011008 sodium phosphates Nutrition 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 206010046865 Vaccinia virus infection Diseases 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000036765 blood level Effects 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000012173 estrus Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002934 lysing effect Effects 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 208000007089 vaccinia Diseases 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 208000002979 Influenza in Birds Diseases 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 102100036034 Thrombospondin-1 Human genes 0.000 description 1
- 208000032159 Vaginal inflammation Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Chemical class Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229940031567 attenuated vaccine Drugs 0.000 description 1
- 206010064097 avian influenza Diseases 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229940090046 jet injector Drugs 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229940126583 recombinant protein vaccine Drugs 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 229940083538 smallpox vaccine Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000012134 supernatant fraction Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
- A61K36/062—Ascomycota
- A61K36/064—Saccharomycetales, e.g. baker's yeast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/193—Colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2013—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/208—IL-12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/04—Mycobacterium, e.g. Mycobacterium tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/12—Aerosols; Foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1611—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
- A61K9/1676—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
- A61K9/5078—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5115—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16211—Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
- C12N2710/16234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16634—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to novel calcium phosphate core particles, to methods of making them, and to methods of using them as vaccine adjuvants, as cores or carriers for biologically active material, and as controlled release matrices for biologically active material.
- Nanometer scale particles have been proposed for use as carrier particles, as supports for biologically active molecules, such as proteins, and as decoy viruses. See U.S. Pat. Nos. 5,178,882; 5,219,577; 5,306,508; 5,334,394; 5,460,830; 5,460,831; 5,462,750; and 5,464,634, the entire contents of each of which are hereby incorporated by reference.
- calcium phosphate particles have generally been considered an unsuitable alternative to other adjuvants due to inferior adjuvanting activity. See, e.g., Goto et al., Vaccine, vol. 15, no. 12/13 (1997).
- the calcium phosphate evaluated was typically microparticulate (>1000 nm diameter) and possessed a rough and oblong morphology, in contrast to the core particles of the present invention.
- calcium phosphate core particles useful as core materials or carriers for biologically active moieties which can be produced simply and consistently.
- a further need remains for calcium phosphate core particles that can be effectively used as adjuvants for vaccines, as cores or carriers for biologically active molecules, and as controlled release matrices.
- Polynucleotide vaccination presents a different vaccine methodology, whereby polynucelotide material, such as DNA or RNA, encoding an immunogenic polypeptide is delivered intracellularly to a potential host.
- the genetic material is taken up and expressed by these cells, leading to both a humoral and a cell-mediated immune response. It is not entirely clear whether DNA vaccines function as a result of integration or simply long-term episomal maintenance.
- Polynucleotide vaccination provides numerous advantages over traditional vaccination. Polynucleotide vaccines eliminate the risk of infection associated with live attenuated viruses, yet advantageously induce both humoral and cell-mediated responses. Polynucleotide vaccines further provide prolonged immunogen expression, generating significant immunological memory and eliminating the need for multiple inoculations. Polynucleotide vaccines are very stable, permitting prolonged storage, transport and distribution under variable conditions. As a further advantage, a single polynucleotide vaccine may be engineered to provide multiple immunogenic polypeptides. Thus, a single DNA vaccine can be used to immunize against multiple pathogens, or multiple strains of the same pathogen. Finally, polynucleotide vaccines are much simpler and less expensive to manufacture than traditional vaccines.
- Polynucleotide vaccines may take various forms.
- the genetic material can be provided, for example, in combination with adjuvants capable of stimulating the immune response.
- Administration of the DNA or RNA coated onto microscopic beads has been suggested. See J. J. Donnelly et al., Annu. Rev. Immunol. 15, 617 (1997).
- Various routes of administration are also possible, and may include, for example, intravenous, subcutaneous and intramuscular administration.
- a desirable immune response to an immunogenic polypeptide is two-fold, involving both humoral and cellular-mediated immunity.
- the humoral component involves stimulation of B cells to product antibodies capable of recognizing extracellular pathogens, while the cell-mediated component involves T lymphocytes capable of recognizing intracellular pathogens.
- Cytotoxic T-lymphocytes (CTLs) play an important role in the latter, by lysing virally-infected or bacterially-infected cells.
- CTLs possess receptors capable of recognizing foreign peptides associated with MHC class I and/or class II molecules. These peptides can be derived from endogenously synthesized foreign proteins, regardless of the protein's location or function within the pathogen.
- CTLs can recognize epitopes derived from conserved internal viral proteins (J. W. Yewdell et al., Proc. Natl. Acad. Sci. (USA) 82, 1785 (1985); A. R. M. Towsend, et al., Cell 44, 959 (1986); A. J., McMichael et al., J. Gen. Virol. 67, 719 (1986); A. R. M. Towsend and H., Annu. Rev. Immunol. 7, 601 (1989)) and may therefore permit heterologous protection against viruses with multiple serotypes or high mutation rates. Polynucleotide vaccination can stimulate both forms of immune response, and thus is very desirable.
- Retroviral vectors for example, have restrictions on the size and structure of polypeptides that can be expressed as fusion proteins while maintaining the ability of the recombinant virus to replicate (A. D. Miller, Curr. Top. Microbiol. Immunol. 158, 1 (1992).
- the effectiveness of vectors such as vaccinia for subsequent immunizations may be compromised by immune responses against vaccinia (E. L. Cooney et al., Lancet 337, 567 (1991)).
- viral vectors and modified pathogens have inherent risks that may hinder their use in humans (R. R. Redfield et al., New Engl. J. Med. 316, 673 (1987); L. Mascola et al., Arch. Intern. Med. 149, 1569 (1989)).
- highly immunogenic vectors also tend to be highly pathogenic.
- WO 90/11092 (Oct. 4, 1990) reported the use of naked polynucleotides to vaccinate vertebrates.
- Intramuscular administration is thought to be particularly desirable, given the proportionally large muscle mass and its direct accessibility through the skin. See U.S. Pat. No. 5,580,859.
- Tang et al. ( Nature, 356, 152-154 (1992)) disclosed that introduction of gold microprojectiles coated with DNA encoding bovine growth hormone (BGH) into the skin of mice resulted in production of anti-BGH antibodies in the mice.
- Furth et al. ( Analytical Biochemistry, 205, 365-368, (1992)) showed that a jet injector could be used to transfect skin, muscle, fat, and mammary tissues of living animals.
- WO 93/17706 describes a vaccination method wherein carrier particles are coated with a gene construct and then accelerated into a potential host. Intravenous injection of a DNA:cationic liposome complex in mice has also been reported (Zhu et al., Science 261, 209-211 (Jul. 9, 1993); see also WO 93/24640).
- mice against influenza by the injection of plasmids encoding influenza A hemagglutinin has been reported (Montgomery, D. L. et al., 1993, Cell Biol., 12, pp. 777-783), or nucleoprotein (Montgomery, D. L. et al., supra; Ulmer, J. B. et al., 1993, Science, 259, pp. 1745-1749).
- the first use of DNA immunization for a herpes virus has been reported (Cox et al., 1993, J Virol., 67, pp. 5664-5667).
- MMTV mouse mammary tumor virus
- LTR long terminal repeat
- SV40 simian virus 40
- lungs can be used effectively to get the therapeutic agent into the bloodstream because they have a very large surface area of very thin tissue.
- the level of agent in the blood can rise as fast as, or faster than, that obtained when the agent is administered by injection beneath the skin.
- the thin lung tissue allows the passage of proteins and peptides into the blood stream without exposing them to the type or level of proteases encountered during oral administration.
- Aerosols containing the therapeutic agent as fine, suspended mists of particles in both liquid and solid form have been investigated.
- preparation of suitable inhalable aerosols can be difficult for therapeutic agents where the blood level of the agent is critical, e.g., with insulin, because the amount of aerosol delivered to the deep lung tissue can be substantially variable, leading to inconsistent dosages of the drug to the patient.
- an inhalable form of insulin is reportedly under development wherein the insulin is combined with sugar particles of a particular size to make an ultrafine powder that is delivered when it is forced through an inhaler nozzle by a blast of compressed air.
- Another inhalable form of insulin involves relatively large (diameters >5 ⁇ m), porous polymer particles (50:50 poly(lactic acid-co-glycolic acid) of low density ( ⁇ ⁇ 0.4 g/cm 3 ) that encapsulate insulin. The particles are believed to penetrate deep into the lung tissue as the result of their low density, yet avoid phagocytosis when in the tissue as the result of their large size. See D. E. Edwards et al., Science, 276:1868 (1997).
- any carrier material be very small and easily biodegradable, in. order to avoid complications resulting from inhalation of particulates.
- the present invention relates to novel calcium phosphate (“CAP”) core particles, to methods of making them, and to methods of using them as vaccine adjuvants, as cores or carriers for biologically active material, and as controlled release matrices for biologically active material. More particularly, the invention relates to the core particles having a diameter between about 300 nm and about 4000 nm, more particularly between about 300 nm and about 1000 nm, and having a substantially spherical shape and a substantially smooth surface.
- CAP calcium phosphate
- the present invention also relates to the novel calcium phosphate core particles having a material coated on the surface of the core particles, and/or dispersed or impregnated within the core particles, to methods of making them, and to methods of using them.
- a suitable material to be at least partially coated on the surface of the core particle or impregnated therein include one or more of the following: antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides.
- the present invention also relates to combinations of this novel core particle having at least a partial coating of a surface modifying agent or a surface modifying agent impregnated therein or both.
- a surface modifying agent e.g., antigenic material, natural immunoenhancing factors, polynucleotide material, or therapeutic proteins or peptides
- the material may be optionally attached to the particle by the surface modifying agent, which acts as a biological ‘glue,’ such as cellobiose or polyethylene glycol (PEG).
- the invention also relates to combinations of this novel core particle with antigenic material, natural immunoenhancing factors, polynucleotide material, or therapeutic proteins or peptides integrated into the core particle, forming a controlled release matrix that releases the material into a patient over time.
- the invention also relates to methods of vaccinating patients in need thereof by administering the novel core particle in combination or in conjunction with an antigenic material or natural immunoenhancing factor, wherein the antigenic material or natural immunoenhancing factor is at least partially coated on the core particle and/or integrated therein, as described in more detail below.
- the calcium phosphate core particles of this embodiment significantly increase the efficacy of the vaccines with which they are administered, by enhancing the magnitudes, qualities, and/or durations of the immune responses.
- the invention also relates to a polynucleotide vaccine having polynucleotide material at least partially coated on the novel core particle and/or impregnated therein.
- novel calcium phosphate particles that can be effectively used as supports and matrices for sustained release of DNA or RNA encoding immunogenic polypeptides.
- the present inventors have discovered that a DNA or RNA vaccine can be prepared that uses a biodegradable matrix of calcium phosphate, that functions as a sustained release composition, conferring long lasting immunity, and that is, in effect, self-adjuvanting.
- the primary intent is that the respective protein translation products produced by the present invention would immediately be available both intracellularly and extracellularly, to elicit enhanced humoral and cellular immune responses.
- the calcium phosphate in the core particles of the present invention biodegrades, releasing into the surrounding tissue polynucelotide material (DNA or RNA) coding for immunogenic polypeptides.
- DNA or RNA tissue polynucelotide material
- cells in the patient take up the DNA or RNA and express it as immunogenic proteins, which are then presented to B cells and T cells of the immune system, resulting in both a humoral and cell-mediated response similar to that obtained using live attenuated virus, but without the risks of pathogenicity and without the loss of immunogenicity associated with live virus.
- the DNA or RNA is impregnated or dispersed within the calcium phosphate core particle, the gradual release of genetic material by the dissolution of the calcium phosphate matrix provides longer lasting immune responses than does administration of a conventional DNA or RNA vaccine.
- the presence of calcium phosphate core particles enhances the immune response to the antigenic proteins produced by the cells that take up and express the DNA or RNA, further multiplying the protective effect of the vaccine.
- the size of the core particles of the invention allows them to migrate through the body as the calcium phosphate gradually degrades, thereby transporting the DNA/RNA to different tissues in the body, and enlisting large numbers of different tissues at different locations in the production of antigenic proteins.
- this invention relates to an inhalable, aerosolizable therapeutic composition, having a therapeutic protein or peptide material either at least partially coated on the novel calcium phosphate core particle and/or impregnated therein.
- the surface of the core particle may be at least partially coated with a surface modifying agent that bonds proteins or peptides to the core particle without denaturing the proteins or peptides.
- a therapeutic protein or peptide, in particular a hormone such as insulin, is disposed on the resulting coated core particle.
- the present invention also relates to methods of treating medical conditions resulting from protein or peptide deficiencies by administering effective amounts of the core particles of this particular embodiment to a patient in need thereof via inhalation into the lungs.
- the therapeutic compositions of the present invention are highly stable, and exhibit enhanced bioavailability. These therapeutic compositions also exhibit preferable biodynamics including controlled release of therapeutic polypeptides or proteins.
- the present invention also relates to methods of preparing the novel calcium phosphate core particles described above, such as the core particles for use individually, the core particles having material at least partially coated on the surface, and the core particles having material impregnated therein.
- FIG. 2 presents a series of graphs showing the ELISA results for a calcium phosphate—tuberculosis antigen conjugate according to one embodiment of the present invention.
- FIG. 2A shows ELISA results three weeks after primary vaccination.
- FIG. 2B shivs ELISA results seven weeks after primary vaccination.
- FIG. 2C shows ELISA results three months after primary vaccination.
- FIG. 2D shows ELISA results five months after primary vaccination.
- FIG. 3 presents a series of graphs showing the ELISA results for a calcium phosphate—influenza antigen conjugate according to one embodiment of the present invention.
- FIG. 3A shows ELISA results three weeks after primary vaccination.
- FIG. 3B shows ELISA results eight weeks after primary vaccination.
- FIG. 3C shows ELISA results ten weeks after primary vaccination.
- FIG. 5 is a graph showing ELISA and neutralization assay results for a calcium phosphate—herpes simplex 2 antigen conjugate according to one embodiment of the present invention.
- FIG. 6 is a graph showing ELISA results for a calcium phosphate—human. immunodeficiency virus antigen conjugate according to one embodiment of the present invention.
- FIG. 8 presents a series of graphs showing the ELISA results for a calcium phosphate-Epstein-Barr virus antigen conjugate according to one embodiment of the present invention.
- FIG. 8A shows ELISA results with an IgG antibody titer.
- FIG. 8B shows ELISA results with an IgG2a antibody titer.
- FIG. 8C shows ELISA results with an IgG1 antibody titer.
- FIG. 8D shows ELISA results with an IgE antibody titer.
- FIG. 9 presents a series of graphs showing the ELISA results for a calcium phosphate-herpes simplex 2 antigen conjugate according to one embodiment of the present invention.
- FIG. 9A shows ELISA results with an IgG antibody titer.
- FIG. 9B shows ELISA results with an IgG2a antibody titer.
- FIG. 9C shows ELISA results with an IgG1 antibody titer.
- FIG. 9D shows ELISA results with an IgE antibody titer.
- FIG. 10 presents a series of graphs showing the ELISA results for a calcium phosphate-tuberculosis antigen conjugate according to one embodiment of the present invention.
- FIG. 10A shows ELISA results with an IgG antibody titer.
- FIG. 10B shows ELISA results with an IgG2a antibody titer.
- FIG. 10C shows ELISA results with an IgG1 antibody titer.
- FIG. 10D shows ELISA results with an IgE antibody titer.
- FIG. 11 presents a series of graphs showing the ELISA results for a calcium phosphate-ovalbumin antigen conjugate according to one embodiment of the present invention.
- FIG. 11A shows ELISA results with an IgG antibody titer.
- FIG. 11B shows ELISA results with an IgG2a antibody titer.
- FIG. 11C shows ELISA results with an IgG1 antibody titer.
- FIG. 11D shows ELISA results with an IgE antibody titer.
- FIG. 12 is a schematic drawing showing a calcium phosphate core particle (4) both coated with antigenic material or natural immunoenhancing factor (8) and having antigenic material or natural immunoenhancing factor (8) impregnated therein.
- FIG. 13 is a series of schematic drawings showing embodiments having a calcium phosphate core particle (4) coated with material (6), such as antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides, or having material (6) impregnated therein.
- FIG. 13A shows a core particle coated directly with material (6).
- FIG. 13B shows a core particle (4) coated with surface modifying agent (2), such as polyethylene glycol or cellobiose, and a having a material (6) adhered to the surface modifying agent (2).
- FIG. 13C shows a calcium phosphate core particle (4) having a surface modifying agent (2), such as polyethylene glycol or cellobiose incorporated therein and having a material (6) at least partially coating core particle (4).
- FIG. 14 is a schematic drawing showing a calcium phosphate core particle (4) having both a surface modifying agent (2), such as polyethylene glycol or cellobiose and a material (6), such as antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides incorporated therein.
- a surface modifying agent (2) such as polyethylene glycol or cellobiose
- a material (6) such as antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides incorporated therein.
- FIG. 15 is a graph showing blood glucose levels over time before and after administration of a calcium phosphate core particle having insulin coated on the surface.
- the present invention relates to novel calcium phosphate core particles, to methods of making them, and to methods of using the core particles as vaccine adjuvants, as cores or carriers for biologically active material, and as controlled release matrices for biologically active material.
- the present invention also relates to the novel calcium phosphate core particles having a material at least partially coated on the surface of the core particles, or dispersed or impregnated within the core particles, to methods of making them, and to methods of using them.
- a suitable material to be at least partially coated on the surface of the core particle or impregnated therein include antigenic material, natural immunoenhancing factor(s), polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides.
- the core particles of the present invention may optionally have at least a partial coating of a surface modifying agent, which may help adhere the above-mentioned material to the core particle, or may have a surface modifying agent impregnating the particle, or both.
- One embodiment of the present invention relates to calcium phosphate core particles suitable for adjuvanting vaccines, the particles being administerable in their uncoated state.
- the core particles are also suitable for use as supports for microbial antigenic material or natural immunoenhancing factor (as cores to be at least partially coated with microbial antigenic material or natural immunoenhancing factor) and for providing a controlled or sustained release matrix for biologically active molecules.
- antigenic material or “antigen” means an immunogenic antigen product obtained from a bacteria, virus, or fungus, and containing one or more antigenic determinants.
- antigenic material examples include one or more portions of the protein coat, protein core, or functional proteins and peptides of a virus, such as Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human papilloma virus (HPV), herpes simplex virus (HSV), pox virus, influenza, or other virii, or immunogenic proteins obtained from bacteria, such as tuberculosis (TB), staphylococcal, streptococcal, clostridium, pseudomonas, or coliform bacterial antigens, or fungi, such as candida and other saccharomyces.
- EBV Epstein-Barr virus
- HCV human immunodeficiency virus
- HPV human papilloma virus
- HSV herpes simplex virus
- pox virus influenza, or other virii
- immunogenic proteins obtained from bacteria, such as tuberculosis (TB), staphylococcal, streptococcal, clostridium, pseudomonas,
- the particles of the present invention can also be coated (with or without an intermediate coating of a surface modifying agent) or impregnated with natural immunoenhancing factors.
- natural immunoenhancing factors are typically proteins or peptides that function as natural adjuvants, stimulating the response of the immune system to antigenic challenge by a vaccine antigen.
- Suitable natural immunoenhancing factors include interleukins, including those already recognized to have immunoenhancing activity, such as interleukin-2 and interleukin-12, and those discovered in the future to have such activity.
- Another embodiment of the present invention relates to calcium phosphate core particles modified to function as polynucleotide vaccines, having DNA or RNA encoding immunogenic polypeptides at least partially coated on the surface of the core particles or at least partially impregnated therein.
- Exemplary polynucleotides include those encoding immunogenic epitopes for influenza, malaria, colon cancer cells; hepatitis B, human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), cutaneous T cell lymphoma, herpes simplex, tick born encephalitis, rabies, rotavirus, tuberculosis, Epstein-Barr virus, human papilloma virus, and hepatomavirus.
- the core particle biodegrades and the DNA or RNA is taken up and expressed by the cells and translated to produce one or more immunogenic polypeptides that are recognized by the immune system.
- Another embodiment of the present invention relates to calcium phosphate core particles that deliver therapeutic proteins or peptides, and in particular, a hormone, such as insulin, to a patient in need thereof
- the core particles are administerable via inhalation.
- the calcium phosphate core particles of the present invention have an average particle size between about 300 nm and about 4000 nm, more particularly, between about 300 nm and about 2000 nm. For the applications described herein, an average particle size of between about 300 nm and 1000 nm is sufficient and desirable.
- the core particles of the present invention have a morphology that is generally and substantially spherical in shape and a surface that is substantially smooth.
- substantially smooth is used herein to mean essentially no surface features or irregularities having a size of 100 nm or larger.
- the core particles may be faceted or angular and still fall within this definition, as long as the facets do not contain many surface irregularities of the type described above.
- substantially spherical is used herein to refer to particles that are substantially round or oval in shape, and includes particles that are unfaceted and smooth, or that have very few facets, as well as particles that are polyhedral having several or numerous facets.
- Substantially smooth, substantially spherical particles according to the invention are visible in scanning electron micrographs and shown in FIGS. 1A and 1B .
- the following table provides a comparison between the calcium phosphate core particles of the present invention and calcium phosphate particles manufactured by Superfos Biosector a/s, referred to as “Accurate CAP” in FIGS. 7 A-C.
- the table shows that the calcium phosphate core particles of the present invention are small, smooth and ovoid, whereas Superfos Accurate CAP particles are large, jagged and crystalline.
- the calcium phosphate core particles of the present invention are typically prepared as a suspension in aqueous medium by reacting a soluble calcium salt with a soluble phosphate salt, and more particularly, by reacting calcium chloride with sodium phosphate under aseptic conditions. Initially, an aqueous solution of calcium chloride having a concentration between about 5 mM and about 100 mM is combined by mixing with an aqueous solution of a suitable distilled water-based solution of sodium citrate, having a concentration between about 5 mM and about 100 mM. The presence of sodium citrate contributes to the formation of an electrostatic layer around the core particle, which helps to stabilize the attractive and repulsive forces between the core particles, resulting in physically stable calcium phosphate core particles.
- aqueous solution of dibasic sodium phosphate having a concentration between about 5 mM and about 100 mM is then mixed with the calcium chloride/sodium citrate solution. Turbidity generally forms immediately, indicating the formation of calcium phosphate core particles. Mixing is generally continued for at least about 48 hours, or until a suitable core particle size has been obtained, as determined by sampling the suspension and measuring the core particle size using known methods.
- the core particles may be optionally stored and allowed to equilibrate for about seven days at room temperature to achieve stability in size and pH prior to further use.
- the calcium phosphate core particles of the present invention can be used without further modification as vaccine adjuvants.
- the core particles may be uncoated and can be administered in a dosage of about 1 ⁇ g to about 1000 ⁇ g per kilogram of total body weight in conjunction with killed, attenuated, or live vaccines, with decoy viruses, or with core particles at least partially coated with microbial antigenic material, such as those described above.
- the killed, live, or attenuated vaccines, decoy viruses, or antigen-coated core particles may be administered in the same solution as, or in a different solution from, that of the uncoated particles.
- the core particles of the present invention can also be at least partially coated with material, wherein the material is disposed on the surface of the core particle and optionally held in place by a surface modifying agent sufficient to bind the material to the core particle without denaturing the material.
- a surface modifying agent sufficient to bind the material to the core particle without denaturing the material.
- the material disposed on the surface of the core particles include antigenic material or natural immunoenhancing factor, polynucleotide material, or therapeutic proteins or peptides.
- Surface modifying agents suitable for use in the present invention include substances that provide a threshold surface energy to the core particle sufficient to bind material to the surface of the core particle, without denaturing the material.
- suitable surface modifying agents include those described in U.S. Pat. Nos. 5,460,830, 5,462,751, 5,460,831, and 5,219,577, the entire contents of each of which are incorporated herein by reference.
- suitable surface modifying agents may include basic or modified sugars, such as cellobiose, or oligonucleotides, which are all described in U.S. Pat. No. 5,219,577.
- Suitable surface modifying agents also include carbohydrates, carbohydrate derivatives, and other macromolecules with carbohydrate-like components characterized by the abundance of —OH side groups, as described, for example, in U.S. Pat. No. 5,460,830.
- Polyethylene glycol (PEG) is a particularly suitable surface modifying agent.
- the core particles may be at least partially coated by preparing a stock solution of a surface modifying agent, such as cellobiose or PEG (e.g., around 292 mM) and adding the stock solution to a suspension of calcium phosphate core particles at a ratio of about 1 mL of stock solution to about 20 mL of particle suspension.
- the mixture can be swirled and allowed to stand overnight to form at least partially coated core particles.
- the at least partially coated core particles are administerable alone or in conjunction with one or more of the materials described below. Generally, this procedure will result in substantially complete coating of the particles, although some partially coated or uncoated particles may be present.
- the uncoated core particles or the core particles at least partially coated with surface modifying agent are then contacted with antigenic material or natural immunoenhancing factor, to produce particles having antigenic material or natural immunoenhancing factor at least partially coating the core particle.
- FIG. 12 is a schematic drawing of the particles of this embodiment, illustrating antigenic material or natural immunoenhancing factor (8) both coating the core particle (4) and incorporated within the core particle (4) (as will be discussed below).
- Antigen purified from viral coat or capsule proteins, or from cell surfaces of bacteria or fungi can be obtained or purified using methods that are known in the art, or can be obtained commercially.
- viral particles are obtained by infecting transforming host cell lines with the virus, and after a suitable incubation period, centrifuging the cell suspension and sonicating the resulting suspension at high power for several minutes to break open the cells, and again centrifuging the broken cell suspension.
- the supernatant containing virus can then be stored for further processing and protein purification using techniques familiar to those skilled in the art.
- Bacterial and fungal cell membrane antigens can be obtained by culturing and lysing the desired organisms and separating the desired antigenic protein fractions using techniques known in the art.
- the antigen-coated particles of the invention are not produced by methods requiring the denaturing of the protein coating of a viral particle, removal of the core viral genetic material, and renaturing of the protein coating around a substitute core. Instead, the antigen-coated particles of the invention result from attachment of individual portions of protein coating to a calcium phosphate core. As a result, the particles of the invention-are not believed to function as “decoy viruses” per se, as described in several of the patents cited above.
- the particles of the invention can be more potent immunogenically than can a decoy virus, since only immunogenic portions of proteins need be attached to the particles. This increases the likelihood, for a given concentration of particles, that an antigenic epitope on the particle will elicit an immune response.
- the particles of the invention can be used to provide a broader spectrum of protection, since immunogenic material from several different pathogens can be attached to the surface of a single particle, or to the surfaces of different particles administered substantially simultaneously.
- the calcium phosphate core particles of the present invention can be prepared as controlled release particles for the sustained release of antigenic material or natural immunoenhancing factor over time, wherein the antigenic material or natural immunoenhancing factor (8) is incorporated into the structure of the core particle (4), shown in FIG. 12 . This is done by mixing the aqueous calcium chloride solution with the antigenic material or natural immunoenhancing factor to be incorporated prior to combining and mixing with either the sodium citrate or dibasic sodium phosphate solutions, to co-crystallize the calcium phosphate core particles with the antigenic material or natural immunoenhancing factor.
- the antigenic material may consist of an immunogenic antigen product obtained from a bacteria, virus, or fungus, and containing one or more antigenic determinants, as described in detail above.
- the natural immunoenhancing factor may consist of proteins or peptides that function as a natural adjuvant, such as interleukins, particularly interleukin-2 and interleukin-12, also described in detail above.
- the particles function as a controlled release matrix for the DNA or RNA.
- the DNA or RNA that is at least partially coated onto or incorporated within the core particles may be selected from a wide variety of DNA or RNA sequences that encode epitopes of one or more immunogenic polypeptides, and thus can be used as the active ingredient in a DNA or RNA vaccine. Antisense fragments may also be used.
- Exemplary polynucleotides include those encoding immunogenic epitopes for influenza, malaria, colon cancer cells, hepatitis B, human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), cutaneous T cell lymphoma, herpes simplex, tick born encephalitis, rabies, rotavirus, tuberculosis, Epstein-Barr virus, human papilloma virus, and hepatomavirus.
- HIV human immunodeficiency virus
- SIV simian immunodeficiency virus
- cutaneous T cell lymphoma herpes simplex, tick born encephalitis, rabies, rotavirus, tuberculosis, Epstein-Barr virus, human papilloma virus, and hepatomavirus.
- the polynucleotide can be naked or inserted into a plasmid vector.
- Suitable plasmids are known to those skilled in the art, and typically include pcDNA3 (Invitrogen), pCI (Promega) and PBR231. It may be desirable that the plasmid or naked DNA express cytomegalovirus (CMV) intermediate-early promoter, or bovine growth hormone polyadenylation sequence.
- CMV cytomegalovirus
- a large number of expression vectors can be constructed by incorporating a cDNA sequence encoding an immunogenic polypeptide into a plasmid vector.
- the DNA or RNA segments may be prepared, inserted into vectors, and the vectors cloned according to known procedures, such as the procedures described in Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York, 1.0-19.0 (1989). Gene segments are also available commercially from a number of different suppliers, and inserted into commercially available plasmids. When the sequence of a candidate protein is known, a coding sequence of the polynucleotide can typically be inferred and the corresponding gene segment prepared and isolated.
- the polynucleotide sequence may be fused with other sequences in the vector, such as human tissue plasminogen activator leader peptide.
- the vectors can also include bacterial DNA or naked DNA surrounding the gene for the pathogenic antigen as a foreign sequence motif, increasing the immune response to that gene. See Y. Sato et al., Science 273:352-354 (1996); G. J. Weiner et al., PNAS 94(20): 10833-7 (1997).
- the plasmid may also include other genetic adjuvants, such as genes coding for cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukins, to further multiply the immune response.
- GM-CSF granulocyte-macrophage colony-stimulating factor
- the at least partially coated core particles described above are contacted with polynucleotide material, i.e., DNA or RNA coding for one or more antigens expressed by organisms to be vaccinated against.
- polynucleotide material i.e., DNA or RNA coding for one or more antigens expressed by organisms to be vaccinated against.
- the DNA or RNA material is attached to the surface of the coating as described in U.S. Pat. No. 5,460,831.
- FIG. 13A shows a schematic drawing of the particles of this embodiment, with material (6), such as polynucelotide material coating the core particle (4).
- polynucleotide material may be incorporated into the structure of the core particle.
- the DNA or RNA coding for an epitope expressed on a viral protein coat or capsule can be mixed with a solution of calcium chloride, which can then be mixed with, e.g., a buffer, such as a sodium citrate solution, and a solution of dibasic sodium phosphate.
- a buffer such as a sodium citrate solution
- dibasic sodium phosphate e.g., sodium citrate solution
- the resulting particles will have the DNA or RNA dispersed or impregnated therein.
- a vector containing the DNA or RNA may also be added with one or more of the reactants forming the core particle, as described above.
- a plasmid or other vector containing immunogen-encoding DNA or RNA or naked DNA can be mixed with the calcium chloride solution, so that the calcium phosphate biodegradable matrix forms around the plasmid or naked DNA, which becomes embedded in and/or on the core particle.
- DNA or RNA released from the dissolving material is taken up and expressed by cells, and translated to produce one or more immunogenic polypeptides that are recognized by the humoral and cell-mediated immune system in the same manner as if the antigen had been vaccinated conventionally, but without the risks associated with the administration of live attenuated or killed virus.
- the presence of calcium phosphate particles that have not completely dissolved serves an adjuvanting function for the DNA or RNA vaccine by enhancing the efficacy of the immunogenic protein or proteins expressed by the cells taking up the DNA or RNA.
- Coating of the core particles with a therapeutic protein or peptide is preferably carried out by suspending the core particles in a solution containing a dispersed surface modifying agent, generally a solution of double distilled water containing from about 0.1 to about 30 wt % of the surface modifying agent.
- the cores are maintained in the surface modifying agent solution for a suitable period of time, generally about one hour, and may be agitated, e.g., by rocking or sonication.
- the at least partially coated core particles can be separated from the suspension, including from any unbound surface modifying agent, by centrifugation.
- the at least partially coated core particles can then be resuspended in a solution containing the protein or peptide to be adhered to the at least partially coated core particle.
- a second layer of surface modifying agent may also be applied to the protein or peptide adhered to the particle.
- a protein or peptide may be attached to an unmodified particle surface, although particles at least partially coated with a surface modifying agent have greater loading capacities.
- insulin loading capacities of at least partially coated particles have been found to be about 3 to 4-fold higher than insulin loading capacities of unmodified particle surfaces.
- an increase in particle size may result in a greater loading capacity. For instance, an increase of 150 nm in particle size (relative to a starting size of 450 nm to 600 nm) results in about a 3-fold increase in insulin loading capacity in particles that are at least partially coated with a surface modifying agent.
- FIG. 13C shows a core particle having a surface modifying agent (2), such as polyethylene glycol, impregnated therein.
- the particles may be prepared by adding a surface modifying agent (2) to one or more of the aqueous solutions forming the core particle (4).
- the core particles may optionally be stored at room temperature.
- the particles are subsequently contacted with a therapeutic protein or peptide, such as insulin, and more particularly human insulin, to provide at least a partial coating on the particle as described above.
- FIG. 14 shows a core particle (4) having both a surface modifying agent (2), such as polyethylene glycol, and a material (6), such as therapeutic protein or peptide, more particularly insulin, and even more particularly human insulin, impregnated therein.
- a surface modifying agent (2) such as polyethylene glycol
- a material (6) such as therapeutic protein or peptide, more particularly insulin, and even more particularly human insulin, impregnated therein.
- particles of this embodiment may be prepared is by combining human insulin and/or other desired protein or peptide and a surface modifying agent together to form a solution. This solution is then combined with one or more of the aqueous solutions forming the particle as described above. The resulting particles incorporate calcium phosphate, surface modifying agent, and insulin within the core particle.
- Particles prepared according to this and any other embodiments described herein may be combined with one or more particles prepared according to any other embodiment described herein.
- the composition of the present invention comprising a calcium phosphate core at least partially coated with polyethylene glycol and human insulin may be administered to diabetic patients as an aerosol of the dried particles, or as an aerosol of a solution of the particles in a carrier liquid, such as water.
- the particular insulin dose delivered corresponds to that given intravenously and by other methods, and the dose of particulate insulin given is determined based on the blood glucose levels and supplied dosages of particles in the rat model described herein. Without wishing to be bound to the following dosage ranges, average daily doses of about 0.5 to about 2.0 mg are believed to be appropriate to generate a therapeutic effect in humans.
- a 12.5 mM solution of CaCl 2 is prepared by mixing 1.8378 g of CaCl 2 into 800 mL of sterile GDP water under aseptic conditions until completely dissolved, and the solution diluted to 1 L and filtered.
- a 15.625 mM solution of sodium citrate was prepared by dissolving 0.919 g of sodium citrate into 200 mL of sterile GDP water with mixing using aseptic techniques and filtered.
- a 12.5 mM solution of dibasic sodium phosphate was prepared by dissolving 1.775 g sodium phosphate into 1 L of sterile GDP water with mixing using aseptic techniques and filtered. All solutions were stored at room temperature.
- HSV-2 protein solution and an Epstein-Barr virus (EBV) protein solution were purified from ATCC VR-540 (infected tissue culture fluid and cell lysate).
- the viral suspension was contacted with a lysis buffer (1% IGEPAL CA-630 for HSV-2 and 1% Triton ⁇ 100 for EBV, 10 mM NaCl, 10 mM Tris-HCL, and 1.5 mM MgCl 2 ), vortexed for 1 minute, incubated on ice for 30 minutes, and centrifuged at 1400 rpm for 2 hours at 4° C.
- a lysis buffer 1% IGEPAL CA-630 for HSV-2 and 1% Triton ⁇ 100 for EBV, 10 mM NaCl, 10 mM Tris-HCL, and 1.5 mM MgCl 2
- a suspension of calcium phosphate particles is prepared following the procedures of Example 1, and the particle size and presence of any endotoxin determined.
- Cellobiose glue is applied to the particles by suspending them in a solution of 292 mM cellobiose stock added to the suspension of calcium phosphate particles at a ratio of 1 mL of cellobiose solution to 20 mL of particle suspension. The mixture is gently mixed and allowed to stand overnight. The at least partially coated particles are then contacted with a solution of cell surface proteins of tuberculosis bacilli (provided by the Morehouse School of Medicine), and co-incubated at room temperature or at 4° C. (as desired).
- the resulting particles were characterized by measuring their particle size using a Coulter N4Plus Submicron Particle Sizer, and had an average diameter of ⁇ 1000 nm.
- mice each (for a total of 30 mice) were injected with solutions containing antigen only, calcium phosphate particles only, antigen+Imject (an alum based adjuvant), washed (with PBS three times, with each washing followed by centrifugation at 4500 rpm for 15 minutes at 4° C.) calcium phosphate+antigen, and unwashed calcium phosphate+antigen.
- the total injection volume for each immunization per mouse was 100 ⁇ L.
- TB+Imject 10 ⁇ g of antigen and 50 mg of alum-based Imject were administered per mouse, i.p. (“TB+Imject”).
- Booster immunizations were given at a concentration of 1 ⁇ g approximately 14 days after primary immunization, and blood samples collected and subjected to ELISA about one per month after the booster immunization and about every two months thereafter. The results are provided in FIG. 2 .
- HSV-2 protein solution 1 mL was mixed with 1 mL of PBS (FUV).
- Protein assays were conducted on wash supernatants to determine the percent binding of HSV-2 to the calcium phosphate complexes. Binding was generally >20%.
- Immunization testing was carried out as described in Example 3 above, except that a primary immunization and two booster immunizations were administered approximately one month and three weeks apart, respectively. All immunizations were administered intraperitoneally. Tile amounts administered are provided in the Table below.
- mice were challenged intravaginally with 10 2 PFU of HSV-2 at 30 days after primary immunization in accordance with the methods discussed in Dr. Rouse et al., 1997, to test resistance. Since the stage of estrus can affect susceptibility to HSV infection, mice were given progesterone injection to synchronize the estrus cycle prior to challenge with HSV-2. The results are presented below. Clinic severity at week No. of mice survived/ Post challenge No. of mice challenged 1 2 3 Control 3/5 1 1.3 2 Alum + HSV-2 5/5 0 0 0 CAP + HSV-2 5/5 0 0 0 Note: The mice were observed everyday for vaginal inflammation. Clinic severity was graded as follows: 0. No inflamation; 1. Mild inlflamation; 2. Moderate swelling and redness; 3. Severe inflamation, 4. Paralysis; and 5. Death.
- mice each were immunized by i.p. injection with one of the following antigens: Ova alone, Ova+Alum, Ova+CAP, TB alone, TB+Alum, TB+CAP, HSV-2 alone, HSV-2+Alum, HSV-2+CAP, EBV alone, EBV+Alum, EBV+CAP and CAP alone.
- the concentration of CAP to Alum is 1:100 for the OVA and TB vaccine constructs.
- the concentration of CAP to Alum is equivalent for HSV-2 and EBV vaccine constructs. All mice were immunized with a primary injection and given two or three booster injections at two-week intervals.
- FIGS. 8-11 show different levels of antibodies between the different groups of immunized mice.
- Example 2 50 ⁇ L of the composition prepared in Example 2 was administered through the hypodermic needle to each animal in the NOD test and C57 control groups. 50 ⁇ L of spent buffer solution from the preparation of the calcium phosphate particles was given to the NOD control group, which received no insulin. Glucose levels were checked every hour during the first six hours of treatment. A final glucose level was checked after 24 hours of treatment.
- the test results are plotted in the graph shown in FIG. 15 .
- the data at ⁇ 15 hours represents the glucose level of each mouse before fasting
- the data at ⁇ 1 hours represents the glucose level of each mouse after 17 hours of fasting
- the data at 0 represents the glucose level of each mouse 1 hour after glucose administration
- the data at+1 hour represents the glucose level of each mouse after 1 hour of insulin treatment.
- the test results show that the calcium phosphate/PEG/human insulin particles were effective in controlling glucose levels in the rat up to at least 4 hours after treatment.
- a therapeutic protein or peptide, such as human insulin at final 0.9 mg/mL was incubated with batches of 20 mL PEG-entrapped particle suspension for 1 hour at room temperature by gentle mixing on a rocking platform. Finished particles were washed twice in distilled water and stored either at 4° C. (preferably not longer than 1 month) for lyophilized to dryness for future use. Illustrative particles are shown in FIG. 13C .
- Particles having both a surface modifying agent (2) and a material (6), such as a therapeutic protein or peptide impregnated within the core calcium phosphate particle (4) are shown in FIG. 14 .
- Such particles having human insulin impregnated therein were prepared by adding one mL of 20 mg/mL of human insulin into a 50 mL beaker containing 20 mL of 1% PEG and mixed thoroughly for about 1 min.
- Sodium citrate at 156 mM (0.2 mL) and CaCl 2 at 125 mM concentrations (1 mL) were injected into PEG-human insulin solution simultaneously while stirring.
- One mL of 125 mM Na 2 HPO 4 was added to initiate the particle formation. Stirring was continued for 48 hours at room temperature.
- the resulting particle suspension was sonicated at maximum power setting for 15 minutes. Finished particles were washed twice in distilled water and kept refrigerated at 4° C. (no more than one month) or lyophilized to dryness for further use. Illustrative particles are shown in FIG. 14 .
- Calcium phosphate core particles of the present invention were tested in comparison to calcium phosphate particles manufactured by Superfos Biosector a/s, referred to as “Accurate CAP,” to study the effectiveness of the CAP particles of the present invention as an adjuvant.
- mice Five mice each were immunized by i.p. injection with one of the following antigens: HSV-2+CAP or HSV-2+Accurate CAP. The mice were immunized with a primary injection and given two or three booster injections at two-week intervals. Blood was collected and IgG, IgG1, and IgG2a antibody titers in immunized mice were measured by ELISA. The results are presented in FIGS. 7 A-C, which show different levels of antibodies between the different groups of immunized mice. Of particular importance is the result shown in FIG. 7C .
- FIG. 7C shows that the IgG2a antibody titer for the CAP particles of the present invention triggered a strong IgG2a response.
- the materials to be dispersed throughout the particle can be co-crystallized and impregnated within the particle as described above, and the resulting particles can be coated with the same or different material, using the coating methods described above.
- the core particles may also have a partial coating of one or a mixture of surface modifying agents described above to help adhere material coating the particle to the surface thereof.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Virology (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Pulmonology (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Communicable Diseases (AREA)
- General Chemical & Material Sciences (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Endocrinology (AREA)
- Biophysics (AREA)
- Diabetes (AREA)
- Molecular Biology (AREA)
Abstract
Novel calcium phosphate core particles, methods of making them, and methods of using them as vaccine adjuvants, as cores, as carriers of biologically active material, and as controlled release matrices for biologically active material are disclosed. The core particles may have a surface modifying agent and/or biologically active material, such as antigenic material or natural immunoenhancing factor, polynucleotide material, or therapeutic proteins or peptides, partially coating the particle or impregnated therein. The core particles have a diameter between about 300 nm and about 4000 nm, more particularly between about 300 nm and about 2000 nm, and even more particularly between about 300 nm and about 1000 nm, are substantially spherical in shape, and have a substantially smooth surface
Description
- This application claims benefit of the filing dates of U.S. Provisional Application Ser. Nos. 60/118,356; 60/118,364; and 60/118,355, all filed Feb. 3, 1999, the entire contents of each of which are hereby incorporated by reference.
- 1. Field of the Invention
- The present invention relates to novel calcium phosphate core particles, to methods of making them, and to methods of using them as vaccine adjuvants, as cores or carriers for biologically active material, and as controlled release matrices for biologically active material.
- 2. Description of Related Art
- Nanometer scale particles have been proposed for use as carrier particles, as supports for biologically active molecules, such as proteins, and as decoy viruses. See U.S. Pat. Nos. 5,178,882; 5,219,577; 5,306,508; 5,334,394; 5,460,830; 5,460,831; 5,462,750; and 5,464,634, the entire contents of each of which are hereby incorporated by reference.
- The particles disclosed in the above-referenced patents, however, are generally extremely small, in the 10-200 nm size range. Particles of this size are difficult to make with any degree of consistency, and their morphology is not described in any detail. None of these patents disclose the use of nanoparticles as sustained release matrices. Furthermore, these patents do not disclose the use of calcium phosphate particles as either (1) adjuvants for vaccines or viral decoys, or (2) controlled release matrices for delivery of pharmaceuticals or immunogenic materials.
- There has been a suggestion in the literature to use calcium phosphate particles as vaccine adjuvants, but calcium phosphate particles have generally been considered an unsuitable alternative to other adjuvants due to inferior adjuvanting activity. See, e.g., Goto et al., Vaccine, vol. 15, no. 12/13 (1997). Moreover, the calcium phosphate evaluated was typically microparticulate (>1000 nm diameter) and possessed a rough and oblong morphology, in contrast to the core particles of the present invention.
- Therefore, an important need remains for calcium phosphate core particles useful as core materials or carriers for biologically active moieties which can be produced simply and consistently. A further need remains for calcium phosphate core particles that can be effectively used as adjuvants for vaccines, as cores or carriers for biologically active molecules, and as controlled release matrices.
- There is also a need for calcium phosphate core particles that can be effectively used as supports and matrices for sustained release of polynucelotide material (DNA or RNA) encoding immunogenic polypeptides. Traditional vaccination involves exposing a potential host to attenuated or killed pathogens, or immunogenic components thereof (e.g., proteins or glycoproteins). The basic strategy has changed little since the development of the first smallpox vaccine nearly a century ago, although modern developments permit genetic engineering of recombinant protein vaccines. However, traditional vaccine methodologies may be undesirable as a result of their expense, instability, poor immunogenicity, limited heterogeneity and potential infectivity.
- Polynucleotide vaccination presents a different vaccine methodology, whereby polynucelotide material, such as DNA or RNA, encoding an immunogenic polypeptide is delivered intracellularly to a potential host. The genetic material is taken up and expressed by these cells, leading to both a humoral and a cell-mediated immune response. It is not entirely clear whether DNA vaccines function as a result of integration or simply long-term episomal maintenance.
- Polynucleotide vaccination provides numerous advantages over traditional vaccination. Polynucleotide vaccines eliminate the risk of infection associated with live attenuated viruses, yet advantageously induce both humoral and cell-mediated responses. Polynucleotide vaccines further provide prolonged immunogen expression, generating significant immunological memory and eliminating the need for multiple inoculations. Polynucleotide vaccines are very stable, permitting prolonged storage, transport and distribution under variable conditions. As a further advantage, a single polynucleotide vaccine may be engineered to provide multiple immunogenic polypeptides. Thus, a single DNA vaccine can be used to immunize against multiple pathogens, or multiple strains of the same pathogen. Finally, polynucleotide vaccines are much simpler and less expensive to manufacture than traditional vaccines.
- Polynucleotide vaccines may take various forms. The genetic material can be provided, for example, in combination with adjuvants capable of stimulating the immune response. Administration of the DNA or RNA coated onto microscopic beads has been suggested. See J. J. Donnelly et al., Annu. Rev. Immunol. 15, 617 (1997). Various routes of administration are also possible, and may include, for example, intravenous, subcutaneous and intramuscular administration.
- A desirable immune response to an immunogenic polypeptide is two-fold, involving both humoral and cellular-mediated immunity. The humoral component involves stimulation of B cells to product antibodies capable of recognizing extracellular pathogens, while the cell-mediated component involves T lymphocytes capable of recognizing intracellular pathogens. Cytotoxic T-lymphocytes (CTLs) play an important role in the latter, by lysing virally-infected or bacterially-infected cells. Specifically, CTLs possess receptors capable of recognizing foreign peptides associated with MHC class I and/or class II molecules. These peptides can be derived from endogenously synthesized foreign proteins, regardless of the protein's location or function within the pathogen. Thus, CTLs can recognize epitopes derived from conserved internal viral proteins (J. W. Yewdell et al., Proc. Natl. Acad. Sci. (USA) 82, 1785 (1985); A. R. M. Towsend, et al., Cell 44, 959 (1986); A. J., McMichael et al., J. Gen. Virol. 67, 719 (1986); A. R. M. Towsend and H., Annu. Rev. Immunol. 7, 601 (1989)) and may therefore permit heterologous protection against viruses with multiple serotypes or high mutation rates. Polynucleotide vaccination can stimulate both forms of immune response, and thus is very desirable.
- Efforts to use polynucleotide vaccination have focused on the use of viral vectors to deliver polynucleotides to host cells. J. R. Bennink et al., 311, 578 (1984); J. R. Bennink and J. W. Yewdell, Curr. Top. Microbiol Immunol. 163, 153 (1990); C. K. Stover et al., Nature 351, 456 (1991); A. Aldovini and R. A. Young, Nature 351, 479 (1991); R. Schafer et al., J. Immunol. 149, 53 (1992); C. S. Hahn et al., Proc. Natl. Acad. Sci. (USA) 89, 2679 (1992). However, this approach may be undesirable for several reasons. Retroviral vectors, for example, have restrictions on the size and structure of polypeptides that can be expressed as fusion proteins while maintaining the ability of the recombinant virus to replicate (A. D. Miller, Curr. Top. Microbiol. Immunol. 158, 1 (1992). The effectiveness of vectors such as vaccinia for subsequent immunizations may be compromised by immune responses against vaccinia (E. L. Cooney et al., Lancet 337, 567 (1991)). Also, viral vectors and modified pathogens have inherent risks that may hinder their use in humans (R. R. Redfield et al., New Engl. J. Med. 316, 673 (1987); L. Mascola et al., Arch. Intern. Med. 149, 1569 (1989)). For example, in live vector approaches, highly immunogenic vectors also tend to be highly pathogenic.
- Alternative gene delivery methods have also been explored. Benvenisty, N., and Reshef, L. (PNAS 83, 9551-9555, (1986)) showed that CaCl2 precipitated DNA could be expressed in mice. Plasmid vectors have also been used to produce expression in mouse muscle cells (J. A. Wolff et al., Science 247, 1465 (1990); G. Ascadi et al., Nature 352, 815 (1991)). The plasmids were shown to be maintained episomally and did not replicate. Subsequently, persistent expression has been observed after i.m. injection in skeletal muscle of rats, fish and primates, and cardiac muscle of rats (H. Lin et al., Circulation 82, 2217 (1990); R. N. Kitsis et al., Proc. Natl. Acad. Sci. (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1991); S. Jiao et al., Hum.
Gene Therapy 3, 21 (1992), J. A. Wolff et al., Human Mol Genet. 1, 363 (1992)). WO 90/11092 (Oct. 4, 1990) reported the use of naked polynucleotides to vaccinate vertebrates. - Various routes of administration have been found to be suitable for vaccination using polynucleotide vaccines. Intramuscular administration is thought to be particularly desirable, given the proportionally large muscle mass and its direct accessibility through the skin. See U.S. Pat. No. 5,580,859. Tang et al., (Nature, 356, 152-154 (1992)) disclosed that introduction of gold microprojectiles coated with DNA encoding bovine growth hormone (BGH) into the skin of mice resulted in production of anti-BGH antibodies in the mice. Furth et al., (Analytical Biochemistry, 205, 365-368, (1992)) showed that a jet injector could be used to transfect skin, muscle, fat, and mammary tissues of living animals. WO 93/17706 describes a vaccination method wherein carrier particles are coated with a gene construct and then accelerated into a potential host. Intravenous injection of a DNA:cationic liposome complex in mice has also been reported (Zhu et al., Science 261, 209-211 (Jul. 9, 1993); see also WO 93/24640). Methods for introducing nucleic acids have been reviewed (Friedman, T., Science, 244, 1275-1281 (1989)); see also Robinson et al., (Abstracts of Papers Presented at the 1992 meeting on Modern Approaches to New Vaccines, Including Prevention of AIDS, Cold Spring Harbor, p 92; Vaccine 11, 957 (1993)), where the intra-muscular, intra-venous, and intra-peritoneal administration of avian influenza DNA into chickens was alleged to have provided protection against lethal challenge.
- Reports suggest that polynucleotide vaccination has provided effective protective immunity in various animal models. The immunization of mice against influenza by the injection of plasmids encoding influenza A hemagglutinin has been reported (Montgomery, D. L. et al., 1993, Cell Biol., 12, pp. 777-783), or nucleoprotein (Montgomery, D. L. et al., supra; Ulmer, J. B. et al., 1993, Science, 259, pp. 1745-1749). The first use of DNA immunization for a herpes virus has been reported (Cox et al., 1993, J Virol., 67, pp. 5664-5667). Injection of a plasmid encoding bovine herpes virus 1 (BHV-1) glycoprotein g IV gave rise to anti-g IV antibodies in mice and calves. Upon intranasal challenge with BHV-1, immunized calves showed reduced symptoms and shed substantially less virus than controls. Wang et al., (
P.N.A.S. USA 90, 4156-4160 (May, 1993)) reported on elicitation of immune responses in mice against HIV by intramuscular inoculation with a cloned, genomic (unspliced) HIV gene. However, the level of immune responses achieved was very low, and the system utilized portions of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) promoter and portions of the simian virus 40 (SV40) promoter and terminator. SV40 is known to transform cells, possibly through integration into host cellular DNA. Thus, the system described by Wang et al., may be inappropriate for administration to humans. - It has been suggested to use calcium phosphate particles as agents for transfection of therapeutic polynucleotides in gene therapy. See U.S. Pat. No. 5,460,831. DNA or RNA is attached to the particulate core and delivered to a target cell, resulting in expression of therapeutic proteins. However, this patent does not suggest the use of calcium phosphate particles as supports for DNA or RNA vaccines. To the contrary, this patent indicates that the stimulation of an immunological response during transfection is to be avoided. This patent also fails to suggest the use of calcium phosphate particles as controlled release matrices for genetic material.
- There is also a need for calcium phosphate core particles that can be used effectively used as an inhalable aerosol delivery system for the delivery of therapeutic proteins or peptide agents, and in particular, for delivery of insulin and other hormones.
- For a number of therapeutic agents, delivery of the agent to a patient in need thereof can be difficult. This is particularly true with proteins and peptides, which are difficult or impossible to administer orally, since they are easily digested or hydrolyzed by the enzymes and other components of gastric juices and other fluids secreted by the digestive tract. Injection is often the primary alternative administration method, but is unpleasant, expensive and is not well tolerated by patients requiring treatment for chronic illnesses. In particular, patients who are administered drugs on an out-patient basis, or who self-administer, are more likely to fail to comply with the required administration schedule. A particular group of patients of this type are those suffering from diabetes, who frequently must inject themselves with insulin in order to maintain appropriate blood glucose levels.
- Recently, alternative methods of administration therapeutic agents have been sought, in particular, administration by inhalation of an aerosol containing the therapeutic agent. The lungs can be used effectively to get the therapeutic agent into the bloodstream because they have a very large surface area of very thin tissue. As a result, for some therapeutic agents and delivery systems, the level of agent in the blood can rise as fast as, or faster than, that obtained when the agent is administered by injection beneath the skin. Moreover, the thin lung tissue allows the passage of proteins and peptides into the blood stream without exposing them to the type or level of proteases encountered during oral administration.
- Aerosols containing the therapeutic agent as fine, suspended mists of particles in both liquid and solid form have been investigated. However, preparation of suitable inhalable aerosols can be difficult for therapeutic agents where the blood level of the agent is critical, e.g., with insulin, because the amount of aerosol delivered to the deep lung tissue can be substantially variable, leading to inconsistent dosages of the drug to the patient.
- As a result of this need to provide a reliable inhalable aerosol delivery system, various attempts have been made to develop small, solid particles for the delivery of therapeutic agents via inhalation. For example, an inhalable form of insulin is reportedly under development wherein the insulin is combined with sugar particles of a particular size to make an ultrafine powder that is delivered when it is forced through an inhaler nozzle by a blast of compressed air. See R. F. Service, Science 277:5330 (1997). Another inhalable form of insulin involves relatively large (diameters >5 μm), porous polymer particles (50:50 poly(lactic acid-co-glycolic acid) of low density (ρ<˜0.4 g/cm3) that encapsulate insulin. The particles are believed to penetrate deep into the lung tissue as the result of their low density, yet avoid phagocytosis when in the tissue as the result of their large size. See D. E. Edwards et al., Science, 276:1868 (1997).
- Despite these attempts, there remains a need for an inhalable aerosol delivery system that effectively provides consistent, reliable, therapeutic blood levels of protein or peptide therapeutic agents, and in particular, of insulin and other hormones. It is particularly desirable that any carrier material be very small and easily biodegradable, in. order to avoid complications resulting from inhalation of particulates.
- The present invention relates to novel calcium phosphate (“CAP”) core particles, to methods of making them, and to methods of using them as vaccine adjuvants, as cores or carriers for biologically active material, and as controlled release matrices for biologically active material. More particularly, the invention relates to the core particles having a diameter between about 300 nm and about 4000 nm, more particularly between about 300 nm and about 1000 nm, and having a substantially spherical shape and a substantially smooth surface.
- The present invention also relates to the novel calcium phosphate core particles having a material coated on the surface of the core particles, and/or dispersed or impregnated within the core particles, to methods of making them, and to methods of using them. Non-limiting examples of a suitable material to be at least partially coated on the surface of the core particle or impregnated therein include one or more of the following: antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides.
- The present invention also relates to combinations of this novel core particle having at least a partial coating of a surface modifying agent or a surface modifying agent impregnated therein or both. If one or more of the above-mentioned materials (e.g., antigenic material, natural immunoenhancing factors, polynucleotide material, or therapeutic proteins or peptides) is at least partially coated on the particle, the material may be optionally attached to the particle by the surface modifying agent, which acts as a biological ‘glue,’ such as cellobiose or polyethylene glycol (PEG).
- The invention also relates to combinations of this novel core particle with antigenic material, natural immunoenhancing factors, polynucleotide material, or therapeutic proteins or peptides integrated into the core particle, forming a controlled release matrix that releases the material into a patient over time.
- One embodiment of the present invention relates to methods of adjuvanting vaccines, whether live, killed, attenuated, a decoy virus, or made from core particles at least partially coated with microbial antigenic material, or combinations thereof, by administering the novel uncoated core particles or core particles coated with natural immunoenhancing factor to a patient in need of vaccination either alone or in combination or conjunction with administration of the vaccine. The core particles are sufficiently small to be easily transportable to various tissues throughout the body, and are biodegradable as well.
- The invention also relates to methods of vaccinating patients in need thereof by administering the novel core particle in combination or in conjunction with an antigenic material or natural immunoenhancing factor, wherein the antigenic material or natural immunoenhancing factor is at least partially coated on the core particle and/or integrated therein, as described in more detail below. The calcium phosphate core particles of this embodiment significantly increase the efficacy of the vaccines with which they are administered, by enhancing the magnitudes, qualities, and/or durations of the immune responses.
- In another embodiment, the invention also relates to a polynucleotide vaccine having polynucleotide material at least partially coated on the novel core particle and/or impregnated therein. Contrary to conventional wisdom, the present inventors have discovered novel calcium phosphate particles that can be effectively used as supports and matrices for sustained release of DNA or RNA encoding immunogenic polypeptides. The present inventors have discovered that a DNA or RNA vaccine can be prepared that uses a biodegradable matrix of calcium phosphate, that functions as a sustained release composition, conferring long lasting immunity, and that is, in effect, self-adjuvanting. The primary intent is that the respective protein translation products produced by the present invention would immediately be available both intracellularly and extracellularly, to elicit enhanced humoral and cellular immune responses.
- When administered as a polynucleotide vaccine, the calcium phosphate in the core particles of the present invention biodegrades, releasing into the surrounding tissue polynucelotide material (DNA or RNA) coding for immunogenic polypeptides. Without wishing to be bound to any theory, it is believed that cells in the patient take up the DNA or RNA and express it as immunogenic proteins, which are then presented to B cells and T cells of the immune system, resulting in both a humoral and cell-mediated response similar to that obtained using live attenuated virus, but without the risks of pathogenicity and without the loss of immunogenicity associated with live virus. When the DNA or RNA is impregnated or dispersed within the calcium phosphate core particle, the gradual release of genetic material by the dissolution of the calcium phosphate matrix provides longer lasting immune responses than does administration of a conventional DNA or RNA vaccine.
- In addition, while not wishing to be bound by any theory, it is believed that the presence of calcium phosphate core particles enhances the immune response to the antigenic proteins produced by the cells that take up and express the DNA or RNA, further multiplying the protective effect of the vaccine. The size of the core particles of the invention allows them to migrate through the body as the calcium phosphate gradually degrades, thereby transporting the DNA/RNA to different tissues in the body, and enlisting large numbers of different tissues at different locations in the production of antigenic proteins.
- In still a further embodiment, this invention relates to an inhalable, aerosolizable therapeutic composition, having a therapeutic protein or peptide material either at least partially coated on the novel calcium phosphate core particle and/or impregnated therein. The surface of the core particle may be at least partially coated with a surface modifying agent that bonds proteins or peptides to the core particle without denaturing the proteins or peptides. A therapeutic protein or peptide, in particular a hormone such as insulin, is disposed on the resulting coated core particle.
- The present invention also relates to methods of treating medical conditions resulting from protein or peptide deficiencies by administering effective amounts of the core particles of this particular embodiment to a patient in need thereof via inhalation into the lungs. The therapeutic compositions of the present invention are highly stable, and exhibit enhanced bioavailability. These therapeutic compositions also exhibit preferable biodynamics including controlled release of therapeutic polypeptides or proteins.
- The present invention also relates to methods of preparing the novel calcium phosphate core particles described above, such as the core particles for use individually, the core particles having material at least partially coated on the surface, and the core particles having material impregnated therein.
- The above discussed and many other features and attendant advantages of the present invention are detailed below.
-
FIGS. 1A and 1B are photomicrographs of the calcium phosphate core particles according to one embodiment of the present invention. -
FIG. 2 presents a series of graphs showing the ELISA results for a calcium phosphate—tuberculosis antigen conjugate according to one embodiment of the present invention.FIG. 2A shows ELISA results three weeks after primary vaccination.FIG. 2B shivs ELISA results seven weeks after primary vaccination.FIG. 2C shows ELISA results three months after primary vaccination.FIG. 2D shows ELISA results five months after primary vaccination. -
FIG. 3 presents a series of graphs showing the ELISA results for a calcium phosphate—influenza antigen conjugate according to one embodiment of the present invention.FIG. 3A shows ELISA results three weeks after primary vaccination.FIG. 3B shows ELISA results eight weeks after primary vaccination.FIG. 3C shows ELISA results ten weeks after primary vaccination. -
FIG. 4 presents a series of graphs showing ELISA results for a calcium phosphate—herpes simplex 2 antigen conjugate according to one embodiment of the present invention.FIG. 4A shows ELISA results two weeks after primary vaccination.FIG. 4B shows ELISA results four weeks after primary vaccination.FIG. 4C shows ELISA results five weeks after primary vaccination. -
FIG. 5 is a graph showing ELISA and neutralization assay results for a calcium phosphate—herpes simplex 2 antigen conjugate according to one embodiment of the present invention. -
FIG. 6 is a graph showing ELISA results for a calcium phosphate—human. immunodeficiency virus antigen conjugate according to one embodiment of the present invention. -
FIG. 7 presents a series of graphs showing ELISA results for a calcium phosphate-herpes simplex 2 antigen conjugate according to one embodiment of the present invention compared to the ELISA results for a calcium phosphate-herpes simplex 2 antigen conjugate made from Accurate CAP, which is produced by Superfos Biosector a/s.FIG. 7A shows ELISA results with an IgG antibody titer.FIG. 7B shows ELISA results with an IgG1 antibody titer.FIG. 7C shows ELISA results with an IgG2a antibody titer. -
FIG. 8 presents a series of graphs showing the ELISA results for a calcium phosphate-Epstein-Barr virus antigen conjugate according to one embodiment of the present invention.FIG. 8A shows ELISA results with an IgG antibody titer.FIG. 8B shows ELISA results with an IgG2a antibody titer.FIG. 8C shows ELISA results with an IgG1 antibody titer.FIG. 8D shows ELISA results with an IgE antibody titer. -
FIG. 9 presents a series of graphs showing the ELISA results for a calcium phosphate-herpes simplex 2 antigen conjugate according to one embodiment of the present invention.FIG. 9A shows ELISA results with an IgG antibody titer.FIG. 9B shows ELISA results with an IgG2a antibody titer.FIG. 9C shows ELISA results with an IgG1 antibody titer.FIG. 9D shows ELISA results with an IgE antibody titer. -
FIG. 10 presents a series of graphs showing the ELISA results for a calcium phosphate-tuberculosis antigen conjugate according to one embodiment of the present invention.FIG. 10A shows ELISA results with an IgG antibody titer.FIG. 10B shows ELISA results with an IgG2a antibody titer.FIG. 10C shows ELISA results with an IgG1 antibody titer.FIG. 10D shows ELISA results with an IgE antibody titer. -
FIG. 11 presents a series of graphs showing the ELISA results for a calcium phosphate-ovalbumin antigen conjugate according to one embodiment of the present invention.FIG. 11A shows ELISA results with an IgG antibody titer.FIG. 11B shows ELISA results with an IgG2a antibody titer.FIG. 11C shows ELISA results with an IgG1 antibody titer.FIG. 11D shows ELISA results with an IgE antibody titer. -
FIG. 12 is a schematic drawing showing a calcium phosphate core particle (4) both coated with antigenic material or natural immunoenhancing factor (8) and having antigenic material or natural immunoenhancing factor (8) impregnated therein. -
FIG. 13 is a series of schematic drawings showing embodiments having a calcium phosphate core particle (4) coated with material (6), such as antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides, or having material (6) impregnated therein.FIG. 13A shows a core particle coated directly with material (6).FIG. 13B shows a core particle (4) coated with surface modifying agent (2), such as polyethylene glycol or cellobiose, and a having a material (6) adhered to the surface modifying agent (2).FIG. 13C shows a calcium phosphate core particle (4) having a surface modifying agent (2), such as polyethylene glycol or cellobiose incorporated therein and having a material (6) at least partially coating core particle (4). -
FIG. 14 is a schematic drawing showing a calcium phosphate core particle (4) having both a surface modifying agent (2), such as polyethylene glycol or cellobiose and a material (6), such as antigenic material, natural immunoenhancing factors, polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides incorporated therein. -
FIG. 15 is a graph showing blood glucose levels over time before and after administration of a calcium phosphate core particle having insulin coated on the surface. - The present invention relates to novel calcium phosphate core particles, to methods of making them, and to methods of using the core particles as vaccine adjuvants, as cores or carriers for biologically active material, and as controlled release matrices for biologically active material. The present invention also relates to the novel calcium phosphate core particles having a material at least partially coated on the surface of the core particles, or dispersed or impregnated within the core particles, to methods of making them, and to methods of using them. Non-limiting examples of a suitable material to be at least partially coated on the surface of the core particle or impregnated therein include antigenic material, natural immunoenhancing factor(s), polynucleotide material encoding immunogenic polypeptides, or therapeutic proteins or peptides.
- The core particles of the present invention may optionally have at least a partial coating of a surface modifying agent, which may help adhere the above-mentioned material to the core particle, or may have a surface modifying agent impregnating the particle, or both.
- One embodiment of the present invention relates to calcium phosphate core particles suitable for adjuvanting vaccines, the particles being administerable in their uncoated state. The core particles are also suitable for use as supports for microbial antigenic material or natural immunoenhancing factor (as cores to be at least partially coated with microbial antigenic material or natural immunoenhancing factor) and for providing a controlled or sustained release matrix for biologically active molecules. As used herein, the term “antigenic material” or “antigen” means an immunogenic antigen product obtained from a bacteria, virus, or fungus, and containing one or more antigenic determinants. Examples of antigenic material as this term is used herein include one or more portions of the protein coat, protein core, or functional proteins and peptides of a virus, such as Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human papilloma virus (HPV), herpes simplex virus (HSV), pox virus, influenza, or other virii, or immunogenic proteins obtained from bacteria, such as tuberculosis (TB), staphylococcal, streptococcal, clostridium, pseudomonas, or coliform bacterial antigens, or fungi, such as candida and other saccharomyces. The binding activity of calcium phosphate core particles allows a high loading capacity for these different types of proteins.
- The particles of the present invention can also be coated (with or without an intermediate coating of a surface modifying agent) or impregnated with natural immunoenhancing factors. These are typically proteins or peptides that function as natural adjuvants, stimulating the response of the immune system to antigenic challenge by a vaccine antigen. Suitable natural immunoenhancing factors include interleukins, including those already recognized to have immunoenhancing activity, such as interleukin-2 and interleukin-12, and those discovered in the future to have such activity.
- Another embodiment of the present invention relates to calcium phosphate core particles modified to function as polynucleotide vaccines, having DNA or RNA encoding immunogenic polypeptides at least partially coated on the surface of the core particles or at least partially impregnated therein. Exemplary polynucleotides include those encoding immunogenic epitopes for influenza, malaria, colon cancer cells; hepatitis B, human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), cutaneous T cell lymphoma, herpes simplex, tick born encephalitis, rabies, rotavirus, tuberculosis, Epstein-Barr virus, human papilloma virus, and hepatomavirus. When administered to a patient, the core particle biodegrades and the DNA or RNA is taken up and expressed by the cells and translated to produce one or more immunogenic polypeptides that are recognized by the immune system.
- Another embodiment of the present invention relates to calcium phosphate core particles that deliver therapeutic proteins or peptides, and in particular, a hormone, such as insulin, to a patient in need thereof The core particles are administerable via inhalation.
- I. Core Particles
- The calcium phosphate core particles of the present invention have an average particle size between about 300 nm and about 4000 nm, more particularly, between about 300 nm and about 2000 nm. For the applications described herein, an average particle size of between about 300 nm and 1000 nm is sufficient and desirable. The core particles of the present invention have a morphology that is generally and substantially spherical in shape and a surface that is substantially smooth.
- The term “substantially smooth” is used herein to mean essentially no surface features or irregularities having a size of 100 nm or larger. The core particles may be faceted or angular and still fall within this definition, as long as the facets do not contain many surface irregularities of the type described above. The term “substantially spherical” is used herein to refer to particles that are substantially round or oval in shape, and includes particles that are unfaceted and smooth, or that have very few facets, as well as particles that are polyhedral having several or numerous facets. Substantially smooth, substantially spherical particles according to the invention are visible in scanning electron micrographs and shown in
FIGS. 1A and 1B . - The following table provides a comparison between the calcium phosphate core particles of the present invention and calcium phosphate particles manufactured by Superfos Biosector a/s, referred to as “Accurate CAP” in FIGS. 7A-C. The table shows that the calcium phosphate core particles of the present invention are small, smooth and ovoid, whereas Superfos Accurate CAP particles are large, jagged and crystalline.
BioSante Pharmaceuticals, Inc. Superfos Biosector a/s CAP CAP pH 6.2-6.8 6.49 Size <1000 nm >3000 nm Morphology Smooth ovoid shape Jagged crystalline shape Antibody response: IgG See FIG. 7A See FIG. 7A IgG1 See FIG. 7B See FIG. 7B IgG2a See FIG. 7C See FIG. 7C - The calcium phosphate core particles of the present invention are typically prepared as a suspension in aqueous medium by reacting a soluble calcium salt with a soluble phosphate salt, and more particularly, by reacting calcium chloride with sodium phosphate under aseptic conditions. Initially, an aqueous solution of calcium chloride having a concentration between about 5 mM and about 100 mM is combined by mixing with an aqueous solution of a suitable distilled water-based solution of sodium citrate, having a concentration between about 5 mM and about 100 mM. The presence of sodium citrate contributes to the formation of an electrostatic layer around the core particle, which helps to stabilize the attractive and repulsive forces between the core particles, resulting in physically stable calcium phosphate core particles.
- An aqueous solution of dibasic sodium phosphate having a concentration between about 5 mM and about 100 mM is then mixed with the calcium chloride/sodium citrate solution. Turbidity generally forms immediately, indicating the formation of calcium phosphate core particles. Mixing is generally continued for at least about 48 hours, or until a suitable core particle size has been obtained, as determined by sampling the suspension and measuring the core particle size using known methods. The core particles may be optionally stored and allowed to equilibrate for about seven days at room temperature to achieve stability in size and pH prior to further use.
- In one embodiment, the calcium phosphate core particles of the present invention can be used without further modification as vaccine adjuvants. For instance, the core particles may be uncoated and can be administered in a dosage of about 1 μg to about 1000 μg per kilogram of total body weight in conjunction with killed, attenuated, or live vaccines, with decoy viruses, or with core particles at least partially coated with microbial antigenic material, such as those described above. The killed, live, or attenuated vaccines, decoy viruses, or antigen-coated core particles may be administered in the same solution as, or in a different solution from, that of the uncoated particles.
- In another embodiment, the core particles of the present invention can also be at least partially coated with material, wherein the material is disposed on the surface of the core particle and optionally held in place by a surface modifying agent sufficient to bind the material to the core particle without denaturing the material. Non-limiting examples of the material disposed on the surface of the core particles include antigenic material or natural immunoenhancing factor, polynucleotide material, or therapeutic proteins or peptides.
- Surface modifying agents suitable for use in the present invention include substances that provide a threshold surface energy to the core particle sufficient to bind material to the surface of the core particle, without denaturing the material. Example of suitable surface modifying agents include those described in U.S. Pat. Nos. 5,460,830, 5,462,751, 5,460,831, and 5,219,577, the entire contents of each of which are incorporated herein by reference. Non-limiting examples of suitable surface modifying agents may include basic or modified sugars, such as cellobiose, or oligonucleotides, which are all described in U.S. Pat. No. 5,219,577. Suitable surface modifying agents also include carbohydrates, carbohydrate derivatives, and other macromolecules with carbohydrate-like components characterized by the abundance of —OH side groups, as described, for example, in U.S. Pat. No. 5,460,830. Polyethylene glycol (PEG) is a particularly suitable surface modifying agent.
- The core particles may be at least partially coated by preparing a stock solution of a surface modifying agent, such as cellobiose or PEG (e.g., around 292 mM) and adding the stock solution to a suspension of calcium phosphate core particles at a ratio of about 1 mL of stock solution to about 20 mL of particle suspension. The mixture can be swirled and allowed to stand overnight to form at least partially coated core particles. The at least partially coated core particles are administerable alone or in conjunction with one or more of the materials described below. Generally, this procedure will result in substantially complete coating of the particles, although some partially coated or uncoated particles may be present.
- II. Antigenic Material or Natural Immunoenhancing Factor
- In one embodiment, the uncoated core particles or the core particles at least partially coated with surface modifying agent are then contacted with antigenic material or natural immunoenhancing factor, to produce particles having antigenic material or natural immunoenhancing factor at least partially coating the core particle.
FIG. 12 is a schematic drawing of the particles of this embodiment, illustrating antigenic material or natural immunoenhancing factor (8) both coating the core particle (4) and incorporated within the core particle (4) (as will be discussed below). Antigen purified from viral coat or capsule proteins, or from cell surfaces of bacteria or fungi, can be obtained or purified using methods that are known in the art, or can be obtained commercially. For example, viral particles are obtained by infecting transforming host cell lines with the virus, and after a suitable incubation period, centrifuging the cell suspension and sonicating the resulting suspension at high power for several minutes to break open the cells, and again centrifuging the broken cell suspension. The supernatant containing virus can then be stored for further processing and protein purification using techniques familiar to those skilled in the art. Bacterial and fungal cell membrane antigens can be obtained by culturing and lysing the desired organisms and separating the desired antigenic protein fractions using techniques known in the art. - The antigen-coated particles of the invention are not produced by methods requiring the denaturing of the protein coating of a viral particle, removal of the core viral genetic material, and renaturing of the protein coating around a substitute core. Instead, the antigen-coated particles of the invention result from attachment of individual portions of protein coating to a calcium phosphate core. As a result, the particles of the invention-are not believed to function as “decoy viruses” per se, as described in several of the patents cited above.
- Instead, the particles of the invention can be more potent immunogenically than can a decoy virus, since only immunogenic portions of proteins need be attached to the particles. This increases the likelihood, for a given concentration of particles, that an antigenic epitope on the particle will elicit an immune response. In addition, the particles of the invention can be used to provide a broader spectrum of protection, since immunogenic material from several different pathogens can be attached to the surface of a single particle, or to the surfaces of different particles administered substantially simultaneously. These advantages are not obtained with the viral decoy particles described in the above-identified patents.
- In addition to an antigen coating or in the alternative, the calcium phosphate core particles of the present invention can be prepared as controlled release particles for the sustained release of antigenic material or natural immunoenhancing factor over time, wherein the antigenic material or natural immunoenhancing factor (8) is incorporated into the structure of the core particle (4), shown in
FIG. 12 . This is done by mixing the aqueous calcium chloride solution with the antigenic material or natural immunoenhancing factor to be incorporated prior to combining and mixing with either the sodium citrate or dibasic sodium phosphate solutions, to co-crystallize the calcium phosphate core particles with the antigenic material or natural immunoenhancing factor. The antigenic material may consist of an immunogenic antigen product obtained from a bacteria, virus, or fungus, and containing one or more antigenic determinants, as described in detail above. The natural immunoenhancing factor may consist of proteins or peptides that function as a natural adjuvant, such as interleukins, particularly interleukin-2 and interleukin-12, also described in detail above. - III. Polynucleotide Material
- If polynucleotide material is coated onto and/or incorporated within the core particle, the particles function as a controlled release matrix for the DNA or RNA. The DNA or RNA that is at least partially coated onto or incorporated within the core particles may be selected from a wide variety of DNA or RNA sequences that encode epitopes of one or more immunogenic polypeptides, and thus can be used as the active ingredient in a DNA or RNA vaccine. Antisense fragments may also be used. Exemplary polynucleotides include those encoding immunogenic epitopes for influenza, malaria, colon cancer cells, hepatitis B, human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), cutaneous T cell lymphoma, herpes simplex, tick born encephalitis, rabies, rotavirus, tuberculosis, Epstein-Barr virus, human papilloma virus, and hepatomavirus.
- The polynucleotide can be naked or inserted into a plasmid vector. Suitable plasmids are known to those skilled in the art, and typically include pcDNA3 (Invitrogen), pCI (Promega) and PBR231. It may be desirable that the plasmid or naked DNA express cytomegalovirus (CMV) intermediate-early promoter, or bovine growth hormone polyadenylation sequence. A large number of expression vectors can be constructed by incorporating a cDNA sequence encoding an immunogenic polypeptide into a plasmid vector. The DNA or RNA segments may be prepared, inserted into vectors, and the vectors cloned according to known procedures, such as the procedures described in Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York, 1.0-19.0 (1989). Gene segments are also available commercially from a number of different suppliers, and inserted into commercially available plasmids. When the sequence of a candidate protein is known, a coding sequence of the polynucleotide can typically be inferred and the corresponding gene segment prepared and isolated.
- The polynucleotide sequence may be fused with other sequences in the vector, such as human tissue plasminogen activator leader peptide. The vectors can also include bacterial DNA or naked DNA surrounding the gene for the pathogenic antigen as a foreign sequence motif, increasing the immune response to that gene. See Y. Sato et al., Science 273:352-354 (1996); G. J. Weiner et al., PNAS 94(20): 10833-7 (1997). Moreover, the plasmid may also include other genetic adjuvants, such as genes coding for cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukins, to further multiply the immune response.
- To form core particles having at least a partial coating of polynucleotide material, the at least partially coated core particles described above are contacted with polynucleotide material, i.e., DNA or RNA coding for one or more antigens expressed by organisms to be vaccinated against. When the core particles are coated, the DNA or RNA material is attached to the surface of the coating as described in U.S. Pat. No. 5,460,831.
FIG. 13A shows a schematic drawing of the particles of this embodiment, with material (6), such as polynucelotide material coating the core particle (4). - In addition to a polynucleotide coating or in the alternative, polynucleotide material may be incorporated into the structure of the core particle. For example, the DNA or RNA coding for an epitope expressed on a viral protein coat or capsule can be mixed with a solution of calcium chloride, which can then be mixed with, e.g., a buffer, such as a sodium citrate solution, and a solution of dibasic sodium phosphate. The resulting particles will have the DNA or RNA dispersed or impregnated therein. A vector containing the DNA or RNA may also be added with one or more of the reactants forming the core particle, as described above. For example, a plasmid or other vector containing immunogen-encoding DNA or RNA or naked DNA can be mixed with the calcium chloride solution, so that the calcium phosphate biodegradable matrix forms around the plasmid or naked DNA, which becomes embedded in and/or on the core particle.
- The impregnated or coated core particle fragments can be separated from the production mixture and stored for further use. Storage can be by any conventional methods for storing gene segments or antisense fragments. For example, the core particles may be lyophilized or stored as a suspension in a compatible solution.
- A typical polynucleotide vaccine produced according to the present invention contains about 0.5 to 500 micrograms of DNA or RNA material. When administered, the core particles are combined with a pharmaceutically acceptable carrier solution or other excipient. The dose will vary with the route of administration, the frequency of treatment, and other patient characteristics. Typical vaccination dosages include from about 0.1 mL to 2 mL of a vaccine containing about 0.5 to 500 micrograms of DNA or RNA material. Because the core particle supporting the DNA or RNA is biodegradable calcium phosphate, DNA or RNA that may impregnated therein is slowly released over time as the particles dissolve under physiological conditions. DNA or RNA released from the dissolving material is taken up and expressed by cells, and translated to produce one or more immunogenic polypeptides that are recognized by the humoral and cell-mediated immune system in the same manner as if the antigen had been vaccinated conventionally, but without the risks associated with the administration of live attenuated or killed virus. Moreover, the presence of calcium phosphate particles that have not completely dissolved serves an adjuvanting function for the DNA or RNA vaccine by enhancing the efficacy of the immunogenic protein or proteins expressed by the cells taking up the DNA or RNA.
- IV. Therapeutic Protein or Peptide
- In still a further embodiment, the at least partially coated core particles described above support a therapeutically effective protein or peptide. In addition, or in the alternative, the calcium phosphate core particles of the present invention can be prepared as controlled release particles for the sustained release of the therapeutic protein or peptide over time, wherein the therapeutic protein or peptide is incorporated into the structure of the core particle.
- The core particles that are at least partially coated and/or impregnated with a therapeutic protein or peptide may function as an inhalable aerosol. This protein or peptide may be any therapeutically effective protein or peptide, and in particular may be a hormone, such as insulin, especially human insulin. Core particles coated or impregnated with a material (6), such as a therapeutic protein or peptide, and more particularly human insulin, are shown in
FIGS. 13 and 14 . - Coating of the core particles with a therapeutic protein or peptide is preferably carried out by suspending the core particles in a solution containing a dispersed surface modifying agent, generally a solution of double distilled water containing from about 0.1 to about 30 wt % of the surface modifying agent. The cores are maintained in the surface modifying agent solution for a suitable period of time, generally about one hour, and may be agitated, e.g., by rocking or sonication. The at least partially coated core particles can be separated from the suspension, including from any unbound surface modifying agent, by centrifugation. The at least partially coated core particles can then be resuspended in a solution containing the protein or peptide to be adhered to the at least partially coated core particle. Optionally, a second layer of surface modifying agent may also be applied to the protein or peptide adhered to the particle.
- In another embodiment, a protein or peptide may be attached to an unmodified particle surface, although particles at least partially coated with a surface modifying agent have greater loading capacities. For example, insulin loading capacities of at least partially coated particles have been found to be about 3 to 4-fold higher than insulin loading capacities of unmodified particle surfaces. Additionally, an increase in particle size may result in a greater loading capacity. For instance, an increase of 150 nm in particle size (relative to a starting size of 450 nm to 600 nm) results in about a 3-fold increase in insulin loading capacity in particles that are at least partially coated with a surface modifying agent.
- Another embodiment that facilitates higher loading capacities is schematically illustrated in
FIG. 13C , which shows a core particle having a surface modifying agent (2), such as polyethylene glycol, impregnated therein. The particles may be prepared by adding a surface modifying agent (2) to one or more of the aqueous solutions forming the core particle (4). The core particles may optionally be stored at room temperature. To obtain at least partially coated particles, the particles are subsequently contacted with a therapeutic protein or peptide, such as insulin, and more particularly human insulin, to provide at least a partial coating on the particle as described above. - A further embodiment facilitating higher loading capacities is illustrated in
FIG. 14 , which shows a core particle (4) having both a surface modifying agent (2), such as polyethylene glycol, and a material (6), such as therapeutic protein or peptide, more particularly insulin, and even more particularly human insulin, impregnated therein. One way in which particles of this embodiment may be prepared is by combining human insulin and/or other desired protein or peptide and a surface modifying agent together to form a solution. This solution is then combined with one or more of the aqueous solutions forming the particle as described above. The resulting particles incorporate calcium phosphate, surface modifying agent, and insulin within the core particle. Particles prepared according to this and any other embodiments described herein may be combined with one or more particles prepared according to any other embodiment described herein. - In a more particular embodiment, the composition of the present invention comprising a calcium phosphate core at least partially coated with polyethylene glycol and human insulin may be administered to diabetic patients as an aerosol of the dried particles, or as an aerosol of a solution of the particles in a carrier liquid, such as water. The particular insulin dose delivered corresponds to that given intravenously and by other methods, and the dose of particulate insulin given is determined based on the blood glucose levels and supplied dosages of particles in the rat model described herein. Without wishing to be bound to the following dosage ranges, average daily doses of about 0.5 to about 2.0 mg are believed to be appropriate to generate a therapeutic effect in humans.
- Incorporating a therapeutic protein or peptide into the particle may be accomplished by mixing an aqueous calcium chloride solution with the therapeutic protein or peptide to be incorporated prior to combining and mixing with either the sodium citrate or dibasic sodium phosphate solutions, to co-crystallize the calcium phosphate core particles with the therapeutic protein or peptide.
- The particles, vaccines, and pharmaceutical compositions of this invention may be suitably administered to any patient in need thereof, namely to any species of animal that suffers or can suffer from the disease conditions described herein, more particularly mammals, and even more particularly humans.
- The various embodiments of the invention can be more clearly understood by reference to the following nonlimiting examples.
- A 12.5 mM solution of CaCl2 is prepared by mixing 1.8378 g of CaCl2 into 800 mL of sterile GDP water under aseptic conditions until completely dissolved, and the solution diluted to 1 L and filtered. A 15.625 mM solution of sodium citrate was prepared by dissolving 0.919 g of sodium citrate into 200 mL of sterile GDP water with mixing using aseptic techniques and filtered. A 12.5 mM solution of dibasic sodium phosphate was prepared by dissolving 1.775 g sodium phosphate into 1 L of sterile GDP water with mixing using aseptic techniques and filtered. All solutions were stored at room temperature.
- The calcium chloride solution was combined with the sodium citrate solution and thoroughly mixed. Subsequently, the sodium phosphate solution was added with mixing. Turbidity appeared immediately as particles began to form. The suspension was allowed to mix for several minutes and was sampled for endotoxin testing using aseptic technique. Mixing was continued for about 48 hours under a laminar flow hood. Following mixing, the particles were sonicated on a high power setting for about 30 minutes at room temperature, tested for endotoxin concentration and pH and characterized as to particle size with a Coulter N4Plus Submicron Particle Sizer. Photomicrographs of particles prepared in this way are shown in
FIGS. 1A and 1B . Following preparation the particles were allowed to equilibrate for approximately seven days before use. - An HSV-2 protein solution and an Epstein-Barr virus (EBV) protein solution were purified from ATCC VR-540 (infected tissue culture fluid and cell lysate). The viral suspension was contacted with a lysis buffer (1% IGEPAL CA-630 for HSV-2 and 1% Triton×100 for EBV, 10 mM NaCl, 10 mM Tris-HCL, and 1.5 mM MgCl2), vortexed for 1 minute, incubated on ice for 30 minutes, and centrifuged at 1400 rpm for 2 hours at 4° C. The resulting supernatant was then contacted with a second lysis buffer (1 mM PMSF, 1% IGEPAL CA-630 for HSV-2 and 1% Triton×100 for EBV, 100 mM NaCl, 100 mM Tris-HCL, and 3 mM MgCl2), incubated on ice for 30 minutes, and centrifuged at 1400 rpm for 2 hours. The supernatant was then dialyzed against 2 L of 0.9% saline overnight, lyophilized and resuspended in 1 mL PBS.
- 25 mL of 12.5 mM calcium chloride, 5 mL of 15.625 mM sodium citrate, and 25 mL of 12.5 mM dibasic sodium phosphate solutions were prepared as described in Example 1. The calcium chloride solution was mixed with 1.3 mL of purified HSV-2 protein prepared according to Example 2, which mixing was continued for about 1 minute. 5 mL of sodium citrate was added to the calcium chloride/HSV-2 mixture and allowed to mix for 1 minute. 25 mL of dibasic sodium phosphate was added to the mixture, which immediately becomes turbid, indicating the formation of particles. The mixture is stirred at a moderate speed for 48 to 96 hours, or until the particle size is less than 1000 nm, as determined using a Coulter N4Plus Submicron Particle Sizer, and sonicated. After preparation the particles were stored for approximately seven days before use to allow equilibration of particles to reach size stability.
- The resulting particles, containing HSV-2 protein dispersed therein, can be administered as a sustained release vaccine in dosages of about 1 μg to about 250 [μg per kg of body weight.
- A suspension of calcium phosphate particles is prepared following the procedures of Example 1, and the particle size and presence of any endotoxin determined. Cellobiose glue is applied to the particles by suspending them in a solution of 292 mM cellobiose stock added to the suspension of calcium phosphate particles at a ratio of 1 mL of cellobiose solution to 20 mL of particle suspension. The mixture is gently mixed and allowed to stand overnight. The at least partially coated particles are then contacted with a solution of cell surface proteins of tuberculosis bacilli (provided by the Morehouse School of Medicine), and co-incubated at room temperature or at 4° C. (as desired).
- The resulting particles were characterized by measuring their particle size using a Coulter N4Plus Submicron Particle Sizer, and had an average diameter of <1000 nm.
- The efficacy of the particles was tested as follows. Six mice each (for a total of 30 mice) were injected with solutions containing antigen only, calcium phosphate particles only, antigen+Imject (an alum based adjuvant), washed (with PBS three times, with each washing followed by centrifugation at 4500 rpm for 15 minutes at 4° C.) calcium phosphate+antigen, and unwashed calcium phosphate+antigen. The total injection volume for each immunization per mouse was 100 μL.
- For the injection of antigen only, the first immunization contained 10 μg of antigen administered intraperitoneally (i.p.), and the second injection contained 10 μg of antigen (“TB only”).
- For the injection of calcium phosphate particles only, 0.46 mg of this concentrated solution of particles were administered per mouse (“CAP only”).
- For the injection of antigen+Imject, 10 μg of antigen and 50 mg of alum-based Imject were administered per mouse, i.p. (“TB+Imject”).
- For the washed calcium phosphate particles+antigen, 10 μg of antigen was coated onto 1.0 mg of calcium phosphate particles, and after washing with PBS, centrifugation, precipitation, and resuspension (three times) was injected i.p. (“Washed CAP-TB”).
- For the unwashed calcium phosphate particles+antigen, 10 μg of antigen was coated on 1.0 mg calcium phosphate particles and administered i.p., without further treatment (“Unwashed CAP-TB”).
- Blood samples were collected approximately three weeks later and subjected to ELISA to measure serum TB-specific antibody. Booster immunizations were given at a concentration of 1 μg approximately 14 days after primary immunization, and blood samples collected and subjected to ELISA about one per month after the booster immunization and about every two months thereafter. The results are provided in
FIG. 2 . - 25 mL of 12.5 mM calcium chloride, 5 mL of 15.625 mM sodium citrate, and 25 mL of 12.5 mM sodium phosphate dibasic solutions are prepared as described in Example 1. The calcium chloride solution is mixed with of DNA encoding obtained an immunogenic polypeptide of a disease-causing pathogen, prepared according to techniques familiar to those skilled in the art. 5 mL of sodium citrate is added to the calcium chloride/DNA mixture and allowed to mix for 1 minute. 25 mL of dibasic sodium phosphate is added to the mixture, which will immediately become turbid, indicating the formation of particles. The mixture is stirred at a moderate speed for 48 to 96 hours, or until the particle size is less than 1000 nm, as determined using a Coulter N4Plus Submicron Particle Sizer, and sonicated.
- The resulting particles, containing DNA encoding an immunogenic polypeptide dispersed therein, can be administered as a sustained release DNA vaccine in dosages of about 1 μg to about 250 μg per kg of body weight.
- Procedures similar to those described above in Examples 4 and 5 were followed, to prepare and evaluate a cellobiose-coated calcium phosphate particle suspension combined with
immunogenic herpes simplex 2 viral protein. The protein is prepared from ATTC VR-540 using the protein purification procedures described in Example 2. - 50 mL of calcium phosphate suspension prepared as described in Example 1 and coated with cellobiose glue as described in Example 3 were centrifuged at 4500 rpm for 15 minutes at 25° C., and the supernatant discharged. The pellet was resuspended in 2.5 mL of spent buffer from the production of the calcium phosphate particles, so that the calcium phosphate concentration was increased 20 fold. The concentrated calcium phosphate was divided into 1 mL aliquots. 1 mL of HSV protein was added to the concentrated calcium phosphate suspension and rotated for 1 hour at 4° C. One aliquot of this suspension was not washed (UWCCH). The other was washed with PBS (and centrifuged at 4500 rpm for 15 minutes at 4° C.) three times and resuspended in 2 mL PBS (WCCH solution).
- 50 mL of calcium phosphate co-crystallized with HSV-2 suspension as described in Example 2 were centrifuged at 4500 rpm for 15 minutes at 25° C., and the pellet resuspended in 2.5 mL of spent calcium phosphate buffer. 1 mL of this concentrated calcium phosphate-HSV-2 particle solution was mixed with 1 mL of HSV-2 protein and rotated for 1 hour at 4° C. This solution was washed with PBS (and centrifuged at 4500 rpm for 15 minutes at 4° C.) three times and resuspended in 2 mL PBS (WCHCH solution).
- 1 mL of Imject (alum adjuvant) was mixed with 1 mL of HSV-2 protein solution (IH).
- 1 mL of HSV-2 protein solution was mixed with 1 mL of PBS (FUV).
- Protein assays were conducted on wash supernatants to determine the percent binding of HSV-2 to the calcium phosphate complexes. Binding was generally >20%.
- Immunization testing was carried out as described in Example 3 above, except that a primary immunization and two booster immunizations were administered approximately one month and three weeks apart, respectively. All immunizations were administered intraperitoneally. Tile amounts administered are provided in the Table below.
HSV-2 Only Primary Immunization 52.5 μg antigen (HSV) HSV-2 Only Second Immunization 89 μg antigen (HSV) HSV-2 Only Third Immunization 129 μg antigen (HSV) HSV-2 + Imject (IH) 52.5 μg HSV-2 antigen 50 mg Imject Washed Calcium Phosphate + HSV-2 42.9 μg HSV-2 antigen (WCCH) 0.46 mg Calcium Phosphate Unwashed Calcium Phosphate + HSV-2 52.5 μg HSV-2 antigen (UWCCH) 0.46 mg Calcium Phosphate Washed Calcium Phosphate Co- 29.1 μg HSV-2 crystallized with HSV-2 + HSV-2 (WCHCH) - Blood was collected and analyzed by ELISA about one month after the primary injection and about 14 days after each booster injection and again two months after the third ELISA. The results are presented in
FIGS. 4 and 5 . - Immunized mice were challenged intravaginally with 102 PFU of HSV-2 at 30 days after primary immunization in accordance with the methods discussed in Dr. Rouse et al., 1997, to test resistance. Since the stage of estrus can affect susceptibility to HSV infection, mice were given progesterone injection to synchronize the estrus cycle prior to challenge with HSV-2. The results are presented below.
Clinic severity at week No. of mice survived/ Post challenge No. of mice challenged 1 2 3 Control 3/5 1 1.3 2 Alum + HSV-2 5/5 0 0 0 CAP + HSV-2 5/5 0 0 0
Note:
The mice were observed everyday for vaginal inflammation. Clinic severity was graded as follows: 0. No inflamation; 1. Mild inlflamation; 2. Moderate swelling and redness; 3. Severe inflamation, 4. Paralysis; and 5. Death.
- The procedures described above were carried out using HIV-1 antigen prepared from 10-119-000 (Advanced Biotechnologies, Inc.) using the protein purification procedures described in Example 2. Solutions of antigen alone (6.9 μg HIV per mouse), washed calcium phosphate/ cellobiose/antigen particles (9.5 μg HIV per mouse), and antigen with Imject adjuvant (6.9 μg [I-V per mouse) were each administered to 6 mice as described above, and anti-HIV antibody titer was evaluated by ELISA two weeks after primary infection. The results are presented in
FIG. 6 . - Four different antigens were combined with CAP to study its effectiveness as an adjuvant. These four antigens included Ovalbumin (Ova), Tuberculosis (TB), HSV-2 and EBV.
- The Ovalbumin and Tuberculosis coated particles were prepared following the procedures of examples 1 and 4. The cellobiose coated CAP was mixed for one hour with 0.5 mg of Ovalbumin or Tuberculosis antigen. The samples were then washed three times (centrifuged at 4500 rpm for 15 minutes at 4° C.) with PBS. 1 mL of Imject-alum adjuvant was mixed with the same amount of Ovalbumin and Tuberculosis. A solution of antigen alone was prepared by mixing 0.5 mg of Ovalbumin and Tuberculosis antigen with 1 mL of PBS respectively.
- The HSV-2 CAP and EBV CAP were prepared by co-crystallizing the viral protein with the CAP similar to the procedure described in Example 3. The resulting CAP with either HSV-2 or EBV dispersed therein was then subsequently treated with cellobiose and the surface coated with antigen as described above.
- Six mice each were immunized by i.p. injection with one of the following antigens: Ova alone, Ova+Alum, Ova+CAP, TB alone, TB+Alum, TB+CAP, HSV-2 alone, HSV-2+Alum, HSV-2+CAP, EBV alone, EBV+Alum, EBV+CAP and CAP alone. The concentration of CAP to Alum is 1:100 for the OVA and TB vaccine constructs. The concentration of CAP to Alum is equivalent for HSV-2 and EBV vaccine constructs. All mice were immunized with a primary injection and given two or three booster injections at two-week intervals. Blood was collected and IgG, IgG1, IgG2a, and IgE antibody titers in immunized mice were measured by ELISA. The results are presented in
FIGS. 8-11 , which show different levels of antibodies between the different groups of immunized mice. - A suspension of calcium phosphate particles is prepared following the procedures of Example 1, and the particle size and presence of any endotoxin determined. Cellobiose glue is applied to the particles by suspending them in a solution of 292 mM cellobiose stock added to the suspension of calcium phosphate particles at a ratio of 1 mL of cellobiose solution to 20 mL of particle suspension. The mixture is gently mixed and allowed to stand overnight. A cDNA encoding an immunogenic polypeptide of a disease-causing pathogen is inserted into a pcDNA3 plasmid according to techniques familiar to those in the art. The coated particles are then contacted with a solution of plasmid DNA, and co-incubated at room temperature or 40° C.
- 10 mL of a 10% stock solution of PEG-3550 in water was prepared. 20 μL of this PEG stock solution was combined with 2 mL of a solution of 500 nm calcium phosphate particles prepared according to the procedure described in Example 1 and incubated for 1 hour at room temperature. The mixture was centrifuged at 4000×g for 15 minutes to remove free PEG in a supernatant fraction. The pellet of particles was resuspended in 2 mL of spent buffer left over from preparation of the CAP particles. 100 μL of human insulin (20 mg/mL) was added, and the mixture incubated for 1.5 hour at 5-10° C.
- Six male diabetic Taconic NOD mice and 2 control mice (C57) at 12 weeks of age were checked for normal blood glucose levels and divided into groups. Three NOD mice were designated as the NOD test group, three NOD mice were designated the NOD control group, and the two C57 mice were designated the C57 control group. Feeding of all animals was stopped at least 18 hours before testing, and fasting blood samples taken and checked for glucose. Each animal was given 1 mL of 300 mg/mL glucose solution orally, and the glucose level checked one hour after glucose infusion. Each animal was anesthetized. The mouth of each animal was opened, and a blunt hypodermic needle inserted into each trachea. 50 μL of the composition prepared in Example 2 was administered through the hypodermic needle to each animal in the NOD test and C57 control groups. 50 μL of spent buffer solution from the preparation of the calcium phosphate particles was given to the NOD control group, which received no insulin. Glucose levels were checked every hour during the first six hours of treatment. A final glucose level was checked after 24 hours of treatment.
- The test results are plotted in the graph shown in
FIG. 15 . In the graph, the data at −15 hours represents the glucose level of each mouse before fasting, and the data at −1 hours represents the glucose level of each mouse after 17 hours of fasting, and the data at 0 represents the glucose level of eachmouse 1 hour after glucose administration, and the data at+1 hour represents the glucose level of each mouse after 1 hour of insulin treatment. The test results show that the calcium phosphate/PEG/human insulin particles were effective in controlling glucose levels in the rat up to at least 4 hours after treatment. - Particles having a surface modifying agent (2), such as polyethylene glycol (PEG), impregnated within the core calcium phosphate particle (4) and having a material (6), such as a therapeutic protein or peptide, and more particularly human insulin, at least partially coated on the surface are shown in
FIG. 13C . Such particles having at least a partial coating of human insulin were prepared by simultaneously injecting 5 mL of 125 mM CaCl2 and 1 mL of 156 mM sodium citrate into a 250 mL beaker containing 100 mL of 1% polyethylene glycol (PEG),under constant stirring. Precipitate was formed following the addition of 5 mL of 125 mM Na2HPO4. Mixing was continued for 48 hours at room temperature. The resulting particle suspension was sonicated at maximum power for 15 minutes and stored at room temperature until ready for insulin attachment. - A therapeutic protein or peptide, such as human insulin at final 0.9 mg/mL, was incubated with batches of 20 mL PEG-entrapped particle suspension for 1 hour at room temperature by gentle mixing on a rocking platform. Finished particles were washed twice in distilled water and stored either at 4° C. (preferably not longer than 1 month) for lyophilized to dryness for future use. Illustrative particles are shown in
FIG. 13C . Incorporating a surface modifying agent such as PEG in the particle structure results in increased insulin loading capacity, measured as mg bound-insulin/100 mg particle (44±4% w/w), increased insulin per particle (12.5 U/mg particle, based on recombinant insulin unit by HPLC (high-performance liquid chromatography)=28.4 U/mg protein), and increased loading efficiency of 40.0±3.6% w/w, measured by mg bound-insulin/100 mg insulin originally added during binding. - Particles having both a surface modifying agent (2) and a material (6), such as a therapeutic protein or peptide impregnated within the core calcium phosphate particle (4) are shown in
FIG. 14 . Such particles having human insulin impregnated therein were prepared by adding one mL of 20 mg/mL of human insulin into a 50 mL beaker containing 20 mL of 1% PEG and mixed thoroughly for about 1 min. Sodium citrate at 156 mM (0.2 mL) and CaCl2 at 125 mM concentrations (1 mL) were injected into PEG-human insulin solution simultaneously while stirring. One mL of 125 mM Na2HPO4 was added to initiate the particle formation. Stirring was continued for 48 hours at room temperature. The resulting particle suspension was sonicated at maximum power setting for 15 minutes. Finished particles were washed twice in distilled water and kept refrigerated at 4° C. (no more than one month) or lyophilized to dryness for further use. Illustrative particles are shown inFIG. 14 . The resulting formulation has an increased loading capacity, measured as mg bound-insulin/100 mg particle (77±7% w/w), increased insulin per particle (21.2 U/mg particle, based on recombinant insulin unit by HPLC (high-performance liquid chromatography)=28.4 U/mg protein), and increased loading efficiency of 89.5±8.1% w/w, measured by mg bound-insulin/100 mg insulin originally added during binding. - Calcium phosphate core particles of the present invention, (CAP), were tested in comparison to calcium phosphate particles manufactured by Superfos Biosector a/s, referred to as “Accurate CAP,” to study the effectiveness of the CAP particles of the present invention as an adjuvant.
- HSV-2 CAP was prepared by co-crystallizing the viral protein with the CAP similar to the procedure described in Example 3. The resulting CAP with HSV-2 dispersed therein was then subsequently treated with cellobiose and the surface coated with antigen as described above.
- Five mice each were immunized by i.p. injection with one of the following antigens: HSV-2+CAP or HSV-2+Accurate CAP. The mice were immunized with a primary injection and given two or three booster injections at two-week intervals. Blood was collected and IgG, IgG1, and IgG2a antibody titers in immunized mice were measured by ELISA. The results are presented in FIGS. 7A-C, which show different levels of antibodies between the different groups of immunized mice. Of particular importance is the result shown in
FIG. 7C .FIG. 7C shows that the IgG2a antibody titer for the CAP particles of the present invention triggered a strong IgG2a response. - The procedures described above and exemplified above can be modified by those having skill in the art to yield other embodiments of the invention. For example, the material to be dispersed throughout the particle can be co-crystallized and impregnated within the particle as described above, and the resulting particles can be coated with the same or different material, using the coating methods described above. The core particles may also have a partial coating of one or a mixture of surface modifying agents described above to help adhere material coating the particle to the surface thereof The present invention has been described above with respect to certain specific embodiments thereof, however it will be apparent that many modifications, variations, and equivalents thereof are also within the scope of the invention.
Claims (77)
1. A particle comprising calcium phosphate, wherein the particle has a diameter between about 300 nm and about 4000 nm, and has a substantially spherical shape and a substantially smooth surface.
2. The particle of claim 1 , wherein the diameter of the particle is between about 300 nm and about 1000 nm.
3. The particle of claim 1 , further comprising an antigenic material at least partially coating the particle or impregnating the particle or both.
4. The particle of claim 1 , further comprising a natural immunoenhancing factor at least partially coating the particle or impregnating the particle or both.
5. The particle of claim 1 , further comprising a polynucleotide material at least partially coating the particle or impregnating the particle or both.
6. The particle of claim 1 , further comprising a therapeutic protein or peptide at least partially coating the particle or impregnating the particle or both.
7. The particle of claim 1 , further comprising a surface modifying agent at least partially coating the particle or impregnating the particle or both.
8. The particle of claim 7 , further comprising at least a partial coating of an antigenic material, wherein the surface modifying agent is at least partially disposed between the surface of the particle and the antigenic material.
9. The particle of claim 7 , further comprising at least a partial coating of a natural immunoenhancing factor, wherein the surface modifying agent is at least partially disposed between the surface of the particle and the natural immunoenhancing factor.
10. The particle of claim 7 , further comprising at least a partial coating of a polynucleotide material, wherein the surface modifying agent is at least partially disposed between the surface of the particle and the polynucleotide material.
11. The particle of claim 7 , further comprising at least a partial coating of a therapeutic protein or peptide, wherein the surface modifying agent is at least partially disposed between the surface of the particle and the therapeutic protein or peptide.
12. The particle of claim 7 , wherein the surface modifying agent comprises a basic or modified sugar.
13. The particle of claim 12 , wherein the surface modifying agent comprises cellobiose.
14. The particle of claim 7 , wherein the surface modifying agent comprises an oligonucleotide.
15. The particle of claim 7 , wherein the surface modifying agent comprises a carbohydrate, a carbohydrate derivative, or other macromolecule with carbohydrate-like components characterized by the abundance of —OH groups.
16. The particle of claim 7 , wherein the surface modifying agent comprises polyethylene to glycol.
17. The particle of claim 3 , wherein the antigenic material comprises one or more immunogenic portions of a protein coat, protein core, or functional proteins and peptides of a virus.
18. The particle of claim 17 , wherein the virus is selected from the group consisting of Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human papilloma virus (HPV), herpes simplex virus (HSV), pox virus, and influenza virus.
19. The particle of claim 3 , wherein the microbial antigenic material comprises one or more immunogenic proteins obtained from bacteria.
20. The particle of claim 19 , wherein the bacteria is selected from the group consisting of tuberculosis (TB), staphylococcus, streptococcus, clostridium, pseudomonas, and coliform bacteria.
21. The particle of claim 3 , wherein the microbial antigenic material comprises one or more immunogenic proteins obtained from fungi.
22. The particle of claim 21 , wherein the fungus is a saccharomyces.
23. The particle of claim 22 , wherein the fungus belongs to the species Candida.
24. The particle of claim 4 , wherein the natural immunoenhancing factor is an interleukin.
25. The particle of claim 24 , wherein the interleukin is interleukin-2 or interleukin-12.
26. The particle of claim 5 , wherein the polynucleotide material is a DNA or RNA sequence that encodes one or more epitopes of one or more immunogenic polypeptides.
27. The particle of claim 26 , wherein the polynucleotide material is selected the group consisting of DNA or RNA sequences encoding one or more epitopes of immunogenic polypeptides presented by virii or cells causing influenza, malaria, colon cancer, hepatitis 3, human immunodeficiency virus, (HIV), simian immunodeficiency virus (SIV), cutaneous T cell lymphoma, herpes simplex, tick born encephalitis, rabies, rotavirus, tuberculosis, Epstein-Barr virus, human papilloma virus, and hepatomavirus.
28. The particle of claim 26 , wherein the DNA or RNA sequences are antisense fragments.
29. The particle of claim 26 , wherein the polynucleotide material comprises DNA that is inserted into a plasmid vector.
30. The particle of claim 29 , wherein the plasmid vector is selected from the group consisting of including pcDNA3 (Invitogen), pcl (Promega) and PBR231.
31. The particle of claim 29 , wherein the plasmid vector expresses cytomegalovirus (CMV) intermediate-early promoter.
32. The particle of claim 29 , wherein the plasmid vector expresses bovine growth hormone polyadenylation sequence.
33. The particle of claim 29 , wherein the DNA is fused with other DNA sequences in the form of plasmid vector or naked DNA.
34. The particle of claim 33 , wherein the other DNA sequences comprise one or more sequences selected from the group consisting of human tissue plasminogen activator leader peptide, bacterial DNA and genes, naked DNA, or portions thereof coding for cytokines or interleukins.
35. The particle of claim 34 , wherein the cytokine is granulocyte-macrophage colony-stimulating factor (GM-CSF).
36. The particle of claim 6 , wherein the therapeutic protein or peptide comprises a hormone.
37. The particle of claim 36 , wherein the hormone comprises insulin.
38. The particle of claim 37 , wherein the insulin comprises human insulin.
39. A particle comprising:
(a) a core of calcium phosphate, having a diameter between about 300 nm and about 4000 nm, a substantially spherical shape, and a substantially smooth surface,
(b) a surface modifying agent comprising polyethylene glycol at least partially coating the particle, and
(c) human insulin at least partially bonded to the polyethylene glycol,
whereby an effective amount of the particles can be administered in the form of an aerosol to a patient in need thereof.
40. A vaccine composition comprising:
(a) at least one particle of claim 1 ,
(b) a killed, attenuated, or live vaccine, or a decoy virus, or a particle coated with antigenic material, and
(c) a pharmaceutically acceptable carrier or other excipient.
41. The vaccine composition according to claim 40 , wherein the at least one particle of claim 1 is combined with a natural immunoenhancing factor and a pharmaceutically acceptable carrier or other excipient.
42. The vaccine composition according to claim 40 , wherein the at least one particle of claim 1 is uncoated.
43. A vaccine composition comprising:
(a) at least one particle of claim 3 , and
(b) a pharmaceutically acceptable carrier or other excipient.
44. A vaccine composition comprising:
(a) at least one particle of claim 5 , and
(b) a pharmaceutically acceptable carrier or other excipient.
45. A pharmaceutical composition comprising:
(a) at least one particle of claim 6 , and
(b) a pharmaceutically acceptable carrier or other excipient.
46. The composition of claim 45 , wherein the at least one particle is dried, and wherein the carrier is an aerosol.
47. A method for preparing one or more particles of claim 1 , comprising reacting a soluble calcium salt with a soluble phosphate salt.
48. The method of claim 47 , wherein the soluble calcium salt comprises calcium chloride and the soluble phosphate salt comprises sodium phosphate.
49. The method of claim 48 , wherein the reacting comprises:
(a) mixing an aqueous solution of calcium chloride with an aqueous solution of sodium citrate to form a mixture,
(b) adding an aqueous solution a sodium phosphate to the mixture to form a solution,
(c) stirring the solution until particles of the desired size and comprising calcium phosphate are obtained.
50. The method of claim 49 , wherein the concentrations of each of the aqueous calcium chloride, the aqueous sodium citrate, and the aqueous sodium phosphate solutions are independently between about 5 mM and about 100 mM.
51. A method for preparing one or more particles of claim 7 , wherein the surface modifying agent is at least partially coating the particle, comprising:
(a) adding a surface modifying agent to a suspension of calcium phosphate particles to form a mixture, and
(b) allowing the mixture to stand for sufficient time for the surface modifying agent to cover at least a portion of the particles to form at least partially coated particles.
52. The method of claim 51 , wherein the surface modifying agent and suspension of calcium phosphate particles are present in a ratio of about 1:20 by volume.
53. The method of claim 51 , further comprising contacting the at least partially coated particles with a solution of antigenic material to form particles that are at least partially coated with the antigenic material.
54. The method of claim 51 , further comprising contacting the at least partially coated particles with a solution of natural immunoenhancing factor to form particles that are at least partially coated with the natural immunoenhancing factor.
55. The method of claim 51 , further comprising contacting the at least partially coated particles with a solution of polynucleotide material to form particles that are at least partially coated with the polynucleotide material.
56. The method of claim 51 , further comprising contacting the at least partially coated particles with a solution of therapeutic protein or peptide to form particles that are at least partially coated with the therapeutic protein or peptide.
57. The method of claim 49 , further comprising adding an antigenic material along with one or more of the aqueous solutions forming the particle, to form one or more particles comprising calcium phosphate that are at least partially co-crystallized with the antigenic material.
58. The method of claim 49 , further comprising adding a natural immunoenhancing factor along with one or more of the aqueous solutions forming the particle, to form one or more particles comprising calcium phosphate that are at least partially co-crystallized with the natural immunoenhancing factor.
59. The method of claim 49 , further comprising adding a polynucleotide material coding for one or more of the antigens expressed by organisms to be vaccinated against along with one or more of the aqueous solutions forming the particle, to form one or more particles comprising calcium phosphate that are at least partially co-crystallized with the polynucleotide material.
60. The method of claim 59 , wherein the polynucleotide material is added in the form of a vector or naked DNA, along with one or more of the aqueous solutions forming the particle, whereby a calcium phosphate biodegradable matrix is formed around the vector or naked DNA, and the vector or naked DNA becomes at least partially embedded in or on the particle.
61. The method of claim 49 , further comprising adding a therapeutic protein or peptide along with one or more of the aqueous solutions forming the particle, to form one or more particles comprising calcium phosphate that are at least partially co-crystallized with the therapeutic protein or peptide.
62. A method for adjuvanting a vaccine comprising administering an effective amount of at least one particle of claim 1 in conjunction with administration of a killed, attenuated or live vaccine, or a decoy virus to a patient in need thereof.
63. A method for adjuvanting a vaccine comprising administering an-effective amount of at least one particle of claim 1 in combination with an effective amount of at least one particle of claim 1 having an antigenic material coating the particle or impregnating the particle or both, to a patient in need thereof.
64. The method of claim 62 , wherein the particles are administered in a dosage of about 1 μg to about 1000 μg per kilogram of body weight.
65. A method for providing a controlled release of antigenic material, comprising administering an effective amount of at least one particle of claim 3 to a patient in need thereof
66. A method for providing a controlled release of natural immunoenhancing factor, comprising administering an effective amount of at least one particle of claim 4 to a patient in need thereof.
67. A method for vaccinating a patient, comprising administering an effective amount of a composition comprising:
(a) at least one particle of claim 5 , and
(b) a pharmaceutically acceptable carrier solution or other excipient to a patient in need thereof
68. The method of claim 67 , wherein the polynucleotide material is taken up and expressed by cells and translated to produce one or more immunogenic polypeptides that can be recognized by the immune system in a manner similar to the manner in which the polynucleotide material would be recognized if it had been vaccinated conventionally.
69. The method of claim 67 , wherein the composition contains about 0.5 to about 500 micrograms of polynucleotide material.
70. The method of claim 69 , wherein the composition is administered in a dose from about 0.1 mL to about 2 mL.
71. A method for delivering an inhalable, aerosolizable therapeutic composition comprising administering an effective amount of a composition comprising at least one particle of claim 6 to a patient in need thereof
72. The method of claim 71 , wherein the administering comprises introducing the composition into the patient's lungs.
73. The method of claim 71 , wherein the particles are dried.
74. The method of claim 71 , wherein the particles are in solution or are combined with a pharmaceutically acceptable carrier or other excipient.
75. The method of claim 71 , wherein the particles comprise a coating of polyethylene glycol and human insulin and are administered to a diabetic patient in need thereof.
76. The method of claim 71 , wherein the aerosol is administered in a dose from about 50 μL to about 2 mL.
77. The particle of claim 1 , wherein the diameter of the particle is between about 300 nm and about 2000 nm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/732,596 US20070292454A1 (en) | 1999-02-03 | 2007-04-03 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US12/912,579 US8431221B2 (en) | 1999-02-03 | 2010-10-26 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11835599P | 1999-02-03 | 1999-02-03 | |
US11836499P | 1999-02-03 | 1999-02-03 | |
US11835699P | 1999-02-03 | 1999-02-03 | |
US09/496,771 US6355271B1 (en) | 1999-02-03 | 2000-02-03 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US09/794,576 US20010048925A1 (en) | 1999-02-03 | 2001-02-27 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US11/732,596 US20070292454A1 (en) | 1999-02-03 | 2007-04-03 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/794,576 Continuation US20010048925A1 (en) | 1999-02-03 | 2001-02-27 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/912,579 Continuation US8431221B2 (en) | 1999-02-03 | 2010-10-26 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070292454A1 true US20070292454A1 (en) | 2007-12-20 |
Family
ID=27382150
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/496,771 Expired - Lifetime US6355271B1 (en) | 1999-02-03 | 2000-02-03 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US09/794,576 Abandoned US20010048925A1 (en) | 1999-02-03 | 2001-02-27 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US11/732,596 Abandoned US20070292454A1 (en) | 1999-02-03 | 2007-04-03 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US12/912,579 Expired - Fee Related US8431221B2 (en) | 1999-02-03 | 2010-10-26 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/496,771 Expired - Lifetime US6355271B1 (en) | 1999-02-03 | 2000-02-03 | Therapeutic calcium phosphate particles and methods of manufacture and use |
US09/794,576 Abandoned US20010048925A1 (en) | 1999-02-03 | 2001-02-27 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/912,579 Expired - Fee Related US8431221B2 (en) | 1999-02-03 | 2010-10-26 | Therapeutic calcium phosphate particles and methods of manufacture and use |
Country Status (12)
Country | Link |
---|---|
US (4) | US6355271B1 (en) |
EP (1) | EP1150918B1 (en) |
AT (1) | ATE276199T1 (en) |
AU (1) | AU2753100A (en) |
CA (1) | CA2361421A1 (en) |
DE (1) | DE60013773T2 (en) |
DK (1) | DK1150918T3 (en) |
ES (1) | ES2228467T3 (en) |
IL (2) | IL144084A0 (en) |
MX (1) | MXPA01007895A (en) |
PT (1) | PT1150918E (en) |
WO (1) | WO2000046147A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060062855A1 (en) * | 2001-02-27 | 2006-03-23 | Bell Steve J D | Therapeutic calcium phosphate particles for use in inhibiting expression of a gene |
US20090041812A1 (en) * | 2004-11-01 | 2009-02-12 | Bell Steve J D | Therapeutic Calcium Phosphate Particles in Use for Aesthetic of Cosmetic Medicine, and Methods of Manufacture and Use |
US8992983B2 (en) | 2010-08-30 | 2015-03-31 | Pulmatrix, Inc. | Respirably dry powder comprising calcium lactate, sodium chloride and leucine |
US9061352B2 (en) | 2010-08-30 | 2015-06-23 | Pulmatrix, Inc. | Dry powder formulations and methods for treating pulmonary diseases |
US9119778B2 (en) | 2009-03-26 | 2015-09-01 | Pulmatrix Operating Company, Inc. | Dry powder formulations and methods for treating pulmonary diseases |
US9433576B2 (en) | 2010-09-29 | 2016-09-06 | Pulmatrix, Inc. | Cationic dry powders |
US9642798B2 (en) | 2010-09-29 | 2017-05-09 | Pulmatrix, Inc. | Monovalent metal cation dry powders for inhalation |
US9737518B2 (en) | 2013-04-01 | 2017-08-22 | Pulmatrix Operating Company, Inc. | Tiotropium dry powders |
US10589039B2 (en) | 2012-02-29 | 2020-03-17 | Pulmatric Operating Company, Inc. | Methods for producing respirable dry powders |
Families Citing this family (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69840069D1 (en) | 1997-04-01 | 2008-11-13 | Cap Biotechnology Inc | Calcium phosphate and microbeads |
US20020192137A1 (en) * | 2001-04-30 | 2002-12-19 | Benjamin Chaloner-Gill | Phosphate powder compositions and methods for forming particles with complex anions |
US20030235557A1 (en) | 1998-09-30 | 2003-12-25 | Corixa Corporation | Compositions and methods for WT1 specific immunotherapy |
US20040009535A1 (en) | 1998-11-27 | 2004-01-15 | Celltech R&D, Inc. | Compositions and methods for increasing bone mineralization |
US20020068090A1 (en) * | 1999-02-03 | 2002-06-06 | Bell Steve J. D. | Calcium phosphate particles as mucosal adjuvants |
US20040258763A1 (en) * | 1999-02-03 | 2004-12-23 | Bell Steve J.D. | Methods of manufacture and use of calcium phosphate particles containing allergens |
DK1150918T3 (en) * | 1999-02-03 | 2004-12-20 | Biosante Pharmaceuticals Inc | Process for the preparation of therapeutic calcium phosphate particles |
US20020054914A1 (en) * | 1999-02-03 | 2002-05-09 | Tulin Morcol | Compositions and methods for therapuetic agents complexed with calcium phosphate and encased by casein |
GB9910975D0 (en) * | 1999-05-13 | 1999-07-14 | Univ Strathclyde | Rapid dehydration of proteins |
ES2327026T3 (en) | 1999-07-08 | 2009-10-23 | Cap Biotechnology, Inc. | STRUCTURES CONTAINING CALCIUM AND MANUFACTURING AND USE PROCEDURES OF THE SAME. |
DE10028975B4 (en) * | 2000-06-16 | 2005-06-30 | Henkel Kgaa | Compositions for the treatment of tooth and / or bone tissue |
AUPR011700A0 (en) * | 2000-09-14 | 2000-10-05 | Austin Research Institute, The | Composition comprising immunogenic virus sized particles (VSP) |
GB0116074D0 (en) * | 2001-06-29 | 2001-08-22 | Univ Strathclyde | Nanoparticle structures |
IN192520B (en) * | 2001-08-01 | 2004-04-24 | Univ Delhi | |
US20030185892A1 (en) * | 2001-08-17 | 2003-10-02 | Bell Steve J. D. | Intraocular delivery compositions and methods |
CA2860702C (en) | 2001-12-17 | 2019-02-26 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of inflammatory bowel disease |
DK1474109T3 (en) | 2001-12-21 | 2010-10-25 | Alcon Inc | Use of synthetic inorganic nanoparticles as carriers of ophthalmic drugs |
MXPA04005227A (en) | 2001-12-21 | 2004-10-11 | Alcon Inc | Use of nanoparticles as carriers for biocides in ophthalmic compositions. |
US20050222061A1 (en) * | 2002-04-18 | 2005-10-06 | Schulte Ralf W | Means and methods for the specific inhibition of genes in cells and tissue of the cns and/or eye |
US20060110333A1 (en) * | 2002-07-11 | 2006-05-25 | Taiho Pharmaceutical Co., Ltd. | Composition for nasal absorption |
US7148342B2 (en) | 2002-07-24 | 2006-12-12 | The Trustees Of The University Of Pennyslvania | Compositions and methods for sirna inhibition of angiogenesis |
AU2004205895B2 (en) | 2003-01-16 | 2009-02-26 | The Trustees Of The University Of Pennsylvania | Compositions and methods for siRNA inhibition of ICAM-1 |
ES2586401T3 (en) | 2003-06-16 | 2016-10-14 | Ucb Pharma S.A. | Specific sclerostin antibodies and methods to increase bone mineralization |
GB0324897D0 (en) * | 2003-10-24 | 2003-11-26 | Glaxo Group Ltd | Composition |
AU2004285553B2 (en) * | 2003-10-31 | 2009-12-10 | Teva Pharmaceutical Industries, Ltd. | Nanoparticles for drug delivery |
WO2005072710A2 (en) | 2004-01-28 | 2005-08-11 | Johns Hopkins University | Drugs and gene carrier particles that rapidly move through mucous barriers |
BRPI0507680A (en) * | 2004-02-13 | 2007-07-17 | Nod Pharmaceuticals Inc | therapeutic calcium phosphate particles and methods of manufacture and use thereof |
CN102327194B (en) | 2004-11-16 | 2014-07-23 | 3M创新有限公司 | Dental fillers, methods, compositions including a caseinate |
ATE493108T1 (en) * | 2004-11-16 | 2011-01-15 | 3M Innovative Properties Co | DENTAL FILLERS AND COMPOSITIONS CONTAINING PHOSPHATE SALTS |
AU2006226733C9 (en) | 2005-03-23 | 2019-03-14 | Genmab A/S | Antibodies against CD38 for treatment of multiple myeloma |
FR2887457B1 (en) * | 2005-06-23 | 2007-10-05 | Fond Bettencourt Schueller | TRANSCUTANE TARGETING VACCINATION |
JP4948806B2 (en) | 2005-08-09 | 2012-06-06 | Hoya株式会社 | Method for producing particles |
WO2007044394A2 (en) * | 2005-10-05 | 2007-04-19 | Bayhill Therapeutics, Inc. | Compositions and methods for treatment of autoimmune disease |
WO2007053781A2 (en) * | 2005-11-01 | 2007-05-10 | Novartis Ag | Compositions with antigens adsorbed to calcium phosphate |
PL2368572T3 (en) | 2005-11-04 | 2020-11-16 | Seqirus UK Limited | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture |
CA2628328A1 (en) | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics S.R.L. | Influenza vaccines including combinations of particulate adjuvants and immunopotentiators |
UA95093C2 (en) | 2005-12-07 | 2011-07-11 | Нікомед Фарма Ас | Method for the preparation of calcium-containing compound |
JP6087041B2 (en) | 2006-01-27 | 2017-03-08 | ノバルティス アーゲー | Influenza virus vaccine containing hemagglutinin and matrix protein |
US20100068223A1 (en) | 2006-03-24 | 2010-03-18 | Hanno Scheffczik | Storage of Influenza Vaccines Without Refrigeration |
CA2647942A1 (en) | 2006-03-31 | 2007-11-08 | Novartis Ag | Combined mucosal and parenteral immunization against hiv |
US20090130212A1 (en) * | 2006-05-15 | 2009-05-21 | Physical Pharmaceutica, Llc | Composition and improved method for preparation of small particles |
EP2054431B1 (en) | 2006-06-09 | 2011-08-31 | Novartis AG | Conformers of bacterial adhesins |
EP2029746B1 (en) | 2006-06-12 | 2012-07-04 | Exegenics, Inc., D/b/a Opko Health, Inc. | Compositions and methods for sirna inhibition of angiogenesis |
GB0614460D0 (en) | 2006-07-20 | 2006-08-30 | Novartis Ag | Vaccines |
US20080057105A1 (en) * | 2006-09-06 | 2008-03-06 | Boston Scientific Scimed, Inc. | Medical devices having nanostructured coating for macromolecule delivery |
JP2010502713A (en) * | 2006-09-08 | 2010-01-28 | ザ・ジョンズ・ホプキンス・ユニバーシティー | Compositions and methods for enhancing transport through mucus |
US7872118B2 (en) * | 2006-09-08 | 2011-01-18 | Opko Ophthalmics, Llc | siRNA and methods of manufacture |
WO2008032219A2 (en) | 2006-09-11 | 2008-03-20 | Novartis Ag | Making influenza virus vaccines without using eggs |
US8946200B2 (en) * | 2006-11-02 | 2015-02-03 | Southwest Research Institute | Pharmaceutically active nanosuspensions |
CA2671629C (en) | 2006-12-06 | 2017-08-15 | Novartis Ag | Vaccines including antigen from four strains of influenza virus |
GB0700562D0 (en) | 2007-01-11 | 2007-02-21 | Novartis Vaccines & Diagnostic | Modified Saccharides |
US20080241256A1 (en) * | 2007-03-30 | 2008-10-02 | Liisa Kuhn | Targeted active agent delivery system based on calcium phosphate nanoparticles |
GB0707938D0 (en) | 2007-04-25 | 2007-05-30 | Univ Strathclyde | Precipitation stabilising compositions |
JP2010531348A (en) | 2007-06-27 | 2010-09-24 | ノバルティス アーゲー | Influenza vaccine with few additives |
GB0714963D0 (en) | 2007-08-01 | 2007-09-12 | Novartis Ag | Compositions comprising antigens |
MX2010004883A (en) | 2007-11-01 | 2010-11-10 | Perseid Therapeutics Llc | Immunosuppressive polypeptides and nucleic acids. |
GB0810305D0 (en) | 2008-06-05 | 2008-07-09 | Novartis Ag | Influenza vaccination |
US20100260849A1 (en) * | 2007-12-13 | 2010-10-14 | Rusin Richard P | Remineralizing compositions and methods |
GB0724498D0 (en) * | 2007-12-15 | 2008-01-30 | Univ Strathclyde | Slow release compositions |
GB0818453D0 (en) | 2008-10-08 | 2008-11-12 | Novartis Ag | Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom |
WO2009081172A1 (en) | 2007-12-24 | 2009-07-02 | Novartis Ag | Assays for adsorbed influenza vaccines |
TWI346666B (en) * | 2007-12-31 | 2011-08-11 | Animal Technology Inst Taiwan | Method for seperating casein from casein-contained solution |
EP2077273B1 (en) | 2007-12-31 | 2011-09-14 | Animal Technology Institute Taiwan | Methods for separating casein from soluble proteins in a composition |
US8404850B2 (en) * | 2008-03-13 | 2013-03-26 | Southwest Research Institute | Bis-quaternary pyridinium-aldoxime salts and treatment of exposure to cholinesterase inhibitors |
EP2889042A3 (en) | 2008-03-18 | 2015-10-14 | Novartis AG | Improvements in preparation of influenza virus vaccine antigens |
JP2011519867A (en) | 2008-05-01 | 2011-07-14 | ノッド ファーマシューティカルズ, インコーポレイテッド | Therapeutic calcium phosphate particles and methods of making and using the same |
WO2009137595A2 (en) * | 2008-05-08 | 2009-11-12 | 3M Innovative Properties Company | Process for producing nanoparticles |
US8722706B2 (en) * | 2008-08-15 | 2014-05-13 | Southwest Research Institute | Two phase bioactive formulations of bis-quaternary pyridinium oxime sulfonate salts |
US8309134B2 (en) * | 2008-10-03 | 2012-11-13 | Southwest Research Institute | Modified calcium phosphate nanoparticle formation |
SG171952A1 (en) | 2008-12-04 | 2011-07-28 | Opko Ophthalmics Llc | Compositions and methods for selective inhibition of pro-angiogenic vegf isoforms |
UA109633C2 (en) | 2008-12-09 | 2015-09-25 | HUMAN ANTIBODY AGAINST TISSUE FACTOR | |
US8790707B2 (en) * | 2008-12-11 | 2014-07-29 | 3M Innovative Properties Company | Surface-treated calcium phosphate particles suitable for oral care and dental compositions |
ES2733084T3 (en) | 2009-03-06 | 2019-11-27 | Glaxosmithkline Biologicals Sa | Chlamydia antigens |
MX2011010735A (en) | 2009-04-14 | 2012-01-25 | Novartis Ag | Compositions for immunising against staphylococcus aerus. |
EP2424565A1 (en) | 2009-04-27 | 2012-03-07 | Novartis AG | Adjuvanted vaccines for protecting against influenza |
US8574589B2 (en) | 2009-05-11 | 2013-11-05 | Novartis Ag | Antigen purification process for pertactin antigen |
JP2012532600A (en) | 2009-07-07 | 2012-12-20 | ノバルティス アーゲー | Conserved E. coli immunogen |
CN102639147B (en) | 2009-07-15 | 2015-11-25 | 诺华股份有限公司 | RSV F protein composition and method for making same |
ES2526996T3 (en) | 2009-07-16 | 2015-01-19 | Novartis Ag | Detoxified immunogens from Escherichia coli |
US9937128B2 (en) | 2009-08-03 | 2018-04-10 | The University Of North Carolina At Chapel Hill | Liposomes comprising a calcium phosphate-containing precipitate |
EP2476753A4 (en) * | 2009-09-09 | 2013-10-09 | Tokyo Inst Tech | RECOMBINANT PRODUCT COATED WITH VIRAL HULL PROTEIN AND METHOD FOR PRODUCING THE SAME |
GB0918392D0 (en) | 2009-10-20 | 2009-12-02 | Novartis Ag | Diagnostic and therapeutic methods |
GB0919690D0 (en) | 2009-11-10 | 2009-12-23 | Guy S And St Thomas S Nhs Foun | compositions for immunising against staphylococcus aureus |
US8227444B2 (en) * | 2009-12-04 | 2012-07-24 | Opko Ophthalmics, Llc | Compositions and methods for inhibition of VEGF |
ES2707778T3 (en) | 2009-12-30 | 2019-04-05 | Glaxosmithkline Biologicals Sa | Immunogens polysaccharides conjugated with carrier proteins of E. coli |
US9028873B2 (en) * | 2010-02-08 | 2015-05-12 | Southwest Research Institute | Nanoparticles for drug delivery to the central nervous system |
US8889193B2 (en) | 2010-02-25 | 2014-11-18 | The Johns Hopkins University | Sustained delivery of therapeutic agents to an eye compartment |
PT3904391T (en) | 2010-03-10 | 2024-10-14 | Genmab As | Monoclonal antibodies against c-met |
JP6320753B2 (en) | 2010-05-27 | 2018-05-09 | ゲンマブ エー/エス | Monoclonal antibody against HER2 |
CA2800769C (en) | 2010-05-27 | 2021-11-02 | Genmab A/S | Monoclonal antibodies against her2 epitope |
SMT202000031T1 (en) | 2010-06-09 | 2020-03-13 | Genmab As | Antibodies against human cd38 |
GB201009861D0 (en) | 2010-06-11 | 2010-07-21 | Novartis Ag | OMV vaccines |
CA2802782C (en) | 2010-06-15 | 2018-03-13 | Genmab A/S | Human antibody drug conjugates against tissue factor |
GB201101665D0 (en) | 2011-01-31 | 2011-03-16 | Novartis Ag | Immunogenic compositions |
HRP20190791T1 (en) | 2011-01-26 | 2019-06-28 | Glaxosmithkline Biologicals Sa | MODE OF IMMUNIZATION AGAINST RSV |
WO2012109363A2 (en) | 2011-02-08 | 2012-08-16 | The Johns Hopkins University | Mucus penetrating gene carriers |
WO2012136552A1 (en) | 2011-04-08 | 2012-10-11 | H. Lundbeck A/S | ANTIBODIES SPECIFIC TO PYROGLUTAMATED Αβ |
AU2012245116A1 (en) | 2011-04-20 | 2013-11-07 | Genmab A/S | Bispecific antibodies against HER2 and CD3 |
CN103796678B (en) | 2011-04-20 | 2018-02-27 | 健玛保 | For HER2 bispecific antibody |
EP2699260B1 (en) | 2011-04-20 | 2024-11-20 | Genmab A/S | Bispecifc antibodies against her2 |
SG194755A1 (en) | 2011-05-13 | 2013-12-30 | Novartis Ag | Pre-fusion rsv f antigens |
US20150030586A1 (en) | 2011-06-21 | 2015-01-29 | Sarah Ellen Warren | Compositions and methods for the therapy and diagnosis of cancer |
WO2013009564A1 (en) | 2011-07-08 | 2013-01-17 | Novartis Ag | Tyrosine ligation process |
DK2771364T3 (en) | 2011-10-27 | 2019-08-19 | Genmab As | PREPARATION OF HETERODIMERED PROTEINS |
US9493517B2 (en) | 2011-11-07 | 2016-11-15 | Glaxosmithkline Biologicals Sa | Conjugates comprising an antigen and a carrier molecule |
RU2472471C1 (en) * | 2011-11-24 | 2013-01-20 | Федеральное государственное бюджетное учреждение "Московский научно-исследовательский институт глазных болезней имени Гельмгольца" Министерства здравоохранения и социального развития Российской Федерации | Method of reducing intraocular pressure |
US20150044251A1 (en) | 2011-12-23 | 2015-02-12 | Novartis Ag | Stable compositions for immunising against staphylococcus aureus |
AU2013232297B2 (en) | 2012-03-16 | 2016-01-14 | The Johns Hopkins University | Controlled release formulations for the delivery of HIF-1 inhibitors |
AU2013232300B2 (en) | 2012-03-16 | 2015-12-17 | The Johns Hopkins University | Non-linear multiblock copolymer-drug conjugates for the delivery of active agents |
US9827191B2 (en) | 2012-05-03 | 2017-11-28 | The Johns Hopkins University | Compositions and methods for ophthalmic and/or other applications |
US11596599B2 (en) | 2012-05-03 | 2023-03-07 | The Johns Hopkins University | Compositions and methods for ophthalmic and/or other applications |
KR102310775B1 (en) | 2012-05-03 | 2021-10-07 | 칼라 파마슈티컬스, 인크. | Pharmaceutical nanoparticles showing improved mucosal transport |
AU2013256064B2 (en) | 2012-05-03 | 2018-01-04 | Alcon Inc. | Pharmaceutical nanoparticles showing improved mucosal transport |
US9533068B2 (en) | 2012-05-04 | 2017-01-03 | The Johns Hopkins University | Drug loaded microfiber sutures for ophthalmic application |
SG10201605703TA (en) | 2012-07-06 | 2016-09-29 | Genmab Bv | Dimeric protein with triple mutations |
WO2014033191A1 (en) | 2012-08-31 | 2014-03-06 | Novartis Ag | Stabilised proteins for immunising against staphylococcus aureus |
SI2890394T1 (en) | 2012-08-31 | 2019-06-28 | Glaxosmithkline Biologicals Sa | Stabilised proteins for immunising against staphylococcus aureus |
EA201590427A1 (en) | 2012-10-02 | 2015-09-30 | Глаксосмитклайн Байолоджикалс С.А. | NONLINEAR SUCHARIDE CONJUGATES |
KR20150073943A (en) | 2012-10-03 | 2015-07-01 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | Immunogenic composition |
WO2014064710A1 (en) | 2012-10-22 | 2014-05-01 | Department Of Biotechnology | A process for the prepartion of non-viral vector for delivery of nucleic acids by mucosal route |
CN111249455A (en) | 2012-11-30 | 2020-06-09 | 葛兰素史密丝克莱恩生物有限公司 | Pseudomonas antigens and antigen combinations |
WO2014124006A1 (en) | 2013-02-05 | 2014-08-14 | The Johns Hopkins University | Nanoparticles for magnetic resonance imaging tracking and methods of making and using thereof |
US9353122B2 (en) | 2013-02-15 | 2016-05-31 | Kala Pharmaceuticals, Inc. | Therapeutic compounds and uses thereof |
MX368903B (en) | 2013-02-20 | 2019-10-21 | Kala Pharmaceuticals Inc | THERAPEUTIC COMPOUNDS and USES THEREOF. |
US9688688B2 (en) | 2013-02-20 | 2017-06-27 | Kala Pharmaceuticals, Inc. | Crystalline forms of 4-((4-((4-fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxyquinazolin-7-yl)oxy)-1-(2-oxa-7-azaspiro[3.5]nonan-7-yl)butan-1-one and uses thereof |
NZ715896A (en) | 2013-07-05 | 2022-02-25 | Genmab As | Humanized or chimeric cd3 antibodies |
AU2013401479B2 (en) | 2013-09-26 | 2019-04-04 | BioNTech SE | Particles comprising a shell with RNA |
NZ719185A (en) | 2013-11-01 | 2017-11-24 | Kala Pharmaceuticals Inc | Crystalline forms of therapeutic compounds and uses thereof |
US9890173B2 (en) | 2013-11-01 | 2018-02-13 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
EP2870974A1 (en) | 2013-11-08 | 2015-05-13 | Novartis AG | Salmonella conjugate vaccines |
EA037818B1 (en) | 2014-03-26 | 2021-05-25 | Глаксосмитклайн Байолоджикалс С.А. | Mutant staphylococcal antigens |
WO2016007414A1 (en) | 2014-07-08 | 2016-01-14 | New York University | Tau imaging ligands and their uses in the diagnosis and treatment of tauopathy |
HUE048667T2 (en) | 2014-07-11 | 2020-08-28 | Genmab As | Antibodies binding axl |
ES2557183B1 (en) * | 2014-07-21 | 2016-11-03 | Consejo Superior De Investigaciones Científicas (Csic) | Procedure for obtaining amorphous calcium phosphate nanoparticles coated with citrate and fluorinated |
US10485757B2 (en) | 2015-01-27 | 2019-11-26 | The Johns Hopkins University | Hypotonic hydrogel formulations for enhanced transport of active agents at mucosal surfaces |
CA2991805A1 (en) | 2015-07-10 | 2017-01-19 | Genmab A/S | Axl-specific antibody-drug conjugates for cancer treatment |
GB201512215D0 (en) | 2015-07-13 | 2015-08-19 | Lundbeck & Co As H | Agents,uses and methods |
GB201512203D0 (en) | 2015-07-13 | 2015-08-19 | Lundbeck & Co As H | Agents,uses and methods |
JO3711B1 (en) | 2015-07-13 | 2021-01-31 | H Lundbeck As | Antibodies specific for hyperphosphorylated tau and methods of use thereof |
CN108137679B (en) | 2015-08-13 | 2022-07-19 | 纽约大学 | Antibody-based molecules selective for the {p}Ser404 epitope of Tau and their use in the diagnosis and treatment of Tau disease |
SG11201803956UA (en) | 2015-12-01 | 2018-06-28 | Genmab Bv | Anti-dr5 antibodies and methods of use thereof |
EP3878864A1 (en) | 2016-07-12 | 2021-09-15 | H. Lundbeck A/S | Antibodies specific for hyperphosphorylated tau and methods of use thereof |
BR112019000512A2 (en) | 2016-07-14 | 2019-04-24 | Genmab A/S | antibody, nucleic acid, expression vector, host cell, composition, methods of treating a disease, to produce a bispecific antibody and to detect if cross-linking between cd40 and cd137 expressing cells occurs in a sample, use of a multispecific antibody and kit |
MX2019002629A (en) | 2016-09-08 | 2019-10-07 | Kala Pharmaceuticals Inc | Crystalline forms of therapeutic compounds and uses thereof. |
AU2017324713B2 (en) | 2016-09-08 | 2020-08-13 | KALA BIO, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
US10392399B2 (en) | 2016-09-08 | 2019-08-27 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
RU2657780C2 (en) * | 2016-09-14 | 2018-06-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Agent for treatment of eye diseases and method of its use |
ES3008133T3 (en) | 2016-12-16 | 2025-03-21 | H Lundbeck As | Agents, uses and methods |
JP7637962B2 (en) | 2016-12-16 | 2025-03-03 | デルファイ サイエンティフィック、エルエルシー | Layered particles and methods thereof |
US10995137B2 (en) | 2017-01-04 | 2021-05-04 | H. Lundbeck A/S | Antibodies specific for hyperphosphorlated tau for the treatment of ocular diseases |
HUE067490T2 (en) | 2017-03-09 | 2024-10-28 | Genmab As | Antibodies against pd-l1 |
MX2019011520A (en) | 2017-03-31 | 2020-08-03 | Genmab Holding B V | BISPECIFIC ANTI-LEUKOCYTE ANTIGEN 37 (CD37) ANTIBODIES, MONOCLONAL ANTI-LEUKOCYTE ANTIGEN 37 (CD37) ANTIBODIES, AND METHODS OF USE THEREOF. |
WO2018224609A1 (en) | 2017-06-07 | 2018-12-13 | Genmab B.V. | Therapeutic antibodies based on mutated igg hexamers |
US10894833B2 (en) | 2017-07-20 | 2021-01-19 | H. Lundbeck A/S | Agents, uses and methods for treatment |
KR20250020679A (en) | 2017-08-04 | 2025-02-11 | 젠맵 에이/에스 | Binding agents binding to pd-l1 and cd137 and use thereof |
NZ767798A (en) | 2018-03-12 | 2025-06-27 | Genmab As | Antibodies |
US12275797B2 (en) | 2018-06-22 | 2025-04-15 | Genmab Holding B.V. | Anti-CD37 antibodies and anti-CD20 antibodies, compositions and methods of use thereof |
EP3820900A1 (en) | 2018-07-13 | 2021-05-19 | Genmab A/S | Variants of cd38 antibody and uses thereof |
MA53123A (en) | 2018-07-13 | 2021-05-19 | Genmab As | TROGOCYTOSIS MEDIATION THERAPY USING CD38 ANTIBODIES |
SG11202103100SA (en) | 2018-10-04 | 2021-04-29 | Genmab Holding B V | Pharmaceutical compositions comprising bispecific anti-cd37 antibodies |
CN112996538B (en) | 2018-11-06 | 2025-07-08 | 葛兰素史密丝克莱恩生物有限公司 | Immunogenic compositions |
WO2020257315A1 (en) * | 2019-06-18 | 2020-12-24 | Citranvi Biosciences, Llc | Multiple antigen protein displayed adjuvant systems |
CA3168613A1 (en) | 2020-03-18 | 2021-09-23 | Genmab A/S | Antibodies binding to b7h4 |
WO2021236016A1 (en) * | 2020-05-22 | 2021-11-25 | Formulytica Pty Ltd. | Compositions and methods for the delivery of agents to biological targets |
CU20200032A7 (en) * | 2020-06-09 | 2022-01-13 | Ct Inmunologia Molecular | VACCINE COMPOSITIONS BASED ON NANO-PARTICLES OF CALCIUM PHOSPHATES FOR THE TREATMENT OF CANCER |
KR20230066583A (en) | 2020-09-10 | 2023-05-16 | 젠맵 에이/에스 | Bispecific antibodies to CD3 and CD20 in combination therapy for the treatment of diffuse large B-cell lymphoma |
BR112023004327A2 (en) | 2020-09-10 | 2023-04-04 | Genmab As | METHOD TO TREAT CHRONIC LYMPHOCYTIC LEUKEMIA IN A HUMAN SUBJECT |
MX2023003749A (en) | 2020-10-02 | 2023-04-24 | Genmab As | Antibodies capable of binding to ror2 and bispecific antibodies binding to ror2 and cd3. |
JP2024503394A (en) | 2021-01-08 | 2024-01-25 | 北京韓美薬品有限公司 | Antibodies that specifically bind to 4-1BB and antigen-binding fragments thereof |
WO2022148412A1 (en) | 2021-01-08 | 2022-07-14 | 北京韩美药品有限公司 | Antibody specifically binding to cd47 and antigen-binding fragment thereof |
JP2024503395A (en) | 2021-01-08 | 2024-01-25 | 北京韓美薬品有限公司 | Antibodies that specifically bind to PD-L1 and antigen-binding fragments thereof |
IL305636A (en) | 2021-03-12 | 2023-11-01 | Genmab As | Non-activating antibody variants |
WO2022261251A1 (en) | 2021-06-08 | 2022-12-15 | Glyde Bio Inc. | Immunogenic compositions comprising tumour-associated antigen |
IL311141A (en) | 2021-09-06 | 2024-04-01 | Genmab As | Antibodies capable of binding to cd27, variants thereof and uses thereof |
PE20241175A1 (en) | 2021-10-08 | 2024-05-28 | Genmab As | ANTIBODIES BINDING TO CD30 AND CD3 |
CN117586388A (en) | 2022-08-09 | 2024-02-23 | 深圳智源生物医药有限公司 | Improved beta amyloid oligomer specific binding antibodies |
WO2024102948A1 (en) | 2022-11-11 | 2024-05-16 | Celgene Corporation | Fc receptor-homolog 5 (fcrh5) specific binding molecules and bispecific t-cell engaging antibodies including same and related methods |
AR132290A1 (en) | 2023-04-05 | 2025-06-11 | Genmab As | PHARMACEUTICAL COMPOSITIONS COMPRISING ANTIBODIES THAT BIND TO CD30 AND CD3 |
WO2024235862A1 (en) | 2023-05-12 | 2024-11-21 | Genmab A/S | Antibodies capable of binding to ox40, variants thereof and uses thereof |
US12351650B2 (en) | 2023-06-30 | 2025-07-08 | Genmab A/S | Antibodies binding to fibroblast activation protein alpha and death receptor 4 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US5648097A (en) * | 1995-10-04 | 1997-07-15 | Biotek, Inc. | Calcium mineral-based microparticles and method for the production thereof |
US5716821A (en) * | 1994-09-30 | 1998-02-10 | Uab Research Foundation | Prevention and treatment of respiratory tract disease |
US5789229A (en) * | 1994-09-30 | 1998-08-04 | Uab Research Foundation | Stranded RNA virus particles |
US5869036A (en) * | 1995-12-08 | 1999-02-09 | St. Louis University | Live attenuated vaccines based on CP45 HPIV-3 strain and method to ensure attenuation in such vaccine |
US5959762A (en) * | 1996-11-08 | 1999-09-28 | Optical Coating Laboratory, Inc. | Variably adjustable contrast enhancement electrochromic panel adapted for curved display screens and methods of making and using same |
US6033886A (en) * | 1994-07-18 | 2000-03-07 | Conzelmann; Karl Klaus | Recombinant infectious non-segmented negative strand RNA virus |
US6165510A (en) * | 1996-02-12 | 2000-12-26 | Crossfield Limited | Inorganic material in particles form |
US6264957B1 (en) * | 1995-09-27 | 2001-07-24 | The United States Of America As Represented By The Department Of Health And Human Services | Product of infectious respiratory syncytial virus from cloned nucleotide sequences |
US20030077235A1 (en) * | 1995-06-13 | 2003-04-24 | Zahra Mansouri | Topical formulations comprising ceramic hydroxyapatite particles |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3183545A (en) | 1961-06-29 | 1965-05-18 | Bergstrom Eric Victor | Easy slide caster |
AU407324B2 (en) | 1962-05-01 | 1970-10-28 | Smith, Kline & French Laboratories | Powdered silicone products and processes |
FR2181426B1 (en) | 1972-04-06 | 1974-12-20 | Pasteur Institut | |
US4016252A (en) | 1972-04-06 | 1977-04-05 | Institut Pasteur | Calcium phosphate gel for adsorbing vaccines |
US4070454A (en) * | 1973-05-04 | 1978-01-24 | Agence Nationale De Valorisation De La Recherche (Anvar) | Vaccines, the process for preparing the same and the applications thereof |
FR2227861B1 (en) * | 1973-05-04 | 1976-07-02 | Anvar | |
FR2466991A1 (en) | 1979-10-08 | 1981-04-17 | Pasteur Institut | IMPROVEMENT TO ALLERGEN PREPARATION |
FR2505657A1 (en) | 1981-05-13 | 1982-11-19 | Pasteur Institut | IMPROVEMENTS IN LIVE STABILIZING AGENTS FOR THE PREPARATION OF VACCINES, AND STABILIZED VACCINES CONTAINING SAID STABILIZING AGENTS |
FR2522269A1 (en) * | 1982-02-26 | 1983-09-02 | Pasteur Institut | ANTI-TUMOR AGENTS, SUCH AS DAUNORUBICIN, WITH IMPROVED EFFECTIVENESS, THEIR PRODUCTION AND METHOD FOR INCREASING THE EFFECTIVENESS OF ANTI-TUMOR AGENTS |
US4963526A (en) | 1984-05-09 | 1990-10-16 | Synthetic Blood Corporation | Oral insulin and a method of making the same |
FR2577048B1 (en) * | 1985-02-05 | 1988-05-06 | Pasteur Institut | REAGENT FOR THE HEMAGGLUTINATION DETERMINATION OF ANTIBODIES AGAINST BACTERIAL TOXINS, METHOD OF PREPARATION AND ITS APPLICATION |
CA1291036C (en) | 1986-04-23 | 1991-10-22 | Edwin I. Stoltz | Nasal administration of drugs |
US4983341A (en) * | 1987-12-28 | 1991-01-08 | United Technologies Corporation | Method of using breather materials for high pressure molding |
IL88961A (en) | 1988-01-29 | 1992-07-15 | Basf Ag | Stable mixtures containing oxidation-sensitive compounds |
US5428066A (en) | 1989-03-08 | 1995-06-27 | Larner; Joseph | Method of reducing elevated blood sugar in humans |
US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
ES2200016T3 (en) | 1989-03-21 | 2004-03-01 | Vical Incorporated | EXPRESSION OF EXECUTIVE POLINUCLEOTIDIC SEQUENCES IN A VERTEBRATE. |
US5219577A (en) | 1990-06-22 | 1993-06-15 | The Regents Of The University Of California | Biologically active composition having a nanocrystalline core |
US5441739A (en) | 1990-06-22 | 1995-08-15 | The Regents Of The University Of California | Reduced and controlled surface binding of biologically active molecules |
US5462751A (en) | 1990-06-22 | 1995-10-31 | The Regeants Of The University Of California | Biological and pharmaceutical agents having a nanomeric biodegradable core |
US5178882A (en) | 1990-06-22 | 1993-01-12 | The Regents Of The University Of California | Viral decoy vaccine |
US5460830A (en) | 1990-06-22 | 1995-10-24 | The Regents Of The University Of California | Biochemically active agents for chemical catalysis and cell receptor activation |
US5460831A (en) | 1990-06-22 | 1995-10-24 | The Regents Of The University Of California | Targeted transfection nanoparticles |
US5306508A (en) | 1990-06-22 | 1994-04-26 | The Regents Of The University Of California | Red blood cell surrogate |
US5334394A (en) | 1990-06-22 | 1994-08-02 | The Regents Of The University Of California | Human immunodeficiency virus decoy |
US5464634A (en) | 1990-06-22 | 1995-11-07 | The Regents Of The University Of California | Red blood cell surrogate |
US5110606A (en) * | 1990-11-13 | 1992-05-05 | Affinity Biotech, Inc. | Non-aqueous microemulsions for drug delivery |
US5462634A (en) * | 1991-08-23 | 1995-10-31 | Honda Giken Kogyo Kabushiki Kaisha | Surface-treated aluminum material and method for its surface treatment |
US6537574B1 (en) | 1992-02-11 | 2003-03-25 | Bioform, Inc. | Soft tissue augmentation material |
ES2167330T3 (en) | 1992-02-28 | 2002-05-16 | Cohesion Tech Inc | INJECTABLE CERAMIC COMPOSITIONS AND ITS PREPARATION AND USE PROCEDURE. |
US5204382A (en) | 1992-02-28 | 1993-04-20 | Collagen Corporation | Injectable ceramic compositions and methods for their preparation and use |
EP0584348B1 (en) | 1992-03-11 | 2005-05-18 | Powderject Vaccines, Inc. | Genetic vaccine for immunodeficiency viruses |
US5620896A (en) | 1992-03-23 | 1997-04-15 | University Of Massachusetts Medical Center | DNA vaccines against rotavirus infections |
WO1993024640A2 (en) | 1992-06-04 | 1993-12-09 | The Regents Of The University Of California | Methods and compositions for in vivo gene therapy |
WO1994008336A1 (en) * | 1992-09-30 | 1994-04-14 | Tdk Corporation | Magnetic recording medium |
FR2698560B1 (en) | 1992-11-30 | 1995-02-03 | Virbac Laboratoires | Stabilized powdery active ingredients, compositions containing them, process for obtaining them and their applications. |
US5364838A (en) | 1993-01-29 | 1994-11-15 | Miris Medical Corporation | Method of administration of insulin |
US5665382A (en) | 1993-02-22 | 1997-09-09 | Vivorx Pharmaceuticals, Inc. | Methods for the preparation of pharmaceutically active agents for in vivo delivery |
US5456986A (en) | 1993-06-30 | 1995-10-10 | Carnegie Mellon University | Magnetic metal or metal carbide nanoparticles and a process for forming same |
US5506203C1 (en) | 1993-06-24 | 2001-02-06 | Astra Ab | Systemic administration of a therapeutic preparation |
US5469599A (en) * | 1993-10-27 | 1995-11-28 | Wurdack; Roy A. | Slide |
IL113817A (en) | 1994-06-30 | 2001-03-19 | Merck & Co Inc | Polynucleotide vaccne for papillomavirus |
ATE208186T1 (en) * | 1994-08-30 | 2001-11-15 | Alcon Lab Inc | THERMALLY GELING EXHIBITS FOR DRUG DELIVERY CONTAINING CELLULOSE ETHERS |
CA2199005A1 (en) * | 1994-09-01 | 1996-03-07 | Emile Bourland (Deceased) | Compositions and methods for delivery of polypeptides |
US5484720A (en) | 1994-09-08 | 1996-01-16 | Genentech, Inc. | Methods for calcium phosphate transfection |
US5858398A (en) * | 1994-11-03 | 1999-01-12 | Isomed Inc. | Microparticular pharmaceutical compositions |
DE4444052A1 (en) | 1994-12-10 | 1996-06-13 | Rhone Poulenc Rorer Gmbh | Pharmaceutical, oral preparation |
EP0805678B1 (en) | 1995-01-05 | 2003-10-29 | THE BOARD OF REGENTS acting for and on behalf of THE UNIVERSITY OF MICHIGAN | Surface-modified nanoparticles and method of making and using same |
US5629021A (en) | 1995-01-31 | 1997-05-13 | Novavax, Inc. | Micellar nanoparticles |
US5747001A (en) | 1995-02-24 | 1998-05-05 | Nanosystems, L.L.C. | Aerosols containing beclomethazone nanoparticle dispersions |
IE80468B1 (en) | 1995-04-04 | 1998-07-29 | Elan Corp Plc | Controlled release biodegradable nanoparticles containing insulin |
US6541037B1 (en) | 1995-05-19 | 2003-04-01 | Etex Corporation | Delivery vehicle |
US5676976A (en) | 1995-05-19 | 1997-10-14 | Etex Corporation | Synthesis of reactive amorphous calcium phosphates |
US8333996B2 (en) | 1995-05-19 | 2012-12-18 | Etex Corporation | Calcium phosphate delivery vehicle and adjuvant |
US5824638A (en) * | 1995-05-22 | 1998-10-20 | Shire Laboratories, Inc. | Oral insulin delivery |
US5785975A (en) | 1995-06-26 | 1998-07-28 | Research Triangle Pharmaceuticals | Adjuvant compositions and vaccine formulations comprising same |
US5827822A (en) | 1996-03-25 | 1998-10-27 | Sangstat Medical Corporation | Cyclosporin a formulations as nanoparticles |
US5695617A (en) | 1995-11-22 | 1997-12-09 | Dow Corning Corporation | Silicon nanoparticles |
US5985312A (en) * | 1996-01-26 | 1999-11-16 | Brown University Research Foundation | Methods and compositions for enhancing the bioadhesive properties of polymers |
JPH09205491A (en) | 1996-01-26 | 1997-08-05 | Nec Telecom Syst Ltd | Isdn telemetering system |
US5955096A (en) * | 1996-06-25 | 1999-09-21 | Brown University Research Foundation | Methods and compositions for enhancing the bioadhesive properties of polymers using organic excipients |
JPH10114897A (en) | 1996-10-11 | 1998-05-06 | Sangi Co Ltd | Powdery perfume, preparation thereof and use thereof |
ES2232934T3 (en) | 1997-02-14 | 2005-06-01 | MERCK & CO., INC. | FORMULATIONS OF VACCINES BASED ON POLINUCLEOTIDES. |
US5898028A (en) | 1997-03-20 | 1999-04-27 | Novo Nordisk A/S | Method for producing powder formulation comprising an insulin |
DE69840069D1 (en) * | 1997-04-01 | 2008-11-13 | Cap Biotechnology Inc | Calcium phosphate and microbeads |
US5891420A (en) | 1997-04-21 | 1999-04-06 | Aeropharm Technology Limited | Environmentally safe triancinolone acetonide aerosol formulations for oral inhalation |
AU3860797A (en) | 1997-07-16 | 1999-02-10 | Antrin Research Limited | Pharmaceutical formulations for oral administration |
US6187335B1 (en) | 1997-12-31 | 2001-02-13 | Orasomal Technologies, Inc. | Polymerizable fatty acids, phospholipids and polymerized liposomes therefrom |
US6017545A (en) | 1998-02-10 | 2000-01-25 | Modi; Pankaj | Mixed micellar delivery system and method of preparation |
US6251474B1 (en) * | 1998-11-06 | 2001-06-26 | Idaho Research Foundation | Method of producing substantially spherical magneto-plumbite ferrite particles |
US20020068090A1 (en) | 1999-02-03 | 2002-06-06 | Bell Steve J. D. | Calcium phosphate particles as mucosal adjuvants |
DK1150918T3 (en) | 1999-02-03 | 2004-12-20 | Biosante Pharmaceuticals Inc | Process for the preparation of therapeutic calcium phosphate particles |
US20040258763A1 (en) | 1999-02-03 | 2004-12-23 | Bell Steve J.D. | Methods of manufacture and use of calcium phosphate particles containing allergens |
US20020054914A1 (en) | 1999-02-03 | 2002-05-09 | Tulin Morcol | Compositions and methods for therapuetic agents complexed with calcium phosphate and encased by casein |
US6183803B1 (en) | 1999-06-11 | 2001-02-06 | Biosante Pharmaceuticals, Inc. | Method for processing milk |
US6183335B1 (en) * | 1999-12-10 | 2001-02-06 | Christine Petersen | Suspended display arrangement for vehicles |
JP2001302431A (en) | 2000-04-21 | 2001-10-31 | Mitsui Chemicals Inc | Cosmetic containing calcium phosphate fine-grain |
WO2006073503A1 (en) | 2001-02-27 | 2006-07-13 | Biosante Pharmaceuticals, Inc. | Therapeutic calcium phosphate particles for use in inhibiting expression of a gene |
US20030185892A1 (en) | 2001-08-17 | 2003-10-02 | Bell Steve J. D. | Intraocular delivery compositions and methods |
WO2004026453A2 (en) | 2002-09-06 | 2004-04-01 | Genteric, Inc. | Microcapsules and methods of use |
-
2000
- 2000-02-03 DK DK00905941T patent/DK1150918T3/en active
- 2000-02-03 MX MXPA01007895A patent/MXPA01007895A/en not_active IP Right Cessation
- 2000-02-03 AT AT00905941T patent/ATE276199T1/en not_active IP Right Cessation
- 2000-02-03 ES ES00905941T patent/ES2228467T3/en not_active Expired - Lifetime
- 2000-02-03 US US09/496,771 patent/US6355271B1/en not_active Expired - Lifetime
- 2000-02-03 PT PT00905941T patent/PT1150918E/en unknown
- 2000-02-03 AU AU27531/00A patent/AU2753100A/en not_active Abandoned
- 2000-02-03 DE DE60013773T patent/DE60013773T2/en not_active Expired - Lifetime
- 2000-02-03 IL IL14408400A patent/IL144084A0/en active IP Right Grant
- 2000-02-03 EP EP00905941A patent/EP1150918B1/en not_active Expired - Lifetime
- 2000-02-03 WO PCT/US2000/002742 patent/WO2000046147A2/en active IP Right Grant
- 2000-02-03 CA CA002361421A patent/CA2361421A1/en not_active Abandoned
-
2001
- 2001-02-27 US US09/794,576 patent/US20010048925A1/en not_active Abandoned
- 2001-07-01 IL IL144084A patent/IL144084A/en not_active IP Right Cessation
-
2007
- 2007-04-03 US US11/732,596 patent/US20070292454A1/en not_active Abandoned
-
2010
- 2010-10-26 US US12/912,579 patent/US8431221B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683202B1 (en) * | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) * | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US6033886A (en) * | 1994-07-18 | 2000-03-07 | Conzelmann; Karl Klaus | Recombinant infectious non-segmented negative strand RNA virus |
US5716821A (en) * | 1994-09-30 | 1998-02-10 | Uab Research Foundation | Prevention and treatment of respiratory tract disease |
US5789229A (en) * | 1994-09-30 | 1998-08-04 | Uab Research Foundation | Stranded RNA virus particles |
US20030077235A1 (en) * | 1995-06-13 | 2003-04-24 | Zahra Mansouri | Topical formulations comprising ceramic hydroxyapatite particles |
US6264957B1 (en) * | 1995-09-27 | 2001-07-24 | The United States Of America As Represented By The Department Of Health And Human Services | Product of infectious respiratory syncytial virus from cloned nucleotide sequences |
US5648097A (en) * | 1995-10-04 | 1997-07-15 | Biotek, Inc. | Calcium mineral-based microparticles and method for the production thereof |
US5869036A (en) * | 1995-12-08 | 1999-02-09 | St. Louis University | Live attenuated vaccines based on CP45 HPIV-3 strain and method to ensure attenuation in such vaccine |
US6165510A (en) * | 1996-02-12 | 2000-12-26 | Crossfield Limited | Inorganic material in particles form |
US5959762A (en) * | 1996-11-08 | 1999-09-28 | Optical Coating Laboratory, Inc. | Variably adjustable contrast enhancement electrochromic panel adapted for curved display screens and methods of making and using same |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060062855A1 (en) * | 2001-02-27 | 2006-03-23 | Bell Steve J D | Therapeutic calcium phosphate particles for use in inhibiting expression of a gene |
US20090041812A1 (en) * | 2004-11-01 | 2009-02-12 | Bell Steve J D | Therapeutic Calcium Phosphate Particles in Use for Aesthetic of Cosmetic Medicine, and Methods of Manufacture and Use |
US10610469B2 (en) | 2004-11-01 | 2020-04-07 | Dr. Leonard B. Miller | Therapeutic calcium phosphate particles in use for aesthetic or cosmetic medicine, and methods of manufacture and use |
US9119778B2 (en) | 2009-03-26 | 2015-09-01 | Pulmatrix Operating Company, Inc. | Dry powder formulations and methods for treating pulmonary diseases |
US9238005B2 (en) | 2009-03-26 | 2016-01-19 | Pulmatrix Operating Company, Inc. | Dry powder formulations and methods for treating pulmonary diseases |
US8992983B2 (en) | 2010-08-30 | 2015-03-31 | Pulmatrix, Inc. | Respirably dry powder comprising calcium lactate, sodium chloride and leucine |
US9061352B2 (en) | 2010-08-30 | 2015-06-23 | Pulmatrix, Inc. | Dry powder formulations and methods for treating pulmonary diseases |
US9233158B2 (en) | 2010-08-30 | 2016-01-12 | Pulmatrix, Inc. | Dry powder formulations and methods for treating pulmonary diseases |
US9642798B2 (en) | 2010-09-29 | 2017-05-09 | Pulmatrix, Inc. | Monovalent metal cation dry powders for inhalation |
US9744130B2 (en) | 2010-09-29 | 2017-08-29 | Pulmatrix Operating Company, Inc. | Cationic dry powders |
US10376465B2 (en) | 2010-09-29 | 2019-08-13 | Pulmatrix Operating Company, Inc. | Monovalent metal cation dry powders for inhalation |
US9433576B2 (en) | 2010-09-29 | 2016-09-06 | Pulmatrix, Inc. | Cationic dry powders |
US11173115B2 (en) | 2010-09-29 | 2021-11-16 | Pulmatrix Operating Company, Inc. | Monovalent metal cation dry powders for inhalation |
US10589039B2 (en) | 2012-02-29 | 2020-03-17 | Pulmatric Operating Company, Inc. | Methods for producing respirable dry powders |
US10806871B2 (en) | 2012-02-29 | 2020-10-20 | Pulmatrix Operating Company, Inc. | Inhalable dry powders |
US11235112B2 (en) | 2012-02-29 | 2022-02-01 | Pulmatrix Operating Company, Inc. | Inhalable dry powders |
US9737518B2 (en) | 2013-04-01 | 2017-08-22 | Pulmatrix Operating Company, Inc. | Tiotropium dry powders |
Also Published As
Publication number | Publication date |
---|---|
US20110236685A1 (en) | 2011-09-29 |
ES2228467T3 (en) | 2005-04-16 |
DE60013773T2 (en) | 2005-11-10 |
WO2000046147A3 (en) | 2000-12-07 |
WO2000046147A2 (en) | 2000-08-10 |
US6355271B1 (en) | 2002-03-12 |
EP1150918A2 (en) | 2001-11-07 |
EP1150918B1 (en) | 2004-09-15 |
ATE276199T1 (en) | 2004-10-15 |
US8431221B2 (en) | 2013-04-30 |
US20010048925A1 (en) | 2001-12-06 |
IL144084A (en) | 2006-10-31 |
DK1150918T3 (en) | 2004-12-20 |
MXPA01007895A (en) | 2003-07-21 |
IL144084A0 (en) | 2002-05-23 |
CA2361421A1 (en) | 2000-08-10 |
DE60013773D1 (en) | 2004-10-21 |
PT1150918E (en) | 2005-01-31 |
AU2753100A (en) | 2000-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6355271B1 (en) | Therapeutic calcium phosphate particles and methods of manufacture and use | |
US20020068090A1 (en) | Calcium phosphate particles as mucosal adjuvants | |
CA2212382C (en) | Cochleate delivery vehicles | |
EP0724432B1 (en) | Methods and compositions for microencapsulation of antigens for use as vaccines | |
US6913767B1 (en) | Compositions for microencapsulation of antigens for use as vaccines | |
EP1720520B1 (en) | Particles comprising a core of calcium phosphate nanoparticles, a biomolecule and a bile acid, methods of manufacturing, therapeutic use thereof | |
Sokolova et al. | The potential of nanoparticles for the immunization against viral infections | |
US20080311214A1 (en) | Polymerized solid lipid nanoparticles for oral or mucosal delivery of therapeutic proteins and peptides | |
Glück | Immunopotentiating reconstituted influenza virosomes (IRIVs) and other adjuvants for improved presentation of small antigens | |
ES2369550T3 (en) | FORMULATION OF ASSISTANT FOR ADMINISTRATION IN MUCOSAS. | |
JP2019504895A (en) | TIMP encapsulating cedar pollen epitope (tissue metalloprotease inhibitor) | |
US20180099044A1 (en) | Lymph node-targeting nanoparticles | |
CN113456810A (en) | Novel anti-neocoronavirus therapeutic vaccine and preparation method and application thereof | |
EP1471034A2 (en) | Therapeutic calcium phosphate particles and methods of manufacture and use | |
US20060062855A1 (en) | Therapeutic calcium phosphate particles for use in inhibiting expression of a gene | |
ES2340617T3 (en) | GENETIC VACCINES WITH ADJUSTERS. | |
HK1070045A (en) | Therapeutic calcium phosphate particles and methods of manufacture and use | |
AU2005244128B2 (en) | Pulmonary malarial vaccine | |
AU753008B2 (en) | Cochleate delivery vehicles | |
WO2024131862A1 (en) | Rsv vaccine as well as preparation method therefor and use thereof | |
Sarim Imam et al. | Pulmonary Vaccine Delivery Systems: A Novel Approach for Immunization | |
AU2006236007A1 (en) | Cochleate Delivery Vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CAPTIVATE PHARMACEUTICALS, LLC, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOSANTE PHARMACEUTICALS, INC.;REEL/FRAME:029386/0524 Effective date: 20120823 |