US20070279969A1 - Intrusion detection apparatus and method - Google Patents
Intrusion detection apparatus and method Download PDFInfo
- Publication number
- US20070279969A1 US20070279969A1 US11/446,534 US44653406A US2007279969A1 US 20070279969 A1 US20070279969 A1 US 20070279969A1 US 44653406 A US44653406 A US 44653406A US 2007279969 A1 US2007279969 A1 US 2007279969A1
- Authority
- US
- United States
- Prior art keywords
- magnetic memory
- magnetic field
- memory array
- magnetic
- enclosure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000001514 detection method Methods 0.000 title abstract description 5
- 230000005291 magnetic effect Effects 0.000 claims abstract description 169
- 230000015654 memory Effects 0.000 claims abstract description 93
- 238000010586 diagram Methods 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 3
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 239000002885 antiferromagnetic material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
Definitions
- This invention relates to an apparatus to detect hardware intrusion into a protected enclosure without requiring electrical power.
- the intrusion could be unauthorized opening, disassembly, or other attempt to gain access to the protected enclosure.
- the protected enclosure could contain, for example, proprietary hardware, security equipment, or fee collection or metering equipment.
- the intrusion detection means must also operate without electrical power.
- a first embodiment of the invention consists of an array of at least two magnetic memory elements, each of which has two electronically-readable stable states in the presence of a bias magnetic field, and a means for providing the required bias magnetic field.
- bias magnetic field is intended to describe a magnetic field having a strength and direction within predetermined limits that will sustain the states of the magnetic memory elements.
- the predetermined limits on field strength may be centered about some finite value or may be centered about zero. In the latter case, the magnetic memory elements are configured to maintain two stable states in the absence of an applied magnetic field, and to change states if the applied magnetic field exceeds some threshold value.
- the magnetic memory elements and the means for providing the bias magnetic field are both located within a protected electronics enclosure and disposed such that any attempt to disassemble the enclosure will cause a change in the bias magnetic field and resultant permanent change to the content stored in the magnetic memory.
- Intrusion detection functionality is initialized by electronically writing a binary code into the magnetic memory after the protected volume is completely assembled. Subsequent disassembly will automatically cause the initialization code to erase. Attempted intrusion can be detected by comparing the memory content with the known value of the code at initialization.
- the reaction to the detected intrusion may be an alarm or alert, or a reaction (such as erasing data or software) causing the protected equipment to lose functionality.
- the binary code stored in the magnetic memory at initialization is used as the key to encrypt or decrypt stored data or communications. In this case, loss of the encryption code due to attempted intrusion is sufficient to cause the protected equipment to lose functionality.
- the magnetic memory is an array of spin-valve magnetoresistive sensor elements.
- Spin-valve sensors are described in U.S. Pat. No. 5,159,513 and have been extensively developed for use in read heads for magnetic disc memory devices.
- the means for providing the bias magnetic field will preferably be a small permanent magnet.
- the magnetic memory and the magnet must be mounted within the protected enclosure such that they physically move with respect to each other (in any direction) if the enclosure is non-destructively disassembled.
- the protected enclosure is designed to shield the magnetic memory array from external or ambient magnetic fields. Disassembly causes the magnetic memory to be exposed to magnetic fields (e.g., the earth's magnetic field), resulting in changes to the memory content.
- FIG. 1 is a schematic cross-sectional view of a prior art spin-valve magnetic sensor.
- FIG. 2 is a diagram of the electric resistance versus applied magnetic field for a prior art spin-valve magnetic sensor.
- FIG. 3 is a schematic plan view of a prior art spin-valve magnetic memory element.
- FIG. 4 is a diagram illustrating the method of changing the state of a spin-valve magnetic memory element.
- FIG. 5 is a diagram illustrating the operation of the invention.
- FIGS. 6A, 6B , 6 C, and 6 D are schematic cross-sectional views of embodiments of the invention.
- FIGS. 7A, 7B are block diagrams of embodiments of the invention.
- FIG. 8 is a flow chart of the process of using the invention.
- FIG. 1 is a schematic cross-sectional view of an exemplary prior art spin-valve magnetic sensor suitable for use in the present invention.
- the magnetic sensor 100 is comprised of a number of layers deposited onto a substrate 150 .
- Two thin film magnetic layers 120 , 130 are separated by a non-magnetic layer 110 .
- the non-magnetic layer 110 is a metal such as copper.
- a similar magnetic sensor, commonly called a spin-tunneling device, is known to employ a dielectric layer 110 between the magnetic layers 120 , 130 .
- An additional layer of antiferromagnetic material 140 is deposited directly in contact with one of the magnetic layers. All of these layers are physically very thin and may be only a few 10's of angstroms in thickness.
- the device illustrated in FIG. 1 is an example of a sensor suitable for use in the invention.
- the asymmetric layer structure of this example device is typical of spin-valve devices configured for use with a non-zero bias magnetic field.
- Alternative magnetic sensor constructions are known, including an inverted device wherein the antiferromagnetic material is disposed between the lower magnetic film and the substrate.
- additional magnetic or antiferromagnetic layers, deposited over or along side of the spin-valve device is a known technique to tailor the characteristics of the spin valve. The characteristics of such devices may be tailored to include stable memory function with zero bias magnetic field.
- the effect of the antiferromagnetic layer 140 is to “pin” the adjacent magnetic layer 130 such that the magnetization of layer 130 does not change in the presence of magnetic field (up to very high levels; thousands of Gauss), but instead always points in one direction along the long axis of the spin-valve device.
- the other magnetic layer 120 is not pinned, and the direction of magnetization of layer 120 can vary in the presence of a magnetic field. However, layer 120 will exhibit a natural tendency to become magnetized in either of two stable states with the direction of magnetization either parallel to and antiparallel to that of the “pinned” layer 130 .
- the relative magnetization of the two magnetic layers 120 , 130 with respect to each other determines the resistance of the nonmagnetic layer 110 .
- the electrical resistance of layer 110 is reduced.
- the electrical resistance of layer 110 is increased.
- the degree of resistance change between states depends on the type of magnetic sensor and design parameters such as layer thicknesses.
- Spin-valve sensor devices typically exhibit a resistance change of approximately 5%, measured along the long axis of the nonmagnetic film 110 .
- Spin-tunneling devices are reported to exhibit resistance changes greater than 40%, measured across the thickness of the nonmagnetic film 110 .
- FIG. 2 is a graph of the electric resistance versus applied magnetic field for a spin-valve magnetic sensor.
- the resistance versus magnetic field plot 210 exhibits the hysteresis typical of magnetic devices. However, because of the asymmetric structure of the spin-valve device, the hysteresis is centered about a bias magnetic field indicated by dashed line 220 . There are two stable values for the resistance in the presence of a suitable bias magnetic field, but only one value of resistance outside the suitable range of magnetic field.
- the combination of a spin-valve sensor and a means for providing a suitable bias magnetic field constitutes a magnetic memory element capable of “storing” one of two stable states that can be “read” by measuring the resistance of the conductive layer within the spin-valve device.
- FIG. 3 is a schematic plan view of a prior art spin-valve magnetic memory element suitable for use in the invention.
- the spin-valve device 100 should be understood to be the top view of the stacked layers previously shown in cross-section in FIG. 1 .
- Terminals 310 , 320 connect to opposing ends of the non-magnetic layer 110 and can be used to measure the resistance of that layer.
- Terminals 340 , 350 connect to opposing ends of conductor 330 .
- Conductor 330 crosses over the spin-valve device 100 such that a sufficient electrical current passed through conductor 330 will create a magnetic field along the length of spin-valve 100 for the purpose of “writing” the state of the spin-valve memory.
- the memory element also comprises a means, not shown in FIG.
- terminals 310 , 320 , 340 , 350 would be replaced by conductors connecting the circuitry required to read and write the memory content.
- FIG. 4 is a diagram illustrating a method of changing the state of a spin-valve magnetic memory element.
- Curve 400 represents the hysteresis characteristic of the spin-valve device as previously discussed in conjunction with FIG. 2 .
- the spin-valve is in the low resistance state as indicated by point 420 . This state is maintained by the presence of the bias magnetic field with a field strength indicated by dashed line 410 .
- the magnetic field has been changed by an amount indicated by arrow 430 . This changed magnetic field has driven the spin valve to its high resistance state as indicated by point 440 .
- FIG. 4 is a diagram illustrating a method of changing the state of a spin-valve magnetic memory element.
- Curve 400 represents the hysteresis characteristic of the spin-valve device as previously discussed in conjunction with FIG. 2 .
- the spin-valve is in the low resistance state as indicated by point 420 . This state is maintained by the presence of the bias magnetic field with a field strength indicated by dashed
- the magnetic field has been restored to the original value and the spin valve is maintained in the high resistance state as indicated by point 450 .
- the spin valve can be “written” back to the low resistance state by changing the magnetic field in the opposing direction to the field used to write the high resistance state.
- FIG. 3 and FIG. 4 are representative examples of the structure and operation of a magnetic memory element suitable for use in the invention.
- Magnetic memory elements and magnetic random access memories are well known in the art.
- U.S. Pat. No. 5,949,707, U.S. Pat. No. 5,966,322, U.S. Pat. No. 6,021,065, U.S. Pat. No. 6,275,411, and U.S. Pat. No. 6,349,053 all describe memory elements using spin-valve (or giant magneto restrictive effect) or spin-tunneling devices.
- Any magnetic memory device may be suitable for use in the invention so long as the device exhibits two stable states in the presence of a magnetic field having strength and direction falling within predetermined, finite, controllable limits.
- the invention leverages the magnetic memory element's hysteretic behavior.
- the interrelationship between a magnetic memory element's magnetic field surroundings (external magnetic field parameters at any given moment in time) and its electrical resistance (and the number of resistance values possible) is illustrated in FIG. 5 .
- the suitable zone represents the design level for the bias magnetic field plus margin for magnetic variations; two stable binary resistance values are possible in this zone.
- the field strength in the “bistable” zone may be centered about zero, or may be centered on a predetermined non-zero value.
- the single-state zones represent the external magnetic field direction and strength caused by intrusion events; one and only one resistance value is possible in each of these zones.
- an intrusion detection sensor will contain a minimum of two magnetic memory elements.
- predetermined resistance values can be written to individual spin valves to store a binary resistance security code or encryption key.
- the possible useful security code values are 01 and 10 (either the high or low resistance states can be arbitrarily defined as binary 0). This code will persist if, and only if, the applied magnetic field for all spin valves is maintained in the bistable zone. If at any time the applied magnetic field changes into either of the single-state zones, the security code is erased (either all “0s” or all “1s” depending on which of the two intrusion zones was applied last). The change in the stored security code will occur whether or not power is applied.
- FIG. 6A is a schematic cross-sectional view of an exemplary embodiment of the invention.
- Enclosure 500 comprised of a box 520 and a cover 510 , encloses electronic equipment 540 , which must be protected from intrusion or unauthorized access.
- Magnetic memory array 530 comprised of two or more spin-valve or other magnetic memory elements, is disposed within the enclosure as part of electronic equipment 540 .
- a means for providing a magnetic field 550 such as a permanent magnet, is disposed on and permanently attached to the cover 510 .
- the means for providing a magnetic field 550 is designed and positioned to create the desired bias magnetic field (required for magnetic memory operation) at the magnetic memory array 530 .
- the magnetic memory array 530 can stably store a security code so long as the cover 510 is in place and the magnetic field at the memory array is within the bistable zone. Any motion of the cover 510 with respect to the memory array 530 (such as would occur during disassembly of enclosure 500 ) will change the magnetic field at the memory array into either of the “single-state” zones and permanently erase the security code stored therein.
- FIGS. 6B, 6C , 6 D are schematic cross-sectional views of additional exemplary embodiments of the invention. Like elements have the same reference designators used in FIG. 6A .
- a magnetic shield 560 attached to cover 510 is disposed between the magnetic memory array 530 and magnet 550 . Removing cover 510 displaces the shield 560 , changing the magnetic field at memory array 530 and thus changing the security code stored therein.
- the magnetic memory array 530 is adapted to stably store a security code in the absence of a magnetic field
- cover 510 and box 520 are constructed of a magnetic shielding material. Removing cover 510 exposes the magnetic memory array 530 to environmental magnetic fields, depicted by arrow 570 , thus changing the security code stored in the magnetic memory array.
- electronic equipment 540 bearing magnetic memory array 530 is disposed within box 520 and can only be removed by motion in the direction indicated by the arrow 580 .
- Electronic equipment 540 could be a circuit card or module conventionally mounted in card guides. Removing electronic equipment 540 in direction 580 causes the magnetic memory array 530 to pass in proximity to magnetic 550 , thus changing the content stored in memory array 530 .
- FIGS. 6A, 6B , 6 C, and 6 D illustrate simplistic embodiments of the invention and that many variations are possible within the scope of the invention.
- the magnetic memory array and the means for providing a magnetic field may be disposed anywhere within the enclosure so long as attempted intrusion results in relative motion between these elements. This relative motion could be caused by removing a cover, opening a drawer or door, or sliding a circuit module from a rack. Additionally, multiple memory arrays, magnets, or shields could be disposed such that intrusion is detected by relative motion of at least one memory array with respect to at least one magnet or one shield.
- FIG. 7A is a block diagram of a further embodiment of the invention, which is comprised of a magnetic memory array 710 including means (not illustrated) for establishing a suitable bias magnetic field, circuitry for writing 730 and reading 740 the magnetic memory content, means for establishing 720 and verifying 750 a security code, and means 760 for reacting to an intrusion event if detected.
- the security code can be established by a variety of means 720 , including permanently storing the code in a memory, generating the code through some random process, or acquiring the code from an external source via a secure datalink.
- the write circuitry 730 copies the code into magnetic memory array 710 by sending pulses of electrical current through the write conductors of the magnetic memory elements.
- the code can only be written into the magnetic memory array in the presence of the appropriate bias magnetic field. So long as the bias magnetic field is maintained, the security code is stored in magnetic memory 710 and can be read by read electronics 740 . In typical applications, the code will be read periodically and verified by comparison with the pre-established security code. Any change in the code will activate the means 760 for reacting to the intrusion event, which may range from a simple alarm to self-destruction of the functionality of the protected equipment (by means of erasure of internal firmware, for example).
- read circuitry 740 will most likely be located in the immediate proximity of magnetic memory array 710 , the other elements shown in FIG. 7 do not need to be located within the protected enclosure.
- the write circuitry could be external to the enclosure and connected to the magnetic memory array only temporarily to write the security code after the enclosure is assembled.
- Any or all of the means for establishing the security code 720 , the means for verifying the code 750 , and the means for reacting to an intrusion event 760 could be located within the protected enclosure or could be external to the protected enclosure and connected by a secure data link.
- FIG. 7B is a block diagram of a preferred embodiment of the invention.
- means 720 establish a security code that is stored in magnetic memory array 710 by write circuitry 730 .
- the stored security code is read from magnetic memory array 710 by read circuitry 740 and provided to encryption/decryption engine 770 .
- Encryption/decryption engine 770 uses the security code as an encryption key to encrypt or decrypt information to be stored in or read from memory 780 , or information to be transmitted or received via communications channel 790 . Requiring the read circuitry 740 to read the content of magnetic memory 710 every time an encryption or decryption operation is performed will ensure that loss of the magnetic memory content causes immediate loss of function of the protected equipment.
- FIG. 8 illustrates the process of using the invention.
- the security code is written into the magnetic memory array at step 820 .
- the code read from the memory is validated at step 830 .
- the step of validating the security code may be accomplished by comparing the code to a known value, or by using the code to decrypt data previously encrypted using the same code.
- the protected electronic equipment operates normally 840 if the security code is valid, and reacts in some predetermined manner 850 if the code is invalid.
- the security code is revalidated periodically, either at fixed time intervals, every time an encryption or decryption operation is performed, or after some event, such as every time power is applied to the protected electronics.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Storage Device Security (AREA)
Abstract
An apparatus and method to detect intrusion into a protected enclosure without requiring electrical power. The invention consists of an array of at least two magnetic memory elements, each of which has two electronically-readable stable states in the presence of a bias magnetic field, and a means for providing the required bias magnetic field. The magnetic memory elements and the means for providing the bias magnetic field are both located within a protected electronics enclosure and disposed such that any attempt to disassemble the enclosure will cause a change in the bias magnetic field and resultant permanent change to the content stored in the magnetic memory. Intrusion-detection functionality is initialized by electronically writing a binary code into the magnetic memory after the protected volume is completely assembled. Subsequent intrusion will automatically cause the initialization code to erase. The reaction to the detected intrusion may be an alarm or alert, or a reaction (such as erasing data or software) causing the protected equipment to lose functionality.
Description
- This invention was made with government support. The government has certain rights in this invention.
- This invention relates to an apparatus to detect hardware intrusion into a protected enclosure without requiring electrical power.
- There are numerous applications where it is desirable to be able to detect intrusion into a protected enclosure. The “intrusion” could be unauthorized opening, disassembly, or other attempt to gain access to the protected enclosure. The protected enclosure could contain, for example, proprietary hardware, security equipment, or fee collection or metering equipment. To provide protection to portable equipment or equipment without applied power (such as during storage or shipment), the intrusion detection means must also operate without electrical power. Thus there is a need for a cost-effective, reliable, digitally-compatible, non-reversible sensor that can detect intrusion without the need for battery or other electrical power. This invention satisfies all of these requirements.
- A first embodiment of the invention consists of an array of at least two magnetic memory elements, each of which has two electronically-readable stable states in the presence of a bias magnetic field, and a means for providing the required bias magnetic field. The term “bias magnetic field” is intended to describe a magnetic field having a strength and direction within predetermined limits that will sustain the states of the magnetic memory elements. The predetermined limits on field strength may be centered about some finite value or may be centered about zero. In the latter case, the magnetic memory elements are configured to maintain two stable states in the absence of an applied magnetic field, and to change states if the applied magnetic field exceeds some threshold value.
- The magnetic memory elements and the means for providing the bias magnetic field are both located within a protected electronics enclosure and disposed such that any attempt to disassemble the enclosure will cause a change in the bias magnetic field and resultant permanent change to the content stored in the magnetic memory.
- Intrusion detection functionality is initialized by electronically writing a binary code into the magnetic memory after the protected volume is completely assembled. Subsequent disassembly will automatically cause the initialization code to erase. Attempted intrusion can be detected by comparing the memory content with the known value of the code at initialization. The reaction to the detected intrusion may be an alarm or alert, or a reaction (such as erasing data or software) causing the protected equipment to lose functionality.
- In a preferred embodiment, the binary code stored in the magnetic memory at initialization is used as the key to encrypt or decrypt stored data or communications. In this case, loss of the encryption code due to attempted intrusion is sufficient to cause the protected equipment to lose functionality.
- In a preferred embodiment of the invention, the magnetic memory is an array of spin-valve magnetoresistive sensor elements. Spin-valve sensors are described in U.S. Pat. No. 5,159,513 and have been extensively developed for use in read heads for magnetic disc memory devices.
- In the case where a finite bias magnetic field is required to maintain the memory states, the means for providing the bias magnetic field will preferably be a small permanent magnet. The magnetic memory and the magnet must be mounted within the protected enclosure such that they physically move with respect to each other (in any direction) if the enclosure is non-destructively disassembled.
- In the case where the magnetic memory is configured to maintain stable states in the absence of an applied magnetic field (i.e., the bias field strength limits are centered on zero), the protected enclosure is designed to shield the magnetic memory array from external or ambient magnetic fields. Disassembly causes the magnetic memory to be exposed to magnetic fields (e.g., the earth's magnetic field), resulting in changes to the memory content.
-
FIG. 1 is a schematic cross-sectional view of a prior art spin-valve magnetic sensor. -
FIG. 2 is a diagram of the electric resistance versus applied magnetic field for a prior art spin-valve magnetic sensor. -
FIG. 3 is a schematic plan view of a prior art spin-valve magnetic memory element. -
FIG. 4 is a diagram illustrating the method of changing the state of a spin-valve magnetic memory element. -
FIG. 5 is a diagram illustrating the operation of the invention. -
FIGS. 6A, 6B , 6C, and 6D are schematic cross-sectional views of embodiments of the invention. -
FIGS. 7A, 7B are block diagrams of embodiments of the invention. -
FIG. 8 is a flow chart of the process of using the invention. -
FIG. 1 is a schematic cross-sectional view of an exemplary prior art spin-valve magnetic sensor suitable for use in the present invention. Themagnetic sensor 100 is comprised of a number of layers deposited onto asubstrate 150. Two thin filmmagnetic layers non-magnetic layer 110. In the traditional spin-valve device, thenon-magnetic layer 110 is a metal such as copper. A similar magnetic sensor, commonly called a spin-tunneling device, is known to employ adielectric layer 110 between themagnetic layers antiferromagnetic material 140 is deposited directly in contact with one of the magnetic layers. All of these layers are physically very thin and may be only a few 10's of angstroms in thickness. - It must be understood that the device illustrated in
FIG. 1 is an example of a sensor suitable for use in the invention. The asymmetric layer structure of this example device is typical of spin-valve devices configured for use with a non-zero bias magnetic field. Alternative magnetic sensor constructions are known, including an inverted device wherein the antiferromagnetic material is disposed between the lower magnetic film and the substrate. The use of additional magnetic or antiferromagnetic layers, deposited over or along side of the spin-valve device, is a known technique to tailor the characteristics of the spin valve. The characteristics of such devices may be tailored to include stable memory function with zero bias magnetic field. - The effect of the
antiferromagnetic layer 140 is to “pin” the adjacentmagnetic layer 130 such that the magnetization oflayer 130 does not change in the presence of magnetic field (up to very high levels; thousands of Gauss), but instead always points in one direction along the long axis of the spin-valve device. - The other
magnetic layer 120, called the “free” layer, is not pinned, and the direction of magnetization oflayer 120 can vary in the presence of a magnetic field. However,layer 120 will exhibit a natural tendency to become magnetized in either of two stable states with the direction of magnetization either parallel to and antiparallel to that of the “pinned”layer 130. - The relative magnetization of the two
magnetic layers nonmagnetic layer 110. When the magnetization of thefree layer 120 points in the same direction as that of thepinned layer 130, the electrical resistance oflayer 110 is reduced. Conversely, when the magnetization oflayers layer 110 is increased. Thus, in general, two stable resistance states are possible. - The degree of resistance change between states depends on the type of magnetic sensor and design parameters such as layer thicknesses. Spin-valve sensor devices typically exhibit a resistance change of approximately 5%, measured along the long axis of the
nonmagnetic film 110. Spin-tunneling devices are reported to exhibit resistance changes greater than 40%, measured across the thickness of thenonmagnetic film 110. -
FIG. 2 is a graph of the electric resistance versus applied magnetic field for a spin-valve magnetic sensor. The resistance versusmagnetic field plot 210 exhibits the hysteresis typical of magnetic devices. However, because of the asymmetric structure of the spin-valve device, the hysteresis is centered about a bias magnetic field indicated by dashedline 220. There are two stable values for the resistance in the presence of a suitable bias magnetic field, but only one value of resistance outside the suitable range of magnetic field. The combination of a spin-valve sensor and a means for providing a suitable bias magnetic field constitutes a magnetic memory element capable of “storing” one of two stable states that can be “read” by measuring the resistance of the conductive layer within the spin-valve device. -
FIG. 3 is a schematic plan view of a prior art spin-valve magnetic memory element suitable for use in the invention. The spin-valve device 100 should be understood to be the top view of the stacked layers previously shown in cross-section inFIG. 1 .Terminals non-magnetic layer 110 and can be used to measure the resistance of that layer.Terminals conductor 330.Conductor 330 crosses over the spin-valve device 100 such that a sufficient electrical current passed throughconductor 330 will create a magnetic field along the length of spin-valve 100 for the purpose of “writing” the state of the spin-valve memory. It should be understood that the memory element also comprises a means, not shown inFIG. 3 , for providing the bias magnetic field required to maintain two stable states of the spin-valve device. In an actual spin-valve memory,terminals -
FIG. 4 is a diagram illustrating a method of changing the state of a spin-valve magnetic memory element.Curve 400 represents the hysteresis characteristic of the spin-valve device as previously discussed in conjunction withFIG. 2 . InFIG. 4A , the spin-valve is in the low resistance state as indicated bypoint 420. This state is maintained by the presence of the bias magnetic field with a field strength indicated by dashedline 410. InFIG. 4B , the magnetic field has been changed by an amount indicated byarrow 430. This changed magnetic field has driven the spin valve to its high resistance state as indicated bypoint 440. InFIG. 4C , the magnetic field has been restored to the original value and the spin valve is maintained in the high resistance state as indicated bypoint 450. The spin valve can be “written” back to the low resistance state by changing the magnetic field in the opposing direction to the field used to write the high resistance state. -
FIG. 3 andFIG. 4 are representative examples of the structure and operation of a magnetic memory element suitable for use in the invention. Magnetic memory elements and magnetic random access memories (MRAM) are well known in the art. U.S. Pat. No. 5,949,707, U.S. Pat. No. 5,966,322, U.S. Pat. No. 6,021,065, U.S. Pat. No. 6,275,411, and U.S. Pat. No. 6,349,053 all describe memory elements using spin-valve (or giant magneto restrictive effect) or spin-tunneling devices. Any magnetic memory device may be suitable for use in the invention so long as the device exhibits two stable states in the presence of a magnetic field having strength and direction falling within predetermined, finite, controllable limits. - The invention leverages the magnetic memory element's hysteretic behavior. The interrelationship between a magnetic memory element's magnetic field surroundings (external magnetic field parameters at any given moment in time) and its electrical resistance (and the number of resistance values possible) is illustrated in
FIG. 5 . - In essence, the magnetic memory element's hysteresis notionally divides the magnetic field range into three zones: two single-
state conditions zone 600. The suitable zone represents the design level for the bias magnetic field plus margin for magnetic variations; two stable binary resistance values are possible in this zone. The field strength in the “bistable” zone may be centered about zero, or may be centered on a predetermined non-zero value. The single-state zones represent the external magnetic field direction and strength caused by intrusion events; one and only one resistance value is possible in each of these zones. - In practice, an intrusion detection sensor will contain a minimum of two magnetic memory elements. Upon hardware initialization, predetermined resistance values can be written to individual spin valves to store a binary resistance security code or encryption key. In the case where the memory has only two elements and can only store two binary bits, the possible useful security code values are 01 and 10 (either the high or low resistance states can be arbitrarily defined as binary 0). This code will persist if, and only if, the applied magnetic field for all spin valves is maintained in the bistable zone. If at any time the applied magnetic field changes into either of the single-state zones, the security code is erased (either all “0s” or all “1s” depending on which of the two intrusion zones was applied last). The change in the stored security code will occur whether or not power is applied.
-
FIG. 6A is a schematic cross-sectional view of an exemplary embodiment of the invention.Enclosure 500, comprised of abox 520 and acover 510, encloseselectronic equipment 540, which must be protected from intrusion or unauthorized access.Magnetic memory array 530, comprised of two or more spin-valve or other magnetic memory elements, is disposed within the enclosure as part ofelectronic equipment 540. A means for providing amagnetic field 550, such as a permanent magnet, is disposed on and permanently attached to thecover 510. The means for providing amagnetic field 550 is designed and positioned to create the desired bias magnetic field (required for magnetic memory operation) at themagnetic memory array 530. Thus themagnetic memory array 530 can stably store a security code so long as thecover 510 is in place and the magnetic field at the memory array is within the bistable zone. Any motion of thecover 510 with respect to the memory array 530 (such as would occur during disassembly of enclosure 500) will change the magnetic field at the memory array into either of the “single-state” zones and permanently erase the security code stored therein. -
FIGS. 6B, 6C , 6D are schematic cross-sectional views of additional exemplary embodiments of the invention. Like elements have the same reference designators used inFIG. 6A . - In
FIG. 6B , amagnetic shield 560 attached to cover 510 is disposed between themagnetic memory array 530 andmagnet 550. Removingcover 510 displaces theshield 560, changing the magnetic field atmemory array 530 and thus changing the security code stored therein. - In
FIG. 6C , themagnetic memory array 530 is adapted to stably store a security code in the absence of a magnetic field, and cover 510 andbox 520 are constructed of a magnetic shielding material. Removingcover 510 exposes themagnetic memory array 530 to environmental magnetic fields, depicted byarrow 570, thus changing the security code stored in the magnetic memory array. - In
FIG. 6D ,electronic equipment 540 bearingmagnetic memory array 530 is disposed withinbox 520 and can only be removed by motion in the direction indicated by thearrow 580.Electronic equipment 540 could be a circuit card or module conventionally mounted in card guides. Removingelectronic equipment 540 indirection 580 causes themagnetic memory array 530 to pass in proximity to magnetic 550, thus changing the content stored inmemory array 530. - It should be understood that
FIGS. 6A, 6B , 6C, and 6D illustrate simplistic embodiments of the invention and that many variations are possible within the scope of the invention. The magnetic memory array and the means for providing a magnetic field may be disposed anywhere within the enclosure so long as attempted intrusion results in relative motion between these elements. This relative motion could be caused by removing a cover, opening a drawer or door, or sliding a circuit module from a rack. Additionally, multiple memory arrays, magnets, or shields could be disposed such that intrusion is detected by relative motion of at least one memory array with respect to at least one magnet or one shield. -
FIG. 7A is a block diagram of a further embodiment of the invention, which is comprised of amagnetic memory array 710 including means (not illustrated) for establishing a suitable bias magnetic field, circuitry for writing 730 and reading 740 the magnetic memory content, means for establishing 720 and verifying 750 a security code, and means 760 for reacting to an intrusion event if detected. The security code can be established by a variety ofmeans 720, including permanently storing the code in a memory, generating the code through some random process, or acquiring the code from an external source via a secure datalink. Once the code is established, thewrite circuitry 730 copies the code intomagnetic memory array 710 by sending pulses of electrical current through the write conductors of the magnetic memory elements. Note that the code can only be written into the magnetic memory array in the presence of the appropriate bias magnetic field. So long as the bias magnetic field is maintained, the security code is stored inmagnetic memory 710 and can be read byread electronics 740. In typical applications, the code will be read periodically and verified by comparison with the pre-established security code. Any change in the code will activate themeans 760 for reacting to the intrusion event, which may range from a simple alarm to self-destruction of the functionality of the protected equipment (by means of erasure of internal firmware, for example). - While
read circuitry 740 will most likely be located in the immediate proximity ofmagnetic memory array 710, the other elements shown inFIG. 7 do not need to be located within the protected enclosure. For example, the write circuitry could be external to the enclosure and connected to the magnetic memory array only temporarily to write the security code after the enclosure is assembled. Any or all of the means for establishing thesecurity code 720, the means for verifying thecode 750, and the means for reacting to anintrusion event 760 could be located within the protected enclosure or could be external to the protected enclosure and connected by a secure data link. -
FIG. 7B is a block diagram of a preferred embodiment of the invention. As previously described, means 720 establish a security code that is stored inmagnetic memory array 710 bywrite circuitry 730. The stored security code is read frommagnetic memory array 710 by readcircuitry 740 and provided to encryption/decryption engine 770. Encryption/decryption engine 770 uses the security code as an encryption key to encrypt or decrypt information to be stored in or read frommemory 780, or information to be transmitted or received viacommunications channel 790. Requiring theread circuitry 740 to read the content ofmagnetic memory 710 every time an encryption or decryption operation is performed will ensure that loss of the magnetic memory content causes immediate loss of function of the protected equipment. -
FIG. 8 illustrates the process of using the invention. After the enclosure is assembled atstep 810, the security code is written into the magnetic memory array atstep 820. The code read from the memory is validated atstep 830. The step of validating the security code may be accomplished by comparing the code to a known value, or by using the code to decrypt data previously encrypted using the same code. The protected electronic equipment operates normally 840 if the security code is valid, and reacts in somepredetermined manner 850 if the code is invalid. The security code is revalidated periodically, either at fixed time intervals, every time an encryption or decryption operation is performed, or after some event, such as every time power is applied to the protected electronics.
Claims (15)
1. An apparatus for detecting attempted intrusion into a protected enclosure, comprising:
a magnetic memory array comprising at least two magnetic memory elements, each adapted to store a binary value only in the presence of a bias magnetic field having a magnetic field strength and direction within predetermined limits; and
means for providing said bias magnetic field.
2. The apparatus of claim 1 , wherein said magnetic memory array and said means for providing said bias magnetic field are disposed such that any attempt to intrude into said enclosure alters said bias magnetic field sufficiently to change at least one of the binary values stored in said memory array.
3. The apparatus of claim 1 , wherein said magnetic memory elements comprise spin-valve devices.
4. The apparatus of claim 1 , wherein said magnetic memory elements comprise spin-tunneling devices.
5. The apparatus of claim 1 , wherein said means for providing said bias magnetic field comprises at least one permanent magnet.
6. The apparatus of claim 5 , wherein said means for providing said bias magnetic field comprises a plurality of permanent magnets.
7. The apparatus of claim 5 , wherein said magnetic memory array and said at least one permanent magnet are disposed such that any attempt to intrude into said enclosure causes relative motion between said magnetic memory array and at least one permanent magnet.
8. The apparatus of claim 1 , wherein said means for providing said bias magnetic field comprises at least one magnetic shielding element.
9. The apparatus of claim 9 , wherein said magnetic memory array and said at least one magnetic shielding element are disposed such that any attempt to intrude into said enclosure causes relative motion between said magnetic memory and at least one magnetic shielding element.
10. The apparatus of claim 1 , further comprising:
means for storing a code in said magnetic memory array; and
means for reading said stored code.
11. The apparatus of claim 10 , further comprising:
means to use said code as an encryption key.
12. A method for detecting attempted intrusion into a protected enclosure, comprising:
providing a magnetic memory array disposed within said protected enclosure, said magnetic memory array operable to store a binary number of at least two bits in the presence of a bias magnetic field having magnetic field strength and direction within predetermined limits; and
providing said bias magnetic field at said magnetic memory array;
wherein said magnetic memory array is disposed within said enclosure such that any attempt to intrude into said enclosure alters the magnetic field at said memory array sufficiently to change the state of at least one bit of said binary number.
13. The method of claim 12 , further comprising:
storing a predetermined binary number into said magnetic memory array after said enclosure is assembled; and
comparing the binary number stored in said array with said predetermined binary number to determine if attempted intrusion has occurred.
14. The method of claim 12 , further comprising:
storing a binary number into said magnetic memory array after said enclosure is assembled;
periodically reading the binary number stored in said magnetic memory array; and
using the binary number read from said magnetic memory array as an encryption/decryption key.
15. The method of claim 14 , wherein the step of reading the binary number stored in said magnetic memory array is performed every time the encryption/decryption key is used.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/446,534 US20070279969A1 (en) | 2006-06-02 | 2006-06-02 | Intrusion detection apparatus and method |
US12/136,634 US8167057B2 (en) | 2006-06-02 | 2008-06-10 | Intrusion resistant apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/446,534 US20070279969A1 (en) | 2006-06-02 | 2006-06-02 | Intrusion detection apparatus and method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/136,634 Division US8167057B2 (en) | 2006-06-02 | 2008-06-10 | Intrusion resistant apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070279969A1 true US20070279969A1 (en) | 2007-12-06 |
Family
ID=38789905
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/446,534 Abandoned US20070279969A1 (en) | 2006-06-02 | 2006-06-02 | Intrusion detection apparatus and method |
US12/136,634 Active 2029-01-27 US8167057B2 (en) | 2006-06-02 | 2008-06-10 | Intrusion resistant apparatus and method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/136,634 Active 2029-01-27 US8167057B2 (en) | 2006-06-02 | 2008-06-10 | Intrusion resistant apparatus and method |
Country Status (1)
Country | Link |
---|---|
US (2) | US20070279969A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8254161B2 (en) | 2008-08-21 | 2012-08-28 | Freescale Semiconductor, Inc. | Device that can be rendered useless and method thereof |
EP2161954B1 (en) * | 2008-09-04 | 2014-08-13 | Huawei Device Co., Ltd. | Method of alert service processing, device, and network system |
US20150071430A1 (en) * | 2013-09-09 | 2015-03-12 | Qualcomm Incorporated | Physically unclonable function based on the initial logical state of magnetoresistive random-access memory |
US20150071431A1 (en) * | 2013-09-09 | 2015-03-12 | Qualcomm Incorporated | Physically unclonable function based on the random logical state of magnetoresistive random-access memory |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5751124B2 (en) * | 2011-10-19 | 2015-07-22 | 富士通株式会社 | Memory device |
US8811072B2 (en) * | 2012-03-13 | 2014-08-19 | Honeywell International Inc. | Magnetoresistive random access memory (MRAM) package including a multilayer magnetic security structure |
US8854870B2 (en) | 2012-03-13 | 2014-10-07 | Honeywell International Inc. | Magnetoresistive random access memory (MRAM) die including an integrated magnetic security structure |
US8909942B1 (en) * | 2012-03-30 | 2014-12-09 | Western Digital Technologies, Inc. | MRAM-based security for data storage systems |
GB2507954B (en) * | 2012-10-13 | 2018-07-04 | Korala Associates Ltd | A user terminal system and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159513A (en) * | 1991-02-08 | 1992-10-27 | International Business Machines Corporation | Magnetoresistive sensor based on the spin valve effect |
US5949707A (en) * | 1996-09-06 | 1999-09-07 | Nonvolatile Electronics, Incorporated | Giant magnetoresistive effect memory cell |
US6021065A (en) * | 1996-09-06 | 2000-02-01 | Nonvolatile Electronics Incorporated | Spin dependent tunneling memory |
US20020002683A1 (en) * | 2000-02-14 | 2002-01-03 | Benson Justin H. | Security module system, apparatus and process |
US6414884B1 (en) * | 2000-02-04 | 2002-07-02 | Lucent Technologies Inc. | Method and apparatus for securing electronic circuits |
US6774807B1 (en) * | 1999-03-02 | 2004-08-10 | Cadence Design Systems, Inc. | Tamper detection mechanism |
US7005733B2 (en) * | 1999-12-30 | 2006-02-28 | Koemmerling Oliver | Anti tamper encapsulation for an integrated circuit |
US20060081497A1 (en) * | 2002-12-18 | 2006-04-20 | Koninklijke Philips Electronics N.V. | Tamper-resistant packaging and approach |
US20060146597A1 (en) * | 2002-12-18 | 2006-07-06 | Lenssen Kars-Michiel H | Hardware security device for magnetic memory cells |
US20060179490A1 (en) * | 2002-12-18 | 2006-08-10 | Koninklijke Philips Eletronics N.V. | Method and device for protection of an mram device against tampering |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742471A (en) * | 1971-02-24 | 1973-06-26 | Hitachi Ltd | Bubble domain apparatus |
US4150440A (en) * | 1978-03-13 | 1979-04-17 | Control Data Corporation | Bubble memory package |
KR0153311B1 (en) * | 1994-04-06 | 1998-12-15 | 가나이 쯔도무 | Magnetoresistive thin-film magnetic head and the method of fabrication |
GB9501602D0 (en) * | 1995-01-27 | 1995-03-15 | Neopost Ltd | Franking machine and means for data entry thereto |
DE29505985U1 (en) * | 1995-04-06 | 1995-07-20 | Bestenlehrer, Alexander, 91074 Herzogenaurach | Device for processing, in particular for polishing and structuring any 3D shape surfaces by means of a laser beam |
JPH09231523A (en) * | 1996-02-27 | 1997-09-05 | Nec Corp | Magneto-resistive head |
JP4085542B2 (en) * | 1999-12-20 | 2008-05-14 | Jfeスチール株式会社 | Steel plate for tension mask with excellent high-temperature creep resistance and magnetic shielding property and its manufacturing method |
US6760841B1 (en) * | 2000-05-01 | 2004-07-06 | Xtec, Incorporated | Methods and apparatus for securely conducting and authenticating transactions over unsecured communication channels |
US7277542B2 (en) * | 2000-09-25 | 2007-10-02 | Broadcom Corporation | Stream cipher encryption application accelerator and methods thereof |
JP2002171013A (en) * | 2000-12-04 | 2002-06-14 | Sony Corp | Magnetroresistance effect element and magnetroresistance effect type magnetic head |
US7552345B2 (en) * | 2002-03-04 | 2009-06-23 | Sandisk Corporation | Implementation of storing secret information in data storage reader products |
CA2593441A1 (en) * | 2005-02-11 | 2006-08-17 | Universal Data Protection Corporation | Method and system for microprocessor data security |
WO2007124129A2 (en) * | 2006-04-20 | 2007-11-01 | Nve Corporataion | Enclosure tamper detection and protection |
-
2006
- 2006-06-02 US US11/446,534 patent/US20070279969A1/en not_active Abandoned
-
2008
- 2008-06-10 US US12/136,634 patent/US8167057B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159513A (en) * | 1991-02-08 | 1992-10-27 | International Business Machines Corporation | Magnetoresistive sensor based on the spin valve effect |
US5949707A (en) * | 1996-09-06 | 1999-09-07 | Nonvolatile Electronics, Incorporated | Giant magnetoresistive effect memory cell |
US6021065A (en) * | 1996-09-06 | 2000-02-01 | Nonvolatile Electronics Incorporated | Spin dependent tunneling memory |
US6774807B1 (en) * | 1999-03-02 | 2004-08-10 | Cadence Design Systems, Inc. | Tamper detection mechanism |
US7005733B2 (en) * | 1999-12-30 | 2006-02-28 | Koemmerling Oliver | Anti tamper encapsulation for an integrated circuit |
US6414884B1 (en) * | 2000-02-04 | 2002-07-02 | Lucent Technologies Inc. | Method and apparatus for securing electronic circuits |
US20020002683A1 (en) * | 2000-02-14 | 2002-01-03 | Benson Justin H. | Security module system, apparatus and process |
US20060081497A1 (en) * | 2002-12-18 | 2006-04-20 | Koninklijke Philips Electronics N.V. | Tamper-resistant packaging and approach |
US20060146597A1 (en) * | 2002-12-18 | 2006-07-06 | Lenssen Kars-Michiel H | Hardware security device for magnetic memory cells |
US20060179490A1 (en) * | 2002-12-18 | 2006-08-10 | Koninklijke Philips Eletronics N.V. | Method and device for protection of an mram device against tampering |
US7224634B2 (en) * | 2002-12-18 | 2007-05-29 | Nxp B.V. | Hardware security device for magnetic memory cells |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8254161B2 (en) | 2008-08-21 | 2012-08-28 | Freescale Semiconductor, Inc. | Device that can be rendered useless and method thereof |
EP2161954B1 (en) * | 2008-09-04 | 2014-08-13 | Huawei Device Co., Ltd. | Method of alert service processing, device, and network system |
US20150071430A1 (en) * | 2013-09-09 | 2015-03-12 | Qualcomm Incorporated | Physically unclonable function based on the initial logical state of magnetoresistive random-access memory |
US20150071431A1 (en) * | 2013-09-09 | 2015-03-12 | Qualcomm Incorporated | Physically unclonable function based on the random logical state of magnetoresistive random-access memory |
US9214214B2 (en) * | 2013-09-09 | 2015-12-15 | Qualcomm Incorporated | Physically unclonable function based on the random logical state of magnetoresistive random-access memory |
US9230630B2 (en) * | 2013-09-09 | 2016-01-05 | Qualcomm Incorporated | Physically unclonable function based on the initial logical state of magnetoresistive random-access memory |
CN105493190A (en) * | 2013-09-09 | 2016-04-13 | 高通股份有限公司 | Physically unclonable function based on the random logical state of magnetoresistive random-access memory |
Also Published As
Publication number | Publication date |
---|---|
US20080273376A1 (en) | 2008-11-06 |
US8167057B2 (en) | 2012-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8167057B2 (en) | Intrusion resistant apparatus and method | |
US7468664B2 (en) | Enclosure tamper detection and protection | |
EP2135254B1 (en) | Stressed magnetoresistive tamper detection devices | |
US8351603B2 (en) | Random number generating device, random number generating method, and security chip | |
US8261367B2 (en) | Method and device for protection of an MRAM device against tampering | |
EP1576611B1 (en) | Tamper-resistant i.c. packaging and approach | |
EP1588371B1 (en) | Tamper-resistant packaging and approach using magnetically-set data | |
US7712147B2 (en) | Method and device for protection of an mram device against tampering | |
US20060081497A1 (en) | Tamper-resistant packaging and approach | |
US7224634B2 (en) | Hardware security device for magnetic memory cells | |
EP1576615B1 (en) | Hardware security device for magnetic memory cells | |
US7536612B2 (en) | Field spike monitor for MRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RAYTHEON COMPANY, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GABELICH, STEPHEN A.;REEL/FRAME:017953/0936 Effective date: 20060601 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |