US20070246048A1 - Apparatus for deploying oxygen masks - Google Patents
Apparatus for deploying oxygen masks Download PDFInfo
- Publication number
- US20070246048A1 US20070246048A1 US11/823,512 US82351207A US2007246048A1 US 20070246048 A1 US20070246048 A1 US 20070246048A1 US 82351207 A US82351207 A US 82351207A US 2007246048 A1 US2007246048 A1 US 2007246048A1
- Authority
- US
- United States
- Prior art keywords
- cartridge
- manifold
- mask assembly
- opening
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title abstract description 55
- 239000001301 oxygen Substances 0.000 title abstract description 55
- 229910052760 oxygen Inorganic materials 0.000 title abstract description 55
- 239000012530 fluid Substances 0.000 claims abstract description 12
- 238000004891 communication Methods 0.000 claims abstract description 11
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 14
- 239000007789 gas Substances 0.000 abstract description 5
- 238000012857 repacking Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B25/00—Devices for storing or holding or carrying respiratory or breathing apparatus
- A62B25/005—Devices for storing or holding or carrying respiratory or breathing apparatus for high altitude
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B7/00—Respiratory apparatus
- A62B7/14—Respiratory apparatus for high-altitude aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D11/00—Passenger or crew accommodation; Flight-deck installations not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D2231/00—Emergency oxygen systems
- B64D2231/02—Supply or distribution systems
- B64D2231/025—Oxygen masks; Mask storages; Features related to mask deployment
Definitions
- This invention relates to a method and apparatus for deploying an emergency breathing mask in an aircraft.
- the apparatus is automatically or manually operable to present the breathing mask to a user upon loss of cabin pressurization.
- typical emergency breathing mask deployment systems include a generally rectangular shaped storage container 12 carrying a fluid valve assembly 14 , one or more oronasal oxygen masks 16 and means, generally indicated at 18 , for supporting masks 16 thereon in a stowed condition within container 12 .
- the masks 16 have to be stowed in such a way that they will unfold during deployment without tangling.
- the masks 16 may have to be repacked in the container 12 by aircraft technicians several times during the usable life of the container 12 and/or aircraft.
- the masks 16 may have to be replaced after a predetermined period of time, the masks may have to be repacked after inspection or they may have to be repacked after a deployment.
- components which typically include the oxygen tubes 29 , reservoir bag 38 , elastic strap 34 and lanyards 60 , must be carefully folded and coiled as shown in FIG. 1B so that the mask 16 deploys properly and does not become tangled during an emergency situation.
- the process of repacking masks is time-consuming and costly given the labor rates of aircraft technicians.
- the present invention meets the above-described need by providing a method and apparatus for presenting oxygen masks that provides a pre-packaged, modular system that does not require manual repacking of oxygen masks by aircraft technicians.
- the system also provides a force other than gravity for deploying the masks. It is to be understood that the present invention may be used in a ceiling mounted orientation where it would provide a force in addition to gravity for releasing the masks.
- FIG. 1A is a perspective view of a prior art emergency mask deployment system showing the oxygen masks dropped free from the container;
- FIG. 1B is a perspective view of an oxygen mask folded for deployment inside the container
- FIG. 2 is a front elevational view of an individual mask cartridge of the present invention
- FIG. 3 is an elevational view showing three ports for receiving the individual cartridges
- FIG. 4 is an elevational view showing the present invention in relation to an access door
- FIG. 5 is an elevational view showing an alternate embodiment of the present invention.
- FIG. 6A is an elevational, cross-sectional view of an alternate embodiment of the cartridge of the present invention.
- FIG. 6B is an elevational, cross-sectional view of an alternate embodiment of the cartridge shown in FIG. 6A ;
- FIG. 6C is a cross-sectional view of a cartridge with a valve located between the diaphragm and the hose to the mask assembly;
- FIG. 6D is a cross-sectional view of an alternate embodiment of the valve for controlling flow to the mask assembly
- FIG. 6E is a cross-sectional view of another alternate embodiment showing a valve for controlling flow to the mask assembly
- FIG. 7 is an elevational, cross-sectional view of an alternate embodiment of the cartridge of the present invention.
- FIG. 8 is a front elevational view of a plurality of cartridges attached to a manifold
- FIG. 9 is a perspective view of the cartridges and manifold shown in FIG. 8 ;
- FIG. 10 is a partial elevational cross-sectional view of an alternate embodiment of the manifold.
- FIG. 11 is a cross-sectional elevational view of an alternate embodiment of the cartridge of the present invention.
- FIG. 12 is a partial elevational cross-sectional view of an alternate embodiment of the cartridge and manifold of the present invention.
- a cartridge 100 which may be in the shape of a cylinder, contains a single oxygen mask assembly 103 .
- the oxygen mask assembly 103 may include the following major components: a folded reservoir bag 106 , an oronasal mask 109 , a strap 112 , and breathing conduit 115 .
- the cartridge 100 is provided with side walls 118 and an end wall 121 .
- the end wall 121 is provided with an opening 124 for receiving a quick connect fitting that is in fluid communication with the conduit on the mask assembly.
- the cartridge 100 Opposite from the end wall 121 , the cartridge 100 has an opening 127 where the mask 109 exits the cartridge 100 during deployment.
- the opening 127 may be initially covered or partially covered by a removable substrate 130 which may be provided with a pressure-sensitive adhesive or the like. Alternately, the substrate 130 may be creased, scored, or perforated such that it will split open during deployment of the mask. The substrate 130 covers the opening 127 to hold the mask assembly 103 in position during installation of the cartridge 100 and may also prevent contamination.
- the cartridge 100 is a pre-packed standalone assembly that is intended to be installed in the field without requiring any handling of individual mask components by aircraft technicians. Accordingly, the cartridge 100 is provided with quick connect oxygen line connections and quick connect mechanical connections such as quarter-turn bayonet (not shown), pin and slot connections ( FIG. 6-9 ), or “push and stab” connections ( FIG. 12 ) that provide for quick installation in the field without the requirement of tools or separate fasteners. However, it is to be understood that the cartridge 100 can also be installed with tools and separate fasteners.
- the cartridge 100 includes a supplemental mask ejection device such as the spring-biased piston 131 shown in FIG. 2 .
- the piston 131 is biased by a pair of coil springs 133 disposed in grooves 135 in the back of the piston 131 .
- the spring 133 is released from a retention mechanism and provides a force on the piston 131 in the downward direction with respect to the orientation of FIG. 2 . This force ejects the mask 109 from its cartridge to present it to the user.
- the mask ejection device may be formed as part of the cartridge, as part of the housing or oxygen manifold (as shown and described herein in connection with FIGS. 10-12 ) or as a part of some or all of the above components.
- the cartridge in order to eliminate the ejection device from the cartridge, the cartridge may be provided with an end wall that is responsive to force from an ejection device mounted on the manifold.
- the cartridge may be formed with one or more openings in the top and the one or more openings may be covered by a flexible covering such that the ejection device may act upon the mask 109 to deploy it.
- FIG. 3 a bank of cartridges are shown.
- cartridge 100 On the left side with respect to the orientation of FIG. 3 , cartridge 100 is shown with the mask removed for clarity.
- the cartridge 100 includes a quick connect fitting for attaching to a manifold 140 .
- alternate embodiments for the cartridge are shown.
- a cartridge 150 In the middle position, a cartridge 150 is shown.
- the cartridge 150 includes a piston 153 sealed with O-rings 156 .
- the piston 153 is actuated by the pressure of the oxygen and ejects the mask from its cartridge.
- another alternate gas pressure actuated piston is shown with cup seals 159 to form the pressure chamber above the piston.
- a pair of cartridges 100 and 150 are shown in relation to the door 160 leading to the inside of the aircraft cabin.
- the door 160 may be opened by a solenoid-operated actuator 163 .
- the door 160 could be held by a mechanically operated latch capable of being released by the force of the ejection of the mask 109 .
- the mask 109 is ejected from its cartridge by the force of the piston which may be spring-biased or pressure actuated as described above. If the flow of oxygen is initiated when the masks are presented, then the masks may be ejected by pneumatic pressure as described above.
- mask 109 is ejected from cartridge 180 by a bellows chamber 183 .
- the bellows chamber 183 fills with oxygen causing it to expand and push the mask 109 downward with respect to the orientation of FIG. 5 .
- Cartridge 200 includes side walls 203 and an end wall 206 . Extending from end wall 206 are a pair of studs 209 that can be used for attaching the cartridge 200 to a support structure.
- the studs have a body portion 212 and an enlarged head 215 for engaging with a slot having an enlarged opening leading to a slot. By inserting the head 215 into the enlarged opening and rotating the cartridge 200 , the body portion 212 can be received and retained by the slot as will be evident to those of ordinary skill in the art.
- an opening 207 surrounded by an adapter 218 .
- the adapter 218 is provided with an O-ring 221 capable of engaging with the oxygen manifold to provide for fluid communication between the oxygen manifold and the oxygen conduit 224 in the cartridge 200 .
- Other connecting means such as quick connects and the like could also be used and the cartridge 200 could therefore be supported from these other structures disposed around the central opening.
- the adapter 218 leads to a bladder 227 the outlet of which is in fluid communication with the conduit 224 .
- the conduit 224 is coiled above the remaining components such as the reservoir bag, straps, and oronasal mask.
- a cover 230 is attached to the cartridge 200 at the end opposite from the end wall 206 . In operation, the flow of oxygen from the manifold into the bladder 227 causes the bladder 227 to expand and force the mask assembly to push the cover 230 off of the cartridge and causes the mask assembly to exit the cartridge 200 .
- a diaphragm 250 is formed from a flexible sheet of material.
- the diaphragm 250 may be attached on opposite sides of the cartridge 253 at midwall between the top 256 and bottom 259 of the cartridge.
- the cartridge 253 has a central opening 268 which is surrounded by a gasket 271 when the cartridge 253 is in position.
- the central opening 268 is in fluid communication with gas passageway 274 in the manifold 265 .
- a mask assembly 277 (including straps, etc. as described above in connection with FIG. 2 ) is provided for delivering the breathing gas to the user.
- a hose assembly 280 connects the mask assembly 277 to a fitting 283 on the diaphragm 250 .
- the mask assembly 277 and hose assembly 280 are folded and stowed in the cartridge 253 prior to use (as shown in FIG. 6A ).
- the flow of breathing gas in the direction of arrow 284 from the manifold 265 causes the diaphragm 250 to move downward with respect to the orientation of FIG. 6B .
- the force of the diaphragm 250 against the mask assembly 277 causes it to deploy.
- the force of the diaphragm 250 against the mask assembly 277 provides for deployment of the mask assembly 277 regardless of the location of the cartridge 253 which may include overhead in the ceiling of the aircraft, in the sidewalls of the aircraft, or in the seat assembly.
- Cartridge 300 has side walls 303 and an end wall 309 .
- the end wall 309 may be provided with studs 312 for engaging with support structure on oxygen manifold 308 ( FIGS. 8-9 ) as described above in connection with studs 209 .
- a central opening 310 is surrounded by an adapter 315 having an O-ring 318 disposed thereon.
- the adapter 315 may be inserted into the oxygen manifold 308 such that a seal is formed by the O-ring 318 .
- a spring 321 is seated in a retaining member 323 .
- the retaining member 323 may be provided with a major portion having an H-shape in cross-section.
- the top section 324 holds the spring 321 and prevents it from making contact with the coiled breathing conduit 327 .
- a tube 330 extends between the adapter 315 and the breathing conduit 327 and is disposed through an opening in the center of the retaining member 323 .
- the bottom of the retaining member 323 is hollow and provides additional support for the coiled breathing conduit 327 .
- the top of the retaining member 323 is provided with a flange 333 that extends outwardly.
- the spring 321 is compressed between the end wall 309 of the cartridge 300 and the dividing wall 336 in the retaining member 323 .
- the spring 321 is biased against the retaining member 323 in the downward direction with respect to the orientation of FIG. 7 .
- a latch 350 connected to retaining member 323 holds the spring 321 in the compressed state as shown in FIG. 7 .
- the latch 350 is engaged with a surface on the oxygen manifold 308 .
- a solenoid actuated piston 360 ( FIGS. 8-9 ) may be provided to disengage the latch for deployment of the masks. The piston on the solenoid disengages the latch such that the spring is allowed to expand and push into the mask assembly which in turn pushes against the cover 365 to open the end of the cartridge 300 . After the cover 365 is released, the mask assembly exits from the cartridge 300 .
- an alternate embodiment of the invention provides for mounting the springs external to the cartridge.
- manifold 400 supports a pair of latches having a catch member 403 , a shaft 406 , a head 409 and a pair of springs 412 .
- the springs 412 are pre-loaded in compression between the head 409 and the bottom surface 415 of the manifold 400 .
- a cartridge 420 has a pair of openings 423 in the top wall for receiving the springs 412 and their supporting structure.
- the cartridge 420 may be provided with studs 413 for mounting the cartridge 420 on the manifold 400 .
- the cartridge 420 also includes a central opening 426 surrounded by an adapter 429 .
- the central opening is in fluid communication with a breathing conduit 432 connected to an oronasal mask assembly. Accordingly, oxygen from the manifold 400 can flow into the breathing conduit 432 when the cartridge 420 is attached to the manifold 400 .
- a spacer member 430 is disposed between the springs 412 and the mask assembly.
- a solenoid actuated piston assembly 450 is mounted on the manifold 400 and is disposed such that the pistons disengage the catch members 403 from the oxygen manifold 400 . Once the catch members 403 are free, the springs 412 push against the spacer member 430 which pushes the mask assembly against the cover 480 and out of the cartridge 420 .
- the present invention may be used with all types of aircraft supplemental oxygen delivery systems.
- delivery systems There are two primary types of delivery systems: systems whose deployment is initiated by the turning on of a central oxygen supply and systems whose deployment is initiated by an electrical signal.
- the pneumatic pressure can be used to push the mask out of its container as described above. Because the containers are normally stored in a housing that typically includes a cover, the pneumatic pressure of the oxygen can be used to unlatch the cover or the cover could be unlatched by the masks pressing against the inside of the cover as they are ejected from their containers.
- FIGS. 6C-6E a valve may be inserted in the oxygen supply to prevent a sustained flow of oxygen out through a mask which is not being used.
- FIG. 6C such an arrangement is shown where the valve 285 is inserted at the point where the hose assembly 280 attaches to a fitting 283 on diaphragm 250 .
- the valve 285 may be a simple on/off toggle valve or a clip closing off hose assembly 280 .
- This valve may be attached to a lanyard 288 and when mask assembly 277 is pulled to a user's face, the lanyard 288 will actuate the valve 285 or release the clip allowing oxygen to flow.
- the valve could also be electronic such that it would be activated by the user's drawing in a breath after donning the mask and creating a slight negative pressure in the mask and tubing, which would be sensed by the electronic switch allowing the oxygen to flow.
- FIG. 6D illustrates a switch that may be mounted on the manifold or the cartridge. Oxygen flows into a bellows or bladder ejecting the mask as described previously but cannot flow into the tubing of the mask until the electronic valve 289 senses the presence of a user and allows the oxygen to flow to the mask assembly 277 .
- FIG. 6E is a variation of the electronic switch located in the oxygen supply.
- the electronic switch 296 allows oxygen to flow into the bellows or bladder through central opening 268 , ejecting the mask assembly 277 as described previously.
- the switch 296 is programmed to allow the flow of oxygen to occur for only the length of time needed to eject the mask, after which the oxygen supply is cut off by the electronic switch 296 .
- the electronic switch 296 does not reopen, allowing the flow to continue, until it senses by means of sensor tube 294 that the user is taking a breath.
- the oxygen source is often a chemical oxygen generator or a sealed oxygen cylinder serving only the group of masks contained in one or more housings.
- the oxygen supply may be initiated by the users reaching for the oxygen masks and pulling them toward their faces. Accordingly, the ejection of the masks is not associated with the flow of oxygen as the masks have to be ejected prior to actuation of the source of oxygen gas.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
An apparatus for deploying oxygen masks that includes a pre-packaged modular system that does not require manual repacking of oxygen masks by aircraft technicians. The cartridge is for use with a manifold having a passageway in fluid communication with a source of breathable gas. The cartridge includes an end wall, a sidewall extending from the end wall and terminating at a distal end adjacent to an opening. A flexible member defines a chamber inside the cartridge. The chamber is in fluid communication with the passageway when the cartridge is coupled to the manifold. The flexible member has an outlet. A mask assembly is disposed inside the cartridge. The mask assembly has a hose coupled to the outlet of the flexible member. A cover is removably attached to the distal end of the at least one side wall.
Description
- The present application is a continuation of U.S. patent application Ser. No. 11/331,476 filed on Jan. 13, 2006, which claims benefit of U.S. Provisional Patent Application No. 60/643,449 filed on Jan. 13, 2005, entitled “Method and Apparatus for Deploying Oxygen Masks,” which is incorporated herein by reference.
- This invention relates to a method and apparatus for deploying an emergency breathing mask in an aircraft. The apparatus is automatically or manually operable to present the breathing mask to a user upon loss of cabin pressurization.
- As shown in
FIG. 1A , typical emergency breathing mask deployment systems include a generally rectangularshaped storage container 12 carrying afluid valve assembly 14, one or moreoronasal oxygen masks 16 and means, generally indicated at 18, for supportingmasks 16 thereon in a stowed condition withincontainer 12. As known to those of ordinary skill in the art, themasks 16 have to be stowed in such a way that they will unfold during deployment without tangling. With the conventional systems, themasks 16 may have to be repacked in thecontainer 12 by aircraft technicians several times during the usable life of thecontainer 12 and/or aircraft. For example, themasks 16 may have to be replaced after a predetermined period of time, the masks may have to be repacked after inspection or they may have to be repacked after a deployment. In order to repack themasks 16 in thecontainer 12, components, which typically include theoxygen tubes 29,reservoir bag 38,elastic strap 34 andlanyards 60, must be carefully folded and coiled as shown inFIG. 1B so that themask 16 deploys properly and does not become tangled during an emergency situation. The process of repacking masks is time-consuming and costly given the labor rates of aircraft technicians. - Accordingly, there is a need for a method and apparatus that eliminates the need to have aircraft technicians manually repack oxygen masks during service-related replacement of masks. In addition while most masks are mounted in the ceilings of aircraft, some aircraft will require mounting in the sidewalls or as part of a seat assembly. In these aircraft there is a need for an emergency mask system that can be deployed by forces other than gravity. There is also a need for a method and apparatus that meets both needs.
- The present invention meets the above-described need by providing a method and apparatus for presenting oxygen masks that provides a pre-packaged, modular system that does not require manual repacking of oxygen masks by aircraft technicians. The system also provides a force other than gravity for deploying the masks. It is to be understood that the present invention may be used in a ceiling mounted orientation where it would provide a force in addition to gravity for releasing the masks.
- The invention is illustrated in the drawings in which like reference characters designate the same or similar parts throughout the figures of which:
-
FIG. 1A is a perspective view of a prior art emergency mask deployment system showing the oxygen masks dropped free from the container; -
FIG. 1B is a perspective view of an oxygen mask folded for deployment inside the container; -
FIG. 2 is a front elevational view of an individual mask cartridge of the present invention; -
FIG. 3 is an elevational view showing three ports for receiving the individual cartridges; -
FIG. 4 is an elevational view showing the present invention in relation to an access door; -
FIG. 5 is an elevational view showing an alternate embodiment of the present invention; -
FIG. 6A is an elevational, cross-sectional view of an alternate embodiment of the cartridge of the present invention; -
FIG. 6B is an elevational, cross-sectional view of an alternate embodiment of the cartridge shown inFIG. 6A ; -
FIG. 6C is a cross-sectional view of a cartridge with a valve located between the diaphragm and the hose to the mask assembly; -
FIG. 6D is a cross-sectional view of an alternate embodiment of the valve for controlling flow to the mask assembly; -
FIG. 6E is a cross-sectional view of another alternate embodiment showing a valve for controlling flow to the mask assembly; -
FIG. 7 is an elevational, cross-sectional view of an alternate embodiment of the cartridge of the present invention; -
FIG. 8 is a front elevational view of a plurality of cartridges attached to a manifold; -
FIG. 9 is a perspective view of the cartridges and manifold shown inFIG. 8 ; -
FIG. 10 is a partial elevational cross-sectional view of an alternate embodiment of the manifold; -
FIG. 11 is a cross-sectional elevational view of an alternate embodiment of the cartridge of the present invention; and, -
FIG. 12 is a partial elevational cross-sectional view of an alternate embodiment of the cartridge and manifold of the present invention. - Referring to
FIG. 2 , acartridge 100, which may be in the shape of a cylinder, contains a singleoxygen mask assembly 103. As will be evident to those of ordinary skill in the art, theoxygen mask assembly 103 may include the following major components: a foldedreservoir bag 106, anoronasal mask 109, astrap 112, andbreathing conduit 115. Thecartridge 100 is provided withside walls 118 and anend wall 121. Theend wall 121 is provided with anopening 124 for receiving a quick connect fitting that is in fluid communication with the conduit on the mask assembly. Opposite from theend wall 121, thecartridge 100 has anopening 127 where themask 109 exits thecartridge 100 during deployment. The opening 127 may be initially covered or partially covered by aremovable substrate 130 which may be provided with a pressure-sensitive adhesive or the like. Alternately, thesubstrate 130 may be creased, scored, or perforated such that it will split open during deployment of the mask. Thesubstrate 130 covers theopening 127 to hold themask assembly 103 in position during installation of thecartridge 100 and may also prevent contamination. Thecartridge 100 is a pre-packed standalone assembly that is intended to be installed in the field without requiring any handling of individual mask components by aircraft technicians. Accordingly, thecartridge 100 is provided with quick connect oxygen line connections and quick connect mechanical connections such as quarter-turn bayonet (not shown), pin and slot connections (FIG. 6-9 ), or “push and stab” connections (FIG. 12 ) that provide for quick installation in the field without the requirement of tools or separate fasteners. However, it is to be understood that thecartridge 100 can also be installed with tools and separate fasteners. - In addition to being a pre-packed modular construction, the
cartridge 100 includes a supplemental mask ejection device such as the spring-biased piston 131 shown inFIG. 2 . Thepiston 131 is biased by a pair ofcoil springs 133 disposed ingrooves 135 in the back of thepiston 131. When an electrical signal is given or when the oxygen flow is activated, thespring 133 is released from a retention mechanism and provides a force on thepiston 131 in the downward direction with respect to the orientation ofFIG. 2 . This force ejects themask 109 from its cartridge to present it to the user. - As will be evident to those of ordinary skill in the art, the mask ejection device may be formed as part of the cartridge, as part of the housing or oxygen manifold (as shown and described herein in connection with
FIGS. 10-12 ) or as a part of some or all of the above components. Also, in order to eliminate the ejection device from the cartridge, the cartridge may be provided with an end wall that is responsive to force from an ejection device mounted on the manifold. Also, the cartridge may be formed with one or more openings in the top and the one or more openings may be covered by a flexible covering such that the ejection device may act upon themask 109 to deploy it. - Turning to
FIG. 3 , a bank of cartridges are shown. On the left side with respect to the orientation ofFIG. 3 ,cartridge 100 is shown with the mask removed for clarity. As shown, thecartridge 100 includes a quick connect fitting for attaching to amanifold 140. In the other positions along the manifold 140, alternate embodiments for the cartridge are shown. In the middle position, acartridge 150 is shown. Thecartridge 150 includes apiston 153 sealed with O-rings 156. Thepiston 153 is actuated by the pressure of the oxygen and ejects the mask from its cartridge. In the right hand position, another alternate gas pressure actuated piston is shown withcup seals 159 to form the pressure chamber above the piston. - In
FIG. 4 , a pair ofcartridges door 160 leading to the inside of the aircraft cabin. As shown, thedoor 160 may be opened by a solenoid-operatedactuator 163. As an alternative, thedoor 160 could be held by a mechanically operated latch capable of being released by the force of the ejection of themask 109. - Once the
door 160 is opened, themask 109 is ejected from its cartridge by the force of the piston which may be spring-biased or pressure actuated as described above. If the flow of oxygen is initiated when the masks are presented, then the masks may be ejected by pneumatic pressure as described above. - Turning to
FIG. 5 , in an alternate embodiment of the invention,mask 109 is ejected fromcartridge 180 by abellows chamber 183. When the flow of oxygen is initiated thebellows chamber 183 fills with oxygen causing it to expand and push themask 109 downward with respect to the orientation ofFIG. 5 . - In
FIG. 6A , an alternate embodiment of the cartridge is shown.Cartridge 200 includesside walls 203 and anend wall 206. Extending fromend wall 206 are a pair ofstuds 209 that can be used for attaching thecartridge 200 to a support structure. The studs have abody portion 212 and anenlarged head 215 for engaging with a slot having an enlarged opening leading to a slot. By inserting thehead 215 into the enlarged opening and rotating thecartridge 200, thebody portion 212 can be received and retained by the slot as will be evident to those of ordinary skill in the art. - In the center of the
end wall 206 there is anopening 207 surrounded by anadapter 218. Theadapter 218 is provided with an O-ring 221 capable of engaging with the oxygen manifold to provide for fluid communication between the oxygen manifold and theoxygen conduit 224 in thecartridge 200. Other connecting means such as quick connects and the like could also be used and thecartridge 200 could therefore be supported from these other structures disposed around the central opening. As shown theadapter 218 leads to abladder 227 the outlet of which is in fluid communication with theconduit 224. Theconduit 224 is coiled above the remaining components such as the reservoir bag, straps, and oronasal mask. Acover 230 is attached to thecartridge 200 at the end opposite from theend wall 206. In operation, the flow of oxygen from the manifold into thebladder 227 causes thebladder 227 to expand and force the mask assembly to push thecover 230 off of the cartridge and causes the mask assembly to exit thecartridge 200. - In
FIG. 6B , a variation of thebladder 227 is shown. Adiaphragm 250 is formed from a flexible sheet of material. Thediaphragm 250 may be attached on opposite sides of thecartridge 253 at midwall between the top 256 andbottom 259 of the cartridge. Thecartridge 253 has acentral opening 268 which is surrounded by agasket 271 when thecartridge 253 is in position. Thecentral opening 268 is in fluid communication withgas passageway 274 in themanifold 265. - A mask assembly 277 (including straps, etc. as described above in connection with
FIG. 2 ) is provided for delivering the breathing gas to the user. Ahose assembly 280 connects themask assembly 277 to a fitting 283 on thediaphragm 250. Themask assembly 277 andhose assembly 280 are folded and stowed in thecartridge 253 prior to use (as shown inFIG. 6A ). - As shown in
FIG. 6B , upon actuation the flow of breathing gas in the direction ofarrow 284 from the manifold 265 causes thediaphragm 250 to move downward with respect to the orientation ofFIG. 6B . The force of thediaphragm 250 against themask assembly 277 causes it to deploy. The force of thediaphragm 250 against themask assembly 277 provides for deployment of themask assembly 277 regardless of the location of thecartridge 253 which may include overhead in the ceiling of the aircraft, in the sidewalls of the aircraft, or in the seat assembly. - In
FIG. 7 , an alternate embodiment of the cartridge is shown.Cartridge 300 hasside walls 303 and anend wall 309. Theend wall 309 may be provided with studs 312 for engaging with support structure on oxygen manifold 308 (FIGS. 8-9 ) as described above in connection withstuds 209. Also, acentral opening 310 is surrounded by anadapter 315 having an O-ring 318 disposed thereon. Theadapter 315 may be inserted into theoxygen manifold 308 such that a seal is formed by the O-ring 318. - A
spring 321 is seated in a retainingmember 323. The retainingmember 323 may be provided with a major portion having an H-shape in cross-section. Thetop section 324 holds thespring 321 and prevents it from making contact with the coiledbreathing conduit 327. Atube 330 extends between theadapter 315 and thebreathing conduit 327 and is disposed through an opening in the center of the retainingmember 323. The bottom of the retainingmember 323 is hollow and provides additional support for the coiledbreathing conduit 327. The top of the retainingmember 323 is provided with aflange 333 that extends outwardly. Thespring 321 is compressed between theend wall 309 of thecartridge 300 and the dividingwall 336 in the retainingmember 323. Thespring 321 is biased against the retainingmember 323 in the downward direction with respect to the orientation ofFIG. 7 . - A
latch 350 connected to retainingmember 323 holds thespring 321 in the compressed state as shown inFIG. 7 . As shown inFIGS. 8-9 , thelatch 350 is engaged with a surface on theoxygen manifold 308. A solenoid actuated piston 360 (FIGS. 8-9 ) may be provided to disengage the latch for deployment of the masks. The piston on the solenoid disengages the latch such that the spring is allowed to expand and push into the mask assembly which in turn pushes against thecover 365 to open the end of thecartridge 300. After thecover 365 is released, the mask assembly exits from thecartridge 300. - Turning to
FIGS. 10-12 , an alternate embodiment of the invention provides for mounting the springs external to the cartridge. As shown inFIG. 10 ,manifold 400 supports a pair of latches having acatch member 403, ashaft 406, ahead 409 and a pair ofsprings 412. Thesprings 412 are pre-loaded in compression between thehead 409 and thebottom surface 415 of themanifold 400. - As shown in
FIG. 11 , acartridge 420 has a pair ofopenings 423 in the top wall for receiving thesprings 412 and their supporting structure. Thecartridge 420 may be provided withstuds 413 for mounting thecartridge 420 on themanifold 400. Thecartridge 420 also includes acentral opening 426 surrounded by anadapter 429. The central opening is in fluid communication with abreathing conduit 432 connected to an oronasal mask assembly. Accordingly, oxygen from the manifold 400 can flow into thebreathing conduit 432 when thecartridge 420 is attached to themanifold 400. Aspacer member 430 is disposed between thesprings 412 and the mask assembly. - Turning to
FIG. 12 , a solenoid actuatedpiston assembly 450 is mounted on the manifold 400 and is disposed such that the pistons disengage thecatch members 403 from theoxygen manifold 400. Once thecatch members 403 are free, thesprings 412 push against thespacer member 430 which pushes the mask assembly against thecover 480 and out of thecartridge 420. - It is to be understood that the present invention may be used with all types of aircraft supplemental oxygen delivery systems. There are two primary types of delivery systems: systems whose deployment is initiated by the turning on of a central oxygen supply and systems whose deployment is initiated by an electrical signal. In systems where deployment is initiated by turning on a central oxygen supply, the pneumatic pressure can be used to push the mask out of its container as described above. Because the containers are normally stored in a housing that typically includes a cover, the pneumatic pressure of the oxygen can be used to unlatch the cover or the cover could be unlatched by the masks pressing against the inside of the cover as they are ejected from their containers.
- There are also systems where deployment is initiated by the turning on of a central oxygen supply; however, in order to conserve oxygen the central oxygen supply is not delivered to the individual masks until users reach for the mask and take an action such as drawing the mask to their face. In this situation, the pressure of the oxygen supply being turned on may be used to open the door of the housing and to provide flow to a bellows or bladder for ejecting the mask. Returning to
FIGS. 6C-6E , a valve may be inserted in the oxygen supply to prevent a sustained flow of oxygen out through a mask which is not being used. InFIG. 6C , such an arrangement is shown where thevalve 285 is inserted at the point where thehose assembly 280 attaches to a fitting 283 ondiaphragm 250. In this case, thevalve 285 may be a simple on/off toggle valve or a clip closing offhose assembly 280. This valve may be attached to alanyard 288 and whenmask assembly 277 is pulled to a user's face, thelanyard 288 will actuate thevalve 285 or release the clip allowing oxygen to flow. The valve could also be electronic such that it would be activated by the user's drawing in a breath after donning the mask and creating a slight negative pressure in the mask and tubing, which would be sensed by the electronic switch allowing the oxygen to flow. -
FIG. 6D illustrates a switch that may be mounted on the manifold or the cartridge. Oxygen flows into a bellows or bladder ejecting the mask as described previously but cannot flow into the tubing of the mask until theelectronic valve 289 senses the presence of a user and allows the oxygen to flow to themask assembly 277. -
FIG. 6E is a variation of the electronic switch located in the oxygen supply. In this example, theelectronic switch 296 allows oxygen to flow into the bellows or bladder throughcentral opening 268, ejecting themask assembly 277 as described previously. However, theswitch 296 is programmed to allow the flow of oxygen to occur for only the length of time needed to eject the mask, after which the oxygen supply is cut off by theelectronic switch 296. Theelectronic switch 296 does not reopen, allowing the flow to continue, until it senses by means ofsensor tube 294 that the user is taking a breath. - In systems where deployment of the masks is initiated by an electrical signal, without any flow of oxygen occurring, the oxygen source is often a chemical oxygen generator or a sealed oxygen cylinder serving only the group of masks contained in one or more housings. In such cases in order not to expend an oxygen generator or unseal a sealed cylinder, the oxygen supply may be initiated by the users reaching for the oxygen masks and pulling them toward their faces. Accordingly, the ejection of the masks is not associated with the flow of oxygen as the masks have to be ejected prior to actuation of the source of oxygen gas.
- While the invention has been described in connection with certain embodiments, it is not intended to limit the scope of the invention to the particular forms set forth, but, on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Claims (20)
1. A cartridge for use with a manifold, the manifold having a passageway in fluid communication with a source of breathable gas, the cartridge, comprising:
an end wall;
at least one sidewall extending from the end wall and terminating at a distal end adjacent to an opening;
a flexible member defining a chamber inside the cartridge, the chamber in fluid communication with the passageway when the cartridge is coupled to the manifold, the flexible member having an outlet;
a mask assembly disposed inside the cartridge, the mask assembly having a hose coupled to the outlet of the flexible member; and,
wherein pressure against the flexible member caused by flow of the breathing gas into the chamber causes the mask to eject from the cartridge through the opening at the distal end of the at least one sidewall.
2. The cartridge of claim 1 , further comprising a flange capable of engaging with a locking element on the manifold.
3. The cartridge of claim 1 , wherein the flexible member comprises a diaphragm.
4. The cartridge of claim 1 , wherein the flexible member comprises a bellows.
5. The cartridge of claim 3 , wherein the diaphragm is attached to the at least one sidewall at a midpoint.
6. The cartridge of claim 3 , wherein the diaphragm is attached to the end wall.
7. The cartridge of claim 1 , wherein the end wall has an opening defined therein, the opening being in registry with the passageway when the cartridge is coupled to the manifold.
8. The cartridge of claim 1 , further comprising a valve disposed in operative relation with the mask assembly such that the valve is opened to allow flow of the breathing gas to the mask assembly when a user applies a force to the mask assembly.
9. The cartridge of claim 8 , wherein the valve is actuated by a lanyard attached to the mask assembly.
10. The cartridge of claim 1 , further comprising a valve responsive to a user drawing a breath through the mask assembly, the valve controlling flow of the breathing gas to the mask assembly.
11. A cartridge for use with a manifold, the manifold having a passageway in fluid communication with a source of breathable gas, the cartridge, comprising:
an end wall having an opening defined therein, the opening being in registry with the passageway when the cartridge is coupled to the manifold;
at least one sidewall extending from the end wall and terminating at a distal end adjacent to an opening;
a mask assembly disposed inside the cartridge, the mask assembly having a hose disposed in fluid communication with the opening in the end wall; and,
a biasing member disposed on one of the cartridge and the manifold, the biasing member disposed in a normally closed configuration adjacent the mask assembly such that the biasing member is capable of being released such that it engages with the mask assembly to eject the mask assembly through the opening at the distal end of the at least one sidewall.
12. The cartridge of claim 11 , further comprising a piston disposed between the mask assembly and the biasing member.
13. The cartridge of claim 11 , wherein the biasing member is biased in the closed position by a latch.
14. The cartridge of claim 13 , wherein the latch engages with a catch on the manifold.
15. The cartridge of claim 11 , wherein a cover holds the biasing member in the closed position.
16. The cartridge of claim 15 , wherein the cover is opened by a solenoid actuated latch such that opening of the cover releases the biasing member which in turn ejects the mask through the opening at the distal end of the at least one sidewall.
17. The cartridge of claim 11 further comprising a retaining member having a compartment for receiving the biasing member, the retaining member having a latch attached thereto.
18. The cartridge of claim 17 , wherein the latch on the retaining member engages with a catch disposed on the manifold.
19. The cartridge of claim 16 , wherein releasing the latch causes the biasing member to eject the retaining member through the opening at the distal end of the at least one sidewall.
20. The cartridge of claim 17 , wherein the hose wraps around an outside surface of the retaining member.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/823,512 US20070246048A1 (en) | 2005-01-13 | 2007-06-28 | Apparatus for deploying oxygen masks |
US12/372,918 US8356595B2 (en) | 2005-01-13 | 2009-02-18 | Apparatus for deploying oxygen masks |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64344905P | 2005-01-13 | 2005-01-13 | |
US11/331,476 US8443802B2 (en) | 2005-01-13 | 2006-01-13 | Apparatus for deploying oxygen masks |
US11/823,512 US20070246048A1 (en) | 2005-01-13 | 2007-06-28 | Apparatus for deploying oxygen masks |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/331,476 Continuation US8443802B2 (en) | 2005-01-13 | 2006-01-13 | Apparatus for deploying oxygen masks |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/372,918 Continuation US8356595B2 (en) | 2005-01-13 | 2009-02-18 | Apparatus for deploying oxygen masks |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070246048A1 true US20070246048A1 (en) | 2007-10-25 |
Family
ID=36570276
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/331,476 Active 2030-05-14 US8443802B2 (en) | 2005-01-13 | 2006-01-13 | Apparatus for deploying oxygen masks |
US11/823,512 Abandoned US20070246048A1 (en) | 2005-01-13 | 2007-06-28 | Apparatus for deploying oxygen masks |
US12/372,918 Active 2028-09-30 US8356595B2 (en) | 2005-01-13 | 2009-02-18 | Apparatus for deploying oxygen masks |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/331,476 Active 2030-05-14 US8443802B2 (en) | 2005-01-13 | 2006-01-13 | Apparatus for deploying oxygen masks |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/372,918 Active 2028-09-30 US8356595B2 (en) | 2005-01-13 | 2009-02-18 | Apparatus for deploying oxygen masks |
Country Status (8)
Country | Link |
---|---|
US (3) | US8443802B2 (en) |
EP (1) | EP1838575B1 (en) |
JP (1) | JP4834000B2 (en) |
CN (1) | CN100480136C (en) |
BR (1) | BRPI0606694B8 (en) |
CA (1) | CA2594877C (en) |
RU (1) | RU2007130693A (en) |
WO (1) | WO2006088581A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060169283A1 (en) * | 2005-01-13 | 2006-08-03 | Schaeffer Robert L Jr | Apparatus for deploying oxygen masks |
US20070283959A1 (en) * | 2006-05-23 | 2007-12-13 | Drager Aerospace Gmbh | Aircraft oxygen supply unit |
US20100116939A1 (en) * | 2007-05-04 | 2010-05-13 | Airbus Operations | Aircraft applying multisystem connection devices |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8973579B2 (en) * | 2005-01-13 | 2015-03-10 | Avox Systems Inc. | Self-contained modular deployment system |
DE102005044719B4 (en) | 2005-09-19 | 2014-10-30 | B/E Aerospace Systems Gmbh | Method for equipping a passenger supply unit with passenger oxygen masks |
US8393326B2 (en) | 2008-01-04 | 2013-03-12 | Intertechnique | Device for oxygen supply of a user in an aircraft |
DE102010005278A1 (en) * | 2010-01-21 | 2011-07-28 | Airbus Operations GmbH, 21129 | Oxygen module |
US9168348B2 (en) * | 2010-08-26 | 2015-10-27 | Koninklijke Philips N.V. | Patient interface device storage system |
EP2446930B1 (en) * | 2010-10-26 | 2016-07-13 | Zodiac Aerotechnics | Oxygen breathing device with integrated flexible buffer |
US9126063B2 (en) * | 2010-10-26 | 2015-09-08 | Zodiac Aerotechnics | Oxygen breathing device with integrated flexible buffer |
US9102417B1 (en) * | 2010-12-10 | 2015-08-11 | The Boeing Company | Health monitoring system for a vehicle |
US8573216B2 (en) | 2011-01-22 | 2013-11-05 | Avox Systems Inc. | Vertical drop out box method and apparatus |
US8882033B2 (en) * | 2011-02-10 | 2014-11-11 | Zodiac Aerotechnics | Passenger cabin emergency oxygen device |
EP2550994B1 (en) * | 2011-07-25 | 2014-07-02 | Intertechnique | A regulation valve for a life support system |
US20140000589A1 (en) * | 2012-06-28 | 2014-01-02 | Marco Hollm | Emergency oxygen device with improved activation lanyard arrangement |
CN108355219B (en) | 2012-12-04 | 2021-04-02 | 马林克罗特医疗产品知识产权公司 | Cannula for minimizing dilution of dosing during nitric oxide delivery |
US9795756B2 (en) | 2012-12-04 | 2017-10-24 | Mallinckrodt Hospital Products IP Limited | Cannula for minimizing dilution of dosing during nitric oxide delivery |
DE102013220478B4 (en) * | 2013-10-10 | 2022-05-25 | B/E Aerospace Systems Gmbh | container with cover |
CN103830821A (en) * | 2013-12-18 | 2014-06-04 | 柳州市华航电器有限公司 | Protective shell of oxygenerator |
DE102015201124B4 (en) | 2015-01-23 | 2016-08-11 | B/E Aerospace Systems Gmbh | oxygen mask |
WO2016159889A1 (en) | 2015-04-02 | 2016-10-06 | Hill-Rom Services Pte. Ltd. | Manifold for respiratory device |
US10239617B2 (en) * | 2015-09-11 | 2019-03-26 | The Boeing Company | Oxygen box for a limited maintenance access area above a ceiling panel of an aircraft cabin |
DE102017222199A1 (en) | 2017-12-07 | 2019-06-13 | B/E Aerospace Systems Gmbh | Oxygen supply means |
WO2019161069A1 (en) * | 2018-02-14 | 2019-08-22 | Pacific Precision Products Mfg. | Aircraft oxygen mark container assembly |
CA3040714A1 (en) * | 2018-04-18 | 2019-10-18 | Zodiac Aerotechnics | An emergency oxygen system for aircraft with switching device and a method of operating an emergency oxygen system |
US11470947B2 (en) | 2019-12-20 | 2022-10-18 | Nancy Linday | Convertible bag |
CN111743259A (en) * | 2020-07-02 | 2020-10-09 | 国网北京市电力公司 | Intelligent protection device and method based on gas detection |
CN117048833B (en) * | 2023-07-27 | 2024-04-19 | 廊坊翔鲲航空设备有限公司 | Pressure-releasing oxygen-supplying device for passenger cabin and control method |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1699937A (en) * | 1927-06-18 | 1929-01-22 | Mine Safety Appliances Co | Case for gas masks and canisters |
US3277890A (en) * | 1963-03-26 | 1966-10-11 | Drager Otto H | Closed cycle respirator |
US3379195A (en) * | 1964-01-24 | 1968-04-23 | British Aircraft Corp Ltd | Aircraft-mounted emergency oxygen masks and holder |
US3615250A (en) * | 1969-03-26 | 1971-10-26 | Lockheed Aircraft Corp | Supplemental oxygen supply system |
US3647165A (en) * | 1970-04-27 | 1972-03-07 | Lockheed Aircraft Corp | Aircraft compartment and magnetic connecting assembly |
US3981302A (en) * | 1975-02-26 | 1976-09-21 | Robertshaw Controls Company | Emergency breathing means |
US4023874A (en) * | 1976-02-23 | 1977-05-17 | Mcdonnell Douglas Corporation | Oxygen mask stowage |
US4154237A (en) * | 1977-12-27 | 1979-05-15 | Boeing Commercial Airplane Company | Passenger emergency oxygen mask drop zone extender |
US4481945A (en) * | 1983-02-10 | 1984-11-13 | Lockheed Corporation | Deployment system for emergency oxygen mask |
US4805608A (en) * | 1986-03-27 | 1989-02-21 | Dragerwerk Aktiengesellschaft | Breathing apparatus |
US4909247A (en) * | 1988-05-06 | 1990-03-20 | Figgie International, Inc. | Aircraft emergency breathing assembly |
US5078343A (en) * | 1989-10-18 | 1992-01-07 | Kidde-Graviner Limited | Oxygen supply unit |
US5154374A (en) * | 1991-08-23 | 1992-10-13 | Burns Aerospace Corporation | Aircraft passenger seat assembly including an emergency oxygen system |
US5803062A (en) * | 1996-05-14 | 1998-09-08 | Nellcor Puritan Bennett Inc. | Compression molded integrated personal service and oxygen modules for use in transport aircraft with improved mask repacking and test access |
US5816244A (en) * | 1996-05-14 | 1998-10-06 | Nellcor Puritan Bennett Incorporated | Modular structural system for personal service and oxygen dispensing system modules for use in transport aircraft with improved latch and testing capability |
US5913307A (en) * | 1996-08-16 | 1999-06-22 | Intertechnique | Breathing protection equipment with operating mode indication |
US6318364B1 (en) * | 1999-07-05 | 2001-11-20 | Be Intellectual Property, Inc. | Modular drop out container for aircraft oxygen masks |
US20020030140A1 (en) * | 2000-08-17 | 2002-03-14 | Patrice Martinez | Breathing masks box for emergency equipment |
US6497386B2 (en) * | 2000-08-17 | 2002-12-24 | Intertechnique | Breathing mask stowage box |
US20030000530A1 (en) * | 2001-07-02 | 2003-01-02 | Be Intellectual Property, Inc. | Self-elongating oxygen hose for stowable aviation crew oxygen mask |
US6526967B2 (en) * | 2001-06-11 | 2003-03-04 | Be Intellectual Property, Inc. | Crew oxygen mask stowage assembly including selective depressurization valve |
US20030131850A1 (en) * | 2002-01-07 | 2003-07-17 | Pietrantoni Dennis P. | Valve manifold assembly |
US6755194B2 (en) * | 2002-04-09 | 2004-06-29 | Intertechnique, S.A. | Stowage systems, particularly for oxygen masks |
US20040222646A1 (en) * | 1996-06-18 | 2004-11-11 | Crisp David John | Locking device |
US6923183B2 (en) * | 2001-07-11 | 2005-08-02 | Intertechnique | Breathing apparatus and installation providing protection against hypoxia |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2931355A (en) * | 1957-06-24 | 1960-04-05 | Scott Aviation Corp | System for automatically presenting a breathing mask to a person in an emergency |
US3503394A (en) * | 1968-07-22 | 1970-03-31 | Sierra Eng Co | Modulized passenger mask assembly |
US4098271A (en) * | 1975-09-29 | 1978-07-04 | Mcdonnell Douglas Corporation | Oxygen supply system and flow indicator |
US4271833A (en) * | 1979-06-25 | 1981-06-09 | E. D. Bullard Company | Ventilating system for protective clothing |
US4710756A (en) * | 1985-01-07 | 1987-12-01 | Thornburg Dennis D | Combination smoke detector and device for containing air |
US4609166A (en) * | 1985-02-08 | 1986-09-02 | Ptc Aerospace Inc. | Emergency oxygen system for aircraft |
FR2586007B1 (en) * | 1985-08-08 | 1987-12-24 | Sfim | INTERLOCKER DEVICE FOR BOX DOOR CONTAINING SAFETY EQUIPMENT SUCH AS OXYGEN MASKS |
DE3613814A1 (en) * | 1986-04-24 | 1987-10-29 | Draegerwerk Ag | EMERGENCY SUPPLY UNIT WITH A BREATHING UNIT |
DE3719427A1 (en) * | 1987-06-11 | 1988-12-22 | Draegerwerk Ag | OXYGEN SUPPLY UNIT WITH AN OXYGEN GENERATOR FOR INSTALLATION IN AIRCRAFT |
WO1990002582A1 (en) | 1988-09-14 | 1990-03-22 | Puritan-Bennett Corporation | Crew oxygen mask and hose stowage unit |
US5301665A (en) * | 1991-05-05 | 1994-04-12 | Dragerwerk Aktiengesellschaft | Respirator for emergency oxygen supply for passengers in aircraft |
DE4140265C2 (en) * | 1991-12-06 | 1994-11-10 | Draegerwerk Ag | Container for an oxygen supply unit |
US5408995A (en) * | 1993-04-16 | 1995-04-25 | Figgie International Inc. | Continuous flow passenger oxygen dispensing unit |
US5664566A (en) * | 1994-09-30 | 1997-09-09 | Puritan-Bennett Corporation | Quick-donning full face oxygen mask with inflatable harness and soft foldable lens |
US5954052A (en) * | 1997-05-21 | 1999-09-21 | Nellcor Puritan-Bennett | Safety stowage apparatus for crew oxygen masks |
US6089230A (en) * | 1998-11-03 | 2000-07-18 | Be Aerospace Intellectual Property, Inc. | Aircraft passenger oxygen delivery unit having shiftable oxygen generating candle |
US6336667B1 (en) * | 1999-06-11 | 2002-01-08 | B/E Aerospace Intellectual Property Inc. | Latch mechanism |
GB0301934D0 (en) * | 2003-01-28 | 2003-02-26 | Sundar Satish | Delivery apparatus and location method |
US7331979B2 (en) * | 2003-06-04 | 2008-02-19 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
DE10337694A1 (en) * | 2003-08-16 | 2005-03-10 | Airbus Gmbh | Method for presenting oxygen masks in the cabin of an aircraft |
DE102004009346B4 (en) * | 2004-02-26 | 2008-07-24 | Airbus Deutschland Gmbh | Flap arrangement for O2 mask containers |
DE102004026649A1 (en) * | 2004-06-01 | 2006-01-05 | DRäGER AEROSPACE GMBH | Sauerstoffnotversorgungseinrichtung |
EP1838575B1 (en) * | 2005-01-13 | 2013-04-24 | AVOX Systems Inc. | Apparatus for deploying oxygen masks |
-
2006
- 2006-01-13 EP EP06733700.6A patent/EP1838575B1/en not_active Not-in-force
- 2006-01-13 CA CA2594877A patent/CA2594877C/en not_active Expired - Fee Related
- 2006-01-13 JP JP2007551419A patent/JP4834000B2/en active Active
- 2006-01-13 WO PCT/US2006/001320 patent/WO2006088581A1/en active Application Filing
- 2006-01-13 US US11/331,476 patent/US8443802B2/en active Active
- 2006-01-13 BR BRPI0606694A patent/BRPI0606694B8/en not_active IP Right Cessation
- 2006-01-13 CN CNB2006800019355A patent/CN100480136C/en not_active Expired - Fee Related
- 2006-01-13 RU RU2007130693/11A patent/RU2007130693A/en not_active Application Discontinuation
-
2007
- 2007-06-28 US US11/823,512 patent/US20070246048A1/en not_active Abandoned
-
2009
- 2009-02-18 US US12/372,918 patent/US8356595B2/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1699937A (en) * | 1927-06-18 | 1929-01-22 | Mine Safety Appliances Co | Case for gas masks and canisters |
US3277890A (en) * | 1963-03-26 | 1966-10-11 | Drager Otto H | Closed cycle respirator |
US3379195A (en) * | 1964-01-24 | 1968-04-23 | British Aircraft Corp Ltd | Aircraft-mounted emergency oxygen masks and holder |
US3615250A (en) * | 1969-03-26 | 1971-10-26 | Lockheed Aircraft Corp | Supplemental oxygen supply system |
US3647165A (en) * | 1970-04-27 | 1972-03-07 | Lockheed Aircraft Corp | Aircraft compartment and magnetic connecting assembly |
US3981302A (en) * | 1975-02-26 | 1976-09-21 | Robertshaw Controls Company | Emergency breathing means |
US4023874A (en) * | 1976-02-23 | 1977-05-17 | Mcdonnell Douglas Corporation | Oxygen mask stowage |
US4154237A (en) * | 1977-12-27 | 1979-05-15 | Boeing Commercial Airplane Company | Passenger emergency oxygen mask drop zone extender |
US4481945A (en) * | 1983-02-10 | 1984-11-13 | Lockheed Corporation | Deployment system for emergency oxygen mask |
US4805608A (en) * | 1986-03-27 | 1989-02-21 | Dragerwerk Aktiengesellschaft | Breathing apparatus |
US4909247A (en) * | 1988-05-06 | 1990-03-20 | Figgie International, Inc. | Aircraft emergency breathing assembly |
US5078343A (en) * | 1989-10-18 | 1992-01-07 | Kidde-Graviner Limited | Oxygen supply unit |
US5154374A (en) * | 1991-08-23 | 1992-10-13 | Burns Aerospace Corporation | Aircraft passenger seat assembly including an emergency oxygen system |
US5803062A (en) * | 1996-05-14 | 1998-09-08 | Nellcor Puritan Bennett Inc. | Compression molded integrated personal service and oxygen modules for use in transport aircraft with improved mask repacking and test access |
US5816244A (en) * | 1996-05-14 | 1998-10-06 | Nellcor Puritan Bennett Incorporated | Modular structural system for personal service and oxygen dispensing system modules for use in transport aircraft with improved latch and testing capability |
US20040222646A1 (en) * | 1996-06-18 | 2004-11-11 | Crisp David John | Locking device |
US5913307A (en) * | 1996-08-16 | 1999-06-22 | Intertechnique | Breathing protection equipment with operating mode indication |
US6318364B1 (en) * | 1999-07-05 | 2001-11-20 | Be Intellectual Property, Inc. | Modular drop out container for aircraft oxygen masks |
US20020030140A1 (en) * | 2000-08-17 | 2002-03-14 | Patrice Martinez | Breathing masks box for emergency equipment |
US6497386B2 (en) * | 2000-08-17 | 2002-12-24 | Intertechnique | Breathing mask stowage box |
US6526967B2 (en) * | 2001-06-11 | 2003-03-04 | Be Intellectual Property, Inc. | Crew oxygen mask stowage assembly including selective depressurization valve |
US20030000530A1 (en) * | 2001-07-02 | 2003-01-02 | Be Intellectual Property, Inc. | Self-elongating oxygen hose for stowable aviation crew oxygen mask |
US6923183B2 (en) * | 2001-07-11 | 2005-08-02 | Intertechnique | Breathing apparatus and installation providing protection against hypoxia |
US20030131850A1 (en) * | 2002-01-07 | 2003-07-17 | Pietrantoni Dennis P. | Valve manifold assembly |
US6755194B2 (en) * | 2002-04-09 | 2004-06-29 | Intertechnique, S.A. | Stowage systems, particularly for oxygen masks |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060169283A1 (en) * | 2005-01-13 | 2006-08-03 | Schaeffer Robert L Jr | Apparatus for deploying oxygen masks |
US8443802B2 (en) * | 2005-01-13 | 2013-05-21 | Avox Systems Inc. | Apparatus for deploying oxygen masks |
US20070283959A1 (en) * | 2006-05-23 | 2007-12-13 | Drager Aerospace Gmbh | Aircraft oxygen supply unit |
US20100116939A1 (en) * | 2007-05-04 | 2010-05-13 | Airbus Operations | Aircraft applying multisystem connection devices |
US8328136B2 (en) | 2007-05-04 | 2012-12-11 | Airbus Operations Sas | Aircraft applying multisystem connection devices |
Also Published As
Publication number | Publication date |
---|---|
BRPI0606694B8 (en) | 2019-10-15 |
RU2007130693A (en) | 2009-02-20 |
JP2008526447A (en) | 2008-07-24 |
BRPI0606694B1 (en) | 2019-07-09 |
EP1838575B1 (en) | 2013-04-24 |
US20090151727A1 (en) | 2009-06-18 |
JP4834000B2 (en) | 2011-12-07 |
US8443802B2 (en) | 2013-05-21 |
WO2006088581A1 (en) | 2006-08-24 |
CN100480136C (en) | 2009-04-22 |
CA2594877A1 (en) | 2006-08-24 |
BRPI0606694A2 (en) | 2010-01-12 |
US20060169283A1 (en) | 2006-08-03 |
US8356595B2 (en) | 2013-01-22 |
CA2594877C (en) | 2014-06-17 |
CN101107165A (en) | 2008-01-16 |
EP1838575A1 (en) | 2007-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8443802B2 (en) | Apparatus for deploying oxygen masks | |
US8973579B2 (en) | Self-contained modular deployment system | |
US4909247A (en) | Aircraft emergency breathing assembly | |
US4559939A (en) | Compatible smoke and oxygen masks for use on aircraft | |
JP5106549B2 (en) | Inflatable harness crew mask | |
EP1395339B1 (en) | Crew oxygen mask stowage assembly including selective depressurization valve | |
US20050263156A1 (en) | Oxygen emergency supply means | |
EP1465805B1 (en) | Valve manifold assembly | |
US4974584A (en) | Emergency air supply assembly for trapped fire fighters | |
US8573216B2 (en) | Vertical drop out box method and apparatus | |
US10974832B2 (en) | System for the emergency oxygen supply of passengers in an aircraft | |
US10823300B2 (en) | Aspirator pressure relief valve with relief control unit | |
US6834648B2 (en) | Valve manifold assembly for oxygen mask dispensing container | |
CN114375217B (en) | System for delivering respiratory gases to passengers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: AVOX SYSTEMS INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CONTINO, JOSEPH;KOBZIAR, DANKO A.;SCHAEFFER, ROBERT L.;AND OTHERS;SIGNING DATES FROM 20140805 TO 20140828;REEL/FRAME:034127/0873 |