US20070234987A1 - Closure assembly for a camshaft phaser - Google Patents

Closure assembly for a camshaft phaser Download PDF

Info

Publication number
US20070234987A1
US20070234987A1 US11/809,414 US80941407A US2007234987A1 US 20070234987 A1 US20070234987 A1 US 20070234987A1 US 80941407 A US80941407 A US 80941407A US 2007234987 A1 US2007234987 A1 US 2007234987A1
Authority
US
United States
Prior art keywords
closure
apart
accordance
projection elements
closure assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/809,414
Inventor
Larry Abbott
David McCarthy
Peter Charles
John Krieg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to US11/809,414 priority Critical patent/US20070234987A1/en
Assigned to DELPHI TECHNOLOGIES, INC. reassignment DELPHI TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABBOTT, LARRY G., KRIEG, JOHN J., CHARLES, PETER R., MCCARTHY, DAVID M.
Publication of US20070234987A1 publication Critical patent/US20070234987A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7069With lock or seal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/50Special application
    • Y10T70/5093For closures
    • Y10T70/554Cover, lid, cap, encasing shield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T70/00Locks
    • Y10T70/50Special application
    • Y10T70/5611For control and machine elements
    • Y10T70/5646Rotary shaft

Definitions

  • the present invention relates to camshaft phasers for varying the valve timing of internal combustion engines; more particularly, to means for closing a camshaft phaser after assembly to the engine; and most particularly, to an assembly including a twist-lock closing and locking mechanism for retaining a sealing plug or cap in a non-threaded bore in a camshaft cover plate.
  • a typical phaser comprises a stator that is connected with the cam drive system driven by the engine crankshaft and a rotor within the stator connected to the camshaft.
  • the phaser is able to vary the rotary position of the rotor with respect to the stator and thus to vary the valve timing imposed on the camshaft with respect to the crankshaft and pistons.
  • a prior art camshaft phaser is closed by a threaded metallic plug and an O-ring that seals on a tapered face just inside the bore.
  • the threaded plug is screwed into a threaded cover.
  • the plug is torqued to a required specification, but the torque level is expected to stay above the minimum required specification during thermal cycling, otherwise the plug could loosen and disengage during the life of the engine.
  • a loosened plug or an opened phaser could cause unacceptable leakage negatively effecting operation of the phaser, a failure of the drive belt, unacceptable loss of engine oil pressure, and external-oil leaks.
  • a plug or cap closure in accordance with the invention is provided with either a radially-sealing or a face-sealing resilient element, for example, an O-ring, the seal being formed by insertion of a plug into a non-threaded bore, or by installation of a cap over a non-threaded neck, formed in a phaser cover plate.
  • the seal may be formed against the bore or neck, which may be tapered to compress the O-ring, or may be formed against an axial face of the plate.
  • Either the plate or the closure is provided with a plurality of spaced-apart, peripheral locking elements, and conversely, either the closure or the plate is provided with a matching plurality of spaced-apart latching elements referred to herein as “fingers”.
  • the plug is inserted axially into the bore, or the cap is installed over the neck, with the locking elements interspersed with the fingers.
  • the axial motion serves to compress a seal element, such as the O-ring, to form a seal between the plug or cap and the plate.
  • the closure is then rotated a fraction of a turn to bring the locking elements into engagement with the fingers.
  • the locking elements and fingers are configured axially such that pressure is maintained on the seal element during such rotation.
  • the locking elements are provided with means for preventing both over-rotation and counter-rotation of the closure, thus ensuring a permanent seal.
  • FIG. 1 is an exploded isometric view of a prior art phaser cover plate and threaded plug
  • FIG. 2 is a cross-sectional view of the prior art plug assembly shown in FIG. 1 ;
  • FIG. 3 is an exploded isometric view of a first embodiment of a phaser closure assembly in accordance with the invention
  • FIG. 4 is a cross-sectional view of the novel closure assembly shown in FIG. 3 ;
  • FIG. 5 is an exploded isometric view of a second embodiment of a phaser closure assembly in accordance with the invention.
  • FIG. 6 is a first cross-sectional view of a portion of the second embodiment shown in FIG. 5 , showing a first alternative axial O-ring seal;
  • FIG. 7 is a second cross-sectional view of a portion of the second embodiment shown in FIG. 5 , showing a second alternative radially-outward O-ring seal;
  • FIG. 8 is a cross-sectional view of a third embodiment of a phaser closure assembly in accordance with the invention.
  • FIG. 9 is a cross-sectional view showing an alternate seal used in the embodiment shown in FIG. 8 .
  • a prior art closure assembly 10 for a camshaft phaser comprises a phaser cover plate 12 secured generally to the phaser stator (not shown) by bolts (not shown) extending through chamfered boltholes 14 .
  • a central opening 15 in plate 12 includes a threaded portion 18 and a smooth tapered portion 20 .
  • a solid metal plug 22 has mating threads 24 for engaging threaded portion 18 .
  • An O-ring seal 26 is captured by a flange 28 on plug 22 and is sealingly urged against tapered portion 20 as the plug is screwed into the opening.
  • a central feature 30 in the plug permits a tool to be engaged to drive the plug to a predetermined torque when flange 28 engages a lip 32 on plate 12 .
  • O-ring seal 26 depends upon maintaining the frictional contact between flange 28 and lip 32 , and the jam contact between threads 18 , 24 , or else the plug may unscrew and loosen spontaneously during use of the phaser.
  • a first embodiment 100 of a closure assembly in accordance with the invention includes a cover plate 112 similar to prior art cover plate 12 and replaceable thereof.
  • a closure in the form of a male plug 122 is provided with a radially-sealing resilient element, for example, an O-ring 126 , the seal being formed by insertion of closure 122 into a non-threaded bore 116 such that O-ring 126 is radially compressed outwards against bore 116 .
  • Plate 112 is provided with central opening 115 and an axially-extending neck 160 supporting a plurality of first spaced-apart, peripheral locking projection elements 162 .
  • Closure 122 is provided with a matching plurality of second spaced-apart, radially-rigid, recurved latching projection elements 164 referred to herein as “fingers”.
  • the closure 122 is inserted axially into the bore with the locking projection elements 162 interspersed with fingers 164 .
  • the axial motion serves to compress the O-ring to form a seal between the closure and the neck.
  • the closure is then rotated a fraction of a turn to bring the locking projection elements into locking engagement with the fingers.
  • either the locking projection elements or fingers are configured axially with increasingly tapered ramps such that the fingers are stretched over the locking projection elements in the direction shown as 165 as the closure is rotated, to always grip the locking projection elements in tension.
  • the locking projection elements are provided with rigid tips 167 for preventing both over-rotation and counter-rotation of the closure, thus ensuring a proper seal.
  • An O-ring gland 166 is incorporated in the closure within its outer diameter. O-ring 126 is retained during the assembly process by a lip 168 created by a stamping operation which deforms the bottom of closure 122 .
  • a further feature 130 is also stamped into closure 122 to permit a tool to be engaged to drive closure 122 both axially and rotationally during assembly.
  • Embodiment 200 includes a base plate 212 similar to prior art cover plate 12 and a locking plate 213 having a large central opening 215 surrounded by a plurality of spaced-apart, radially-rigid, inwardly-recurved fingers 264 extending above a surface 218 of locking plate 213 .
  • Plates 212 , 213 are secured to a phaser stator (not shown) by bolts 211 .
  • a closure in the form of a male plug 222 is provided with a sealing resilient element, for example, an O-ring 226 , the seal being formed in either of two ways: by insertion of closure 222 into a preferably tapered non-threaded bore 216 in base plate 212 such that O-ring 226 is radially compressed outwards against bore 216 (as shown in FIG. 7 ), or by axial compression of O-ring 226 against a mating surface 217 of base plate 212 (as shown in FIGS. 5 and 6 ).
  • Closure 222 is provided with a plurality of radially extending locking projection elements 262 , preferably having at least a portion of width 263 increasingly tapered (from left to right in FIG. 5 ).
  • At least one of the locking projection elements 262 includes a rotational locking mechanism 262 a (shown as two opposed elements in FIG. 5 ) comprising a radially flexible first tip 265 for permitting mechanism 262 a to enter a finger 264 and a radially rigid second tip 267 for limiting the rotation of closure 222 .
  • Tips 265 , 267 are spaced apart sufficiently that, during rotation of closure 222 , when a finger 264 arrives at second tip 267 , first tip 265 has exited the finger and snapped radially outwards, thus locking the closure against further rotation in either direction.
  • the closure may be unlocked and counter-rotated for removal by depressing first tip(s) 265 radially inwards until they clear finger 264 .
  • a third embodiment 300 of a closure assembly in accordance with the invention includes locking projection elements that slide into and through the fingers, as in embodiment 200 .
  • the difference from embodiment 200 is that the seal is, formed on either the outside ( FIG. 8 ) of a neck or on the end ( FIG. 9 ) of a neck formed in the base plate.
  • Embodiment 300 includes a base plate 312 similar to prior art cover plate 12 and a locking plate 313 having a central opening 315 and a plurality of spaced-apart, radially-rigid, inwardly-recurved fingers 364 raised as by stamping from locking plate 313 , similar to fingers 264 in locking plate 213 .
  • a closure in the form of a cap 322 is provided with a sealing resilient element, for example, a gasket or O-ring 326 , the seal being formed in either of two ways: by insertion of closure 322 onto the outer surface 323 of a preferably tapered non-threaded neck 316 formed in base plate 312 such that gasket 326 is radially compressed inwards against neck 316 (as shown in FIG.
  • Closure 322 is provided with a plurality of radially extending locking projection elements 362 .
  • locking projection elements 362 are configured having at least a portion of their widths increasingly tapered to cause the locking projection elements 362 to be axially full-fitting within fingers 364 such that compression of gasket 326 is maintained during and after rotation of the closure to engage the locking projection elements with the fingers.
  • at least one of the locking projection elements 362 includes a rigid tip 367 functionally identical with tip 267 as shown in FIG. 5 , to thereby limit over rotation of closure 322 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasket Seals (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A closure assembly for a camshaft phaser. A plug or a cap is provided with either a radially-sealing gasket seal or a face-sealing gasket seal, the seal being formed by insertion of the plug into a bore, or by installation of a cap over a neck formed in a cover plate. The closure is provided with a plurality of spaced-apart locking elements, and the plate is provided with a plurality of spaced-apart, radially extending second locking elements in the form of fingers surrounding a central opening. During assembly, the closure is mated to the plate with the first locking elements interspersed with the second locking elements. The closure is rotated to bring the locking elements into locking engagement with each other, preventing counter-rotation of the closure. No threads or torque specifications are required.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 11/130,501, which was filed on May 17, 2005.
  • TECHNICAL FIELD
  • The present invention relates to camshaft phasers for varying the valve timing of internal combustion engines; more particularly, to means for closing a camshaft phaser after assembly to the engine; and most particularly, to an assembly including a twist-lock closing and locking mechanism for retaining a sealing plug or cap in a non-threaded bore in a camshaft cover plate.
  • BACKGROUND OF THE INVENTION
  • Camshaft phasers for varying the timing of valves in internal combustion engines are well known. A typical phaser comprises a stator that is connected with the cam drive system driven by the engine crankshaft and a rotor within the stator connected to the camshaft. The phaser is able to vary the rotary position of the rotor with respect to the stator and thus to vary the valve timing imposed on the camshaft with respect to the crankshaft and pistons.
  • A prior art camshaft phaser is closed by a threaded metallic plug and an O-ring that seals on a tapered face just inside the bore. The threaded plug is screwed into a threaded cover. The plug is torqued to a required specification, but the torque level is expected to stay above the minimum required specification during thermal cycling, otherwise the plug could loosen and disengage during the life of the engine. A loosened plug or an opened phaser could cause unacceptable leakage negatively effecting operation of the phaser, a failure of the drive belt, unacceptable loss of engine oil pressure, and external-oil leaks.
  • What is needed in the art is an improved closure assembly for a camshaft phaser wherein a plug or cap is sealingly retained in a phaser opening without threads or torquing and no compromise in retention capability during use of the phaser.
  • It is a principal object of the present invention to prevent disengagement and leakage of a closing plug or cap on a camshaft phaser.
  • SUMMARY OF THE INVENTION
  • Briefly described, a plug or cap closure in accordance with the invention is provided with either a radially-sealing or a face-sealing resilient element, for example, an O-ring, the seal being formed by insertion of a plug into a non-threaded bore, or by installation of a cap over a non-threaded neck, formed in a phaser cover plate. The seal may be formed against the bore or neck, which may be tapered to compress the O-ring, or may be formed against an axial face of the plate. Either the plate or the closure is provided with a plurality of spaced-apart, peripheral locking elements, and conversely, either the closure or the plate is provided with a matching plurality of spaced-apart latching elements referred to herein as “fingers”. During assembly, the plug is inserted axially into the bore, or the cap is installed over the neck, with the locking elements interspersed with the fingers. The axial motion serves to compress a seal element, such as the O-ring, to form a seal between the plug or cap and the plate. The closure is then rotated a fraction of a turn to bring the locking elements into engagement with the fingers. The locking elements and fingers are configured axially such that pressure is maintained on the seal element during such rotation. The locking elements are provided with means for preventing both over-rotation and counter-rotation of the closure, thus ensuring a permanent seal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 is an exploded isometric view of a prior art phaser cover plate and threaded plug;
  • FIG. 2 is a cross-sectional view of the prior art plug assembly shown in FIG. 1;
  • FIG. 3 is an exploded isometric view of a first embodiment of a phaser closure assembly in accordance with the invention;
  • FIG. 4 is a cross-sectional view of the novel closure assembly shown in FIG. 3;
  • FIG. 5 is an exploded isometric view of a second embodiment of a phaser closure assembly in accordance with the invention;
  • FIG. 6 is a first cross-sectional view of a portion of the second embodiment shown in FIG. 5, showing a first alternative axial O-ring seal;
  • FIG. 7 is a second cross-sectional view of a portion of the second embodiment shown in FIG. 5, showing a second alternative radially-outward O-ring seal;
  • FIG. 8 is a cross-sectional view of a third embodiment of a phaser closure assembly in accordance with the invention; and
  • FIG. 9 is a cross-sectional view showing an alternate seal used in the embodiment shown in FIG. 8.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1 and 2, a prior art closure assembly 10 for a camshaft phaser comprises a phaser cover plate 12 secured generally to the phaser stator (not shown) by bolts (not shown) extending through chamfered boltholes 14. A central opening 15 in plate 12 includes a threaded portion 18 and a smooth tapered portion 20. A solid metal plug 22 has mating threads 24 for engaging threaded portion 18. An O-ring seal 26 is captured by a flange 28 on plug 22 and is sealingly urged against tapered portion 20 as the plug is screwed into the opening. A central feature 30 in the plug permits a tool to be engaged to drive the plug to a predetermined torque when flange 28 engages a lip 32 on plate 12. As described above, the integrity of the seal formed by O-ring seal 26 depends upon maintaining the frictional contact between flange 28 and lip 32, and the jam contact between threads 18,24, or else the plug may unscrew and loosen spontaneously during use of the phaser.
  • Referring to FIGS. 3 and 4, a first embodiment 100 of a closure assembly in accordance with the invention includes a cover plate 112 similar to prior art cover plate 12 and replaceable thereof. A closure in the form of a male plug 122 is provided with a radially-sealing resilient element, for example, an O-ring 126, the seal being formed by insertion of closure 122 into a non-threaded bore 116 such that O-ring 126 is radially compressed outwards against bore 116. Plate 112 is provided with central opening 115 and an axially-extending neck 160 supporting a plurality of first spaced-apart, peripheral locking projection elements 162. Closure 122 is provided with a matching plurality of second spaced-apart, radially-rigid, recurved latching projection elements 164 referred to herein as “fingers”. During assembly, the closure 122 is inserted axially into the bore with the locking projection elements 162 interspersed with fingers 164. The axial motion serves to compress the O-ring to form a seal between the closure and the neck. The closure is then rotated a fraction of a turn to bring the locking projection elements into locking engagement with the fingers. Preferably, either the locking projection elements or fingers are configured axially with increasingly tapered ramps such that the fingers are stretched over the locking projection elements in the direction shown as 165 as the closure is rotated, to always grip the locking projection elements in tension. Thus, pressure is maintained on the seal element during such rotation and the closure is kept rotationally in place thereafter. The locking projection elements are provided with rigid tips 167 for preventing both over-rotation and counter-rotation of the closure, thus ensuring a proper seal. An O-ring gland 166 is incorporated in the closure within its outer diameter. O-ring 126 is retained during the assembly process by a lip 168 created by a stamping operation which deforms the bottom of closure 122. A further feature 130 is also stamped into closure 122 to permit a tool to be engaged to drive closure 122 both axially and rotationally during assembly.
  • Referring to FIGS. 5 through 7, in a second embodiment 200 of a closure assembly in accordance with the invention, unlike first embodiment 100, the locking projection elements are incorporated in the closure and slide into and through the fingers. Embodiment 200 includes a base plate 212 similar to prior art cover plate 12 and a locking plate 213 having a large central opening 215 surrounded by a plurality of spaced-apart, radially-rigid, inwardly-recurved fingers 264 extending above a surface 218 of locking plate 213. Plates 212,213 are secured to a phaser stator (not shown) by bolts 211. A closure in the form of a male plug 222 is provided with a sealing resilient element, for example, an O-ring 226, the seal being formed in either of two ways: by insertion of closure 222 into a preferably tapered non-threaded bore 216 in base plate 212 such that O-ring 226 is radially compressed outwards against bore 216 (as shown in FIG. 7), or by axial compression of O-ring 226 against a mating surface 217 of base plate 212 (as shown in FIGS. 5 and 6). Closure 222 is provided with a plurality of radially extending locking projection elements 262, preferably having at least a portion of width 263 increasingly tapered (from left to right in FIG. 5). Initial axial motion of closure 222 against base plate 212 serves to compress the O-ring to form a seal between the closure and base plate. The locking projection elements then become axially full-fitting within fingers 264, as the closure is rotated, such that compression of O-ring 226 is maintained during and after rotation of the closure to engage the locking projection elements with the fingers. Preferably, at least one of the locking projection elements 262 includes a rotational locking mechanism 262 a (shown as two opposed elements in FIG. 5) comprising a radially flexible first tip 265 for permitting mechanism 262 a to enter a finger 264 and a radially rigid second tip 267 for limiting the rotation of closure 222. Tips 265,267 are spaced apart sufficiently that, during rotation of closure 222, when a finger 264 arrives at second tip 267, first tip 265 has exited the finger and snapped radially outwards, thus locking the closure against further rotation in either direction. The closure may be unlocked and counter-rotated for removal by depressing first tip(s) 265 radially inwards until they clear finger 264.
  • Referring to FIGS. 8 and 9, a third embodiment 300 of a closure assembly in accordance with the invention includes locking projection elements that slide into and through the fingers, as in embodiment 200. The difference from embodiment 200 is that the seal is, formed on either the outside (FIG. 8) of a neck or on the end (FIG. 9) of a neck formed in the base plate.
  • Embodiment 300 includes a base plate 312 similar to prior art cover plate 12 and a locking plate 313 having a central opening 315 and a plurality of spaced-apart, radially-rigid, inwardly-recurved fingers 364 raised as by stamping from locking plate 313, similar to fingers 264 in locking plate 213. A closure in the form of a cap 322 is provided with a sealing resilient element, for example, a gasket or O-ring 326, the seal being formed in either of two ways: by insertion of closure 322 onto the outer surface 323 of a preferably tapered non-threaded neck 316 formed in base plate 312 such that gasket 326 is radially compressed inwards against neck 316 (as shown in FIG. 8); or by axial compression of gasket 326 against an axial end 317 of neck 316 (as shown in FIG. 9). Closure 322 is provided with a plurality of radially extending locking projection elements 362. Preferably, as described in regard to FIGS. 5-7, locking projection elements 362 are configured having at least a portion of their widths increasingly tapered to cause the locking projection elements 362 to be axially full-fitting within fingers 364 such that compression of gasket 326 is maintained during and after rotation of the closure to engage the locking projection elements with the fingers. Preferably, at least one of the locking projection elements 362 includes a rigid tip 367 functionally identical with tip 267 as shown in FIG. 5, to thereby limit over rotation of closure 322.
  • While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.

Claims (16)

1. A closure assembly for a camshaft phaser, comprising:
a base plate including a mating surface and having a first opening;
a locking plate coupled with said base plate, said locking plate having a second opening surrounded by a plurality of spaced-apart recurved first-projection elements, said plurality of spaced-apart recurved first projection elements extending inwardly toward said second opening;
a closure extending across said first opening and supporting a plurality of circumferentially spaced-apart second projection elements disposed along a periphery of said closure; and
a seal disposed between said base plate and said closure for preventing fluid leakage therebetween,
wherein said first and second projection elements are lockably associated by coaxial rotation of said closure and said locking plate and said closure with respect to one another through a portion of a full revolution.
2. A closure assembly in accordance with claim 1 wherein said plurality of spaced-apart inwardly recurved first projection elements extend above a surface of said locking plate.
3. A closure assembly in accordance with claim 1 wherein said seal is axially compressed between said closure and said base plate.
4. A closure assembly in accordance with claim 3 wherein said seal is axially compressed between said closure and said mating surface of said base plate.
5. A closure assembly in accordance with claim 1 wherein said seal is an O-ring.
6. A closure assembly in accordance with claim 1 wherein said locking plate is coupled with said mating surface of said base plate.
7. A closure assembly in accordance with claim 1 wherein at least one of said plurality of circumferentially spaced-apart second projection elements includes a tapered ramp.
8. A closure assembly in accordance with claim 1 wherein at least one of said plurality of circumferentially spaced-apart second projection elements includes a rotational locking mechanism.
9. A closure assembly in accordance with claim 8 wherein said rotational locking mechanism includes a rigid tip to prevent over-rotation or counter-rotation of said closure.
10. A closure assembly in accordance with claim 8 wherein said rotational locking mechanism includes a flexible tip to permit said rotational locking mechanism to enter one of said plurality of spaced-apart recurved first-projection elements.
11. A closure assembly for a camshaft phaser, comprising:
a base plate including a mating surface and having a first opening;
a locking plate coupled with said base plate, said locking plate having a second opening surrounded by a plurality of spaced-apart recurved first-projection elements extending above a surface of said locking plate, said plurality of spaced-apart recurved first projection elements extending radially inwardly toward said second opening;
a closure extending across said first opening and supporting a plurality of circumferentially spaced-apart and radially extending second projection elements disposed along a periphery of said closure, at least one of said plurality of circumferentially spaced-apart second projection elements including a tapered ramp; and
a seal axially compressed between said closure and said mating surface of said base plate for preventing fluid leakage therebetween,
wherein said first and second projection elements are lockably associated by coaxial rotation of said closure and said locking plate and said closure with respect to one another through a portion of a full revolution.
12. A closure assembly in accordance with claim 11 wherein said seal is an O-ring.
13. A closure assembly in accordance with claim 11 wherein said locking plate is coupled with said mating surface of said base plate.
14. A closure assembly in accordance with claim 11 wherein at least one of said plurality of circumferentially spaced-apart second projection elements includes a rotational locking mechanism.
15. A closure assembly in accordance with claim 14 wherein said rotational locking mechanism includes a rigid tip to prevent over-rotation or counter-rotation of said closure.
16. A closure assembly in accordance with claim 14 wherein said rotational locking mechanism includes a flexible tip to permit said rotational locking mechanism to enter one of said plurality of spaced-apart recurved first-projection elements.
US11/809,414 2005-05-17 2007-06-01 Closure assembly for a camshaft phaser Abandoned US20070234987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/809,414 US20070234987A1 (en) 2005-05-17 2007-06-01 Closure assembly for a camshaft phaser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/130,501 US7252059B2 (en) 2005-05-17 2005-05-17 Closure assembly for a camshaft phaser
US11/809,414 US20070234987A1 (en) 2005-05-17 2007-06-01 Closure assembly for a camshaft phaser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/130,501 Continuation US7252059B2 (en) 2005-05-17 2005-05-17 Closure assembly for a camshaft phaser

Publications (1)

Publication Number Publication Date
US20070234987A1 true US20070234987A1 (en) 2007-10-11

Family

ID=37447161

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/130,501 Expired - Fee Related US7252059B2 (en) 2005-05-17 2005-05-17 Closure assembly for a camshaft phaser
US11/809,414 Abandoned US20070234987A1 (en) 2005-05-17 2007-06-01 Closure assembly for a camshaft phaser

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/130,501 Expired - Fee Related US7252059B2 (en) 2005-05-17 2005-05-17 Closure assembly for a camshaft phaser

Country Status (1)

Country Link
US (2) US7252059B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042228A1 (en) * 2009-09-18 2011-03-31 Schaeffler Technologies Gmbh & Co. Kg Device for changing the relative angular position of a camshaft relative to a crankshaft of an internal combustion engine
US9546595B2 (en) * 2014-09-17 2017-01-17 Electro-Motive Diesel, Inc. Cover assembly for an engine
US10618366B2 (en) * 2016-07-08 2020-04-14 Continental Automotive Systems, Inc. Vehicle air strut with twist lock closure cover

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964249B2 (en) * 2003-08-08 2005-11-15 Hitachi, Ltd. Valve timing control system for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032879A (en) * 1933-05-18 1936-03-03 Kontroll A G Detachable closure for containers
US3517951A (en) * 1969-01-09 1970-06-30 Christy Metal Products Inc Pipe coupling
JPH0463863U (en) * 1990-10-12 1992-05-29
US6390042B1 (en) * 2000-05-05 2002-05-21 Delphi Technologies, Inc. Self-sealing releasable and reusable plug
JP3986331B2 (en) * 2002-03-07 2007-10-03 株式会社日立製作所 Valve timing control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964249B2 (en) * 2003-08-08 2005-11-15 Hitachi, Ltd. Valve timing control system for internal combustion engine

Also Published As

Publication number Publication date
US20060260576A1 (en) 2006-11-23
US7252059B2 (en) 2007-08-07

Similar Documents

Publication Publication Date Title
US5409337A (en) Retained seal assembly
US20200080661A1 (en) Hydraulic fluid pump and retainer assembly for same
RU2678603C2 (en) Hydro(pneumatic)cylinder
US20160193554A1 (en) Filter apparatus with torque limiting mechanism
KR100398949B1 (en) Flow control valve coupling structure
US8235394B2 (en) Valve stem seal with gas relief features
US5143351A (en) Self-locking valve spring retainer
JP3210463B2 (en) Self-ventilated drain valve
US9957853B2 (en) Camshaft phaser
US20120298058A1 (en) System for attaching a camshaft phaser to a camshaft
JPH08219294A (en) Flexible fluid seal and journal seal assembly
US7252059B2 (en) Closure assembly for a camshaft phaser
EP0634201B1 (en) Fuel filter with drain/fill/sensor port
US8011669B2 (en) Valve stem seal with gas relief features
US5367993A (en) Valve cover joint seal assembly
US4580763A (en) Seal-seat for use in ball valves
US5226229A (en) Self-locking valve spring retainer
US4813650A (en) Valve seat retainer
MXPA01001980A (en) Drain coupling.
US10662828B1 (en) Camshaft phaser
US6390042B1 (en) Self-sealing releasable and reusable plug
WO2006024086A8 (en) Port sealing in a rotary valve
US11982354B2 (en) Gasket for a timing chain tensioner
US7640904B2 (en) Rotor and stator seals for a vane-type camshaft phaser
US7341031B2 (en) Valve timing controller

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ABBOTT, LARRY G.;MCCARTHY, DAVID M.;CHARLES, PETER R.;AND OTHERS;REEL/FRAME:019434/0984;SIGNING DATES FROM 20050425 TO 20050509

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION