US20070229718A1 - System for Using Larger Arc Lamps with Smaller Imagers - Google Patents

System for Using Larger Arc Lamps with Smaller Imagers Download PDF

Info

Publication number
US20070229718A1
US20070229718A1 US11/579,849 US57984906A US2007229718A1 US 20070229718 A1 US20070229718 A1 US 20070229718A1 US 57984906 A US57984906 A US 57984906A US 2007229718 A1 US2007229718 A1 US 2007229718A1
Authority
US
United States
Prior art keywords
imager
light
pixel
matrix
projection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/579,849
Inventor
Estill Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to THOMSON LICENSING reassignment THOMSON LICENSING ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THOMSON LICENSING S.A.
Assigned to THOMSON LICENSING reassignment THOMSON LICENSING ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALL, ESTILL THONE, JR.
Publication of US20070229718A1 publication Critical patent/US20070229718A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • H04N9/3126Driving therefor for spatial light modulators in series
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3197Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using light modulating optical valves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • the invention relates to a multiple imager projection system using a large arc lamp with a projection system having a smaller imager.
  • Microdisplays using Digital Light Processing (DLP) and/or Liquid crystal display (LCD), and particularly liquid crystal on silicon (LCOS), imagers are becoming increasingly prevalent in imaging devices such as rear projection television (RPTV).
  • DLP Digital Light Processing
  • LCD Liquid crystal display
  • LCOS liquid crystal on silicon
  • Digital Light Processing (DLP) imagers use an array of micro-mirrors, each acting as a pixel, which are pivoted at a very high rate of speed to temporally modulate light intensity on a pixel-by-pixel basis.
  • DLP Digital Light Processing
  • LCD liquid crystal display
  • LCOS liquid crystal on silicon
  • PBS polarizing beam splitter
  • LCOS imager or light engine comprising a matrix or array of pixels.
  • pixel is used to designate a small area or dot of an image, the corresponding portion of a light transmission, and the portion of an imager producing that light transmission.
  • Each pixel of the DLP or LCOS imager modulates the light incident on it according to a gray-scale factor input to the imager or light engine to form a matrix of discrete modulated light signals or pixels.
  • the matrix of modulated light signals is reflected or output from the imager and directed to a system of projection lenses which project the modulated light onto a display screen, combining the pixels of light to form a viewable image.
  • the gray-scale variation from pixel to pixel is limited by the number of bits used to process the image signal.
  • the contrast ratio from bright state (i.e., maximum light) to dark state (minimum light) is limited by the leakage of light in the imager.
  • a general, very desirable tendency is the reduction of the imager area. This is desirable because of improved yields on the imager, and smaller optical components, thus reducing the cost of the system. Reducing the imager area places increasing constraints on the arc lamp design. As the imager shrinks the arc lamp must also be scaled down in size to keep the etandue constant. The reduction in size of the arc lamp results in increasingly shorter arc lamp life, causing increased maintenance and cost to operate the microdisplay.
  • the invention provides a projection system that provides improved contrast and contouring of a light signal on a pixel-by-pixel basis using a two-stage projection architecture, thus improving all video pictures.
  • the projection system uses two imagers, the first being larger to accommodate a large lamp, sized to the first imager and the second being smaller.
  • the first imager has a matrix of pixels for modulating light on a pixel-by-pixel basis to form a first modulated matrix of light.
  • the second imager has a matrix of pixels corresponding to the pixels of the first imager for modulating the first modulated matrix of light on a pixel-by-pixel basis to form a second modulated matrix of light.
  • the second imager having a size smaller than the size of the first imager.
  • a relay lens set provides a magnification of less than 1.0 to relay each pixel of light in the first modulated matrix of light onto a corresponding pixel of the second imager.
  • FIG. 1 shows a block diagram of an LCOS projection system with a two-stage projection architecture according to an exemplary embodiment of the present invention
  • FIG. 2 shows an exemplary lens relay system for the projection system of FIG. 1 ;
  • FIG. 3 shows calculated ensquared energy performance for the lens system of FIG. 2 .
  • the present invention provides a projection system, such as for a television display, with enhanced contrast ratio and reduced contouring, while providing good lamp life. This is accomplished by using a larger imager 50 for the first stage to maintain a larger lamp 10 , and a smaller image 60 for the second stage.
  • lamp 10 may be an arc lamp generating white light 1 , suitable for use in an LCOS system. For example a short-arc mercury lamp may be used.
  • the white light 1 enters an integrator 20 , which directs a telecentric beam of white light 1 toward the projection system 30 .
  • the white light 1 is then separated into its component red, green, and blue (RGB) bands of light 2 .
  • RGB red, green, and blue
  • the RGB light 2 may be separated by dichroic mirrors (not shown) and directed into separate red, green, and blue projection systems 30 for modulation.
  • the modulated RGB light 2 is then recombined by a prism assembly (not shown) and projected by a projection lens assembly 40 onto a display screen (not shown).
  • the white light 1 may be separated into RGB bands of light 2 in the time domain, for example, by a color wheel (not shown), and thus directed one-at-a-time into a single LCOS projection system 30 .
  • FIG. 1 An exemplary LCOS projection system 30 is illustrated in FIG. 1 , using a two-stage projection architecture having a larger imager 50 and a smaller imager 60 according to the present invention.
  • the monochromatic RGB bands of light 2 are sequentially modulated by the two different sized imagers 50 , 60 on a pixel-by-pixel basis.
  • the RGB bands of light 2 comprise randomly polarized light. These RGB bands of light 2 enter a first surface 71 a of a first PBS 71 and are polarized by a polarizing surface 71 p within the first PBS 71 .
  • the polarizing surface 71 p allows a p-polarized component 3 of the RGB bands of light 2 to pass through the first PBS 71 to a second surface 71 b , while reflecting an s-polarized component 4 at an angle, away from the projection path where it passes out of first PBS 71 through fourth surface 71 d .
  • a first imager 50 is disposed beyond the second surface 71 b of the first PBS 71 opposite the first face 71 a , where the RGB bands of light enter first PBS 71 .
  • the p-polarized component 3 which passes through the PBS 71 , is therefore incident on the first imager 50 .
  • first imager 50 is a LCOS imager (as will be described in greater detail below) comprising a matrix of polarized liquid crystals corresponding to the pixels of the display image (not shown). These crystals transmit light according to their orientation, which in turn varies with the strength of an electric field created by a signal provided to the first imager 50 .
  • the imager pixels modulate the p-polarized light 3 on a pixel-by-pixel basis proportional to a gray scale value provided to the first imager 50 for each individual pixel.
  • the first imager 50 provides a first light matrix 5 , comprising a matrix of pixels or discrete dots of light.
  • First light matrix 5 is an output of modulated s-polarized light reflected from the first imager 50 back through second surface 71 b of first PBS 71 , where it is reflected by a polarizing surface 71 p at an angle out of the first PBS 71 through a third surface 71 c .
  • Each pixel of the first light matrix 5 has an intensity or luminance proportional to the individual gray scale value provided for that pixel in first imager 50 .
  • relay lens system 80 which provides a magnification of less than one to project each pixel of first light matrix 5 onto a corresponding pixel of smaller imager 60 .
  • relay lens system 80 comprises a series of aspherical lenses, some of which are formed into acromats. The lenses are configured to provide low distortion of the image being transmitted with a magnification of less than 1, so that the output of each pixel in the first imager 50 is projected onto a corresponding pixel of the second imager 60 .
  • exemplary relay lens system 80 comprises a first aspheric lens 81 and a first acromatic lens 82 (comprising two aspheres) between the first PBS 71 and the focal point of the lens system or system stop 83 .
  • lens system 80 comprises a second acromatic lens 84 (comprising two aspheres) and a second aspheric lens 85 .
  • First aspheric lens 81 has a first surface 81 a and second surface 81 b which bend the diverging light pattern from the first PBS 71 into a light pattern converging toward the optical axis of lens system 80 .
  • First acromatic lens 82 has a first surface 82 a , a second surface 82 b , and a third surface 82 c , which focus the converging light pattern from the first aspheric lens 81 onto the system stop 83 .
  • the second acromatic lens 84 has a first surface 84 a , a second surface 84 b , and a third surface 84 c .
  • the surfaces 84 a , 84 b , and 84 c of second acromatic lens 84 distribute the diverging light pattern onto the second aspherical lens 85 .
  • the second aspherical lens 85 has a first surface 85 a and a second surface 85 b .
  • Surfaces 85 a and 85 b bend the light pattern to converge to form an inverted image on the second imager 60 that has pixels with a one-to-one correspondence to the matrix of pixels from the first imager 50 .
  • the surfaces of relay lens system 80 are configured to work with the imagers 50 , 60 and PBS's 71 , 72 to achieve the one-to-one correspondence of the pixels of first imager 50 and second imager 60 .
  • An exemplary lens set 80 was developed by the inventors using ZEMAXTM software and design criteria developed by the inventors.
  • a summary of the surfaces of an exemplary two-stage projection system 30 are provided in Table 1, and aspheric coefficients for the surfaces are provided in Table 2.
  • the exemplary lens system described in Tables 1 and 2 provides one-to-one transmission from the pixels of a 0.7 inch larger imager 50 to a 0.5 inch smaller imager 60 .
  • Various modifications can be made to this exemplary projection system based on such factors as: cost, size, luminance levels, and other design factors.
  • Second PBS 72 has a polarizing surface 72 p that reflects the s-polarized first light matrix 5 through a second surface 72 b onto a second imager 60 .
  • second imager 60 is an LCOS imager which modulates the previously modulated first light matrix 5 on a pixel-by-pixel basis proportional to a gray scale value provided to the second imager 60 for each individual pixel.
  • the pixels of the second imager 60 corresponds on a one-to-one basis with the pixels of the first imager 50 and with the pixels of the display image.
  • the input of a particular pixel (i,j) to the second imager 60 is the output from corresponding pixel (i,j) of the first imager 50 .
  • the second imager 60 then produces an output matrix 6 of p-polarized light.
  • Each pixel of light in the output matrix 6 is modulated in intensity by a gray scale value provided to the imager for that pixel of the second imager 60 .
  • a specific pixel of the output matrix 6 (i,j) would have an intensity proportional to both the gray scale value for its corresponding pixel (i,j), in the first imager and its corresponding pixel (i,j) 2 in the second imager 60 .
  • the lamp 10 must be sized to the first stage imager to maintain the desired etandue. Using a larger imager 50 in the first stage of the projection system 30 allows the lamp 10 to be larger, resulting in longer lamp life. Moreover a more modest imager (in terms of contrast ratio) can be used for the larger imager 50 , because a second, smaller imager 60 will also be used to modulate the projected image.
  • the modest large imager 50 receives the lamp 10 illumination (from a larger arc lamp) and then relays the light using a now less than unity magnification lens to illuminate on a pixel by pixel basis a “high quality” smaller imager 60 .
  • a ⁇ 0.7′′ larger imager 50 is used as an illumination imager, and a ⁇ 0.5′′ smaller imager 60 is used as an image making imager.
  • the relay lens system 80 as described above provides one-to-one correspondence between the pixels of the larger imager 50 and the smaller imager 60 .
  • L0 is a constant for a given pixel (being a function of the lamp 10 , and the illumination system.)
  • the light output L is actually determined primarily by the gray scale values selected for this pixel on each imager 50 , 60 .
  • the gray scale values selected for this pixel on each imager 50 , 60 For example, normalizing the gray scales to 1 maximum and assuming each imager has a very modest contrast ratio of 200:1, then the bright state of a pixel (i,j) is 1, and the dark state of pixel (i,j) is 1/200 (not zero, because of leakage).
  • the two stage projector architecture has a luminance range of 40,000:1.
  • the luminance range defined by these limits gives a contrast ratio of 1/0.000025:1, or 40,000:1.
  • the dark state luminance for the exemplary two-stage projector architecture would be only a forty-thousandth of the luminance of the bright state, rather than one two-hundredth of the bright state if the hypothetical imager were used in an existing single imager architecture.
  • an imager with a lower contrast ratio can be provided for a considerably lower cost than an imager with a higher contrast ratio.
  • a two-stage projection system using two imagers with a contrast ratio of 200:1 will provide a contrast ratio of 40,000:1, while a single-stage projection system using a much more expensive imager with a 500:1 ratio will only provide a 500:1 contrast.
  • a two-stage projection system with one imager having a 500:1 contrast ratio and an inexpensive imager with a 200:1 ratio will have a system contrast ratio of 100,000:1. Accordingly, a cost/performance trade-off can be performed to create an optimum projection system.
  • Output matrix 6 enters the second PBS 72 through second surface 72 b , and since it comprises p-polarized light, it passes through polarizing surface 72 p and out of the second PBS 72 through third surface 72 c . After output matrix 6 leaves the second PBS 72 , it enters the projection lens assembly 40 , which projects a display image 7 onto a screen (not shown) for viewing.
  • the relay lens set 80 must provide good ensquared light energy. That is, the light from a pixel (i,j) in the first imager 50 must be accurately projected onto the corresponding pixel (i,j) on the second imager 60 .
  • FIG. 3 shows a calculated result for ensquared energy of the illustrated lens set 80 . The ensquared energy was calculated for the exemplary lens set 80 using ZEMAXTM software. As shown in FIG. 3 , at least about fifty percent (60%) of the light energy from a particular pixel on a first stage imager 50 is focused onto a twelve micron square (e.g., the corresponding pixel of a second stage imager 60 ).

Landscapes

  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Lenses (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A projection system is provided with improved contrast and reduced artifacts using a larger lamp to maintain good lamp life. The projection system uses two imagers, the first being larger to accommodate a large lamp, sized to the first imager and the second being smaller. The first imager has a matrix of pixels for modulating light on a pixel-by-pixel basis to form a first modulated matrix of light. The second imager has a matrix of pixels corresponding to the pixels of the first imager for modulating the first modulated matrix of light on a pixel-by-pixel basis to form a second modulated matrix of light. The second imager having a size smaller than the size of the first imager. A relay lens set provides a magnification of less than 1.0 to relay each pixel of light in the first modulated matrix of light onto a corresponding pixel of the second imager.

Description

    FIELD OF THE INVENTION
  • The invention relates to a multiple imager projection system using a large arc lamp with a projection system having a smaller imager.
  • BACKGROUND OF THE INVENTION
  • Microdisplays using Digital Light Processing (DLP) and/or Liquid crystal display (LCD), and particularly liquid crystal on silicon (LCOS), imagers are becoming increasingly prevalent in imaging devices such as rear projection television (RPTV).
  • Digital Light Processing (DLP) imagers use an array of micro-mirrors, each acting as a pixel, which are pivoted at a very high rate of speed to temporally modulate light intensity on a pixel-by-pixel basis.
  • Liquid crystal displays (LCD's), and particularly liquid crystal on silicon (LCOS) systems use a reflective light engine or imager. In an LCOS system, projected light is polarized by a polarizing beam splitter (PBS) and directed onto a LCOS imager or light engine comprising a matrix or array of pixels. Throughout this specification, and consistent with the practice of the relevant art, the term pixel is used to designate a small area or dot of an image, the corresponding portion of a light transmission, and the portion of an imager producing that light transmission.
  • Each pixel of the DLP or LCOS imager modulates the light incident on it according to a gray-scale factor input to the imager or light engine to form a matrix of discrete modulated light signals or pixels. The matrix of modulated light signals is reflected or output from the imager and directed to a system of projection lenses which project the modulated light onto a display screen, combining the pixels of light to form a viewable image. In this system, the gray-scale variation from pixel to pixel is limited by the number of bits used to process the image signal. The contrast ratio from bright state (i.e., maximum light) to dark state (minimum light) is limited by the leakage of light in the imager.
  • One of the major disadvantages of existing LCOS and DLP systems is the difficulty in reducing the amount of light in the dark state, and the resulting difficulty in providing outstanding contrast ratios. This is, in part, due to the leakage of light, inherent in these systems.
  • In addition, since the input is a fixed number of bits (e.g., 8, 10, etc.), which must define the full scale of light, there tend to be very few bits available to define subtle differences in darker areas of the picture. This can lead to contouring artifacts.
  • One approach to enhance contrast in LCOS in the dark state is to use a COLORSWITCH™ or similar device to scale the entire picture based upon the maximum value in that particular frame. This improves some pictures, but does little for pictures that contain high and low light levels. Other attempts to solve the problem have been directed to making better imagers, etc. but these are at best incremental improvements.
  • In microdisplay systems, a general, very desirable tendency is the reduction of the imager area. This is desirable because of improved yields on the imager, and smaller optical components, thus reducing the cost of the system. Reducing the imager area places increasing constraints on the arc lamp design. As the imager shrinks the arc lamp must also be scaled down in size to keep the etandue constant. The reduction in size of the arc lamp results in increasingly shorter arc lamp life, causing increased maintenance and cost to operate the microdisplay.
  • SUMMARY OF THE INVENTION
  • The invention provides a projection system that provides improved contrast and contouring of a light signal on a pixel-by-pixel basis using a two-stage projection architecture, thus improving all video pictures. The projection system uses two imagers, the first being larger to accommodate a large lamp, sized to the first imager and the second being smaller. The first imager has a matrix of pixels for modulating light on a pixel-by-pixel basis to form a first modulated matrix of light. The second imager has a matrix of pixels corresponding to the pixels of the first imager for modulating the first modulated matrix of light on a pixel-by-pixel basis to form a second modulated matrix of light. The second imager having a size smaller than the size of the first imager. A relay lens set provides a magnification of less than 1.0 to relay each pixel of light in the first modulated matrix of light onto a corresponding pixel of the second imager.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described with reference to accompanying figures of which:
  • FIG. 1 shows a block diagram of an LCOS projection system with a two-stage projection architecture according to an exemplary embodiment of the present invention;
  • FIG. 2 shows an exemplary lens relay system for the projection system of FIG. 1; and
  • FIG. 3 shows calculated ensquared energy performance for the lens system of FIG. 2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a projection system, such as for a television display, with enhanced contrast ratio and reduced contouring, while providing good lamp life. This is accomplished by using a larger imager 50 for the first stage to maintain a larger lamp 10, and a smaller image 60 for the second stage. In the embodiment illustrated, lamp 10 may be an arc lamp generating white light 1, suitable for use in an LCOS system. For example a short-arc mercury lamp may be used. The white light 1 enters an integrator 20, which directs a telecentric beam of white light 1 toward the projection system 30. The white light 1 is then separated into its component red, green, and blue (RGB) bands of light 2. The RGB light 2 may be separated by dichroic mirrors (not shown) and directed into separate red, green, and blue projection systems 30 for modulation. The modulated RGB light 2 is then recombined by a prism assembly (not shown) and projected by a projection lens assembly 40 onto a display screen (not shown).
  • Alternatively, the white light 1 may be separated into RGB bands of light 2 in the time domain, for example, by a color wheel (not shown), and thus directed one-at-a-time into a single LCOS projection system 30.
  • An exemplary LCOS projection system 30 is illustrated in FIG. 1, using a two-stage projection architecture having a larger imager 50 and a smaller imager 60 according to the present invention. The monochromatic RGB bands of light 2 are sequentially modulated by the two different sized imagers 50, 60 on a pixel-by-pixel basis. The RGB bands of light 2 comprise randomly polarized light. These RGB bands of light 2 enter a first surface 71 a of a first PBS 71 and are polarized by a polarizing surface 71 p within the first PBS 71. The polarizing surface 71 p allows a p-polarized component 3 of the RGB bands of light 2 to pass through the first PBS 71 to a second surface 71 b, while reflecting an s-polarized component 4 at an angle, away from the projection path where it passes out of first PBS 71 through fourth surface 71 d. A first imager 50 is disposed beyond the second surface 71 b of the first PBS 71 opposite the first face 71 a, where the RGB bands of light enter first PBS 71. The p-polarized component 3, which passes through the PBS 71, is therefore incident on the first imager 50.
  • In the exemplary embodiment, illustrated in FIG. 1, first imager 50 is a LCOS imager (as will be described in greater detail below) comprising a matrix of polarized liquid crystals corresponding to the pixels of the display image (not shown). These crystals transmit light according to their orientation, which in turn varies with the strength of an electric field created by a signal provided to the first imager 50. The imager pixels modulate the p-polarized light 3 on a pixel-by-pixel basis proportional to a gray scale value provided to the first imager 50 for each individual pixel. As a result of the modulation of individual pixels, the first imager 50 provides a first light matrix 5, comprising a matrix of pixels or discrete dots of light. First light matrix 5 is an output of modulated s-polarized light reflected from the first imager 50 back through second surface 71 b of first PBS 71, where it is reflected by a polarizing surface 71 p at an angle out of the first PBS 71 through a third surface 71 c. Each pixel of the first light matrix 5 has an intensity or luminance proportional to the individual gray scale value provided for that pixel in first imager 50.
  • The first light matrix 5 of s-polarized light is reflected by the PBS 71 through a relay lens system 80, which provides a magnification of less than one to project each pixel of first light matrix 5 onto a corresponding pixel of smaller imager 60. In an exemplary embodiment, illustrated in FIG. 2, relay lens system 80 comprises a series of aspherical lenses, some of which are formed into acromats. The lenses are configured to provide low distortion of the image being transmitted with a magnification of less than 1, so that the output of each pixel in the first imager 50 is projected onto a corresponding pixel of the second imager 60.
  • As shown in FIG. 2, exemplary relay lens system 80 comprises a first aspheric lens 81 and a first acromatic lens 82 (comprising two aspheres) between the first PBS 71 and the focal point of the lens system or system stop 83. Between the system stop 83 and the second imager 72, lens system 80 comprises a second acromatic lens 84 (comprising two aspheres) and a second aspheric lens 85. First aspheric lens 81 has a first surface 81 a and second surface 81 b which bend the diverging light pattern from the first PBS 71 into a light pattern converging toward the optical axis of lens system 80. First acromatic lens 82 has a first surface 82 a, a second surface 82 b, and a third surface 82 c, which focus the converging light pattern from the first aspheric lens 81 onto the system stop 83. At the system stop 83, the light pattern inverts and diverges. The second acromatic lens 84 has a first surface 84 a, a second surface 84 b, and a third surface 84 c. The surfaces 84 a, 84 b, and 84 c of second acromatic lens 84 distribute the diverging light pattern onto the second aspherical lens 85. The second aspherical lens 85, has a first surface 85 a and a second surface 85 b. Surfaces 85 a and 85 b bend the light pattern to converge to form an inverted image on the second imager 60 that has pixels with a one-to-one correspondence to the matrix of pixels from the first imager 50. The surfaces of relay lens system 80 are configured to work with the imagers 50, 60 and PBS's 71, 72 to achieve the one-to-one correspondence of the pixels of first imager 50 and second imager 60. An exemplary lens set 80 was developed by the inventors using ZEMAX™ software and design criteria developed by the inventors. A summary of the surfaces of an exemplary two-stage projection system 30 are provided in Table 1, and aspheric coefficients for the surfaces are provided in Table 2. The exemplary lens system described in Tables 1 and 2 provides one-to-one transmission from the pixels of a 0.7 inch larger imager 50 to a 0.5 inch smaller imager 60. Various modifications can be made to this exemplary projection system based on such factors as: cost, size, luminance levels, and other design factors.
    TABLE 1
    (dimensions in millimeters)
    Surface Type Radius Thickness Glass Diameter Conic
    50 Standard Infinity 7.344807 17.844 0
    71b Standard Infinity 28 SF2 19.49308 0
    71c Standard Infinity 16.144 23.30644 0
    81a Evenasph −1792.427 8.465153 BAK2 27.53717 15896.17
    81b Evenasph −47.64756 22.60534 25.79954 0.1385228
    82a Evenasph 9.989885 5.216671 BAF3 12.28836 0.2461029
    82b Evenasph −15.70192 2.781307 SF64A 10.44962 0.3273907
    82c Evenasph 10.4408 2.35585 7.466488 1.112838
    83 Standard Infinity 2.701553 7.598633 0
    84a Evenasph −12.47 12.27089 LLF1 9.027755 −0.9337399
    84b Evenasph 21.61151 6.568487 BK10 16.55144 −60.03617
    84c Evenasph −10.36284 1.205388 19.1303 −0.09623429
    85a Evenasph 25.32294 11.75584 BAK2 19.59857 −10.12812
    85b Evenasph −156.8982 2.033251 24.39482 91.45723
    72a Standard Infinity 25 SF2 26.27618 0
    72b Standard Infinity 3.796829 32.14654 0
    60 Standard Infinity 12.7 0
  • TABLE 2
    coefficient
    on: surfaces 81a surfaces 81b surfaces 82a Surfaces 82b
    r2 0.010014379 −0.0042525592 −0.00049308956 −0.0024450588
    r4   8.2837304e−006 5.9994341e−006 −4.2471681e−006    6.544755e−005
    r6 −1.5974119e−008 4.1263492e−008 6.7784397e−007 −7.0268435e−006
    r8   7.1436629e−010 −2.2599135e−010 8.2484037e−009   2.5319053e−007
    r10  −4.055464e−012 4.7166887e−012 3.8235422e−010   1.2042165e−008
    r12   5.5374003e−015 −9.3608006e−015 −8.7314699e−012   1.4415007e−010
    r14   2.4154668e−017 −2.7355431e−016 −5.5310433e−013 −2.9191172e−011
    r16   1.7819688e−019 1.6718734e−018 1.6816709e−014   3.2892181e−013
    coefficient
    on: Surfaces 82c Surfaces 84a Surfaces 84b surfaces 85a
    r2 0.0016585768  −0.0042693384 −0.028244602 −0.0014200358
    r4 0.00016676655 5.0145851e−005 −0.0002613112 −6.6572718e−005
    r6    8.858413e−006 6.8120651e−006 2.4697573e−007 −2.0323262e−007
    r8 −6.6560983e−008 2.0863961e−008 2.5116094e−008 −5.5412448e−009
    r10   1.0434302e−008 9.6869445e−009 9.9630717e−010 2.5013767e−011
    r12   2.9470636e−009 8.0172475e−010 9.3849316e−012 6.8917014e−013
    r14   1.4144848e−010 1.1496028e−011 −8.4444523e−014 3.5809263e−015
    r16 −1.3523988e−011 −2.6695627e−012 −4.9434548e−015 −1.2508138e−016
    coefficient
    on: surfaces 85b surfaces 84c
    r2 0.010232017 0.0018730125
    r4 −0.00022008009 4.8192806e−005
    r6   1.5992026e−007 6.3746875e−007
    r8    4.409598e−009 5.2485121e−010
    r10 −7.4775294e−012 8.1903143e−012
    r12  −1.339599e−013 1.1898319e−013
    r14 −2.2536409e−015 4.9712202e−016
    r16    1.722549e−017 3.8319894e−017
  • After the first light matrix 5 leaves the relay lens system 80, it enters into a second PBS 72 through a first surface 72 a. Second PBS 72 has a polarizing surface 72 p that reflects the s-polarized first light matrix 5 through a second surface 72 b onto a second imager 60. In the exemplary embodiment, illustrated in FIG. 1, second imager 60 is an LCOS imager which modulates the previously modulated first light matrix 5 on a pixel-by-pixel basis proportional to a gray scale value provided to the second imager 60 for each individual pixel. The pixels of the second imager 60 corresponds on a one-to-one basis with the pixels of the first imager 50 and with the pixels of the display image. Thus, the input of a particular pixel (i,j) to the second imager 60 is the output from corresponding pixel (i,j) of the first imager 50.
  • The second imager 60 then produces an output matrix 6 of p-polarized light. Each pixel of light in the output matrix 6 is modulated in intensity by a gray scale value provided to the imager for that pixel of the second imager 60. Thus a specific pixel of the output matrix 6 (i,j) would have an intensity proportional to both the gray scale value for its corresponding pixel (i,j), in the first imager and its corresponding pixel (i,j)2 in the second imager 60.
  • The lamp 10 must be sized to the first stage imager to maintain the desired etandue. Using a larger imager 50 in the first stage of the projection system 30 allows the lamp 10 to be larger, resulting in longer lamp life. Moreover a more modest imager (in terms of contrast ratio) can be used for the larger imager 50, because a second, smaller imager 60 will also be used to modulate the projected image. The modest large imager 50 receives the lamp 10 illumination (from a larger arc lamp) and then relays the light using a now less than unity magnification lens to illuminate on a pixel by pixel basis a “high quality” smaller imager 60. In the illustrated exemplary embodiment a ˜0.7″ larger imager 50 is used as an illumination imager, and a ˜0.5″ smaller imager 60 is used as an image making imager. The relay lens system 80, as described above provides one-to-one correspondence between the pixels of the larger imager 50 and the smaller imager 60.
  • The light output L of a particular pixel (i,j) is given by the product of the light incident on the given pixel of first imager 50, the gray scale value selected for the given pixel at first imager 50, and the gray scale value selected at second imager 60:
    L=L0×GG2
  • L0 is a constant for a given pixel (being a function of the lamp 10, and the illumination system.) Thus, the light output L is actually determined primarily by the gray scale values selected for this pixel on each imager 50, 60. For example, normalizing the gray scales to 1 maximum and assuming each imager has a very modest contrast ratio of 200:1, then the bright state of a pixel (i,j) is 1, and the dark state of pixel (i,j) is 1/200 (not zero, because of leakage). Thus, the two stage projector architecture has a luminance range of 40,000:1.
    L max=1×1=1;
    L min=0.005×0.005=0.000025
  • The luminance range defined by these limits gives a contrast ratio of 1/0.000025:1, or 40,000:1. Importantly, the dark state luminance for the exemplary two-stage projector architecture would be only a forty-thousandth of the luminance of the bright state, rather than one two-hundredth of the bright state if the hypothetical imager were used in an existing single imager architecture. As will be understood by those skilled in the art, an imager with a lower contrast ratio can be provided for a considerably lower cost than an imager with a higher contrast ratio. Thus, a two-stage projection system using two imagers with a contrast ratio of 200:1 will provide a contrast ratio of 40,000:1, while a single-stage projection system using a much more expensive imager with a 500:1 ratio will only provide a 500:1 contrast. Also, a two-stage projection system with one imager having a 500:1 contrast ratio and an inexpensive imager with a 200:1 ratio will have a system contrast ratio of 100,000:1. Accordingly, a cost/performance trade-off can be performed to create an optimum projection system.
  • Output matrix 6 enters the second PBS 72 through second surface 72 b, and since it comprises p-polarized light, it passes through polarizing surface 72 p and out of the second PBS 72 through third surface 72 c. After output matrix 6 leaves the second PBS 72, it enters the projection lens assembly 40, which projects a display image 7 onto a screen (not shown) for viewing.
  • To provide one-to-one correspondence between the pixels of the first imager 50 and the second imager 60, the relay lens set 80 must provide good ensquared light energy. That is, the light from a pixel (i,j) in the first imager 50 must be accurately projected onto the corresponding pixel (i,j) on the second imager 60. FIG. 3 shows a calculated result for ensquared energy of the illustrated lens set 80. The ensquared energy was calculated for the exemplary lens set 80 using ZEMAX™ software. As shown in FIG. 3, at least about fifty percent (60%) of the light energy from a particular pixel on a first stage imager 50 is focused onto a twelve micron square (e.g., the corresponding pixel of a second stage imager 60).
  • The foregoing illustrates some of the possibilities for practicing the invention. Many other embodiments are possible within the scope and spirit of the invention. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.

Claims (8)

1. A projection system, comprising:
a first imager having a matrix of pixels for modulating light on a pixel-by-pixel basis to form a first modulated matrix of light, the first imager having a first size;
a second imager having a matrix of pixels corresponding to the pixels of the first imager for modulating the first modulated matrix of light on a pixel-by-pixel basis to form a second modulated matrix of light, the second imager having a second size smaller than the first size;
a relay lens set having a magnification of less than 1.0 to relay each pixel of light in the first modulated matrix of light onto a corresponding pixel of the second imager; and
a lamp sized for the first imager.
2. The projection system of claim 1, wherein the first imager has a size of about 0.7 inches and the second imager has a size of about 0.5 inches.
3. The projection system of claim 1, wherein the relay lens set comprises six lens elements.
4. The projection system of claim 3, wherein the first and sixth lens elements are aspheres.
5. The projection system of claim 4, wherein the second and third elements are aspheric lens elements joined at the exit face of the second element and entrance face of the third element to form an acromat.
6. The projection system of claim 5 wherein the fourth and fifth elements are aspheric lens elements joined at the exit face of the fourth element and entrance face of the fifth element to form an acromat.
7. The projection system of claim 1, wherein at least 60% of the light energy from the first imager is focused onto a twelve micron square on the second imager.
8. The projection system of claim 1, wherein the relay lens set has an ensquared energy of about 70% within a twelve micron square.
US11/579,849 2004-05-11 2004-05-11 System for Using Larger Arc Lamps with Smaller Imagers Abandoned US20070229718A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/014657 WO2005115012A1 (en) 2004-05-11 2004-05-11 System for using larger arc lamps with smaller imagers in a two-stage system comprising two imagers in series

Publications (1)

Publication Number Publication Date
US20070229718A1 true US20070229718A1 (en) 2007-10-04

Family

ID=34958135

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/579,849 Abandoned US20070229718A1 (en) 2004-05-11 2004-05-11 System for Using Larger Arc Lamps with Smaller Imagers

Country Status (6)

Country Link
US (1) US20070229718A1 (en)
EP (1) EP1745655A1 (en)
JP (1) JP4480763B2 (en)
KR (1) KR101116248B1 (en)
CN (1) CN1957619A (en)
WO (1) WO2005115012A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090256973A1 (en) * 2008-03-31 2009-10-15 Cristiano Bazzani Reducing power dissipation in portable LCOS/LCD/DLP portable projection systems
US20100238364A1 (en) * 2007-12-04 2010-09-23 Shenzhen Tcl New Technology Ltd. Modular led illumination system and method
US20110176120A1 (en) * 2008-06-24 2011-07-21 Carl Zeiss Ag Projection system
US20110175926A1 (en) * 2008-06-24 2011-07-21 Carl Zeiss Ag Projector and method for projecting an image
US8643296B2 (en) 2010-11-22 2014-02-04 Mindspeed Technologies, Inc. Color mixing and desaturation with reduced number of converters
US8797242B2 (en) 2008-06-24 2014-08-05 Carl Zeiss Ag Projector and method for projecting an image
US9107245B2 (en) 2011-06-09 2015-08-11 Mindspeed Technologies, Inc. High accuracy, high dynamic range LED/laser driver
US9385606B2 (en) 2012-12-03 2016-07-05 M/A-Com Technology Solutions Holdings, Inc. Automatic buck/boost mode selection system for DC-DC converter
US9794535B2 (en) 2013-11-22 2017-10-17 Seiko Epson Corporation Display device
US10097908B2 (en) 2014-12-31 2018-10-09 Macom Technology Solutions Holdings, Inc. DC-coupled laser driver with AC-coupled termination element
US20190049833A1 (en) * 2017-08-10 2019-02-14 Canon Kabushiki Kaisha Image projection apparatus
US20190049832A1 (en) * 2017-08-10 2019-02-14 Canon Kabushiki Kaisha Image projection apparatus
US10263573B2 (en) 2016-08-30 2019-04-16 Macom Technology Solutions Holdings, Inc. Driver with distributed architecture
US10630052B2 (en) 2017-10-04 2020-04-21 Macom Technology Solutions Holdings, Inc. Efficiency improved driver for laser diode in optical communication
US10656497B1 (en) 2019-02-06 2020-05-19 The Government Of The United States As Represented By The Secretary Of The Air Force Polarization scene projector
CN114502834A (en) * 2019-07-18 2022-05-13 罗伯特·博世有限公司 Fuel injector for internal combustion engine
US11463177B2 (en) 2018-11-20 2022-10-04 Macom Technology Solutions Holdings, Inc. Optic signal receiver with dynamic control
US11658630B2 (en) 2020-12-04 2023-05-23 Macom Technology Solutions Holdings, Inc. Single servo loop controlling an automatic gain control and current sourcing mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0719721D0 (en) * 2007-10-09 2007-11-21 Seos Ltd Image display apparatus
US9188767B2 (en) * 2013-11-04 2015-11-17 Christie Digital Systems Usa, Inc. Relay lens system for a high dynamic range projector
CN107113409B (en) 2014-12-31 2020-01-21 杜比实验室特许公司 Method and system for high dynamic range image projector

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311227A (en) * 1992-01-08 1994-05-10 Fujitsu, Limited Liquid crystal projection display device with mirror
US5555034A (en) * 1993-06-30 1996-09-10 Hitachi, Ltd. Projection display apparatus
US5592238A (en) * 1994-10-27 1997-01-07 Hitachi, Ltd. Field-sequential projection display
US5760965A (en) * 1996-01-24 1998-06-02 Samsung Electronics Co., Ltd. Wide-projection angle liquid crystal projection lens system
US6109752A (en) * 1996-08-26 2000-08-29 Seiko Epson Corporation Lighting device and projector
US20030048393A1 (en) * 2001-08-17 2003-03-13 Michel Sayag Dual-stage high-contrast electronic image display
US6643069B2 (en) * 2000-08-31 2003-11-04 Texas Instruments Incorporated SLM-base color projection display having multiple SLM's and multiple projection lenses
US6862047B2 (en) * 2001-03-12 2005-03-01 Mitsubishi Denki Kabushiki Kaisha Image projection apparatus
US7385565B2 (en) * 2002-09-30 2008-06-10 Mitsubishi Denki Kabushiki Kaisha Projection-type display apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127474A (en) * 1995-11-06 1997-05-16 Advanced Display:Kk Projection type display device
JPH09258328A (en) * 1996-03-26 1997-10-03 Hamamatsu Photonics Kk Projector
GB2317290B (en) * 1996-09-11 2000-12-06 Seos Displays Ltd Image display apparatus
EP1269756B1 (en) * 2000-03-15 2004-05-26 Imax Corporation Improvements in dmd-based image display systems
CA2414723C (en) * 2000-07-03 2012-05-15 Imax Corporation Equipment and techniques for increasing the dynamic range of a projection system
EP2177150B1 (en) * 2000-08-10 2014-04-09 Carl Zeiss Meditec AG Visual field tester
EP2309315B1 (en) * 2001-02-27 2020-07-29 Dolby Laboratories Licensing Corporation A method and device for displaying an image

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311227A (en) * 1992-01-08 1994-05-10 Fujitsu, Limited Liquid crystal projection display device with mirror
US5555034A (en) * 1993-06-30 1996-09-10 Hitachi, Ltd. Projection display apparatus
US5592238A (en) * 1994-10-27 1997-01-07 Hitachi, Ltd. Field-sequential projection display
US5760965A (en) * 1996-01-24 1998-06-02 Samsung Electronics Co., Ltd. Wide-projection angle liquid crystal projection lens system
US6109752A (en) * 1996-08-26 2000-08-29 Seiko Epson Corporation Lighting device and projector
US6643069B2 (en) * 2000-08-31 2003-11-04 Texas Instruments Incorporated SLM-base color projection display having multiple SLM's and multiple projection lenses
US6862047B2 (en) * 2001-03-12 2005-03-01 Mitsubishi Denki Kabushiki Kaisha Image projection apparatus
US20030048393A1 (en) * 2001-08-17 2003-03-13 Michel Sayag Dual-stage high-contrast electronic image display
US7385565B2 (en) * 2002-09-30 2008-06-10 Mitsubishi Denki Kabushiki Kaisha Projection-type display apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100238364A1 (en) * 2007-12-04 2010-09-23 Shenzhen Tcl New Technology Ltd. Modular led illumination system and method
US8403495B2 (en) * 2007-12-04 2013-03-26 Shenzhen Tcl New Technology Ltd. Modular LED illumination system and method
US20090256973A1 (en) * 2008-03-31 2009-10-15 Cristiano Bazzani Reducing power dissipation in portable LCOS/LCD/DLP portable projection systems
US8243211B2 (en) * 2008-03-31 2012-08-14 Mindspeed Technologies, Inc. Reducing power dissipation in portable LCoS/LCD/DLP projection systems
US20110176120A1 (en) * 2008-06-24 2011-07-21 Carl Zeiss Ag Projection system
US20110175926A1 (en) * 2008-06-24 2011-07-21 Carl Zeiss Ag Projector and method for projecting an image
US8500290B2 (en) 2008-06-24 2013-08-06 Carl Zeiss Ag Projection system
US8780024B2 (en) 2008-06-24 2014-07-15 Carl Zeiss Ag Projector and method for projecting an image
US8797242B2 (en) 2008-06-24 2014-08-05 Carl Zeiss Ag Projector and method for projecting an image
US8643296B2 (en) 2010-11-22 2014-02-04 Mindspeed Technologies, Inc. Color mixing and desaturation with reduced number of converters
US9119241B2 (en) 2010-11-22 2015-08-25 Mindspeed Technologies, Inc. Color mixing and desaturation with reduced number of converters
US9107245B2 (en) 2011-06-09 2015-08-11 Mindspeed Technologies, Inc. High accuracy, high dynamic range LED/laser driver
US9385606B2 (en) 2012-12-03 2016-07-05 M/A-Com Technology Solutions Holdings, Inc. Automatic buck/boost mode selection system for DC-DC converter
US9794535B2 (en) 2013-11-22 2017-10-17 Seiko Epson Corporation Display device
US10097908B2 (en) 2014-12-31 2018-10-09 Macom Technology Solutions Holdings, Inc. DC-coupled laser driver with AC-coupled termination element
US10263573B2 (en) 2016-08-30 2019-04-16 Macom Technology Solutions Holdings, Inc. Driver with distributed architecture
US20190049833A1 (en) * 2017-08-10 2019-02-14 Canon Kabushiki Kaisha Image projection apparatus
US20190049832A1 (en) * 2017-08-10 2019-02-14 Canon Kabushiki Kaisha Image projection apparatus
US10481473B2 (en) * 2017-08-10 2019-11-19 Canon Kabushiki Kaisha Image projection apparatus
US10620519B2 (en) * 2017-08-10 2020-04-14 Canon Kabushiki Kaisha Image projection apparatus
US10630052B2 (en) 2017-10-04 2020-04-21 Macom Technology Solutions Holdings, Inc. Efficiency improved driver for laser diode in optical communication
US11463177B2 (en) 2018-11-20 2022-10-04 Macom Technology Solutions Holdings, Inc. Optic signal receiver with dynamic control
US10656497B1 (en) 2019-02-06 2020-05-19 The Government Of The United States As Represented By The Secretary Of The Air Force Polarization scene projector
CN114502834A (en) * 2019-07-18 2022-05-13 罗伯特·博世有限公司 Fuel injector for internal combustion engine
US11658630B2 (en) 2020-12-04 2023-05-23 Macom Technology Solutions Holdings, Inc. Single servo loop controlling an automatic gain control and current sourcing mechanism

Also Published As

Publication number Publication date
WO2005115012A1 (en) 2005-12-01
JP4480763B2 (en) 2010-06-16
CN1957619A (en) 2007-05-02
JP2007537484A (en) 2007-12-20
EP1745655A1 (en) 2007-01-24
KR20070020030A (en) 2007-02-16
KR101116248B1 (en) 2012-03-09

Similar Documents

Publication Publication Date Title
KR101116248B1 (en) 2 2 system for using larger arc lamps with smaller imagers in a two stage system comprising two imagers in series
US7175279B2 (en) Two-stage projection architecture
US7431460B2 (en) Two-stage projector architecture
CN101208948B (en) High-contrast transmission type LCD imager
US7317578B2 (en) Imager to imager relay lens system
KR101021435B1 (en) Dynamic range and contrast enhancement for microdisplay
US20070216872A1 (en) Two- Stage Projector Architecture
WO2005094070A1 (en) Dual liquid crystal on silicon (lcos) to digital light pulse (dlp) relay
KR20080030576A (en) High contrast transmissive lcd imager

Legal Events

Date Code Title Description
AS Assignment

Owner name: THOMSON LICENSING, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMSON LICENSING S.A.;REEL/FRAME:018599/0751

Effective date: 20061003

AS Assignment

Owner name: THOMSON LICENSING, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALL, ESTILL THONE, JR.;REEL/FRAME:018735/0575

Effective date: 20040507

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION