US20070207122A1 - Compositons and methods of use of ritonavir for treating hcv - Google Patents
Compositons and methods of use of ritonavir for treating hcv Download PDFInfo
- Publication number
- US20070207122A1 US20070207122A1 US11/682,668 US68266807A US2007207122A1 US 20070207122 A1 US20070207122 A1 US 20070207122A1 US 68266807 A US68266807 A US 68266807A US 2007207122 A1 US2007207122 A1 US 2007207122A1
- Authority
- US
- United States
- Prior art keywords
- prodrug
- ester
- salt
- ritonavir
- interferon alpha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229960000311 ritonavir Drugs 0.000 title claims abstract description 54
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 24
- 150000002148 esters Chemical class 0.000 claims abstract description 34
- 229940002612 prodrug Drugs 0.000 claims abstract description 34
- 239000000651 prodrug Substances 0.000 claims abstract description 34
- 150000003839 salts Chemical class 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000008177 pharmaceutical agent Substances 0.000 claims abstract description 9
- BBAWEDCPNXPBQM-GDEBMMAJSA-N telaprevir Chemical compound N([C@H](C(=O)N[C@H](C(=O)N1C[C@@H]2CCC[C@@H]2[C@H]1C(=O)N[C@@H](CCC)C(=O)C(=O)NC1CC1)C(C)(C)C)C1CCCCC1)C(=O)C1=CN=CC=N1 BBAWEDCPNXPBQM-GDEBMMAJSA-N 0.000 claims description 46
- 229960002935 telaprevir Drugs 0.000 claims description 35
- LHHCSNFAOIFYRV-DOVBMPENSA-N boceprevir Chemical compound O=C([C@@H]1[C@@H]2[C@@H](C2(C)C)CN1C(=O)[C@@H](NC(=O)NC(C)(C)C)C(C)(C)C)NC(C(=O)C(N)=O)CC1CCC1 LHHCSNFAOIFYRV-DOVBMPENSA-N 0.000 claims description 32
- 229960000517 boceprevir Drugs 0.000 claims description 32
- 108010050904 Interferons Proteins 0.000 claims description 23
- 102000014150 Interferons Human genes 0.000 claims description 23
- 229940079322 interferon Drugs 0.000 claims description 21
- MCFRTSHBKQNPED-UHFFFAOYSA-N 3-amino-4-cyclobutyl-2-oxobutanamide Chemical compound NC(=O)C(=O)C(N)CC1CCC1 MCFRTSHBKQNPED-UHFFFAOYSA-N 0.000 claims description 11
- 102100040018 Interferon alpha-2 Human genes 0.000 claims description 10
- 108010079944 Interferon-alpha2b Proteins 0.000 claims description 10
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 claims description 7
- 102000004169 proteins and genes Human genes 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 7
- 229960000329 ribavirin Drugs 0.000 claims description 7
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 claims description 7
- 108010047761 Interferon-alpha Proteins 0.000 claims description 6
- 102000006992 Interferon-alpha Human genes 0.000 claims description 6
- 241000124008 Mammalia Species 0.000 claims description 5
- NHKZSTHOYNWEEZ-AFCXAGJDSA-N taribavirin Chemical compound N1=C(C(=N)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NHKZSTHOYNWEEZ-AFCXAGJDSA-N 0.000 claims description 5
- 229950006081 taribavirin Drugs 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 abstract description 5
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 abstract description 5
- 241000711549 Hepacivirus C Species 0.000 description 22
- 230000036470 plasma concentration Effects 0.000 description 14
- 241000700159 Rattus Species 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000004060 metabolic process Effects 0.000 description 8
- 210000001853 liver microsome Anatomy 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 241000700605 Viruses Species 0.000 description 5
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 208000005176 Hepatitis C Diseases 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003443 antiviral agent Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 208000005252 hepatitis A Diseases 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229940100688 oral solution Drugs 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 208000035049 Blood-Borne Infections Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 206010019791 Hepatitis post transfusion Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 241001071861 Lethrinus genivittatus Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 108010080374 albuferon Proteins 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- QWCRAEMEVRGPNT-UHFFFAOYSA-N buspirone Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2N=CC=CN=2)C(=O)CC21CCCC2 QWCRAEMEVRGPNT-UHFFFAOYSA-N 0.000 description 1
- 229960002495 buspirone Drugs 0.000 description 1
- -1 but not limited to Proteins 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 208000010710 hepatitis C virus infection Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000018191 liver inflammation Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 210000001589 microsome Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/407—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
- A61K31/497—Non-condensed pyrazines containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- Hepatitis C is a blood-borne disease that infects approximately 150-200 million individuals worldwide. Hepatitis C is a viral disease that is caused by a hepatropic virus, HCV (Hepatitis C Virus). Infection with HCV results in liver inflammation which can ultimately result in cirrhosis and liver cancer. Although many individuals do not exhibit symptoms related to hepatitis C infection, it is the leading cause of liver transplants in the United States.
- HCV Hepatitis C Virus
- HCV is a small, enveloped, single stranded, positive sense RNA virus in the family Flaviviridae. HCV mainly replicates within hepatocytes. HCV particles bind to receptors on the surfaces of hepatocytes and subsequently enter the cells. The RNA genome encodes a single stranded polypeptide comprising of approximately 3000 amino acids.
- HCV Hepatitis C Virus
- HCV therapies exist.
- One of the most common therapies involves using the combination of alpha-interferon and ribavirin. Even with this type of therapy many patients do not exhibit a reduction in viral activity. Accordingly, there is a clear long-felt and unresolved need to develop new effective therapeutics in the treatment of HCV infection.
- compositions and methods of improving the pharmacokinetics of HCV pharmaceutical agents or pharmaceutically acceptable salts, esters, and prodrugs thereof) which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof with such HCV compounds.
- compositions and a method of improving the pharmacokinetics of pharmaceutical agents which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof.
- FIG. 1 shows the structures and chemical names of VX-950 and SCH 503034.
- FIG. 2 shows enhancement of the plasma levels of VX-950 by coadministering with ritonavir in rats.
- FIG. 3 shows. enhancement of the plasma levels of SCH 503034 by coadministering with ritonavir in rats.
- compositions and a method of improving the pharmacokinetics of pharmaceutical agents which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof.
- “Coadministered” or “coadministering” means that the therapeutic agents can be formulated as separate compositions which are administered at the same time or different times, or alternatively that the therapeutic agents can be co-formulated and administered as a single composition.
- Drugs which are metabolized by cytochrome P450 monoxygenase and which benefit from coadministration with ritonavir include 2-(2- ⁇ 2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino ⁇ -3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), and 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034).
- composition wherein 2-(2- ⁇ 2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino ⁇ -3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950) is coadministered with ritonavir.
- a method for improving the pharmacokinetics of HCV compounds by coadministering 2-(2- ⁇ 2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino ⁇ -3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), with ritonavir.
- composition wherein 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) is coadministered with ritonavir.
- a method for improving the pharmacokinetics of HCV compound by coadmistering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) and ritonavir.
- a method of inhibiting HCV in a mammal comprising coadministering 2-(2- ⁇ 2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino ⁇ -3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
- a method of inhibiting HCV comprising coadminstering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
- Ritonavir is (2S,3S,5S)-5-(N-(N-((N-methyl-N-((2-isopropyl-4-thiazoyl)methyl)amino)carbonyl)-L-valinyl)amino)-2-(N-((5-thiazoyl)methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane.
- Ritonavir can be synthesized by the procedures described in PCT Patent Application No. WO94/14436, published Jul. 7, 1994, and U.S. Pat. No. 5,541,206 issued Jul. 30, 1996, both hereby fully incorporated by reference.
- compositions of the present invention are useful for treating HCV infections in mammals, particularly in humans. Accordingly, ritonavir can be coadministered with either VX-950 or SCH 503034 to treat HCV infection. Furthermore, the compositions of the present invention can also be coadministered with one or more anti-viral agents, including, but not limited to, entry inhibitors, protease inhibitors, polymerase inhibitors, and the like. In particular, the compositions of the present invention can be coadministered with anti-viral agents such as interferons and ribavirin.
- interferons suitable for use with ritonavir/VX 950 and ritonavir/SCH 503034 compositions of the present invention include, but are not limited to, interferon alpha-2a, interferon alpha-2b, pegylated interferon, pegylated interferon alpha-2a, pegylated interferon alpha-2b, concensus interferon alpha, pegylated concensus-inteferon alpha, interferon fused to a protein such as, but not limited to, interferon fused to serum human albumin (albuferon).
- the ritonavir/VX 950 and ritonavir/SCH 503034 compositions of the present invention can also be coadministered with other anti-viral agents.
- the ritonavir/VX 950 and ritonavir/SCH 503034 compositions of the present invention can be coadministered one or more pharmaceutical agents such as ribavirin and viramidine.
- Liquid handling was carried out on a Tecan EVO robotic system. Triplicate incubations were carried out at a final test compound concentration of 1 ⁇ M with 0.5 mg/ml microsomal protein, and 1 mM NADPH. Pooled human liver microsomes (1 mg/ml protein) and NADPH cofactor (2 mM) were prepared in 50 mM phosphate buffer at pH 7.4. Stock solutions (10 mM) of VX-950 or SCH 503034 were prepared in DMSO and then diluted to 100 ⁇ M in 1:1 acetonitrile/water. The solutions of compounds were added into the NADPH cofactor solution containing 0, 0.8 or 8 ⁇ M of ritonavir in a 2 ml 96-well plate.
- the resulting solution was added to the microsomes (1:1) that had been pre-incubated for 10 minutes at 37° C.
- Samples (0.1 ml) were incubated in 96-well plates at 37° C for 0, 10, 20 and 30 min in a Tecan 4-slot incubator.
- the robotic arm removed one of the replicate plates and the reactions were stopped by adding 1 volume (100 ⁇ l) of acetonitrile with internal standard (0.05 ⁇ M buspirone) to each well. All plates were centrifuged at 3500 rpm for 30 min, and the supernatant was transferred to a 96-well injection plate. The plates were stored at 4° C. until analyzed.
- LC-MS/MS analysis The samples were analyzed in positive mode using the turbospray ion source of PE/Sciex API 4000 Q-Trap mass spectrometer with Shimadzu HPLC system. Samples were injected (5 ⁇ L) onto a Lancer C18 column (5 ⁇ m, 30 ⁇ 2.1 mm) from Analytical Sales and Services Inc. (Pompton Plains, N.J.) and separation occurred via a gradient: The flow rate was 0.5 mL/min; starting conditions of 7.5% B, 2.5% C, increasing to 30% B and 10 % C at 0.4 min.
- VX-950 ( ⁇ ritonavir) was prepared as 5 mg/mL solution in a 10% DMSO: 90% PEG-400 vehicle for both oral ( ⁇ ritonavir) and intravenous administration.
- the 1 mL/kg intravenous dose was administered as a slow bolus (1 minutes) in a jugular vein of the rats under isoflurane anesthetic; the 1 ml/kg oral dose ( ⁇ ritonavir) was administered by gavage.
- Serial blood samples were obtained from a tail vein of each animal 0.1 (IV only), 0.25, 0.5, 1, 1.5, 2, 3, 4, 6 and 8 hours after dosing. The heparinized samples were placed on ice immediately following collection. Plasma was separated by centrifugation and stored frozen for subsequent analysis.
- Concentrations of parent drug (and ritonavir) were determined by HPLC-MS/MS following liquid-liquid extraction of the plasma samples. Analysis was performed on a Sciex API 2000TM Biomolecular Mass Analyzer using Turbo Ion Spray. Peak areas of the title compounds and internal standards were determined using the Sciex MacQuanTM software. Calibration curves were derived from peak area ratio (parent drug/internal standard) of the spiked plasma standards using least squares linear regression of the ratio versus the theoretical concentration. The maximum plasma concentration (C max ) and the time to reach the maximum plasma concentration (T max ) were read directly from the observed plasma concentration-time data. The plasma concentration data were submitted to multi-exponential curve fitting using WinNonlin.
- the area under the plasma concentration-time curve from 0 to t hours (last measurable plasma concentration time point) after dosing (AUC 0-t ) was calculated using the linear trapezoidal rule for the plasma-time profiles.
- the residual area extrapolated to infinity determined as the final measured plasma concentration (C t ) divided by the terminal elimination rate constant ( ⁇ ), was added to AUC 0-t to produce the total area under the curve (AUC 0- ⁇ ).
- the apparent total plasma clearance (CL p ) was calculated by dividing the administered dose by the AUC 0- ⁇ .
- the volume of distribution, V c was estimated by dividing the dose by the extrapolated plasma concentration at time zero (C 0 ).
- V ss The volume of distribution at steady state, V ss , was estimated as a product of the plasma clearance (CL p ) and the mean residence time (MRT); the terminal-phase volume of distribution, V ⁇ , was derived from the plasma clearance value (CL p ) divided by the plasma elimination rate constant ( ⁇ ).
- the bioavailability was calculated as the dose-normalized AUC 0- ⁇ from the oral dose divided by the corresponding value derived from an intravenous dose.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention discloses compositions and a method of improving the pharmacokinetics of pharmaceutical agents (or pharmaceutically acceptable salts, esters, and prodrugs thereof) which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof.
Description
- This application claims priority from U.S. Provisional Patent Application Ser. No. 60/779,501, filed Mar. 6, 2006, incorporated herein by reference.
- Hepatitis C is a blood-borne disease that infects approximately 150-200 million individuals worldwide. Hepatitis C is a viral disease that is caused by a hepatropic virus, HCV (Hepatitis C Virus). Infection with HCV results in liver inflammation which can ultimately result in cirrhosis and liver cancer. Although many individuals do not exhibit symptoms related to hepatitis C infection, it is the leading cause of liver transplants in the United States.
- Although science was aware of the hepatitis A and B viruses for decades, it was not until the late 1980s that discovery of hepatitis C virus was published for the medical and scientific communities. The discovery confirmed that most post-transfusion hepatitis cases were not due to hepatitis A and B viruses, but instead were due to the newly discovered hepatitis C virus. With the discovery of the hepatitis C virus, the need arose for methods to treat the virus and to understand the urstructural and replication process performed by the virus.
- HCV is a small, enveloped, single stranded, positive sense RNA virus in the family Flaviviridae. HCV mainly replicates within hepatocytes. HCV particles bind to receptors on the surfaces of hepatocytes and subsequently enter the cells. The RNA genome encodes a single stranded polypeptide comprising of approximately 3000 amino acids.
- Therapies for Hepatitis C Virus (HCV)
- Several different types of HCV therapies exist. One of the most common therapies involves using the combination of alpha-interferon and ribavirin. Even with this type of therapy many patients do not exhibit a reduction in viral activity. Accordingly, there is a clear long-felt and unresolved need to develop new effective therapeutics in the treatment of HCV infection.
- The inventors have herein developed compositions and methods of improving the pharmacokinetics of HCV pharmaceutical agents (or pharmaceutically acceptable salts, esters, and prodrugs thereof) which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof with such HCV compounds.
- In accordance with the present invention, there is disclosed compositions and a method of improving the pharmacokinetics of pharmaceutical agents (or pharmaceutically acceptable salts, esters, and prodrugs thereof) which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof.
-
FIG. 1 shows the structures and chemical names of VX-950 andSCH 503034. -
FIG. 2 shows enhancement of the plasma levels of VX-950 by coadministering with ritonavir in rats. -
FIG. 3 shows. enhancement of the plasma levels ofSCH 503034 by coadministering with ritonavir in rats. - In accordance with the present invention, there is disclosed compositions and a method of improving the pharmacokinetics of pharmaceutical agents (or pharmaceutically acceptable salts, esters, and prodrugs thereof) which are metaboilized by cytochrome P450 monoxygenase comprising coadministering ritonavir or a pharmaceutically acceptable salt, ester, and prodrug thereof.
- “Coadministered” or “coadministering” means that the therapeutic agents can be formulated as separate compositions which are administered at the same time or different times, or alternatively that the therapeutic agents can be co-formulated and administered as a single composition.
- Drugs which are metabolized by cytochrome P450 monoxygenase and which benefit from coadministration with ritonavir include 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), and 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034).
- In a preferred embodiment of the present invention, there is disclosed a composition wherein 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950) is coadministered with ritonavir.
- In another preferred embodiment of the present invention, there is disclosed a method for improving the pharmacokinetics of HCV compounds by coadministering 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), with ritonavir.
- In another preferred embodiment of the present administration, there is disclosed a composition wherein 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) is coadministered with ritonavir.
- In another preferred embodiment of the present administration, there is disclosed a method for improving the pharmacokinetics of HCV compound by coadmistering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) and ritonavir.
- In another preferred embodiment of the present invention, there is disclosed a method of inhibiting HCV in a mammal comprising coadministering 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
- In another preferred embodiment of the present invention, there is disclosed a method of inhibiting HCV comprising coadminstering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
- Ritonavir is (2S,3S,5S)-5-(N-(N-((N-methyl-N-((2-isopropyl-4-thiazoyl)methyl)amino)carbonyl)-L-valinyl)amino)-2-(N-((5-thiazoyl)methoxycarbonyl)amino)-1,6-diphenyl-3-hydroxyhexane. Ritonavir can be synthesized by the procedures described in PCT Patent Application No. WO94/14436, published Jul. 7, 1994, and U.S. Pat. No. 5,541,206 issued Jul. 30, 1996, both hereby fully incorporated by reference.
- 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), can be synthesized according to the procedures described in published PCT application WO02/18369, published Mar. 7, 2002, hereby fully incorporated by reference.
- 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034), can be synthesized according to the procedures described in published patent application US 2003/0216325, having a publication date of Nov. 20, 2003, hereby fully incorporated by reference.
- The compositions of the present invention are useful for treating HCV infections in mammals, particularly in humans. Accordingly, ritonavir can be coadministered with either VX-950 or
SCH 503034 to treat HCV infection. Furthermore, the compositions of the present invention can also be coadministered with one or more anti-viral agents, including, but not limited to, entry inhibitors, protease inhibitors, polymerase inhibitors, and the like. In particular, the compositions of the present invention can be coadministered with anti-viral agents such as interferons and ribavirin. Examples of interferons suitable for use with ritonavir/VX 950 and ritonavir/SCH 503034 compositions of the present invention include, but are not limited to, interferon alpha-2a, interferon alpha-2b, pegylated interferon, pegylated interferon alpha-2a, pegylated interferon alpha-2b, concensus interferon alpha, pegylated concensus-inteferon alpha, interferon fused to a protein such as, but not limited to, interferon fused to serum human albumin (albuferon). The ritonavir/VX 950 and ritonavir/SCH 503034 compositions of the present invention can also be coadministered with other anti-viral agents. In a preferred embodiment, the ritonavir/VX 950 and ritonavir/SCH 503034 compositions of the present invention can be coadministered one or more pharmaceutical agents such as ribavirin and viramidine. - The following Examples are illustrative of the ability of ritonavir to improve the pharmacokinetics of a HCV compound.
- Liquid handling was carried out on a Tecan EVO robotic system. Triplicate incubations were carried out at a final test compound concentration of 1 μM with 0.5 mg/ml microsomal protein, and 1 mM NADPH. Pooled human liver microsomes (1 mg/ml protein) and NADPH cofactor (2 mM) were prepared in 50 mM phosphate buffer at pH 7.4. Stock solutions (10 mM) of VX-950 or SCH 503034 were prepared in DMSO and then diluted to 100 μM in 1:1 acetonitrile/water. The solutions of compounds were added into the NADPH cofactor solution containing 0, 0.8 or 8 μM of ritonavir in a 2 ml 96-well plate. The resulting solution was added to the microsomes (1:1) that had been pre-incubated for 10 minutes at 37° C. Samples (0.1 ml) were incubated in 96-well plates at 37° C for 0, 10, 20 and 30 min in a Tecan 4-slot incubator. At each time point, the robotic arm removed one of the replicate plates and the reactions were stopped by adding 1 volume (100 μl) of acetonitrile with internal standard (0.05 μM buspirone) to each well. All plates were centrifuged at 3500 rpm for 30 min, and the supernatant was transferred to a 96-well injection plate. The plates were stored at 4° C. until analyzed.
- LC-MS/MS analysis: The samples were analyzed in positive mode using the turbospray ion source of PE/Sciex API 4000 Q-Trap mass spectrometer with Shimadzu HPLC system. Samples were injected (5 μL) onto a Lancer C18 column (5 μm, 30×2.1 mm) from Analytical Sales and Services Inc. (Pompton Plains, N.J.) and separation occurred via a gradient: The flow rate was 0.5 mL/min; starting conditions of 7.5% B, 2.5% C, increasing to 30% B and 10 % C at 0.4 min. The percentage of B and C were rapidly increased to 74 and 21%, respectively, over 0.5 min and held for 0.7 min, then decreased back to the initial conditions over 0.1 min, and held for 0.4 min, for a total run time of 2.5 min. Mobile phase A was 95/5 water/methanol (v/v) with 10 mM ammonium acetate and 60 μL/L acetic acid. Mobile phase B was methanol containing 10 mM ammonium acetate and 60 μL/L acetic acid. Mobile phase C was acetonitrile.
- Using the above conditions, the presence of ritonavir inhibited the metabolism of VX-950 and
SCH 503034 in the following manner: - Metabolism of VX-950 and
SCH 503034 in Human Liver Microsomes in the Absence or Presence of RitonavirConcentration of ritonavir (micromolar) 0 0.4 4.0 Percent of Compound Remaining at t = 30 minutes VX-950 30 81 100 SCH 50303418 77 100 Percent Inhibition of Metabolism by Ritonavir VX-950 0 72 100 SCH 5030340 71 100 - Using the procedure of Example 1, but substituting rat liver microsomes for human liver microsomes, the presence of ritonavir inhibited the metabolism of VX-950 and
SCH 503034 in the following manner: - Metabolism of VX-950 and
SCH 503034 in Rat Liver Microsomes in the Absence or Presence of RitonavirConcentration of ritonavir (micromolar) 0 0.4 4.0 Percent of Compound Remaining at t = 30 minutes VX-950 25 71 100 SCH 50303462 100 100 Percent Inhibition of Metabolism by Ritonavir VX-950 0 61 100 SCH 5030340 100 100 - The pharmacokinetic behavior of VX-950 was characterized following a single 5 mg/kg intravenous or oral dose in Sprague-Dawley derived rats (n=3 per group); an additional group of three rats received a 5 mg/kg oral dose of VX-950, coadministered with a 5 mg/kg oral dose of ritonavir. VX-950 (±ritonavir) was prepared as 5 mg/mL solution in a 10% DMSO: 90% PEG-400 vehicle for both oral (±ritonavir) and intravenous administration. The 1 mL/kg intravenous dose was administered as a slow bolus (1 minutes) in a jugular vein of the rats under isoflurane anesthetic; the 1 ml/kg oral dose (±ritonavir) was administered by gavage. Serial blood samples were obtained from a tail vein of each animal 0.1 (IV only), 0.25, 0.5, 1, 1.5, 2, 3, 4, 6 and 8 hours after dosing. The heparinized samples were placed on ice immediately following collection. Plasma was separated by centrifugation and stored frozen for subsequent analysis.
- Concentrations of parent drug (and ritonavir) were determined by HPLC-MS/MS following liquid-liquid extraction of the plasma samples. Analysis was performed on a Sciex API 2000™ Biomolecular Mass Analyzer using Turbo Ion Spray. Peak areas of the title compounds and internal standards were determined using the Sciex MacQuan™ software. Calibration curves were derived from peak area ratio (parent drug/internal standard) of the spiked plasma standards using least squares linear regression of the ratio versus the theoretical concentration. The maximum plasma concentration (Cmax) and the time to reach the maximum plasma concentration (Tmax) were read directly from the observed plasma concentration-time data. The plasma concentration data were submitted to multi-exponential curve fitting using WinNonlin. The area under the plasma concentration-time curve from 0 to t hours (last measurable plasma concentration time point) after dosing (AUC0-t) was calculated using the linear trapezoidal rule for the plasma-time profiles. The residual area extrapolated to infinity, determined as the final measured plasma concentration (Ct) divided by the terminal elimination rate constant (β), was added to AUC0-t to produce the total area under the curve (AUC0-∞). The apparent total plasma clearance (CLp) was calculated by dividing the administered dose by the AUC0-∞. The volume of distribution, Vc, was estimated by dividing the dose by the extrapolated plasma concentration at time zero (C0). The volume of distribution at steady state, Vss, was estimated as a product of the plasma clearance (CLp) and the mean residence time (MRT); the terminal-phase volume of distribution, Vβ, was derived from the plasma clearance value (CLp) divided by the plasma elimination rate constant (β). The bioavailability was calculated as the dose-normalized AUC0-∞ from the oral dose divided by the corresponding value derived from an intravenous dose.
- As shown in
FIG. 2 and below, the following mean (±standard error) plasma levels were obtained, indicating that coadministering with ritonavir substantially elevated the plasma levels of VX-950:The following mean (±SEM, n = 3) pharmacokinetic parameters were obtained: Route t1/2 Vss Vβ CLp AUC IV 2.8 2.4 (0.6) 8.1 (2.6) 1.7 (0.2) 3.03 (0.33) Mean (±SEM, n = 3); t1/2 (hr); Vc (L/kg); Vβ (L/kg); Clp (L/hr · kg); AUC (μg · hr/ml). Route t1/2 AUC Cmax C8 h Tmax F PO 1.7 1.05 (0.33) 0.43 (0.15) 0.018 1.1 (0.5) 34.8 (11.0) PO+ n.f. 8.86 (1.62)* 1.45 (0.29) 0.973 1.8 (0.2) >100 Mean (±SEM, n = 3); t1/2 (hr); AUC (μg · hr/ml); Cmax (μg/ml); Tmax (hr); F (%); 2.0-8 hr AUC. PO+ = oral solution dose of VX-950 + 5 mg/kg dose of ritonavir; nf - unable to estimate plasma elimination half-life. - Using the procedure of Example 3, but substituting
SCH 503034 for VX-950, as shown inFIG. 3 and below, the following mean (±standard error) plasma levels were obtained, indicating that coadministering with ritonavir substantially elevated the plasma levels of SCH 503034:The following mean (±SEM, n = 3) pharmacokinetic parameters were obtained: Route t1/2 Vss Vβ CLp AUC IV 0.3 0.53 (0.23) 0.92 (0.29) 2.04 (0.62) 3.12 (1.12) Mean (±SEM, n = 3); t1/2 (hr); Vc (L/kg); Vβ (L/kg); Clp (L/hr · kg); AUC (μg · hr/ml). Route t1/2 AUC Cmax C8 h F PO n.f. 0.11 (0.05) 0.07 (0.02) <0.001 3.5 (1.5) PO+ 2.5 2.18 (0.22)* 0.52 (0.03) 0.076 70.1 (7.0) Mean (±SEM, n = 3); t1/2 (hr); AUC (μg · hr/ml); Cmax (μg/ml); F (%); *0-8 hr AUC. PO+ = oral solution dose of SCH 503034 + 5 mg/kgdose of ritonavir; nf - unable to estimate plasma elimination half-life.
Claims (12)
1. A pharmaceutical coadministered composition comprising 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950) or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
2. A method for improving the pharmacokinetics of 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), or a salt, ester, or prodrug thereof comprising coadministering 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950) or a salt, ester, or prodrug thereof with ritonavir or a salt, ester, or prodrug thereof.
3. A pharmaceutical coadministered composition comprising 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
4. A method for improving the pharmacokinetics of 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof comprising coadministering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof with ritonavir or a salt, ester, or prodrug thereof.
5. A composition of claim 1 coadministered with one or more pharmaceutical agents selected from the group consisting of interferon alpha-2a, interferon alpha-2b, pegylated interferon, pegylated interferon alpha-2a, pegylated interferon alpha-2b, concensus interferon alpha, pegylated concensus-inteferon alpha, interferon fused to a protein, ribavirin, and viramidine.
6. A composition of claim 3 coadministered with one or more pharmaceutical agents selected from the group consisting of interferon alpha-2a, interferon alpha-2b, pegylated interferon, pegylated interferon alpha-2a, pegylated interferon alpha-2b, concensus interferon alpha, pegylated concensus-inteferon alpha, interferon fused to a protein, ribavirin, and viramidine.
7. A method for treating HCV in a mammal comprising coadministering 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid( 1-cyclopropylaminooxalyl-butyl)-amide (VX-950), or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
8. A method for treating HCV in a mammal comprising coadmistering 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid(1-cyclopropylaminooxalyl-butyl)-amide (VX-950), or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof, and further coadmistering with one or more pharmaceutical agents selected from the group consisting of interferon alpha-2a, interferon alpha-2b, pegylated interferon, pegylated interferon alpha-2a, pegylated interferon alpha-2b, concensus interferon alpha, pegylated concensus-inteferon alpha, interferon fused to a protein, ribavirin, and viramidine.
9. A method for treating HCV comprising coadminstering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof comprising and ritonavir or a salt, ester, or prodrug thereof.
10. A method for treating HCV comprising coadminstering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof comprising and ritonavir or a salt, ester, or prodrug thereof, and further coadministering with one or more pharmaceutical agents selected from the group consisting of interferon alpha-2a, interferon alpha-2b, pegylated interferon, pegylated interferon alpha-2a, pegylated interferon alpha-2b, concensus interferon alpha, pegylated concensus-inteferon alpha, interferon fused to a protein, ribavirin, and viramidine.
11. A method of inhibiting HCV in a mammal comprising coadministering 2-(2-{2-cyclohexyl-2[(pyrazine-2-carbonyl)-amino]-acetylamino}-3,3-dimethyl-butyryl)-octahydro-cyclopenta[c]pyrrole-1-carboxylic acid( 1-cyclopropylaminooxalyl-butyl)-amide (VX-950), or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
12. A method of inhibiting HCV comprising coadminstering 3-[2-(3-tert-butyl-ureido)-3,3-diemthyl-butyryl]-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-carboxylic acid (2-carbamoyl-1-cyclobutylmethyl-2-oxo-ethyl)-amide (SCH 503034) or a salt, ester, or prodrug thereof and ritonavir or a salt, ester, or prodrug thereof.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/682,668 US20070207122A1 (en) | 2006-03-06 | 2007-03-06 | Compositons and methods of use of ritonavir for treating hcv |
US12/958,899 US8901157B2 (en) | 2006-03-06 | 2010-12-02 | Compositions and methods of use of ritonavir for treating HCV |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77950106P | 2006-03-06 | 2006-03-06 | |
US11/682,668 US20070207122A1 (en) | 2006-03-06 | 2007-03-06 | Compositons and methods of use of ritonavir for treating hcv |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/958,899 Continuation US8901157B2 (en) | 2006-03-06 | 2010-12-02 | Compositions and methods of use of ritonavir for treating HCV |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070207122A1 true US20070207122A1 (en) | 2007-09-06 |
Family
ID=38475808
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/682,668 Abandoned US20070207122A1 (en) | 2006-03-06 | 2007-03-06 | Compositons and methods of use of ritonavir for treating hcv |
US12/958,899 Expired - Fee Related US8901157B2 (en) | 2006-03-06 | 2010-12-02 | Compositions and methods of use of ritonavir for treating HCV |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/958,899 Expired - Fee Related US8901157B2 (en) | 2006-03-06 | 2010-12-02 | Compositions and methods of use of ritonavir for treating HCV |
Country Status (7)
Country | Link |
---|---|
US (2) | US20070207122A1 (en) |
EP (1) | EP2007381A4 (en) |
JP (2) | JP5646814B2 (en) |
CN (1) | CN101460166B (en) |
CA (1) | CA2645684A1 (en) |
MX (1) | MX2008011429A (en) |
WO (1) | WO2007103934A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070287664A1 (en) * | 2006-03-23 | 2007-12-13 | Schering Corporation | Combinations of HCV protease inhibitor(s) and CYP3A4 inhibitor(s), and methods of treatment related thereto |
WO2011009961A1 (en) * | 2009-07-24 | 2011-01-27 | Virologik Gmbh | Combination of proteasome inhibitors and anti-hepatitis medication for treating hepatitis |
US11191435B2 (en) | 2013-01-22 | 2021-12-07 | Seno Medical Instruments, Inc. | Probe with optoacoustic isolator |
US10433732B2 (en) | 2011-11-02 | 2019-10-08 | Seno Medical Instruments, Inc. | Optoacoustic imaging system having handheld probe utilizing optically reflective material |
US20130289381A1 (en) | 2011-11-02 | 2013-10-31 | Seno Medical Instruments, Inc. | Dual modality imaging system for coregistered functional and anatomical mapping |
US9757092B2 (en) | 2011-11-02 | 2017-09-12 | Seno Medical Instruments, Inc. | Method for dual modality optoacoustic imaging |
WO2020048826A1 (en) | 2018-09-03 | 2020-03-12 | Bayer Aktiengesellschaft | 5-substituted 1-oxa-3,9-diazaspiro[5.5]undecan-2-one compounds |
WO2020048830A1 (en) | 2018-09-03 | 2020-03-12 | Bayer Aktiengesellschaft | 5-aryl-3,9-diazaspiro[5.5]undecan-2-one compounds |
TW202024083A (en) | 2018-09-03 | 2020-07-01 | 德商拜耳廠股份有限公司 | 3,9-diazaspiro[5.5]undecane compounds |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US216325A (en) * | 1879-06-10 | Improvement in portable minjng-flumes | ||
US5541206A (en) * | 1989-05-23 | 1996-07-30 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US5830905A (en) * | 1996-03-29 | 1998-11-03 | Viropharma Incorporated | Compounds, compositions and methods for treatment of hepatitis C |
US5886036A (en) * | 1992-12-29 | 1999-03-23 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US6037157A (en) * | 1995-06-29 | 2000-03-14 | Abbott Laboratories | Method for improving pharmacokinetics |
US20030216325A1 (en) * | 2000-07-21 | 2003-11-20 | Saksena Anil K | Novel peptides as NS3-serine protease inhibitors of hepatitis C virus |
US20080267915A1 (en) * | 2004-10-01 | 2008-10-30 | Vertex Pharmaceuticals | Hcv Ns3-Ns4a Protease Inhibition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6000A (en) * | 1849-01-02 | Abunah s | ||
US5024A (en) * | 1847-03-20 | Steam-cylindee | ||
SV2003000617A (en) * | 2000-08-31 | 2003-01-13 | Lilly Co Eli | INHIBITORS OF PROTEASA PEPTIDOMIMETICA REF. X-14912M |
BRPI0415935A (en) * | 2003-10-27 | 2007-01-02 | Vertex Pharma | hcv treatment combinations |
US20050249702A1 (en) * | 2004-05-06 | 2005-11-10 | Schering Corporation | (1R,2S,5S)-N-[(1S)-3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[(2S)-2-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide as inhibitor of hepatitis C virus NS3/NS4a serine protease |
CN102512372A (en) * | 2004-06-08 | 2012-06-27 | 沃泰克斯药物股份有限公司 | Pharmaceutical compositions |
-
2007
- 2007-03-06 WO PCT/US2007/063408 patent/WO2007103934A2/en active Application Filing
- 2007-03-06 EP EP07758000A patent/EP2007381A4/en not_active Ceased
- 2007-03-06 US US11/682,668 patent/US20070207122A1/en not_active Abandoned
- 2007-03-06 CA CA002645684A patent/CA2645684A1/en not_active Abandoned
- 2007-03-06 CN CN200780007930.8A patent/CN101460166B/en not_active Expired - Fee Related
- 2007-03-06 MX MX2008011429A patent/MX2008011429A/en active IP Right Grant
- 2007-03-06 JP JP2008558506A patent/JP5646814B2/en not_active Expired - Fee Related
-
2010
- 2010-12-02 US US12/958,899 patent/US8901157B2/en not_active Expired - Fee Related
-
2014
- 2014-07-24 JP JP2014150456A patent/JP5779271B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US216325A (en) * | 1879-06-10 | Improvement in portable minjng-flumes | ||
US5541206A (en) * | 1989-05-23 | 1996-07-30 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US5674882A (en) * | 1989-05-23 | 1997-10-07 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US5886036A (en) * | 1992-12-29 | 1999-03-23 | Abbott Laboratories | Retroviral protease inhibiting compounds |
US6037157A (en) * | 1995-06-29 | 2000-03-14 | Abbott Laboratories | Method for improving pharmacokinetics |
US6703403B2 (en) * | 1995-06-29 | 2004-03-09 | Abbott Laboratories | Method for improving pharmacokinetics |
US5830905A (en) * | 1996-03-29 | 1998-11-03 | Viropharma Incorporated | Compounds, compositions and methods for treatment of hepatitis C |
US20030216325A1 (en) * | 2000-07-21 | 2003-11-20 | Saksena Anil K | Novel peptides as NS3-serine protease inhibitors of hepatitis C virus |
US20080267915A1 (en) * | 2004-10-01 | 2008-10-30 | Vertex Pharmaceuticals | Hcv Ns3-Ns4a Protease Inhibition |
Also Published As
Publication number | Publication date |
---|---|
US20110091423A1 (en) | 2011-04-21 |
JP2014237678A (en) | 2014-12-18 |
EP2007381A4 (en) | 2010-11-17 |
CN101460166B (en) | 2014-11-19 |
WO2007103934A2 (en) | 2007-09-13 |
JP2009529537A (en) | 2009-08-20 |
CN101460166A (en) | 2009-06-17 |
JP5779271B2 (en) | 2015-09-16 |
WO2007103934A3 (en) | 2008-11-06 |
MX2008011429A (en) | 2008-09-18 |
US8901157B2 (en) | 2014-12-02 |
EP2007381A2 (en) | 2008-12-31 |
CA2645684A1 (en) | 2007-09-13 |
JP5646814B2 (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8901157B2 (en) | Compositions and methods of use of ritonavir for treating HCV | |
US20110171174A1 (en) | Synergistic Combinations of a Macrocyclic Inhibitor of HCV and a Nucleoside | |
US20100173837A1 (en) | Dosing forms and regimens comprising 3-[(r)-2-(n,n-dimethylamino)ethylthio-sar]-4-(gammahydroxymethylleucine)cyclosporine | |
US20050112093A1 (en) | Combination therapy for HCV infection | |
JP2014509630A (en) | Treatment of hepatitis B virus infection alone or complex infection with hepatitis delta virus and associated liver disease | |
WO2010031832A9 (en) | Synergistic combinations of a macrocyclic inhibitor of hcv and a thiophene-2-carboxylic acid derivative | |
EP3370723B1 (en) | Treatment of hepatitis delta virus infection | |
US8912141B2 (en) | Treatment of hepatitis C virus | |
US20220023287A1 (en) | Treatment of hepatitis delta virus infection | |
US20140363396A1 (en) | Once daily treatment of hepatitis c with ribavirin and taribavirin | |
EP2542240B1 (en) | Compositions and methods for treating viral diseases | |
US20130028865A1 (en) | Combination of a Macrocyclic Inhibitor of HCV, A Non-Nucleoside and a Nucleoside | |
US20150174194A1 (en) | Methods for treating liver transplant recipients | |
US10201541B1 (en) | Compositions and methods for treating HCV | |
EA046230B1 (en) | SYNERGIC ACTION OF EYP001 AND IFN IN THE TREATMENT OF HBV INFECTION | |
US20240390408A1 (en) | Method of treating hepatitis c virus in patients | |
JP2004155777A (en) | Therapeutic agent for chronic hepatitis c | |
TW201536297A (en) | New treatments of hepatitis C virus infection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEMPF, DALE J;MARSH, KENNAN C;REEL/FRAME:019248/0660;SIGNING DATES FROM 20070427 TO 20070503 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |