US20070155393A1 - Radio communication apparatus - Google Patents

Radio communication apparatus Download PDF

Info

Publication number
US20070155393A1
US20070155393A1 US11/715,870 US71587007A US2007155393A1 US 20070155393 A1 US20070155393 A1 US 20070155393A1 US 71587007 A US71587007 A US 71587007A US 2007155393 A1 US2007155393 A1 US 2007155393A1
Authority
US
United States
Prior art keywords
transmission
reception
radio communication
channel
feedback information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/715,870
Inventor
Hiroaki Hirai
Akinori Fujimura
Yukimasa Nagai
Yosikatu Tajima
Mari Otiai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/715,870 priority Critical patent/US20070155393A1/en
Publication of US20070155393A1 publication Critical patent/US20070155393A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present invention relates to a radio communication apparatus that uses plural channels simultaneously to perform mutual communication, and in particular to a radio communication apparatus that notifies other radio communication apparatus of a reception state of a channel to be used and selects an appropriate communication system and communication speed.
  • plural channels are allocated and secured in advance in a path between a specific communication unit system and a specific terminal unit system, in which a wide transmission band is required, to perform communication on the plural channels (see, for example, Japanese Application Laid-Open Publication No. 2002-135304).
  • the present invention has been devised in view of the above, and it is an object of the present invention to provide a radio communication apparatus that can select transmission systems and transmission speeds corresponding to respective channels in performing mutual communication using plural channels.
  • a radio communication apparatus which is applied to a radio communication system and communicates with other radio communication apparatus in the radio communication system using one available channel or a plurality of channels, includes a reception processing unit that, when input reception signals of the channels of the radio communication system is received, measures reception states of input reception signals of each of the channels, generates local channel reception information of each of the channels based on a result of the measurement, and applies a reception processing to the input reception signals to generate decoded signals; a media-access-control unit that, when data is transmitted using two or more channels, generates transmission frames for each of the channels using transmission data; a transmission processing unit that generates radio signals including each of the transmission frames; and a channel-information processing unit that generates local feedback information based on the local channel reception information, and inserts the local feedback information generated into one of the radio signals or a plurality of the radio signals.
  • the radio communication apparatus transmits the radio signals including the local feedback information.
  • a reception processing unit generates local channel reception information based on reception states of input reception signals of respective channels
  • a channel-information processing unit generates local feedback information based on the local channel reception information generated by the reception processing unit, inserts the generated local feedback information into radio signals, and transmits the radio signals.
  • FIG. 1 is a schematic diagram of a structure of a radio communication system to which a radio communication apparatus according to the present invention is applied;
  • FIG. 2 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a first embodiment of the present invention
  • FIG. 3 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a fifth embodiment of the present invention.
  • FIG. 7 is a flowchart for explaining a reception operation of the radio communication apparatus according to the fifth embodiment.
  • FIG. 8 is a flowchart for explaining a transmission operation of the radio communication apparatus according to the fifth embodiment.
  • FIG. 9 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a sixth embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining a transmission operation of the radio communication apparatus according to the sixth embodiment.
  • FIG. 1 is a schematic diagram of a structure of a radio communication system to which a radio communication apparatus according to the present invention is applied.
  • the radio communication system to which the radio communication apparatus in the present invention is applied, includes plural (four in this case; however, the number is irrelevant the number of channels and the number of radio communication apparatuses in a radio communication area) radio communication apparatuses 1 to 4 that performs mutual communication via a radio area 5 that uses plural (three in this case) channels. It is assumed that all the radio communication apparatuses 1 to 4 have the same functions.
  • the channels of this radio communication apparatus indicate communication paths that are set for performing communication at, for example, a frequency, time, a code, and a space (multi input multi output (MIMO)).
  • MIMO multi input multi output
  • FIG. 2 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus 1 according to the first embodiment.
  • the radio communication apparatus 1 according to the first embodiment of the present invention includes a reception processing unit 10 that has plural (three in this case) reception channel processing units 110 to 130 corresponding to the number of channels usable by the apparatus itself, a media access control (MAC) unit 20 , a channel-information processing unit 30 , and a transmission processing unit 40 that has plural (three in this case) transmission channel processing units 410 to 430 corresponding to the number of channels usable by the apparatus itself.
  • MAC media access control
  • the reception channel processing unit 110 receives an input reception signal of a channel corresponding to the reception channel processing unit 110 and applies synchronization processing, demodulation processing, and decoding processing to the input reception signal. In addition, the reception channel processing unit 110 measures reception levels of input reception signals in the respective channels. Then, the reception channel processing unit 110 generates local channel reception information based on the measured reception levels or receive signal strength indication (RSSI) and reception channel processing internal information that is physical resources like a memory, a buffer, and a central processing unit (CPU) and state resources of a control signal and the inside of the memory according to processing of the channel itself. The reception channel processing unit 110 judges whether feedback information is included in the input reception signal. The feedback information is information related to overall resources like reception state information of the channel and states of the memory, the CPU, and the buffer.
  • RSSI receive signal strength indication
  • CPU central processing unit
  • the reception channel processing units 120 and 130 have the same function as the reception channel processing unit 110 and apply the same processing as the reception channel processing unit 110 to channels corresponding to the reception channel processing units 120 and 130 , respectively.
  • the MAC unit 20 controls the reception channel processing units 110 to 130 serving as physical communication media and applies processing like protocol conversion and frame conversion to respective decoded signals to generate reception frames. In addition, the MAC unit 20 judges whether feedback information is included in the respective decoded signals.
  • the MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from an upper layer to generate transmission frames of respective channels.
  • the MAC unit 20 exchanges resource information with the channel-information processing unit 30 and determines transmission systems and transmission speeds for the respective channels based on feedback information of the respective channels from a transmission source that is inputted from the channel-information processing unit 30 .
  • the channel-information processing unit 30 mutually exchanges resource information, which is the physical resources such as the memory, the buffer, and the CPU and the state resources of a control signal and the inside of the memory, with the MAC unit 20 to perform a reception operation and generates local feedback information based on respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 and the resource information.
  • the local feedback information may be all determined pieces of the local channel reception information and the resource information or may be information that is selected out of the local channel reception information and the resource information and aggregated every time.
  • the channel-information processing unit 30 judges whether the respective pieces of transmission source feedback information inputted from the reception channel processing units 110 to 130 or the MAC unit 20 have identical contents. As the judgment, for example, when cyclic redundancy check (CRC) is used, the channel-information processing unit 30 discards the pieces of transmission source feedback information for which the CRC indicates an error and adopts only the pieces of transmission source feedback information for which the CRC is normal, or adopts the pieces of transmission source feedback information that have identical contents and are largest in number, or measures a carrier/noise ratio (C/N) and a desired/undesired ratio (D/U) for each channel and adopts the transmission source feedback information of a channel having highest C/N and D/U, or synthesizes weighting according to probability with respect to all pieces of the information and adopts the respective pieces of transmission source feedback information based on the weighting.
  • CRC carrier/noise ratio
  • D/U desired/undesired ratio
  • the channel-information processing unit 30 discards the transmission source feedback information of a wrong channel as a result of the judgment and extracts feedback information of respective channels from the accurate transmission source feedback information.
  • the transmission channel processing unit 410 selects a transmission system and a transmission speed of a channel based on transmission control information. Then, based on the selected transmission system and transmission speed, the transmission channel processing unit 410 applies encoding processing and modulation processing to the transmission frame inputted from the MAC unit 20 and the local feedback information inputted from the channel-information processing unit 30 to generate a radio signal.
  • the transmission channel processing units 420 and 430 have the same function as the transmission channel processing unit 410 and apply the same processing as the transmission channel processing unit 410 to channels corresponding to the transmission channel processing units 420 and 430 , respectively.
  • the reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, apply demodulation processing and decoding processing to the input reception signals, and output decoded signals to the MAC unit 20 .
  • the reception channel processing units 110 to 130 measure reception levels of the input reception signals in the respective channels, and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information.
  • the reception channel processing units 110 to 130 output the generated local channel reception information to the channel-information processing unit 30 .
  • the reception channel processing units 110 to 130 judge whether feedback information is included in the input reception signals and, when feedback information is included in the input reception signals, output the feedback information in the input reception signals to the channel-information processing unit 30 as transmission source feedback information.
  • the MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130 , respectively, generates reception frames, and outputs the reception frames to the upper layer.
  • the MAC unit 20 judges whether feedback information is included in the respective decoded signals and, when feedback information is included in the decoded signals, outputs the feedback information in the decoded signals to the channel-information processing unit 30 as transmission source feedback information.
  • the channel-information processing unit 30 generates local feedback information based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 and the resource information, copies the generated local feedback information, and outputs the local feedback information to the transmission channel processing units 410 to 430 .
  • the channel-information processing unit 30 extracts accurate transmission source feedback information from the respective pieces of transmission source feedback information inputted from the reception channel processing units 110 to 130 or the MAC unit 20 and outputs the extracted feedback information of the respective channels to the MAC unit 20 .
  • the MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. Then, the MAC unit 20 outputs the generated respective transmission frames to the transmission channel processing units 410 to 430 . In addition, the MAC unit 20 exchanges the resource information with the channel-information processing unit 30 and determines transmission systems and transmission speeds of the respective channels based on the feedback information of the respective channels from a transmission source that is inputted from the channel-information processing unit 30 . Then, the MAC unit 20 outputs the transmission systems and the transmission speeds determined for the respective channels to the transmission channel processing units 410 to 430 as transmission control information.
  • the transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 . Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 and the local feedback information inputted from the channel-information processing unit 30 to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • the reception channel processing units 110 to 130 generate local channel reception information based on reception states of respective input reception signals
  • the channel-information processing unit 30 generates local feedback information based on the local channel reception information generated by the reception channel processing units 110 to 130 and the resource information and inserts the generated local feedback information into a radio signal to be transmitted on a channel used for transmission.
  • the MAC unit 20 determines transmission systems and transmission speeds of the respective channels based on respective pieces of local feedback information inserted by the other radio communication apparatus (transmission source feedback information of the apparatus itself). This makes it possible to select transmission systems and transmission speeds of the respective channels, and retransmission requests can be controlled to improve throughput and reduce communication delays.
  • a second embodiment of the present invention will be explained using FIG. 3 .
  • local feedback information is inserted into all channels.
  • channels into which local feedback information is inserted are limited, whereby a radio band necessary for notifying the local feedback information of other radio communication apparatus is reduced to realize an increase in a radio capacity.
  • FIG. 3 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to the second embodiment.
  • a selector 50 is added to the radio communication apparatus 1 according to the first embodiment shown in FIG. 2 .
  • Components having the same functions as those according to the first embodiment will be denoted by the identical reference numerals, and a redundant explanation will be omitted.
  • the selector 50 determines a channel, on which local feedback information generated by the channel-information processing unit 30 is transmitted, based on respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 .
  • the local channel reception information is information such as the C/U and the D/U.
  • the selector 50 judges communication states of respective channels from these pieces of local channel reception information and selects a channel having a best communication state. In other words, from the local channel reception information of the respective channels, the selector 50 judges which channel should be used to transmit local feedback information such that the local feedback information can be notified to other radio communication apparatus at a high probability. Note that a selection method is not limited to this and, for example, a specific number of specific channels may be used without using channel information.
  • the reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, apply the demodulation processing and the decoding processing to the input reception signals, and output decoded signals to the MAC unit 20 .
  • the reception channel processing units 110 to 130 generate local channel reception information based on reception levels of respective channels and reception channel processing internal information.
  • the reception channel processing units 110 to 130 output the generated local channel reception information to the channel-information processing unit 30 and the selector 50 .
  • the reception channel processing units 110 to 130 output the feedback information in the input reception signals to the channel-information processing unit 30 as transmission source feedback information.
  • the MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130 , respectively, generates reception frames, and outputs the reception frames to the upper layer.
  • the MAC unit 20 judges whether feedback information is included in the respective decoded signals and, when feedback information is included in the decoded signals, outputs the feedback information in the decoded signals to the channel-information processing unit 30 as transmission source feedback information.
  • the channel-information processing unit 30 generates local feedback information based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 and resource information and outputs the generated local feedback information to the selector 50 .
  • the channel-information processing unit 30 outputs feedback information of the respective channels for the transmission source feedback information, which is inputted from the reception channel processing units 110 to 130 or the MAC unit 20 , to the MAC unit 20 .
  • the MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. Then, the MAC unit 20 outputs the generated respective transmission frames to the transmission channel processing units 410 to 430 . In addition, the MAC unit 20 exchanges the resource information with the channel-information processing unit 30 and determines transmission systems and transmission speeds of the respective channels based on the feedback information of the respective channels from a transmission source that is inputted from the channel-information processing unit 30 . Then, the MAC unit 20 outputs the transmission systems and the transmission speeds determined for the respective channels to the transmission channel processing units 410 to 430 as transmission control information.
  • the selector 50 determines a channel, on which the local feedback information generated by the channel-information processing unit 30 is transmitted, based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 . Then, the selector 50 outputs the local feedback information to a transmission channel processing unit corresponding to the determined channel.
  • the transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 . Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 to generate radio signals. In that case, when the local feedback information is inputted from the selector 50 , the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames and the local feedback information to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • the selector 50 determines a channel, on which local feedback information generated by the channel-information processing unit 30 is transmitted, based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 to limit channels into which the local feedback information is inserted.
  • the selector 50 determines a channel, on which local feedback information generated by the channel-information processing unit 30 is transmitted, based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 to limit channels into which the local feedback information is inserted.
  • the selector 50 is independently provided according to the second embodiment, the function of the selector 50 may be included in the channel-information processing unit 30 .
  • FIG. 4 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to the third embodiment.
  • a MAC unit 20 a is provided instead of the MAC unit 20 of the radio communication apparatus 1 according to the first embodiment shown in FIG. 1
  • a channel processing control unit 60 is provided instead of the channel-information processing unit 30 .
  • the MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to decoded signals inputted from the reception channel processing units 110 to 130 , respectively, generates reception frames, and outputs the reception frames to an upper layer. At the same time, the MAC unit 20 a outputs address information (transmission source addresses) in the respective reception frames to the channel processing control unit 60 . In addition, the MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels.
  • the channel processing control unit 60 belongs to a physical layer and performs timing control and feedback processing control for the reception processing unit 10 and the transmission processing unit 40 belonging to the same physical layer.
  • the channel processing control unit 60 identifies a transmission source address of other radio communication apparatus from the respective pieces of address information or input reception signals of the respective channels and creates a local feedback table in which transmission source addresses and respective pieces of channel reception information are associated with each other. More specifically, the channel processing control unit 60 generates a local feedback table in which transmission source addresses and the respective pieces of local cannel reception information of the reception channel processing units 110 to 130 are associated with each other.
  • the channel processing control unit 60 determines transmission systems and transmission speeds of the respective channels based on the respective pieces of transmission source feedback information inputted from the reception channel processing units 110 to 130 .
  • the channel processing control unit 60 registers the determined transmission systems and transmission speeds in the local feedback table for the respective channels in association with the transmission source addresses. Note that it is also possible that transmission source feedback information is registered in association with transmission source addresses in the local feedback table, and a transmission system and a transmission speed are determined at the time of transmission based on this transmission source feedback information.
  • the reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, apply the synchronization processing, the demodulation processing, and the decoding processing to the input reception signals, and output decoded signals to the MAC unit 20 a .
  • the reception channel processing units 110 to 130 generate local channel reception information based on reception levels of the respective channels and reception channel processing internal information.
  • the reception channel processing units 110 to 130 output the generated local channel reception information to the channel processing control unit 60 .
  • the reception channel processing units 110 to 130 judge whether feedback information is included in the input reception signals and, when feedback information is included in the input reception signals, output the feedback information in the input reception signals to the channel-information processing unit 30 as transmission source feedback information.
  • the MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130 , respectively, generates reception frames, and outputs the reception frames to the upper layer. In addition, the MAC unit 20 a outputs transmission source addresses in the respective reception frames to the channel processing control unit 60 .
  • the channel processing control unit 60 identifies a transmission source address of other radio communication apparatus from the respective transmission source addresses inputted from the MAC unit 20 a or the input reception signals of the respective channels and creates a local feedback table in which the transmission source addresses and respective pieces of local channel reception information are associated with each other.
  • the MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. Then, the MAC unit 20 a outputs the generated respective transmission frames to the transmission channel processing units 410 to 430 . In addition, the MAC unit 20 a outputs destination addresses in the respective transmission frames to the channel processing control unit 60 .
  • the channel processing control unit 60 searches through the local feedback table with the destination addresses as keywords and determines local feedback information, transmission systems, and transmission speeds of the respective channels. When data is transmitted to the transmission source addresses at the time when the local feedback information table is generated, it is sufficient to search through the local feedback table with the destination addresses of the transmission frames generated by the MAC unit 20 a as keywords.
  • the channel processing control unit 60 outputs the local feedback information, the transmission systems, and the transmission speeds, which are determined for the respective channels, to the corresponding channel transmission channel processing unit 410 to 440 , respectively.
  • the transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective transmission systems and transmission speeds inputted from the channel processing control unit 60 . Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frame inputted from the MAC unit 20 a and the local feedback information inputted from the channel processing control unit 60 to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • the MAC unit 20 a notifies the channel processing control unit 60 of the transmission source addresses and the destination addresses, the channel processing control unit 60 generates a local feedback table associating the transmission source addresses and local feedback information, and at the time of transmission, the channel processing control unit 60 generates local feedback information based on the local feedback table and determines transmission systems and transmission speeds of the respective channels.
  • FIG. 5 is a block diagram of a structure of transmission and reception functions of the radio communication apparatus 1 according to the fourth embodiment.
  • the channel-information processing unit 30 of the radio communication apparatus 1 according to the first embodiment shown in FIG. 2 is removed, and a MAC unit 20 b is provided instead of the MAC unit 20 .
  • Components having the same functions as those according to the first embodiment will be denoted by the identical reference numerals, and a redundant explanation will be omitted.
  • the MAC unit 20 b extracts feedback information included in decoded signals inputted from the reception channel processing units 110 to 130 , respectively. Then, the MAC unit 20 b creates a local feedback information table in which local channel reception information of the respective channels and the extracted feedback information are associated with the transmission source addresses. In addition, the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130 , respectively, generates reception frames, and output the reception frames to the upper layer.
  • the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. In that case, the MAC unit 20 b inserts local feedback information into the respective transmission frames based on the local feedback information table and determines transmission systems and transmission speeds of the respective channels.
  • the reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, and apply the synchronization processing, the demodulation processing, and the decoding processing to the input reception signals to generate decoded signals. At the same time, the reception channel processing units 110 to 130 measure reception levels of the input reception signals in the respective channels, and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information. The reception channel processing units 110 to 130 output the respective decoded signals and the local channel reception information to the MAC unit 20 b.
  • the MAC unit 20 b extracts feedback information from the decoded signals inputted from the reception channel processing units 110 to 130 , respectively. Then, the MAC unit 20 b generates a local feedback information table in which the local channel reception information for the respective channels and the extracted feedback information are associated with transmission source addresses. In addition, the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to the decoded signals, from which the feedback information is extracted, generates reception frames, and outputs the reception frames to the upper layer.
  • the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels.
  • the MAC unit 20 b searches through the local feedback information table with destination addresses as keywords and extracts local channel reception information of the respective channels. Then, the MAC unit 20 b generates local feedback information based on the local channel reception information corresponding to the respective channels and inserts the generated local feedback information into predetermined places of the transmission frames of the respective channels.
  • the MAC unit 20 b searches through the local feedback information table with the destination addresses as keywords and extracts feedback information of the respective channels corresponding to the destination addresses. Then, the MAC unit 20 b determines transmission systems and transmission speeds based on the feedback information corresponding to the respective channels and outputs the determined transmission systems and transmission speeds to the transmission channel processing units 410 to 430 as transmission speed information.
  • the transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 b . Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 and the local feedback information inputted from the channel-information processing unit 30 to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • the MAC unit 20 b generates the local feedback information table in which the local channel reception information for the respective channels and the extracted feedback information are associated with the transmission source addresses and inserts the local feedback information into appropriate places in the transmission frames.
  • the transmission frames into which the local feedback information is inserted may be all transmission frames of the respective channels, or channels on which the local feedback information is transmitted may be determined based on the respective pieces of local channel reception information.
  • FIG. 6 is a block diagram of a structure of transmission and reception functions of the radio communication apparatus 1 according to the fifth embodiment.
  • the radio communication apparatus 1 according to the fifth embodiment includes a MAC unit 20 c instead of the MAC unit 20 b of the radio communication apparatus 1 according to the fourth embodiment shown in FIG. 5 .
  • the MAC unit 20 c extracts transmission source addresses from decoded signals inputted from the reception channel processing units 110 to 130 , respectively, and creates a local feedback information table in which the extracted transmission source addresses and local channel reception information notified from the reception channel processing units 110 to 130 are associated with each other.
  • the MAC unit 20 c extracts transmission source addresses in the feedback frames and creates a transmission source feedback information table in which transmission feedback information for the respective channels in the feedback frames and the extracted transmission source addresses are associated with each other.
  • the MAC unit 20 c applies the processing such as the protocol conversion and the frame conversion to the decoded signals, generates reception frames, and outputs the reception frames to an upper layer.
  • the MAC unit 20 c At the time of transmission, when transmission frames are feedback frames, the MAC unit 20 c generates local feedback information based on a local channel reception information table and inserts the generated local feedback information into the feedback frames. The MAC unit 20 c determines transmission systems and transmission speeds of the respective channels based on the transmission source feedback information table.
  • the reception channel processing units 110 to 130 receive input information of channels corresponding to the reception channel processing units 110 and 130 , respectively, and apply the synchronization processing, the demodulation processing, and the decoding processing to the input information to generate decoded signals.
  • the reception channel processing units 110 and 130 measure reception levels of input reception signals of the respective channels and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information (steps S 100 and S 110 ).
  • the reception channel processing units 110 to 130 output the respective decoded signals and the local channel reception information to the MAC unit 20 c.
  • the MAC unit 20 c extracts transmission source addresses from the decoded signals inputted from the reception channel processing units 110 to 130 , respectively (step S 120 ). Then, the MAC unit 20 c creates a local feedback information table in which the extracted transmission source addresses and the respective pieces local channel reception information notified from the reception channel processing units 110 to 130 are associated with each other (step S 130 ).
  • the MAC unit 20 c judges whether the respective decoded signals are feedback frames for notifying other radio communication apparatus of local feedback information (step S 140 ). When the respective decoded signals are feedback frames, the MAC unit 20 c performs predetermined feedback frame processing such as extraction of transmission source feedback information from the decoded signals (step S 150 ). Then, the MAC unit 20 c creates a transmission source feedback information table in which the extracted transmission source feedback information and transmission source addresses extracted from the decoded signals are associated with each other (step S 160 ).
  • the MAC unit 20 c When the respective decoded signals are normal frames, the MAC unit 20 c performs normal frame processing of applying the processing such as the protocol conversion and the frame conversion to the respective decoded signals, generating reception frames, and outputting the reception frames to the upper layer (step S 170 ).
  • the MAC unit 20 c extracts a destination address from a transmission frame inputted from the upper layer (step S 200 ). Then, the MAC unit 20 c judges whether the transmission frame is a feedback frame (step S 210 ). When the transmission frame is a feedback frame, the MAC unit 20 c searches through the local feedback information table with the extracted destination address as a keyword and extracts local channel reception information of the respective channels. Then, the MAC unit 20 c generates local feedback information from the extracted local channel reception information of the respective channels (step S 220 ). Then, the MAC unit 20 c inserts the generated local feedback information into the feedback frame to generate a feedback frame (step S 230 ).
  • the MAC unit 20 c searches through the transmission source feedback information table with the extracted destination address as a keyword and extracts transmission source feedback information of the respective channels corresponding to the destination address. Then, the MAC unit 20 c determines transmission systems and transmission speeds based on the feedback information corresponding to the respective channels and outputs the determined transmission systems and transmission speeds to the transmission channel processing units 410 to 430 as transmission speed information (step S 240 ).
  • the transmission channel processing units 310 to 430 select transmission systems and transmission speeds of the channels based on respective pieces of transmission control information inputted from the MAC unit 20 c . Then, the transmission channel processing units 310 to 340 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 c based on the selected transmission systems and transmission speeds to generate radio signals. Then, the transmission channel processing units 310 to 340 output the generated radio signals (step S 250 ).
  • the MAC unit 20 c When the transmission frames are normal frames, the MAC unit 20 c performs normal frame processing of applying the processing such as the protocol conversion and the frame conversion to the transmission frames and generating transmission frames of the respective channels (step S 260 ). In addition, the MAC unit 20 c searches through the transmission source feedback information table with the extracted destination address as a keyword and extracts transmission source feedback information of the respective channels corresponding to the destination address. Then, the MAC unit 20 c determines transmission systems and transmission speeds based on feedback information corresponding to the respective channels and outputs the determined transmission systems and transmission speeds to the transmission channel processing units 410 to 430 as transmission speed information (step S 240 ).
  • the transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 c . Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 c to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals (step S 250 ).
  • the fifth embodiment since a dedicated frame for transmitting local feedback information is provided, it is possible to notify other radio communication apparatus of feedback information of respective channels without requiring a change with respect to an existing system and with simplified control and processing. It is possible to select transmission systems and transmission speeds suitable for the respective channels.
  • the dedicated frame for transmitting local feedback information when the dedicated frame for transmitting local feedback information is transmitted periodically, it is necessary to transmit the dedicated frame at a short period with respect to fluctuation in a transmission channel. Therefore, throughput declines. In addition, when the local feedback information cannot be transmitted, reliability of the local feedback information may decline to cause a communication error. In such a case, it is sufficient that the reception channel processing units 110 to 130 detect fluctuation in the transmission channel, and the MAC unit 20 c judges the fluctuation in the transmission channel to determine a transmission interval of the dedicated frame for transmitting the local feedback information.
  • FIG. 9 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to the sixth embodiment.
  • the radio communication apparatus 1 according to the sixth embodiment includes a MAC unit 20 d instead of the MAC unit 20 c according to the fifth embodiment shown in FIG. 6 .
  • Components having the same functions as those according to the fifth embodiment will be denoted by the identical reference numerals, and a redundant explanation will be omitted.
  • the MAC unit 20 d has a function of also registering a creation time of day in creating a local feedback information table and a transmission source feedback information table in addition to the same function as at the time of the reception operation of the MAC unit 20 c of the fifth embodiment.
  • the MAC unit 20 d applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from an upper layer to generate transmission frames of respective channels. In that case, the MAC unit 20 d inserts local feedback information into the respective transmission frames based on the local feedback information table and, at the same time, determines transmission systems and transmission speeds of the respective channels.
  • the reception channel processing units 110 to 130 receive input information of channels corresponding to the reception channel processing units 110 to 130 , respectively, and apply the synchronization processing, the demodulation processing, and the decoding processing to the input information to generate decoded signals.
  • the reception channel processing units 110 to 130 measure reception levels of input reception signals of the respective channels, and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information.
  • the reception channel processing units 110 to 130 output the respective decoded signals and the local channel reception information to the MAC unit 20 d.
  • the MAC unit 20 d extracts transmission source addresses from the decoded signals inputted from the reception channel processing units 110 to 130 , respectively. Then, the reception channel processing units 110 to 130 create a local feedback information table in which the extracted transmission source addresses, the respective pieces of local channel reception information notified from the reception channel processing units 110 to 130 , and present times of day are associated to one another.
  • the MAC unit 20 d judges whether feedback information is included in the respective decoded signals and, when feedback information is included in the respective decoded signals, extracts the feedback information in the decoded signals.
  • the MAC unit 20 d creates a transmission source feedback information table in which the transmission source feedback information extracted from the decoded signals, the extracted transmission source addresses, and present times of day are associated to one another.
  • the MAC unit 20 d applies the processing such as the protocol conversion and the frame conversion to the respective decoded signals, generates reception frames, and outputs the reception frames to an upper layer.
  • the MAC unit 20 d extracts a destination address from a transmission frame inputted from the upper layer (step S 300 ).
  • the MAC unit 20 d searches through the local feedback information table with the extracted destination address as a keyword and extracts local channel reception information of the respective channels and creation times of day of the local channel reception information (step S 310 ).
  • the MAC unit 20 d calculates a difference between the extracted creation times of day and the present time of day. Then, the MAC unit 20 d judges whether a calculation result is within a reference value decided in advance (step S 320 ). When the calculation result is within the reference value decided in advance, the MAC unit 20 d inserts the local feedback information into predetermined places of the transmission frames from the extracted local channel reception information of the respective channels (step S 330 ).
  • the MAC unit 20 d judges that the local cannel reception information of the respective channels is different from present states of the respective channels because time has passed since the local channel reception information was created and does not insert the feedback information in the transmission frames.
  • the MAC unit 20 d applies the processing such as the protocol conversion and the frame conversion to the transmission frames to generate transmission frames of the respective channels. Then, the MAC unit 20 d outputs the generated respective transmission frames to the transmission channel processing units 410 to 430 .
  • the MAC unit 20 d searches through the transmission source feedback information table with the extracted destination address as a keyword and extracts transmission source feedback information of the respective channels and creation times of day of the transmission source feedback information (step S 340 ).
  • the MAC unit 20 d calculates a difference between the extracted creation times of day and the present time of day. Then, the MAC unit 20 d judges whether a calculation result is within a reference value decided in advance (step S 350 ). When the calculation result is within the reference value decided in advance, the MAC unit 20 d determines transmission systems and transmission speeds of the respective channels based on the extracted transmission source feedback information (step S 360 ).
  • the MAC unit 20 d judges that the local channel reception information of the respective channels is different from present states of the respective channels because time has passed since the local channel reception information was created and determines to use transmission systems and transmission speeds decided in advance (step S 370 ).
  • the MAC unit 20 d notifies the transmission channel processing units 410 to 430 of the determined transmission systems and transmission speeds.
  • the transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 d . Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 d to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals (step S 380 ).
  • creation times of day of the tables are registered, and the creation times of day and a present time of day are compared to judge reliability concerning whether the local channel reception information and the transmission source feedback information are used.
  • the case in which the local feedback information is inserted into transmission frames is explained as an example.
  • a reception processing unit generates local channel reception information based on reception states of input reception signals of respective channels
  • a channel-information processing unit generates local feedback information based on the local channel reception information generated by the reception processing unit, inserts the generated local feedback information into radio signals, and transmits the radio signals.
  • the radio communication apparatus is useful for a communication system that performs mutual communication using plural channels simultaneously and, in particular, suitable for a communication system in which a communication state is likely to change due to obstacles, weather conditions, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

A reception processing unit measures reception states of input reception signals of each of a plurality of channels, generates local channel reception information, and applies a reception processing to the input reception signals to generate decoded signals. A media-access-control unit generates transmission frames for each of the channels using transmission data. A transmission processing unit generates radio signals including each of the transmission frames. A channel-information processing unit generates local feedback information, and inserts the local feedback information generated into at least one of the radio signals that are transmitted by the radio communication apparatus.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of co-pending application Ser. No. 10/525,069 filed on Feb. 18, 2005, and for which priority is claimed under 35 U.S.C. §120. Application Ser. No. 10/525,069 is the national phase of PCT International Application No. PCT/JP2004/008687 filed on Jun. 15, 2004 under 35 U.S.C. §371. This application further claims priority of Application No. 2003/173725 filed in Japan on Jun. 18, 2003 under 35 U.S.C. §119(a). The entire contents of all of the above-identified applications are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to a radio communication apparatus that uses plural channels simultaneously to perform mutual communication, and in particular to a radio communication apparatus that notifies other radio communication apparatus of a reception state of a channel to be used and selects an appropriate communication system and communication speed.
  • BACKGROUND ART
  • In recent years, an increase in communication speed is demanded in a radio communication apparatus as well. Therefore, in a radio communication system, the increase in communication speed is realized by increasing a transmission capacity using plural channels.
  • In a conventional technology for realizing the increase in communication speed using plural channels, plural channels are allocated and secured in advance in a path between a specific communication unit system and a specific terminal unit system, in which a wide transmission band is required, to perform communication on the plural channels (see, for example, Japanese Application Laid-Open Publication No. 2002-135304).
  • However, in the case of radio communication, communication state changes depending on environments like obstacles and weather conditions (e.g., rainy weather). In addition, in the case of mobile communication, a communication state always changes with time due to movements. In the conventional technology, a technique for selecting transmission systems and transmission speeds suitable for communication states in performing communication on plural channels is not disclosed. Therefore, there is a problem in that it is impossible to select a transmission system and a transmission speed suitable for a communication state in each channel.
  • For example, in the conventional technology, when a modulation system with a high transmission speed is adopted, although a transmission speed is increased, communication cannot be performed in a place where a state of a transmission channel is bad and retransmission requests increase, which results in decline in throughput. In addition, when a modulation system in which communication is possible even when a state of a transmission channel is bad, a communication speed falls, and an advantage of increasing a transmission capacity using plural channels is reduced.
  • The present invention has been devised in view of the above, and it is an object of the present invention to provide a radio communication apparatus that can select transmission systems and transmission speeds corresponding to respective channels in performing mutual communication using plural channels.
  • DISCLOSURE OF THE INVENTION
  • To achieve the above object, a radio communication apparatus according to one aspect of the present invention, which is applied to a radio communication system and communicates with other radio communication apparatus in the radio communication system using one available channel or a plurality of channels, includes a reception processing unit that, when input reception signals of the channels of the radio communication system is received, measures reception states of input reception signals of each of the channels, generates local channel reception information of each of the channels based on a result of the measurement, and applies a reception processing to the input reception signals to generate decoded signals; a media-access-control unit that, when data is transmitted using two or more channels, generates transmission frames for each of the channels using transmission data; a transmission processing unit that generates radio signals including each of the transmission frames; and a channel-information processing unit that generates local feedback information based on the local channel reception information, and inserts the local feedback information generated into one of the radio signals or a plurality of the radio signals. The radio communication apparatus transmits the radio signals including the local feedback information.
  • According to the present invention, a reception processing unit generates local channel reception information based on reception states of input reception signals of respective channels, a channel-information processing unit generates local feedback information based on the local channel reception information generated by the reception processing unit, inserts the generated local feedback information into radio signals, and transmits the radio signals.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a structure of a radio communication system to which a radio communication apparatus according to the present invention is applied;
  • FIG. 2 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a first embodiment of the present invention;
  • FIG. 3 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a second embodiment of the present invention;
  • FIG. 4 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a third embodiment of the present invention;
  • FIG. 5 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a fourth embodiment of the present invention;
  • FIG. 6 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a fifth embodiment of the present invention;
  • FIG. 7 is a flowchart for explaining a reception operation of the radio communication apparatus according to the fifth embodiment;
  • FIG. 8 is a flowchart for explaining a transmission operation of the radio communication apparatus according to the fifth embodiment;
  • FIG. 9 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to a sixth embodiment of the present invention; and
  • FIG. 10 is a flowchart for explaining a transmission operation of the radio communication apparatus according to the sixth embodiment.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Exemplary embodiments of a radio communication apparatus according to the present invention will be explained in detail with reference to the accompanying drawings.
  • FIG. 1 is a schematic diagram of a structure of a radio communication system to which a radio communication apparatus according to the present invention is applied. The radio communication system, to which the radio communication apparatus in the present invention is applied, includes plural (four in this case; however, the number is irrelevant the number of channels and the number of radio communication apparatuses in a radio communication area) radio communication apparatuses 1 to 4 that performs mutual communication via a radio area 5 that uses plural (three in this case) channels. It is assumed that all the radio communication apparatuses 1 to 4 have the same functions.
  • Note that the channels of this radio communication apparatus indicate communication paths that are set for performing communication at, for example, a frequency, time, a code, and a space (multi input multi output (MIMO)).
  • A first embodiment of the present invention will be explained using FIG. 2. FIG. 2 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus 1 according to the first embodiment. The radio communication apparatus 1 according to the first embodiment of the present invention includes a reception processing unit 10 that has plural (three in this case) reception channel processing units 110 to 130 corresponding to the number of channels usable by the apparatus itself, a media access control (MAC) unit 20, a channel-information processing unit 30, and a transmission processing unit 40 that has plural (three in this case) transmission channel processing units 410 to 430 corresponding to the number of channels usable by the apparatus itself.
  • The reception channel processing unit 110 receives an input reception signal of a channel corresponding to the reception channel processing unit 110 and applies synchronization processing, demodulation processing, and decoding processing to the input reception signal. In addition, the reception channel processing unit 110 measures reception levels of input reception signals in the respective channels. Then, the reception channel processing unit 110 generates local channel reception information based on the measured reception levels or receive signal strength indication (RSSI) and reception channel processing internal information that is physical resources like a memory, a buffer, and a central processing unit (CPU) and state resources of a control signal and the inside of the memory according to processing of the channel itself. The reception channel processing unit 110 judges whether feedback information is included in the input reception signal. The feedback information is information related to overall resources like reception state information of the channel and states of the memory, the CPU, and the buffer.
  • The reception channel processing units 120 and 130 have the same function as the reception channel processing unit 110 and apply the same processing as the reception channel processing unit 110 to channels corresponding to the reception channel processing units 120 and 130, respectively.
  • At the time of a reception operation, the MAC unit 20 controls the reception channel processing units 110 to 130 serving as physical communication media and applies processing like protocol conversion and frame conversion to respective decoded signals to generate reception frames. In addition, the MAC unit 20 judges whether feedback information is included in the respective decoded signals.
  • At the time of a transmission operation, the MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from an upper layer to generate transmission frames of respective channels. In addition, the MAC unit 20 exchanges resource information with the channel-information processing unit 30 and determines transmission systems and transmission speeds for the respective channels based on feedback information of the respective channels from a transmission source that is inputted from the channel-information processing unit 30.
  • The channel-information processing unit 30 mutually exchanges resource information, which is the physical resources such as the memory, the buffer, and the CPU and the state resources of a control signal and the inside of the memory, with the MAC unit 20 to perform a reception operation and generates local feedback information based on respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 and the resource information. The local feedback information may be all determined pieces of the local channel reception information and the resource information or may be information that is selected out of the local channel reception information and the resource information and aggregated every time.
  • In addition, the channel-information processing unit 30 judges whether the respective pieces of transmission source feedback information inputted from the reception channel processing units 110 to 130 or the MAC unit 20 have identical contents. As the judgment, for example, when cyclic redundancy check (CRC) is used, the channel-information processing unit 30 discards the pieces of transmission source feedback information for which the CRC indicates an error and adopts only the pieces of transmission source feedback information for which the CRC is normal, or adopts the pieces of transmission source feedback information that have identical contents and are largest in number, or measures a carrier/noise ratio (C/N) and a desired/undesired ratio (D/U) for each channel and adopts the transmission source feedback information of a channel having highest C/N and D/U, or synthesizes weighting according to probability with respect to all pieces of the information and adopts the respective pieces of transmission source feedback information based on the weighting.
  • The channel-information processing unit 30 discards the transmission source feedback information of a wrong channel as a result of the judgment and extracts feedback information of respective channels from the accurate transmission source feedback information.
  • The transmission channel processing unit 410 selects a transmission system and a transmission speed of a channel based on transmission control information. Then, based on the selected transmission system and transmission speed, the transmission channel processing unit 410 applies encoding processing and modulation processing to the transmission frame inputted from the MAC unit 20 and the local feedback information inputted from the channel-information processing unit 30 to generate a radio signal.
  • The transmission channel processing units 420 and 430 have the same function as the transmission channel processing unit 410 and apply the same processing as the transmission channel processing unit 410 to channels corresponding to the transmission channel processing units 420 and 430, respectively.
  • Next, operations of the radio communication apparatus will be explained. First, a reception operation will be explained. The reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, apply demodulation processing and decoding processing to the input reception signals, and output decoded signals to the MAC unit 20. At the same time, the reception channel processing units 110 to 130 measure reception levels of the input reception signals in the respective channels, and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information. Then, the reception channel processing units 110 to 130 output the generated local channel reception information to the channel-information processing unit 30. In addition, the reception channel processing units 110 to 130 judge whether feedback information is included in the input reception signals and, when feedback information is included in the input reception signals, output the feedback information in the input reception signals to the channel-information processing unit 30 as transmission source feedback information.
  • The MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130, respectively, generates reception frames, and outputs the reception frames to the upper layer. In addition, the MAC unit 20 judges whether feedback information is included in the respective decoded signals and, when feedback information is included in the decoded signals, outputs the feedback information in the decoded signals to the channel-information processing unit 30 as transmission source feedback information.
  • Next, a transmission operation will be explained. The channel-information processing unit 30 generates local feedback information based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 and the resource information, copies the generated local feedback information, and outputs the local feedback information to the transmission channel processing units 410 to 430. At the same time, the channel-information processing unit 30 extracts accurate transmission source feedback information from the respective pieces of transmission source feedback information inputted from the reception channel processing units 110 to 130 or the MAC unit 20 and outputs the extracted feedback information of the respective channels to the MAC unit 20.
  • The MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. Then, the MAC unit 20 outputs the generated respective transmission frames to the transmission channel processing units 410 to 430. In addition, the MAC unit 20 exchanges the resource information with the channel-information processing unit 30 and determines transmission systems and transmission speeds of the respective channels based on the feedback information of the respective channels from a transmission source that is inputted from the channel-information processing unit 30. Then, the MAC unit 20 outputs the transmission systems and the transmission speeds determined for the respective channels to the transmission channel processing units 410 to 430 as transmission control information.
  • The transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20. Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 and the local feedback information inputted from the channel-information processing unit 30 to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • In this way, according to the first embodiment, the reception channel processing units 110 to 130 generate local channel reception information based on reception states of respective input reception signals, and the channel-information processing unit 30 generates local feedback information based on the local channel reception information generated by the reception channel processing units 110 to 130 and the resource information and inserts the generated local feedback information into a radio signal to be transmitted on a channel used for transmission. Thus, it is possible to notify other radio communication apparatus of states of respective channels such that the other radio communication apparatus can select transmission systems and transmission speeds suitable for the states of the respective channels.
  • In addition, the MAC unit 20 determines transmission systems and transmission speeds of the respective channels based on respective pieces of local feedback information inserted by the other radio communication apparatus (transmission source feedback information of the apparatus itself). This makes it possible to select transmission systems and transmission speeds of the respective channels, and retransmission requests can be controlled to improve throughput and reduce communication delays.
  • Moreover, since local feedback information is inserted into all channels to be used, it is possible to learn feedback information of the respective channels if one channel among plural channels can be received.
  • A second embodiment of the present invention will be explained using FIG. 3. According to the first embodiment, local feedback information is inserted into all channels. According to the second embodiment, channels into which local feedback information is inserted are limited, whereby a radio band necessary for notifying the local feedback information of other radio communication apparatus is reduced to realize an increase in a radio capacity.
  • FIG. 3 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to the second embodiment. In the radio communication apparatus 1 according to the second embodiment, a selector 50 is added to the radio communication apparatus 1 according to the first embodiment shown in FIG. 2. Components having the same functions as those according to the first embodiment will be denoted by the identical reference numerals, and a redundant explanation will be omitted.
  • The selector 50 determines a channel, on which local feedback information generated by the channel-information processing unit 30 is transmitted, based on respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130. The local channel reception information is information such as the C/U and the D/U. The selector 50 judges communication states of respective channels from these pieces of local channel reception information and selects a channel having a best communication state. In other words, from the local channel reception information of the respective channels, the selector 50 judges which channel should be used to transmit local feedback information such that the local feedback information can be notified to other radio communication apparatus at a high probability. Note that a selection method is not limited to this and, for example, a specific number of specific channels may be used without using channel information.
  • Next, operations of the radio communication apparatus according to the second embodiment of the present invention will be explained. First, a reception operation will be explained. The reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, apply the demodulation processing and the decoding processing to the input reception signals, and output decoded signals to the MAC unit 20. At the same time, the reception channel processing units 110 to 130 generate local channel reception information based on reception levels of respective channels and reception channel processing internal information. Then, the reception channel processing units 110 to 130 output the generated local channel reception information to the channel-information processing unit 30 and the selector 50. In addition, when feedback information is included in the input reception signals, the reception channel processing units 110 to 130 output the feedback information in the input reception signals to the channel-information processing unit 30 as transmission source feedback information.
  • The MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130, respectively, generates reception frames, and outputs the reception frames to the upper layer. In addition, the MAC unit 20 judges whether feedback information is included in the respective decoded signals and, when feedback information is included in the decoded signals, outputs the feedback information in the decoded signals to the channel-information processing unit 30 as transmission source feedback information.
  • Next, a transmission operation will be explained. The channel-information processing unit 30 generates local feedback information based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 and resource information and outputs the generated local feedback information to the selector 50. In addition, the channel-information processing unit 30 outputs feedback information of the respective channels for the transmission source feedback information, which is inputted from the reception channel processing units 110 to 130 or the MAC unit 20, to the MAC unit 20.
  • The MAC unit 20 applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. Then, the MAC unit 20 outputs the generated respective transmission frames to the transmission channel processing units 410 to 430. In addition, the MAC unit 20 exchanges the resource information with the channel-information processing unit 30 and determines transmission systems and transmission speeds of the respective channels based on the feedback information of the respective channels from a transmission source that is inputted from the channel-information processing unit 30. Then, the MAC unit 20 outputs the transmission systems and the transmission speeds determined for the respective channels to the transmission channel processing units 410 to 430 as transmission control information.
  • The selector 50 determines a channel, on which the local feedback information generated by the channel-information processing unit 30 is transmitted, based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130. Then, the selector 50 outputs the local feedback information to a transmission channel processing unit corresponding to the determined channel.
  • The transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20. Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 to generate radio signals. In that case, when the local feedback information is inputted from the selector 50, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames and the local feedback information to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • In this way, according to the second embodiment, the selector 50 determines a channel, on which local feedback information generated by the channel-information processing unit 30 is transmitted, based on the respective pieces of local channel reception information inputted from the reception channel processing units 110 to 130 to limit channels into which the local feedback information is inserted. Thus, it is possible to reduce radio bands in which the local feedback information is notified to other radio communication apparatus and realize an increase in a radio capacity.
  • Note that, although the selector 50 is independently provided according to the second embodiment, the function of the selector 50 may be included in the channel-information processing unit 30.
  • A third embodiment of the present invention will be explained using FIG. 4. FIG. 4 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to the third embodiment. In the radio communication apparatus 1 according to the third embodiment, a MAC unit 20 a is provided instead of the MAC unit 20 of the radio communication apparatus 1 according to the first embodiment shown in FIG. 1, and a channel processing control unit 60 (channel-information processing unit described in patent claims) is provided instead of the channel-information processing unit 30.
  • The MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to decoded signals inputted from the reception channel processing units 110 to 130, respectively, generates reception frames, and outputs the reception frames to an upper layer. At the same time, the MAC unit 20 a outputs address information (transmission source addresses) in the respective reception frames to the channel processing control unit 60. In addition, the MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels.
  • The channel processing control unit 60 belongs to a physical layer and performs timing control and feedback processing control for the reception processing unit 10 and the transmission processing unit 40 belonging to the same physical layer. The channel processing control unit 60 identifies a transmission source address of other radio communication apparatus from the respective pieces of address information or input reception signals of the respective channels and creates a local feedback table in which transmission source addresses and respective pieces of channel reception information are associated with each other. More specifically, the channel processing control unit 60 generates a local feedback table in which transmission source addresses and the respective pieces of local cannel reception information of the reception channel processing units 110 to 130 are associated with each other. In addition, the channel processing control unit 60 determines transmission systems and transmission speeds of the respective channels based on the respective pieces of transmission source feedback information inputted from the reception channel processing units 110 to 130. Then, the channel processing control unit 60 registers the determined transmission systems and transmission speeds in the local feedback table for the respective channels in association with the transmission source addresses. Note that it is also possible that transmission source feedback information is registered in association with transmission source addresses in the local feedback table, and a transmission system and a transmission speed are determined at the time of transmission based on this transmission source feedback information.
  • Next, operations of the radio communication apparatus according to the third embodiment of the present invention will be explained. First, a reception operation will be explained. The reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, apply the synchronization processing, the demodulation processing, and the decoding processing to the input reception signals, and output decoded signals to the MAC unit 20 a. At the same time, the reception channel processing units 110 to 130 generate local channel reception information based on reception levels of the respective channels and reception channel processing internal information. Then, the reception channel processing units 110 to 130 output the generated local channel reception information to the channel processing control unit 60. In addition, the reception channel processing units 110 to 130 judge whether feedback information is included in the input reception signals and, when feedback information is included in the input reception signals, output the feedback information in the input reception signals to the channel-information processing unit 30 as transmission source feedback information.
  • The MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130, respectively, generates reception frames, and outputs the reception frames to the upper layer. In addition, the MAC unit 20 a outputs transmission source addresses in the respective reception frames to the channel processing control unit 60.
  • The channel processing control unit 60 identifies a transmission source address of other radio communication apparatus from the respective transmission source addresses inputted from the MAC unit 20 a or the input reception signals of the respective channels and creates a local feedback table in which the transmission source addresses and respective pieces of local channel reception information are associated with each other.
  • Next, a transmission operation will be explained. The MAC unit 20 a applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. Then, the MAC unit 20 a outputs the generated respective transmission frames to the transmission channel processing units 410 to 430. In addition, the MAC unit 20 a outputs destination addresses in the respective transmission frames to the channel processing control unit 60.
  • The channel processing control unit 60 searches through the local feedback table with the destination addresses as keywords and determines local feedback information, transmission systems, and transmission speeds of the respective channels. When data is transmitted to the transmission source addresses at the time when the local feedback information table is generated, it is sufficient to search through the local feedback table with the destination addresses of the transmission frames generated by the MAC unit 20 a as keywords. The channel processing control unit 60 outputs the local feedback information, the transmission systems, and the transmission speeds, which are determined for the respective channels, to the corresponding channel transmission channel processing unit 410 to 440, respectively.
  • The transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective transmission systems and transmission speeds inputted from the channel processing control unit 60. Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frame inputted from the MAC unit 20 a and the local feedback information inputted from the channel processing control unit 60 to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • In this way, according to the third embodiment, the MAC unit 20 a notifies the channel processing control unit 60 of the transmission source addresses and the destination addresses, the channel processing control unit 60 generates a local feedback table associating the transmission source addresses and local feedback information, and at the time of transmission, the channel processing control unit 60 generates local feedback information based on the local feedback table and determines transmission systems and transmission speeds of the respective channels. Thus, it is possible to perform processing with the processing closed in a physical layer and to cope with system change of a MAC layer or higher layers easily.
  • In addition, since it is possible to perform processing with the processing closed in a physical layer, for example, in the case of a system returning response frames in response to transmission frames, it is possible to insert local feedback information into part of the response frames. The local feedback information is notified to other radio communication apparatus in shortest time, which makes it possible to perform high-speed feedback processing even when a fluctuation state in a transmission channel is intense and deterioration of radio signals in the respective channels is severe.
  • A fourth embodiment of the present invention will be explained using FIG. 5. FIG. 5 is a block diagram of a structure of transmission and reception functions of the radio communication apparatus 1 according to the fourth embodiment. In the radio communication apparatus 1 according to the fourth embodiment, the channel-information processing unit 30 of the radio communication apparatus 1 according to the first embodiment shown in FIG. 2 is removed, and a MAC unit 20 b is provided instead of the MAC unit 20. Components having the same functions as those according to the first embodiment will be denoted by the identical reference numerals, and a redundant explanation will be omitted.
  • At the time of a reception operation, the MAC unit 20 b extracts feedback information included in decoded signals inputted from the reception channel processing units 110 to 130, respectively. Then, the MAC unit 20 b creates a local feedback information table in which local channel reception information of the respective channels and the extracted feedback information are associated with the transmission source addresses. In addition, the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to the decoded signals inputted from the reception channel processing units 110 to 130, respectively, generates reception frames, and output the reception frames to the upper layer.
  • At the time of a transmission operation, the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. In that case, the MAC unit 20 b inserts local feedback information into the respective transmission frames based on the local feedback information table and determines transmission systems and transmission speeds of the respective channels.
  • Next, operations of the radio communication apparatus according to the fourth embodiment of the present invention will be explained. First, a reception operation will be explained. The reception channel processing units 110 to 130 receive input reception signals in the corresponding channels, respectively, and apply the synchronization processing, the demodulation processing, and the decoding processing to the input reception signals to generate decoded signals. At the same time, the reception channel processing units 110 to 130 measure reception levels of the input reception signals in the respective channels, and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information. The reception channel processing units 110 to 130 output the respective decoded signals and the local channel reception information to the MAC unit 20 b.
  • The MAC unit 20 b extracts feedback information from the decoded signals inputted from the reception channel processing units 110 to 130, respectively. Then, the MAC unit 20 b generates a local feedback information table in which the local channel reception information for the respective channels and the extracted feedback information are associated with transmission source addresses. In addition, the MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to the decoded signals, from which the feedback information is extracted, generates reception frames, and outputs the reception frames to the upper layer.
  • Next, a transmission operation will be explained. The MAC unit 20 b applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from the upper layer to generate transmission frames of the respective channels. In generating the transmission frames of the respective channels, the MAC unit 20 b searches through the local feedback information table with destination addresses as keywords and extracts local channel reception information of the respective channels. Then, the MAC unit 20 b generates local feedback information based on the local channel reception information corresponding to the respective channels and inserts the generated local feedback information into predetermined places of the transmission frames of the respective channels. In addition, the MAC unit 20 b searches through the local feedback information table with the destination addresses as keywords and extracts feedback information of the respective channels corresponding to the destination addresses. Then, the MAC unit 20 b determines transmission systems and transmission speeds based on the feedback information corresponding to the respective channels and outputs the determined transmission systems and transmission speeds to the transmission channel processing units 410 to 430 as transmission speed information.
  • The transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 b. Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 and the local feedback information inputted from the channel-information processing unit 30 to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals.
  • In this way, according to the fourth embodiment, the MAC unit 20 b generates the local feedback information table in which the local channel reception information for the respective channels and the extracted feedback information are associated with the transmission source addresses and inserts the local feedback information into appropriate places in the transmission frames. Thus, it is possible to notify other radio communication apparatus of the local feedback information without having means for inserting the local feedback information anew and to reduce decline in efficiency of the radio communication apparatus.
  • In addition, since it is possible to notify local feedback information with a structure closed in a MAC layer and determine transmission systems and transmission speeds, it is possible to apply the radio communication apparatus to a system in a different physical layer that uses plural channels.
  • Moreover, since it is possible to perform processing with the processing closed in a MAC layer, for example, in the case of a system returning response frames in response to transmission frames, it is possible to insert local feedback information into part of the response frames, reduce radio bands in which the local feedback information is notified to other radio communication apparatus, and realize an increase in a radio capacity. The local feedback information is notified to the other radio communication apparatus in shortest time, which makes it possible to perform high-speed feedback processing even when a fluctuation state in a transmission channel is intense and deterioration of radio signals in the respective channels is severe.
  • Note that the transmission frames into which the local feedback information is inserted may be all transmission frames of the respective channels, or channels on which the local feedback information is transmitted may be determined based on the respective pieces of local channel reception information.
  • A fifth embodiment of the present invention will be explained using FIGS. 6 to 8. FIG. 6 is a block diagram of a structure of transmission and reception functions of the radio communication apparatus 1 according to the fifth embodiment. The radio communication apparatus 1 according to the fifth embodiment includes a MAC unit 20 c instead of the MAC unit 20 b of the radio communication apparatus 1 according to the fourth embodiment shown in FIG. 5.
  • At the time of reception, the MAC unit 20 c extracts transmission source addresses from decoded signals inputted from the reception channel processing units 110 to 130, respectively, and creates a local feedback information table in which the extracted transmission source addresses and local channel reception information notified from the reception channel processing units 110 to 130 are associated with each other. In addition, when the respective decoded signals are feedback frames for notifying other radio communication apparatus of local feedback information, the MAC unit 20 c extracts transmission source addresses in the feedback frames and creates a transmission source feedback information table in which transmission feedback information for the respective channels in the feedback frames and the extracted transmission source addresses are associated with each other. When the decoded signals are normal frames, the MAC unit 20 c applies the processing such as the protocol conversion and the frame conversion to the decoded signals, generates reception frames, and outputs the reception frames to an upper layer.
  • At the time of transmission, when transmission frames are feedback frames, the MAC unit 20 c generates local feedback information based on a local channel reception information table and inserts the generated local feedback information into the feedback frames. The MAC unit 20 c determines transmission systems and transmission speeds of the respective channels based on the transmission source feedback information table.
  • Next, operations of the radio communication apparatus 1 according to the fifth embodiment of the present invention will be explained with reference to flowcharts in FIGS. 7 and 8. First, a reception operation will be explained with reference to the flowchart in FIG. 7. The reception channel processing units 110 to 130 receive input information of channels corresponding to the reception channel processing units 110 and 130, respectively, and apply the synchronization processing, the demodulation processing, and the decoding processing to the input information to generate decoded signals. At the same time, the reception channel processing units 110 and 130 measure reception levels of input reception signals of the respective channels and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information (steps S100 and S110). The reception channel processing units 110 to 130 output the respective decoded signals and the local channel reception information to the MAC unit 20 c.
  • The MAC unit 20 c extracts transmission source addresses from the decoded signals inputted from the reception channel processing units 110 to 130, respectively (step S120). Then, the MAC unit 20 c creates a local feedback information table in which the extracted transmission source addresses and the respective pieces local channel reception information notified from the reception channel processing units 110 to 130 are associated with each other (step S130).
  • The MAC unit 20 c judges whether the respective decoded signals are feedback frames for notifying other radio communication apparatus of local feedback information (step S140). When the respective decoded signals are feedback frames, the MAC unit 20 c performs predetermined feedback frame processing such as extraction of transmission source feedback information from the decoded signals (step S150). Then, the MAC unit 20 c creates a transmission source feedback information table in which the extracted transmission source feedback information and transmission source addresses extracted from the decoded signals are associated with each other (step S160).
  • When the respective decoded signals are normal frames, the MAC unit 20 c performs normal frame processing of applying the processing such as the protocol conversion and the frame conversion to the respective decoded signals, generating reception frames, and outputting the reception frames to the upper layer (step S170).
  • Next, a transmission processing will be explained with reference to the flowchart in FIG. 8. The MAC unit 20 c extracts a destination address from a transmission frame inputted from the upper layer (step S200). Then, the MAC unit 20 c judges whether the transmission frame is a feedback frame (step S210). When the transmission frame is a feedback frame, the MAC unit 20 c searches through the local feedback information table with the extracted destination address as a keyword and extracts local channel reception information of the respective channels. Then, the MAC unit 20 c generates local feedback information from the extracted local channel reception information of the respective channels (step S220). Then, the MAC unit 20 c inserts the generated local feedback information into the feedback frame to generate a feedback frame (step S230).
  • The MAC unit 20 c searches through the transmission source feedback information table with the extracted destination address as a keyword and extracts transmission source feedback information of the respective channels corresponding to the destination address. Then, the MAC unit 20 c determines transmission systems and transmission speeds based on the feedback information corresponding to the respective channels and outputs the determined transmission systems and transmission speeds to the transmission channel processing units 410 to 430 as transmission speed information (step S240).
  • The transmission channel processing units 310 to 430 select transmission systems and transmission speeds of the channels based on respective pieces of transmission control information inputted from the MAC unit 20 c. Then, the transmission channel processing units 310 to 340 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 c based on the selected transmission systems and transmission speeds to generate radio signals. Then, the transmission channel processing units 310 to 340 output the generated radio signals (step S250).
  • When the transmission frames are normal frames, the MAC unit 20 c performs normal frame processing of applying the processing such as the protocol conversion and the frame conversion to the transmission frames and generating transmission frames of the respective channels (step S260). In addition, the MAC unit 20 c searches through the transmission source feedback information table with the extracted destination address as a keyword and extracts transmission source feedback information of the respective channels corresponding to the destination address. Then, the MAC unit 20 c determines transmission systems and transmission speeds based on feedback information corresponding to the respective channels and outputs the determined transmission systems and transmission speeds to the transmission channel processing units 410 to 430 as transmission speed information (step S240).
  • The transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 c. Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 c to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals (step S250).
  • In this way, according to the fifth embodiment, since a dedicated frame for transmitting local feedback information is provided, it is possible to notify other radio communication apparatus of feedback information of respective channels without requiring a change with respect to an existing system and with simplified control and processing. It is possible to select transmission systems and transmission speeds suitable for the respective channels.
  • Note that, when the dedicated frame for transmitting local feedback information is transmitted periodically, it is necessary to transmit the dedicated frame at a short period with respect to fluctuation in a transmission channel. Therefore, throughput declines. In addition, when the local feedback information cannot be transmitted, reliability of the local feedback information may decline to cause a communication error. In such a case, it is sufficient that the reception channel processing units 110 to 130 detect fluctuation in the transmission channel, and the MAC unit 20 c judges the fluctuation in the transmission channel to determine a transmission interval of the dedicated frame for transmitting the local feedback information.
  • Sixth Embodiment
  • A sixth embodiment of the present invention will be explained using FIGS. 9 and 10. FIG. 9 is a block diagram of a structure of transmission and reception functions of a radio communication apparatus according to the sixth embodiment. The radio communication apparatus 1 according to the sixth embodiment includes a MAC unit 20 d instead of the MAC unit 20 c according to the fifth embodiment shown in FIG. 6. Components having the same functions as those according to the fifth embodiment will be denoted by the identical reference numerals, and a redundant explanation will be omitted.
  • At the time of a reception operation, the MAC unit 20 d has a function of also registering a creation time of day in creating a local feedback information table and a transmission source feedback information table in addition to the same function as at the time of the reception operation of the MAC unit 20 c of the fifth embodiment.
  • At the time of a transmission operation, the MAC unit 20 d applies the processing such as the protocol conversion and the frame conversion to a transmission frame inputted from an upper layer to generate transmission frames of respective channels. In that case, the MAC unit 20 d inserts local feedback information into the respective transmission frames based on the local feedback information table and, at the same time, determines transmission systems and transmission speeds of the respective channels.
  • Operations of the radio communication apparatus 1 according to the sixth embodiment of the present invention will be explained with reference to a flowchart in FIG. 10. First, a reception operation will be explained. The reception channel processing units 110 to 130 receive input information of channels corresponding to the reception channel processing units 110 to 130, respectively, and apply the synchronization processing, the demodulation processing, and the decoding processing to the input information to generate decoded signals. At the same time, the reception channel processing units 110 to 130 measure reception levels of input reception signals of the respective channels, and generate local channel reception information based on the measured respective reception levels and reception channel processing internal information. The reception channel processing units 110 to 130 output the respective decoded signals and the local channel reception information to the MAC unit 20 d.
  • The MAC unit 20 d extracts transmission source addresses from the decoded signals inputted from the reception channel processing units 110 to 130, respectively. Then, the reception channel processing units 110 to 130 create a local feedback information table in which the extracted transmission source addresses, the respective pieces of local channel reception information notified from the reception channel processing units 110 to 130, and present times of day are associated to one another.
  • The MAC unit 20 d judges whether feedback information is included in the respective decoded signals and, when feedback information is included in the respective decoded signals, extracts the feedback information in the decoded signals. The MAC unit 20 d creates a transmission source feedback information table in which the transmission source feedback information extracted from the decoded signals, the extracted transmission source addresses, and present times of day are associated to one another.
  • The MAC unit 20 d applies the processing such as the protocol conversion and the frame conversion to the respective decoded signals, generates reception frames, and outputs the reception frames to an upper layer.
  • Next, a transmission operation will be explained with reference to the flowchart in FIG. 10. The MAC unit 20 d extracts a destination address from a transmission frame inputted from the upper layer (step S300).
  • The MAC unit 20 d searches through the local feedback information table with the extracted destination address as a keyword and extracts local channel reception information of the respective channels and creation times of day of the local channel reception information (step S310). The MAC unit 20 d calculates a difference between the extracted creation times of day and the present time of day. Then, the MAC unit 20 d judges whether a calculation result is within a reference value decided in advance (step S320). When the calculation result is within the reference value decided in advance, the MAC unit 20 d inserts the local feedback information into predetermined places of the transmission frames from the extracted local channel reception information of the respective channels (step S330). When the calculation result exceeds the reference value decided in advance, the MAC unit 20 d judges that the local cannel reception information of the respective channels is different from present states of the respective channels because time has passed since the local channel reception information was created and does not insert the feedback information in the transmission frames. The MAC unit 20 d applies the processing such as the protocol conversion and the frame conversion to the transmission frames to generate transmission frames of the respective channels. Then, the MAC unit 20 d outputs the generated respective transmission frames to the transmission channel processing units 410 to 430.
  • The MAC unit 20 d searches through the transmission source feedback information table with the extracted destination address as a keyword and extracts transmission source feedback information of the respective channels and creation times of day of the transmission source feedback information (step S340). The MAC unit 20 d calculates a difference between the extracted creation times of day and the present time of day. Then, the MAC unit 20 d judges whether a calculation result is within a reference value decided in advance (step S350). When the calculation result is within the reference value decided in advance, the MAC unit 20 d determines transmission systems and transmission speeds of the respective channels based on the extracted transmission source feedback information (step S360). When the calculation result exceeds the reference value decided in advance, the MAC unit 20 d judges that the local channel reception information of the respective channels is different from present states of the respective channels because time has passed since the local channel reception information was created and determines to use transmission systems and transmission speeds decided in advance (step S370). The MAC unit 20 d notifies the transmission channel processing units 410 to 430 of the determined transmission systems and transmission speeds.
  • The transmission channel processing units 410 to 430 select transmission systems and transmission speeds of the channels based on the respective pieces of transmission control information inputted from the MAC unit 20 d. Then, based on the selected transmission systems and transmission speeds, the transmission channel processing units 410 to 430 apply the encoding processing and the modulation processing to the transmission frames inputted from the MAC unit 20 d to generate radio signals. Then, the transmission channel processing units 410 to 430 output the generated radio signals (step S380).
  • In this way, according to the sixth embodiment, in creating a local cannel reception information table and a transmission source feedback information table, creation times of day of the tables are registered, and the creation times of day and a present time of day are compared to judge reliability concerning whether the local channel reception information and the transmission source feedback information are used. Thus, it is possible to use information suitable for temporal fluctuation in a state of a transmission channel and to reduce a wasteful communication fee.
  • Note that, according to the sixth embodiment, the case in which the local feedback information is inserted into transmission frames is explained as an example. However, it is needless to mention that it is possible to apply the case to the first to the fifth embodiments by creating a local feedback information table in which transmission addresses, respective pieces of local channel reception information, and present times of day are associated to one another and a transmission source feedback information table in which transmission source feedback information, extracted transmission source addresses, and present times of day are associated to one another.
  • As explained above, in the radio communication apparatus according to the present invention, a reception processing unit generates local channel reception information based on reception states of input reception signals of respective channels, a channel-information processing unit generates local feedback information based on the local channel reception information generated by the reception processing unit, inserts the generated local feedback information into radio signals, and transmits the radio signals. Thus, it is possible to notify other radio communication apparatus of states of the respective channels, and the other radio communication apparatus can select transmission systems and transmission speeds suitable for the states of the respective channels.
  • INDUSTRIAL APPLICABILITY
  • As described above, the radio communication apparatus according to the present invention is useful for a communication system that performs mutual communication using plural channels simultaneously and, in particular, suitable for a communication system in which a communication state is likely to change due to obstacles, weather conditions, and the like.

Claims (6)

1. A radio communication apparatus that is applied to a radio communication system and communicates with another radio communication apparatus in the radio communication system using one available channel or a plurality of channels, the radio communication apparatus comprising:
a reception processing unit that, when input reception signals of the channels of the radio communication system is received, estimates local channel reception information of each of the channels based the reception status, and applies a reception processing to the input reception signals to generate decoded signals;
a media-access-control unit that, when data is transmitted, generates transmission frames; and
a transmission processing unit that generates radio signal including the transmission frames, wherein
the radio communication apparatus transmits the radio signals including the local feedback information.
2. A radio communication apparatus that is applied to a radio communication system and communicates with another radio communication apparatus in the radio communication system using one available channel or a plurality of channels, the radio communication apparatus comprising:
a reception processing unit that, when input reception signals of the channels of the radio communication system is received, estimates local channel reception information of each of the channels based on the reception status, and applies a reception processing to the input reception signals to generate decoded signals;
a media-access-control unit that, when data is transmitted, generates local feedback information based on the local channel reception information, further generates transmission frames using transmission data; and
a transmission processing unit that generates radio signals including each of the transmission frames that includes the local feedback information, and transmits the radio signals generated.
3. A radio communication apparatus for communicating with another radio communication apparatus, comprising:
a reception processing unit which receives an input reception signal from the other radio communication apparatus, wherein the input reception signal includes a transmission source feedback information that indicates a reception status of the other radio communication apparatus;
a media-access-control unit which determines a transmission parameter for a transmission frame based on the transmission source feedback information, and
a transmission processing unit which generates a radio signal to be transmitted to the other communication apparatus by modulating the transmission frame based on the transmission parameter.
4. A radio communication method that is applied to a radio communication apparatus communicating with another radio communication apparatus in the radio communication system using one available channel or a plurality of channels, the radio communication method comprising the steps of:
a reception processing step for, when input reception signals of the channels of the radio communication system is received, estimating local channel reception information of each of the channels based on the reception status, and applying a reception processing to the input reception signals to generate decoded signals;
a media-access-control step for, when data is transmitted, generating transmission frames;
a transmission processing step for generating radio signal including the transmission frames; and
transmitting the radio signals including the local feedback information.
5. A radio communication method that is applied to a radio communication apparatus communicating with another radio communication apparatus in the radio communication system using one available channel or a plurality of channels, the radio communication apparatus comprising the steps of:
a reception processing step for, when input reception signals of the channels of the radio communication system is received, estimating local channel reception information of each of the channels based on the reception status, and applying a reception processing to the input reception signals to generate decoded signals;
a media-access-control step for, when data is transmitted, generating local feedback information based on the local channel reception information, and further generating transmission frames using transmission data; and
a transmission processing step for generating radio signal including each of the transmission frames that includes the local feedback information, and transmitting the radio signals generated.
6. A radio communication method for communicating with another radio communication apparatus, comprising the steps of:
a reception processing step for receiving an input reception signal from the other radio communication apparatus, wherein the input reception signal includes a transmission source feedback information that indicates a reception status of the other radio communication apparatus;
a media-access-control step for determining a transmission parameter for a transmission frame based on the transmission source feedback information; and
a transmission processing step for generating a radio signal to be transmitted to the other communication apparatus by modulating the transmission frame based on the transmission parameter.
US11/715,870 2003-06-18 2007-03-09 Radio communication apparatus Abandoned US20070155393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/715,870 US20070155393A1 (en) 2003-06-18 2007-03-09 Radio communication apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003-173725 2003-06-18
JP2003173725A JP3970807B2 (en) 2003-06-18 2003-06-18 Wireless communication device
US10/525,069 US7194240B2 (en) 2003-06-18 2004-06-15 Radio communication apparatus
PCT/JP2004/008687 WO2004114620A1 (en) 2003-06-18 2004-06-15 Radio communication apparatus
US11/715,870 US20070155393A1 (en) 2003-06-18 2007-03-09 Radio communication apparatus

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/008687 Division WO2004114620A1 (en) 2003-06-18 2004-06-15 Radio communication apparatus
US10/525,069 Division US7194240B2 (en) 2003-06-18 2004-06-15 Radio communication apparatus

Publications (1)

Publication Number Publication Date
US20070155393A1 true US20070155393A1 (en) 2007-07-05

Family

ID=33534730

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/525,069 Active 2024-09-27 US7194240B2 (en) 2003-06-18 2004-06-15 Radio communication apparatus
US11/715,870 Abandoned US20070155393A1 (en) 2003-06-18 2007-03-09 Radio communication apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/525,069 Active 2024-09-27 US7194240B2 (en) 2003-06-18 2004-06-15 Radio communication apparatus

Country Status (7)

Country Link
US (2) US7194240B2 (en)
EP (1) EP1523147B1 (en)
JP (1) JP3970807B2 (en)
KR (1) KR100611838B1 (en)
CN (1) CN1701582B (en)
CA (1) CA2497844A1 (en)
WO (1) WO2004114620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060189352A1 (en) * 2003-05-16 2006-08-24 Yukimasa Nagai Base station and radio terminal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748327B2 (en) * 2005-03-31 2011-08-17 日本電気株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
JP4684146B2 (en) * 2006-03-27 2011-05-18 京セラ株式会社 Mobile station equipment
US20100136920A1 (en) * 2008-12-01 2010-06-03 Samsung Electronics Co., Ltd. Method and system for optimizing measurement reporting mechanism in a layered protocol wireless network
EP2269816A1 (en) * 2009-06-17 2011-01-05 Kuraray Europe GmbH Interlayer film for laminated glass having IR-absorbing properties and low haze

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009061A1 (en) * 2000-02-22 2002-01-24 Serge Willenegger Method and apparatus for controlling transmit power of multiple channels in a CDMA communication system
US20020049058A1 (en) * 2000-10-23 2002-04-25 Tee Lai King Enhancement of soft handoff in a mobile wireless network through the use of dynamic information feedback from mobile users
US20020114269A1 (en) * 2000-10-03 2002-08-22 Onggosanusi Eko Nugroho Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US20020177447A1 (en) * 2001-05-16 2002-11-28 Walton Jay Rod Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US20030185295A1 (en) * 2001-09-18 2003-10-02 Yousef Nabil R. Fast computation of coefficients for a variable delay decision feedback equalizer
US20030185181A1 (en) * 1998-02-23 2003-10-02 Krishna Balachandran System and method for incremental redundancy transmission in a communication system
US20030220103A1 (en) * 2002-04-09 2003-11-27 Samsung Electronics Co., Ltd Mobile communication apparatus with multiple transmission and reception antennas and mobile communication method therefor
US20040073361A1 (en) * 2002-10-15 2004-04-15 Assimakis Tzamaloukas Enhanced mobile communication device, and transportation application thereof
US20040077378A1 (en) * 2002-07-03 2004-04-22 Hung-Kee Kim Adaptive transmit antenna diversity apparatus and method in a mobile communication system
US20040100936A1 (en) * 2002-11-26 2004-05-27 Texas Instruments Incorporated Adaptive adjustment of backoff times in wireless network communications
US20040203541A1 (en) * 2002-12-11 2004-10-14 Coan Philip D. Switched antenna transmit diversity
US20050037718A1 (en) * 2003-05-15 2005-02-17 Kim Sung-Jin Device and method for transmitting and receiving data by a transmit diversity scheme using multiple antennas in a mobile communication system
US20050043031A1 (en) * 2003-08-18 2005-02-24 Samsung Electronics Co., Ltd. Apparatus and method for scheduling resource in a multiuser MIMO radio communication system
US7120199B2 (en) * 2001-05-04 2006-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Link adaptation for MIMO transmission schemes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079724A (en) * 1996-09-03 1998-03-24 Toshiba Corp Radio communication system
JPH07111695B2 (en) * 1991-07-25 1995-11-29 株式会社メルコ Data transfer method, data transmission device and restoration device
US6904110B2 (en) 1997-07-31 2005-06-07 Francois Trans Channel equalization system and method
US7590095B2 (en) * 2000-02-14 2009-09-15 Qualcomm Incorporated Method and apparatus for power control of multiple channels in a wireless communication system
JP2002051099A (en) * 2000-07-31 2002-02-15 Hamamatsu Photonics Kk Transmitter, receiver and transmitting/receiving system
JP3821636B2 (en) * 2000-08-21 2006-09-13 松下電器産業株式会社 COMMUNICATION TERMINAL DEVICE, BASE STATION DEVICE, AND RADIO COMMUNICATION METHOD
JP3652233B2 (en) 2000-10-19 2005-05-25 シャープ株式会社 Wireless network system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030185181A1 (en) * 1998-02-23 2003-10-02 Krishna Balachandran System and method for incremental redundancy transmission in a communication system
US20020009061A1 (en) * 2000-02-22 2002-01-24 Serge Willenegger Method and apparatus for controlling transmit power of multiple channels in a CDMA communication system
US20020114269A1 (en) * 2000-10-03 2002-08-22 Onggosanusi Eko Nugroho Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US20020049058A1 (en) * 2000-10-23 2002-04-25 Tee Lai King Enhancement of soft handoff in a mobile wireless network through the use of dynamic information feedback from mobile users
US7120199B2 (en) * 2001-05-04 2006-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Link adaptation for MIMO transmission schemes
US20020177447A1 (en) * 2001-05-16 2002-11-28 Walton Jay Rod Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US20030185295A1 (en) * 2001-09-18 2003-10-02 Yousef Nabil R. Fast computation of coefficients for a variable delay decision feedback equalizer
US20030220103A1 (en) * 2002-04-09 2003-11-27 Samsung Electronics Co., Ltd Mobile communication apparatus with multiple transmission and reception antennas and mobile communication method therefor
US20040077378A1 (en) * 2002-07-03 2004-04-22 Hung-Kee Kim Adaptive transmit antenna diversity apparatus and method in a mobile communication system
US20040073361A1 (en) * 2002-10-15 2004-04-15 Assimakis Tzamaloukas Enhanced mobile communication device, and transportation application thereof
US20040100936A1 (en) * 2002-11-26 2004-05-27 Texas Instruments Incorporated Adaptive adjustment of backoff times in wireless network communications
US20040203541A1 (en) * 2002-12-11 2004-10-14 Coan Philip D. Switched antenna transmit diversity
US20050037718A1 (en) * 2003-05-15 2005-02-17 Kim Sung-Jin Device and method for transmitting and receiving data by a transmit diversity scheme using multiple antennas in a mobile communication system
US20050043031A1 (en) * 2003-08-18 2005-02-24 Samsung Electronics Co., Ltd. Apparatus and method for scheduling resource in a multiuser MIMO radio communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060189352A1 (en) * 2003-05-16 2006-08-24 Yukimasa Nagai Base station and radio terminal
US7508809B2 (en) * 2003-05-16 2009-03-24 Mitsubishi Electric Corporation Base station and radio terminal

Also Published As

Publication number Publication date
US7194240B2 (en) 2007-03-20
CA2497844A1 (en) 2004-12-29
KR20050072438A (en) 2005-07-11
EP1523147A4 (en) 2011-03-09
US20060046731A1 (en) 2006-03-02
JP2005012454A (en) 2005-01-13
KR100611838B1 (en) 2006-08-11
EP1523147A1 (en) 2005-04-13
WO2004114620A1 (en) 2004-12-29
CN1701582B (en) 2010-04-28
JP3970807B2 (en) 2007-09-05
EP1523147B1 (en) 2012-04-04
CN1701582A (en) 2005-11-23

Similar Documents

Publication Publication Date Title
US8982779B2 (en) Providing space division multiple access in a wireless network
US8345562B2 (en) Transmitting apparatus, receiving apparatus and multiplex number controlling method
KR19990007445A (en) Wireless Base Station Receive Data Transmission System and Method for Uplink Site Diversity in Mobile Communication System
CN103595464A (en) Radio terminal, relay station, radio base station and communication method
WO2007074376A2 (en) Priority based transmission based on channel quality using power sequencing
EP1626552B1 (en) Multiple independent pathway communications
US20150171938A1 (en) Integrated circuit for controlling communication device and communication method
US20070155393A1 (en) Radio communication apparatus
EP3567740A1 (en) Electronic device, radio communication apparatus, and radio communication method
KR20040105255A (en) Method and apparatus for a reverse link supplemental channel scheduling
US7379506B2 (en) Apparatus, and associated method, for assigning data to transmit antennas of a multiple transmit antenna transmitter
US20050195849A1 (en) Early termination of low data rate traffic in a wireless network
KR100504026B1 (en) A method and arrangement for timing the diversity weight changes in a cellular radio system
US7013142B2 (en) Communication method, radio network controller and base node for implementing this method
US20100103882A1 (en) Early termination of low data rate traffic in a wireless network
US8504031B2 (en) Transmission of channel quality indications
JP2003505926A (en) Channel estimation method and apparatus using transmission diversity
CA2472000A1 (en) Transport format combination indicator signalling
JP5340344B2 (en) Communication apparatus and communication method
KR100678150B1 (en) System for link adaptation and method thereof in code division multiple access system
CN101471751A (en) Radio communication system and apparatus
US7664140B2 (en) Early termination of low data rate traffic in a wireless network
WO2003056721A1 (en) Uplink access control
JP4351672B2 (en) Transmitting apparatus and transmitting method
CN109391354A (en) The transmission method and device of channel quality information

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION