US20070149885A1 - Ultra miniature pressure sensor - Google Patents
Ultra miniature pressure sensor Download PDFInfo
- Publication number
- US20070149885A1 US20070149885A1 US11/442,684 US44268406A US2007149885A1 US 20070149885 A1 US20070149885 A1 US 20070149885A1 US 44268406 A US44268406 A US 44268406A US 2007149885 A1 US2007149885 A1 US 2007149885A1
- Authority
- US
- United States
- Prior art keywords
- guide wire
- diaphragm
- pressure
- pressure sensor
- stenosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims description 22
- 239000012530 fluid Substances 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims 2
- 208000031481 Pathologic Constriction Diseases 0.000 abstract description 29
- 230000036262 stenosis Effects 0.000 abstract description 29
- 208000037804 stenosis Diseases 0.000 abstract description 29
- 238000000034 method Methods 0.000 abstract description 16
- 239000008280 blood Substances 0.000 abstract description 3
- 210000004369 blood Anatomy 0.000 abstract description 3
- 230000036772 blood pressure Effects 0.000 abstract 2
- 238000009530 blood pressure measurement Methods 0.000 description 25
- 230000007704 transition Effects 0.000 description 17
- 238000002399 angioplasty Methods 0.000 description 13
- 238000005530 etching Methods 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 230000010339 dilation Effects 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 210000004351 coronary vessel Anatomy 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- ZONODCCBXBRQEZ-UHFFFAOYSA-N platinum tungsten Chemical compound [W].[Pt] ZONODCCBXBRQEZ-UHFFFAOYSA-N 0.000 description 3
- 239000005297 pyrex Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 108010036050 human cationic antimicrobial protein 57 Proteins 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
- G01L19/141—Monolithic housings, e.g. molded or one-piece housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6851—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0061—Electrical connection means
- G01L19/0084—Electrical connection means to the outside of the housing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
- G01L19/147—Details about the mounting of the sensor to support or covering means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
- G01L19/149—Housings of immersion sensor, e.g. where the sensor is immersed in the measuring medium or for in vivo measurements, e.g. by using catheter tips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0054—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0001—Catheters; Hollow probes for pressure measurement
- A61M2025/0002—Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09008—Guide wires having a balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09058—Basic structures of guide wires
- A61M2025/09083—Basic structures of guide wires having a coil around a core
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
Definitions
- This invention relates to an ultra miniature pressure sensor and guide wire and apparatus using the same and method, which is particularly suitable for making pressure measurements in coronary arteries of human beings.
- Another object of the invention is to provide a sensor which can be utilized on the distal extremity of a guide wire 0.018′′ or 0.014′′ in diameter.
- Another object of the invention is to provide a sensor of the above character which is formed of a silicon chip of a small dimension which is reinforced by an additional member to provide reinforcement for the chip.
- Another object of the invention is to provide a sensor of the above character in which a thin diaphragm is formed in the crystalline silicon chip.
- Another object of the invention is to provide a sensor of the above character in which the reinforcing member extends for approximately 200 microns beyond the silicon diaphragm.
- Another object of the invention is to provide a guide wire with the above character in which the number of conducting wires required is kept to a minimum.
- Another object of the invention is to provide a guide wire and method in which simultaneous pressure and velocity measurements can be made.
- Another object of the invention is to provide a guide wire of the above character in which the diaphragm area has been maximized.
- Another object of the invention is to provide a guide wire with the above character in which two pressure sensors are provided on the guide wire which are spaced apart so that pressure measurements can be made on both sides of a stenosis.
- Another object of the invention is to provide a guide wire of the above character in which the sensors are covered to prevent the formation of blood clots.
- Another object of the invention is to provide an apparatus of the above character which includes a guide wire with an integral inflatable balloon.
- Another object of the invention is to provide an apparatus of the above character in which temperature compensation can be provided.
- Another object of the invention is to provide an apparatus of the above character which can be utilized in a half-bridge configuration.
- FIG. 1 is a schematic illustration showing use of a guide wire incorporating a pressure sensor of the present invention and apparatus utilizing the same in conjunction with a patient undergoing a catheterization procedure for diagnosis or treatment.
- FIG. 2 is a side elevational view of a guide wire incorporating an ultra miniature pressure sensor of the present invention.
- FIG. 3 is an enlarged side elevational view of the distal extremity of the guide wire shown in FIG. 2 and showing the pressure sensor mounted therein.
- FIG. 4 is a top plan view looking along the line 4 - 4 of FIG. 3 .
- FIG. 5 is a bottom plan view looking along the line 5 - 5 of FIG. 3 .
- FIG. 6 is an isometric view of the pressure sensor shown in FIGS. 3, 4 and 5 with the lead wires connected thereto.
- FIG. 7 is a side elevational view of the pressure sensor shown in FIG. 6 .
- FIG. 8 is a top plan view of the pressure sensor shown in FIGS. 6 and 7 .
- FIG. 9 is a cross-sectional view taken along the line 9 - 9 of FIG. 8 .
- FIG. 10 is a cross-sectional view taken along the line 10 - 10 of FIG. 8 .
- FIG. 11 is a cross-sectional view taken along the line 11 - 11 of FIG. 8 .
- FIG. 12 is a schematic diagram of the circuitry utilized in the pressure sensor shown in FIGS. 6-11 .
- FIG. 13 is a side elevational view of the distal extremity of another guide wire incorporating the pressure sensor with the sensor of the present invention being mounted in the tip housing.
- FIG. 14 is a side elevational view of the distal extremity of a guide wire having first and second pressure sensors mounted in the distal extremity of the same spaced apart to permit simultaneous measurements of proximal and distal pressures with respect to a stenosis.
- FIG. 15 is a partial side elevational view of another guide wire incorporating the present invention with an enclosed pressure sensor.
- FIG. 16 is a side elevational view partially in section of the distal extremity of another guide wire incorporating the present invention in which the pressure sensor is enclosed in a transition housing.
- FIG. 16A is a side elevational view in section showing an end-mounted pressure sensor incorporating the present invention.
- FIG. 17 is a side elevational view in section of a guide wire housing a tip-mounted sensor incorporating the present invention with an integral balloon.
- the guide wire of the present invention having pressure sensing capabilities is comprised of a flexible elongate element having proximal and distal extremities and having a diameter of 0.018′′ and less.
- the pressure sensor is mounted on the distal extremity of a flexible elongate element. It is comprised of a crystal semiconductor material having a recess therein and forming a diaphragm bordered by a rim.
- a reinforcing member is bonded to the crystal and reinforces the rim of the crystal and has a cavity therein underlying the diaphragm and exposed to the diaphragm.
- a resistor having opposite ends is carried by the crystal and has a portion thereof overlying a portion of the diaphragm. Leads are connected to opposite ends of the resistor and extend within the flexible elongate member to the proximal extremity of the flexible elongate member.
- the guide wire 21 of the present invention having pressure measuring capabilities as shown in FIG. 1 is one that is adapted to be used in connection with a patient 22 lying on a table or a bed 23 in a cath lab of a typical hospital in which a catheterization procedure such as for diagnosis or treatment is being performed on the patient.
- the guide wire 21 is used with apparatus 24 which consists of a cable 26 which connects the guide wire 21 to an interface box 27 .
- Interface box 27 is connected by another cable 28 to a control console 29 which has incorporated as a part thereof a video screen 31 on which a waveform 32 displaying ECG measurements may be provided as well as two traces 33 and 34 displaying pressure measurements being made by the guide wire 21 .
- the guide wire 21 is shown more in detail in FIG. 2 and as shown therein, the guide wire 21 can be constructed utilizing the various constructions as shown in U.S. Pat. Nos. 5,125,137; 5,163,445; 5,174,295; 5,178,159; 5,226,421; and 5,240,437.
- a guide wire consists of a flexible elongate element 41 having a proximal and distal extremities 42 and 43 and which can be formed of a suitable material such as stainless steel having an outside diameter for example of 0.018′′ or less and having a suitable wall thickness as for example, 0.001′′ to 0.002′′ and conventionally called a “hypotube” having a length of 150-170 centimeters.
- the hypotube 41 can have an exterior diameter of 0.014′′ or less.
- a guide wire includes a core wire (not shown) of the type disclosed in the above identified patents which extends from the proximal extremity to the distal extremity of the flexible elongate element 41 to provide the desired torsional properties for guide wires (See U.S. Pat. No. 5,163,445, col. 18:40-51) to facilitate steering of the guide wire 21 in the vessel.
- a coil spring 46 is provided and is formed of a suitable material such as stainless steel. It has an outside diameter of 0.018′′ and is formed from a wire having a diameter of 0.003′′.
- the spring 46 is provided with a proximal extremity 47 which is threaded onto the distal extremity 43 of the flexible elongate member 41 .
- the distal extremity 48 of the coil spring 46 is threaded onto the proximal extremity 49 of an intermediate or transition housing 51 such as disclosed in U.S. Pat. No. 5,174,295, formed of a suitable material such as stainless steel having an outside diameter of 0.018′′ and having a suitable wall thickness as for example, 0.001′′ to 0.002′′.
- the housing 51 is provided with a distal extremity 52 which has the proximal extremity 53 of a coil spring 54 threaded thereon.
- the coil spring 54 is formed of a highly radiopaque material such as palladium or a tungsten platinum alloy.
- the coil spring 46 can have a suitable length as for, example 27 centimeters whereas, the coil spring 54 can have a suitable length such as 3 centimeters.
- the intermediate or transition housing 51 can have a suitable length as for example, one to five millimeters.
- the use of the two coils 46 and 54 on opposite ends of the housing 61 provides a very flexible floppy tip for the guide wire 21 as described in U.S. Pat. No. 5,174,295.
- the coil 54 is provided with a distal extremity which is threaded onto an end cap 57 also formed of a suitable material such as stainless steel and having an outside diameter of 0.018′′ and a wall thickness of 0.001′′ to 0.002′′.
- An ultrasonic transducer 58 is mounted in the end cap in a manner described in U.S. Pat. No. 5,125,137 and has conductors 61 and 62 secured to the front and rear sides of the same which extend interiorly to the proximal extremity of the flexible elongate member 41 .
- a torquer 66 of the type described in U.S. Pat. No. 5,178,159 is mounted on the proximal extremity 42 of the flexible elongate member 41 for causing a rotation of a guide wire 21 when used in connection with catheterization procedures in a manner well known to those skilled in the art.
- the proximal extremity 42 is also provided with a plurality of conducting sleeves (not shown) of the type disclosed in U.S. Pat. No. 5,178,159. In the present invention, one or more additional sleeves can be provided to make connection to the conductors hereinafter described.
- the proximal extremity 42 of the flexible elongate member is removably disposed within a housing 68 of the type described in U.S. Pat. Nos. 5,178,159, 5,348,481 and 5,358,409 that makes electrical contact with the sleeves on the proximal extremity 42 while permitting rotation of the sleeves and the flexible elongate member 41 .
- the housing 68 carries female receptacles (not shown) which receive the sleeves and which are connected to a cable 71 connected to a connector 72 .
- the connector 72 is connected to another mating connector 73 carried by the cable 26 and connected into the interface box 27 .
- the portion of the guide wire 21 therefore described is substantially conventional.
- a pressure measuring capability in the form of a pressure sensor assembly 76 which is mounted within the intermediate or transition housing 51 .
- the pressure sensor assembly 76 consists of a diaphragm structure 77 supported by a base plate 78 .
- the diaphragm structure 77 is formed of suitable materials such as “n” type or “p” type 100 oriented silicon with a resistivity of approximately 6-8 ohm-centimeters.
- the diaphragm structure 77 is a die made from such a wafer.
- the die has a suitable length, as for example, 1050 microns and for a 0.014′′ guide wire has a width of 250 microns and for a 0.018′′ guide wire has a width of between 250 and 350 microns. It can have a suitable thickness, as for example, 50 microns.
- a rectangular diaphragm 79 is formed in the diaphragm structure 77 of a suitable thickness, as for example, 2.5 microns and having dimensions such as a length of 350 microns.
- the diaphragm 79 has first and second or top and bottom surfaces 80 and 81 .
- the diaphragm is formed by utilization of conventional masking and crystal etching techniques which create a die with two parallel sloping endwalls 82 and two parallel sidewalls 83 extending at right angles to the end walls 82 leading down to the top surface 80 of the diaphragm 79 to form a well 84 .
- the diaphragm 79 is made relatively wide in comparison to the diaphragm structure 77 so that what remains is a relatively narrow rim 86 formed by side portions 87 and 88 and an end portion 89 .
- the diaphragm 79 is located at or near one end of the diaphragm structure or die 77 .
- the rectangular diaphragm 79 provides approximately 1.5 times more sensitivity than does a square diaphragm for the same diaphragm thickness and width.
- an impurity can be implanted into the backside of the diaphragm structure 77 before the etching process is commenced so that etching will stop at the desired depth, as for example, within 2 to 3 microns of the bottom surface 81 to provide a diaphragm 79 having a thickness ranging from 2 to 5 microns, and for example, the preferred thickness of 2.5 microns. Because the rim 86 provided on the diaphragm structure 77 surrounding the rectangular diaphragm 79 is relatively thin, the base plate 78 provides support for this rim to provide the necessary strength for the pressure sensor 76 .
- diaphragm 79 is made relatively large compared to rim 86 .
- a width of rim 86 of 40 microns which provides for a diaphragm 79 of 170 microns in a 250 micron-wide diaphragm structure 77 to provide a diaphragm width ratio of 0.68.
- the pressure sensor assembly 76 can be made stronger by increasing the rim width to 90 microns.
- it can be made more sensitive by increasing the diaphragm width up to 270 microns. This results in a diaphragm width ratio for a 350 micron-wide device of between 0.49 and 0.77, depending on what combination of sensitivity and strength is desired.
- V-shaped recesses or grooves 91 are formed in the diaphragm structure 77 on the end opposite the end at which the diaphragm 79 is located and on the side opposite the side in which the well 84 is formed.
- These V-shaped recesses 91 also can be formed in a conventional manner by the use of a conventional etch. It should be appreciated that if desired, the etching can be stopped so that the recesses formed are short of a complete V. By way of example, if the etching for the V-shaped recess was stopped at a depth of 12 microns, the bottom of the substantially V-shaped recess or trench 91 would be approximately 8 microns wide.
- a P+ diffusion utilizing a suitable material such as boron can be carried out to create a V-shaped region 92 (in the structure 77 ) which underlies the V-shaped recess 91 .
- a common layer 93 of a suitable material such as chromium is sputtered into the V-shaped recess 91 to a suitable thickness as for example, 300 Angstroms followed by a layer 94 of a suitable material such as gold of a suitable thickness as for example 3000 Angstroms.
- the layers 93 and 94 overlie the bottom surface 81 to form pads 96 thereon.
- the spacing between V-grooves 91 from center to center can be 75 microns with the V-groove having a width of 25 microns and having a typical depth of 18 microns.
- the metal pads 96 formed by the chromium and gold layers 93 and 94 can have a suitable width as for example, 50 microns with the overlap on each side being approximately 12.5 microns to provide a spacing of approximately 25 microns between adjacent V-shaped pads 96 .
- the bottom of the V-shaped groove can have a total length of approximately 250 microns.
- the regions 92 formed from the P+ diffusion have patterns that extend to the right from the three V-shaped recesses 91 as viewed in FIG. 8 for a distance so that they underlie the approximate midpoint of the diaphragm 81 on opposite sides to provide generally U-shaped portions or resistors 92 a which are located on the diaphragm in areas of a maximum stress to provide maximum sensitivity to pressure changes.
- the resistors 92 a are provided with opposite ends, one end being connected to one each of the V-grooves and the other end being connected. to the center or common V-groove. Contact is made to these P+ diffused regions by the chromium and gold layers 93 and 94 hereinbefore described.
- the base plate 78 can be formed of a suitable material such as Pyrex supplied by Coming Glassworks and can have the same width as the diaphragm structure 77 but has a length which is less than the length of the diaphragm structure 77 so that the V-shaped grooves 91 are exposed on the underside of the diaphragm structure 77 as shown in FIG. 6 . It also can have a suitable length such as 850 microns. It is provided with a rectangular recess or cavity 101 having substantially the same size as the diaphragm 79 . It can be etched into the Pyrex by suitable means such as a conventional etching process utilizing hydrochloric acid.
- the cavity 101 below the diaphragm 79 serves as a reference pressure chamber and can be filled with a suitable fluid.
- a suitable fluid For example, it can be filled with air to half an atmosphere to provide a partial vacuum.
- the cavity 101 can be filled to one atmosphere or it can be completely evacuated.
- a trifilar lead structure 106 is connected to the rectangular diaphragm structure 77 . It has insulated copper leads 107 of a suitable diameter as for example 48AWG soldered into place to the V-shaped recesses 91 so that the leads 107 extend outwardly therefrom and lie in a plane parallel to the plane of the diaphragm structure 77 .
- the trifilar lead construction 106 provides insulation around each lead and in addition there is provided additional insulation which surrounds the leads and which interconnects the leads into a single unit which can be readily extended through the hypotube forming the flexible elongate member 41 .
- the pressure sensor assembly 76 is mounted within a cutout 111 provided in the transition housing 51 and secured therein by suitable means such as an epoxy 112 so that the outer surface of the pressure sensor assembly 76 is generally flush with the outer surface of the transition housing 51 (see FIG. 3 ) and so that the diaphragm 79 is exposed to ambient and the leads 106 extend through the flexible elongate member 41 to the proximal extremity 42 of the same where they are connected to the sleeves (not shown) carried by the proximal extremity 42 disposed within the housing 68 . Also, the conductors 61 and 62 of the velocity sensing transducer 58 are connected to two of such sleeves (not shown) provided on the proximal extremity 42 .
- FIG. 12 A schematic of the wiring for the pressure sensor assembly 76 is shown in FIG. 12 .
- the two generally U-shaped portions 92 a on opposite sides of the diaphragm 79 are represented as resistors and are connected to the three leads 107 in the manner shown.
- One of the first of the outside leads 107 is “SIGNAL OUT” (+) and the second or other outside lead is “SIGNAL OUT” ( ⁇ ) and the third or middle lead is a common lead as shown.
- This pattern makes it possible to not cross leads and has the third lead going up the middle or center of the die or the diaphragm structure 77 .
- the two resistors 92 a connected as shown form a half bridge one of the resistors responds positively to pressure change and the other resistor responds negatively to a pressure change.
- one resistor increases in value and the other resistor decreases in value to provide a voltage change.
- temperature effects can be measured because temperature change will affect both of the resistors in the same way so that the pressure measurements can be compensated for any changes in temperature which are sensed by the resistors 92 a .
- the changes in resistivity caused by the temperature changes in the resistors will cancel each other out because of the half bridge configuration used.
- the pressure measurement from the guide wire 21 is equalized with that from the guiding catheter at the control console 29 .
- the distal extremity of the guide wire 21 is then advanced so that it is proximal of the stenosis to be treated at which time a pressure measurement is made. After this pressure measurement has been recorded, the distal extremity of the guide wire is then advanced through the stenosis and another pressure measurement made to determine whether the stenosis is severe enough to require treatment by angioplasty.
- the distal extremity of guide wire 21 can be immediately advanced to the distal side of the stenosis rather than making a pressure measurement proximal of the stenosis and thereafter comparing the pressure measurement on the distal extremity being measured by the guide wire 21 with the pressure measurement being provided proximal of the stenosis by the guiding catheter. If it is determined that the stenosis causes a partial occlusion which is severe enough to warrant use of an angioplasty procedure, an angioplasty catheter having a balloon thereon (not shown) can be advanced over the guide wire 21 and advanced into the stenosis to dilate the stenosis.
- the angioplasty balloon can be withdrawn from the stenosis and pressure measurements can be made proximal and distal of the stenosis to ascertain the effect of the angioplastic treatment. If the pressure measurements indicate that the original dilation by the angioplasty balloon has been inadequate, another balloon catheter as for example, one having a balloon of a greater diameter can then be positioned over the guide wire 21 by utilizing an exchange wire if appropriate.
- the larger angioplasty catheter can be advanced through the stenosis and inflated to again dilate the stenosis to a larger size after which it can be withdrawn.
- Doppler velocity measurements can be made by the transducer 58 . That information can be used in connection with the pressure measurements to ascertain the need for performing the angioplasty procedure or for determining the efficacy of the angioplasty procedure performed. Because of the very small diameters of the guide wires as for example, 0.018′′ or 0.014′′, it is possible to utilize the guide wire 21 of the present invention with very small coronary vessels in the heart. In connection with the leads from the Doppler transducer 58 it should be appreciated that if desired some of the conductors provided for the Doppler ultrasound transducer can be shared with the wires or conductors provided for the pressure sensor assembly 76 .
- two of the wires for the pressure sensor can be utilized for the Doppler transducer because the pressure sensor operates at DC or up to a few hundred Hz or KHz whereas the Doppler sensor operates at 10 MHz and above. These frequency ranges can be readily separated by one skilled in the art by using simple filters and the appropriate circuitry.
- the Pyrex base plate 78 can be formed so it has the same length as the diaphragm structure 77 .
- V-shaped or U-shaped grooves can be formed in the base plate underlying the V-shaped grooves to in effect form little tunnels which can be utilized for receiving the wires 107 and for them to be soldered therein.
- Such a construction aids in the placement of wires which are of the very small diameter, as for example, 1 mil.
- FIG. 13 Another embodiment of a guide wire 121 incorporating the present invention is shown in FIG. 13 .
- pressure sensor assembly 76 is mounted in a tip housing 122 .
- the tip housing 122 can be substituted at the end cap 57 and threaded into the distal extremity 56 of the coil 54 .
- the tip housing 122 can be formed of a suitable material such as stainless steel having an outside diameter of 0.018′′ and a wall thickness of 0.001′′ to 0.002′′.
- the sensor assembly 76 can be of the type hereinbefore described and can be mounted in a cutout 123 provided in the tip housing 122 much in the same manner as the sensor assembly 76 was mounted in the cutout 111 in the transition housing 51 such as by use of an epoxy 124 .
- An hemispherical end cap 126 formed of a radiopaque material such as palladium or tungsten platinum alloy can be mounted on the distal extremity of the tip housing 122 .
- the end cap 126 can be formed of a non-radiopaque material such as epoxy or silicone rubber.
- the guide wire 121 can be utilized in the same manner as the guide wire 21 hereinbefore described with the exception of it cannot be used for making velocity measurements because that capability has been removed from the guide wire 121 .
- FIG. 14 Another guide wire 131 incorporating the present invention is shown in FIG. 14 in which two pressure sensors 76 have been provided.
- the sensors 76 have been spaced apart a suitable distance as for example, 3 centimeters with one of the pressure sensors being mounted in the transition housing 51 and the other pressure sensor being mounted in a tip housing 122 of the type shown in FIG. 13 .
- the distal extremity of the guide wire 131 can be advanced across a stenosis in a vessel with the pressure sensor 76 mounted in the tip housing being distal of the stenosis to measure distal pressure and the pressure sensor 76 in the transition housing 51 being proximal of the stenosis to measure proximal pressure.
- the pressure sensor 76 in the transition housing 51 being proximal of the stenosis to measure proximal pressure.
- FIG. 15 Still another guide wire 141 incorporating the present invention is shown in FIG. 15 in which a cover 142 is provided for covering the pressure sensor assembly 76 provided in the transition housing 51 .
- the cover is elongate and extends the length of the cutout 111 and is arcuate in cross-section so that it conforms to the conformation of the transition housing 51 .
- the cover 142 can be secured in place by a suitable means such as an adhesive.
- the cover 142 overlying the pressure sensor assembly 76 is provided with a pin hole 143 which immediately overlies the diaphragm 79 .
- the pin hole 143 can be of a suitable size as for example 2-5 mils in and preferably 3 mils in diameter.
- the cover 142 serves to prevent the large opening provided by the cutout 111 from collecting blood which could possibly clot.
- the cover 142 also serves to protect the sensor 76 from damage. It also prevents the sensor 76 from being broken loose during use of the guide wire 141 .
- the volume beneath the cover 142 can be filled with viscous fluid such as oil which can be utilized for transmitting pressure from the pin hole 143 to the diaphragm 81 . With a small size pin hole 143 , the viscous fluid provided would not have a tendency to bleed out of the transition housing 51 . The viscous fluid would be held in place because of the surface tension of the fluid.
- FIG. 16 Another guide wire 151 incorporating the present invention is shown in FIG. 16 having a transition housing 152 formed of a suitable material such as stainless steel and having an OD of 0.018′′ or less.
- a pressure sensor assembly 76 of the type hereinbefore described is mounted within the bore 153 of the transition housing 152 and is secured therein by mounting the same in an epoxy 154 while leaving the area immediately above the diaphragm 79 exposed to a pin hole 156 provided in the transition housing 152 .
- the space overlying the diaphragm 81 exposed to the pin hole 156 can be filled with a viscous fluid 157 such as oil.
- the viscous fluid 157 can be retained within the desired location by a barrier 158 formed on the proximal side of the pressure sensor 76 having the trifilar lead structure 106 extending therethrough, in sealing engagement therewith.
- an intermediate end cap 161 can be provided which is provided with a barrier 182 extending thereacross to seal the bore 153 .
- the intermediate end cap 161 can be bonded to the transition housing 152 by a suitable means such as an adhesive (not shown).
- the coil 54 can be threaded onto the intermediate end cap 161 and can be threaded onto a tip housing 166 that carries a rounded hemispherical tip 167 . With such a construction it can be seen that the pressure sensor assembly 76 is protected within the transition housing 152 .
- FIG. 16A a guide wire 168 is shown which is very similar to the guide wire 151 with the exception that the housing 152 has been provided on the distal extremity of the coil 46 with the tip 167 directly mounted on the housing 152 for closing the bore 153 .
- FIG. 17 there is shown another embodiment of a guide wire 171 incorporating the present invention which has an integral balloon carried thereby.
- a guide wire with an integral balloon is described in U.S. Pat. No. 5,226,421.
- the guide wire 171 consists of a flexible elongate tubular member 173 in a manner formed of a suitable material such as plastic which is provided with a distal extremity 174 .
- An inflatable balloon 176 is secured to the distal extremity 174 of the flexible elongate member 173 in a manner well known to those skilled in the art.
- Such a balloon can be formed integral with the distal extremity and can be formed of the same material as the flexible elongate tubular member 173 . Alternatively, it can be formed of a different material or the same material and be formed as a separate part and secured to the distal extremity 174 by suitable means such as adhesive.
- the balloon 176 is provided with a distal extremity which is closed and which is secured to the proximal extremity of a coil spring 178 formed of a radiopaque material such as a palladium or tungsten platinum alloy threaded onto a tip housing 179 .
- the tip housing 179 can be formed in a manner similar to the tip housing 122 shown in FIG. 13 having a pressure sensor 76 mounted therein and carrying an end cap 181 .
- the trifilar leads 106 connected to the sensor 76 extend through the coil 178 and through the balloon 176 and through the flexible elongate tubular member 172 to the proximal extremity thereof.
- a core wire 186 formed of a suitable material such as stainless steel is provided in the flexible elongate member 173 and can be provided with a diameter such as disclosed in U.S. Pat. No. 5,226,421.
- the core wire 186 is provided with a tapered portion 186 a extending through the balloon which has a distal extremity secured to the housing 179 by a suitable means such as the epoxy utilized for mounting the sensor 76 within the housing.
- the flexible elongate tubular member 172 is provided with a balloon inflation lumen 187 which can be used for inflating and deflating the balloon 176 .
- the guide wire 171 with an integral balloon 171 can be utilized in a manner similar to that hereinbefore described for the other guide wires.
- the guide wire 171 itself carries the balloon 176 which can be inflated to dilate the stenosis after the proximal and distal pressure measurements have been made by the tip mounted sensor 76 .
- the pressure measurement can be made to ascertain the pressure in the distal extremity after dilation has occurred. If necessary, the balloon 176 can be re-inflated to perform another dilation of the stenosis to obtain improved blood flow through the stenosis.
- the guide wire 171 with integral balloon can be removed in a conventional manner.
- the angioplasty procedure can then be completed in a conventional manner.
- an ultra miniature pressure sensor which can be utilized on guide wires having a diameter of 0.018′′ and less which can be utilized for making accurate measurements proximal and distal of a stenosis in the coronary vessel. This is made possible because of the small size of the pressure sensor incorporated into the distal extremity of the guide wire.
- flow velocity can also be obtained by the use of a distally mounted velocity transducer provided on the same guide wire as on which the pressure sensor is mounted.
- additional first and second pressure sensors can be provided on the distal extremity of a guide wire so that pressure measurements can be made simultaneously, proximally and distally of the stenosis.
- the pressure sensor is constructed in such a manner so that it can be readily incorporated within the confines of a small guide wire as for example, 0.018′′ and less. It can be constructed to avoid a large opening in the distal extremity of the guide wire to inhibit or prevent the formation of clots. The pressure sensor also can be protected so that it cannot be readily damaged or broken loose.
- the guide wire can be provided with an integrally mounted balloon on its distal extremity so that the guide wire can be utilized for performing an angioplasty procedure while at the same time facilitating the making of pressure measurements, proximal and distal of the stenosis being treated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Cardiology (AREA)
- Analytical Chemistry (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Optics & Photonics (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring Fluid Pressure (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A method of measuring blood pressure and velocity proximally and distally of a stenosis in a vessel carrying blood includes the steps of providing a guide wire having both a pressure sensor and a velocity sensor disposed on a distal region of the guide wire, introducing the guide wire into the vessel, advancing the guide wire to position the pressure sensor and the velocity sensor proximally and distally of the stenosis, and measuring the blood pressure and velocity proximally and distally of the stenosis with the pressure sensor and the velocity sensor.
Description
- This is a continuation of U.S. application Ser. No. 11/303,249, filed Dec. 15, 2005, which is a continuation of U.S. application Ser. No. 10/247,043, filed Sep. 19, 2002, now U.S. Pat. No. 6,976,965, which is a continuation of U.S. application Ser. No. 09/644,111, filed Aug. 21, 2000, now U.S. Pat. No. 6,767,327, which is a continuation of U.S. application Ser. No. 08/912,879, filed Aug. 15, 1997, now U.S. Pat. No. 6,106,476, which is a continuation-in-part of U.S. application Ser. No. 08/710,062, filed Sep. 9, 1996, now U.S. Pat. No. 5,715,827, which is a continuation of U.S. application Ser. No. 08/300,445, filed Sep. 2, 1994, now abandoned, all of which are hereby expressly incorporated by reference in their entirety.
- This invention relates to an ultra miniature pressure sensor and guide wire and apparatus using the same and method, which is particularly suitable for making pressure measurements in coronary arteries of human beings.
- It has been well known that it is desirable to make pressure measurements in vessels and particularly in coronary arteries with the advent of angioplasty. Typically in the past, such pressure measurements have been made by measuring the pressure at a proximal extremity of a lumen provided in a catheter advanced into the coronary artery of interest. However, such an approach has been less efficacious as the diameters of the catheters became smaller with the need to advance the catheter into smaller vessels. This made necessary the use of smaller lumens which gave less accurate pressure measurements and in the smallest catheters necessitated the elimination of such a pressure lumen entirely. In an attempt to overcome these difficulties, ultra miniature pressure sensors have been proposed for use on the distal extremities of catheters. However, it has not been feasible prior to the present invention to provide such ultra miniature pressure sensors which are capable of being incorporated in a guide wire for making pressure measurements in a very small arterial vessels. There is therefore a need for a new and improved ultra miniature pressure sensor and a guide wire and apparatus utilizing the same.
- In general it is an object of the present invention to provide an ultra miniature pressure sensor and guide wire and apparatus utilizing the same making possible pressure and velocity measurements.
- Another object of the invention is to provide a sensor which can be utilized on the distal extremity of a guide wire 0.018″ or 0.014″ in diameter.
- Another object of the invention is to provide a sensor of the above character which is formed of a silicon chip of a small dimension which is reinforced by an additional member to provide reinforcement for the chip.
- Another object of the invention is to provide a sensor of the above character in which a thin diaphragm is formed in the crystalline silicon chip.
- Another object of the invention is to provide a sensor of the above character in which the reinforcing member extends for approximately 200 microns beyond the silicon diaphragm.
- Another object of the invention is to provide a guide wire with the above character in which the number of conducting wires required is kept to a minimum.
- Another object of the invention is to provide a guide wire and method in which simultaneous pressure and velocity measurements can be made.
- Another object of the invention is to provide a guide wire of the above character in which the diaphragm area has been maximized.
- Another object of the invention is to provide a guide wire with the above character in which two pressure sensors are provided on the guide wire which are spaced apart so that pressure measurements can be made on both sides of a stenosis.
- Another object of the invention is to provide a guide wire of the above character in which the sensors are covered to prevent the formation of blood clots.
- Another object of the invention is to provide an apparatus of the above character which includes a guide wire with an integral inflatable balloon.
- Another object of the invention is to provide an apparatus of the above character in which temperature compensation can be provided.
- Another object of the invention is to provide an apparatus of the above character which can be utilized in a half-bridge configuration.
- Additional features and objects of the invention will appear from the following description in which the preferred embodiments are set forth in detail in conjunction with the accompanying drawings.
-
FIG. 1 is a schematic illustration showing use of a guide wire incorporating a pressure sensor of the present invention and apparatus utilizing the same in conjunction with a patient undergoing a catheterization procedure for diagnosis or treatment. -
FIG. 2 is a side elevational view of a guide wire incorporating an ultra miniature pressure sensor of the present invention. -
FIG. 3 is an enlarged side elevational view of the distal extremity of the guide wire shown inFIG. 2 and showing the pressure sensor mounted therein. -
FIG. 4 is a top plan view looking along the line 4-4 ofFIG. 3 . -
FIG. 5 is a bottom plan view looking along the line 5-5 ofFIG. 3 . -
FIG. 6 is an isometric view of the pressure sensor shown inFIGS. 3, 4 and 5 with the lead wires connected thereto. -
FIG. 7 is a side elevational view of the pressure sensor shown inFIG. 6 . -
FIG. 8 is a top plan view of the pressure sensor shown inFIGS. 6 and 7 . -
FIG. 9 is a cross-sectional view taken along the line 9-9 ofFIG. 8 . -
FIG. 10 is a cross-sectional view taken along the line 10-10 ofFIG. 8 . -
FIG. 11 is a cross-sectional view taken along the line 11-11 ofFIG. 8 . -
FIG. 12 is a schematic diagram of the circuitry utilized in the pressure sensor shown inFIGS. 6-11 . -
FIG. 13 is a side elevational view of the distal extremity of another guide wire incorporating the pressure sensor with the sensor of the present invention being mounted in the tip housing. -
FIG. 14 is a side elevational view of the distal extremity of a guide wire having first and second pressure sensors mounted in the distal extremity of the same spaced apart to permit simultaneous measurements of proximal and distal pressures with respect to a stenosis. -
FIG. 15 is a partial side elevational view of another guide wire incorporating the present invention with an enclosed pressure sensor. -
FIG. 16 is a side elevational view partially in section of the distal extremity of another guide wire incorporating the present invention in which the pressure sensor is enclosed in a transition housing. -
FIG. 16A is a side elevational view in section showing an end-mounted pressure sensor incorporating the present invention. -
FIG. 17 is a side elevational view in section of a guide wire housing a tip-mounted sensor incorporating the present invention with an integral balloon. - In general, the guide wire of the present invention having pressure sensing capabilities is comprised of a flexible elongate element having proximal and distal extremities and having a diameter of 0.018″ and less. The pressure sensor is mounted on the distal extremity of a flexible elongate element. It is comprised of a crystal semiconductor material having a recess therein and forming a diaphragm bordered by a rim. A reinforcing member is bonded to the crystal and reinforces the rim of the crystal and has a cavity therein underlying the diaphragm and exposed to the diaphragm. A resistor having opposite ends is carried by the crystal and has a portion thereof overlying a portion of the diaphragm. Leads are connected to opposite ends of the resistor and extend within the flexible elongate member to the proximal extremity of the flexible elongate member.
- More in particular, the
guide wire 21 of the present invention having pressure measuring capabilities as shown inFIG. 1 is one that is adapted to be used in connection with apatient 22 lying on a table or abed 23 in a cath lab of a typical hospital in which a catheterization procedure such as for diagnosis or treatment is being performed on the patient. Theguide wire 21 is used withapparatus 24 which consists of acable 26 which connects theguide wire 21 to aninterface box 27.Interface box 27 is connected by anothercable 28 to acontrol console 29 which has incorporated as a part thereof avideo screen 31 on which awaveform 32 displaying ECG measurements may be provided as well as twotraces guide wire 21. - The
guide wire 21 is shown more in detail inFIG. 2 and as shown therein, theguide wire 21 can be constructed utilizing the various constructions as shown in U.S. Pat. Nos. 5,125,137; 5,163,445; 5,174,295; 5,178,159; 5,226,421; and 5,240,437. As disclosed therein, such a guide wire consists of a flexibleelongate element 41 having a proximal anddistal extremities 42 and 43 and which can be formed of a suitable material such as stainless steel having an outside diameter for example of 0.018″ or less and having a suitable wall thickness as for example, 0.001″ to 0.002″ and conventionally called a “hypotube” having a length of 150-170 centimeters. Where a smaller guide wire is desired, thehypotube 41 can have an exterior diameter of 0.014″ or less. Typically such a guide wire includes a core wire (not shown) of the type disclosed in the above identified patents which extends from the proximal extremity to the distal extremity of the flexibleelongate element 41 to provide the desired torsional properties for guide wires (See U.S. Pat. No. 5,163,445, col. 18:40-51) to facilitate steering of theguide wire 21 in the vessel. - A
coil spring 46 is provided and is formed of a suitable material such as stainless steel. It has an outside diameter of 0.018″ and is formed from a wire having a diameter of 0.003″. Thespring 46 is provided with aproximal extremity 47 which is threaded onto thedistal extremity 43 of the flexibleelongate member 41. Thedistal extremity 48 of thecoil spring 46 is threaded onto theproximal extremity 49 of an intermediate ortransition housing 51 such as disclosed in U.S. Pat. No. 5,174,295, formed of a suitable material such as stainless steel having an outside diameter of 0.018″ and having a suitable wall thickness as for example, 0.001″ to 0.002″. Thehousing 51 is provided with adistal extremity 52 which has theproximal extremity 53 of acoil spring 54 threaded thereon. Thecoil spring 54 is formed of a highly radiopaque material such as palladium or a tungsten platinum alloy. Thecoil spring 46 can have a suitable length as for, example 27 centimeters whereas, thecoil spring 54 can have a suitable length such as 3 centimeters. The intermediate ortransition housing 51 can have a suitable length as for example, one to five millimeters. The use of the twocoils housing 61 provides a very flexible floppy tip for theguide wire 21 as described in U.S. Pat. No. 5,174,295. Thecoil 54 is provided with a distal extremity which is threaded onto anend cap 57 also formed of a suitable material such as stainless steel and having an outside diameter of 0.018″ and a wall thickness of 0.001″ to 0.002″. Anultrasonic transducer 58 is mounted in the end cap in a manner described in U.S. Pat. No. 5,125,137 and hasconductors 61 and 62 secured to the front and rear sides of the same which extend interiorly to the proximal extremity of the flexibleelongate member 41. - A
torquer 66 of the type described in U.S. Pat. No. 5,178,159 is mounted on the proximal extremity 42 of the flexibleelongate member 41 for causing a rotation of aguide wire 21 when used in connection with catheterization procedures in a manner well known to those skilled in the art. - The proximal extremity 42 is also provided with a plurality of conducting sleeves (not shown) of the type disclosed in U.S. Pat. No. 5,178,159. In the present invention, one or more additional sleeves can be provided to make connection to the conductors hereinafter described. The proximal extremity 42 of the flexible elongate member is removably disposed within a housing 68 of the type described in U.S. Pat. Nos. 5,178,159, 5,348,481 and 5,358,409 that makes electrical contact with the sleeves on the proximal extremity 42 while permitting rotation of the sleeves and the flexible
elongate member 41. The housing 68 carries female receptacles (not shown) which receive the sleeves and which are connected to acable 71 connected to aconnector 72. Theconnector 72 is connected to anothermating connector 73 carried by thecable 26 and connected into theinterface box 27. - The portion of the
guide wire 21 therefore described is substantially conventional. In accordance with the present invention it is provided with a pressure measuring capability in the form of apressure sensor assembly 76 which is mounted within the intermediate ortransition housing 51. Thepressure sensor assembly 76 consists of adiaphragm structure 77 supported by abase plate 78. Thediaphragm structure 77 is formed of suitable materials such as “n” type or “p” type 100 oriented silicon with a resistivity of approximately 6-8 ohm-centimeters. Thediaphragm structure 77 is a die made from such a wafer. In accordance with the present invention, the die has a suitable length, as for example, 1050 microns and for a 0.014″ guide wire has a width of 250 microns and for a 0.018″ guide wire has a width of between 250 and 350 microns. It can have a suitable thickness, as for example, 50 microns. Arectangular diaphragm 79 is formed in thediaphragm structure 77 of a suitable thickness, as for example, 2.5 microns and having dimensions such as a length of 350 microns. Thediaphragm 79 has first and second or top andbottom surfaces endwalls 82 and twoparallel sidewalls 83 extending at right angles to theend walls 82 leading down to thetop surface 80 of thediaphragm 79 to form awell 84. As hereinafter explained, thediaphragm 79 is made relatively wide in comparison to thediaphragm structure 77 so that what remains is a relatively narrow rim 86 formed byside portions end portion 89. As can be seen fromFIGS. 6, 7 and 8, thediaphragm 79 is located at or near one end of the diaphragm structure or die 77. It has been found that it is desirable to provide a rectangular geometry for thediaphragm 79 rather than a square geometry in order to obtain the highest possible sensitivity for pressure measurements. For example, it has been found that the rectangular diaphragm provides approximately 1.5 times more sensitivity than does a square diaphragm for the same diaphragm thickness and width. - In etching the well 84 to form the
diaphragm 81, an impurity can be implanted into the backside of thediaphragm structure 77 before the etching process is commenced so that etching will stop at the desired depth, as for example, within 2 to 3 microns of thebottom surface 81 to provide adiaphragm 79 having a thickness ranging from 2 to 5 microns, and for example, the preferred thickness of 2.5 microns. Because the rim 86 provided on thediaphragm structure 77 surrounding therectangular diaphragm 79 is relatively thin, thebase plate 78 provides support for this rim to provide the necessary strength for thepressure sensor 76. - In order to obtain adequate performance characteristics such as sensitivity in the miniaturized
pressure sensor assembly 76 hereinbefore described, it has been found desirable to have as much of the width ofdiaphragm structure 77 as possible be occupied by thediaphragm 79 and at the same time to minimize the portion of thediaphragm structure 77 occupied by the rim. In order to achieve a diaphragm width ratio of at least 0.45 to 0.9 with respect to the width of thediaphragm 79 to the width of thestructure 77 and therefore to obtain the largest diaphragm possible in thediaphragm structure 77,diaphragm 79 is made relatively large compared to rim 86. With current manufacturing technology, it has been found feasible to have a width of rim 86 of 40 microns, which provides for adiaphragm 79 of 170 microns in a 250 micron-wide diaphragm structure 77 to provide a diaphragm width ratio of 0.68. In a larger diaphragm structure such as 350 microns wide, thepressure sensor assembly 76 can be made stronger by increasing the rim width to 90 microns. Alternatively, it can be made more sensitive by increasing the diaphragm width up to 270 microns. This results in a diaphragm width ratio for a 350 micron-wide device of between 0.49 and 0.77, depending on what combination of sensitivity and strength is desired. - Prior to or after the formation of the
rectangular diaphragm 79, a plurality of V-shaped recesses orgrooves 91 are formed in thediaphragm structure 77 on the end opposite the end at which thediaphragm 79 is located and on the side opposite the side in which thewell 84 is formed. These V-shapedrecesses 91 also can be formed in a conventional manner by the use of a conventional etch. It should be appreciated that if desired, the etching can be stopped so that the recesses formed are short of a complete V. By way of example, if the etching for the V-shaped recess was stopped at a depth of 12 microns, the bottom of the substantially V-shaped recess ortrench 91 would be approximately 8 microns wide. - After the V-shaped or substantially V-shaped recesses have been formed, a P+ diffusion utilizing a suitable material such as boron can be carried out to create a V-shaped region 92 (in the structure 77) which underlies the V-shaped
recess 91. Utilizing suitable masking a common layer 93 of a suitable material such as chromium is sputtered into the V-shapedrecess 91 to a suitable thickness as for example, 300 Angstroms followed by a layer 94 of a suitable material such as gold of a suitable thickness as for example 3000 Angstroms. The layers 93 and 94 overlie thebottom surface 81 to formpads 96 thereon. In depositing the gold in the V-shapedrecess 91 it is desirable to terminate the gold just short of the leftmost extremity of the V-shaped recess as viewed inFIG. 8 in order to minimize the likelihood of lead-to-lead shorting during the dicing operation when a wafer is sawed up into individual sensor chips. - By way of example, the spacing between V-
grooves 91 from center to center can be 75 microns with the V-groove having a width of 25 microns and having a typical depth of 18 microns. Themetal pads 96 formed by the chromium and gold layers 93 and 94 can have a suitable width as for example, 50 microns with the overlap on each side being approximately 12.5 microns to provide a spacing of approximately 25 microns between adjacent V-shapedpads 96. The bottom of the V-shaped groove can have a total length of approximately 250 microns. - The
regions 92 formed from the P+ diffusion have patterns that extend to the right from the three V-shapedrecesses 91 as viewed inFIG. 8 for a distance so that they underlie the approximate midpoint of thediaphragm 81 on opposite sides to provide generally U-shaped portions or resistors 92 a which are located on the diaphragm in areas of a maximum stress to provide maximum sensitivity to pressure changes. The resistors 92 a are provided with opposite ends, one end being connected to one each of the V-grooves and the other end being connected. to the center or common V-groove. Contact is made to these P+ diffused regions by the chromium and gold layers 93 and 94 hereinbefore described. - The
base plate 78 can be formed of a suitable material such as Pyrex supplied by Coming Glassworks and can have the same width as thediaphragm structure 77 but has a length which is less than the length of thediaphragm structure 77 so that the V-shapedgrooves 91 are exposed on the underside of thediaphragm structure 77 as shown inFIG. 6 . It also can have a suitable length such as 850 microns. It is provided with a rectangular recess orcavity 101 having substantially the same size as thediaphragm 79. It can be etched into the Pyrex by suitable means such as a conventional etching process utilizing hydrochloric acid. After the etching has been completed to form therectangular recess 101 it is bonded to the lower surface of thediaphragm structure 77 to form a hermetic seal with respect to the same so that thecavity 101 underlies thediaphragm 79 and is exposed to thebottom surface 81 of thediaphragm 79. Thecavity 101 below thediaphragm 79 serves as a reference pressure chamber and can be filled with a suitable fluid. For example, it can be filled with air to half an atmosphere to provide a partial vacuum. Alternatively, thecavity 101 can be filled to one atmosphere or it can be completely evacuated. - A
trifilar lead structure 106 is connected to therectangular diaphragm structure 77. It has insulated copper leads 107 of a suitable diameter as for example 48AWG soldered into place to the V-shapedrecesses 91 so that theleads 107 extend outwardly therefrom and lie in a plane parallel to the plane of thediaphragm structure 77. Thetrifilar lead construction 106 provides insulation around each lead and in addition there is provided additional insulation which surrounds the leads and which interconnects the leads into a single unit which can be readily extended through the hypotube forming the flexibleelongate member 41. - The
pressure sensor assembly 76 is mounted within a cutout 111 provided in thetransition housing 51 and secured therein by suitable means such as an epoxy 112 so that the outer surface of thepressure sensor assembly 76 is generally flush with the outer surface of the transition housing 51 (seeFIG. 3 ) and so that thediaphragm 79 is exposed to ambient and theleads 106 extend through the flexibleelongate member 41 to the proximal extremity 42 of the same where they are connected to the sleeves (not shown) carried by the proximal extremity 42 disposed within the housing 68. Also, theconductors 61 and 62 of thevelocity sensing transducer 58 are connected to two of such sleeves (not shown) provided on the proximal extremity 42. - A schematic of the wiring for the
pressure sensor assembly 76 is shown inFIG. 12 . The two generally U-shaped portions 92 a on opposite sides of thediaphragm 79 are represented as resistors and are connected to the three leads 107 in the manner shown. One of the first of the outside leads 107 is “SIGNAL OUT” (+) and the second or other outside lead is “SIGNAL OUT” (−) and the third or middle lead is a common lead as shown. This pattern makes it possible to not cross leads and has the third lead going up the middle or center of the die or thediaphragm structure 77. It can be seen that the two resistors 92 a connected as shown form a half bridge one of the resistors responds positively to pressure change and the other resistor responds negatively to a pressure change. Thus, as a pressure is supplied to thediaphragm 79, one resistor increases in value and the other resistor decreases in value to provide a voltage change. By applying the same current to both resistors at the same time, temperature effects can be measured because temperature change will affect both of the resistors in the same way so that the pressure measurements can be compensated for any changes in temperature which are sensed by the resistors 92 a. The changes in resistivity caused by the temperature changes in the resistors will cancel each other out because of the half bridge configuration used. In connection withFIG. 12 it can be seen that with the use of three leads it is possible to obtain temperature compensation by utilizing a half-bridge configuration for the pressure sensor. Alternatively, a more precise temperature compensation can be provided by directly measuring the two resistances, and then solving the mathematical equations which relate temperature and pressure to the two sensor resistances. - Operation and use of the
guide wire 21 in performing a catheterization procedure such as angioplasty may now be briefly described as follows: Let it be assumed that a guiding catheter (not shown) has been introduced into the femoral artery of the patient 22 shown inFIG. 1 with the distal extremity near the desired location in the heart in which it is desired to perform an angioplasty. Theguide wire 21 of the present invention is inserted into the guiding catheter. At the time that its distal extremity is in close proximity to the distal extremity of the guiding catheter, the pressure output signal from the guide wire is compared with that of the guiding catheter assuming that the guide wire is provided with pressure sensing capabilities. If there is a difference between the two pressure measurements, the pressure measurement from theguide wire 21 is equalized with that from the guiding catheter at thecontrol console 29. The distal extremity of theguide wire 21 is then advanced so that it is proximal of the stenosis to be treated at which time a pressure measurement is made. After this pressure measurement has been recorded, the distal extremity of the guide wire is then advanced through the stenosis and another pressure measurement made to determine whether the stenosis is severe enough to require treatment by angioplasty. Alternatively, the distal extremity ofguide wire 21 can be immediately advanced to the distal side of the stenosis rather than making a pressure measurement proximal of the stenosis and thereafter comparing the pressure measurement on the distal extremity being measured by theguide wire 21 with the pressure measurement being provided proximal of the stenosis by the guiding catheter. If it is determined that the stenosis causes a partial occlusion which is severe enough to warrant use of an angioplasty procedure, an angioplasty catheter having a balloon thereon (not shown) can be advanced over theguide wire 21 and advanced into the stenosis to dilate the stenosis. After dilation has occurred, the angioplasty balloon can be withdrawn from the stenosis and pressure measurements can be made proximal and distal of the stenosis to ascertain the effect of the angioplastic treatment. If the pressure measurements indicate that the original dilation by the angioplasty balloon has been inadequate, another balloon catheter as for example, one having a balloon of a greater diameter can then be positioned over theguide wire 21 by utilizing an exchange wire if appropriate. The larger angioplasty catheter can be advanced through the stenosis and inflated to again dilate the stenosis to a larger size after which it can be withdrawn. Thereafter, pressure measurements proximal and distal of the stenosis can again be made to ascertain whether or not the second dilation which has been performed is adequate. The decisions to be made in connection with such procedures can be readily made by use of thecontrol console 29 by observing thetraces video monitor 31. - It also should be appreciated that at the same time Doppler velocity measurements can be made by the
transducer 58. That information can be used in connection with the pressure measurements to ascertain the need for performing the angioplasty procedure or for determining the efficacy of the angioplasty procedure performed. Because of the very small diameters of the guide wires as for example, 0.018″ or 0.014″, it is possible to utilize theguide wire 21 of the present invention with very small coronary vessels in the heart. In connection with the leads from theDoppler transducer 58 it should be appreciated that if desired some of the conductors provided for the Doppler ultrasound transducer can be shared with the wires or conductors provided for thepressure sensor assembly 76. Thus, two of the wires for the pressure sensor can be utilized for the Doppler transducer because the pressure sensor operates at DC or up to a few hundred Hz or KHz whereas the Doppler sensor operates at 10 MHz and above. These frequency ranges can be readily separated by one skilled in the art by using simple filters and the appropriate circuitry. - In connection with the present invention it should be appreciated that rather than bonding the
leads 107 into the V-grooves or V-shapedrecesses 91, thePyrex base plate 78 can be formed so it has the same length as thediaphragm structure 77. V-shaped or U-shaped grooves can be formed in the base plate underlying the V-shaped grooves to in effect form little tunnels which can be utilized for receiving thewires 107 and for them to be soldered therein. Such a construction aids in the placement of wires which are of the very small diameter, as for example, 1 mil. - Another embodiment of a
guide wire 121 incorporating the present invention is shown inFIG. 13 . In theguide wire 121,pressure sensor assembly 76 is mounted in atip housing 122. Thetip housing 122 can be substituted at theend cap 57 and threaded into thedistal extremity 56 of thecoil 54. Thetip housing 122 can be formed of a suitable material such as stainless steel having an outside diameter of 0.018″ and a wall thickness of 0.001″ to 0.002″. Thesensor assembly 76 can be of the type hereinbefore described and can be mounted in acutout 123 provided in thetip housing 122 much in the same manner as thesensor assembly 76 was mounted in the cutout 111 in thetransition housing 51 such as by use of anepoxy 124. Anhemispherical end cap 126 formed of a radiopaque material such as palladium or tungsten platinum alloy can be mounted on the distal extremity of thetip housing 122. Alternatively, theend cap 126 can be formed of a non-radiopaque material such as epoxy or silicone rubber. - Thus it can be seen with the embodiment of the
guide wire 121 shown inFIG. 13 , theguide wire 121 can be utilized in the same manner as theguide wire 21 hereinbefore described with the exception of it cannot be used for making velocity measurements because that capability has been removed from theguide wire 121. - Another guide wire 131 incorporating the present invention is shown in
FIG. 14 in which twopressure sensors 76 have been provided. Thesensors 76 have been spaced apart a suitable distance as for example, 3 centimeters with one of the pressure sensors being mounted in thetransition housing 51 and the other pressure sensor being mounted in atip housing 122 of the type shown inFIG. 13 . With such an arrangement, it can be seen that the distal extremity of the guide wire 131 can be advanced across a stenosis in a vessel with thepressure sensor 76 mounted in the tip housing being distal of the stenosis to measure distal pressure and thepressure sensor 76 in thetransition housing 51 being proximal of the stenosis to measure proximal pressure. Thus, it can be seen that it is possible to measure simultaneously the distal pressure and the proximal pressure with respect to a stenosis in a vessel. This may give more accurate measurements than utilizing the proximal pressure being sensed by the guiding catheter. - When using two
pressure sensors 76 in the same guide wire as shown inFIG. 14 , it is possible to utilize the same common wire for both of the transducers, thus making it necessary to provide only five wires rather than six wires for the two pressure sensors. - Still another
guide wire 141 incorporating the present invention is shown inFIG. 15 in which acover 142 is provided for covering thepressure sensor assembly 76 provided in thetransition housing 51. The cover is elongate and extends the length of the cutout 111 and is arcuate in cross-section so that it conforms to the conformation of thetransition housing 51. Thecover 142 can be secured in place by a suitable means such as an adhesive. Thecover 142 overlying thepressure sensor assembly 76 is provided with apin hole 143 which immediately overlies thediaphragm 79. Thepin hole 143 can be of a suitable size as for example 2-5 mils in and preferably 3 mils in diameter. Thecover 142 serves to prevent the large opening provided by the cutout 111 from collecting blood which could possibly clot. Thecover 142 also serves to protect thesensor 76 from damage. It also prevents thesensor 76 from being broken loose during use of theguide wire 141. It should be appreciated that if desired, the volume beneath thecover 142 can be filled with viscous fluid such as oil which can be utilized for transmitting pressure from thepin hole 143 to thediaphragm 81. With a smallsize pin hole 143, the viscous fluid provided would not have a tendency to bleed out of thetransition housing 51. The viscous fluid would be held in place because of the surface tension of the fluid. Because there is a very short distance between thepin hole 143 and thediaphragm 79, there would be very little tendency for the viscous fluid to damp any pressure signal transmitted from the blood in which theguide wire 141 is disposed to the diaphragm. - Another
guide wire 151 incorporating the present invention is shown inFIG. 16 having atransition housing 152 formed of a suitable material such as stainless steel and having an OD of 0.018″ or less. Apressure sensor assembly 76 of the type hereinbefore described is mounted within thebore 153 of thetransition housing 152 and is secured therein by mounting the same in an epoxy 154 while leaving the area immediately above thediaphragm 79 exposed to apin hole 156 provided in thetransition housing 152. The space overlying thediaphragm 81 exposed to thepin hole 156 can be filled with aviscous fluid 157 such as oil. Theviscous fluid 157 can be retained within the desired location by abarrier 158 formed on the proximal side of thepressure sensor 76 having the trifilarlead structure 106 extending therethrough, in sealing engagement therewith. To seal the other end of thebore 153, anintermediate end cap 161 can be provided which is provided with a barrier 182 extending thereacross to seal thebore 153. Theintermediate end cap 161 can be bonded to thetransition housing 152 by a suitable means such as an adhesive (not shown). Thecoil 54 can be threaded onto theintermediate end cap 161 and can be threaded onto atip housing 166 that carries a roundedhemispherical tip 167. With such a construction it can be seen that thepressure sensor assembly 76 is protected within thetransition housing 152. - In
FIG. 16A aguide wire 168 is shown which is very similar to theguide wire 151 with the exception that thehousing 152 has been provided on the distal extremity of thecoil 46 with thetip 167 directly mounted on thehousing 152 for closing thebore 153. - In
FIG. 17 there is shown another embodiment of aguide wire 171 incorporating the present invention which has an integral balloon carried thereby. A guide wire with an integral balloon is described in U.S. Pat. No. 5,226,421. Theguide wire 171 consists of a flexible elongatetubular member 173 in a manner formed of a suitable material such as plastic which is provided with adistal extremity 174. Aninflatable balloon 176 is secured to thedistal extremity 174 of the flexibleelongate member 173 in a manner well known to those skilled in the art. Such a balloon can be formed integral with the distal extremity and can be formed of the same material as the flexible elongatetubular member 173. Alternatively, it can be formed of a different material or the same material and be formed as a separate part and secured to thedistal extremity 174 by suitable means such as adhesive. - The
balloon 176 is provided with a distal extremity which is closed and which is secured to the proximal extremity of acoil spring 178 formed of a radiopaque material such as a palladium or tungsten platinum alloy threaded onto atip housing 179. Thetip housing 179 can be formed in a manner similar to thetip housing 122 shown inFIG. 13 having apressure sensor 76 mounted therein and carrying anend cap 181. The trifilar leads 106 connected to thesensor 76 extend through thecoil 178 and through theballoon 176 and through the flexible elongate tubular member 172 to the proximal extremity thereof. Acore wire 186 formed of a suitable material such as stainless steel is provided in the flexibleelongate member 173 and can be provided with a diameter such as disclosed in U.S. Pat. No. 5,226,421. Thecore wire 186 is provided with a tapered portion 186 a extending through the balloon which has a distal extremity secured to thehousing 179 by a suitable means such as the epoxy utilized for mounting thesensor 76 within the housing. The flexible elongate tubular member 172 is provided with aballoon inflation lumen 187 which can be used for inflating and deflating theballoon 176. - The
guide wire 171 with anintegral balloon 171 can be utilized in a manner similar to that hereinbefore described for the other guide wires. Rather than deploying a separate catheter with a balloon thereon over the guide wire, theguide wire 171 itself carries theballoon 176 which can be inflated to dilate the stenosis after the proximal and distal pressure measurements have been made by the tip mountedsensor 76. After theballoon 176 has been deflated, the pressure measurement can be made to ascertain the pressure in the distal extremity after dilation has occurred. If necessary, theballoon 176 can be re-inflated to perform another dilation of the stenosis to obtain improved blood flow through the stenosis. - After an appropriate dilation has occurred, the
guide wire 171 with integral balloon can be removed in a conventional manner. The angioplasty procedure can then be completed in a conventional manner. - From the foregoing, it can be seen that there has been provided an ultra miniature pressure sensor which can be utilized on guide wires having a diameter of 0.018″ and less which can be utilized for making accurate measurements proximal and distal of a stenosis in the coronary vessel. This is made possible because of the small size of the pressure sensor incorporated into the distal extremity of the guide wire. In addition to sensing pressure, flow velocity can also be obtained by the use of a distally mounted velocity transducer provided on the same guide wire as on which the pressure sensor is mounted. Alternatively, additional first and second pressure sensors can be provided on the distal extremity of a guide wire so that pressure measurements can be made simultaneously, proximally and distally of the stenosis. The pressure sensor is constructed in such a manner so that it can be readily incorporated within the confines of a small guide wire as for example, 0.018″ and less. It can be constructed to avoid a large opening in the distal extremity of the guide wire to inhibit or prevent the formation of clots. The pressure sensor also can be protected so that it cannot be readily damaged or broken loose. In addition, where desired, the guide wire can be provided with an integrally mounted balloon on its distal extremity so that the guide wire can be utilized for performing an angioplasty procedure while at the same time facilitating the making of pressure measurements, proximal and distal of the stenosis being treated.
Claims (1)
1. An apparatus for measurement of a flow characteristic comprising:
a guidewire having a diameter of 0.018″ or less;
a solid state pressure transducer;
a housing, wherein the solid state pressure transducer is disposed at least partially within the housing; and
an opening within the housing which is sized so that ambient fluid is allowed to enter but non-flowing material is not allowed to enter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/442,684 US20070149885A1 (en) | 1994-09-02 | 2006-05-26 | Ultra miniature pressure sensor |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30044594A | 1994-09-02 | 1994-09-02 | |
US08/710,062 US5715827A (en) | 1994-09-02 | 1996-09-09 | Ultra miniature pressure sensor and guide wire using the same and method |
US08/912,879 US6106476A (en) | 1994-09-02 | 1997-08-15 | Ultra miniature pressure sensor and guide wire using the same and method |
US09/644,111 US6767327B1 (en) | 1994-09-02 | 2000-08-21 | Method of measuring blood pressure and velocity proximally and distally of a stenosis |
US10/247,043 US6976965B2 (en) | 1994-09-02 | 2002-09-19 | Ultra miniature pressure sensor |
US11/303,249 US8419648B2 (en) | 1994-09-02 | 2005-12-15 | Ultra miniature pressure sensor |
US11/442,684 US20070149885A1 (en) | 1994-09-02 | 2006-05-26 | Ultra miniature pressure sensor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/303,249 Continuation US8419648B2 (en) | 1994-09-02 | 2005-12-15 | Ultra miniature pressure sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070149885A1 true US20070149885A1 (en) | 2007-06-28 |
Family
ID=23159131
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/710,062 Expired - Lifetime US5715827A (en) | 1994-09-02 | 1996-09-09 | Ultra miniature pressure sensor and guide wire using the same and method |
US08/912,879 Expired - Lifetime US6106476A (en) | 1994-09-02 | 1997-08-15 | Ultra miniature pressure sensor and guide wire using the same and method |
US09/644,111 Expired - Lifetime US6767327B1 (en) | 1994-09-02 | 2000-08-21 | Method of measuring blood pressure and velocity proximally and distally of a stenosis |
US10/247,043 Expired - Fee Related US6976965B2 (en) | 1994-09-02 | 2002-09-19 | Ultra miniature pressure sensor |
US10/247,391 Expired - Fee Related US7097620B2 (en) | 1994-09-02 | 2002-09-19 | Guidewire with pressure and temperature sensing capabilities |
US11/303,249 Expired - Fee Related US8419648B2 (en) | 1994-09-02 | 2005-12-15 | Ultra miniature pressure sensor |
US11/442,684 Abandoned US20070149885A1 (en) | 1994-09-02 | 2006-05-26 | Ultra miniature pressure sensor |
US11/650,064 Expired - Fee Related US7967762B2 (en) | 1994-09-02 | 2007-01-04 | Ultra miniature pressure sensor |
US13/169,174 Expired - Fee Related US8419647B2 (en) | 1994-09-02 | 2011-06-27 | Ultra miniature pressure sensor |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/710,062 Expired - Lifetime US5715827A (en) | 1994-09-02 | 1996-09-09 | Ultra miniature pressure sensor and guide wire using the same and method |
US08/912,879 Expired - Lifetime US6106476A (en) | 1994-09-02 | 1997-08-15 | Ultra miniature pressure sensor and guide wire using the same and method |
US09/644,111 Expired - Lifetime US6767327B1 (en) | 1994-09-02 | 2000-08-21 | Method of measuring blood pressure and velocity proximally and distally of a stenosis |
US10/247,043 Expired - Fee Related US6976965B2 (en) | 1994-09-02 | 2002-09-19 | Ultra miniature pressure sensor |
US10/247,391 Expired - Fee Related US7097620B2 (en) | 1994-09-02 | 2002-09-19 | Guidewire with pressure and temperature sensing capabilities |
US11/303,249 Expired - Fee Related US8419648B2 (en) | 1994-09-02 | 2005-12-15 | Ultra miniature pressure sensor |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/650,064 Expired - Fee Related US7967762B2 (en) | 1994-09-02 | 2007-01-04 | Ultra miniature pressure sensor |
US13/169,174 Expired - Fee Related US8419647B2 (en) | 1994-09-02 | 2011-06-27 | Ultra miniature pressure sensor |
Country Status (7)
Country | Link |
---|---|
US (9) | US5715827A (en) |
EP (2) | EP1658808A1 (en) |
JP (1) | JP3619845B2 (en) |
AU (1) | AU3212895A (en) |
CA (1) | CA2198909A1 (en) |
DE (1) | DE69534748T2 (en) |
WO (1) | WO1996007351A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009037554A2 (en) * | 2007-09-21 | 2009-03-26 | Radi Medical Systems Ab | A sensor for intravascular measurements within a living body |
US20100140956A1 (en) * | 2008-12-04 | 2010-06-10 | Searete Llc. | Method for generation of power from intraluminal pressure changes |
US20100140957A1 (en) * | 2008-12-04 | 2010-06-10 | Searete Llc | Method for generation of power from intraluminal pressure changes |
US20100140958A1 (en) * | 2008-12-04 | 2010-06-10 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Method for powering devices from intraluminal pressure changes |
CN103720463A (en) * | 2013-12-31 | 2014-04-16 | 上海交通大学 | Intelligent pressure guide wire based on flexible MEMS sensors and manufacturing method of sensors |
US20140187978A1 (en) * | 2012-12-28 | 2014-07-03 | Volcano Corporation | Intravascular Devices Having Information Stored Thereon And/Or Wireless Communication Functionality, Including Associated Devices, Systems, And Methods |
US9353733B2 (en) | 2008-12-04 | 2016-05-31 | Deep Science, Llc | Device and system for generation of power from intraluminal pressure changes |
US9526418B2 (en) | 2008-12-04 | 2016-12-27 | Deep Science, Llc | Device for storage of intraluminally generated power |
US9631610B2 (en) | 2008-12-04 | 2017-04-25 | Deep Science, Llc | System for powering devices from intraluminal pressure changes |
CN107802248A (en) * | 2017-12-12 | 2018-03-16 | 吉林大学 | A kind of pulse-taking instrument based on piezoresistive transducer array |
US10422713B2 (en) | 2014-12-19 | 2019-09-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Pressure sensor suited to measuring pressure in an aggressive environment |
Families Citing this family (366)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU3212895A (en) * | 1994-09-02 | 1996-03-27 | Cardiometrics, Inc. | Ultra miniature pressure sensor and guidewire using the same and method |
SE9600334D0 (en) | 1996-01-30 | 1996-01-30 | Radi Medical Systems | Combined flow, pressure and temperature sensor |
US6019728A (en) * | 1996-05-08 | 2000-02-01 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Catheter and sensor having pressure detecting function |
ATE262945T1 (en) * | 1996-05-20 | 2004-04-15 | Medtronic Ave Inc | BALLOON CATHETER WITH EXPANDING CORE WIRE |
DE19638813C1 (en) * | 1996-09-20 | 1998-03-05 | Sican F & E Gmbh Sibet | Measuring device for medical applications with an intracorporeally usable sensor element and method for its production |
ES2208963T3 (en) * | 1997-01-03 | 2004-06-16 | Biosense, Inc. | PRESSURE SENSITIVE VASCULAR ENDOPROTESIS. |
US6355016B1 (en) | 1997-03-06 | 2002-03-12 | Medtronic Percusurge, Inc. | Catheter core wire |
US6190332B1 (en) | 1998-02-19 | 2001-02-20 | Percusurge, Inc. | Core wire with shapeable tip |
JP3679419B2 (en) * | 1997-03-25 | 2005-08-03 | ラディ・メディカル・システムズ・アクチェボラーグ | Guide wire assembly and system using the same |
US6248083B1 (en) | 1997-03-25 | 2001-06-19 | Radi Medical Systems Ab | Device for pressure measurements |
JPH1133004A (en) * | 1997-07-15 | 1999-02-09 | Nippon B X I Kk | Guide wire with pressure sensor |
AU1781699A (en) * | 1998-01-12 | 1999-07-26 | Florence Medical Ltd. | A system and method for characterizing lesions and blood vessel walls using multi-point pressure measurements |
WO1999040856A1 (en) * | 1998-02-10 | 1999-08-19 | Biosense Inc. | Improved catheter calibration |
EP1059878B1 (en) | 1998-03-05 | 2005-11-09 | Gil M. Vardi | Optical-acoustic imaging device |
WO2000032105A1 (en) * | 1998-11-25 | 2000-06-08 | Ball Semiconductor, Inc. | Monitor for interventional procedures |
US6142958A (en) * | 1998-12-23 | 2000-11-07 | Radi Medical Systems Ab | Sensor and guide wire assembly |
EP1479407B1 (en) * | 1998-12-23 | 2006-03-01 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US6210339B1 (en) | 1999-03-03 | 2001-04-03 | Endosonics Corporation | Flexible elongate member having one or more electrical contacts |
US20030032886A1 (en) * | 1999-03-09 | 2003-02-13 | Elhanan Dgany | System for determining coronary flow reserve (CFR) value for a stenosed blood vessel, CFR processor therefor, and method therefor |
US6471656B1 (en) | 1999-06-25 | 2002-10-29 | Florence Medical Ltd | Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters |
US6546787B1 (en) | 1999-03-25 | 2003-04-15 | Regents Of The University Of Minnesota | Means and method for modeling and treating specific tissue structures |
ATE389353T1 (en) | 1999-05-27 | 2008-04-15 | Radi Medical Systems | METHOD FOR TEMPERATURE COMPENSATION IN A COMBINED PRESSURE AND TEMPERATURE SENSOR |
US6409677B1 (en) | 1999-05-27 | 2002-06-25 | Radi Medical Systems Ab | Method for temperature compensation in a combined pressure and temperature sensor |
DE20012237U1 (en) * | 1999-07-26 | 2000-10-12 | Karl Storz GmbH & Co. KG, 78532 Tuttlingen | Medical instrument with a contactlessly readable information carrier |
WO2001013779A2 (en) * | 1999-08-25 | 2001-03-01 | Florence Medical Ltd. | A method and system for stenosis identification, localization and characterization using pressure measurements |
US6265792B1 (en) | 1999-09-08 | 2001-07-24 | Endosonics Corporation | Medical device having precision interconnect |
US6394986B1 (en) | 1999-11-06 | 2002-05-28 | Millar Instruments, Inc. | Pressure sensing module for a catheter pressure transducer |
JP4166016B2 (en) | 2000-01-04 | 2008-10-15 | メドトロニック ヴァスキュラー インコーポレイテッド | A device that forms a pathway between adjacent body lumens |
US6685716B1 (en) | 2000-01-04 | 2004-02-03 | Transvascular, Inc. | Over-the-wire apparatus and method for open surgery making of fluid connection between two neighboring vessels |
JP3620795B2 (en) | 2000-01-06 | 2005-02-16 | ローズマウント インコーポレイテッド | Grain growth in electrical interconnects for microelectromechanical systems. |
US6505516B1 (en) | 2000-01-06 | 2003-01-14 | Rosemount Inc. | Capacitive pressure sensing with moving dielectric |
US6561038B2 (en) | 2000-01-06 | 2003-05-13 | Rosemount Inc. | Sensor with fluid isolation barrier |
US6520020B1 (en) | 2000-01-06 | 2003-02-18 | Rosemount Inc. | Method and apparatus for a direct bonded isolated pressure sensor |
US6508129B1 (en) | 2000-01-06 | 2003-01-21 | Rosemount Inc. | Pressure sensor capsule with improved isolation |
US6264612B1 (en) * | 2000-01-14 | 2001-07-24 | Children's Hospital Medical Center | Catheter with mechano-responsive element for sensing physiological conditions |
JP3619464B2 (en) * | 2000-03-21 | 2005-02-09 | ラディ・メディカル・システムズ・アクチェボラーグ | Resonant pressure transducer system |
SE0001213D0 (en) * | 2000-04-04 | 2000-04-04 | Patrik Melvaas | Sensing device |
US6636769B2 (en) | 2000-12-18 | 2003-10-21 | Biosense, Inc. | Telemetric medical system and method |
US6638231B2 (en) * | 2000-12-18 | 2003-10-28 | Biosense, Inc. | Implantable telemetric medical sensor and method |
US6783499B2 (en) | 2000-12-18 | 2004-08-31 | Biosense, Inc. | Anchoring mechanism for implantable telemetric medical sensor |
US6746404B2 (en) * | 2000-12-18 | 2004-06-08 | Biosense, Inc. | Method for anchoring a medical device between tissue |
US6658300B2 (en) | 2000-12-18 | 2003-12-02 | Biosense, Inc. | Telemetric reader/charger device for medical sensor |
US6652464B2 (en) | 2000-12-18 | 2003-11-25 | Biosense, Inc. | Intracardiac pressure monitoring method |
AU2002245291A1 (en) | 2001-01-22 | 2002-07-30 | Integrated Sensing Systems, Inc. | Sensing catheter system and method of fabrication |
US20040243175A1 (en) * | 2001-03-12 | 2004-12-02 | Don Michael T. Anthony | Vascular obstruction removal system and method |
US6673023B2 (en) | 2001-03-23 | 2004-01-06 | Stryker Puerto Rico Limited | Micro-invasive breast biopsy device |
US7100148B2 (en) * | 2001-03-16 | 2006-08-29 | Sap Ag | Development computer, development program for combining components to applications, using component descriptors related to the components, method, and computer program |
US6881194B2 (en) * | 2001-03-21 | 2005-04-19 | Asahi Intec Co., Ltd. | Wire-stranded medical hollow tube, and a medical guide wire |
US20020138091A1 (en) * | 2001-03-23 | 2002-09-26 | Devonrex, Inc. | Micro-invasive nucleotomy device and method |
US20020138021A1 (en) * | 2001-03-23 | 2002-09-26 | Devonrex, Inc. | Micro-invasive tissue removal device |
US6585660B2 (en) * | 2001-05-18 | 2003-07-01 | Jomed Inc. | Signal conditioning device for interfacing intravascular sensors having varying operational characteristics to a physiology monitor |
US6890303B2 (en) * | 2001-05-31 | 2005-05-10 | Matthew Joseph Fitz | Implantable device for monitoring aneurysm sac parameters |
US8579825B2 (en) * | 2001-06-15 | 2013-11-12 | Radi Medical Systems Ab | Electrically conductive guide wire |
US7455666B2 (en) | 2001-07-13 | 2008-11-25 | Board Of Regents, The University Of Texas System | Methods and apparatuses for navigating the subarachnoid space |
US6912759B2 (en) * | 2001-07-20 | 2005-07-05 | Rosemount Aerospace Inc. | Method of manufacturing a thin piezo resistive pressure sensor |
JP2005504275A (en) * | 2001-09-18 | 2005-02-10 | ユー.エス. ジェノミクス, インコーポレイテッド | Differential tagging of polymers for high-resolution linear analysis |
US6663570B2 (en) | 2002-02-27 | 2003-12-16 | Volcano Therapeutics, Inc. | Connector for interfacing intravascular sensors to a physiology monitor |
US7134994B2 (en) | 2002-05-20 | 2006-11-14 | Volcano Corporation | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US7371520B2 (en) * | 2002-05-28 | 2008-05-13 | U.S. Genomics, Inc. | Methods and apparati using single polymer analysis |
US7282330B2 (en) | 2002-05-28 | 2007-10-16 | U.S. Genomics, Inc. | Methods and apparati using single polymer analysis |
US7060075B2 (en) * | 2002-07-18 | 2006-06-13 | Biosense, Inc. | Distal targeting of locking screws in intramedullary nails |
US7013178B2 (en) * | 2002-09-25 | 2006-03-14 | Medtronic, Inc. | Implantable medical device communication system |
US7139613B2 (en) * | 2002-09-25 | 2006-11-21 | Medtronic, Inc. | Implantable medical device communication system with pulsed power biasing |
US8303511B2 (en) | 2002-09-26 | 2012-11-06 | Pacesetter, Inc. | Implantable pressure transducer system optimized for reduced thrombosis effect |
US7149587B2 (en) * | 2002-09-26 | 2006-12-12 | Pacesetter, Inc. | Cardiovascular anchoring device and method of deploying same |
US7245789B2 (en) | 2002-10-07 | 2007-07-17 | Vascular Imaging Corporation | Systems and methods for minimally-invasive optical-acoustic imaging |
US20040102806A1 (en) * | 2002-11-27 | 2004-05-27 | Scimed Life Systems, Inc. | Intravascular filter monitoring |
EP1589872A4 (en) | 2003-01-16 | 2009-05-06 | Galil Medical Ltd | Device, system, and method for detecting and localizing obstruction within a blood vessel |
WO2004062526A2 (en) * | 2003-01-16 | 2004-07-29 | Galil Medical Ltd. | Device, system, and method for detecting, localizing, and characterizing plaque-induced stenosis of a blood vessel |
SE526036C2 (en) * | 2003-07-02 | 2005-06-21 | Radi Medical Systems | Sensor for medical intravascular measurements, has mounting base that extends in direction perpendicular to longitudinal axis of sensor, fixed with core wire such that clearance is obtained between sensitive end of chip and core wire |
US6993974B2 (en) * | 2003-07-02 | 2006-02-07 | Radi Medical Systems Ab | Sensor and guide wire assembly |
GB0329019D0 (en) * | 2003-12-15 | 2004-01-14 | Imp College Innovations Ltd | Acoustic wave devices |
US7286884B2 (en) | 2004-01-16 | 2007-10-23 | Medtronic, Inc. | Implantable lead including sensor |
JP4602993B2 (en) * | 2004-01-16 | 2010-12-22 | ボストン サイエンティフィック リミテッド | Method and apparatus for medical imaging |
US20080051660A1 (en) * | 2004-01-16 | 2008-02-28 | The University Of Houston System | Methods and apparatuses for medical imaging |
US20050159801A1 (en) * | 2004-01-16 | 2005-07-21 | Medtronic, Inc. | Novel implantable lead including sensor |
US20050187487A1 (en) * | 2004-01-23 | 2005-08-25 | Azizkhan Richard G. | Microsensor catheter and method for making the same |
WO2005079492A2 (en) | 2004-02-17 | 2005-09-01 | Traxtal Technologies Inc. | Method and apparatus for registration, verification, and referencing of internal organs |
EP1755723B1 (en) | 2004-06-04 | 2009-10-21 | Radi Medical Systems Ab | Medical guidewire with sensor |
US7263894B2 (en) * | 2004-06-07 | 2007-09-04 | Radi Medical Systems Ab | Sensor and guide wire assembly |
SE0402145D0 (en) * | 2004-09-08 | 2004-09-08 | Radi Medical Systems | Pressure measurement system |
US8277386B2 (en) | 2004-09-27 | 2012-10-02 | Volcano Corporation | Combination sensor guidewire and methods of use |
EP1827243B1 (en) | 2004-11-05 | 2010-01-20 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Access system |
US7751868B2 (en) | 2004-11-12 | 2010-07-06 | Philips Electronics Ltd | Integrated skin-mounted multifunction device for use in image-guided surgery |
US7805269B2 (en) | 2004-11-12 | 2010-09-28 | Philips Electronics Ltd | Device and method for ensuring the accuracy of a tracking device in a volume |
KR100689707B1 (en) * | 2004-11-12 | 2007-03-08 | 삼성전자주식회사 | Bank selection signal control circuit, semiconductor memory device having the same and method for control bank selection signal |
US20060116602A1 (en) * | 2004-12-01 | 2006-06-01 | Alden Dana A | Medical sensing device and system |
US20060135953A1 (en) * | 2004-12-22 | 2006-06-22 | Wlodzimierz Kania | Tissue ablation system including guidewire with sensing element |
US20080021497A1 (en) | 2005-01-03 | 2008-01-24 | Eric Johnson | Endoluminal filter |
US7840254B2 (en) | 2005-01-18 | 2010-11-23 | Philips Electronics Ltd | Electromagnetically tracked K-wire device |
WO2006078678A2 (en) | 2005-01-18 | 2006-07-27 | Traxtal Inc. | Method and apparatus for guiding an instrument to a target in the lung |
US20060178586A1 (en) * | 2005-02-07 | 2006-08-10 | Dobak John D Iii | Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones |
US20080021336A1 (en) | 2006-04-24 | 2008-01-24 | Dobak John D Iii | Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony |
US7231829B2 (en) | 2005-03-31 | 2007-06-19 | Medtronic, Inc. | Monolithic integrated circuit/pressure sensor on pacing lead |
CA2612603C (en) | 2005-06-21 | 2015-05-19 | Traxtal Inc. | Device and method for a trackable ultrasound |
EP1898775B1 (en) | 2005-06-21 | 2013-02-13 | Philips Electronics LTD | System and apparatus for navigated therapy and diagnosis |
DE102005032755B4 (en) * | 2005-07-13 | 2014-09-04 | Siemens Aktiengesellschaft | System for performing and monitoring minimally invasive procedures |
WO2007025081A2 (en) | 2005-08-24 | 2007-03-01 | Traxtal Inc. | System, method and devices for navigated flexible endoscopy |
US7599588B2 (en) | 2005-11-22 | 2009-10-06 | Vascular Imaging Corporation | Optical imaging probe connector |
JP4755890B2 (en) * | 2005-12-09 | 2011-08-24 | 佳彦 平尾 | Measuring device and measuring system |
US7927288B2 (en) * | 2006-01-20 | 2011-04-19 | The Regents Of The University Of Michigan | In situ tissue analysis device and method |
US20070255145A1 (en) * | 2006-04-28 | 2007-11-01 | Radi Medical Systems Ab | Sensor and guide wire assembly |
DE602007006859D1 (en) * | 2006-04-28 | 2010-07-15 | Radi Medical Systems | Sensor and guide wire arrangement |
US20110276127A1 (en) * | 2006-05-24 | 2011-11-10 | Forster David C | Multiple inflation of an expandable member as a precursor to an implant procedure |
US7979111B2 (en) * | 2006-06-15 | 2011-07-12 | Angelo Joseph Acquista | Wireless electrode arrangement and method for patient monitoring via electrocardiography |
US9101264B2 (en) | 2006-06-15 | 2015-08-11 | Peerbridge Health, Inc. | Wireless electrode arrangement and method for patient monitoring via electrocardiography |
DE102006030407A1 (en) * | 2006-06-29 | 2008-01-03 | Werthschützky, Roland, Prof. Dr.-Ing. | Force sensor with asymmetric basic body for detecting at least one force component |
DE102006031635A1 (en) * | 2006-07-06 | 2008-01-17 | Werthschützky, Roland, Prof. Dr.-Ing. | Minaturisable force sensor for detecting a force vector |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US11234650B2 (en) | 2006-11-20 | 2022-02-01 | St. Jude Medical Coordination Center Bvba | Measurement system |
US8174395B2 (en) * | 2006-11-20 | 2012-05-08 | St. Jude Medical Systems Ab | Transceiver unit in a measurement system |
US7967761B2 (en) * | 2006-12-01 | 2011-06-28 | Radi Medical Systems Ab | Sensor and guide wire assembly |
DE102006061178A1 (en) * | 2006-12-22 | 2008-06-26 | Siemens Ag | Medical system for carrying out and monitoring a minimal invasive intrusion, especially for treating electro-physiological diseases, has X-ray equipment and a control/evaluation unit |
US7946997B2 (en) * | 2007-02-16 | 2011-05-24 | Radi Medical Systems Ab | Measurement system to measure a physiological condition in a body |
DE102007012060A1 (en) * | 2007-03-13 | 2008-09-18 | Robert Bosch Gmbh | Sensor arrangement for pressure measurement |
US10219780B2 (en) | 2007-07-12 | 2019-03-05 | Volcano Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
JP5524835B2 (en) | 2007-07-12 | 2014-06-18 | ヴォルカノ コーポレイション | In vivo imaging catheter |
ES2474198T3 (en) * | 2007-09-25 | 2014-07-08 | Radi Medical Systems Ab | Pressure guide wire assembly |
US9289137B2 (en) * | 2007-09-28 | 2016-03-22 | Volcano Corporation | Intravascular pressure devices incorporating sensors manufactured using deep reactive ion etching |
EP2211701A1 (en) * | 2007-10-26 | 2010-08-04 | St. Jude Medical Systems AB | Sensor guide wire with micro-cable winding |
US8974398B2 (en) * | 2007-11-08 | 2015-03-10 | St. Jude Medical Coordination Center Bvba | Removable energy source for sensor guidewire |
US7998089B2 (en) * | 2007-11-08 | 2011-08-16 | Radi Medical Systems Ab | Method of making a guide wire based assembly and reusing an energy source |
US8968345B2 (en) * | 2008-03-24 | 2015-03-03 | Covidien Lp | Surgical introducer with indicators |
KR101754570B1 (en) | 2008-09-11 | 2017-07-06 | 어시스트 메디칼 시스템즈, 인크. | Physiological sensor delivery device and method |
EP2356412B1 (en) | 2008-10-02 | 2012-08-15 | Vascular Imaging Corporation | Optical ultrasound receiver |
US8594799B2 (en) * | 2008-10-31 | 2013-11-26 | Advanced Bionics | Cochlear electrode insertion |
CA2778218A1 (en) | 2008-10-31 | 2010-05-06 | Vascular Imaging Corporation | Optical imaging probe connector |
US9366938B1 (en) | 2009-02-17 | 2016-06-14 | Vescent Photonics, Inc. | Electro-optic beam deflector device |
WO2011044387A2 (en) | 2009-10-07 | 2011-04-14 | The Board Of Regents Of The University Of Texas System | Pressure-sensing medical devices, systems and methods, and methods of forming medical devices |
US9211403B2 (en) * | 2009-10-30 | 2015-12-15 | Advanced Bionics, Llc | Steerable stylet |
US8771289B2 (en) | 2009-12-21 | 2014-07-08 | Acist Medical Systems, Inc. | Thrombus removal device and system |
US8478384B2 (en) | 2010-01-19 | 2013-07-02 | Lightlab Imaging, Inc. | Intravascular optical coherence tomography system with pressure monitoring interface and accessories |
US20110184313A1 (en) * | 2010-01-22 | 2011-07-28 | The Regents Of The University Of Michigan | Cauterization Device and Method of Cauterizing |
US8396563B2 (en) * | 2010-01-29 | 2013-03-12 | Medtronic, Inc. | Clock synchronization in an implantable medical device system |
US20110245693A1 (en) * | 2010-03-30 | 2011-10-06 | Boston Scientific Scimed, Inc. | Intravascular pressure sensing |
EP2560722A2 (en) | 2010-04-21 | 2013-02-27 | The Regents of the University of Michigan | Fluoroscopy-independent, endovascular aortic occlusion system |
US20140142398A1 (en) * | 2010-06-13 | 2014-05-22 | Angiometrix Corporation | Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters |
US8435821B2 (en) | 2010-06-18 | 2013-05-07 | General Electric Company | Sensor and method for fabricating the same |
US8569851B2 (en) | 2010-06-18 | 2013-10-29 | General Electric Company | Sensor and method for fabricating the same |
SE1050741A1 (en) * | 2010-07-06 | 2012-01-07 | St Jude Medical Systems Ab | Sensor element |
WO2012033837A2 (en) | 2010-09-08 | 2012-03-15 | Micropen Technologies Corporation | Pressure sensing or force generating device |
CA2808202C (en) | 2010-11-09 | 2013-11-05 | Opsens Inc. | Guidewire with internal pressure sensor |
SE537180C2 (en) | 2010-11-12 | 2015-02-24 | St Jude Medical Systems Ab | Extracorporeal interface unit for an intravascular measurement system |
WO2012082715A2 (en) * | 2010-12-13 | 2012-06-21 | Case Western Reserve University | Device with external pressure sensors for enhancing patient care and methods of using same |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
WO2012092441A2 (en) * | 2010-12-31 | 2012-07-05 | Volcano Corporation | Lumen based pressure sensing guidewire system with distortion correction |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
GB201100136D0 (en) * | 2011-01-06 | 2011-02-23 | Davies Helen C S | Apparatus and method of characterising a narrowing in a filled tube |
GB201100137D0 (en) | 2011-01-06 | 2011-02-23 | Davies Helen C S | Apparatus and method of assessing a narrowing in a fluid tube |
US20120215133A1 (en) * | 2011-02-22 | 2012-08-23 | Brad Jeffrey Neiman | Catheter tip device and method for manufacturing same |
US8662200B2 (en) | 2011-03-24 | 2014-03-04 | Merlin Technology Inc. | Sonde with integral pressure sensor and method |
CN103796578B (en) | 2011-05-11 | 2016-08-24 | 阿西斯特医疗系统有限公司 | Ink vessel transfusing method for sensing and system |
JP5814860B2 (en) | 2011-05-31 | 2015-11-17 | ライトラボ・イメージング・インコーポレーテッド | Multi-mode imaging system, apparatus and method |
AU2012271236A1 (en) * | 2011-06-13 | 2014-01-16 | Angiometrix Corporation | Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters |
US9295447B2 (en) | 2011-08-17 | 2016-03-29 | Volcano Corporation | Systems and methods for identifying vascular borders |
US10888232B2 (en) | 2011-08-20 | 2021-01-12 | Philips Image Guided Therapy Corporation | Devices, systems, and methods for assessing a vessel |
JP6133864B2 (en) | 2011-08-20 | 2017-05-24 | ボルケーノ コーポレイション | Apparatus, system and method for visually depicting vessels and assessing treatment options |
WO2015109339A1 (en) * | 2014-01-16 | 2015-07-23 | Volcano Corporation | Devices, systems, and methods for assessing a vessel |
US9339348B2 (en) | 2011-08-20 | 2016-05-17 | Imperial Colege of Science, Technology and Medicine | Devices, systems, and methods for assessing a vessel |
WO2013033592A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical-electrical rotary joint and methods of use |
US20140243688A1 (en) | 2011-10-28 | 2014-08-28 | Three Rivers Cardiovascular Systems Inc. | Fluid temperature and flow sensor apparatus and system for cardiovascular and other medical applications |
US10463259B2 (en) | 2011-10-28 | 2019-11-05 | Three Rivers Cardiovascular Systems Inc. | System and apparatus comprising a multi-sensor catheter for right heart and pulmonary artery catheterization |
US20130109980A1 (en) * | 2011-11-01 | 2013-05-02 | Tat-Jin Teo | Systems and methods for a wireless vascular pressure measurement device |
SE1151051A1 (en) * | 2011-11-09 | 2013-05-10 | Koninklijke Philips Electronics Nv | Sensor wire |
US10426501B2 (en) | 2012-01-13 | 2019-10-01 | Crux Biomedical, Inc. | Retrieval snare device and method |
US10548706B2 (en) | 2012-01-13 | 2020-02-04 | Volcano Corporation | Retrieval snare device and method |
CA2861446A1 (en) * | 2012-01-19 | 2013-07-25 | Volcano Corporation | Interface devices, systems, and methods for use with intravascular pressure monitoring devices |
US10213288B2 (en) | 2012-03-06 | 2019-02-26 | Crux Biomedical, Inc. | Distal protection filter |
US9492071B2 (en) * | 2012-04-05 | 2016-11-15 | Stryker Corporation | In-joint sensor for a surgical fluid management pump system |
US20130289378A1 (en) | 2012-04-27 | 2013-10-31 | Medtronic, Inc. | Method and apparatus for cardiac function monitoring |
US10506934B2 (en) | 2012-05-25 | 2019-12-17 | Phyzhon Health Inc. | Optical fiber pressure sensor |
WO2014035995A1 (en) | 2012-08-27 | 2014-03-06 | Boston Scientific Scimed, Inc. | Pressure-sensing medical devices and medical device systems |
WO2014036477A1 (en) * | 2012-08-31 | 2014-03-06 | Volcano Corporation | Pressure sensing intravascular devices with reduced drift and associated systems and methods |
CA2882198A1 (en) * | 2012-08-31 | 2014-03-06 | Volcano Corporation | Mounting structures for components of intravascular devices |
EP2895058A1 (en) * | 2012-09-17 | 2015-07-22 | Boston Scientific Scimed, Inc. | Pressure sensing guidewire |
WO2014055729A1 (en) | 2012-10-04 | 2014-04-10 | Vascular Imaging Corporatoin | Polarization scrambling for intra-body fiber optic sensor |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
EP2904671B1 (en) | 2012-10-05 | 2022-05-04 | David Welford | Systems and methods for amplifying light |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
WO2014093374A1 (en) | 2012-12-13 | 2014-06-19 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
WO2014113188A2 (en) | 2012-12-20 | 2014-07-24 | Jeremy Stigall | Locating intravascular images |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
JP6785554B2 (en) | 2012-12-20 | 2020-11-18 | ボルケーノ コーポレイション | Smooth transition catheter |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
US20140180030A1 (en) * | 2012-12-20 | 2014-06-26 | Volcano Corporation | Intravascular blood pressure and velocity wire |
CA2895989A1 (en) | 2012-12-20 | 2014-07-10 | Nathaniel J. Kemp | Optical coherence tomography system that is reconfigurable between different imaging modes |
EP2934304B1 (en) | 2012-12-21 | 2021-10-13 | Philips Image Guided Therapy Corporation | Multi-sensor devices |
US10413317B2 (en) | 2012-12-21 | 2019-09-17 | Volcano Corporation | System and method for catheter steering and operation |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
EP2936241B1 (en) | 2012-12-21 | 2020-10-21 | Nathaniel J. Kemp | Power-efficient optical buffering using a polarisation-maintaining active optical switch |
EP2934309B1 (en) | 2012-12-21 | 2022-02-09 | Philips Image Guided Therapy Corporation | Pressure-sensing intravascular device |
US9615878B2 (en) | 2012-12-21 | 2017-04-11 | Volcano Corporation | Device, system, and method for imaging and tissue characterization of ablated tissue |
CA2895940A1 (en) | 2012-12-21 | 2014-06-26 | Andrew Hancock | System and method for multipath processing of image signals |
CA2895990A1 (en) | 2012-12-21 | 2014-06-26 | Jerome MAI | Ultrasound imaging with variable line density |
US20140180066A1 (en) | 2012-12-21 | 2014-06-26 | Volcano Corporation | Introducer having a flow sensor |
US10332228B2 (en) | 2012-12-21 | 2019-06-25 | Volcano Corporation | System and method for graphical processing of medical data |
JP2016507272A (en) | 2012-12-21 | 2016-03-10 | ヴォルカノ コーポレイションVolcano Corporation | Functional gain measurement technique and display |
WO2014100606A1 (en) | 2012-12-21 | 2014-06-26 | Meyer, Douglas | Rotational ultrasound imaging catheter with extended catheter body telescope |
US20140180089A1 (en) * | 2012-12-21 | 2014-06-26 | Volcano Corporation | System and method for guidewire control |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
WO2014100458A1 (en) * | 2012-12-21 | 2014-06-26 | Volcano Corporation | Mounting structures for components of intravascular devices |
EP2936626A4 (en) | 2012-12-21 | 2016-08-17 | David Welford | Systems and methods for narrowing a wavelength emission of light |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US9624095B2 (en) * | 2012-12-28 | 2017-04-18 | Volcano Corporation | Capacitive intravascular pressure-sensing devices and associated systems and methods |
CA2896662A1 (en) | 2012-12-28 | 2014-07-03 | Volcano Corporation | Intravascular devices having information stored thereon and/or wireless communication functionality, including associated devices, systems, and methods |
EP3545829B1 (en) | 2012-12-31 | 2022-03-30 | Philips Image Guided Therapy Corporation | Method of forming a guidewire |
US20140187984A1 (en) * | 2012-12-31 | 2014-07-03 | Volcano Corporation | In-Wall Hypotube Sensor Mount for Sensored Guidewire |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
EP2965263B1 (en) | 2013-03-07 | 2022-07-20 | Bernhard Sturm | Multimodal segmentation in intravascular images |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
EP2967391A4 (en) | 2013-03-12 | 2016-11-02 | Donna Collins | Systems and methods for diagnosing coronary microvascular disease |
US9351698B2 (en) | 2013-03-12 | 2016-05-31 | Lightlab Imaging, Inc. | Vascular data processing and image registration systems, methods, and apparatuses |
WO2014159949A1 (en) * | 2013-03-13 | 2014-10-02 | Millett Bret | Sensing guidewires with centering element and methods of use thereof |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
US20140275950A1 (en) * | 2013-03-13 | 2014-09-18 | Volcano Corporation | Imaging guidewire with pressure sensing |
JP6339170B2 (en) | 2013-03-13 | 2018-06-06 | ジンヒョン パーク | System and method for generating images from a rotating intravascular ultrasound device |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US9592027B2 (en) | 2013-03-14 | 2017-03-14 | Volcano Corporation | System and method of adventitial tissue characterization |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
EP2967606B1 (en) | 2013-03-14 | 2018-05-16 | Volcano Corporation | Filters with echogenic characteristics |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
EP2972540B1 (en) | 2013-03-14 | 2020-05-06 | Phyzhon Health Inc. | Optical fiber ribbon imaging guidewire |
CN105208923B (en) | 2013-03-15 | 2019-02-05 | 火山公司 | Interface equipment, system and method for being used together with arteries and veins overpressure monitoring device |
CN105392432B (en) * | 2013-03-15 | 2019-04-30 | 火山公司 | Distal embolic protection system and method with pressure and ultrasonic wave characteristic |
US20140260644A1 (en) * | 2013-03-15 | 2014-09-18 | Sensonetics, Inc. | Modular Systems for Piezoresistive Transducers |
US20140276117A1 (en) * | 2013-03-15 | 2014-09-18 | Volcano Corporation | Intravascular Devices, Systems, and Methods |
EP2968854B1 (en) | 2013-03-15 | 2019-04-24 | Boston Scientific Scimed, Inc. | Pressure sensing guidewire |
US20140276143A1 (en) * | 2013-03-15 | 2014-09-18 | Volcano Corporation | Smart Interface Cable for Coupling a Diagnostic Medical Device With a Medical Measurement System |
JP6492061B2 (en) | 2013-05-22 | 2019-03-27 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device system for blood pressure measurement and determination system for myocardial perfusion reserve ratio |
US10835183B2 (en) | 2013-07-01 | 2020-11-17 | Zurich Medical Corporation | Apparatus and method for intravascular measurements |
KR101697908B1 (en) | 2013-07-01 | 2017-01-18 | 쥬어리크 메디컬 코퍼레이션 | Apparatus and method for intravascular measurements |
WO2015013646A1 (en) | 2013-07-26 | 2015-01-29 | Boston Scientific Scimed, Inc. | Ffr sensor head design that minimizes stress induced pressure offsets |
WO2015023789A1 (en) | 2013-08-14 | 2015-02-19 | Boston Scientific Scimed, Inc. | Medical device systems including an optical fiber with a tapered core |
CA2923419A1 (en) * | 2013-09-09 | 2015-03-12 | Pryor Medical Devices, Inc. | Low-profile occlusion catheter |
US10327645B2 (en) | 2013-10-04 | 2019-06-25 | Vascular Imaging Corporation | Imaging techniques using an imaging guidewire |
WO2015057518A1 (en) | 2013-10-14 | 2015-04-23 | Boston Scientific Scimed, Inc. | Pressure sensing guidewire and methods for calculating fractional flow reserve |
WO2015057735A1 (en) | 2013-10-15 | 2015-04-23 | Cedars-Sinai Medical Center | Anatomically-orientated and self-positioning transcatheter mitral valve |
US10543078B2 (en) | 2013-10-16 | 2020-01-28 | Cedars-Sinai Medical Center | Modular dis-assembly of transcatheter valve replacement devices and uses thereof |
EP3057522B1 (en) | 2013-10-17 | 2019-10-09 | Cedars-Sinai Medical Center | Device to percutaneously treat heart valve embolization |
WO2015058060A1 (en) * | 2013-10-18 | 2015-04-23 | Volcano Corporation | Devices, systems, and methods for assessing a vessel with optimized proximal and distal pressure measurements obtained without the use of a hyperemic agent |
US10130269B2 (en) | 2013-11-14 | 2018-11-20 | Medtronic Vascular, Inc | Dual lumen catheter for providing a vascular pressure measurement |
US9877660B2 (en) | 2013-11-14 | 2018-01-30 | Medtronic Vascular Galway | Systems and methods for determining fractional flow reserve without adenosine or other pharmalogical agent |
CN105744901B (en) | 2013-11-18 | 2020-08-04 | 皇家飞利浦有限公司 | Method and apparatus for thrombus evacuation |
JP6517832B2 (en) | 2013-11-18 | 2019-05-22 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Guided thrombus dispersion catheter |
US10537255B2 (en) | 2013-11-21 | 2020-01-21 | Phyzhon Health Inc. | Optical fiber pressure sensor |
WO2015077328A1 (en) * | 2013-11-22 | 2015-05-28 | Volcano Corporation | Sensor mounting assembly for sensored guidewire and associated devices, systems, and methods |
EP3079633B1 (en) | 2013-12-11 | 2023-01-18 | Cedars-Sinai Medical Center | Devices for transcatheter mitral valve replacement in a double-orifice mitral valve |
US10350098B2 (en) | 2013-12-20 | 2019-07-16 | Volcano Corporation | Devices and methods for controlled endoluminal filter deployment |
JP6734194B2 (en) | 2014-01-10 | 2020-08-05 | ボルケーノ コーポレイション | Detection of endoleaks associated with aneurysm repair |
CN106163386B (en) | 2014-01-14 | 2019-08-06 | 火山公司 | System and method for assessing haemodialysis arteriovenous fistula maturation |
WO2015108973A1 (en) | 2014-01-14 | 2015-07-23 | Volcano Corporation | Methods and systems for clearing thrombus from a vascular access site |
WO2015108941A1 (en) | 2014-01-14 | 2015-07-23 | Volcano Corporation | Devices and methods for forming vascular access |
WO2015108942A1 (en) | 2014-01-14 | 2015-07-23 | Volcano Corporation | Vascular access evaluation and treatment |
US11260160B2 (en) * | 2014-01-14 | 2022-03-01 | Philips Image Guided Therapy Corporation | Systems and methods for improving an AV access site |
US9913585B2 (en) | 2014-01-15 | 2018-03-13 | Medtronic Vascular, Inc. | Catheter for providing vascular pressure measurements |
WO2015117025A1 (en) | 2014-01-31 | 2015-08-06 | Cedars-Sinai Medical Center | Pigtail for optimal aortic valvular complex imaging and alignment |
EP3102098B1 (en) | 2014-02-03 | 2022-06-22 | Philips Image Guided Therapy Corporation | Intravascular devices, systems, and methods having a core wire with embedded conductors |
US10932679B2 (en) | 2014-03-18 | 2021-03-02 | Boston Scientific Scimed, Inc. | Pressure sensing guidewires and methods of use |
US10441754B2 (en) | 2014-03-26 | 2019-10-15 | Volcano Corporation | Intravascular devices, systems, and methods having a core wire formed of multiple materials |
ES2883138T3 (en) | 2014-04-04 | 2021-12-07 | St Jude Medical Systems Ab | Intravascular Pressure and Flow Data Diagnostic System |
EP3132296B1 (en) | 2014-04-17 | 2023-01-04 | Boston Scientific Scimed, Inc. | Self-cleaning optical connector |
WO2015164250A1 (en) * | 2014-04-21 | 2015-10-29 | Koninklijke Philips N.V. | Intravascular devices, systems, and methods having separate sections with engaged core components |
EP3134003B1 (en) * | 2014-04-23 | 2020-08-12 | Koninklijke Philips N.V. | Catheter with integrated controller for imaging and pressure sensing |
CN106456942B (en) | 2014-04-29 | 2019-11-19 | C·R·巴德股份有限公司 | With the antitorque knot seal wire for improving rigidity |
WO2015187385A1 (en) | 2014-06-04 | 2015-12-10 | Boston Scientific Scimed, Inc. | Pressure sensing guidewire systems with reduced pressure offsets |
US10244951B2 (en) | 2014-06-10 | 2019-04-02 | Acist Medical Systems, Inc. | Physiological sensor delivery device and method |
US10232142B2 (en) | 2014-06-10 | 2019-03-19 | Prytime Medical Devices, Inc. | Conduit guiding tip |
US9955917B2 (en) * | 2014-06-11 | 2018-05-01 | Vascomed Gmbh | Planar logic board for ablation catheter with force measurement functionality |
US10973418B2 (en) | 2014-06-16 | 2021-04-13 | Medtronic Vascular, Inc. | Microcatheter sensor design for minimizing profile and impact of wire strain on sensor |
US11330989B2 (en) | 2014-06-16 | 2022-05-17 | Medtronic Vascular, Inc. | Microcatheter sensor design for mounting sensor to minimize induced strain |
US10201284B2 (en) | 2014-06-16 | 2019-02-12 | Medtronic Vascular Inc. | Pressure measuring catheter having reduced error from bending stresses |
CA2954959C (en) | 2014-07-13 | 2018-03-20 | Three Rivers Cardiovascular Systems Inc. | System and apparatus comprising a multisensor guidewire for use in interventional cardiology |
CN116172611A (en) | 2014-07-15 | 2023-05-30 | 皇家飞利浦有限公司 | Intrahepatic bypass apparatus and method |
US9782129B2 (en) | 2014-08-01 | 2017-10-10 | Boston Scientific Scimed, Inc. | Pressure sensing guidewires |
CN107072636A (en) | 2014-08-21 | 2017-08-18 | 皇家飞利浦有限公司 | Apparatus and method for break-through occlusion |
WO2016030794A1 (en) | 2014-08-28 | 2016-03-03 | Koninklijke Philips N.V. | Intravascular devices, systems, and methods having an adhesive filled distal tip element |
EP3357413A1 (en) | 2014-08-28 | 2018-08-08 | Koninklijke Philips N.V. | Intravascular devices with variable pitch radiopaque marker element |
WO2016034967A1 (en) * | 2014-09-04 | 2016-03-10 | Koninklijke Philips N.V. | Pressure-sensing intravascular devices, systems, and methods with wrapped pressure-sensing component |
WO2016038488A1 (en) | 2014-09-11 | 2016-03-17 | Koninklijke Philips N.V. | Intravascular devices, systems, and methods having a sensing element embedded in adhesive |
US10499813B2 (en) | 2014-09-12 | 2019-12-10 | Lightlab Imaging, Inc. | Methods, systems and apparatus for temporal calibration of an intravascular imaging system |
EP3197368B1 (en) | 2014-09-24 | 2018-11-28 | Koninklijke Philips N.V. | Endoluminal filter having enhanced echogenic properties |
WO2016065227A2 (en) * | 2014-10-24 | 2016-04-28 | Medtronic Vascular Inc. | Microcatheter sensor design for minimizing profile and impact of wire strain on sensor |
WO2016071822A1 (en) | 2014-11-03 | 2016-05-12 | Koninklijke Philips N.V. | Intravascular devices, systems, and methods having a radiopaque patterned flexible tip |
US10080872B2 (en) | 2014-11-04 | 2018-09-25 | Abbott Cardiovascular Systems Inc. | System and method for FFR guidewire recovery |
DE102014116221B4 (en) * | 2014-11-06 | 2019-05-23 | Ferton Holding S.A. | Monitoring system and method of monitoring |
US10258240B1 (en) | 2014-11-24 | 2019-04-16 | Vascular Imaging Corporation | Optical fiber pressure sensor |
EP3226748B1 (en) | 2014-12-05 | 2020-11-04 | Boston Scientific Scimed, Inc. | Pressure sensing guidewires |
US10194812B2 (en) | 2014-12-12 | 2019-02-05 | Medtronic Vascular, Inc. | System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system |
US10105107B2 (en) | 2015-01-08 | 2018-10-23 | St. Jude Medical International Holding S.À R.L. | Medical system having combined and synergized data output from multiple independent inputs |
EP3267940A4 (en) | 2015-03-12 | 2018-11-07 | Cedars-Sinai Medical Center | Devices, systems, and methods to optimize annular orientation of transcatheter valves |
CA2980018C (en) | 2015-03-19 | 2018-02-20 | Prytime Medical Devices, Inc. | System and method for low-profile occlusion balloon catheter |
CN107580475B (en) | 2015-05-08 | 2020-11-17 | 皇家飞利浦有限公司 | Hydrophilic coating for intravascular devices |
US9996921B2 (en) | 2015-05-17 | 2018-06-12 | LIGHTLAB IMAGING, lNC. | Detection of metal stent struts |
US10109058B2 (en) | 2015-05-17 | 2018-10-23 | Lightlab Imaging, Inc. | Intravascular imaging system interfaces and stent detection methods |
US10646198B2 (en) | 2015-05-17 | 2020-05-12 | Lightlab Imaging, Inc. | Intravascular imaging and guide catheter detection methods and systems |
US10222956B2 (en) | 2015-05-17 | 2019-03-05 | Lightlab Imaging, Inc. | Intravascular imaging user interface systems and methods |
WO2017001552A1 (en) | 2015-06-30 | 2017-01-05 | Koninklijke Philips N.V. | Intravascular devices, systems, and methods with a solid core proximal section and a slotted, tubular distal section |
CN107920764B (en) | 2015-07-17 | 2021-09-21 | 皇家飞利浦有限公司 | Device, system and method for evaluating a vessel |
CN117770775A (en) | 2015-07-17 | 2024-03-29 | 皇家飞利浦有限公司 | Intravascular devices, systems, and methods with adhesively attached shaping strips |
CN112315427B (en) | 2015-07-25 | 2024-08-09 | 光学实验室成像公司 | Intravascular data visualization method |
US10349840B2 (en) * | 2015-09-10 | 2019-07-16 | Opsens Inc. | Method for pressure guidewire equalization |
PL3367886T3 (en) * | 2015-10-29 | 2021-10-25 | Sintef Tto As | Sensor assembly |
WO2017087821A2 (en) | 2015-11-18 | 2017-05-26 | Lightlab Imaging, Inc. | X-ray image feature detection and registration systems and methods |
US10453190B2 (en) | 2015-11-23 | 2019-10-22 | Lightlab Imaging, Inc. | Detection of and validation of shadows in intravascular images |
US11090006B2 (en) | 2016-02-03 | 2021-08-17 | Cormetrics Llc | Modular sensing guidewire |
CN109069034B (en) | 2016-02-23 | 2021-08-20 | 波士顿科学国际有限公司 | Pressure sensing guidewire system including optical connector cable |
ES2908571T3 (en) | 2016-04-14 | 2022-05-03 | Lightlab Imaging Inc | Identification of branches of a blood vessel |
US10631754B2 (en) | 2016-05-16 | 2020-04-28 | Lightlab Imaging, Inc. | Intravascular absorbable stent detection and diagnostic methods and systems |
EP3457924A1 (en) | 2016-05-20 | 2019-03-27 | Koninklijke Philips N.V. | Devices and methods for stratification of patients for renal denervation based on intravascular pressure and cross-sectional lumen measurements |
CA2990479C (en) | 2016-06-02 | 2019-03-26 | Prytime Medical Devices, Inc. | System and method for low-profile occlusion balloon catheter |
US11272850B2 (en) | 2016-08-09 | 2022-03-15 | Medtronic Vascular, Inc. | Catheter and method for calculating fractional flow reserve |
US11647678B2 (en) | 2016-08-23 | 2023-05-09 | Analog Devices International Unlimited Company | Compact integrated device packages |
US10821268B2 (en) * | 2016-09-14 | 2020-11-03 | Scientia Vascular, Llc | Integrated coil vascular devices |
US11272847B2 (en) | 2016-10-14 | 2022-03-15 | Hemocath Ltd. | System and apparatus comprising a multi-sensor catheter for right heart and pulmonary artery catheterization |
US10697800B2 (en) | 2016-11-04 | 2020-06-30 | Analog Devices Global | Multi-dimensional measurement using magnetic sensors and related systems, methods, and integrated circuits |
CN110022761A (en) * | 2016-11-28 | 2019-07-16 | 皇家飞利浦有限公司 | With being electrically connected for microsensor |
US10953204B2 (en) | 2017-01-09 | 2021-03-23 | Boston Scientific Scimed, Inc. | Guidewire with tactile feel |
EP4327732A3 (en) | 2017-01-12 | 2024-04-24 | The Regents of The University of California | Endovascular perfusion augmentation for critical care |
KR20230110374A (en) | 2017-01-19 | 2023-07-21 | 히그흐딤 게엠베하 | Devices and methods for determining heart function of a living subject |
US11330994B2 (en) | 2017-03-08 | 2022-05-17 | Medtronic Vascular, Inc. | Reduced profile FFR catheter |
US10952654B2 (en) | 2017-03-14 | 2021-03-23 | International Business Machines Corporation | PH sensitive surgical tool |
US10952883B2 (en) * | 2017-03-20 | 2021-03-23 | Corflow Therapeutics Ag | Combined stent reperfusion system |
EP3612086A4 (en) | 2017-04-21 | 2021-01-20 | The Regents of the University of California, A California Corporation | Aortic flow meter and pump for partial-aortic occlusion |
US10646122B2 (en) | 2017-04-28 | 2020-05-12 | Medtronic Vascular, Inc. | FFR catheter with covered distal pressure sensor and method of manufacture |
AU2018311951B2 (en) | 2017-08-03 | 2020-10-15 | Boston Scientific Scimed, Inc. | Systems for assessing fractional flow reserve |
US11235124B2 (en) | 2017-08-09 | 2022-02-01 | Medtronic Vascular, Inc. | Collapsible catheter and method for calculating fractional flow reserve |
US11219741B2 (en) | 2017-08-09 | 2022-01-11 | Medtronic Vascular, Inc. | Collapsible catheter and method for calculating fractional flow reserve |
EP3679583A1 (en) | 2017-09-07 | 2020-07-15 | Koninklijke Philips N.V. | Automatic normalization of intravascular devices |
CN107837081A (en) * | 2017-12-07 | 2018-03-27 | 上海英诺伟医疗器械有限公司 | A kind of Pressure wire |
CN109984748A (en) * | 2017-12-29 | 2019-07-09 | 先健科技(深圳)有限公司 | Lumen diameter measuring device |
EP3795076B1 (en) | 2018-01-31 | 2023-07-19 | Analog Devices, Inc. | Electronic devices |
US11305095B2 (en) | 2018-02-22 | 2022-04-19 | Scientia Vascular, Llc | Microfabricated catheter having an intermediate preferred bending section |
WO2019165277A1 (en) | 2018-02-23 | 2019-08-29 | Boston Scientific Scimed, Inc. | Methods for assessing a vessel with sequential physiological measurements |
EP3764914B1 (en) | 2018-03-15 | 2023-11-15 | Koninklijke Philips N.V. | Variable intraluminal ultrasound transmit pulse generation and control devices, systems, and methods |
US11850073B2 (en) | 2018-03-23 | 2023-12-26 | Boston Scientific Scimed, Inc. | Medical device with pressure sensor |
JP7138189B2 (en) | 2018-04-06 | 2022-09-15 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Medical device with pressure sensor |
EP3781027B1 (en) | 2018-04-18 | 2023-11-29 | Boston Scientific Scimed Inc. | System for assessing a vessel with sequential physiological measurements |
CN111954487B (en) | 2018-04-20 | 2024-06-18 | 阿西斯特医药系统公司 | Assessment of blood vessels |
EP4386708A3 (en) | 2018-06-27 | 2024-07-31 | Koninklijke Philips N.V. | Dynamic resource reconfiguration for patient interface module (pim) in intraluminal medical ultrasound imaging |
CA3107489A1 (en) | 2018-08-06 | 2020-02-13 | Prytime Medical Devices, Inc. | System and method for low profile occlusion balloon catheter |
US11185244B2 (en) | 2018-08-13 | 2021-11-30 | Medtronic Vascular, Inc. | FFR catheter with suspended pressure sensor |
CN112788996B (en) | 2018-10-04 | 2024-09-17 | 皇家飞利浦有限公司 | Fluid flow detection for ultrasound imaging devices, systems, and methods |
EP4420604A3 (en) * | 2018-12-20 | 2024-10-30 | Boston Scientific Scimed, Inc. | Endoscope system with a shaft including a sensor |
US12011555B2 (en) | 2019-01-15 | 2024-06-18 | Scientia Vascular, Inc. | Guidewire with core centering mechanism |
US11877864B2 (en) | 2019-05-29 | 2024-01-23 | Measurement Specialties, Inc. | Voltage nulling pressure sensor preamp |
DE112020003422T5 (en) | 2019-07-18 | 2022-03-31 | Semitec Corporation | PRESSURE SENSOR |
US20220370037A1 (en) | 2019-10-10 | 2022-11-24 | Koninklijke Philips N.V. | Vascular tissue characterization devices, systems, and methods |
US20220409858A1 (en) | 2019-11-26 | 2022-12-29 | Philips Image Guided Therapy Corporation | Electromagnetic-radiation-cured radiopaque marker and associated devices, systems, and methods |
US20210322026A1 (en) | 2020-03-16 | 2021-10-21 | Certus Critical Care, Inc. | Blood flow control devices, systems, and methods and error detection thereof |
US12087000B2 (en) | 2021-03-05 | 2024-09-10 | Boston Scientific Scimed, Inc. | Systems and methods for vascular image co-registration |
US12102330B2 (en) | 2021-03-18 | 2024-10-01 | Prytime Medical Devices, Inc. | Vascular occlusion catheter for partial occlusion or full occlusion |
WO2023275129A1 (en) * | 2021-07-01 | 2023-01-05 | Koninklijke Philips N.V. | Sensor system for measuring flow velocity and pressure |
WO2023104599A1 (en) | 2021-12-11 | 2023-06-15 | Koninklijke Philips N.V. | Automatic segmentation and treatment planning for a vessel with coregistration of physiology data and extraluminal data |
US20230181140A1 (en) | 2021-12-11 | 2023-06-15 | Philips Image Guided Therapy Corporation | Registration of intraluminal physiological data to longitudinal image body lumen using extraluminal imaging data |
WO2024120659A1 (en) | 2022-12-07 | 2024-06-13 | Koninklijke Philips N.V. | Registration of intraluminal physiological data to longitudinal image of body lumen using extraluminal imaging data |
WO2024163455A1 (en) * | 2023-02-01 | 2024-08-08 | Stallion Cardio, Llc | System and method for measuring characteristics of coronary arterial system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6976965B2 (en) * | 1994-09-02 | 2005-12-20 | Volcano Corporation | Ultra miniature pressure sensor |
Family Cites Families (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3490441A (en) | 1966-01-10 | 1970-01-20 | Statham Instrument Inc | Intra-arterial blood pressure transducers |
US3545275A (en) * | 1968-09-12 | 1970-12-08 | Nasa | Transducer circuit and catheter transducer |
US3724274A (en) * | 1971-02-11 | 1973-04-03 | Millar Instruments | Pressure transducers and method of physiological pressure transducers |
US3748623A (en) | 1972-07-25 | 1973-07-24 | Millar Instruments | Pressure transducers |
DE2246687C3 (en) * | 1972-09-22 | 1978-10-05 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Pressure receptor |
US4020830A (en) | 1975-03-12 | 1977-05-03 | The University Of Utah | Selective chemical sensitive FET transducers |
JPS5918051B2 (en) | 1976-02-29 | 1984-04-25 | 三菱油化株式会社 | catheter |
JPS5921495B2 (en) * | 1977-12-15 | 1984-05-21 | 株式会社豊田中央研究所 | Capillary pressure gauge |
DE2828206C2 (en) | 1978-06-27 | 1986-09-11 | Siemens AG, 1000 Berlin und 8000 München | Catheter for insertion into a vessel of a patient |
NL8001420A (en) | 1980-03-10 | 1981-10-01 | Cordis Europ | ELECTRODE COMPOSITIVE COMPOSITE, FOR AN ELECTROCHEMICAL MEASUREMENT, IN PARTICULAR AN ISFET-CONSTRUCTED COMPOSITION, AND METHOD FOR MANUFACTURING THE ASSEMBLY. |
US4328806A (en) | 1980-06-18 | 1982-05-11 | American Hospital Supply Corporation | Catheter with trans-luminal gas pathway |
EP0115548B1 (en) * | 1983-02-03 | 1986-10-01 | Dräger Nederland B.V. | Measurement sensor for instalment in a catheter, particularly a pressure sensor |
US4554927A (en) * | 1983-08-30 | 1985-11-26 | Thermometrics Inc. | Pressure and temperature sensor |
US5178153A (en) * | 1984-03-08 | 1993-01-12 | Einzig Robert E | Fluid flow sensing apparatus for in vivo and industrial applications employing novel differential optical fiber pressure sensors |
US4610256A (en) * | 1984-09-25 | 1986-09-09 | Utah Medical Products, Inc. | Pressure transducer |
US4659235A (en) * | 1985-04-16 | 1987-04-21 | Borg-Warner Automotive, Inc. | Fluid pressure sensor with temperature indication |
US4733669A (en) * | 1985-05-24 | 1988-03-29 | Cardiometrics, Inc. | Blood flow measurement catheter |
US4665925A (en) * | 1985-09-13 | 1987-05-19 | Pfizer Hospital Products Group, Inc. | Doppler catheter |
NL8502543A (en) * | 1985-09-17 | 1987-04-16 | Sentron V O F | ELECTRONIC PRESSURE SENSITIVE ELEMENT MADE OF SEMICONDUCTOR MATERIAL. |
US4748986A (en) * | 1985-11-26 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Floppy guide wire with opaque tip |
SE454045B (en) * | 1986-08-04 | 1988-03-28 | Radisensor Ab | LEADER FOR MECHANICAL CONTROL OF A CATHETIC DURING HEART AND KERL SURGERY |
US5046497A (en) * | 1986-11-14 | 1991-09-10 | Millar Instruments, Inc. | Structure for coupling a guidewire and a catheter |
US4771782A (en) * | 1986-11-14 | 1988-09-20 | Millar Instruments, Inc. | Method and assembly for introducing multiple catheters into a biological vessel |
US4850358A (en) * | 1986-11-14 | 1989-07-25 | Millar Instruments, Inc. | Method and assembly for introducing multiple devices into a biological vessel |
CA1314410C (en) * | 1986-12-08 | 1993-03-16 | Masanori Nishiguchi | Wiring structure of semiconductor pressure sensor |
US4920972A (en) * | 1987-01-27 | 1990-05-01 | Medex, Inc. | Gel-filled blood pressure transducer |
US5174295A (en) | 1987-04-10 | 1992-12-29 | Cardiometrics, Inc. | Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel and screw joint for use therewith |
US5163445A (en) * | 1987-04-10 | 1992-11-17 | Cardiometrics, Inc. | Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel and screw joint for use therewith |
US5013396A (en) | 1987-06-01 | 1991-05-07 | The Regents Of The University Of Michigan | Method of making an ultraminiature pressure sensor |
US5207103A (en) | 1987-06-01 | 1993-05-04 | Wise Kensall D | Ultraminiature single-crystal sensor with movable member |
US4815472A (en) | 1987-06-01 | 1989-03-28 | The Regents Of The University Of Michigan | Multipoint pressure-sensing catheter system |
US5113868A (en) * | 1987-06-01 | 1992-05-19 | The Regents Of The University Of Michigan | Ultraminiature pressure sensor with addressable read-out circuit |
US4881410A (en) | 1987-06-01 | 1989-11-21 | The Regents Of The University Of Michigan | Ultraminiature pressure sensor and method of making same |
US4808164A (en) | 1987-08-24 | 1989-02-28 | Progressive Angioplasty Systems, Inc. | Catheter for balloon angioplasty |
EP0313836A3 (en) * | 1987-09-30 | 1991-01-23 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire |
US5050606A (en) * | 1987-09-30 | 1991-09-24 | Advanced Cardiovascular Systems, Inc. | Method for measuring pressure within a patient's coronary artery |
US4964409A (en) * | 1989-05-11 | 1990-10-23 | Advanced Cardiovascular Systems, Inc. | Flexible hollow guiding member with means for fluid communication therethrough |
US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
US4872483A (en) * | 1987-12-31 | 1989-10-10 | International Medical Products, Inc. | Conveniently hand held self-contained electronic manometer and pressure modulating device |
US4807477A (en) * | 1988-02-01 | 1989-02-28 | Motorola, Inc. | Capacitive temperature compensation for a pressure sensor |
US4901731A (en) * | 1988-04-27 | 1990-02-20 | Millar Instruments, Inc. | Single sensor pressure differential device |
SE460396B (en) * | 1988-07-29 | 1989-10-09 | Radisensor Ab | MINIATURIZED SENSOR DEVICE FOR SEATING PHYSIOLOGICAL PRESSURE IN VIVO |
US5450091A (en) * | 1988-08-05 | 1995-09-12 | Seiko Epson Corporation | Variable size antenna device having resonance frequency compensation |
DE3833723A1 (en) * | 1988-10-04 | 1990-04-12 | Berg Extrakorp Syst Medtech | METHOD FOR ZERO COMPARISON OF A PRESSURE MEASURING CATHETER AND PRESSURE MEASURING CATHETER FOR ITS IMPLEMENTATION |
US5178159A (en) * | 1988-11-02 | 1993-01-12 | Cardiometrics, Inc. | Torqueable guide wire assembly with electrical functions, male and female connectors rotatable with respect to one another |
US5240437A (en) | 1988-11-02 | 1993-08-31 | Cardiometrics, Inc. | Torqueable guide wire assembly with electrical functions, male and female connectors for use therewith and system and apparatus for utilizing the same |
SE462631B (en) | 1989-01-13 | 1990-07-30 | Radisensor Ab | MINIATURIZED PRESSURE SENSOR FOR PHYSIOLOGICAL SEATS IN SITU |
US4945762A (en) * | 1989-01-24 | 1990-08-07 | Sensym, Inc. | Silicon sensor with trimmable wheatstone bridge |
US4928693A (en) * | 1989-03-13 | 1990-05-29 | Schneider (Usa), Inc. | Pressure monitor catheter |
US4957110A (en) | 1989-03-17 | 1990-09-18 | C. R. Bard, Inc. | Steerable guidewire having electrodes for measuring vessel cross-section and blood flow |
US5050297A (en) * | 1989-09-21 | 1991-09-24 | Becton, Dickinson And Company | Method for assembly of a directly exposed catheter sensor on a support tip |
US5067491A (en) * | 1989-12-08 | 1991-11-26 | Becton, Dickinson And Company | Barrier coating on blood contacting devices |
US7033325B1 (en) | 1989-12-19 | 2006-04-25 | Scimed Life Systems, Inc. | Guidewire with multiple radiopaque marker sections |
US5313957A (en) * | 1990-01-05 | 1994-05-24 | Medamicus, Inc. | Guide wire mounted pressure transducer |
SE506135C2 (en) * | 1990-07-11 | 1997-11-17 | Radi Medical Systems | Sensor and conductor construction |
US5125137A (en) * | 1990-09-06 | 1992-06-30 | Cardiometrics, Inc. | Method for providing a miniature ultrasound high efficiency transducer assembly |
JPH04258176A (en) * | 1991-02-12 | 1992-09-14 | Mitsubishi Electric Corp | Semiconductor pressure sensor |
US5226421A (en) * | 1992-03-06 | 1993-07-13 | Cardiometrics, Inc. | Doppler elongate flexible member having an inflatable balloon mounted thereon |
US5873835A (en) | 1993-04-29 | 1999-02-23 | Scimed Life Systems, Inc. | Intravascular pressure and flow sensor |
US5450853A (en) * | 1993-10-22 | 1995-09-19 | Scimed Life Systems, Inc. | Pressure sensor |
US5358409A (en) | 1993-08-31 | 1994-10-25 | Cardiometrics, Inc. | Rotary connector for flexible elongate member having electrical properties |
US5348481A (en) | 1993-09-29 | 1994-09-20 | Cardiometrics, Inc. | Rotary connector for use with small diameter flexible elongate member having electrical capabilities |
US5517989A (en) | 1994-04-01 | 1996-05-21 | Cardiometrics, Inc. | Guidewire assembly |
US5412994A (en) * | 1994-06-14 | 1995-05-09 | Cook; James D. | Offset pressure sensor |
US5551301A (en) | 1995-06-19 | 1996-09-03 | Cardiometrics, Inc. | Piezoresistive pressure transducer circuitry accommodating transducer variability |
US5668320A (en) | 1995-06-19 | 1997-09-16 | Cardiometrics, Inc. | Piezoresistive pressure transducer circuitry accommodating transducer variability |
SE9600333D0 (en) | 1995-06-22 | 1996-01-30 | Radi Medical Systems | Sensor arrangement |
DE19625869C2 (en) | 1996-06-27 | 2001-01-04 | Fraunhofer Ges Forschung | Method for the parallel merging of N data sets |
US5807477A (en) | 1996-09-23 | 1998-09-15 | Catalytic Distillation Technologies | Process for the treatment of light naphtha hydrocarbon streams |
US5902248A (en) | 1996-11-06 | 1999-05-11 | Millar Instruments, Inc. | Reduced size catheter tip measurement device |
US6142958A (en) | 1998-12-23 | 2000-11-07 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US8277386B2 (en) | 2004-09-27 | 2012-10-02 | Volcano Corporation | Combination sensor guidewire and methods of use |
-
1995
- 1995-08-04 AU AU32128/95A patent/AU3212895A/en not_active Abandoned
- 1995-08-04 JP JP50948796A patent/JP3619845B2/en not_active Expired - Lifetime
- 1995-08-04 CA CA002198909A patent/CA2198909A1/en not_active Abandoned
- 1995-08-04 EP EP06075026A patent/EP1658808A1/en not_active Withdrawn
- 1995-08-04 WO PCT/US1995/009898 patent/WO1996007351A1/en active Search and Examination
- 1995-08-04 DE DE69534748T patent/DE69534748T2/en not_active Expired - Lifetime
- 1995-08-04 EP EP95928311A patent/EP0778746B1/en not_active Expired - Lifetime
-
1996
- 1996-09-09 US US08/710,062 patent/US5715827A/en not_active Expired - Lifetime
-
1997
- 1997-08-15 US US08/912,879 patent/US6106476A/en not_active Expired - Lifetime
-
2000
- 2000-08-21 US US09/644,111 patent/US6767327B1/en not_active Expired - Lifetime
-
2002
- 2002-09-19 US US10/247,043 patent/US6976965B2/en not_active Expired - Fee Related
- 2002-09-19 US US10/247,391 patent/US7097620B2/en not_active Expired - Fee Related
-
2005
- 2005-12-15 US US11/303,249 patent/US8419648B2/en not_active Expired - Fee Related
-
2006
- 2006-05-26 US US11/442,684 patent/US20070149885A1/en not_active Abandoned
-
2007
- 2007-01-04 US US11/650,064 patent/US7967762B2/en not_active Expired - Fee Related
-
2011
- 2011-06-27 US US13/169,174 patent/US8419647B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6976965B2 (en) * | 1994-09-02 | 2005-12-20 | Volcano Corporation | Ultra miniature pressure sensor |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009037554A2 (en) * | 2007-09-21 | 2009-03-26 | Radi Medical Systems Ab | A sensor for intravascular measurements within a living body |
WO2009037554A3 (en) * | 2007-09-21 | 2009-05-14 | Radi Medical Systems | A sensor for intravascular measurements within a living body |
US9567983B2 (en) | 2008-12-04 | 2017-02-14 | Deep Science, Llc | Method for generation of power from intraluminal pressure changes |
US20100140957A1 (en) * | 2008-12-04 | 2010-06-10 | Searete Llc | Method for generation of power from intraluminal pressure changes |
US20100140958A1 (en) * | 2008-12-04 | 2010-06-10 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Method for powering devices from intraluminal pressure changes |
US9353733B2 (en) | 2008-12-04 | 2016-05-31 | Deep Science, Llc | Device and system for generation of power from intraluminal pressure changes |
US9526418B2 (en) | 2008-12-04 | 2016-12-27 | Deep Science, Llc | Device for storage of intraluminally generated power |
US20100140956A1 (en) * | 2008-12-04 | 2010-06-10 | Searete Llc. | Method for generation of power from intraluminal pressure changes |
US9631610B2 (en) | 2008-12-04 | 2017-04-25 | Deep Science, Llc | System for powering devices from intraluminal pressure changes |
US9759202B2 (en) | 2008-12-04 | 2017-09-12 | Deep Science, Llc | Method for generation of power from intraluminal pressure changes |
US20140187978A1 (en) * | 2012-12-28 | 2014-07-03 | Volcano Corporation | Intravascular Devices Having Information Stored Thereon And/Or Wireless Communication Functionality, Including Associated Devices, Systems, And Methods |
CN103720463A (en) * | 2013-12-31 | 2014-04-16 | 上海交通大学 | Intelligent pressure guide wire based on flexible MEMS sensors and manufacturing method of sensors |
US10422713B2 (en) | 2014-12-19 | 2019-09-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Pressure sensor suited to measuring pressure in an aggressive environment |
CN107802248A (en) * | 2017-12-12 | 2018-03-16 | 吉林大学 | A kind of pulse-taking instrument based on piezoresistive transducer array |
Also Published As
Publication number | Publication date |
---|---|
US20030018273A1 (en) | 2003-01-23 |
EP0778746B1 (en) | 2006-01-11 |
US8419648B2 (en) | 2013-04-16 |
WO1996007351A1 (en) | 1996-03-14 |
US8419647B2 (en) | 2013-04-16 |
EP0778746A4 (en) | 1997-11-05 |
US20060094982A1 (en) | 2006-05-04 |
US20030040674A1 (en) | 2003-02-27 |
CA2198909A1 (en) | 1996-03-14 |
DE69534748T2 (en) | 2006-11-02 |
US5715827A (en) | 1998-02-10 |
AU3212895A (en) | 1996-03-27 |
US7967762B2 (en) | 2011-06-28 |
US6106476A (en) | 2000-08-22 |
US20110251497A1 (en) | 2011-10-13 |
US7097620B2 (en) | 2006-08-29 |
JP3619845B2 (en) | 2005-02-16 |
EP0778746A1 (en) | 1997-06-18 |
EP1658808A1 (en) | 2006-05-24 |
US20070135718A1 (en) | 2007-06-14 |
US6767327B1 (en) | 2004-07-27 |
JPH10505269A (en) | 1998-05-26 |
DE69534748D1 (en) | 2006-04-06 |
US6976965B2 (en) | 2005-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7967762B2 (en) | Ultra miniature pressure sensor | |
US5397308A (en) | Balloon inflation measurement apparatus | |
US5450853A (en) | Pressure sensor | |
EP1804675B1 (en) | Improved combination sensor guidewire | |
EP0888744B1 (en) | In vivo zeroing of catheter pressure sensor | |
JPH0363059A (en) | Blood flow measurement using self-irrigation catheter for blood vessel formation and its device | |
EP1408827A2 (en) | Intra-aortic balloon catheter having a dual sensor pressure sensing system | |
WO1990006723A1 (en) | Apparatus and method for sensing intravascular pressure | |
EP3833249B1 (en) | Intraluminal device with capacitive pressure sensor | |
JP6619845B2 (en) | Sensor element, sensor wire, and method of manufacturing sensor element | |
JP3565982B2 (en) | Catheter with sensor function | |
EP3656294A1 (en) | Capacitive pressure sensor for intraluminal guidewire or catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |