US20070145325A1 - 1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof - Google Patents

1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof Download PDF

Info

Publication number
US20070145325A1
US20070145325A1 US11/711,318 US71131807A US2007145325A1 US 20070145325 A1 US20070145325 A1 US 20070145325A1 US 71131807 A US71131807 A US 71131807A US 2007145325 A1 US2007145325 A1 US 2007145325A1
Authority
US
United States
Prior art keywords
weight percent
composition
carbon atoms
refrigerant
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/711,318
Inventor
Barbara Minor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/711,318 priority Critical patent/US20070145325A1/en
Publication of US20070145325A1 publication Critical patent/US20070145325A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers
    • C09K2205/112Halogenated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons

Definitions

  • the present invention relates to compositions for use in refrigeration and air-conditioning systems comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane and at least one hydrocarbon. Further, the present invention relates to compositions for use in refrigeration and air-conditioning systems employing a centrifugal compressor comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane and at least one hydrocarbon.
  • the compositions of the present invention may be azeotropic or near-azeotropic and are useful in processes for producing cooling or heat or as heat transfer fluids.
  • HFC-134a Currently proposed replacement refrigerants for HFC-134a include HFC-152a, pure hydrocarbons such as butane or propane, or “natural” refrigerants such as CO 2 or ammonia. Many of these suggested replacements are toxic and/or flammable. Therefore, new alternatives are constantly being sought.
  • the object of the present invention is to provide novel refrigerant compositions and heat transfer fluids that provide unique characteristics to meet the demands of low or zero ozone depletion potential and lower global warming potential as compared to current refrigerants.
  • the present invention relates to refrigerant or heat transfer fluid compositions comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane (C 4 F 9 OC 2 H 5 ) and at least one hydrocarbon selected from the group consisting of:
  • the present invention further relates to the above listed compositions specifically for use in refrigeration or air-conditioning systems employing a centrifugal compressor; a multi-stage or a 2-stage centrifugal compressor; or a single pass/single slab heat exchanger.
  • the present invention further relates to azeotropic or near-azeotropic compositions. These compositions are useful in refrigeration or air-conditioning systems. The compositions are also useful in refrigeration or air-conditioning systems employing a centrifugal compressor.
  • the present invention further relates to processes for producing cooling, heat, and transfer of heat from a heat source to a heat sink using the present inventive compositions.
  • the refrigerant and heat transfer fluid compositions of the present invention comprise C 4 F 9 OC 2 H 5 and at least one hydrocarbon.
  • the hydrocarbons of the present invention comprise compounds containing hydrogen and carbon. Such hydrocarbons may be straight chain, branched chain or cyclic compounds and have from about 5 to 10 carbon atoms. Preferred hydrocarbons have from 5 to 7 carbon atoms. Representative hydrocarbons of the present invention are listed in Table 1.
  • C 4 F 9 OC 2 H 5 may be a mixture of isomers as indicated in Table 1 and is available commercially from 3MTM (St. Paul, Minn.).
  • compositions of the present invention that are mixtures may be prepared by any convenient method to combine the desired amounts of the individual components.
  • a preferred method is to weigh the desired component amounts and thereafter combine the components in an appropriate vessel. Agitation may be used, if desired.
  • compositions of the present invention have no ozone depletion potential and low global warming potential.
  • C 4 F 9 OC 2 H 5 alone or in mixtures with hydrocarbons, will have global warming potentials lower than many HFC refrigerants currently in use.
  • compositions comprising C 4 F 9 OC 2 H 5 and at least one hydrocarbon selected from the group consisting of:
  • the refrigerant or heat transfer compositions of the present invention may be azeotropic or near-azeotropic compositions.
  • An azeotropic composition is a liquid admixture of two or more substances that has a constant boiling point that may be above or below the boiling points of the individual components. As such an azeotropic composition will not fractionate within the refrigeration or air-conditioning system during operation, which may reduce efficiency of the system. Additionally, an azeotropic composition will not fractionate upon leakage from the refrigeration or air-conditioning system. In the situation where one component of a mixture is flammable, fractionation during leakage could lead to a flammable composition either within the system or outside of the system.
  • a near-azeotropic composition also sometimes called a “azeotropic-like composition,” is a substantially constant boiling liquid admixture of two or more substances that behaves essentially as a single substance.
  • a near-azeotropic composition is that the vapor produced by partial evaporation or distillation of the liquid has substantially the same composition as the liquid from which it was evaporated or distilled, that is, the admixture distills/refluxes without substantial composition change.
  • Another way to characterize a near-azeotropic composition is that the bubble point vapor pressure and the dew point vapor pressure of the composition at a particular temperature are substantially the same.
  • a composition is near-azeotropic if, after 50 weight percent of the composition is removed, such as by evaporation or boiling off, the difference in vapor pressure between the original composition and the composition remaining after 50 weight percent of the original composition has been removed is less than about 10 percent.
  • azeotropic refrigerant compositions of the present invention are listed in Table 2.
  • Table 2 Azeotrope Concentration Azeotrope Component A Component B Wt % A Wt % B BP (° C.) C 4 F 9 OC 2 H 5 cyclohexane 73.1 26.9 69.4 C 4 F 9 OC 2 H 5 cyclopentane 29.6 70.4 48.1 C 4 F 9 OC 2 H 5 2,2-dimethylbutane 32.6 67.4 48.1 C 4 F 9 OC 2 H 5 2,3-dimethylbutane 44.7 55.3 54.8 C 4 F 9 OC 2 H 5 2,3-dimethylpentane 82.2 17.8 72.2 C 4 F 9 OC 2 H 5 3-ethylpentane 86.0 14.0 73.5 C 4 F 9 OC 2 H 5 n-heptane 91.0 9.0 74.9 C 4 F 9 OC 2 H 5 methylcyclopentane 62.1 37.9 64.5 C 4 F 9 OC 2
  • Additional compounds from the list in Table 1 may be added to the binary compositions of the present invention to form ternary or higher order compositions.
  • compositions of the present invention may further comprise about 0.01 weight percent to about 5 weight percent of a stabilizer, free radical scavenger or antioxidant.
  • a stabilizer free radical scavenger or antioxidant.
  • additives include but are not limited to, nitromethane, hindered phenols, hydroxylamines, thiols, phosphites, or lactones. Single additives or combinations may be used.
  • compositions of the present invention may further comprise about 0.01 weight percent to about 5 weight percent of a water scavenger (drying compound).
  • a water scavenger drying compound
  • Such water scavengers may comprise ortho esters such as trimethyl-, triethyl-, or tripropylorthoformate.
  • compositions of the present invention may further comprise an ultra-violet (UV) dye and optionally a solubilizing agent.
  • UV dye is a useful component for detecting leaks of the refrigerant and heat transfer fluid compositions by permitting one to observe the fluorescence of the dye in the refrigerant or heat transfer fluid compositions at a leak point or in the vicinity of refrigeration or air-conditioning apparatus. One may observe the fluorescence of the dye under an ultra-violet light.
  • Solubilizing agents may be needed to increase solubility of such UV dyes in some refrigerants and heat transfer fluids.
  • ultra-violet dye is meant a UV fluorescent composition that absorbs light in the ultra-violet or “near” ultra-violet region of the electromagnetic spectrum.
  • the fluorescence produced by the UV fluorescent dye under illumination by a UV light that emits radiation with wavelength anywhere from 10 nanometer to 750 nanometer may be detected. Therefore, if refrigerant or heat transfer fluid containing such a UV fluorescent dye is leaking from a given point in a refrigeration or air-conditioning apparatus, the fluorescence can be detected at the leak point.
  • UV fluorescent dyes include but are not limited to naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanthenes, fluoresceins, and derivatives or combinations thereof.
  • Solubilizing agents of the present invention comprise at least one compound selected from the group consisting of hydrocarbons, hydrocarbon ethers, polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1,1,1-trifluoroalkanes.
  • Hydrocarbon solubilizing agents of the present invention comprise hydrocarbons including straight chained, branched chain or cyclic alkanes or alkenes containing 16 or fewer carbon atoms and only hydrogen with no other functional groups.
  • Representative hydrocarbon solubilizing agents comprise propane, propylene, cyclopropane, n-butane, isobutane, n-pentane, octane, decane, and hexadecane. It should be noted that the hydrocarbon solubilizing agent may not be the same as the hydrocarbon component of the refrigerant or heat transfer fluid composition.
  • Hydrocarbon ether solubilizing agents of the present invention comprise ethers containing only carbon, hydrogen and oxygen, such as dimethyl ether (DME).
  • DME dimethyl ether
  • Polyoxyalkylene glycol ether solubilizing agents of the present invention are represented by the formula R 1 [(OR 2 ) x OR 3 ] y , wherein x is an integer from 1-3; y is an integer from 14; R 1 is selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 6 carbon atoms and y bonding sites; R 2 is selected from aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms; R 3 is selected from hydrogen, and aliphatic and alicyclic hydrocarbon radicals having from 1 to 6 carbon atoms; at least one of R 1 and R 3 is selected from said hydrocarbon radical; and wherein said polyoxyalkylene glycol ethers have a molecular weight of from about 100 to about 300 atomic mass units.
  • bonding sites mean radical sites available to form covalent bonds with other radicals.
  • Hydrocarbylene radicals mean divalent hydrocarbon radicals.
  • preferable polyoxyalkylene glycol ether solubilizing agents are represented by R 1 [(OR 2 ) x OR 3 ] y wherein x is preferably 1-2; y is preferably 1; R 1 and R 3 are preferably independently selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 4 carbon atoms; R 2 is preferably selected from aliphatic hydrocarbylene radicals having from 2 or 3 carbon atoms, most preferably 3 carbon atoms; the polyoxyalkylene glycol ether molecular weight is preferably from about 100 to about 250 atomic mass units, most preferably from about 125 to about 250 atomic mass units.
  • the R 1 and R 3 hydrocarbon radicals having 1 to 6 carbon atoms may be linear, branched or cyclic.
  • Representative R 1 and R 3 hydrocarbon radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, and cyclohexyl.
  • free hydroxyl radicals on the present polyoxyalkylene glycol ether solubilizing agents may be incompatible with certain compression refrigeration apparatus materials of construction (e.g.
  • R 1 and R 3 are preferably aliphatic hydrocarbon radicals having 1 to 4 carbon atoms, most preferably 1 carbon atom.
  • the R 2 aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms form repeating oxyalkylene radicals —(OR 2 ) x — that include oxyethylene radicals, oxypropylene radicals, and oxybutylene radicals.
  • the oxyalkylene radical comprising R 2 in one polyoxyalkylene glycol ether solubilizing agent molecule may be the same, or one molecule may contain different R 2 oxyalkylene groups.
  • the present polyoxyalkylene glycol ether solubilizing agents preferably comprise at least one oxypropylene radical.
  • R 1 is an aliphatic or alicyclic hydrocarbon radical having 1 to 6 carbon atoms and y bonding sites
  • the radical may be linear, branched or cyclic.
  • Representative R 1 aliphatic hydrocarbon radicals having two bonding sites include, for example, an ethylene radical, a propylene radical, a butylene radical, a pentylene radical, a hexylene radical, a cyclopentylene radical and a cyclohexylene radical.
  • R 1 aliphatic hydrocarbon radicals having three or four bonding sites include residues derived from polyalcohols, such as trimethylolpropane, glycerin, pentaerythritol, 1,2,3-trihydroxycyclohexane and 1,3,5-trihydroxycyclohexane, by removing their hydroxyl radicals.
  • Representative polyoxyalkylene glycol ether solubilizing agents include but are not limited to: CH 3 OCH 2 CH(CH 3 )O(H or CH 3 ) (propylene glycol methyl (or dimethyl) ether), CH 3 O[CH 2 CH(CH 3 )O] 2 (H or CH 3 ) (dipropylene glycol methyl (or dimethyl) ether), CH 3 O[CH 2 CH(CH 3 )O] 3 (H or CH 3 ) (tripropylene glycol methyl (or dimethyl) ether), C 2 H 5 OCH 2 CH(CH 3 )O(H or C 2 H 5 ) (propylene glycol ethyl (or diethyl) ether), C 2 H 5 O[CH 2 CH(CH 3 )O] 2 (H or C 2 H 5 ) (dipropylene glycol ethyl (or diethyl) ether), C 2 H 5 O[CH 2 CH(CH 3 )O] 3 (H or C 2 H 5
  • Amide solubilizing agents of the present invention comprise those represented by the formulae R 1 C(O)NR 2 R 3 and cyclo-[R 4 C(O)N(R 5 )—], wherein R 1 , R 2 , R 3 and R 5 are independently selected from aliphatic and alicyclic hydrocarbon radicals having from 1 to 12 carbon atoms; R 4 is selected from aliphatic hydrocarbylene radicals having from 3 to 12 carbon atoms; and wherein said amides have a molecular weight of from about 100 to about 300 atomic mass units. The molecular weight of said amides is preferably from about 160 to about 250 atomic mass units.
  • R 1 , R 2 , R 3 and R 5 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy).
  • R 1 , R 2 , R 3 and R 5 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • amide solubilizing agents consist of carbon, hydrogen, nitrogen and oxygen.
  • R 1 , R 2 , R 3 and R 5 aliphatic and alicyclic hydrocarbon radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers.
  • a preferred embodiment of amide solubilizing agents are those wherein R 4 in the aforementioned formula cyclo-[R 4 C(O)N(R 5 )—] may be represented by the hydrocarbylene radical (CR 6 R 7 ) n , in other words, the formula cyclo-[(CR 6 R 7 ) n C(O)N(R 5 )—] wherein the previously-stated values for molecular weight apply; n is an integer from 3 to 5; R 5 is a saturated hydrocarbon radical containing 1 to 12 carbon atoms; R 6 and R 7 are independently selected (for each n) by the rules previously offered defining R 1-3 .
  • R 6 and R 7 are preferably hydrogen, or contain a single saturated hydrocarbon radical among the n methylene units, and R 5 is a saturated hydrocarbon radical containing 3 to 12 carbon atoms.
  • R 5 is a saturated hydrocarbon radical containing 3 to 12 carbon atoms.
  • amide solubilizing agents include but are not limited to: 1-octylpyrrolidin-2-one, 1-decylpyrrolidin-2-one, 1-octyl-5-methylpyrrolidin-2-one, 1-butylcaprolactam, 1-cyclohexylpyrrolidin-2-one, 1-butyl-5-methylpiperid-2-one, 1-pentyl-5-methylpiperid-2-one, 1-hexylcaprolactam, 1-hexyl-5-methylpyrrolidin-2-one, 5-methyl-1-pentylpiperid-2-one, 1,3-dimethylpiperid-2-one, 1-methylcaprolactam, 1-butyl-pyrrolidin-2-one, 1,5-dimethylpiperid-2-one, 1-decyl-5-methylpyrrolidin-2-one, 1-dodecylpyrrolid-2-one, N,N-dibutylformamide and N,N-diisopropylacetamide.
  • Ketone solubilizing agents of the present invention comprise ketones represented by the formula R 1 C(O)R 2 , wherein R 1 and R 2 are independently selected from aliphatic, alicyclic and aryl hydrocarbon radicals having from 1 to 12 carbon atoms, and wherein said ketones have a molecular weight of from about 70 to about 300 atomic mass units.
  • R 1 and R 2 in said ketones are preferably independently selected from aliphatic and alicyclic hydrocarbon radicals having 1 to 9 carbon atoms.
  • the molecular weight of said ketones is preferably from about 100 to 200 atomic mass units.
  • R 1 and R 2 may together form a hydrocarbylene radical connected and forming a five, six, or seven-membered ring cyclic ketone, for example, cyclopentanone, cyclohexanone, and cycloheptanone.
  • R 1 and R 2 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy).
  • R 1 and R 2 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • heteroatom-substituted hydrocarbon radicals that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • no more than three non-hydrocarbon substituents and heteroatoms, and preferably no more than one, will be present for each 10 carbon atoms in R 1 and R 2 , and the presence of any such non-hydrocarbon substituents and heteroatoms must be considered in applying the aforementioned molecular weight limitations.
  • R 1 and R 2 aliphatic, alicyclic and aryl hydrocarbon radicals in the general formula R 1 C(O)R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers, as well as phenyl, benzyl, cumenyl, mesityl, tolyl, xylyl and phenethyl.
  • ketone solubilizing agents include but are not limited to: 2-butanone, 2-pentanone, acetophenone, butyrophenone, hexanophenone, cyclohexanone, cycloheptanone, 2-heptanone, 3-heptanone, 5-methyl-2-hexanone, 2-octanone, 3-octanone, diisobutyl ketone, 4-ethylcyclohexanone, 2-nonanone, 5-nonanone, 2-decanone, 4-decanone, 2-decalone, 2-tridecanone, dihexyl ketone and dicyclohexyl ketone.
  • Nitrile solubilizing agents of the present invention comprise nitriles represented by the formula R 1 CN, wherein R 1 is selected from aliphatic, alicyclic or aryl hydrocarbon radicals having from 5 to 12 carbon atoms, and wherein said nitriles have a molecular weight of from about 90 to about 200 atomic mass units.
  • R 1 in said nitrile solubilizing agents is preferably selected from aliphatic and alicyclic hydrocarbon radicals having 8 to 10 carbon atoms.
  • the molecular weight of said nitrile solubilizing agents is preferably from about 120 to about 140 atomic mass units.
  • R 1 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy).
  • R 1 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms.
  • R 1 aliphatic, alicyclic and aryl hydrocarbon radicals in the general formula R 1 CN include pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers, as well as phenyl, benzyl, cumenyl, mesityl, tolyl, xylyl and phenethyl.
  • nitrile solubilizing agents include but are not limited to: 1-cyanopentane, 2,2-dimethyl-4-cyanopentane, 1-cyanohexane, 1-cyanoheptane, 1-cyanooctane, 2-cyanooctane, 1-cyanononane, 1-cyanodecane, 2-cyanodecane, 1-cyanoundecane and 1-cyanododecane.
  • Chlorocarbon solubilizing agents of the present invention comprise chlorocarbons represented by the formula RCl x , wherein x is 1 or 2; R is selected from aliphatic and alicyclic hydrocarbon radicals having 1 to 12 carbon atoms; and wherein said chlorocarbons have a molecular weight of from about 100 to about 200 atomic mass units.
  • the molecular weight of said chlorocarbon solubilizing agents is preferably from about 120 to 150 atomic mass units.
  • R aliphatic and alicyclic hydrocarbon radicals in the general formula RCl x include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers.
  • Representative chlorocarbon solubilizing agents include but are not limited to: 3-(chloromethyl)pentane, 3-chloro-3-methylpentane, 1-chlorohexane, 1,6-dichlorohexane, 1-chloroheptane, 1-chlorooctane, 1-chlorononane, 1-chlorodecane, and 1,1,1-trichlorodecane.
  • Ester solubilizing agents of the present invention comprise esters represented by the general formula R 1 C(O)OR 2 , wherein R 1 and R 2 are independently selected from linear and cyclic, saturated and unsaturated, alkyl and aryl radicals.
  • Preferred esters consist essentially of the elements C, H and O, have a molecular weight of from about 80 to about 550 atomic mass units.
  • esters include but are not limited to: (CH 3 ) 2 CHCH 2 O(O)C(CH 2 ) 2-4 (O)COCH 2 CH(CH 3 ) 2 (diisobutyl dibasic ester), ethyl hexanoate, ethyl heptanoate, n-butyl propionate, n-propyl propionate, ethyl benzoate, di-n-propyl phthalate, benzoic acid ethoxyethyl ester, dipropyl carbonate, “Exxate 700” (a commercial C 7 alkyl acetate), “Exxate 800” (a commercial C 8 alkyl acetate), dibutyl phthalate, and tert-butyl acetate.
  • Lactone solubilizing agents of the present invention comprise lactones represented by structures [A], [B], and [C]:
  • lactones contain the functional group —C(O)O— in a ring of six (A), or preferably five atoms (B), wherein for structures [A] and [B], R 1 through R 8 are independently selected from hydrogen or linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals. Each R 1 through R 8 may be connected forming a ring with another R 1 through R 8 .
  • the lactone may have an exocyclic alkylidene group as in structure [C], wherein R 1 through R 6 are independently selected from hydrogen or linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals.
  • Each R 1 though R 6 may be connected forming a ring with another R 1 through R 6 .
  • the lactone solubilizing agents have a molecular weight range of from about 80 to about 300 atomic mass units, preferred from about 80 to about 200 atomic mass units.
  • lactone solubilizing agents include but are not limited to the compounds listed in Table 4. TABLE 4 Molecular Molecular Additive Molecular Structure Formula Weight (amu) (E,Z)-3-ethylidene-5-methyl- dihydro-furan-2-one C 7 H 10 O 2 126 (E,Z)-3-propylene-5-methyl- dihydro-furan-2-one C 8 H 12 O 2 140 (E,Z)-3-butylidene-5-methyl- dihydro-furan-2-one C 9 H 14 O 2 154 (E,Z)-3-pentylidene-5-meethyl- dihydro-furan-2-one C 10 H 16 O 2 168 (E,Z)-3-Hexylidene-5-methyl- dihydro-furan-2-one C 11 H 18 O 2 182 (E,Z)-3-Heptylidene-5-methyl- dihydro-furan-2-one C 12 H 20 O 2 196 (E,Z)-3-octyliden
  • Lactone solubilizing agents generally have a kinematic viscosity of less than about 7 centistokes at 40° C.
  • gamma-undecalactone has kinematic viscosity of 5.4 centistokes and cis-(3-hexyl-5-methyl)dihydrofuran-2-one has viscosity of 4.5 centistokes, both at 40° C.
  • Lactone solubilizing agents may be available commercially or prepared by methods as described in U.S. patent application Ser. No. 10/910,495, filed Aug. 3, 2004, incorporated herein by reference.
  • Aryl ether solubilizing agents of the present invention comprise aryl ethers represented by the formula R 1 OR 2 , wherein: R 1 is selected from aryl hydrocarbon radicals having from 6 to 12 carbon atoms; R 2 is selected from aliphatic hydrocarbon radicals having from 1 to 4 carbon atoms; and wherein said aryl ethers have a molecular weight of from about 100 to about 150 atomic mass units.
  • R 1 aryl radicals in the general formula R 1 OR 2 include phenyl, biphenyl, cumenyl, mesityl, tolyl, xylyl, naphthyl and pyridyl.
  • R 2 aliphatic hydrocarbon radicals in the general formula R 1 OR 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl.
  • Representative aromatic ether solubilizing agents include but are not limited to: methyl phenyl ether (anisole), 1,3-dimethyoxybenzene, ethyl phenyl ether and butyl phenyl ether.
  • Fluoroether solubilizing agents of the present invention comprise those represented by the general formula R 1 OCF 2 CF 2 H, wherein R 1 is selected from aliphatic, alicyclic, and aromatic hydrocarbon radicals having from about 5 to about 15 carbon atoms, preferably primary, linear, saturated, alkyl radicals.
  • Representative fluoroether solubilizing agents include but are not limited to: C 8 H 17 OCF 2 CF 2 H and C 6 H 13 OCF 2 CF 2 H. It should be noted that if the refrigerant is a fluoroether, then the solubilizing agent may not be the same fluoroether.
  • Fluoroether solubilizing agents may further comprise ethers derived from fluoro-olefins and polyols.
  • the fluoro-olefins may be of the type CF 2 ⁇ CXY, wherein X is hydrogen, chlorine or fluorine, and Y is chlorine, fluorine, CF 3 or OR f , wherein R f is CF 3 , C 2 F 5 , or C 3 F 7 .
  • Representative fluoro-olefins are tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoromethylvinyl ether.
  • the polyols may be linear or branched.
  • Linear polyols may be of the type HOCH 2 (CHOH) x (CRR′) y CH 2 OH, wherein R and R′ are hydrogen, or CH 3 , or C 2 H 5 and wherein x is an integer from 0-4, and y is an integer from 0-4.
  • Representative polyols are trimethylol propane, pentaerythritol, butanediol, and ethylene glycol.
  • 1,1,1-Trifluoroalkane solubilizing agents of the present invention comprise 1,1,1-trifluoroalkanes represented by the general formula CF 3 R 1 , wherein R 1 is selected from aliphatic and alicyclic hydrocarbon radicals having from about 5 to about 15 carbon atoms, preferably primary, linear, saturated alkyl radicals.
  • Representative 1,1,1-trifluoroalkane solubilizing agents include but are not limited to: 1,1,1-trifluorohexane and 1,1,1-trifluorododecane.
  • Solubilizing agents of the present invention may be present as a single compound, or may be present as a mixture of more than one solubilizing agent. Mixtures of solubilizing agents may contain two solubilizing agents from the same class of compounds, say two lactones, or two solubilizing agents from two different classes, such as a lactone and a polyoxyalkylene glycol ether.
  • compositions comprising refrigerant and UV fluorescent dye, or comprising heat transfer fluid and UV fluorescent dye, from about 0.001 weight percent to about 1.0 weight percent of the compositions is UV dye, preferably from about 0.005 weight percent to about 0.5 weight percent, and most preferably from 0.01 weight percent to about 0.25 weight percent.
  • the UV fluorescent dye could be dissolved in the refrigerant itself thereby not requiring any specialized method for introduction to the refrigeration or air-conditioning apparatus.
  • the present invention relates to compositions including UV fluorescent dye, which may be introduced into the system in the refrigerant.
  • the inventive compositions will allow the storage and transport of dye-containing refrigerant and heat transfer fluid even at low temperatures while maintaining the dye in solution.
  • compositions comprising refrigerant, UV fluorescent dye and solubilizing agent, or comprising heat transfer fluid, UV fluorescent dye and solubilizing agent, from about 1 to about 50 weight percent, preferably from about 2 to about 25 weight percent, and most preferably from about 5 to about 15 weight percent of the combined composition is solubilizing agent in the refrigerant or heat transfer fluid.
  • the UV fluorescent dye is present in a concentration from about 0.001 weight percent to about 1.0 weight percent in the refrigerant or heat transfer fluid, preferably from 0.005 weight percent to about 0.5 weight percent, and most preferably from 0.01 weight percent to about 0.25 weight percent.
  • refrigeration or air-conditioning system additives may be added, as desired, to compositions of the present invention in order to enhance performance and system stability.
  • additives are known in the field of refrigeration and air-conditioning, and include, but are not limited to, anti wear agents, extreme pressure lubricants, corrosion and oxidation inhibitors, metal surface deactivators, free radical scavengers, and foam control agents.
  • these additives are present in the inventive compositions in small amounts relative to the overall composition. Typically concentrations of from less than about 0.1 weight percent to as much as about 3 weight percent of each additive are used. These additives are selected on the basis of the individual system requirements.
  • additives include members of the triaryl phosphate family of EP (extreme pressure) lubricity additives, such as butylated triphenyl phosphates (BTPP), or other alkylated triaryl phosphate esters, e.g. Syn-0-Ad 8478 from Akzo Chemicals, tricresyl phosphates and related compounds. Additionally, the metal dialkyl dithiophosphates (e.g. zinc dialkyl dithiophosphate (or ZDDP), Lubrizol 1375 and other members of this family of chemicals may be used in compositions of the present invention.
  • Other antiwear additives include natural product oils and asymmetrical polyhydroxyl lubrication additives, such as Synergol TMS (International Lubricants).
  • stabilizers such as anti oxidants, free radical scavengers, and water scavengers may be employed.
  • Compounds in this category can include, but are not limited to, butylated hydroxy toluene (BHT) and epoxides.
  • Solubilizing agents such as ketones may have an objectionable odor, which can be masked by addition of an odor masking agent or fragrance.
  • odor masking agents or fragrances may include Evergreen, Fresh Lemon, Cherry, Cinnamon, Peppermint, Floral or Orange Peel, all commercially available, as well as d-limonene and pinene.
  • Such odor masking agents may be used at concentrations of from about 0.001% to as much as about 15% by weight based on the combined weight of odor masking agent and solubilizing agent.
  • the present invention further relates to a method of using the refrigerant or heat transfer fluid compositions further comprising ultraviolet fluorescent dye, and optionally, solubilizing agent, in refrigeration or air-conditioning apparatus.
  • the method comprises introducing the refrigerant or heat transfer fluid composition into the refrigeration or air-conditioning apparatus. This may be done by dissolving the UV fluorescent dye in the refrigerant or heat transfer fluid composition in the presence of a solubilizing agent and introducing the combination into the apparatus. Alternatively, this may be done by combining solubilizing agent and UV fluorescent dye and introducing said combination into refrigeration or air-conditioning apparatus containing refrigerant and/or heat transfer fluid. The resulting composition may be used in the refrigeration or air-conditioning apparatus.
  • the present invention further relates to a method of using the refrigerant or heat transfer fluid compositions comprising ultraviolet fluorescent dye to detect leaks.
  • the presence of the dye in the compositions allows for detection of leaking refrigerant in the refrigeration or air-conditioning apparatus.
  • Leak detection helps to address, resolve or prevent inefficient operation of the apparatus or system or equipment failure.
  • Leak detection also helps one contain chemicals used in the operation of the apparatus.
  • the method comprises providing the composition comprising refrigerant and ultra-violet fluorescent dye, or comprising heat transfer fluid and ultra-violet fluorescent dye as described herein, and optionally, a solubilizing agent as described herein, to refrigeration and air-conditioning apparatus and employing a suitable means for detecting the UV fluorescent dye-containing refrigerant.
  • Suitable means for detecting the dye include, but are not limited to, ultra-violet lamp, often referred to as a “black light” or “blue light”. Such ultra-violet lamps are commercially available from numerous sources specifically designed for this purpose.
  • the present invention further relates to a method of using the compositions of the present invention for producing cooling or heat, wherein the method comprises producing cooling by evaporating said composition in the vicinity of a body to be cooled and thereafter condensing said composition; or producing heat by condensing said composition in the vicinity of the body to be heated and thereafter evaporating said composition.
  • the composition of the present invention includes refrigerant or heat transfer fluid composition with an ultra-violet fluorescent dye, and/or a solubilizing agent
  • the refrigerant or heat transfer fluid component of the composition is evaporated and thereafter condensed to produce cooling, or condensed and thereafter evaporated to produce heat.
  • thermodynamics wherein a cooling medium, such as a refrigerant, goes through a cycle so that it can be recovered for reuse.
  • a cooling medium such as a refrigerant
  • Commonly used cycles include vapor-compression, absorption, steam-jet or steam-ejector, and air.
  • Vapor-compression refrigeration systems include an evaporator, a compressor, a condenser, and an expansion device.
  • a vapor-compression cycle re-uses refrigerant in multiple steps producing a cooling effect in one step and a heating effect in a different step.
  • the cycle can be described simply as follows. Liquid refrigerant enters an evaporator through an expansion device, and the liquid refrigerant boils in the evaporator at a low temperature to form a gas and produce cooling. The low-pressure gas enters a compressor where the gas is compressed to raise its pressure and temperature. The higher-pressure (compressed) gaseous refrigerant then enters the condenser in which the refrigerant condenses and discharges its heat to the environment. The refrigerant returns to the expansion device through which the liquid expands from the higher-pressure level in the condenser to the low-pressure level in the evaporator, thus repeating the cycle.
  • the present invention further relates to a process for producing cooling comprising evaporating the compositions of the present invention in the vicinity of a body to be cooled, and thereafter condensing said compositions.
  • the present invention further relates to a process for producing heat comprising condensing the compositions of the present invention in the vicinity of a body to be heated, and thereafter evaporating said compositions.
  • compressors there are various types of compressors that may be used in refrigeration applications.
  • Compressors can be generally classified as reciprocating, rotary, jet, centrifugal, scroll, screw or axial-flow, depending on the mechanical means to compress the fluid, or as positive-displacement (e.g., reciprocating, scroll or screw) or dynamic (e.g., centrifugal or jet), depending on how the mechanical elements act on the fluid to be compressed.
  • positive-displacement e.g., reciprocating, scroll or screw
  • dynamic e.g., centrifugal or jet
  • a centrifugal type compressor is the preferred equipment for the present refrigerant compositions.
  • a centrifugal compressor uses rotating elements to accelerate the refrigerant radially, and typically includes an impeller and diffuser housed in a casing.
  • Centrifugal compressors usually take fluid in at an impeller eye, or central inlet of a circulating impeller, and accelerate it radially outward. Some static pressure rise occurs in the impeller, but most of the pressure rise occurs in the diffuser section of the casing, where velocity is converted to static pressure.
  • Each impeller-diffuser set is a stage of the compressor.
  • Centrifugal compressors are built with from 1 to 12 or more stages, depending on the final pressure desired and the volume of refrigerant to be handled.
  • the pressure ratio, or compression ratio, of a compressor is the ratio of absolute discharge pressure to the absolute inlet pressure.
  • Pressure delivered by a centrifugal compressor is practically constant over a relatively wide range of capacities.
  • Positive displacement compressors draw vapor into a chamber, and the chamber decreases in volume to compress the vapor. After being compressed, the vapor is forced from the chamber by further decreasing the volume of the chamber to zero or nearly zero.
  • a positive displacement compressor can build up a pressure, which is limited only by the volumetric efficiency and the strength of the parts to withstand the pressure.
  • a centrifugal compressor Unlike a positive displacement compressor, a centrifugal compressor depends entirely on the centrifugal force of the high-speed impeller to compress the vapor passing through the impeller. There is no positive displacement, but rather what is called dynamic-compression.
  • the pressure a centrifugal compressor can develop depends on the tip speed of the impeller. Tip speed is the speed of the impeller measured at its tip and is related to the diameter of the impeller and its revolutions per minute.
  • the capacity of the centrifugal compressor is determined by the size of the passages through the impeller. This makes the size of the compressor more dependent on the pressure required than the capacity.
  • centrifugal compressor Because of its high-speed operation, a centrifugal compressor is fundamentally a high volume, low-pressure machine.
  • a centrifugal compressor works best with a low-pressure refrigerant, such as trichlorofluoromethane (CFC-11) or 1,2,2-trichlorotrifluoroethane (CFC-113).
  • centrifugal compressors typically operate at 3000 to 7000 revolutions per minute (rpm).
  • Small turbine centrifugal compressors are designed for high speeds, from about 40,000 to about 70,000 (rpm), and have small impeller sizes, typically less than 0.15 meters (about 6 inches).
  • a multi-stage impeller may be used in a centrifugal compressor to improve compressor efficiency thus requiring less power in use.
  • the discharge of the first stage impeller goes to the suction intake of a second impeller.
  • Both impellers may operate by use of a single shaft (or axle).
  • Each stage can build up a compression ratio of about 4 to 1; that is, the absolute discharge pressure can be four times the absolute suction pressure.
  • compositions of the present invention suitable for use in a refrigeration or air-conditioning systems employing a centrifugal compressor comprise C 4 F 9 OC 2 H 5 and at least one hydrocarbon selected from the group consisting of:
  • compositions are also suitable for use in a multi-stage centrifugal compressor, preferably a two-stage centrifugal compressor apparatus.
  • compositions of the present invention may be used in stationary air-conditioning, heat pumps or mobile air-conditioning and refrigeration systems.
  • Stationary air-conditioning and heat pump applications include window, ductless, ducted, packaged terminal, chillers and commercial, including packaged rooftop.
  • Refrigeration applications include domestic or home refrigerators and freezers, ice machines, self-contained coolers and freezers, walk-in coolers and freezers and transport refrigeration systems.
  • compositions of the present invention may additionally be used in air-conditioning, heating and refrigeration systems that employ fin and tube heat exchangers, microchannel heat exchangers and vertical or horizontal single pass tube or plate type heat exchangers.
  • microchannel heat exchangers may not be ideal for the low pressure refrigerant compositions of the present invention.
  • the low operating pressure and density result in high flow velocities and high frictional losses in all components.
  • the evaporator design may be modified.
  • a single slab/single pass heat exchanger arrangement may be used. Therefore, a preferred heat exchanger for the low pressure refrigerants of the present invention is a single slab/single pass heat exchanger.
  • compositions of the present invention suitable for use in refrigeration or air-conditioning apparatus employing a single slab/single pass heat exchanger comprise C 4 F 9 OC 2 H 5 and at least one hydrocarbon selected from the group consisting of:
  • compositions of the present invention are particularly useful in small turbine centrifugal compressors (mini-centrifugal compressors), which can be used in auto and window air-conditioning, heat pumps, or transport refrigeration, as well as other applications.
  • mini-centrifugal compressors may be driven by an electric motor and can therefore be operated independently of the engine speed.
  • a constant compressor speed allows the system to provide a relatively constant cooling capacity at all engine speeds. This provides an opportunity for efficiency improvements especially at higher engine speeds as compared to a conventional R-134a automobile air-conditioning system. When the cycling operation of conventional systems at high driving speeds is taken into account, the advantage of these low pressure systems becomes even greater.
  • the mini-centrifugal compressor may be powered by an engine exhaust gas driven turbine or a ratioed gear drive assembly with ratioed belt drive.
  • the electrical power available in current automobile design is about 14 volts, but the new mini-centrifugal compressor requires electrical power of about 50 volts. Therefore, use of an alternative power source would be advantageous.
  • a refrigeration or air-conditioning apparatus powered by an engine exhaust gas driven turbine is described in detail in U.S. provisional patent application No. 60/658,915, filed Mar. 4, 2005, incorporated herein by reference.
  • a refrigeration or air-conditioning apparatus powered by a ratioed gear drive assembly is described in detail in U.S. provisional patent application No. 60/663,924, filed Mar. 21, 2005, incorporated herein by reference.
  • the present invention further relates to a process to produce cooling comprising compressing a composition of the present invention, in a mini-centrifugal compressor powered by an engine exhaust gas driven turbine; condensing said composition; and thereafter evaporating said composition in the vicinity of a body to be cooled.
  • the present invention further relates to a process to produce cooling comprising compressing a composition of the present invention, in a mini-centrifugal compressor powered by a ratioed gear drive assembly with a ratioed belt drive; condensing said composition; and thereafter evaporating said composition in the vicinity of a body to be cooled.
  • Some of the low pressure refrigerant fluids of the present invention may be suitable as drop-in replacements for CFC-113 in existing centrifugal equipment.
  • the present invention further relates to a method for replacing CFC-113 in existing refrigeration apparatus or air-conditioning apparatus, said method comprising providing a composition of the present invention as the replacement.
  • the present invention further relates to a process for transfer of heat from a heat source to a heat sink wherein the compositions of the present invention serve as heat transfer fluids.
  • Said process for heat transfer comprises transferring the compositions of the present invention from a heat source to a heat sink.
  • Heat transfer fluids are utilized to transfer, move or remove heat from one space, location, object or body to a different space, location, object or body by radiation, conduction, or convection.
  • a heat transfer fluid may function as a secondary coolant by providing means of transfer for cooling (or heating) from a remote refrigeration (or heating) system.
  • the heat transfer fluid may remain in a constant state throughout the transfer process (i.e., not evaporate or condense).
  • evaporative cooling processes may utilize heat transfer fluids as well.
  • a heat source may be defined as any space, location, object or body from which it is desirable to transfer, move or remove heat.
  • heat sources may be spaces (open or enclosed) requiring refrigeration or cooling, such as refrigerator or freezer cases in a supermarket, building spaces requiring air-conditioning, or the passenger compartment of an automobile requiring air-conditioning.
  • a heat sink may be defined as any space, location, object or body capable of absorbing heat.
  • a vapor compression refrigeration system is one example of such a heat sink.
  • a vessel is charged with an initial composition at a specified temperature, and the initial vapor pressure of the composition is measured.
  • the composition is allowed to leak from the vessel, while the temperature is held constant, until 50 weight percent of the initial composition is removed, at which time the vapor pressure of the composition remaining in the vessel is measured.
  • Table 5 The results are summarized in Table 5 below.
  • Tip speed can be estimated by making some fundamental relationships for refrigeration equipment that use centrifugal compressors.
  • v 2 tangential velocity of refrigerant leaving impeller (tip speed), meters/sec
  • v 1 tangential velocity of refrigerant entering impeller, meters/sec
  • H i Difference in enthalpy of the refrigerant from a saturated vapor at the evaporating conditions to saturated condensing conditions, kJ/kg.
  • Equation 8 is based on some fundamental assumptions, it provides a good estimate of the tip speed of the impeller and provides an important way to compare tip speeds of refrigerants.
  • Example shows that compounds of the present invention have tip speeds within about 30 percent of CFC-113 and would be effective replacements for CFC-113 with minimal compressor design changes. Most preferred compositions have tip speeds within about 20 percent of CFC-113.
  • compositions of the present invention have evaporator and condenser pressures similar to CFC-113. Some compositions also have higher capacity than CFC-113.

Abstract

The present invention relates to compositions for use in refrigeration and air-conditioning systems comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane and at least one hydrocarbon. Further, the present invention relates to compositions for use in refrigeration and air-conditioning systems employing a centrifugal compressor comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane and at least one hydrocarbon. The compositions of the present invention may be azeotropic or near-azeotropic and are useful in processes for producing cooling or heat or as heat transfer fluids.

Description

    CROSS REFERENCE(S) TO RELATED APPLICATION(S)
  • This application is a divisional application of pending application Ser. No. 11/11/153,168 filed Jun. 15, 2005, which claims the priority benefit of U.S. Provisional Application 60/584,785, filed Jun. 29, 2004.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to compositions for use in refrigeration and air-conditioning systems comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane and at least one hydrocarbon. Further, the present invention relates to compositions for use in refrigeration and air-conditioning systems employing a centrifugal compressor comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane and at least one hydrocarbon. The compositions of the present invention may be azeotropic or near-azeotropic and are useful in processes for producing cooling or heat or as heat transfer fluids.
  • 2. Description of Related Art
  • The refrigeration industry has been working for the past few decades to find replacement refrigerants for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) being phased out as a result of the Montreal Protocol. The solution for most refrigerant producers has been the commercialization of hydrofluorocarbon (HFC) refrigerants. The new HFC refrigerants, HFC-134a being the most widely used at this time, have zero ozone depletion potential and thus are not affected by the current regulatory phase out as a result of the Montreal Protocol.
  • Further environmental regulations may ultimately cause global phase out of certain HFC refrigerants. Currently, the automobile industry is facing regulations relating to global warming potential for refrigerants used in mobile air-conditioning. Therefore, there is a great current need to identify new refrigerants with reduced global warming potential for the automobile air-conditioning market. Should the regulations be more broadly applied in the future, an even greater need will be felt for refrigerants that can be used in all areas of the refrigeration and air-conditioning industry.
  • Currently proposed replacement refrigerants for HFC-134a include HFC-152a, pure hydrocarbons such as butane or propane, or “natural” refrigerants such as CO2 or ammonia. Many of these suggested replacements are toxic and/or flammable. Therefore, new alternatives are constantly being sought.
  • The object of the present invention is to provide novel refrigerant compositions and heat transfer fluids that provide unique characteristics to meet the demands of low or zero ozone depletion potential and lower global warming potential as compared to current refrigerants.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention relates to refrigerant or heat transfer fluid compositions comprising 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane (C4F9OC2H5) and at least one hydrocarbon selected from the group consisting of:
  • cyclohexane;
  • cyclopentane;
  • 3-ethylpentane;
  • 2,2-dimethylbutane;
  • 2,3-dimethylbutane;
  • 2,3-dimethylpentane;
  • n-heptane;
  • methylcyclopentane;
  • 2-methylhexane;
  • 3-methylhexane;
  • 2-methylpentane;
  • 3-methylpentane; and
  • n-pentane.
  • The present invention further relates to the above listed compositions specifically for use in refrigeration or air-conditioning systems employing a centrifugal compressor; a multi-stage or a 2-stage centrifugal compressor; or a single pass/single slab heat exchanger.
  • The present invention further relates to azeotropic or near-azeotropic compositions. These compositions are useful in refrigeration or air-conditioning systems. The compositions are also useful in refrigeration or air-conditioning systems employing a centrifugal compressor.
  • The present invention further relates to processes for producing cooling, heat, and transfer of heat from a heat source to a heat sink using the present inventive compositions.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The refrigerant and heat transfer fluid compositions of the present invention comprise C4F9OC2H5 and at least one hydrocarbon.
  • The hydrocarbons of the present invention comprise compounds containing hydrogen and carbon. Such hydrocarbons may be straight chain, branched chain or cyclic compounds and have from about 5 to 10 carbon atoms. Preferred hydrocarbons have from 5 to 7 carbon atoms. Representative hydrocarbons of the present invention are listed in Table 1.
  • Representative compounds that may be components of the compositions of the present invention are listed in Table 1.
    TABLE 1
    Compound Chemical Formula Chemical Name CAS Reg. No.
    C4F9OC2H5 CF3CF2CF2CF2OC2H5 1-ethoxy-1,1,2,2,3.3,4,4,4- 163702-05-4  
    (mixture of nonafluorobutane
    isomers) (CF3)2CFCF2OC2H5 2-(ethoxydifluoromethyl)- 163702-06-5  
    1,1,1,2,3,3,3-heptafluoropropane
    CH3CH2C(CH3)3 2,2-dimethylbutane  75-83-2
    CH3CH(CH3)CH(CH3)CH3 2,3-dimethylbutane  79-29-8
    CH3CH(CH3)CH(CH3)CH2CH3 2,3-dimethylpentane 565-59-3
    CH3CH(CH3)CH2CH3 2-methylbutane  78-78-4
    CH3CH(CH3)CH2CH2CH2CH3 2-methylhexane 591-76-4
    CH3CH2CH(CH3)CH2CH2CH3 3-methylhexane 589-34-4
    CH3CH(CH3)CH2CH2CH3 2-methylpentane 107-83-5
    CH3CH2CH(CH2CH3)CH2CH3 3-ethylpentane 617-78-7
    CH3CH2CH(CH3)CH2—CH3 3-methylpentane  96-14-0
    cyclo-CH2CH2CH2CH2CH2CH2CH2 cyclohexane 110-82-7
    cyclo-CH2CH2CH2CH2CH2CH2 cyclopentane 287-92-3
    CH3CH2CH2CH2CH2CH2CH3 n-heptane 142-82-5
    cyclo-CH2CH(CH3)CH2CH2CH2 methylcyclopentane  96-37-7
    CH3CH2CH2CH2CH3 n-pentane 109-66-0
    CH3CH2CH2CH2CH2—CH3 n-hexane 110-54-3
  • The compounds listed in Table 1 are available commercially or may be prepared by processes known in the art or as described below. C4F9OC2H5 may be a mixture of isomers as indicated in Table 1 and is available commercially from 3M™ (St. Paul, Minn.).
  • The compositions of the present invention that are mixtures may be prepared by any convenient method to combine the desired amounts of the individual components. A preferred method is to weigh the desired component amounts and thereafter combine the components in an appropriate vessel. Agitation may be used, if desired.
  • Compositions of the present invention have no ozone depletion potential and low global warming potential. For example, C4F9OC2H5, alone or in mixtures with hydrocarbons, will have global warming potentials lower than many HFC refrigerants currently in use.
  • The refrigerant or heat transfer compositions of the present invention include compositions comprising C4F9OC2H5 and at least one hydrocarbon selected from the group consisting of:
  • cyclohexane;
  • cyclopentane;
  • 3-ethylpentane;
  • 2,2-dimethylbutane;
  • 2,3-dimethylbutane;
  • 2,3-dimethylpentane;
  • n-heptane;
  • methylcyclopentane;
  • 2-methylhexane;
  • 3-methylhexane;
  • 2-methylpentane;
  • 3-methylpentane; and
  • n-pentane.
  • The refrigerant or heat transfer compositions of the present invention may be azeotropic or near-azeotropic compositions. An azeotropic composition is a liquid admixture of two or more substances that has a constant boiling point that may be above or below the boiling points of the individual components. As such an azeotropic composition will not fractionate within the refrigeration or air-conditioning system during operation, which may reduce efficiency of the system. Additionally, an azeotropic composition will not fractionate upon leakage from the refrigeration or air-conditioning system. In the situation where one component of a mixture is flammable, fractionation during leakage could lead to a flammable composition either within the system or outside of the system.
  • A near-azeotropic composition, also sometimes called a “azeotropic-like composition,” is a substantially constant boiling liquid admixture of two or more substances that behaves essentially as a single substance. One way to characterize a near-azeotropic composition is that the vapor produced by partial evaporation or distillation of the liquid has substantially the same composition as the liquid from which it was evaporated or distilled, that is, the admixture distills/refluxes without substantial composition change. Another way to characterize a near-azeotropic composition is that the bubble point vapor pressure and the dew point vapor pressure of the composition at a particular temperature are substantially the same. Herein, a composition is near-azeotropic if, after 50 weight percent of the composition is removed, such as by evaporation or boiling off, the difference in vapor pressure between the original composition and the composition remaining after 50 weight percent of the original composition has been removed is less than about 10 percent.
  • The azeotropic refrigerant compositions of the present invention are listed in Table 2.
    TABLE 2
    Azeotrope
    Concentration Azeotrope
    Component A Component B Wt % A Wt % B BP (° C.)
    C4F9OC2H5 cyclohexane 73.1 26.9 69.4
    C4F9OC2H5 cyclopentane 29.6 70.4 48.1
    C4F9OC2H5 2,2-dimethylbutane 32.6 67.4 48.1
    C4F9OC2H5 2,3-dimethylbutane 44.7 55.3 54.8
    C4F9OC2H5 2,3-dimethylpentane 82.2 17.8 72.2
    C4F9OC2H5 3-ethylpentane 86.0 14.0 73.5
    C4F9OC2H5 n-heptane 91.0 9.0 74.9
    C4F9OC2H5 methylcyclopentane 62.1 37.9 64.5
    C4F9OC2H5 2-methylhexane 81.8 18.2 72.1
    C4F9OC2H5 3-methylhexane 83.8 16.2 72.8
    C4F9OC2H5 2-methylpentane 47.9 52.1 56.5
    C4F9OC2H5 3-methylpentane 52.1 47.9 58.7
    C4F9OC2H5 n-pentane 9.2 90.8 35.0
  • The near-azeotropic refrigerant compositions and concentration ranges of the present invention are listed in Table 3.
    TABLE 3
    Near-azeotropic Concentration
    Range
    Compounds (A/B) wt % A/wt % B
    C4F9OC2H5/cyclohexane 39-99/61-1
    C4F9OC2H5/cyclopentane  1-71/99-29
    C4F9OC2H5/2,2-dimethylbutane  1-71/99-29
    C4F9OC2H5/2,3-dimethylbutane  1-77/99-23
    C4F9OC2H5/2,3-dimethylpentane 52-99/48-1
    C4F9OC2H5/3-ethylpentane 56-99/44-1
    C4F9OC2H5/n-heptane 61-99/39-1
    C4F9OC2H5/methylcyclopentane 25-99/75-1
    C4F9OC2H5/2-methylhexane 51-99/49-1
    C4F9OC2H5/3-methylhexane 54-99/46-1
    C4F9OC2H5/2-methylpentane  1-79/99-21
    C4F9OC2H5/3-methylpentane  1-82/99-18
    C4F9OC2H5/n-pentane  1-62/99-38
  • Additional compounds from the list in Table 1 may be added to the binary compositions of the present invention to form ternary or higher order compositions.
  • The compositions of the present invention may further comprise about 0.01 weight percent to about 5 weight percent of a stabilizer, free radical scavenger or antioxidant. Such additives include but are not limited to, nitromethane, hindered phenols, hydroxylamines, thiols, phosphites, or lactones. Single additives or combinations may be used.
  • The compositions of the present invention may further comprise about 0.01 weight percent to about 5 weight percent of a water scavenger (drying compound). Such water scavengers may comprise ortho esters such as trimethyl-, triethyl-, or tripropylorthoformate.
  • The compositions of the present invention may further comprise an ultra-violet (UV) dye and optionally a solubilizing agent. The UV dye is a useful component for detecting leaks of the refrigerant and heat transfer fluid compositions by permitting one to observe the fluorescence of the dye in the refrigerant or heat transfer fluid compositions at a leak point or in the vicinity of refrigeration or air-conditioning apparatus. One may observe the fluorescence of the dye under an ultra-violet light. Solubilizing agents may be needed to increase solubility of such UV dyes in some refrigerants and heat transfer fluids.
  • By “ultra-violet” dye is meant a UV fluorescent composition that absorbs light in the ultra-violet or “near” ultra-violet region of the electromagnetic spectrum. The fluorescence produced by the UV fluorescent dye under illumination by a UV light that emits radiation with wavelength anywhere from 10 nanometer to 750 nanometer may be detected. Therefore, if refrigerant or heat transfer fluid containing such a UV fluorescent dye is leaking from a given point in a refrigeration or air-conditioning apparatus, the fluorescence can be detected at the leak point. Such UV fluorescent dyes include but are not limited to naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanthenes, fluoresceins, and derivatives or combinations thereof. Solubilizing agents of the present invention comprise at least one compound selected from the group consisting of hydrocarbons, hydrocarbon ethers, polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and 1,1,1-trifluoroalkanes.
  • Hydrocarbon solubilizing agents of the present invention comprise hydrocarbons including straight chained, branched chain or cyclic alkanes or alkenes containing 16 or fewer carbon atoms and only hydrogen with no other functional groups. Representative hydrocarbon solubilizing agents comprise propane, propylene, cyclopropane, n-butane, isobutane, n-pentane, octane, decane, and hexadecane. It should be noted that the hydrocarbon solubilizing agent may not be the same as the hydrocarbon component of the refrigerant or heat transfer fluid composition.
  • Hydrocarbon ether solubilizing agents of the present invention comprise ethers containing only carbon, hydrogen and oxygen, such as dimethyl ether (DME).
  • Polyoxyalkylene glycol ether solubilizing agents of the present invention are represented by the formula R1[(OR2)xOR3]y, wherein x is an integer from 1-3; y is an integer from 14; R1 is selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 6 carbon atoms and y bonding sites; R2 is selected from aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms; R3 is selected from hydrogen, and aliphatic and alicyclic hydrocarbon radicals having from 1 to 6 carbon atoms; at least one of R1 and R3 is selected from said hydrocarbon radical; and wherein said polyoxyalkylene glycol ethers have a molecular weight of from about 100 to about 300 atomic mass units. As used herein, bonding sites mean radical sites available to form covalent bonds with other radicals. Hydrocarbylene radicals mean divalent hydrocarbon radicals.
  • In the present invention, preferable polyoxyalkylene glycol ether solubilizing agents are represented by R1[(OR2)xOR3]y wherein x is preferably 1-2; y is preferably 1; R1 and R3 are preferably independently selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 4 carbon atoms; R2 is preferably selected from aliphatic hydrocarbylene radicals having from 2 or 3 carbon atoms, most preferably 3 carbon atoms; the polyoxyalkylene glycol ether molecular weight is preferably from about 100 to about 250 atomic mass units, most preferably from about 125 to about 250 atomic mass units. The R1 and R3 hydrocarbon radicals having 1 to 6 carbon atoms may be linear, branched or cyclic. Representative R1 and R3 hydrocarbon radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, and cyclohexyl. Where free hydroxyl radicals on the present polyoxyalkylene glycol ether solubilizing agents may be incompatible with certain compression refrigeration apparatus materials of construction (e.g. Mylar®), R1 and R3 are preferably aliphatic hydrocarbon radicals having 1 to 4 carbon atoms, most preferably 1 carbon atom. The R2 aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms form repeating oxyalkylene radicals —(OR2)x— that include oxyethylene radicals, oxypropylene radicals, and oxybutylene radicals. The oxyalkylene radical comprising R2 in one polyoxyalkylene glycol ether solubilizing agent molecule may be the same, or one molecule may contain different R2 oxyalkylene groups. The present polyoxyalkylene glycol ether solubilizing agents preferably comprise at least one oxypropylene radical. Where R1 is an aliphatic or alicyclic hydrocarbon radical having 1 to 6 carbon atoms and y bonding sites, the radical may be linear, branched or cyclic. Representative R1 aliphatic hydrocarbon radicals having two bonding sites include, for example, an ethylene radical, a propylene radical, a butylene radical, a pentylene radical, a hexylene radical, a cyclopentylene radical and a cyclohexylene radical. Representative R1 aliphatic hydrocarbon radicals having three or four bonding sites include residues derived from polyalcohols, such as trimethylolpropane, glycerin, pentaerythritol, 1,2,3-trihydroxycyclohexane and 1,3,5-trihydroxycyclohexane, by removing their hydroxyl radicals.
  • Representative polyoxyalkylene glycol ether solubilizing agents include but are not limited to: CH3OCH2CH(CH3)O(H or CH3) (propylene glycol methyl (or dimethyl) ether), CH3O[CH2CH(CH3)O]2(H or CH3) (dipropylene glycol methyl (or dimethyl) ether), CH3O[CH2CH(CH3)O]3(H or CH3) (tripropylene glycol methyl (or dimethyl) ether), C2H5OCH2CH(CH3)O(H or C2H5) (propylene glycol ethyl (or diethyl) ether), C2H5O[CH2CH(CH3)O]2(H or C2H5) (dipropylene glycol ethyl (or diethyl) ether), C2H5O[CH2CH(CH3)O]3(H or C2H5) (tripropylene glycol ethyl (or diethyl) ether), C3H7OCH2CH(CH3)O(H or C3H7) (propylene glycol n-propyl (or di-n-propyl) ether), C3H7O[CH2CH(CH3)O]2(H or C3H7) (dipropylene glycol n-propyl (or di-n-propyl) ether), C3H7O[CH2CH(CH3)O]3(H or C3H7) (tripropylene glycol n-propyl (or di-n-propyl) ether), C4H9OCH2CH(CH3)OH (propylene glycol n-butyl ether), C4H9O[CH2CH(CH3)O]2(H or C4H9) (dipropylene glycol n-butyl (or di-n-butyl) ether), C4H9O[CH2CH(CH3)O]3(H or C4H9) (tripropylene glycol n-butyl (or di-n-butyl) ether), (CH3)3COCH2CH(CH3)OH (propylene glycol t-butyl ether), (CH3)3CO[CH2CH(CH3)O]2(H or (CH3)3) (dipropylene glycol t-butyl (or di-t-butyl) ether), (CH3)3CO[CH2CH(CH3)O]3(H or (CH3)3) (tripropylene glycol t-butyl (or di-t-butyl) ether), C5H11OCH2CH(CH3)OH (propylene glycol n-pentyl ether), C4H9OCH2CH(C2H5)OH (butylene glycol n-butyl ether), C4H9O[CH2CH(C2H5)O]2H (dibutylene glycol n-butyl ether), trimethylolpropane tri-n-butyl ether (C2H5C(CH2O(CH2)3CH3)3) and trimethylolpropane di-n-butyl ether (C2H5C(CH2OC(CH2)3CH3)2CH2OH).
  • Amide solubilizing agents of the present invention comprise those represented by the formulae R1C(O)NR2R3 and cyclo-[R4C(O)N(R5)—], wherein R1, R2, R3 and R5 are independently selected from aliphatic and alicyclic hydrocarbon radicals having from 1 to 12 carbon atoms; R4 is selected from aliphatic hydrocarbylene radicals having from 3 to 12 carbon atoms; and wherein said amides have a molecular weight of from about 100 to about 300 atomic mass units. The molecular weight of said amides is preferably from about 160 to about 250 atomic mass units. R1, R2, R3 and R5 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy). R1, R2, R3 and R5 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms. In general, no more than three non-hydrocarbon substituents and heteroatoms, and preferably no more than one, will be present for each 10 carbon atoms in R1-3, and the presence of any such non-hydrocarbon substituents and heteroatoms must be considered in applying the aforementioned molecular weight limitations. Preferred amide solubilizing agents consist of carbon, hydrogen, nitrogen and oxygen. Representative R1, R2, R3 and R5 aliphatic and alicyclic hydrocarbon radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers. A preferred embodiment of amide solubilizing agents are those wherein R4 in the aforementioned formula cyclo-[R4C(O)N(R5)—] may be represented by the hydrocarbylene radical (CR6R7)n, in other words, the formula cyclo-[(CR6R7)nC(O)N(R5)—] wherein the previously-stated values for molecular weight apply; n is an integer from 3 to 5; R5 is a saturated hydrocarbon radical containing 1 to 12 carbon atoms; R6 and R7 are independently selected (for each n) by the rules previously offered defining R1-3. In the lactams represented by the formula: cyclo-[(CR6R7)nC(O)N(R5)—], all R6 and R7 are preferably hydrogen, or contain a single saturated hydrocarbon radical among the n methylene units, and R5 is a saturated hydrocarbon radical containing 3 to 12 carbon atoms. For example, 1-(saturated hydrocarbon radical)-5-methylpyrrolidin-2-ones.
  • Representative amide solubilizing agents include but are not limited to: 1-octylpyrrolidin-2-one, 1-decylpyrrolidin-2-one, 1-octyl-5-methylpyrrolidin-2-one, 1-butylcaprolactam, 1-cyclohexylpyrrolidin-2-one, 1-butyl-5-methylpiperid-2-one, 1-pentyl-5-methylpiperid-2-one, 1-hexylcaprolactam, 1-hexyl-5-methylpyrrolidin-2-one, 5-methyl-1-pentylpiperid-2-one, 1,3-dimethylpiperid-2-one, 1-methylcaprolactam, 1-butyl-pyrrolidin-2-one, 1,5-dimethylpiperid-2-one, 1-decyl-5-methylpyrrolidin-2-one, 1-dodecylpyrrolid-2-one, N,N-dibutylformamide and N,N-diisopropylacetamide.
  • Ketone solubilizing agents of the present invention comprise ketones represented by the formula R1C(O)R2, wherein R1 and R2 are independently selected from aliphatic, alicyclic and aryl hydrocarbon radicals having from 1 to 12 carbon atoms, and wherein said ketones have a molecular weight of from about 70 to about 300 atomic mass units. R1 and R2 in said ketones are preferably independently selected from aliphatic and alicyclic hydrocarbon radicals having 1 to 9 carbon atoms. The molecular weight of said ketones is preferably from about 100 to 200 atomic mass units. R1 and R2 may together form a hydrocarbylene radical connected and forming a five, six, or seven-membered ring cyclic ketone, for example, cyclopentanone, cyclohexanone, and cycloheptanone. R1 and R2 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy). R1 and R2 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms. In general, no more than three non-hydrocarbon substituents and heteroatoms, and preferably no more than one, will be present for each 10 carbon atoms in R1 and R2, and the presence of any such non-hydrocarbon substituents and heteroatoms must be considered in applying the aforementioned molecular weight limitations. Representative R1 and R2 aliphatic, alicyclic and aryl hydrocarbon radicals in the general formula R1C(O)R2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers, as well as phenyl, benzyl, cumenyl, mesityl, tolyl, xylyl and phenethyl.
  • Representative ketone solubilizing agents include but are not limited to: 2-butanone, 2-pentanone, acetophenone, butyrophenone, hexanophenone, cyclohexanone, cycloheptanone, 2-heptanone, 3-heptanone, 5-methyl-2-hexanone, 2-octanone, 3-octanone, diisobutyl ketone, 4-ethylcyclohexanone, 2-nonanone, 5-nonanone, 2-decanone, 4-decanone, 2-decalone, 2-tridecanone, dihexyl ketone and dicyclohexyl ketone.
  • Nitrile solubilizing agents of the present invention comprise nitriles represented by the formula R1CN, wherein R1 is selected from aliphatic, alicyclic or aryl hydrocarbon radicals having from 5 to 12 carbon atoms, and wherein said nitriles have a molecular weight of from about 90 to about 200 atomic mass units. R1 in said nitrile solubilizing agents is preferably selected from aliphatic and alicyclic hydrocarbon radicals having 8 to 10 carbon atoms. The molecular weight of said nitrile solubilizing agents is preferably from about 120 to about 140 atomic mass units. R1 may optionally include substituted hydrocarbon radicals, that is, radicals containing non-hydrocarbon substituents selected from halogens (e.g., fluorine, chlorine) and alkoxides (e.g. methoxy). R1 may optionally include heteroatom-substituted hydrocarbon radicals, that is, radicals, which contain the atoms nitrogen (aza-), oxygen (keto-, oxa-) or sulfur (thia-) in a radical chain otherwise composed of carbon atoms. In general, no more than three non-hydrocarbon substituents and heteroatoms, and preferably no more than one, will be present for each 10 carbon atoms in R1, and the presence of any such non-hydrocarbon substituents and heteroatoms must be considered in applying the aforementioned molecular weight limitations. Representative R1 aliphatic, alicyclic and aryl hydrocarbon radicals in the general formula R1CN include pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers, as well as phenyl, benzyl, cumenyl, mesityl, tolyl, xylyl and phenethyl. Representative nitrile solubilizing agents include but are not limited to: 1-cyanopentane, 2,2-dimethyl-4-cyanopentane, 1-cyanohexane, 1-cyanoheptane, 1-cyanooctane, 2-cyanooctane, 1-cyanononane, 1-cyanodecane, 2-cyanodecane, 1-cyanoundecane and 1-cyanododecane.
  • Chlorocarbon solubilizing agents of the present invention comprise chlorocarbons represented by the formula RClx, wherein x is 1 or 2; R is selected from aliphatic and alicyclic hydrocarbon radicals having 1 to 12 carbon atoms; and wherein said chlorocarbons have a molecular weight of from about 100 to about 200 atomic mass units. The molecular weight of said chlorocarbon solubilizing agents is preferably from about 120 to 150 atomic mass units. Representative R aliphatic and alicyclic hydrocarbon radicals in the general formula RClx include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, cyclopentyl, cyclohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and their configurational isomers.
  • Representative chlorocarbon solubilizing agents include but are not limited to: 3-(chloromethyl)pentane, 3-chloro-3-methylpentane, 1-chlorohexane, 1,6-dichlorohexane, 1-chloroheptane, 1-chlorooctane, 1-chlorononane, 1-chlorodecane, and 1,1,1-trichlorodecane.
  • Ester solubilizing agents of the present invention comprise esters represented by the general formula R1C(O)OR2, wherein R1 and R2 are independently selected from linear and cyclic, saturated and unsaturated, alkyl and aryl radicals. Preferred esters consist essentially of the elements C, H and O, have a molecular weight of from about 80 to about 550 atomic mass units.
  • Representative esters include but are not limited to: (CH3)2CHCH2O(O)C(CH2)2-4(O)COCH2CH(CH3)2 (diisobutyl dibasic ester), ethyl hexanoate, ethyl heptanoate, n-butyl propionate, n-propyl propionate, ethyl benzoate, di-n-propyl phthalate, benzoic acid ethoxyethyl ester, dipropyl carbonate, “Exxate 700” (a commercial C7 alkyl acetate), “Exxate 800” (a commercial C8 alkyl acetate), dibutyl phthalate, and tert-butyl acetate.
  • Lactone solubilizing agents of the present invention comprise lactones represented by structures [A], [B], and [C]:
    Figure US20070145325A1-20070628-C00001
  • These lactones contain the functional group —C(O)O— in a ring of six (A), or preferably five atoms (B), wherein for structures [A] and [B], R1 through R8 are independently selected from hydrogen or linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals. Each R1 through R8 may be connected forming a ring with another R1 through R8. The lactone may have an exocyclic alkylidene group as in structure [C], wherein R1 through R6 are independently selected from hydrogen or linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals. Each R1 though R6 may be connected forming a ring with another R1 through R6. The lactone solubilizing agents have a molecular weight range of from about 80 to about 300 atomic mass units, preferred from about 80 to about 200 atomic mass units.
  • Representative lactone solubilizing agents include but are not limited to the compounds listed in Table 4.
    TABLE 4
    Molecular Molecular
    Additive Molecular Structure Formula Weight (amu)
    (E,Z)-3-ethylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00002
    C7H10O2 126
    (E,Z)-3-propylene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00003
    C8H12O2 140
    (E,Z)-3-butylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00004
    C9H14O2 154
    (E,Z)-3-pentylidene-5-meethyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00005
    C10H16O2 168
    (E,Z)-3-Hexylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00006
    C11H18O2 182
    (E,Z)-3-Heptylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00007
    C12H20O2 196
    (E,Z)-3-octylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00008
    C13H22O2 210
    (E,Z)-3-nonylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00009
    C14H24O2 224
    (E,Z)-3-decylidene-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00010
    C15H26O2 238
    (E,Z)-3-(3,5,5-trimethylhexylidene)- 5-methyl-ddihydrofuran-2-one
    Figure US20070145325A1-20070628-C00011
    C14H24O2 224
    (E,Z)-3-cyclohexylmethylidene-5- methyl-dihydrofuran-2-one
    Figure US20070145325A1-20070628-C00012
    C12H18O2 194
    gamma-octalactone
    Figure US20070145325A1-20070628-C00013
    C8H14O2 142
    gamma-nonalactone
    Figure US20070145325A1-20070628-C00014
    C9H16O2 156
    gamma-decalactone
    Figure US20070145325A1-20070628-C00015
    C10H18O2 170
    gamma-undecalactone
    Figure US20070145325A1-20070628-C00016
    C11H20O2 184
    gamma-dodecalactone
    Figure US20070145325A1-20070628-C00017
    C12H22O2 198
    3-hexyldihydro-furan-2-one
    Figure US20070145325A1-20070628-C00018
    C10H18O2 170
    3-heptyldihydro-furan-2-one
    Figure US20070145325A1-20070628-C00019
    C11H20O2 184
    cis-3-ethyl-5-methyl-dihydro-furan- 2-one
    Figure US20070145325A1-20070628-C00020
    C7H12O2 128
    cis-(3-propyl-5-methyl)-dihydro- furan-2-one
    Figure US20070145325A1-20070628-C00021
    C8H14O2 142
    cis-(3-butyl-5-methyl)-dihydro- furan-2-one
    Figure US20070145325A1-20070628-C00022
    C9H16O2 156
    cis-(3-pentyl-5-methyl)-dihydro- furan-2-one
    Figure US20070145325A1-20070628-C00023
    C10H18O2 170
    cis-3-hexyl-5-methyl-dihydro-furan- 2-one
    Figure US20070145325A1-20070628-C00024
    C11H20O2 184
    cis-3-heptyl-5-methyl-dihydro- furan-2-one
    Figure US20070145325A1-20070628-C00025
    C12H22O2 198
    cis-3-octyl-5-methyl-dihydro-furan- 2-one
    Figure US20070145325A1-20070628-C00026
    C13H24O2 212
    cis-3-(3,5,5-trimethylhexyl)-5- methyl-dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00027
    C14H26O2 226
    cis-3-cyclohexylmethyl-5-methyl- dihydro-furan-2-one
    Figure US20070145325A1-20070628-C00028
    C12H20O2 196
    5-methyl-5-hexyl-dihydro-furan-2- one
    Figure US20070145325A1-20070628-C00029
    C11H20O2 184
    5-methyl-5-octyl-dihydro-furan-2- one
    Figure US20070145325A1-20070628-C00030
    C13H24O2 212
    Hexahydro-isobenzofuran-1- one
    Figure US20070145325A1-20070628-C00031
    C8H12O2 140
    delta-decalactone
    Figure US20070145325A1-20070628-C00032
    C10H18O2 170
    delta-undecalactone
    Figure US20070145325A1-20070628-C00033
    C11H20O2 184
    delta-dodecalactone
    Figure US20070145325A1-20070628-C00034
    C12H22O2 198
    mixture of 4-hexyl-dihydrofuran-2- one and 3-hexyl-dihydro-furan-2- one
    Figure US20070145325A1-20070628-C00035
    C10H18O2 170
  • Lactone solubilizing agents generally have a kinematic viscosity of less than about 7 centistokes at 40° C. For instance, gamma-undecalactone has kinematic viscosity of 5.4 centistokes and cis-(3-hexyl-5-methyl)dihydrofuran-2-one has viscosity of 4.5 centistokes, both at 40° C. Lactone solubilizing agents may be available commercially or prepared by methods as described in U.S. patent application Ser. No. 10/910,495, filed Aug. 3, 2004, incorporated herein by reference.
  • Aryl ether solubilizing agents of the present invention comprise aryl ethers represented by the formula R1OR2, wherein: R1 is selected from aryl hydrocarbon radicals having from 6 to 12 carbon atoms; R2 is selected from aliphatic hydrocarbon radicals having from 1 to 4 carbon atoms; and wherein said aryl ethers have a molecular weight of from about 100 to about 150 atomic mass units. Representative R1 aryl radicals in the general formula R1OR2 include phenyl, biphenyl, cumenyl, mesityl, tolyl, xylyl, naphthyl and pyridyl. Representative R2 aliphatic hydrocarbon radicals in the general formula R1OR2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl. Representative aromatic ether solubilizing agents include but are not limited to: methyl phenyl ether (anisole), 1,3-dimethyoxybenzene, ethyl phenyl ether and butyl phenyl ether.
  • Fluoroether solubilizing agents of the present invention comprise those represented by the general formula R1OCF2CF2H, wherein R1 is selected from aliphatic, alicyclic, and aromatic hydrocarbon radicals having from about 5 to about 15 carbon atoms, preferably primary, linear, saturated, alkyl radicals. Representative fluoroether solubilizing agents include but are not limited to: C8H17OCF2CF2H and C6H13OCF2CF2H. It should be noted that if the refrigerant is a fluoroether, then the solubilizing agent may not be the same fluoroether.
  • Fluoroether solubilizing agents may further comprise ethers derived from fluoro-olefins and polyols. The fluoro-olefins may be of the type CF2═CXY, wherein X is hydrogen, chlorine or fluorine, and Y is chlorine, fluorine, CF3 or ORf, wherein Rf is CF3, C2F5, or C3F7. Representative fluoro-olefins are tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoromethylvinyl ether. The polyols may be linear or branched. Linear polyols may be of the type HOCH2(CHOH)x(CRR′)yCH2OH, wherein R and R′ are hydrogen, or CH3, or C2H5 and wherein x is an integer from 0-4, and y is an integer from 0-4. Branched polyols may be of the type C(OH)t(R)u(CH2OH)v[(CH2)mCH2OH]w, wherein R may be hydrogen, CH3 or C2H5, m may be an integer from 0 to 3, t and u may be 0 or 1, v and w are integers from 0 to 4, and also wherein t+u+v+w=4. Representative polyols are trimethylol propane, pentaerythritol, butanediol, and ethylene glycol.
  • 1,1,1-Trifluoroalkane solubilizing agents of the present invention comprise 1,1,1-trifluoroalkanes represented by the general formula CF3R1, wherein R1 is selected from aliphatic and alicyclic hydrocarbon radicals having from about 5 to about 15 carbon atoms, preferably primary, linear, saturated alkyl radicals. Representative 1,1,1-trifluoroalkane solubilizing agents include but are not limited to: 1,1,1-trifluorohexane and 1,1,1-trifluorododecane.
  • Solubilizing agents of the present invention may be present as a single compound, or may be present as a mixture of more than one solubilizing agent. Mixtures of solubilizing agents may contain two solubilizing agents from the same class of compounds, say two lactones, or two solubilizing agents from two different classes, such as a lactone and a polyoxyalkylene glycol ether.
  • In the present compositions comprising refrigerant and UV fluorescent dye, or comprising heat transfer fluid and UV fluorescent dye, from about 0.001 weight percent to about 1.0 weight percent of the compositions is UV dye, preferably from about 0.005 weight percent to about 0.5 weight percent, and most preferably from 0.01 weight percent to about 0.25 weight percent.
  • Solubility of these UV fluorescent dyes in refrigerants and heat transfer fluids may be poor. Therefore, methods for introducing these dyes into the refrigeration or air-conditioning apparatus have been awkward, costly and time consuming. U.S. Pat. No. RE 36,951 describes a method, which utilizes a dye powder, solid pellet or slurry of dye that may be inserted into a component of the refrigeration or air-conditioning apparatus. As refrigerant and lubricant are circulated through the apparatus, the dye is dissolved or dispersed and carried throughout the apparatus. Numerous other methods for introducing dye into a refrigeration or air-conditioning apparatus are described in the literature.
  • Ideally, the UV fluorescent dye could be dissolved in the refrigerant itself thereby not requiring any specialized method for introduction to the refrigeration or air-conditioning apparatus. The present invention relates to compositions including UV fluorescent dye, which may be introduced into the system in the refrigerant. The inventive compositions will allow the storage and transport of dye-containing refrigerant and heat transfer fluid even at low temperatures while maintaining the dye in solution.
  • In the present compositions comprising refrigerant, UV fluorescent dye and solubilizing agent, or comprising heat transfer fluid, UV fluorescent dye and solubilizing agent, from about 1 to about 50 weight percent, preferably from about 2 to about 25 weight percent, and most preferably from about 5 to about 15 weight percent of the combined composition is solubilizing agent in the refrigerant or heat transfer fluid. In the compositions of the present invention the UV fluorescent dye is present in a concentration from about 0.001 weight percent to about 1.0 weight percent in the refrigerant or heat transfer fluid, preferably from 0.005 weight percent to about 0.5 weight percent, and most preferably from 0.01 weight percent to about 0.25 weight percent.
  • Optionally, commonly used refrigeration or air-conditioning system additives may be added, as desired, to compositions of the present invention in order to enhance performance and system stability. These additives are known in the field of refrigeration and air-conditioning, and include, but are not limited to, anti wear agents, extreme pressure lubricants, corrosion and oxidation inhibitors, metal surface deactivators, free radical scavengers, and foam control agents. In general, these additives are present in the inventive compositions in small amounts relative to the overall composition. Typically concentrations of from less than about 0.1 weight percent to as much as about 3 weight percent of each additive are used. These additives are selected on the basis of the individual system requirements. These additives include members of the triaryl phosphate family of EP (extreme pressure) lubricity additives, such as butylated triphenyl phosphates (BTPP), or other alkylated triaryl phosphate esters, e.g. Syn-0-Ad 8478 from Akzo Chemicals, tricresyl phosphates and related compounds. Additionally, the metal dialkyl dithiophosphates (e.g. zinc dialkyl dithiophosphate (or ZDDP), Lubrizol 1375 and other members of this family of chemicals may be used in compositions of the present invention. Other antiwear additives include natural product oils and asymmetrical polyhydroxyl lubrication additives, such as Synergol TMS (International Lubricants). Similarly, stabilizers such as anti oxidants, free radical scavengers, and water scavengers may be employed. Compounds in this category can include, but are not limited to, butylated hydroxy toluene (BHT) and epoxides.
  • Solubilizing agents such as ketones may have an objectionable odor, which can be masked by addition of an odor masking agent or fragrance. Typical examples of odor masking agents or fragrances may include Evergreen, Fresh Lemon, Cherry, Cinnamon, Peppermint, Floral or Orange Peel, all commercially available, as well as d-limonene and pinene. Such odor masking agents may be used at concentrations of from about 0.001% to as much as about 15% by weight based on the combined weight of odor masking agent and solubilizing agent.
  • The present invention further relates to a method of using the refrigerant or heat transfer fluid compositions further comprising ultraviolet fluorescent dye, and optionally, solubilizing agent, in refrigeration or air-conditioning apparatus. The method comprises introducing the refrigerant or heat transfer fluid composition into the refrigeration or air-conditioning apparatus. This may be done by dissolving the UV fluorescent dye in the refrigerant or heat transfer fluid composition in the presence of a solubilizing agent and introducing the combination into the apparatus. Alternatively, this may be done by combining solubilizing agent and UV fluorescent dye and introducing said combination into refrigeration or air-conditioning apparatus containing refrigerant and/or heat transfer fluid. The resulting composition may be used in the refrigeration or air-conditioning apparatus.
  • The present invention further relates to a method of using the refrigerant or heat transfer fluid compositions comprising ultraviolet fluorescent dye to detect leaks. The presence of the dye in the compositions allows for detection of leaking refrigerant in the refrigeration or air-conditioning apparatus. Leak detection helps to address, resolve or prevent inefficient operation of the apparatus or system or equipment failure. Leak detection also helps one contain chemicals used in the operation of the apparatus.
  • The method comprises providing the composition comprising refrigerant and ultra-violet fluorescent dye, or comprising heat transfer fluid and ultra-violet fluorescent dye as described herein, and optionally, a solubilizing agent as described herein, to refrigeration and air-conditioning apparatus and employing a suitable means for detecting the UV fluorescent dye-containing refrigerant. Suitable means for detecting the dye include, but are not limited to, ultra-violet lamp, often referred to as a “black light” or “blue light”. Such ultra-violet lamps are commercially available from numerous sources specifically designed for this purpose. Once the ultra-violet fluorescent dye containing composition has been introduced to the refrigeration or air-conditioning apparatus and has been allowed to circulate throughout the system, a leak can be found by shining said ultra-violet lamp on the apparatus and observing the fluorescence of the dye in the vicinity of any leak point.
  • The present invention further relates to a method of using the compositions of the present invention for producing cooling or heat, wherein the method comprises producing cooling by evaporating said composition in the vicinity of a body to be cooled and thereafter condensing said composition; or producing heat by condensing said composition in the vicinity of the body to be heated and thereafter evaporating said composition. Where the composition of the present invention includes refrigerant or heat transfer fluid composition with an ultra-violet fluorescent dye, and/or a solubilizing agent, the refrigerant or heat transfer fluid component of the composition is evaporated and thereafter condensed to produce cooling, or condensed and thereafter evaporated to produce heat.
  • Mechanical refrigeration is primarily an application of thermodynamics wherein a cooling medium, such as a refrigerant, goes through a cycle so that it can be recovered for reuse. Commonly used cycles include vapor-compression, absorption, steam-jet or steam-ejector, and air.
  • Vapor-compression refrigeration systems include an evaporator, a compressor, a condenser, and an expansion device. A vapor-compression cycle re-uses refrigerant in multiple steps producing a cooling effect in one step and a heating effect in a different step. The cycle can be described simply as follows. Liquid refrigerant enters an evaporator through an expansion device, and the liquid refrigerant boils in the evaporator at a low temperature to form a gas and produce cooling. The low-pressure gas enters a compressor where the gas is compressed to raise its pressure and temperature. The higher-pressure (compressed) gaseous refrigerant then enters the condenser in which the refrigerant condenses and discharges its heat to the environment. The refrigerant returns to the expansion device through which the liquid expands from the higher-pressure level in the condenser to the low-pressure level in the evaporator, thus repeating the cycle.
  • The present invention further relates to a process for producing cooling comprising evaporating the compositions of the present invention in the vicinity of a body to be cooled, and thereafter condensing said compositions.
  • The present invention further relates to a process for producing heat comprising condensing the compositions of the present invention in the vicinity of a body to be heated, and thereafter evaporating said compositions.
  • There are various types of compressors that may be used in refrigeration applications. Compressors can be generally classified as reciprocating, rotary, jet, centrifugal, scroll, screw or axial-flow, depending on the mechanical means to compress the fluid, or as positive-displacement (e.g., reciprocating, scroll or screw) or dynamic (e.g., centrifugal or jet), depending on how the mechanical elements act on the fluid to be compressed.
  • Either positive displacement or dynamic compressors may be used in the present inventive process. A centrifugal type compressor is the preferred equipment for the present refrigerant compositions.
  • A centrifugal compressor uses rotating elements to accelerate the refrigerant radially, and typically includes an impeller and diffuser housed in a casing. Centrifugal compressors usually take fluid in at an impeller eye, or central inlet of a circulating impeller, and accelerate it radially outward. Some static pressure rise occurs in the impeller, but most of the pressure rise occurs in the diffuser section of the casing, where velocity is converted to static pressure. Each impeller-diffuser set is a stage of the compressor. Centrifugal compressors are built with from 1 to 12 or more stages, depending on the final pressure desired and the volume of refrigerant to be handled.
  • The pressure ratio, or compression ratio, of a compressor is the ratio of absolute discharge pressure to the absolute inlet pressure. Pressure delivered by a centrifugal compressor is practically constant over a relatively wide range of capacities.
  • Positive displacement compressors draw vapor into a chamber, and the chamber decreases in volume to compress the vapor. After being compressed, the vapor is forced from the chamber by further decreasing the volume of the chamber to zero or nearly zero. A positive displacement compressor can build up a pressure, which is limited only by the volumetric efficiency and the strength of the parts to withstand the pressure.
  • Unlike a positive displacement compressor, a centrifugal compressor depends entirely on the centrifugal force of the high-speed impeller to compress the vapor passing through the impeller. There is no positive displacement, but rather what is called dynamic-compression.
  • The pressure a centrifugal compressor can develop depends on the tip speed of the impeller. Tip speed is the speed of the impeller measured at its tip and is related to the diameter of the impeller and its revolutions per minute. The capacity of the centrifugal compressor is determined by the size of the passages through the impeller. This makes the size of the compressor more dependent on the pressure required than the capacity.
  • Because of its high-speed operation, a centrifugal compressor is fundamentally a high volume, low-pressure machine. A centrifugal compressor works best with a low-pressure refrigerant, such as trichlorofluoromethane (CFC-11) or 1,2,2-trichlorotrifluoroethane (CFC-113).
  • Large centrifugal compressors typically operate at 3000 to 7000 revolutions per minute (rpm). Small turbine centrifugal compressors are designed for high speeds, from about 40,000 to about 70,000 (rpm), and have small impeller sizes, typically less than 0.15 meters (about 6 inches).
  • A multi-stage impeller may be used in a centrifugal compressor to improve compressor efficiency thus requiring less power in use. For a two-stage system, in operation, the discharge of the first stage impeller goes to the suction intake of a second impeller. Both impellers may operate by use of a single shaft (or axle). Each stage can build up a compression ratio of about 4 to 1; that is, the absolute discharge pressure can be four times the absolute suction pressure. Several examples of two-stage centrifugal compressor systems, particularly for automotive applications, are described in U.S. Pat. No. 5,065,990 and U.S. Pat. No. 5,363,674, both incorporated herein by reference.
  • The compositions of the present invention suitable for use in a refrigeration or air-conditioning systems employing a centrifugal compressor comprise C4F9OC2H5 and at least one hydrocarbon selected from the group consisting of:
  • cyclohexane;
  • cyclopentane;
  • 3-ethylpentane;
  • 2,2-dimethylbutane;
  • 2,3-dimethylbutane;
  • 2,3-dimethylpentane;
  • n-heptane;
  • methylcyclopentane;
  • 2-methylhexane;
  • 3-methylhexane;
  • 2-methylpentane;
  • 3-methylpentane; and
  • n-pentane.
  • These above-listed compositions are also suitable for use in a multi-stage centrifugal compressor, preferably a two-stage centrifugal compressor apparatus.
  • The compositions of the present invention may be used in stationary air-conditioning, heat pumps or mobile air-conditioning and refrigeration systems. Stationary air-conditioning and heat pump applications include window, ductless, ducted, packaged terminal, chillers and commercial, including packaged rooftop. Refrigeration applications include domestic or home refrigerators and freezers, ice machines, self-contained coolers and freezers, walk-in coolers and freezers and transport refrigeration systems.
  • The compositions of the present invention may additionally be used in air-conditioning, heating and refrigeration systems that employ fin and tube heat exchangers, microchannel heat exchangers and vertical or horizontal single pass tube or plate type heat exchangers.
  • Conventional microchannel heat exchangers may not be ideal for the low pressure refrigerant compositions of the present invention. The low operating pressure and density result in high flow velocities and high frictional losses in all components. In these cases, the evaporator design may be modified. Rather than several microchannel slabs connected in series (with respect to the refrigerant path) a single slab/single pass heat exchanger arrangement may be used. Therefore, a preferred heat exchanger for the low pressure refrigerants of the present invention is a single slab/single pass heat exchanger.
  • In addition to two-stage or other multi-stage centrifugal compressor apparatus, compositions of the present invention suitable for use in refrigeration or air-conditioning apparatus employing a single slab/single pass heat exchanger comprise C4F9OC2H5 and at least one hydrocarbon selected from the group consisting of:
  • cyclohexane;
  • cyclopentane;
  • 3-ethylpentane;
  • 2,2-dimethylbutane;
  • 2,3-dimethylbutane;
  • 2,3-dimethylpentane;
  • n-heptane;
  • methylcyclopentane;
  • 2-methylhexane;
  • 3-methylhexane;
  • 2-methylpentane;
  • 3-methylpentane; and
  • n-pentane.
  • The compositions of the present invention are particularly useful in small turbine centrifugal compressors (mini-centrifugal compressors), which can be used in auto and window air-conditioning, heat pumps, or transport refrigeration, as well as other applications. These high efficiency mini-centrifugal compressors may be driven by an electric motor and can therefore be operated independently of the engine speed. A constant compressor speed allows the system to provide a relatively constant cooling capacity at all engine speeds. This provides an opportunity for efficiency improvements especially at higher engine speeds as compared to a conventional R-134a automobile air-conditioning system. When the cycling operation of conventional systems at high driving speeds is taken into account, the advantage of these low pressure systems becomes even greater.
  • Alternatively, rather than use electrical power, the mini-centrifugal compressor may be powered by an engine exhaust gas driven turbine or a ratioed gear drive assembly with ratioed belt drive. The electrical power available in current automobile design is about 14 volts, but the new mini-centrifugal compressor requires electrical power of about 50 volts. Therefore, use of an alternative power source would be advantageous. A refrigeration or air-conditioning apparatus powered by an engine exhaust gas driven turbine is described in detail in U.S. provisional patent application No. 60/658,915, filed Mar. 4, 2005, incorporated herein by reference. A refrigeration or air-conditioning apparatus powered by a ratioed gear drive assembly is described in detail in U.S. provisional patent application No. 60/663,924, filed Mar. 21, 2005, incorporated herein by reference.
  • The present invention further relates to a process to produce cooling comprising compressing a composition of the present invention, in a mini-centrifugal compressor powered by an engine exhaust gas driven turbine; condensing said composition; and thereafter evaporating said composition in the vicinity of a body to be cooled.
  • The present invention further relates to a process to produce cooling comprising compressing a composition of the present invention, in a mini-centrifugal compressor powered by a ratioed gear drive assembly with a ratioed belt drive; condensing said composition; and thereafter evaporating said composition in the vicinity of a body to be cooled.
  • Some of the low pressure refrigerant fluids of the present invention may be suitable as drop-in replacements for CFC-113 in existing centrifugal equipment.
  • The present invention further relates to a method for replacing CFC-113 in existing refrigeration apparatus or air-conditioning apparatus, said method comprising providing a composition of the present invention as the replacement.
  • The present invention further relates to a process for transfer of heat from a heat source to a heat sink wherein the compositions of the present invention serve as heat transfer fluids. Said process for heat transfer comprises transferring the compositions of the present invention from a heat source to a heat sink.
  • Heat transfer fluids are utilized to transfer, move or remove heat from one space, location, object or body to a different space, location, object or body by radiation, conduction, or convection. A heat transfer fluid may function as a secondary coolant by providing means of transfer for cooling (or heating) from a remote refrigeration (or heating) system. In some systems, the heat transfer fluid may remain in a constant state throughout the transfer process (i.e., not evaporate or condense). Alternatively, evaporative cooling processes may utilize heat transfer fluids as well.
  • A heat source may be defined as any space, location, object or body from which it is desirable to transfer, move or remove heat. Examples of heat sources may be spaces (open or enclosed) requiring refrigeration or cooling, such as refrigerator or freezer cases in a supermarket, building spaces requiring air-conditioning, or the passenger compartment of an automobile requiring air-conditioning. A heat sink may be defined as any space, location, object or body capable of absorbing heat. A vapor compression refrigeration system is one example of such a heat sink.
  • EXAMPLES Example 1 Impact of Vapor Leakage
  • A vessel is charged with an initial composition at a specified temperature, and the initial vapor pressure of the composition is measured. The composition is allowed to leak from the vessel, while the temperature is held constant, until 50 weight percent of the initial composition is removed, at which time the vapor pressure of the composition remaining in the vessel is measured. The results are summarized in Table 5 below.
    TABLE 5
    After 50% After 50%
    Compounds Initial Initial Leak Leak Delta
    wt % A/wt % B Psia kPa Psia kPa P %
    C4F9OC2H5/cyclohexane (69.4° C.)
    73.1/26.9 14.68 101.22 14.68 101.22 0.0%
    90/10 14.03 96.73 13.66 94.18 2.6%
    99/1  12.21 84.19 12.04 83.01 1.4%
    100/0  11.85 81.70 11.85 81.70 0.0%
    60/40 14.54 100.25 14.38 99.15 1.1%
    39/61 13.99 96.46 12.67 87.36 9.4%
    38/62 13.96 96.25 12.53 86.39 10.2%
     0/100 10.47 72.19 10.47 72.19 0.0%
    C4F9OC2H5/cyclopentane (48.1° C.)
    29.6/70.4 14.71 101.42 14.71 101.42 0.0%
    10/90 14.52 100.11 14.39 99.22 0.9%
     1/99 14.20 97.91 14.16 97.63 0.3%
     0/100 14.14 97.49 14.14 97.49 0.0%
    60/40 14.30 98.60 13.73 94.67 4.0%
    70/30 13.81 95.22 12.54 86.46 9.2%
    71/29 13.74 94.73 12.38 85.36 9.9%
    100/0  5.57 38.40 5.57 38.40 0.0%
    C4F90C2H5/2,2-dimethylbutane (48.1° C.)
    32.6/67.4 14.67 101.15 14.67 101.15 0.0%
    20/80 14.59 100.60 14.52 100.11 0.5%
    10/90 14.38 99.15 14.23 98.11 1.0%
     1/99 14.00 96.53 13.96 96.25 0.3%
     0/100 13.94 96.11 13.94 96.11 0.0%
    60/40 14.32 98.73 13.82 95.29 3.5%
    71/29 13.83 95.36 12.46 85.91 9.9%
    72/28 13.76 94.87 12.27 84.60 10.8%
    100/0  5.57 38.40 5.57 38.40 0.0%
    C4F9OC2H5/2,3-dimethylbutane (54.8° C.)
    44.7/55.3 14.72 101.49 14.72 101.49 0.0%
    20/80 14.40 99.29 14.04 96.80 2.5%
    10/90 13.99 96.46 13.57 93.56 3.0%
     1/99 13.37 92.18 13.30 91.70 0.5%
     0/100 13.28 91.56 13.28 91.56 0.0%
    60/40 14.59 100.60 14.41 99.35 1.2%
    77/23 13.88 95.70 12.59 86.81 9.3%
    78/22 13.79 95.08 12.38 85.36 10.2%
    100/0  7.14 49.23 7.14 49.23 0.0%
    C4F9OC2H5/2,3-dimethylpentane (72.2° C.)
    82.2/17.8 14.68 101.22 14.68 101.22 0.0%
    90/10 14.51 100.04 14.39 99.22 0.8%
    99/1  13.28 91.56 13.16 90.74 0.9%
    100/0  13.00 89.63 13.00 89.63 0.0%
    60/40 14.19 97.84 13.56 93.49 4.4%
    52/48 13.90 95.84 12.59 86.81 9.4%
    51/49 13.86 95.56 12.43 85.70 10.3%
     0/100 8.50 58.61 8.50 58.61 0.0%
    C4F9OC2H5/3-ethylpentane (73.5° C.)
    86.0/14.0 14.69 101.28 14.69 101.28 0.0%
    95/5  14.36 99.01 14.23 98.11 0.9%
    99/1  13.78 95.01 13.71 94.53 0.5%
    100/0  13.56 93.49 13.56 93.49 0.0%
    60/40 13.96 96.25 13.03 89.84 6.7%
    56/44 13.80 95.15 12.49 86.12 9.5%
    55/45 13.76 94.87 12.33 85.01 10.4%
     0/100 7.86 54.19 7.86 54.19 0.0%
    C4F9OC2H5/n-heptane (74.9° C.)
    91.0/9.0  14.72 101.49 14.72 101.49 0.0%
    99/1  13.00 89.63 12.97 89.43 0.2%
    100/0  14.19 97.84 14.19 97.84 0.0%
    60/40 13.57 93.56 12.13 83.63 10.6%
    61/39 13.61 93.84 12.29 84.74 9.7%
     0/100 6.97 48.06 6.97 48.06 0.0%
    C4F9OC2H5/methylcyclopentane (64.5° C.)
    62.1/37.9 14.71 101.42 14.71 101.42 0.0%
    80/20 14.31 98.66 13.89 95.77 2.9%
    90/10 13.25 91.36 12.20 84.12 7.9%
    95/5  12.09 83.36 11.05 76.19 8.6%
    99/1  10.56 72.81 10.22 70.46 3.2%
    100/0  10.05 69.29 10.05 69.29 0.0%
    40/60 14.45 99.63 14.01 96.60 3.0%
    25/75 14.00 96.53 12.60 86.87 10.0%
    24/76 13.96 96.25 12.51 86.25 10.4%
     0/100 11.67 80.46 11.67 80.46 0.0%
    C4F9OC2H5/2-methylhexane (72.1° C.)
    81.8/18.2 14.70 101.35 14.70 101.35 0.0%
    90/10 14.51 100.04 14.38 99.15 0.9%
    99/1  13.25 91.36 13.12 90.46 1.0%
    100/0  12.95 89.29 12.95 89.29 0.0%
    60/40 14.23 98.11 13.61 93.84 4.4%
    51/49 13.90 95.84 12.51 86.25 10.0%
    50/50 13.86 95.56 12.35 85.15 10.9%
     0/100 8.57 59.09 8.57 59.09 0.0%
    C4F9OC2H5/3-methylhexane (72.8° C.)
    83.8/16.2 14.71 101.42 14.71 101.42 0.0%
    90/10 14.60 100.66 14.52 100.11 0.5%
    99/1  13.52 93.22 13.42 92.53 0.7%
    100/0  13.25 91.36 13.25 91.36 0.0%
    60/40 14.14 97.49 13.38 92.25 5.4%
    54/46 13.91 95.91 12.62 87.01 9.3%
    53/47 13.87 95.63 12.47 85.98 10.1%
    100/0  8.26 56.95 8.26 56.95 0.0%
    C4F9OC2H5/2-methylpentane (56.5° C.)
    47.9/52.1 14.67 101.15 14.67 101.15 0.0%
    60/40 14.59 100.60 14.48 99.84 0.8%
    79/21 13.79 95.08 12.52 86.32 9.2%
    80/20 13.70 94.46 12.31 84.87 10.1%
    100/0  7.59 52.33 7.59 52.33 0.0%
    20/80 14.26 98.32 13.78 95.01 3.4%
    10/90 13.80 95.15 13.30 91.70 3.6%
     1/99 13.11 90.39 13.03 89.84 0.6%
     0/100 13.01 89.70 13.01 89.70 0.0%
    C4F9OC2H5/3-methylpentane (58.7° C.)
    52.1/47.9 14.68 101.22 14.68 101.22 0.0%
    80/20 13.89 95.77 12.81 88.32 7.8%
    82/18 13.70 94.46 12.41 85.56 9.4%
    83/17 13.59 93.70 12.19 84.05 10.3%
    100/0  8.21 56.61 8.21 56.61 0.0%
    40/60 14.60 100.66 14.50 99.97 0.7%
    20/80 14.12 97.35 13.45 92.74 4.7%
    10/90 13.59 93.70 12.95 89.29 4.7%
     1/99 12.81 88.32 12.71 87.63 0.8%
     0/100 12.69 87.50 12.69 87.50 0.0%
    C4F9OC2H5/n-pentane (35.0° C.)
     9.2/90.8 14.71 101.42 14.71 101.42 0.0%
     1/99 14.67 101.15 14.67 101.15 0.0%
     0/100 14.66 101.08 14.66 101.08 0.0%
    40/60 14.39 99.22 14.11 97.29 1.9%
    60/40 13.78 95.01 12.59 86.81 8.6%
    62/38 13.68 94.32 12.32 84.94 9.9%
    63/37 13.63 93.98 12.17 83.91 10.7%
    100/0  3.33 22.96 3.33 22.96 0.0%
  • Example 2 Tip Speed to Develop Pressure
  • Tip speed can be estimated by making some fundamental relationships for refrigeration equipment that use centrifugal compressors. The torque an impeller ideally imparts to a gas is defined as
    T=m*(v 2 *r 2 −v 1 *r 1)  Equation 1
    where
  • T=torque, Newton-meters
  • m=mass rate of flow, kg/sec
  • v2=tangential velocity of refrigerant leaving impeller (tip speed), meters/sec
  • r2=radius of exit impeller, meters
  • v1=tangential velocity of refrigerant entering impeller, meters/sec
  • r1=radius of inlet of impeller, meters
  • Assuming the refrigerant enters the impeller in an essentially axial direction, the tangential component of the velocity v1=0, therefore
    T=m*v 2 *r 2  Equation 2
  • The power required at the shaft is the product of the torque and the rotative speed
    P=T*ω  Equation 3
    where
  • P=power, W
  • ω=angular velocity, radians/s therefore,
    P=T*w=m*v 2 *r 2*ω  Equation 4
  • At low refrigerant flow rates, the tip speed of the impeller and the tangential velocity of the refrigerant are nearly identical; therefore
    r 2 *w=v 2  Equation 5
    and
    P=m*v 2 *v 2  Equation 6
  • Another expression for ideal power is the product of the mass rate of flow and the isentropic work of compression,
    P=m*H i*(1000J/kJ)  Equation 7
    where
  • Hi=Difference in enthalpy of the refrigerant from a saturated vapor at the evaporating conditions to saturated condensing conditions, kJ/kg.
  • Combining the two expressions Equation 6 and 7 produces,
    v 2 *v 2=1000*H i  Equation 8
  • Although Equation 8 is based on some fundamental assumptions, it provides a good estimate of the tip speed of the impeller and provides an important way to compare tip speeds of refrigerants.
  • The table below shows theoretical tip speeds that are calculated for 1,2,2-trichlorotrifluoroethane (CFC-113) and 3-ethylpentane of the present invention. The conditions assumed for this comparison are:
    Evaporator temperature 40.0° F. (4.4° C.)
    Condenser temperature 110.0° F. (43.3° C.)
    Liquid subcool temperature 10.0° F. (5.5° C.)
    Return gas temperature  75.0° F. (23.8° C.)
    Compressor efficiency is 70%
  • These are typical conditions under which small turbine centrifugal compressors perform.
    TABLE 6
    Refrigerant Wt % Hi Hi*0.7 Hi*0.7 V2 V2 rel
    Composition C4F9OC2H5 Wt % B Btu/lb Btu/lb KJ/Kg m/s to CFC-113
    CFC-113 10.92 7.6 17.8 133.3 na
    C4F9OC2H5 plus B:
    cyclohexane 73.1 26.9 17.69 12.4 28.8 169.7 127%
    2,3-dimethylpentane 82.2 17.8 16.35 11.4 26.6 163.2 122%
    3-ethylpentane 86.0 14.0 15.91 11.1 25.9 160.9 121%
    n-heptane 91.0 9.0 15.31 10.7 24.9 157.9 118%
    methylcyclopentane 62.1 37.9 19.01 13.3 31.0 175.9 132%
    2-methylhexane 81.8 18.2 16.5 11.6 26.9 163.9 123%
    3-methylhexane 83.8 16.2 16.24 11.4 26.4 162.6 122%
  • The Example shows that compounds of the present invention have tip speeds within about 30 percent of CFC-113 and would be effective replacements for CFC-113 with minimal compressor design changes. Most preferred compositions have tip speeds within about 20 percent of CFC-113.
  • Example 3 Performance Data
  • The table below shows the performance of various refrigerants compared to CFC-113. The data are based on the following conditions.
    Evaporator temperature 40.0° F. (4.4° C.)
    Condenser temperature 110.0° F. (43.3° C.)
    Subcool temperature 10.0° F. (5.5° C.)
    Return gas temperature  75.0° F. (23.8° C.)
    Compressor efficiency is 70%
  • TABLE 7
    Comp Comp
    Evap Evap Cond Cond Disch Disch
    wt % wt % Pres Pres Pres Pres Temp Temp Capacity Capacity
    Composition C4F9OC2H5 B (Psia) (kPa) (Psia) (kPa) (F.) (C.) COP (Btu/min) (kW)
    CFC-113 2.7 19 12.8 88 156.3 69.1 14.8 4.18 0.26
    C4F9OC2H5
    plus B:
    cyclohexane 73.1 26.9 1.0 7.0 5.9 40 136.8 58.2 4.05 6.9 0.12
    cyclopentane 29.6 70.4 2.7 19 12.5 86 149.8 65.4 4.18 16.7 0.29
    2,2-dimethylbutane 32.6 67.4 2.8 19 12.6 87 134.7 57.1 4.01 16.1 0.28
    2,3-dimethylbutane 44.7 55.3 2.1 14 10.0 69 133.9 56.6 4.00 12.5 0.22
    2,3-dimethylpentane 82.2 17.8 0.9 6.0 5.2 36 131.5 55.3 3.97 5.9 0.10
    3-ethylpentane 86.0 14.0 0.8 5.0 4.9 34 131.5 55.3 3.97 5.4 0.10
    n-heptane 91.0 9.0 0.7 5.0 4.5 31 131.8 55.4 3.98 4.9 0.08
    methylcyclopentane 62.1 37.9 1.3 9.0 7.1 49 138.2 59.0 4.07 8.7 0.15
    2-methylhexane 81.8 18.2 0.9 6.0 5.2 36 131.6 55.3 3.97 5.9 0.10
    3-methylhexane 83.8 16.2 0.8 6.0 5.0 35 131.6 55.3 3.97 5.6 0.10
    2-methylpentane 47.9 52.1 1.9 13 9.4 65 137.1 58.4 4.05 11.7 0.20
    3-methylpentane 52.1 47.9 1.7 12 8.7 60 136.9 58.3 4.05 10.8 0.19
    n-pentane 9.2 90.8 4.5 31 19.2 132 150.9 66.1 4.16 26.1 0.46
  • Data show the compositions of the present invention have evaporator and condenser pressures similar to CFC-113. Some compositions also have higher capacity than CFC-113.

Claims (23)

1. A refrigerant or heat transfer fluid composition comprising C4F9OC2H5 and at least one hydrocarbon selected from the group consisting of:
cyclohexane;
cyclopentane;
3-ethylpentane;
2,2-dimethylbutane;
2,3-dimethylbutane;
n-heptane;
methylcyclopentane;
2-methylhexane;
3-methylhexane;
2-methylpentane;
3-methylpentane; and
n-pentane.
2. A refrigerant or heat transfer fluid composition as in claim 1 wherein said composition comprises a composition selected from the group consisting of:
C4F9OC2H5 and cyclohexane;
C4F9OC2H5 and cyclopentane;
C4F9OC2H5 and 3-ethylpentane;
C4F9OC2H5 and 2,2-dimethylbutane;
C4F9OC2H5 and 2,3-dimethylbutane;
C4F9OC2H5 and n-heptane;
C4F9OC2H5 and methylcyclopentane;
C4F9OC2H5 and 2-methylhexane;
C4F9OC2H5 and 3-methylhexane;
C4F9OC2H5 and 2-methylpentane;
C4F9OC2H5 and 3-methylpentane; and
C4F9OC2H5 and n-pentane.
3. A refrigerant or heat transfer fluid composition as in claim 1 wherein said composition comprises an azeotropic or near-azeotropic composition selected from the group consisting of:
about 1 to about 71 weight percent C4F9OC2H5 and about 99 to about 29 weight percent cyclopentane;
about 1 to about 71 weight percent C4F9OC2H5 and about 99 to about 29 weight percent 2,2-dimethylbutane;
about 1 to about 77 weight percent C4F9OC2H5 and about 99 to about 23 weight percent 2,3-dimethylbutane;
about 56 to about 99 weight percent C4F9OC2H5 and about 44 to about 1 weight percent 3-ethylpentane;
about 25 to about 99 weight percent C4F9OC2H5 and about 75 to about 1 weight percent methylcyclopentane;
about 51 to about 99 weight percent C4F9OC2H5 and about 49 to about 1 weight percent 2-methylhexane;
about 54 to about 99 weight percent C4F9OC2H5 and about 46 to about 1 weight percent 3-methylhexane;
about 1 to about 79 weight percent C4F9OC2H5 and about 99 to about 21 weight percent 2-methylpentane;
about 1 to about 82 weight percent C4F9OC2H5 and about 99 to about 18 weight percent 3-methylpentane; or
about 1 to about 62 weight percent C4F9OC2H5 and about 99 to about 38 weight percent n-pentane.
4. A refrigerant or heat transfer fluid composition as in claim 1 wherein said composition comprises an azeotropic or near-azeotropic composition selected from the group consisting of:
29.6 weight percent C4F9OC2H5 and 70.4 weight percent cyclopentane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 48.1° C.;
32.6 weight percent C4F9OC2H5 and 67.4 weight percent 2,2-dimethylbutane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 48.1° C.;
44.7 weight percent C4F9OC2H5 and 55.3 weight percent 2,3-dimethylbutane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 54.8° C.;
86.0 weight percent C4F9OC2H5 and 14.0 weight percent 3-ethylpentane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 73.5° C.;
62.1 weight percent C4F9OC2H5 and 37.9 weight percent methylcyclopentane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 64.5° C.;
81.8 weight percent C4F9OC2H5 and 18.2 weight percent 2-methylhexane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 72.1° C.;
83.8 weight percent C4F9OC2H5 and 16.2 weight percent 3-methylhexane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 72.8° C.;
47.9 weight percent C4F9OC2H5 and 52.1 weight percent 2-methylpentane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 56.5° C.;
52.1 weight percent C4F9OC2H5 and 47.9 weight percent 3-methylpentane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 58.7° C.; or
9.2 weight percent C4F9OC2H5 and 90.8 weight percent n-pentane having a vapor pressure of about 14.7 psia (101 kPa) at a temperature of about 35.0° C.
5. A process for producing cooling, said process comprising evaporating the composition of claim 1 in the vicinity of a body to be cooled, and thereafter condensing said composition.
6. A process for producing heat, said process comprising condensing the composition of claim 1 in the vicinity of a body to be heated, and thereafter evaporating said composition.
7. A process for transferring heat, said process comprising transferring the composition of claim 1 from the vicinity of a heat source to a heat sink.
8. The composition of claim 1, further comprising at least one ultra-violet fluorescent dye selected from the group consisting of naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanthenes, fluoresceins, and derivatives thereof.
9. The composition of claim 8, further comprising at least one solubilizing agent selected from the group consisting of hydrocarbons, dimethylether, polyoxyalkylene glycol ethers, amides, ketones, nitriles, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes; and wherein the refrigerant or heat transfer fluid may not be the same compound as the solubilizing agent.
10. The composition of claim 9, wherein said solubilizing agent is selected from the group consisting of:
a) polyoxyalkylene glycol ethers represented by the formula R1[(OR2)xOR3]y, wherein: x is an integer from 1 to 3; y is an integer from 1 to 4; R1 is selected from hydrogen and aliphatic hydrocarbon radicals having 1 to 6 carbon atoms and y bonding sites; R2 is selected from aliphatic hydrocarbylene radicals having from 2 to 4 carbon atoms; R3 is selected from hydrogen, and aliphatic and alicyclic hydrocarbon radicals having from 1 to 6 carbon atoms; at least one of R1 and R3 is selected from said hydrocarbon radicals; and wherein said polyoxyalkylene glycol ethers have a molecular weight of from about 100 to about 300 atomic mass units;
b) amides represented by the formulae R1CONR2R3 and cyclo-[R4CON(R5)—], wherein R1, R2, R3 and R5 are independently selected from aliphatic and alicyclic hydrocarbon radicals having from 1 to 12 carbon atoms, and at most one aromatic radical having from 6 to 12 carbon atoms; R4 is selected from aliphatic hydrocarbylene radicals having from 3 to 12 carbon atoms; and wherein said amides have a molecular weight of from about 100 to about 300 atomic mass units;
c) ketones represented by the formula R1COR2, wherein R1 and R2 are independently selected from aliphatic, alicyclic and aryl hydrocarbon radicals having from 1 to 12 carbon atoms, and wherein said ketones have a molecular weight of from about 70 to about 300 atomic mass units;
d) nitriles represented by the formula R1CN, wherein R1 is selected from aliphatic, alicyclic or aryl hydrocarbon radicals having from 5 to 12 carbon atoms, and wherein said nitriles have a molecular weight of from about 90 to about 200 atomic mass units;
e) chlorocarbons represented by the formula RClx, wherein; x is selected from the integers 1 or 2; R is selected from aliphatic and alicyclic hydrocarbon radicals having from 1 to 12 carbon atoms; and wherein said chlorocarbons have a molecular weight of from about 100 to about 200 atomic mass units;
f) aryl ethers represented by the formula R1OR2, wherein: R1 is selected from aryl hydrocarbon radicals having from 6 to 12 carbon atoms; R2 is selected from aliphatic hydrocarbon radicals having from 1 to 4 carbon atoms; and wherein said aryl ethers have a molecular weight of from about 100 to about 150 atomic mass units;
g) 1,1,1-trifluoroalkanes represented by the formula CF3R1, wherein R1 is selected from aliphatic and alicyclic hydrocarbon radicals having from about 5 to about 15 carbon atoms;
h) fluoroethers represented by the formula R1OCF2CF2H, wherein R1 is selected from aliphatic and alicyclic hydrocarbon radicals having from about 5 to about 15 carbon atoms; or wherein said fluoroethers are derived from fluoro-olefins and polyols, wherein said fluoro-olefins are of the type CF2═CXY, wherein X is hydrogen, chlorine or fluorine, and Y is chlorine, fluorine, CF3 or ORf, wherein Rf is CF3, C2F5, or C3F7; and said polyols are linear or branched, wherein said linear polyols are of the type HOCH2(CHOH)x(CRR′)yCH2OH, wherein R and R′ are hydrogen, CH3 or C2H5, x is an integer from 04, y is an integer from 0-3 and z is either zero or 1, and said branched polyols are of the type C(OH)t(R)u(CH2OH)v[(CH2)mCH2OH]w, wherein R may be hydrogen, CH3 or C2H5, m is an integer from 0 to 3, t and u are 0 or 1, v and w are integers from 0 to 4, and also wherein t+u+v+w=4;
i) lactones represented by structures [B], [C], and [D]:
Figure US20070145325A1-20070628-C00036
 wherein, R1 through R8 are independently selected from hydrogen, linear, branched, cyclic, bicyclic, saturated and unsaturated hydrocarbyl radicals; and the molecular weight is from about 100 to about 300 atomic mass units; and
j) esters represented by the general formula R1CO2R2, wherein R1 and R2 are independently selected from linear and cyclic, saturated and unsaturated, alkyl and aryl radicals; and wherein said esters have a molecular weight of from about 80 to about 550 atomic mass units.
11. A method for introducing an ultraviolet fluorescent dye into a compression refrigeration or air-conditioning apparatus, said method comprising dissolving the ultraviolet fluorescent dye in the composition of claim 1 in the presence of a solubilizing agent, and introducing the combination into said compression refrigeration or air-conditioning apparatus.
12. A method for solubilizing ultraviolet fluorescent dye in the composition of claim 1 said method comprising contacting the ultraviolet fluorescent dye with said composition, in the presence of a solubilizing agent.
13. A method for detecting leaks, said method comprising providing the composition of claim 8 into a compression refrigeration apparatus or air-conditioning apparatus, and providing a suitable means for detecting said composition at a leak point, or in the vicinity of said apparatus.
14. The method of claim 5 wherein the refrigerant composition further comprises at least one ultra-violet fluorescent dye selected from the group consisting of naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanthenes, fluoresceins, and derivatives thereof.
15. The method of claim 6, wherein the refrigerant composition further comprises at least one ultra-violet fluorescent dye selected from the group consisting of naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanthenes, fluoresceins, and derivatives thereof.
16. The composition of claim 1 further comprising a stabilizer, water scavenger, or odor masking agent.
17. The composition of claim 16 wherein said stabilizer is selected from the group consisting of nitromethane, hindered phenols, hydroxylamines, thiols, phosphites and lactones.
18. A process of claim 5, wherein said process comprises producing heat or cooling in a refrigeration or air-conditioning apparatus employing a multi-stage centrifugal compressor.
19. The method of claim 18 wherein said multi-stage centrifugal compressor is a two-stage centrifugal compressor.
20. The composition of claim 16 wherein said water scavenger is an ortho ester.
21. A process to produce cooling comprising compressing a composition of claim 1 in a mini-centrifugal compressor powered by an engine exhaust gas driven turbine; condensing said composition; and thereafter evaporating said composition in the vicinity of a body to be cooled.
22. A process to produce cooling comprising compressing a composition of claim 1 in a mini-centrifugal compressor powered by a ratioed gear drive assembly with a ratioed belt drive; condensing said composition; and thereafter evaporating said composition in the vicinity of a body to be cooled.
23. A method for replacing CFC-113 in existing refrigeration apparatus or air-conditioning apparatus, said method comprising providing a composition of claim 1 as the replacement.
US11/711,318 2004-06-29 2007-02-26 1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof Abandoned US20070145325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/711,318 US20070145325A1 (en) 2004-06-29 2007-02-26 1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US58478504P 2004-06-29 2004-06-29
US11/153,168 US7198728B2 (en) 2004-06-29 2005-06-15 1-ethoxy-1,1,2,2,3,3,4,4,4,-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof
US11/711,318 US20070145325A1 (en) 2004-06-29 2007-02-26 1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/153,168 Division US7198728B2 (en) 2004-06-29 2005-06-15 1-ethoxy-1,1,2,2,3,3,4,4,4,-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof

Publications (1)

Publication Number Publication Date
US20070145325A1 true US20070145325A1 (en) 2007-06-28

Family

ID=35504624

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/153,168 Expired - Fee Related US7198728B2 (en) 2004-06-29 2005-06-15 1-ethoxy-1,1,2,2,3,3,4,4,4,-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof
US11/711,318 Abandoned US20070145325A1 (en) 2004-06-29 2007-02-26 1-Ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/153,168 Expired - Fee Related US7198728B2 (en) 2004-06-29 2005-06-15 1-ethoxy-1,1,2,2,3,3,4,4,4,-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof

Country Status (11)

Country Link
US (2) US7198728B2 (en)
EP (1) EP1769044A1 (en)
JP (1) JP2008505215A (en)
KR (1) KR20070039089A (en)
AU (1) AU2005267442A1 (en)
BR (1) BRPI0512466A (en)
CA (1) CA2565357A1 (en)
MX (1) MXPA06014289A (en)
NO (1) NO20070396L (en)
RU (1) RU2007103186A (en)
WO (1) WO2006012099A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120329893A1 (en) * 2010-03-09 2012-12-27 Arkema France Hydrochlorofluoroolefin blowing agent compositions
US10077221B2 (en) 2013-03-20 2018-09-18 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10669465B2 (en) 2016-09-19 2020-06-02 Arkema France Composition comprising 1-chloro-3,3,3-trifluoropropene
US10858561B2 (en) 2008-10-16 2020-12-08 Arkema France Heat transfer method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574451B2 (en) * 2005-06-24 2013-11-05 Honeywell International Inc. Trans-chloro-3,3,3-trifluoropropene for use in chiller applications
CN103980521B (en) * 2007-06-12 2016-11-23 纳幕尔杜邦公司 The azeotropic of E-1,1,1,4,4,4-hexafluoro-2-butylene and Azeotrope-like compositions
WO2016129500A1 (en) 2015-02-09 2016-08-18 旭硝子株式会社 Air conditioner working medium for electric car and air conditioner working medium composition for electric car

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681984A (en) * 1996-07-22 1997-10-28 Bright Solutions, Inc. Leak detection in heating, ventilating, refrigeration, and air conditioning systems utilizing adsorptive materials
US5713211A (en) * 1995-10-20 1998-02-03 Minnesota Mining And Manufacturing Company Hydrofluoroethers as low temperature refrigerants
US5814595A (en) * 1995-05-16 1998-09-29 Minnesota Mining And Manufacturing Company Azeotrope-like compositions and their use
US20030209688A1 (en) * 2000-12-08 2003-11-13 Lee Robert A. Refrigerant compositions containing a compatibilizer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495137A (en) * 1993-09-14 1996-02-27 The Whitaker Corporation Proximity sensor utilizing polymer piezoelectric film with protective metal layer
US5562853A (en) * 1994-09-29 1996-10-08 E. I. Du Pont De Nemours And Company 1,1,2,2,3,3,4,4,-octafluorobutane compositions
EP0830436A1 (en) 1995-06-07 1998-03-25 E.I. Du Pont De Nemours & Co. (Inc.) Refrigerants based on hydrofluoroether of fluoroether
US6183663B1 (en) * 1998-10-09 2001-02-06 Bright Solutions, Inc. Leak detection dye delivery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814595A (en) * 1995-05-16 1998-09-29 Minnesota Mining And Manufacturing Company Azeotrope-like compositions and their use
US5713211A (en) * 1995-10-20 1998-02-03 Minnesota Mining And Manufacturing Company Hydrofluoroethers as low temperature refrigerants
US5681984A (en) * 1996-07-22 1997-10-28 Bright Solutions, Inc. Leak detection in heating, ventilating, refrigeration, and air conditioning systems utilizing adsorptive materials
US20030209688A1 (en) * 2000-12-08 2003-11-13 Lee Robert A. Refrigerant compositions containing a compatibilizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858561B2 (en) 2008-10-16 2020-12-08 Arkema France Heat transfer method
US20120329893A1 (en) * 2010-03-09 2012-12-27 Arkema France Hydrochlorofluoroolefin blowing agent compositions
US10077221B2 (en) 2013-03-20 2018-09-18 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10343963B2 (en) 2013-03-20 2019-07-09 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10669465B2 (en) 2016-09-19 2020-06-02 Arkema France Composition comprising 1-chloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
MXPA06014289A (en) 2007-02-19
AU2005267442A1 (en) 2006-02-02
RU2007103186A (en) 2008-08-10
CA2565357A1 (en) 2006-02-02
US7198728B2 (en) 2007-04-03
EP1769044A1 (en) 2007-04-04
KR20070039089A (en) 2007-04-11
NO20070396L (en) 2007-03-27
US20050285077A1 (en) 2005-12-29
JP2008505215A (en) 2008-02-21
WO2006012099A1 (en) 2006-02-02
BRPI0512466A (en) 2008-03-04

Similar Documents

Publication Publication Date Title
US7332103B2 (en) 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant compositions and uses thereof
US20050285078A1 (en) Refrigerant compositions comprising functionalized organic compounds and uses thereof
US7338616B2 (en) 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant compositions comprising a hydrocarbon and uses thereof
US7351351B2 (en) 1,1,1,2,2,3,3,4,4-Nonafluoro-4-methoxybutane refrigerant compositions comprising functionalized organic compounds and uses thereof
US7422698B2 (en) 1-ethoxy-1, 1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising functionalized organic compounds and uses thereof
US7198728B2 (en) 1-ethoxy-1,1,2,2,3,3,4,4,4,-nonafluorobutane refrigerant compositions comprising a hydrocarbon and uses thereof
US7413675B2 (en) Hydrocarbon refrigerant compositions and uses thereof
US7351352B2 (en) 1,1,1,2,2,3,3,4,4-Nonafluoro-4-methoxybutane refrigerant compositions comprising a fluoroether and uses thereof
US7201855B2 (en) 1,1,1,3,3-pentafluorobutane refrigerant compositions comprising fluoroether and uses thereof
US7220364B2 (en) 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane refrigerant compositions comprising hydrocarbon and uses thereof
US7208100B2 (en) 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane refrigerant compositions comprising a fluoroether and uses thereof
US20080127659A1 (en) 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane refrigerant compositions comprising hydrofluorocarbon, and uses thereof
EP1751246A2 (en) 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant compositions comprising a hydrocarbon and uses thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION