US20070107903A1 - System for use in controlling a hydrocarbon production well - Google Patents
System for use in controlling a hydrocarbon production well Download PDFInfo
- Publication number
- US20070107903A1 US20070107903A1 US11/650,160 US65016007A US2007107903A1 US 20070107903 A1 US20070107903 A1 US 20070107903A1 US 65016007 A US65016007 A US 65016007A US 2007107903 A1 US2007107903 A1 US 2007107903A1
- Authority
- US
- United States
- Prior art keywords
- subsea
- router
- communicating device
- processing core
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004215 Carbon black (E152) Substances 0.000 title abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 title abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 title abstract description 5
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- 230000006854 communication Effects 0.000 claims abstract description 41
- 238000004891 communication Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims 5
- 239000013307 optical fiber Substances 0.000 claims 3
- 230000007175 bidirectional communication Effects 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 8
- 239000012530 fluid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 125000003821 2-(trimethylsilyl)ethoxymethyl group Chemical group [H]C([H])([H])[Si](C([H])([H])[H])(C([H])([H])[H])C([H])([H])C(OC([H])([H])[*])([H])[H] 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- 101100042258 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) sem-1 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000009189 diving Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/03—Well heads; Setting-up thereof
- E21B33/035—Well heads; Setting-up thereof specially adapted for underwater installations
- E21B33/0355—Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads
Definitions
- the present invention relates to a system for use in controlling a hydrocarbon production well.
- control centre In the subsea fluid extraction industry, communication is required between a control centre and well heads located on the seabed. Traditionally, the control centre is located on a platform or vessel in relatively close proximity to the well complex. In some cases, the control centre is located on land, where the distance from the control centre to the well heads can be much greater and could be typically 200 km.
- High capacity communication systems typically involving optical fibres, allow the possibility of much higher data rates between the subsea and surface facilities, which further enables methods of connecting subsea data sources (e.g. sensors), particularly those generating large quantities of data such as microseismic sensors and TV cameras.
- a conventional approach is to use a standard subsea bus at the well head ends of a data transmission system to connect such various subsea data sources.
- this data is time multiplexed on the bus, the data rates are also somewhat limited such that some desirable, high bandwidth, data transmissions, such as digital video signals, cannot be economically transmitted.
- FIG. 1 shows a conventional system for the communication of data between subsea well trees and a surface facility.
- a subsea electronics module (SEM) 1 including a SEM processor 2 , which handles at a port 3 data from conventional tree sensors such as pressure and temperature and at a port 4 data for control of devices such as valves and fluid control chokes, there being a port 5 for a standard interface for data from other subsea data sources.
- SEM subsea electronics module
- the SEM processor 2 communicates bi-directionally with a surface facility computer system 6 (on shore or on a platform for example) via a modem 7 housed in the SEM 1 , a communication link 8 and a modem 9 housed in a surface modem unit (SMU) 10 at the surface facility.
- the communication link 8 enables communication with the SEMs of other well trees and at some or all of the well trees there is system duplication to improve system availability—thus in FIG. 1 there are shown two SEMs (SEM A 1 and SEM B 1 ) for a particular well tree, SEM A 2 and SEM B 2 representing duplicate SEMs for another tree.
- a fibre optic link is used as link 8 to transmit data between the or each SEM at a well tree to the surface computer 6 .
- the data from other sources at port 5 needs to be adapted to the protocol, data rates and other standards used for the communication of control information and sensor information.
- a system for use in controlling a hydrocarbon production well comprising computing means at a control location remote from a well tree of the well.
- the system also has a well tree means has a processing means for applying control signals to and receiving signals from devices of the well tree.
- the well tree means includes means for receiving further signals associated with the operation of the well.
- a bi-directional communication link exists between said computing means and said well tree means.
- the well tree means further comprises a communications router coupled with said processing means and said receiving means, for multiplexing said signals from devices at the well head and said further signals on to said bi-directional link.
- the bi-directional link could comprise a fibre optics link.
- the signals from devices at the well head and further signals could have different protocols and different data speeds.
- the further signals could include video signals.
- the present invention also comprises a combination of a system according to the invention providing a first communication channel, and a further such system, providing a second communication channel for use if the first channel fails.
- FIG. 1 is a diagram of a prior art form of system for use in controlling a hydrocarbon production well
- FIG. 2 is a diagram of an example of a system according to the present invention.
- FIG. 3 is a diagram of another example of the present invention.
- FIG. 4 is a diagram showing part of an alternative to what is shown in FIG. 3 .
- FIG. 2 illustrates a system according to an example of the invention, showing linking from a surface computer 6 to a well tree.
- the surface computer 6 at the control centre sends and receives data to and from a surface modem unit (SMU) 10 which houses a modem 9 .
- SMU surface modem unit
- This modem 9 transmits and receives data via a communication link 8 .
- the other end of the communication link 8 connects to the well head tree which carries a subsea electronics module (SEM) 11 which houses a modem 7 which is a similar device to the modem 9 and performs the opposite function.
- SEM subsea electronics module
- the modem 7 has an electrical output/input, which is connected to a communications processor 12 which functions as a communications router (or intelligent multiplexer), also housed in the SEM 11 .
- the communications router 12 has a multiplicity of inputs/outputs, there being an interface with a conventional SEM processor 2 (having sensor, control and standard interface ports 3 , 4 and 5 ) and also interfaces 13 which interface with other ‘private’ standard interfaces known as virtual links.
- the interfaces are effectively ‘star connected’ rather than the conventional ‘highway connected’ and virtually any protocol and data rate can be handled, limited only by the router 12 , speed and the final limitation of the bandwidth of the communication link 8 and its modems 7 and 9 .
- the link 8 could be about 200 km in length, data being transmitted via it at typically 10 Mbits/sec.
- the software in the router 12 is flexible and handles, by multiplexing, the data and protocol of the ‘private’ interfaces, as required for the system configuration, to permit high speed communication to and from the modem 7 , thereby providing virtual links between the surface and subsea equipment.
- the SEM processor 2 handles the conventional control of subsea devices, such as valves and chokes, to control the fluid extraction process. It also handles local logging and processing of data from the tree sensors, its main functions being to acquire data from the sensors and assemble it into a format that can be transmitted to the surface computer and to issue control signals to valves and fluid control chokes for example.
- IWS intelligent well system interface
- FIG. 2 Typical of the above-mentioned private, standard interfaces are the intelligent well system interface, (IWS) (an Ethernet interface), and others as shown in FIG. 2 which are well known in the industry, as well as interfaces to devices such as level sensors, microseismic sensors and fluid quality sensors.
- IWS intelligent well system interface
- FIG. 2 Due to the fact that the system configuration allows high bandwidth utilisation of the communication link 8 , typically a fibre optic link, it is possible to transmit compressed video. This allows the fitting of cameras to the subsea well head, to permit visual inspection of the tree without the need for expensive diving operations or the use of a remote operation vehicle (ROV).
- ROV remote operation vehicle
- FIG. 3 shows a typical full system implementation to handle communication between a control centre and a subsea well complex, and providing high availability through dual duplex redundancy.
- the figure shows a high end application with a large amount of redundancy and long distance offsets with a subsea central distribution system arrangement that sits between a surface computer and well head control modules.
- a and B Two separate communication channels are provided, A and B, to provide 100% redundancy.
- Describing channel A a surface computer 6 at the control centre (on shore or on a platform for example) feeds and receives data to and from an SMU 14 which houses two bi-directional optical modems 15 and 16 .
- the optical modems 15 and 16 interface with respective ones of a pair of optical fibres 17 and 18 , which terminate near to a well head complex at a communication electronics module (CEM) 19 typically located on the seabed.
- CEM communication electronics module
- the communication link provided by the optical fibres could be about 200 km, data being transmitted via them at typically 10 Mbits/sec.
- the CEM 19 enables interfacing of many wells in the locality with the optical fibres 17 and 18 .
- the use of two optical fibres provides further redundancy and thus greater communications reliability.
- the CEM 19 houses another two bi-directional optical modems 20 and 21 coupled with respective ones of fibres 17 and 18 and which output electrical signals to a communications router 22 .
- the communications router 22 interfaces with electrical modems, of which three, 23 , 24 and 25 are shown, by way of example, each of which interfaces with a modem of a SEM at a well tree.
- the modem 23 interfaces with a modem 7 of a SEM 1 via a communication link 26 and with the modems at other trees within the group via a communication link 27 and modems 24 and 25 interface with modems at other groups of trees via communication links 28 and 29 .
- FIG. 3 also shows a duplicated identical channel B for use instead of channel A for further reliability.
- rudimentary communication is provided by a link 30 from the computer 6 of each channel, a low speed communications modem (LSCM) 31 , a back-up communication link 32 (typically operating at 1.2 kbits/sec) and a link 33 for each channel, each link being coupled by a LSCM 34 to the communications router 22 of the respective channel.
- LSCM low speed communications modem
- each of modems 23 , 24 , 25 , etc. and each of the corresponding modems at the well tree SEM's may, alternatively, be of the form that communicates via the electrical power supply to the tree, i.e. a comms-on-power (COP) type of modem.
- COP comms-on-power
- FIG. 4 shows part of an alternative to the system of FIG. 3 , items which correspond with items in FIG. 3 having the same reference numerals as in FIG. 3 .
- each channel has its own back-up communication link 35 (typically operating at 1.2 kbits/sec), being a link which provides subsea power from a 3-phase, 3 kv supply and each channel having a respective LSCM 36 instead of there being a single LSCM 31 as in FIG. 3 .
- modems 23 , 24 and 25 are COP modems.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Small-Scale Networks (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Selective Calling Equipment (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
A system for use in controlling a hydrocarbon production well has a: computer at a control location remote from a well tree of the well. A processor at the well tree applies control signals to and receives signals from devices of the well tree. The processor also receives further signals associated with the operation of the well. A bi-directional communication link extends between the remote computer and the well tree processor. The well tree further has a communications router coupled with the processor and receiver, for multiplexing the signals from devices at the well head and the further signals on to the bi-directional link.
Description
- This application claims the benefit of United Kingdom Patent Application No. 0228203.6, filed on Dec. 3, 2002, which hereby is incorporated by reference in its entirety.
- The present invention relates to a system for use in controlling a hydrocarbon production well.
- In the subsea fluid extraction industry, communication is required between a control centre and well heads located on the seabed. Traditionally, the control centre is located on a platform or vessel in relatively close proximity to the well complex. In some cases, the control centre is located on land, where the distance from the control centre to the well heads can be much greater and could be typically 200 km. High capacity communication systems, typically involving optical fibres, allow the possibility of much higher data rates between the subsea and surface facilities, which further enables methods of connecting subsea data sources (e.g. sensors), particularly those generating large quantities of data such as microseismic sensors and TV cameras.
- A conventional approach is to use a standard subsea bus at the well head ends of a data transmission system to connect such various subsea data sources. This means that any other party providing equipment to the system has to interface with the bus and conform to its protocol, data rates and bus standards. Since different manufacturers have standard equipment with interfaces to a multiplicity of protocols and data rates, substantial costs are involved in adapting these interfaces to suit the standard bus. Furthermore, since this data is time multiplexed on the bus, the data rates are also somewhat limited such that some desirable, high bandwidth, data transmissions, such as digital video signals, cannot be economically transmitted.
-
FIG. 1 shows a conventional system for the communication of data between subsea well trees and a surface facility. Mounted on each of a number of subsea well trees (not shown) is a subsea electronics module (SEM) 1 including aSEM processor 2, which handles at aport 3 data from conventional tree sensors such as pressure and temperature and at aport 4 data for control of devices such as valves and fluid control chokes, there being aport 5 for a standard interface for data from other subsea data sources. The SEMprocessor 2 communicates bi-directionally with a surface facility computer system 6 (on shore or on a platform for example) via amodem 7 housed in the SEM 1, acommunication link 8 and amodem 9 housed in a surface modem unit (SMU) 10 at the surface facility. Thecommunication link 8 enables communication with the SEMs of other well trees and at some or all of the well trees there is system duplication to improve system availability—thus inFIG. 1 there are shown two SEMs (SEM A1 and SEM B1) for a particular well tree, SEM A2 and SEM B2 representing duplicate SEMs for another tree. - When the
surface computer 6 is located at a considerable distance, such as, typically, 200 km from the well complex, a fibre optic link is used aslink 8 to transmit data between the or each SEM at a well tree to thesurface computer 6. Nevertheless, the data from other sources atport 5 needs to be adapted to the protocol, data rates and other standards used for the communication of control information and sensor information. - According to the present invention, there is provided a system for use in controlling a hydrocarbon production well, comprising computing means at a control location remote from a well tree of the well. The system also has a well tree means has a processing means for applying control signals to and receiving signals from devices of the well tree. The well tree means includes means for receiving further signals associated with the operation of the well. A bi-directional communication link exists between said computing means and said well tree means.
- The well tree means further comprises a communications router coupled with said processing means and said receiving means, for multiplexing said signals from devices at the well head and said further signals on to said bi-directional link. The bi-directional link could comprise a fibre optics link.
- There could be a plurality of such well tree means at respective well trees, there being a distribution means between said bi-directional link and the well tree means for distributing control signals to said well tree means and receiving multiplexed signals from said well tree means.
- The signals from devices at the well head and further signals could have different protocols and different data speeds. The further signals could include video signals.
- The present invention also comprises a combination of a system according to the invention providing a first communication channel, and a further such system, providing a second communication channel for use if the first channel fails.
- The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
-
FIG. 1 is a diagram of a prior art form of system for use in controlling a hydrocarbon production well; -
FIG. 2 is a diagram of an example of a system according to the present invention; -
FIG. 3 is a diagram of another example of the present invention; and -
FIG. 4 is a diagram showing part of an alternative to what is shown inFIG. 3 . -
FIG. 2 (in which items which correspond with those inFIG. 1 have the same reference numerals as inFIG. 1 ) illustrates a system according to an example of the invention, showing linking from asurface computer 6 to a well tree. Thesurface computer 6 at the control centre (on shore or on a platform for example) sends and receives data to and from a surface modem unit (SMU) 10 which houses amodem 9. Thismodem 9 transmits and receives data via acommunication link 8. The other end of thecommunication link 8 connects to the well head tree which carries a subsea electronics module (SEM) 11 which houses amodem 7 which is a similar device to themodem 9 and performs the opposite function. Themodem 7 has an electrical output/input, which is connected to acommunications processor 12 which functions as a communications router (or intelligent multiplexer), also housed in the SEM 11. Thecommunications router 12, has a multiplicity of inputs/outputs, there being an interface with a conventional SEM processor 2 (having sensor, control andstandard interface ports interfaces 13 which interface with other ‘private’ standard interfaces known as virtual links. The interfaces are effectively ‘star connected’ rather than the conventional ‘highway connected’ and virtually any protocol and data rate can be handled, limited only by therouter 12, speed and the final limitation of the bandwidth of thecommunication link 8 and itsmodems link 8 could be about 200 km in length, data being transmitted via it at typically 10 Mbits/sec. The software in therouter 12 is flexible and handles, by multiplexing, the data and protocol of the ‘private’ interfaces, as required for the system configuration, to permit high speed communication to and from themodem 7, thereby providing virtual links between the surface and subsea equipment. The SEMprocessor 2 handles the conventional control of subsea devices, such as valves and chokes, to control the fluid extraction process. It also handles local logging and processing of data from the tree sensors, its main functions being to acquire data from the sensors and assemble it into a format that can be transmitted to the surface computer and to issue control signals to valves and fluid control chokes for example. - Typical of the above-mentioned private, standard interfaces are the intelligent well system interface, (IWS) (an Ethernet interface), and others as shown in
FIG. 2 which are well known in the industry, as well as interfaces to devices such as level sensors, microseismic sensors and fluid quality sensors. Due to the fact that the system configuration allows high bandwidth utilisation of thecommunication link 8, typically a fibre optic link, it is possible to transmit compressed video. This allows the fitting of cameras to the subsea well head, to permit visual inspection of the tree without the need for expensive diving operations or the use of a remote operation vehicle (ROV). This will have major benefits to the well operator who, in the past, has had to rely on sensor information to prompt the deployment of divers or a ROV to effect a visual inspection, but can now have a continuous visual inspection facility. -
FIG. 3 (in which items which correspond with those inFIG. 2 have the same reference numerals as inFIG. 2 ) shows a typical full system implementation to handle communication between a control centre and a subsea well complex, and providing high availability through dual duplex redundancy. The figure shows a high end application with a large amount of redundancy and long distance offsets with a subsea central distribution system arrangement that sits between a surface computer and well head control modules. - Two separate communication channels are provided, A and B, to provide 100% redundancy. Describing channel A, a
surface computer 6 at the control centre (on shore or on a platform for example) feeds and receives data to and from anSMU 14 which houses two bi-directionaloptical modems - The
optical modems optical fibres CEM 19 enables interfacing of many wells in the locality with theoptical fibres CEM 19 houses another two bi-directionaloptical modems fibres communications router 22. Thecommunications router 22 interfaces with electrical modems, of which three, 23, 24 and 25 are shown, by way of example, each of which interfaces with a modem of a SEM at a well tree. Thus, for example, themodem 23 interfaces with amodem 7 of aSEM 1 via acommunication link 26 and with the modems at other trees within the group via acommunication link 27 andmodems communication links -
FIG. 3 also shows a duplicated identical channel B for use instead of channel A for further reliability. In the event of failure of both channels, rudimentary communication is provided by alink 30 from thecomputer 6 of each channel, a low speed communications modem (LSCM) 31, a back-up communication link 32 (typically operating at 1.2 kbits/sec) and alink 33 for each channel, each link being coupled by aLSCM 34 to thecommunications router 22 of the respective channel. - It should be noted that each of
modems -
FIG. 4 shows part of an alternative to the system ofFIG. 3 , items which correspond with items inFIG. 3 having the same reference numerals as inFIG. 3 . Instead of a single back-up communication link, each channel has its own back-up communication link 35 (typically operating at 1.2 kbits/sec), being a link which provides subsea power from a 3-phase, 3 kv supply and each channel having arespective LSCM 36 instead of there being asingle LSCM 31 as inFIG. 3 . InFIG. 4 , modems 23, 24 and 25 are COP modems. - While the invention has been shown in only a few of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention.
Claims (21)
1-8. (canceled)
9. A system for remotely controlling subsea equipment, comprising:
a subsea well complex;
a surface computer facility;
at least one communicating device at the well complex;
a modem at the well complex for communicating with the computer facility;
a communications router at the well complex coupled to the modem;
a communications link extending between the computer facility and the modem;
a processing core at the well complex coupled to the communications router for performing control and monitoring functions at the well complex;
the communicating device being coupled directly to the router and by-passing the processing core for communicating with the computer facility.
10. The system according to claim 9 , wherein the communicating device comprises a sensor.
11. The system according to claim 10 , wherein the sensor comprises a video camera.
12. The system according to claim 9 , further comprising a sensor coupled to the processing core for performing the monitoring function.
13. The system according to claim 9 , wherein the communicating device communicates with the router pursuant to a selected data protocol, and the processing core communicates with the router pursuant to a different data protocol.
14. The system according to claim 9 , wherein the at least one communicating device comprises first and second communicating devices and wherein the first communicating device communicates with the router pursuant to a selected data protocol, and the second communicating device communicates with the router pursuant to a different data protocol.
15. The system according to claim 9 , wherein the communication link comprises an optical fiber.
16. A subsea electronics module for removing controlling subsea equipment, comprising:
at least one subsea communicating device;
a subsea modem;
a subsea communications router coupled to the modem;
a subsea processing core coupled to the communications router for performing subsea control and monitoring functions;
the communicating device being coupled directly to the router and by-passing the processing core.
17. The system according to claim 16 , wherein the communicating device comprises a sensor.
18. The system according to claim 17 , wherein the sensor comprises a video camera.
19. The system according to claim 16 , further comprising a sensor coupled to the processing core for performing the monitoring function.
20. The system according to claim 16 , wherein the communicating device communicates with the router pursuant to a selected data protocol, and the processing core communicates with the router pursuant to a different data protocol.
21. The system according to claim 16 , wherein the at least one communicating device comprises first and second communicating devices and wherein the first communicating device communicates with the router pursuant to a selected data protocol, and the second communicating device communicates with the router pursuant to a different data protocol.
22. The system according to claim 16 , further comprising an optical fiber link connected between the subsea modem and a surface computer facility.
23. A method for remotely controlling subsea equipment at a subsea well complex from a surface computer facility, the method comprising:
(a) providing a subsea processing core;
(b) providing a subsea communicating device;
(c) monitoring and controlling subsea equipment with the processing core and routing a signal in response thereto from the processing core to the surface computer facility; and
(d) routing a signal from the communicating device directly to the surface computer facility and by-passing the subsea processing core.
24. The method according to claim 23 , wherein step (d) comprises routing a signal corresponding to a sensed parameter.
25. The method according to claim 23 , wherein step (d) comprises routing a video signal.
26. The method according to claim 23 , wherein steps (c) and (d) are performed using different protocols.
27. The method according to claim 23 , further comprising sensing a subsea characteristic and providing a signal to the processing core.
28. The method according to claim 23 , wherein steps (c) and (d) are communicated to the surface computer facility via an optical fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/650,160 US20070107903A1 (en) | 2002-12-03 | 2007-01-05 | System for use in controlling a hydrocarbon production well |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0228203.6 | 2002-12-03 | ||
GB0228203A GB2396086C (en) | 2002-12-03 | 2002-12-03 | A system for use in controlling a hydrocarbon production well |
US10/726,674 US7148812B2 (en) | 2002-12-03 | 2003-12-03 | System for use in controlling a hydrocarbon production well |
US11/650,160 US20070107903A1 (en) | 2002-12-03 | 2007-01-05 | System for use in controlling a hydrocarbon production well |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/726,674 Continuation US7148812B2 (en) | 2002-12-03 | 2003-12-03 | System for use in controlling a hydrocarbon production well |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070107903A1 true US20070107903A1 (en) | 2007-05-17 |
Family
ID=9948997
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/726,674 Ceased US7148812B2 (en) | 2002-12-03 | 2003-12-03 | System for use in controlling a hydrocarbon production well |
US11/650,160 Abandoned US20070107903A1 (en) | 2002-12-03 | 2007-01-05 | System for use in controlling a hydrocarbon production well |
US11/805,864 Active 2024-10-31 USRE41173E1 (en) | 2002-12-03 | 2007-05-24 | System for use in controlling a hydrocarbon production well |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/726,674 Ceased US7148812B2 (en) | 2002-12-03 | 2003-12-03 | System for use in controlling a hydrocarbon production well |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/805,864 Active 2024-10-31 USRE41173E1 (en) | 2002-12-03 | 2007-05-24 | System for use in controlling a hydrocarbon production well |
Country Status (5)
Country | Link |
---|---|
US (3) | US7148812B2 (en) |
BR (1) | BRPI0305394B1 (en) |
DE (1) | DE10355988B4 (en) |
GB (1) | GB2396086C (en) |
NO (3) | NO324061B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090277644A1 (en) * | 2008-05-09 | 2009-11-12 | Mcstay Daniel | Method and apparatus for christmas tree condition monitoring |
US20100051286A1 (en) * | 2008-09-04 | 2010-03-04 | Mcstay Daniel | Optical sensing system for wellhead equipment |
US20100202463A1 (en) * | 2006-08-17 | 2010-08-12 | Gerald Ian Robinson | Communications system for an underwater fluid extraction facility |
US20100252269A1 (en) * | 2009-04-01 | 2010-10-07 | Baker Hughes Incorporated | System and method for monitoring subsea wells |
US20120175122A1 (en) * | 2010-02-01 | 2012-07-12 | Steven Simpson | Electronics module |
US8725302B2 (en) * | 2011-10-21 | 2014-05-13 | Schlumberger Technology Corporation | Control systems and methods for subsea activities |
US9832549B2 (en) | 2016-03-14 | 2017-11-28 | Teledyne Instruments, Inc. | System, method, and apparatus for subsea optical to electrical distribution |
US20210384988A1 (en) * | 2018-12-03 | 2021-12-09 | Ge Oil & Gas Uk Limited | Subsea communication network and communication methodology |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2387977B (en) * | 2002-04-17 | 2005-04-13 | Abb Offshore Systems Ltd | Control of hydrocarbon wells |
GB2396086C (en) | 2002-12-03 | 2007-11-02 | Vetco Gray Controls Ltd | A system for use in controlling a hydrocarbon production well |
GB2401295B (en) * | 2003-04-28 | 2005-07-13 | Schlumberger Holdings | Redundant systems for downhole permanent installations |
US20050239798A1 (en) * | 2004-04-22 | 2005-10-27 | Boehringer Ingelheim Pharmaceuticals, Inc. | Method for the treatment of premenstrual and other female sexual disorders |
GB2413746B (en) | 2004-05-01 | 2007-02-14 | Abb Offshore Systems Ltd | Modem |
GB2417656B (en) | 2004-08-24 | 2009-02-11 | Vetco Gray Controls Ltd | Communication apparatus |
CN101501584B (en) * | 2006-07-24 | 2012-06-20 | 西门子公司 | Modem for submarine electric cable communication |
US20080217022A1 (en) * | 2007-03-06 | 2008-09-11 | Schlumberger Technology Corporation | Subsea communications multiplexer |
US8264370B2 (en) | 2007-05-30 | 2012-09-11 | Cameron International Corporation | Power and signal distribution system |
GB2451258A (en) | 2007-07-25 | 2009-01-28 | Vetco Gray Controls Ltd | A wireless subsea electronic control module for a well installation |
US20090038804A1 (en) * | 2007-08-09 | 2009-02-12 | Going Iii Walter S | Subsurface Safety Valve for Electric Subsea Tree |
US8996210B2 (en) * | 2008-01-17 | 2015-03-31 | Sea-Watch Technologies, Inc. | Integrated vessel monitoring and control system |
GB2461856B (en) | 2008-07-11 | 2012-12-19 | Vetco Gray Controls Ltd | Testing of an electronics module |
GB2471496B (en) * | 2009-07-01 | 2013-04-17 | Vetco Gray Controls Ltd | Subsea electronic modules |
US8511389B2 (en) * | 2010-10-20 | 2013-08-20 | Vetco Gray Inc. | System and method for inductive signal and power transfer from ROV to in riser tools |
US8755693B2 (en) * | 2011-05-16 | 2014-06-17 | Eastern Optx, Inc. | Bi-directional, compact, multi-path and free space channel replicator |
EP2543811A1 (en) * | 2011-07-06 | 2013-01-09 | Vetco Gray Controls Limited | Subsea electronics module |
WO2014018010A1 (en) * | 2012-07-24 | 2014-01-30 | Fmc Technologies, Inc. | Wireless downhole feedthrough system |
US8649909B1 (en) * | 2012-12-07 | 2014-02-11 | Amplisine Labs, LLC | Remote control of fluid-handling devices |
US8851161B2 (en) * | 2013-01-22 | 2014-10-07 | Halliburton Energy Services, Inc. | Cross-communication between electronic circuits and electrical devices in well tools |
CN104121015B (en) * | 2013-04-24 | 2016-09-21 | 中国石油化工股份有限公司 | The method of mounting downhole logging instruments and well logging ground-based system |
WO2017058832A1 (en) | 2015-09-28 | 2017-04-06 | Schlumberger Technology Corporation | Burner monitoring and control systems |
AU2016412713B2 (en) * | 2016-06-28 | 2023-02-02 | Schlumberger Technology B.V. | Well testing systems and methods with mobile monitoring |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701756A (en) * | 1985-09-10 | 1987-10-20 | Burr William E | Fault-tolerant hierarchical network |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3516492A (en) | 1968-05-23 | 1970-06-23 | Shell Oil Co | Underwater wellhead connector |
CA1170756A (en) * | 1980-11-17 | 1984-07-10 | Donald W. Harvey | Remote seismic data system |
US5959547A (en) * | 1995-02-09 | 1999-09-28 | Baker Hughes Incorporated | Well control systems employing downhole network |
US5808764A (en) * | 1995-12-28 | 1998-09-15 | Lucent Technologies, Inc. | Multiple star, passive optical network based on remote interrogation of terminal equipment |
AU4066197A (en) * | 1996-08-12 | 1998-03-06 | Eivind Fromyr | Reservoir acquisition system with concentrator |
GB9701591D0 (en) * | 1997-01-27 | 1997-03-19 | British Telecomm | Communications system |
US6185203B1 (en) * | 1997-02-18 | 2001-02-06 | Vixel Corporation | Fibre channel switching fabric |
JP3016477B2 (en) * | 1997-11-17 | 2000-03-06 | 日本電気株式会社 | Monitoring information transmission / reception device in submarine cable system |
GB2332220B (en) * | 1997-12-10 | 2000-03-15 | Abb Seatec Ltd | An underwater hydrocarbon production system |
US6229453B1 (en) * | 1998-01-26 | 2001-05-08 | Halliburton Energy Services, Inc. | Method to transmit downhole video up standard wireline cable using digital data compression techniques |
US6816082B1 (en) * | 1998-11-17 | 2004-11-09 | Schlumberger Technology Corporation | Communications system having redundant channels |
GB2361597A (en) * | 2000-04-20 | 2001-10-24 | Abb Offshore Systems Ltd | Underwater optical fibre communication system |
US6374913B1 (en) * | 2000-05-18 | 2002-04-23 | Halliburton Energy Services, Inc. | Sensor array suitable for long term placement inside wellbore casing |
GB2396086C (en) | 2002-12-03 | 2007-11-02 | Vetco Gray Controls Ltd | A system for use in controlling a hydrocarbon production well |
US7261162B2 (en) * | 2003-06-25 | 2007-08-28 | Schlumberger Technology Corporation | Subsea communications system |
US7139218B2 (en) * | 2003-08-13 | 2006-11-21 | Intelliserv, Inc. | Distributed downhole drilling network |
-
2002
- 2002-12-03 GB GB0228203A patent/GB2396086C/en not_active Expired - Lifetime
-
2003
- 2003-11-27 DE DE10355988.4A patent/DE10355988B4/en not_active Expired - Lifetime
- 2003-11-28 BR BRPI0305394A patent/BRPI0305394B1/en not_active IP Right Cessation
- 2003-12-01 NO NO20035351A patent/NO324061B1/en active IP Right Review Request
- 2003-12-03 US US10/726,674 patent/US7148812B2/en not_active Ceased
-
2007
- 2007-01-05 US US11/650,160 patent/US20070107903A1/en not_active Abandoned
- 2007-02-22 NO NO20071059A patent/NO335915B1/en active IP Right Review Request
- 2007-05-24 US US11/805,864 patent/USRE41173E1/en active Active
-
2014
- 2014-12-16 NO NO20141513A patent/NO344705B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701756A (en) * | 1985-09-10 | 1987-10-20 | Burr William E | Fault-tolerant hierarchical network |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100202463A1 (en) * | 2006-08-17 | 2010-08-12 | Gerald Ian Robinson | Communications system for an underwater fluid extraction facility |
US8208478B2 (en) * | 2006-08-17 | 2012-06-26 | Vetco Gray Controls Limited | Communications system for an underwater fluid extraction facility |
US20090277644A1 (en) * | 2008-05-09 | 2009-11-12 | Mcstay Daniel | Method and apparatus for christmas tree condition monitoring |
US7967066B2 (en) * | 2008-05-09 | 2011-06-28 | Fmc Technologies, Inc. | Method and apparatus for Christmas tree condition monitoring |
US20100051286A1 (en) * | 2008-09-04 | 2010-03-04 | Mcstay Daniel | Optical sensing system for wellhead equipment |
US7845404B2 (en) | 2008-09-04 | 2010-12-07 | Fmc Technologies, Inc. | Optical sensing system for wellhead equipment |
US20100252269A1 (en) * | 2009-04-01 | 2010-10-07 | Baker Hughes Incorporated | System and method for monitoring subsea wells |
US20120175122A1 (en) * | 2010-02-01 | 2012-07-12 | Steven Simpson | Electronics module |
US8725302B2 (en) * | 2011-10-21 | 2014-05-13 | Schlumberger Technology Corporation | Control systems and methods for subsea activities |
US9832549B2 (en) | 2016-03-14 | 2017-11-28 | Teledyne Instruments, Inc. | System, method, and apparatus for subsea optical to electrical distribution |
US20210384988A1 (en) * | 2018-12-03 | 2021-12-09 | Ge Oil & Gas Uk Limited | Subsea communication network and communication methodology |
US12034489B2 (en) * | 2018-12-03 | 2024-07-09 | Baker Hughes Energy Technology UK Limited | Subsea communication network and communication methodology |
Also Published As
Publication number | Publication date |
---|---|
NO20035351D0 (en) | 2003-12-01 |
NO20035351L (en) | 2004-06-04 |
GB2396086A (en) | 2004-06-09 |
GB2396086B (en) | 2005-11-23 |
USRE41173E1 (en) | 2010-03-30 |
DE10355988A1 (en) | 2004-07-15 |
BRPI0305394B1 (en) | 2016-06-14 |
NO344705B1 (en) | 2020-03-16 |
GB0228203D0 (en) | 2003-01-08 |
DE10355988B4 (en) | 2014-12-11 |
BR0305394A (en) | 2004-09-21 |
US20040159430A1 (en) | 2004-08-19 |
GB2396086C (en) | 2007-11-02 |
NO20141513A1 (en) | 2004-06-04 |
NO20071059L (en) | 2004-06-04 |
NO324061B1 (en) | 2007-08-06 |
US7148812B2 (en) | 2006-12-12 |
NO335915B1 (en) | 2015-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41173E1 (en) | System for use in controlling a hydrocarbon production well | |
US8208478B2 (en) | Communications system for an underwater fluid extraction facility | |
EP1092078A1 (en) | Flying lead workover interface system | |
GB2477331A (en) | Electronics module for underwater well installation having electronic components, relating to diverse systems. | |
US20140305656A1 (en) | Subsea control modules and methods related thereto | |
CN105981000A (en) | Interface circuit having a data bus interface | |
US20160006599A1 (en) | Data combiner and splitter | |
US20170351036A1 (en) | Wet mate fiber optic connector | |
JP2000041024A (en) | Wavelength multiplex transmission equipment having wavelength identifying function, method and system for the same | |
CN212989927U (en) | Underwater control module integrating power carrier and DSL dual communication modes | |
JPH04291527A (en) | Data link system | |
TWI599198B (en) | Monitoring and control system | |
EP0347069A3 (en) | Data path protection | |
WO1998041730A1 (en) | Arrangement in a subsea production control system | |
CN207234998U (en) | Ship ground optical transmitter and receiver on fibre-optic transmission system (FOTS) ship | |
Mackey | USING MANCHESTER ENCODED DATA TRANSMISSION FOR ROV TELEMETRY | |
Chaffey | Ship to ROV telemetry for Tiburon | |
JPH0340614A (en) | 2-way optical communication system | |
JPS62111541A (en) | Pcm intermediate repeater | |
JPH05260067A (en) | Point/multi point transmitter | |
KR20080075934A (en) | Building management system having bacnet gateway | |
JPH043546A (en) | Digital data link connection system | |
JPH0454096A (en) | System for clock maintenance information distribution and alarm information collection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |