US20070107903A1 - System for use in controlling a hydrocarbon production well - Google Patents

System for use in controlling a hydrocarbon production well Download PDF

Info

Publication number
US20070107903A1
US20070107903A1 US11/650,160 US65016007A US2007107903A1 US 20070107903 A1 US20070107903 A1 US 20070107903A1 US 65016007 A US65016007 A US 65016007A US 2007107903 A1 US2007107903 A1 US 2007107903A1
Authority
US
United States
Prior art keywords
subsea
router
communicating device
processing core
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/650,160
Inventor
Christopher Baggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes International Treasury Services Ltd
Original Assignee
Vetco Gray Controls Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9948997&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070107903(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vetco Gray Controls Ltd filed Critical Vetco Gray Controls Ltd
Priority to US11/650,160 priority Critical patent/US20070107903A1/en
Publication of US20070107903A1 publication Critical patent/US20070107903A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/0355Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads

Definitions

  • the present invention relates to a system for use in controlling a hydrocarbon production well.
  • control centre In the subsea fluid extraction industry, communication is required between a control centre and well heads located on the seabed. Traditionally, the control centre is located on a platform or vessel in relatively close proximity to the well complex. In some cases, the control centre is located on land, where the distance from the control centre to the well heads can be much greater and could be typically 200 km.
  • High capacity communication systems typically involving optical fibres, allow the possibility of much higher data rates between the subsea and surface facilities, which further enables methods of connecting subsea data sources (e.g. sensors), particularly those generating large quantities of data such as microseismic sensors and TV cameras.
  • a conventional approach is to use a standard subsea bus at the well head ends of a data transmission system to connect such various subsea data sources.
  • this data is time multiplexed on the bus, the data rates are also somewhat limited such that some desirable, high bandwidth, data transmissions, such as digital video signals, cannot be economically transmitted.
  • FIG. 1 shows a conventional system for the communication of data between subsea well trees and a surface facility.
  • a subsea electronics module (SEM) 1 including a SEM processor 2 , which handles at a port 3 data from conventional tree sensors such as pressure and temperature and at a port 4 data for control of devices such as valves and fluid control chokes, there being a port 5 for a standard interface for data from other subsea data sources.
  • SEM subsea electronics module
  • the SEM processor 2 communicates bi-directionally with a surface facility computer system 6 (on shore or on a platform for example) via a modem 7 housed in the SEM 1 , a communication link 8 and a modem 9 housed in a surface modem unit (SMU) 10 at the surface facility.
  • the communication link 8 enables communication with the SEMs of other well trees and at some or all of the well trees there is system duplication to improve system availability—thus in FIG. 1 there are shown two SEMs (SEM A 1 and SEM B 1 ) for a particular well tree, SEM A 2 and SEM B 2 representing duplicate SEMs for another tree.
  • a fibre optic link is used as link 8 to transmit data between the or each SEM at a well tree to the surface computer 6 .
  • the data from other sources at port 5 needs to be adapted to the protocol, data rates and other standards used for the communication of control information and sensor information.
  • a system for use in controlling a hydrocarbon production well comprising computing means at a control location remote from a well tree of the well.
  • the system also has a well tree means has a processing means for applying control signals to and receiving signals from devices of the well tree.
  • the well tree means includes means for receiving further signals associated with the operation of the well.
  • a bi-directional communication link exists between said computing means and said well tree means.
  • the well tree means further comprises a communications router coupled with said processing means and said receiving means, for multiplexing said signals from devices at the well head and said further signals on to said bi-directional link.
  • the bi-directional link could comprise a fibre optics link.
  • the signals from devices at the well head and further signals could have different protocols and different data speeds.
  • the further signals could include video signals.
  • the present invention also comprises a combination of a system according to the invention providing a first communication channel, and a further such system, providing a second communication channel for use if the first channel fails.
  • FIG. 1 is a diagram of a prior art form of system for use in controlling a hydrocarbon production well
  • FIG. 2 is a diagram of an example of a system according to the present invention.
  • FIG. 3 is a diagram of another example of the present invention.
  • FIG. 4 is a diagram showing part of an alternative to what is shown in FIG. 3 .
  • FIG. 2 illustrates a system according to an example of the invention, showing linking from a surface computer 6 to a well tree.
  • the surface computer 6 at the control centre sends and receives data to and from a surface modem unit (SMU) 10 which houses a modem 9 .
  • SMU surface modem unit
  • This modem 9 transmits and receives data via a communication link 8 .
  • the other end of the communication link 8 connects to the well head tree which carries a subsea electronics module (SEM) 11 which houses a modem 7 which is a similar device to the modem 9 and performs the opposite function.
  • SEM subsea electronics module
  • the modem 7 has an electrical output/input, which is connected to a communications processor 12 which functions as a communications router (or intelligent multiplexer), also housed in the SEM 11 .
  • the communications router 12 has a multiplicity of inputs/outputs, there being an interface with a conventional SEM processor 2 (having sensor, control and standard interface ports 3 , 4 and 5 ) and also interfaces 13 which interface with other ‘private’ standard interfaces known as virtual links.
  • the interfaces are effectively ‘star connected’ rather than the conventional ‘highway connected’ and virtually any protocol and data rate can be handled, limited only by the router 12 , speed and the final limitation of the bandwidth of the communication link 8 and its modems 7 and 9 .
  • the link 8 could be about 200 km in length, data being transmitted via it at typically 10 Mbits/sec.
  • the software in the router 12 is flexible and handles, by multiplexing, the data and protocol of the ‘private’ interfaces, as required for the system configuration, to permit high speed communication to and from the modem 7 , thereby providing virtual links between the surface and subsea equipment.
  • the SEM processor 2 handles the conventional control of subsea devices, such as valves and chokes, to control the fluid extraction process. It also handles local logging and processing of data from the tree sensors, its main functions being to acquire data from the sensors and assemble it into a format that can be transmitted to the surface computer and to issue control signals to valves and fluid control chokes for example.
  • IWS intelligent well system interface
  • FIG. 2 Typical of the above-mentioned private, standard interfaces are the intelligent well system interface, (IWS) (an Ethernet interface), and others as shown in FIG. 2 which are well known in the industry, as well as interfaces to devices such as level sensors, microseismic sensors and fluid quality sensors.
  • IWS intelligent well system interface
  • FIG. 2 Due to the fact that the system configuration allows high bandwidth utilisation of the communication link 8 , typically a fibre optic link, it is possible to transmit compressed video. This allows the fitting of cameras to the subsea well head, to permit visual inspection of the tree without the need for expensive diving operations or the use of a remote operation vehicle (ROV).
  • ROV remote operation vehicle
  • FIG. 3 shows a typical full system implementation to handle communication between a control centre and a subsea well complex, and providing high availability through dual duplex redundancy.
  • the figure shows a high end application with a large amount of redundancy and long distance offsets with a subsea central distribution system arrangement that sits between a surface computer and well head control modules.
  • a and B Two separate communication channels are provided, A and B, to provide 100% redundancy.
  • Describing channel A a surface computer 6 at the control centre (on shore or on a platform for example) feeds and receives data to and from an SMU 14 which houses two bi-directional optical modems 15 and 16 .
  • the optical modems 15 and 16 interface with respective ones of a pair of optical fibres 17 and 18 , which terminate near to a well head complex at a communication electronics module (CEM) 19 typically located on the seabed.
  • CEM communication electronics module
  • the communication link provided by the optical fibres could be about 200 km, data being transmitted via them at typically 10 Mbits/sec.
  • the CEM 19 enables interfacing of many wells in the locality with the optical fibres 17 and 18 .
  • the use of two optical fibres provides further redundancy and thus greater communications reliability.
  • the CEM 19 houses another two bi-directional optical modems 20 and 21 coupled with respective ones of fibres 17 and 18 and which output electrical signals to a communications router 22 .
  • the communications router 22 interfaces with electrical modems, of which three, 23 , 24 and 25 are shown, by way of example, each of which interfaces with a modem of a SEM at a well tree.
  • the modem 23 interfaces with a modem 7 of a SEM 1 via a communication link 26 and with the modems at other trees within the group via a communication link 27 and modems 24 and 25 interface with modems at other groups of trees via communication links 28 and 29 .
  • FIG. 3 also shows a duplicated identical channel B for use instead of channel A for further reliability.
  • rudimentary communication is provided by a link 30 from the computer 6 of each channel, a low speed communications modem (LSCM) 31 , a back-up communication link 32 (typically operating at 1.2 kbits/sec) and a link 33 for each channel, each link being coupled by a LSCM 34 to the communications router 22 of the respective channel.
  • LSCM low speed communications modem
  • each of modems 23 , 24 , 25 , etc. and each of the corresponding modems at the well tree SEM's may, alternatively, be of the form that communicates via the electrical power supply to the tree, i.e. a comms-on-power (COP) type of modem.
  • COP comms-on-power
  • FIG. 4 shows part of an alternative to the system of FIG. 3 , items which correspond with items in FIG. 3 having the same reference numerals as in FIG. 3 .
  • each channel has its own back-up communication link 35 (typically operating at 1.2 kbits/sec), being a link which provides subsea power from a 3-phase, 3 kv supply and each channel having a respective LSCM 36 instead of there being a single LSCM 31 as in FIG. 3 .
  • modems 23 , 24 and 25 are COP modems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Selective Calling Equipment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A system for use in controlling a hydrocarbon production well has a: computer at a control location remote from a well tree of the well. A processor at the well tree applies control signals to and receives signals from devices of the well tree. The processor also receives further signals associated with the operation of the well. A bi-directional communication link extends between the remote computer and the well tree processor. The well tree further has a communications router coupled with the processor and receiver, for multiplexing the signals from devices at the well head and the further signals on to the bi-directional link.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of United Kingdom Patent Application No. 0228203.6, filed on Dec. 3, 2002, which hereby is incorporated by reference in its entirety.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to a system for use in controlling a hydrocarbon production well.
  • BACKGROUND OF THE INVENTION
  • In the subsea fluid extraction industry, communication is required between a control centre and well heads located on the seabed. Traditionally, the control centre is located on a platform or vessel in relatively close proximity to the well complex. In some cases, the control centre is located on land, where the distance from the control centre to the well heads can be much greater and could be typically 200 km. High capacity communication systems, typically involving optical fibres, allow the possibility of much higher data rates between the subsea and surface facilities, which further enables methods of connecting subsea data sources (e.g. sensors), particularly those generating large quantities of data such as microseismic sensors and TV cameras.
  • A conventional approach is to use a standard subsea bus at the well head ends of a data transmission system to connect such various subsea data sources. This means that any other party providing equipment to the system has to interface with the bus and conform to its protocol, data rates and bus standards. Since different manufacturers have standard equipment with interfaces to a multiplicity of protocols and data rates, substantial costs are involved in adapting these interfaces to suit the standard bus. Furthermore, since this data is time multiplexed on the bus, the data rates are also somewhat limited such that some desirable, high bandwidth, data transmissions, such as digital video signals, cannot be economically transmitted.
  • FIG. 1 shows a conventional system for the communication of data between subsea well trees and a surface facility. Mounted on each of a number of subsea well trees (not shown) is a subsea electronics module (SEM) 1 including a SEM processor 2, which handles at a port 3 data from conventional tree sensors such as pressure and temperature and at a port 4 data for control of devices such as valves and fluid control chokes, there being a port 5 for a standard interface for data from other subsea data sources. The SEM processor 2 communicates bi-directionally with a surface facility computer system 6 (on shore or on a platform for example) via a modem 7 housed in the SEM 1, a communication link 8 and a modem 9 housed in a surface modem unit (SMU) 10 at the surface facility. The communication link 8 enables communication with the SEMs of other well trees and at some or all of the well trees there is system duplication to improve system availability—thus in FIG. 1 there are shown two SEMs (SEM A1 and SEM B1) for a particular well tree, SEM A2 and SEM B2 representing duplicate SEMs for another tree.
  • When the surface computer 6 is located at a considerable distance, such as, typically, 200 km from the well complex, a fibre optic link is used as link 8 to transmit data between the or each SEM at a well tree to the surface computer 6. Nevertheless, the data from other sources at port 5 needs to be adapted to the protocol, data rates and other standards used for the communication of control information and sensor information.
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided a system for use in controlling a hydrocarbon production well, comprising computing means at a control location remote from a well tree of the well. The system also has a well tree means has a processing means for applying control signals to and receiving signals from devices of the well tree. The well tree means includes means for receiving further signals associated with the operation of the well. A bi-directional communication link exists between said computing means and said well tree means.
  • The well tree means further comprises a communications router coupled with said processing means and said receiving means, for multiplexing said signals from devices at the well head and said further signals on to said bi-directional link. The bi-directional link could comprise a fibre optics link.
  • There could be a plurality of such well tree means at respective well trees, there being a distribution means between said bi-directional link and the well tree means for distributing control signals to said well tree means and receiving multiplexed signals from said well tree means.
  • The signals from devices at the well head and further signals could have different protocols and different data speeds. The further signals could include video signals.
  • The present invention also comprises a combination of a system according to the invention providing a first communication channel, and a further such system, providing a second communication channel for use if the first channel fails.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 is a diagram of a prior art form of system for use in controlling a hydrocarbon production well;
  • FIG. 2 is a diagram of an example of a system according to the present invention;
  • FIG. 3 is a diagram of another example of the present invention; and
  • FIG. 4 is a diagram showing part of an alternative to what is shown in FIG. 3.
  • DETAIL DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 2 (in which items which correspond with those in FIG. 1 have the same reference numerals as in FIG. 1) illustrates a system according to an example of the invention, showing linking from a surface computer 6 to a well tree. The surface computer 6 at the control centre (on shore or on a platform for example) sends and receives data to and from a surface modem unit (SMU) 10 which houses a modem 9. This modem 9 transmits and receives data via a communication link 8. The other end of the communication link 8 connects to the well head tree which carries a subsea electronics module (SEM) 11 which houses a modem 7 which is a similar device to the modem 9 and performs the opposite function. The modem 7 has an electrical output/input, which is connected to a communications processor 12 which functions as a communications router (or intelligent multiplexer), also housed in the SEM 11. The communications router 12, has a multiplicity of inputs/outputs, there being an interface with a conventional SEM processor 2 (having sensor, control and standard interface ports 3, 4 and 5) and also interfaces 13 which interface with other ‘private’ standard interfaces known as virtual links. The interfaces are effectively ‘star connected’ rather than the conventional ‘highway connected’ and virtually any protocol and data rate can be handled, limited only by the router 12, speed and the final limitation of the bandwidth of the communication link 8 and its modems 7 and 9. Typically, the link 8 could be about 200 km in length, data being transmitted via it at typically 10 Mbits/sec. The software in the router 12 is flexible and handles, by multiplexing, the data and protocol of the ‘private’ interfaces, as required for the system configuration, to permit high speed communication to and from the modem 7, thereby providing virtual links between the surface and subsea equipment. The SEM processor 2 handles the conventional control of subsea devices, such as valves and chokes, to control the fluid extraction process. It also handles local logging and processing of data from the tree sensors, its main functions being to acquire data from the sensors and assemble it into a format that can be transmitted to the surface computer and to issue control signals to valves and fluid control chokes for example.
  • Typical of the above-mentioned private, standard interfaces are the intelligent well system interface, (IWS) (an Ethernet interface), and others as shown in FIG. 2 which are well known in the industry, as well as interfaces to devices such as level sensors, microseismic sensors and fluid quality sensors. Due to the fact that the system configuration allows high bandwidth utilisation of the communication link 8, typically a fibre optic link, it is possible to transmit compressed video. This allows the fitting of cameras to the subsea well head, to permit visual inspection of the tree without the need for expensive diving operations or the use of a remote operation vehicle (ROV). This will have major benefits to the well operator who, in the past, has had to rely on sensor information to prompt the deployment of divers or a ROV to effect a visual inspection, but can now have a continuous visual inspection facility.
  • FIG. 3 (in which items which correspond with those in FIG. 2 have the same reference numerals as in FIG. 2) shows a typical full system implementation to handle communication between a control centre and a subsea well complex, and providing high availability through dual duplex redundancy. The figure shows a high end application with a large amount of redundancy and long distance offsets with a subsea central distribution system arrangement that sits between a surface computer and well head control modules.
  • Two separate communication channels are provided, A and B, to provide 100% redundancy. Describing channel A, a surface computer 6 at the control centre (on shore or on a platform for example) feeds and receives data to and from an SMU 14 which houses two bi-directional optical modems 15 and 16.
  • The optical modems 15 and 16 interface with respective ones of a pair of optical fibres 17 and 18, which terminate near to a well head complex at a communication electronics module (CEM) 19 typically located on the seabed. Typically, the communication link provided by the optical fibres could be about 200 km, data being transmitted via them at typically 10 Mbits/sec. The CEM 19 enables interfacing of many wells in the locality with the optical fibres 17 and 18. The use of two optical fibres provides further redundancy and thus greater communications reliability. The CEM 19 houses another two bi-directional optical modems 20 and 21 coupled with respective ones of fibres 17 and 18 and which output electrical signals to a communications router 22. The communications router 22 interfaces with electrical modems, of which three, 23, 24 and 25 are shown, by way of example, each of which interfaces with a modem of a SEM at a well tree. Thus, for example, the modem 23 interfaces with a modem 7 of a SEM 1 via a communication link 26 and with the modems at other trees within the group via a communication link 27 and modems 24 and 25 interface with modems at other groups of trees via communication links 28 and 29.
  • FIG. 3 also shows a duplicated identical channel B for use instead of channel A for further reliability. In the event of failure of both channels, rudimentary communication is provided by a link 30 from the computer 6 of each channel, a low speed communications modem (LSCM) 31, a back-up communication link 32 (typically operating at 1.2 kbits/sec) and a link 33 for each channel, each link being coupled by a LSCM 34 to the communications router 22 of the respective channel.
  • It should be noted that each of modems 23, 24, 25, etc. and each of the corresponding modems at the well tree SEM's, may, alternatively, be of the form that communicates via the electrical power supply to the tree, i.e. a comms-on-power (COP) type of modem.
  • FIG. 4 shows part of an alternative to the system of FIG. 3, items which correspond with items in FIG. 3 having the same reference numerals as in FIG. 3. Instead of a single back-up communication link, each channel has its own back-up communication link 35 (typically operating at 1.2 kbits/sec), being a link which provides subsea power from a 3-phase, 3 kv supply and each channel having a respective LSCM 36 instead of there being a single LSCM 31 as in FIG. 3. In FIG. 4, modems 23, 24 and 25 are COP modems.
  • While the invention has been shown in only a few of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention.

Claims (21)

1-8. (canceled)
9. A system for remotely controlling subsea equipment, comprising:
a subsea well complex;
a surface computer facility;
at least one communicating device at the well complex;
a modem at the well complex for communicating with the computer facility;
a communications router at the well complex coupled to the modem;
a communications link extending between the computer facility and the modem;
a processing core at the well complex coupled to the communications router for performing control and monitoring functions at the well complex;
the communicating device being coupled directly to the router and by-passing the processing core for communicating with the computer facility.
10. The system according to claim 9, wherein the communicating device comprises a sensor.
11. The system according to claim 10, wherein the sensor comprises a video camera.
12. The system according to claim 9, further comprising a sensor coupled to the processing core for performing the monitoring function.
13. The system according to claim 9, wherein the communicating device communicates with the router pursuant to a selected data protocol, and the processing core communicates with the router pursuant to a different data protocol.
14. The system according to claim 9, wherein the at least one communicating device comprises first and second communicating devices and wherein the first communicating device communicates with the router pursuant to a selected data protocol, and the second communicating device communicates with the router pursuant to a different data protocol.
15. The system according to claim 9, wherein the communication link comprises an optical fiber.
16. A subsea electronics module for removing controlling subsea equipment, comprising:
at least one subsea communicating device;
a subsea modem;
a subsea communications router coupled to the modem;
a subsea processing core coupled to the communications router for performing subsea control and monitoring functions;
the communicating device being coupled directly to the router and by-passing the processing core.
17. The system according to claim 16, wherein the communicating device comprises a sensor.
18. The system according to claim 17, wherein the sensor comprises a video camera.
19. The system according to claim 16, further comprising a sensor coupled to the processing core for performing the monitoring function.
20. The system according to claim 16, wherein the communicating device communicates with the router pursuant to a selected data protocol, and the processing core communicates with the router pursuant to a different data protocol.
21. The system according to claim 16, wherein the at least one communicating device comprises first and second communicating devices and wherein the first communicating device communicates with the router pursuant to a selected data protocol, and the second communicating device communicates with the router pursuant to a different data protocol.
22. The system according to claim 16, further comprising an optical fiber link connected between the subsea modem and a surface computer facility.
23. A method for remotely controlling subsea equipment at a subsea well complex from a surface computer facility, the method comprising:
(a) providing a subsea processing core;
(b) providing a subsea communicating device;
(c) monitoring and controlling subsea equipment with the processing core and routing a signal in response thereto from the processing core to the surface computer facility; and
(d) routing a signal from the communicating device directly to the surface computer facility and by-passing the subsea processing core.
24. The method according to claim 23, wherein step (d) comprises routing a signal corresponding to a sensed parameter.
25. The method according to claim 23, wherein step (d) comprises routing a video signal.
26. The method according to claim 23, wherein steps (c) and (d) are performed using different protocols.
27. The method according to claim 23, further comprising sensing a subsea characteristic and providing a signal to the processing core.
28. The method according to claim 23, wherein steps (c) and (d) are communicated to the surface computer facility via an optical fiber.
US11/650,160 2002-12-03 2007-01-05 System for use in controlling a hydrocarbon production well Abandoned US20070107903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/650,160 US20070107903A1 (en) 2002-12-03 2007-01-05 System for use in controlling a hydrocarbon production well

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0228203.6 2002-12-03
GB0228203A GB2396086C (en) 2002-12-03 2002-12-03 A system for use in controlling a hydrocarbon production well
US10/726,674 US7148812B2 (en) 2002-12-03 2003-12-03 System for use in controlling a hydrocarbon production well
US11/650,160 US20070107903A1 (en) 2002-12-03 2007-01-05 System for use in controlling a hydrocarbon production well

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/726,674 Continuation US7148812B2 (en) 2002-12-03 2003-12-03 System for use in controlling a hydrocarbon production well

Publications (1)

Publication Number Publication Date
US20070107903A1 true US20070107903A1 (en) 2007-05-17

Family

ID=9948997

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/726,674 Ceased US7148812B2 (en) 2002-12-03 2003-12-03 System for use in controlling a hydrocarbon production well
US11/650,160 Abandoned US20070107903A1 (en) 2002-12-03 2007-01-05 System for use in controlling a hydrocarbon production well
US11/805,864 Active 2024-10-31 USRE41173E1 (en) 2002-12-03 2007-05-24 System for use in controlling a hydrocarbon production well

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/726,674 Ceased US7148812B2 (en) 2002-12-03 2003-12-03 System for use in controlling a hydrocarbon production well

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/805,864 Active 2024-10-31 USRE41173E1 (en) 2002-12-03 2007-05-24 System for use in controlling a hydrocarbon production well

Country Status (5)

Country Link
US (3) US7148812B2 (en)
BR (1) BRPI0305394B1 (en)
DE (1) DE10355988B4 (en)
GB (1) GB2396086C (en)
NO (3) NO324061B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277644A1 (en) * 2008-05-09 2009-11-12 Mcstay Daniel Method and apparatus for christmas tree condition monitoring
US20100051286A1 (en) * 2008-09-04 2010-03-04 Mcstay Daniel Optical sensing system for wellhead equipment
US20100202463A1 (en) * 2006-08-17 2010-08-12 Gerald Ian Robinson Communications system for an underwater fluid extraction facility
US20100252269A1 (en) * 2009-04-01 2010-10-07 Baker Hughes Incorporated System and method for monitoring subsea wells
US20120175122A1 (en) * 2010-02-01 2012-07-12 Steven Simpson Electronics module
US8725302B2 (en) * 2011-10-21 2014-05-13 Schlumberger Technology Corporation Control systems and methods for subsea activities
US9832549B2 (en) 2016-03-14 2017-11-28 Teledyne Instruments, Inc. System, method, and apparatus for subsea optical to electrical distribution
US20210384988A1 (en) * 2018-12-03 2021-12-09 Ge Oil & Gas Uk Limited Subsea communication network and communication methodology

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387977B (en) * 2002-04-17 2005-04-13 Abb Offshore Systems Ltd Control of hydrocarbon wells
GB2396086C (en) 2002-12-03 2007-11-02 Vetco Gray Controls Ltd A system for use in controlling a hydrocarbon production well
GB2401295B (en) * 2003-04-28 2005-07-13 Schlumberger Holdings Redundant systems for downhole permanent installations
US20050239798A1 (en) * 2004-04-22 2005-10-27 Boehringer Ingelheim Pharmaceuticals, Inc. Method for the treatment of premenstrual and other female sexual disorders
GB2413746B (en) 2004-05-01 2007-02-14 Abb Offshore Systems Ltd Modem
GB2417656B (en) 2004-08-24 2009-02-11 Vetco Gray Controls Ltd Communication apparatus
CN101501584B (en) * 2006-07-24 2012-06-20 西门子公司 Modem for submarine electric cable communication
US20080217022A1 (en) * 2007-03-06 2008-09-11 Schlumberger Technology Corporation Subsea communications multiplexer
US8264370B2 (en) 2007-05-30 2012-09-11 Cameron International Corporation Power and signal distribution system
GB2451258A (en) 2007-07-25 2009-01-28 Vetco Gray Controls Ltd A wireless subsea electronic control module for a well installation
US20090038804A1 (en) * 2007-08-09 2009-02-12 Going Iii Walter S Subsurface Safety Valve for Electric Subsea Tree
US8996210B2 (en) * 2008-01-17 2015-03-31 Sea-Watch Technologies, Inc. Integrated vessel monitoring and control system
GB2461856B (en) 2008-07-11 2012-12-19 Vetco Gray Controls Ltd Testing of an electronics module
GB2471496B (en) * 2009-07-01 2013-04-17 Vetco Gray Controls Ltd Subsea electronic modules
US8511389B2 (en) * 2010-10-20 2013-08-20 Vetco Gray Inc. System and method for inductive signal and power transfer from ROV to in riser tools
US8755693B2 (en) * 2011-05-16 2014-06-17 Eastern Optx, Inc. Bi-directional, compact, multi-path and free space channel replicator
EP2543811A1 (en) * 2011-07-06 2013-01-09 Vetco Gray Controls Limited Subsea electronics module
WO2014018010A1 (en) * 2012-07-24 2014-01-30 Fmc Technologies, Inc. Wireless downhole feedthrough system
US8649909B1 (en) * 2012-12-07 2014-02-11 Amplisine Labs, LLC Remote control of fluid-handling devices
US8851161B2 (en) * 2013-01-22 2014-10-07 Halliburton Energy Services, Inc. Cross-communication between electronic circuits and electrical devices in well tools
CN104121015B (en) * 2013-04-24 2016-09-21 中国石油化工股份有限公司 The method of mounting downhole logging instruments and well logging ground-based system
WO2017058832A1 (en) 2015-09-28 2017-04-06 Schlumberger Technology Corporation Burner monitoring and control systems
AU2016412713B2 (en) * 2016-06-28 2023-02-02 Schlumberger Technology B.V. Well testing systems and methods with mobile monitoring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701756A (en) * 1985-09-10 1987-10-20 Burr William E Fault-tolerant hierarchical network

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516492A (en) 1968-05-23 1970-06-23 Shell Oil Co Underwater wellhead connector
CA1170756A (en) * 1980-11-17 1984-07-10 Donald W. Harvey Remote seismic data system
US5959547A (en) * 1995-02-09 1999-09-28 Baker Hughes Incorporated Well control systems employing downhole network
US5808764A (en) * 1995-12-28 1998-09-15 Lucent Technologies, Inc. Multiple star, passive optical network based on remote interrogation of terminal equipment
AU4066197A (en) * 1996-08-12 1998-03-06 Eivind Fromyr Reservoir acquisition system with concentrator
GB9701591D0 (en) * 1997-01-27 1997-03-19 British Telecomm Communications system
US6185203B1 (en) * 1997-02-18 2001-02-06 Vixel Corporation Fibre channel switching fabric
JP3016477B2 (en) * 1997-11-17 2000-03-06 日本電気株式会社 Monitoring information transmission / reception device in submarine cable system
GB2332220B (en) * 1997-12-10 2000-03-15 Abb Seatec Ltd An underwater hydrocarbon production system
US6229453B1 (en) * 1998-01-26 2001-05-08 Halliburton Energy Services, Inc. Method to transmit downhole video up standard wireline cable using digital data compression techniques
US6816082B1 (en) * 1998-11-17 2004-11-09 Schlumberger Technology Corporation Communications system having redundant channels
GB2361597A (en) * 2000-04-20 2001-10-24 Abb Offshore Systems Ltd Underwater optical fibre communication system
US6374913B1 (en) * 2000-05-18 2002-04-23 Halliburton Energy Services, Inc. Sensor array suitable for long term placement inside wellbore casing
GB2396086C (en) 2002-12-03 2007-11-02 Vetco Gray Controls Ltd A system for use in controlling a hydrocarbon production well
US7261162B2 (en) * 2003-06-25 2007-08-28 Schlumberger Technology Corporation Subsea communications system
US7139218B2 (en) * 2003-08-13 2006-11-21 Intelliserv, Inc. Distributed downhole drilling network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701756A (en) * 1985-09-10 1987-10-20 Burr William E Fault-tolerant hierarchical network

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202463A1 (en) * 2006-08-17 2010-08-12 Gerald Ian Robinson Communications system for an underwater fluid extraction facility
US8208478B2 (en) * 2006-08-17 2012-06-26 Vetco Gray Controls Limited Communications system for an underwater fluid extraction facility
US20090277644A1 (en) * 2008-05-09 2009-11-12 Mcstay Daniel Method and apparatus for christmas tree condition monitoring
US7967066B2 (en) * 2008-05-09 2011-06-28 Fmc Technologies, Inc. Method and apparatus for Christmas tree condition monitoring
US20100051286A1 (en) * 2008-09-04 2010-03-04 Mcstay Daniel Optical sensing system for wellhead equipment
US7845404B2 (en) 2008-09-04 2010-12-07 Fmc Technologies, Inc. Optical sensing system for wellhead equipment
US20100252269A1 (en) * 2009-04-01 2010-10-07 Baker Hughes Incorporated System and method for monitoring subsea wells
US20120175122A1 (en) * 2010-02-01 2012-07-12 Steven Simpson Electronics module
US8725302B2 (en) * 2011-10-21 2014-05-13 Schlumberger Technology Corporation Control systems and methods for subsea activities
US9832549B2 (en) 2016-03-14 2017-11-28 Teledyne Instruments, Inc. System, method, and apparatus for subsea optical to electrical distribution
US20210384988A1 (en) * 2018-12-03 2021-12-09 Ge Oil & Gas Uk Limited Subsea communication network and communication methodology
US12034489B2 (en) * 2018-12-03 2024-07-09 Baker Hughes Energy Technology UK Limited Subsea communication network and communication methodology

Also Published As

Publication number Publication date
NO20035351D0 (en) 2003-12-01
NO20035351L (en) 2004-06-04
GB2396086A (en) 2004-06-09
GB2396086B (en) 2005-11-23
USRE41173E1 (en) 2010-03-30
DE10355988A1 (en) 2004-07-15
BRPI0305394B1 (en) 2016-06-14
NO344705B1 (en) 2020-03-16
GB0228203D0 (en) 2003-01-08
DE10355988B4 (en) 2014-12-11
BR0305394A (en) 2004-09-21
US20040159430A1 (en) 2004-08-19
GB2396086C (en) 2007-11-02
NO20141513A1 (en) 2004-06-04
NO20071059L (en) 2004-06-04
NO324061B1 (en) 2007-08-06
US7148812B2 (en) 2006-12-12
NO335915B1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
USRE41173E1 (en) System for use in controlling a hydrocarbon production well
US8208478B2 (en) Communications system for an underwater fluid extraction facility
EP1092078A1 (en) Flying lead workover interface system
GB2477331A (en) Electronics module for underwater well installation having electronic components, relating to diverse systems.
US20140305656A1 (en) Subsea control modules and methods related thereto
CN105981000A (en) Interface circuit having a data bus interface
US20160006599A1 (en) Data combiner and splitter
US20170351036A1 (en) Wet mate fiber optic connector
JP2000041024A (en) Wavelength multiplex transmission equipment having wavelength identifying function, method and system for the same
CN212989927U (en) Underwater control module integrating power carrier and DSL dual communication modes
JPH04291527A (en) Data link system
TWI599198B (en) Monitoring and control system
EP0347069A3 (en) Data path protection
WO1998041730A1 (en) Arrangement in a subsea production control system
CN207234998U (en) Ship ground optical transmitter and receiver on fibre-optic transmission system (FOTS) ship
Mackey USING MANCHESTER ENCODED DATA TRANSMISSION FOR ROV TELEMETRY
Chaffey Ship to ROV telemetry for Tiburon
JPH0340614A (en) 2-way optical communication system
JPS62111541A (en) Pcm intermediate repeater
JPH05260067A (en) Point/multi point transmitter
KR20080075934A (en) Building management system having bacnet gateway
JPH043546A (en) Digital data link connection system
JPH0454096A (en) System for clock maintenance information distribution and alarm information collection

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION