US20070087617A1 - Gearwheel and method for manufacturing a gearwheel - Google Patents
Gearwheel and method for manufacturing a gearwheel Download PDFInfo
- Publication number
- US20070087617A1 US20070087617A1 US11/582,555 US58255506A US2007087617A1 US 20070087617 A1 US20070087617 A1 US 20070087617A1 US 58255506 A US58255506 A US 58255506A US 2007087617 A1 US2007087617 A1 US 2007087617A1
- Authority
- US
- United States
- Prior art keywords
- insert
- gearwheel
- external part
- connecting part
- external
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
- F16H2055/065—Moulded gears, e.g. inserts therefor
Definitions
- the invention concerns a gearwheel with the generic characteristics of claim 1 and a method for manufacturing a gearwheel with the generic characteristics of claim 6 .
- EPAS Electric Power Assisted Steering
- gearwheels are of the prior art.
- Such gearwheels consist of a molded polyamide ring that is bonded to a large metal hub.
- a gear rim with machine-milled teeth is then formed on the outside of the molded polyamide ring.
- gearwheels in which a large steel hub is surrounded by injection molding are of the prior art.
- a large steel hub or metal hub refers to a hub that is larger than half of the diameter of the gearwheel formed in such a manner.
- gearwheels with an external part having an actual gear rim on the outer surface, and with an insert that is formed in particular as a large metal hub are of the prior art.
- the connection is made either by these two components mechanically engaging with each another or by means of a connecting part in the manner of an intermediate ring placed between them, which is inserted between them to form a form-fitting connection between the external part and the insert.
- Gear tooth structures located on the exterior and interior sides of the ring-shaped connecting part serve to create the form-fitting connection, since they are shaped so as to attach to corresponding opposing structures on the interior side of the external part or on the exterior side of the insert.
- the connecting part is made of plastic, albeit relatively rigid plastic because of the required stiffness, such geared structures must be very small in the case of a snap-fastened connection in order that the components can be inserted into one another.
- the injection-molded plastic for the gearing formed on the exterior of the external part is hindered in its ability to shrink freely. This places the plastic ring under permanent tensile stress.
- a large insert [used] as an insert part also causes greatly reduced shrinkage stress in such a case. Shrinkage stresses are tensile stresses and increase the effective tooth root stress of the torque transfer, thus reducing tooth flank strength.
- a small insert means that a greater proportion of plastic is required.
- Non-reinforced plastic has very temperature-dependent mechanical properties, however. A higher proportion of plastic thus means that dimensions change greatly when the ambient temperature changes.
- a high proportion of plastic also means highly unreliable deformation at greater driving torque, which affects the external gear rim.
- a small metal hub as an insert means poor torque transfer between the metal hub and an external plastic gear rim.
- the objective of the invention is to provide a gearwheel with a simple structure whose individual components are also well attached. Accordingly, a method for manufacturing a gearwheel shall also be proposed that permits the production of such a gearwheel.
- a gearwheel with an external part, an insert, and a connecting part creating a form-fitting connection between the external part and the insert is preferred, wherein at least one connecting part is made from a material that is molded between the external part and the insert.
- connecting part permits counter-gripping structures, which offer particularly firm engagement to oppose rotational forces and forces parallel to the axis due to a deep penetration into the external part and the insert. This permits counter-gripping structures that penetrate deeper into the external part and the insert than is possible with conventional individual components, which are inserted into one another based upon their specific manufacture.
- the preferred embodiment is a design in which the insert is made of metal and the external part is made of plastic, and the connecting part is made of an injection molding material containing plastic.
- the connecting part can be made from a harder material and/or more torque-proof material than a material of the external part; this permits a more stable connection between the two circumjacent parts.
- the connecting part preferably with gear tooth structures that prevent pulling in the rotational direction and/or in a direction parallel to the axis, engages with the insert and/or the external part, which creates good rotational stability and/or stability against shifting parallel to the axis for the insert and the external part relative to one another.
- the connecting part is preferably molded with a cone gate between the external part and the insert. This prevents transitional areas [from forming] between plastic quantities that flow together in a rotational and/or radial direction in a typical injection molding procedure. The result is increased stability, especially in the rotational and/or radial direction.
- the external part is preferably provided with external teeth and the insert is provided with external gear tooth structures.
- the connecting part is preferably molded from an axially parallel direction particularly as a cone mold between the external part and the insert. A lateral cone gate is then simply removed.
- the connecting part is preferably molded under pressure that exerts outward force on the external part, so that after the molding material cools, the external part is under a desired, adjustable level of stress, particularly stress-free.
- the connecting part is preferably molded from a reinforced plastic.
- a steel hub In contrast to a traditional solution method for creating a two-component gearwheel, in which a steel hub is placed into a tool, a wheel body is injection molded around it, and then a gear rim is injection molded, which results in highly restricted shrinkage stresses on the gear rim, [here] a steel hub especially advantageously [used] as the insert and a separately injection molded, particularly thinner gear rim, preferably made from non-reinforced plastic, are placed into an injection molding tool, whereupon the intervening space is injected with reinforced plastic.
- a special advantage is that instead of a known shrinkage of the gear rim through contraction and the creation of corresponding shrinkage stresses by the injection pressure, the gear rim is elastically elongated externally when the connecting part is injection molded, with the gear rim preferably resting on a wall of the surrounding tool.
- the injection molded wheel body then shrinks onto the particularly small steel hub.
- the gear rim that was elastically elongated during the injection molding contracts once again.
- the elongation can preferably be calculated so that the gear rim is nearly stress-free when cool.
- connection between gear rim and wheel body is preferably made by means of form closure, e.g. by in-mold lamination, and/or an adhesive bond, for example in the form of a surface fusing, e.g. of the gear rim made from reinforced polyamide with wheel body casts made from fiber-reinforced polyamide.
- the gear rim can also be brought under compressive stress if necessary, which creates a higher tooth root capacity.
- a high-quality, temperature-consistent gear rim material e.g. Peek
- the inexpensive wheel body material can also be combined with the inexpensive wheel body material. This can result in reduced heat expansion because the gear rim can be made thin and constitutes only a small portion of the entire body of the gearwheel.
- FIG. 1 A section through a gearwheel
- FIG. 2 Three separate individual components of such a gearwheel in a lateral sectional view
- FIG. 3 Three separate individual components of such a gearwheel in a perspective sectional view
- FIG. 4 Two separate initial individual components of such a gearwheel in a lateral sectional view during an initial manufacturing step
- FIG. 5 The two individual components according to FIG. 4 connected by means of injected material in a lateral sectional view during a second manufacturing step and in a perspective lateral view after this second manufacturing step;
- FIG. 6 Two views of a gearwheel manufactured in this manner in a lateral sectional view after a final manufacturing step.
- an exemplary gearwheel 1 consists of several individual components, wherein a gearwheel 1 consisting of three components is shown as an example.
- Gearwheel 1 has an external part 2 on the outside that forms the actual gear rim. This external part 2 is preferably very thin or does not extend very far.
- Gearwheel 1 has an insert 3 on the inside, typically an insert 3 that is in the form of a hub. Whereas the external part 2 is preferably made from a relatively soft plastic material, which is typical for gearwheels, the insert 3 is preferably in the form of a metal hub, for example a metal hub, which is also typical.
- the external circumference of the insert 3 is spatially removed from the internal circumference of the external part 2 , so that the one can be loosely inserted into the other in a tool.
- the insert 3 is connected to the external part 2 by means of a connecting part 4 used to create a form-fitting connection between the external part 2 and the insert 3 .
- the connecting part 4 is molded between the external part 2 and the insert 3 so that the connecting part of the finished gearwheel 1 is formed from a molded material.
- the external part and the insert can also be connected by interposing other, particularly ring-shaped, elements, then followed by several similarly molded connecting parts.
- a gearwheel is especially preferred which has only a single connecting part, as opposed to many connecting parts, between a single insert and a single external part.
- both the inside and outside of the connecting part 4 preferably have gear tooth structures 42 and 43 that engage the corresponding gear tooth structures 32 and 23 of the insert 3 and/or the external part 2 .
- the gear tooth structures 32 , 42 , 23 , and 43 are preferably formed so as to create a connection between the external part 2 , the connecting part 4 , and the insert 3 that is both non-rotating as well as fixed in the axial and radial directions of a rotation axis X.
- FIGS. 4 through 6 provide exemplary descriptions of a manufacturing process for manufacturing such a gearwheel 1 .
- the same reference numbers as in the other figures, especially FIGS. 1 through 3 refer to the same or similarly acting components or functional characteristics, so that reference is made in this regard to other sections of the specification.
- FIG. 4 shows an initial manufacturing step in which the external part 2 and the insert 3 located within it are arranged on a supporting surface 50 of a tool 5 in their desired relative positions.
- the external part 2 and the insert 3 are set in a fixed position relative to one another with the aid of the tool 5 .
- the external part 2 in particular can be surrounded by a circumferential wall (not shown) that can exert pressure on the outside of the external part 2 to counteract any injection molding pressure on the inside.
- a tool upper part 51 is attached to this arrangement from the top so that plastic injected through an injection molding channel 52 fills the space between the insert 3 and the external part 2 with the molded material, as shown in FIG. 5 .
- a tool insert 53 is placed into the open space of the insert 3 before injection and in particular before the tool upper part 51 is placed on top.
- Such an injection molding procedure from the side seen from axial direction X creates a gearwheel with a lateral cone gate 46 that extends in the form of a cone from the side wall of the gearwheel and the formed connecting part up to the sprue part 45 .
- the cone mold allows the material to be injected into the intermediate space between the insert 3 and the external part 2 without forming transitions in the circumferential or rotational direction of the subsequent gearwheel as a result of material that has run together. Seams acting as break-off points are thus avoided, and thus stability is optimized in the rotational and radial direction.
- the cone gate 46 formed in this manner is removed, e.g. cut off or removed by machining, so that ultimately a gearwheel 1 as shown in FIG. 6 is formed.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Gears, Cams (AREA)
- Gear Transmission (AREA)
Abstract
Gearwheel and method for manufacturing a gearwheel The invention concerns a gearwheel (1) with an external part (2), an insert (3), and a connecting part (4) for creating a form-fitting connection between the external part (2) and the insert (3), wherein the connecting part (4) is made from a material molded between the external part (2) and the insert (3). According to the method, the invention concerns a method for manufacturing a gearwheel (1), in which an external part (2) and an insert (3) are form-fittingly connected to a connecting part (4), wherein the minimum of one such connecting part (4) is molded between the external part (2) and the insert (3).
Description
- The invention concerns a gearwheel with the generic characteristics of
claim 1 and a method for manufacturing a gearwheel with the generic characteristics of claim 6. - In the area of power steering, for example, so-called EPAS (EPAS: Electric Power Assisted Steering) gearwheels are of the prior art. Such gearwheels consist of a molded polyamide ring that is bonded to a large metal hub. A gear rim with machine-milled teeth is then formed on the outside of the molded polyamide ring. Alternatively, gearwheels in which a large steel hub is surrounded by injection molding are of the prior art. A large steel hub or metal hub refers to a hub that is larger than half of the diameter of the gearwheel formed in such a manner.
- Thus gearwheels with an external part having an actual gear rim on the outer surface, and with an insert that is formed in particular as a large metal hub, are of the prior art. The connection is made either by these two components mechanically engaging with each another or by means of a connecting part in the manner of an intermediate ring placed between them, which is inserted between them to form a form-fitting connection between the external part and the insert. Gear tooth structures located on the exterior and interior sides of the ring-shaped connecting part serve to create the form-fitting connection, since they are shaped so as to attach to corresponding opposing structures on the interior side of the external part or on the exterior side of the insert. Because the connecting part is made of plastic, albeit relatively rigid plastic because of the required stiffness, such geared structures must be very small in the case of a snap-fastened connection in order that the components can be inserted into one another.
- Forming the external part onto the metal hub by means of injection molding permits larger geared structures to exist between them, and thus better rotational stability can be achieved when compared to an assemblage of individual components. Nevertheless, such injection molding of the insert has disadvantages.
- The injection-molded plastic for the gearing formed on the exterior of the external part is hindered in its ability to shrink freely. This places the plastic ring under permanent tensile stress. A large insert [used] as an insert part also causes greatly reduced shrinkage stress in such a case. Shrinkage stresses are tensile stresses and increase the effective tooth root stress of the torque transfer, thus reducing tooth flank strength. However, with the same external circumference of the external part or the gear rim formed on the external part, a small insert means that a greater proportion of plastic is required. Non-reinforced plastic has very temperature-dependent mechanical properties, however. A higher proportion of plastic thus means that dimensions change greatly when the ambient temperature changes. A high proportion of plastic also means highly unreliable deformation at greater driving torque, which affects the external gear rim. In addition, a small metal hub as an insert means poor torque transfer between the metal hub and an external plastic gear rim.
- The objective of the invention is to provide a gearwheel with a simple structure whose individual components are also well attached. Accordingly, a method for manufacturing a gearwheel shall also be proposed that permits the production of such a gearwheel.
- This objective is achieved by a gearwheel with the characteristics of
claim 1 and by a method for manufacturing a gearwheel with the characteristics of claim 6. The dependent claims involve advantageous embodiments. - In particular, therefore, a gearwheel with an external part, an insert, and a connecting part creating a form-fitting connection between the external part and the insert is preferred, wherein at least one connecting part is made from a material that is molded between the external part and the insert.
- Given the basic concept, of course, it is possible to have several connecting parts, interlocked if necessary, molded between the external part and the insert. A single connecting part provides especially good stability, however. It is clear that such a connecting part permits counter-gripping structures, which offer particularly firm engagement to oppose rotational forces and forces parallel to the axis due to a deep penetration into the external part and the insert. This permits counter-gripping structures that penetrate deeper into the external part and the insert than is possible with conventional individual components, which are inserted into one another based upon their specific manufacture.
- The preferred embodiment is a design in which the insert is made of metal and the external part is made of plastic, and the connecting part is made of an injection molding material containing plastic.
- In particular, the connecting part can be made from a harder material and/or more torque-proof material than a material of the external part; this permits a more stable connection between the two circumjacent parts.
- The connecting part, preferably with gear tooth structures that prevent pulling in the rotational direction and/or in a direction parallel to the axis, engages with the insert and/or the external part, which creates good rotational stability and/or stability against shifting parallel to the axis for the insert and the external part relative to one another.
- Independently advantageous is a method for manufacturing such a gearwheel in particular, in which an external part and an insert are form-fittingly joined with a connecting part, wherein the minimum of one such connecting part is molded between the external part and the insert.
- The connecting part is preferably molded with a cone gate between the external part and the insert. This prevents transitional areas [from forming] between plastic quantities that flow together in a rotational and/or radial direction in a typical injection molding procedure. The result is increased stability, especially in the rotational and/or radial direction.
- Before molding, the external part is preferably provided with external teeth and the insert is provided with external gear tooth structures.
- The connecting part is preferably molded from an axially parallel direction particularly as a cone mold between the external part and the insert. A lateral cone gate is then simply removed.
- The connecting part is preferably molded under pressure that exerts outward force on the external part, so that after the molding material cools, the external part is under a desired, adjustable level of stress, particularly stress-free.
- To increase stability, the connecting part is preferably molded from a reinforced plastic.
- This permits the design and manufacture of a two-component gearwheel in particular that permits a gear rim on the outside in the form of the correspondingly structured external part with non-reinforced plastic and finished gearing injection molded onto it. On the inside, an inexpensive, thin steel hub can be inserted through injection molding as the insert part. A wheel body made of reinforced plastic, e.g. fiberglass reinforced plastic, [used] as the connecting part is injected between them. Another material could be injected in principle, however, and even a metallic material could be poured in.
- In contrast to a traditional solution method for creating a two-component gearwheel, in which a steel hub is placed into a tool, a wheel body is injection molded around it, and then a gear rim is injection molded, which results in highly restricted shrinkage stresses on the gear rim, [here] a steel hub especially advantageously [used] as the insert and a separately injection molded, particularly thinner gear rim, preferably made from non-reinforced plastic, are placed into an injection molding tool, whereupon the intervening space is injected with reinforced plastic.
- A special advantage is that instead of a known shrinkage of the gear rim through contraction and the creation of corresponding shrinkage stresses by the injection pressure, the gear rim is elastically elongated externally when the connecting part is injection molded, with the gear rim preferably resting on a wall of the surrounding tool. The injection molded wheel body then shrinks onto the particularly small steel hub. The gear rim that was elastically elongated during the injection molding contracts once again. The elongation can preferably be calculated so that the gear rim is nearly stress-free when cool.
- The connection between gear rim and wheel body is preferably made by means of form closure, e.g. by in-mold lamination, and/or an adhesive bond, for example in the form of a surface fusing, e.g. of the gear rim made from reinforced polyamide with wheel body casts made from fiber-reinforced polyamide.
- With such a method of manufacturing a gearwheel, the gear rim can also be brought under compressive stress if necessary, which creates a higher tooth root capacity. In particular, a high-quality, temperature-consistent gear rim material, e.g. Peek, can also be combined with the inexpensive wheel body material. This can result in reduced heat expansion because the gear rim can be made thin and constitutes only a small portion of the entire body of the gearwheel.
- The figures below detail an exemplary embodiment. The figures are:
-
FIG. 1 A section through a gearwheel; -
FIG. 2 Three separate individual components of such a gearwheel in a lateral sectional view; -
FIG. 3 Three separate individual components of such a gearwheel in a perspective sectional view; -
FIG. 4 Two separate initial individual components of such a gearwheel in a lateral sectional view during an initial manufacturing step; -
FIG. 5 The two individual components according toFIG. 4 connected by means of injected material in a lateral sectional view during a second manufacturing step and in a perspective lateral view after this second manufacturing step; and -
FIG. 6 Two views of a gearwheel manufactured in this manner in a lateral sectional view after a final manufacturing step. - As is clear from
FIGS. 1 through 3 , anexemplary gearwheel 1 consists of several individual components, wherein agearwheel 1 consisting of three components is shown as an example. Gearwheel 1 has anexternal part 2 on the outside that forms the actual gear rim. Thisexternal part 2 is preferably very thin or does not extend very far.Gearwheel 1 has aninsert 3 on the inside, typically aninsert 3 that is in the form of a hub. Whereas theexternal part 2 is preferably made from a relatively soft plastic material, which is typical for gearwheels, theinsert 3 is preferably in the form of a metal hub, for example a metal hub, which is also typical. - The external circumference of the
insert 3 is spatially removed from the internal circumference of theexternal part 2, so that the one can be loosely inserted into the other in a tool. Theinsert 3 is connected to theexternal part 2 by means of a connectingpart 4 used to create a form-fitting connection between theexternal part 2 and theinsert 3. The connectingpart 4 is molded between theexternal part 2 and theinsert 3 so that the connecting part of thefinished gearwheel 1 is formed from a molded material. - As an option, the external part and the insert can also be connected by interposing other, particularly ring-shaped, elements, then followed by several similarly molded connecting parts. In order to ensure greater stability and low manufacturing costs, however, a gearwheel is especially preferred which has only a single connecting part, as opposed to many connecting parts, between a single insert and a single external part.
- To the extent that
FIGS. 2 and 3 show the three individual components separately, this is intended only to more clearly present each of the surfaces of these three components that lie atop one another or are attached to one another. For example, both the inside and outside of the connectingpart 4 preferably havegear tooth structures gear tooth structures insert 3 and/or theexternal part 2. At the same time, thegear tooth structures external part 2, the connectingpart 4, and theinsert 3 that is both non-rotating as well as fixed in the axial and radial directions of a rotation axis X. -
FIGS. 4 through 6 provide exemplary descriptions of a manufacturing process for manufacturing such agearwheel 1. The same reference numbers as in the other figures, especiallyFIGS. 1 through 3 , refer to the same or similarly acting components or functional characteristics, so that reference is made in this regard to other sections of the specification. -
FIG. 4 shows an initial manufacturing step in which theexternal part 2 and theinsert 3 located within it are arranged on a supportingsurface 50 of atool 5 in their desired relative positions. As an option, theexternal part 2 and theinsert 3 are set in a fixed position relative to one another with the aid of thetool 5. Theexternal part 2 in particular can be surrounded by a circumferential wall (not shown) that can exert pressure on the outside of theexternal part 2 to counteract any injection molding pressure on the inside. - A tool
upper part 51 is attached to this arrangement from the top so that plastic injected through aninjection molding channel 52 fills the space between theinsert 3 and theexternal part 2 with the molded material, as shown inFIG. 5 . In order to prevent injection molding material from entering the interior of theinsert 3, atool insert 53 is placed into the open space of theinsert 3 before injection and in particular before the toolupper part 51 is placed on top. - Such an injection molding procedure from the side seen from axial direction X creates a gearwheel with a
lateral cone gate 46 that extends in the form of a cone from the side wall of the gearwheel and the formed connecting part up to thesprue part 45. The cone mold allows the material to be injected into the intermediate space between theinsert 3 and theexternal part 2 without forming transitions in the circumferential or rotational direction of the subsequent gearwheel as a result of material that has run together. Seams acting as break-off points are thus avoided, and thus stability is optimized in the rotational and radial direction. - In a subsequent manufacturing step, the
cone gate 46 formed in this manner is removed, e.g. cut off or removed by machining, so that ultimately agearwheel 1 as shown inFIG. 6 is formed.
Claims (12)
1. Gearwheel (1) with
an external part (2),
an insert (3) and
a connecting part (4) for creating a form-fitting connecting between the external part (2) and the insert (3),
characterized in that
the minimum of one connecting part (4) is made from material molded between the external part (2) and the insert (3).
2. Gearwheel (1) according to claim 1 , in which the insert (3) is made of metal and the external part (2) is made of plastic.
3. Gearwheel (1) according to claim 1 , in which the connecting part (4) is made of an injection molding material containing plastic.
4. Gearwheel (1) according to claim 1 , in which the connecting part (4) is made from a material harder and/or more torque-proof than the material of the external part (2).
5. Gearwheel (1) according to claim 1 , in which the connecting part (4), with gear tooth structures (42, 43) that prevent pulling in the rotational direction and/or in a direction parallel to the axis, engages with the insert (3) and/or the external part (2).
6. Method of manufacturing a gearwheel (1), in which an external part (2) and an insert (3) are form-fittingly connected to a connecting part (4), characterized in that
the minimum of one such connecting part (4) is molded between the external part (2) and the insert (3).
7. Method according to claim 6 , in which the connecting part (4) is molded with a cone gate (46) between the external part (2) and the insert (3).
8. Method according to claim 6 , in which the external part (2) is provided with external teeth prior to molding.
9. Method according to claim 6 , in which the insert (3) is provided with external gear tooth structures (42, 43) prior to molding.
10. Method according to claim 6 , in which the connecting part (4) is molded from a direction parallel to the axis(X) between the external part (2) and the insert and subsequently a lateral cone gate (46) is removed.
11. Method according to claim 6 , in which the connecting part (4) is molded under pressure that exerts an outward force on the external part (2).
12. Method according to claim 6 , in which the connecting part (4) is molded from a reinforced plastic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/766,477 US8795569B2 (en) | 2005-10-19 | 2010-04-23 | Method for manufacturing a gearwheel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005050439 | 2005-10-19 | ||
DE102005050439.6 | 2005-10-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/766,477 Division US8795569B2 (en) | 2005-10-19 | 2010-04-23 | Method for manufacturing a gearwheel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070087617A1 true US20070087617A1 (en) | 2007-04-19 |
Family
ID=37680779
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/582,555 Abandoned US20070087617A1 (en) | 2005-10-19 | 2006-10-18 | Gearwheel and method for manufacturing a gearwheel |
US12/766,477 Active US8795569B2 (en) | 2005-10-19 | 2010-04-23 | Method for manufacturing a gearwheel |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/766,477 Active US8795569B2 (en) | 2005-10-19 | 2010-04-23 | Method for manufacturing a gearwheel |
Country Status (6)
Country | Link |
---|---|
US (2) | US20070087617A1 (en) |
EP (1) | EP1777439B1 (en) |
CN (1) | CN100578043C (en) |
AT (1) | ATE491903T1 (en) |
DE (1) | DE502006008499D1 (en) |
ES (1) | ES2354369T3 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120000307A1 (en) * | 2009-03-17 | 2012-01-05 | Quadrant Epp Ag | Composite gear blank and method for manufacturing same |
US20150345615A1 (en) * | 2014-05-28 | 2015-12-03 | Skf Lubrication Systems Germany Gmbh | Lubrication pinion module, lubrication pinion, and method for manufacturing a lubrication pinion module |
EP3078706A1 (en) | 2015-04-08 | 2016-10-12 | Jtekt Corporation | Sliding member, method of manufacturing sliding member, and gear |
US20190093748A1 (en) * | 2017-09-25 | 2019-03-28 | Ims Gear Se & Co. Kgaa | Spur gear for use in a spur gear unit, gearwheel pair for a spur gear unit, spur gear unit having such a gearwheel pair, and method for producing a spur gear and its use in spur gear units |
CN114945761A (en) * | 2020-01-15 | 2022-08-26 | Kyb株式会社 | Method for manufacturing gear and gear |
US11680632B2 (en) * | 2019-10-01 | 2023-06-20 | Ims Gear Se & Co. Kgaa | Gear ring carrier part for a two- or multi-component gear and two- or multi-component gear with such a gear ring carrier part |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010012146A1 (en) * | 2010-03-20 | 2011-09-22 | Neumayer Tekfor Holding Gmbh | Multi-piece gearwheel, has tooth element made of metal sheet or flat steel bar or pipe section and arranged concentric around carrier element, where tooth element and carrier element are connected to transmit torque |
DE102010018079A1 (en) * | 2010-04-22 | 2011-10-27 | Ims Gear Gmbh | Shaft with a frontally cast gear and method of making such a shaft |
KR101091067B1 (en) * | 2011-02-18 | 2011-12-08 | 주식회사 광덕에이앤티 | A gear wheel and manufacturing method thereof |
DE102011051386A1 (en) * | 2011-06-28 | 2013-01-03 | Zf Lenksysteme Gmbh | Process for producing a gear |
DE102011079423A1 (en) | 2011-07-19 | 2013-01-24 | Zf Friedrichshafen Ag | Gear wheel comprises toothed ring-side outer portion that is molded together with cast-in connecting portion for connection between outer portion and inner portion by co-injection |
ITMI20112336A1 (en) * | 2011-12-21 | 2013-06-22 | Amer Spa | MECHANICAL COMPONENT AND METHOD FOR THE CONSTRUCTION OF SUCH A MECHANICAL COMPONENT |
KR101346347B1 (en) * | 2012-02-13 | 2013-12-31 | 남양공업주식회사 | MDPS worm wheel and manufacturing method |
DE102012102778A1 (en) | 2012-03-30 | 2013-10-02 | Zf Lenksysteme Gmbh | Method for manufacturing worm wheel in screw rolling gear of e.g. power steering apparatus in motor car, involves applying connecting part on inner part of screwing wheel, and applying outer part on connecting part by fan gate |
DE102012102776A1 (en) | 2012-03-30 | 2013-10-02 | Zf Lenksysteme Gmbh | Screw gear for electromechanical steering device for motor car, has reinforcement which protrudes in tooth of outer portion, and coupling ring is provided in connecting portion, for connecting reinforcement to connecting portion |
DE102012102780A1 (en) | 2012-03-30 | 2013-10-02 | Zf Lenksysteme Gmbh | Method for manufacturing helical gear, involves applying inner portion and outer portion to connection portion, where outer portion is applied through sprue bush rods, while connection portion is applied through sprue bush shield |
DE102012102777B4 (en) | 2012-03-30 | 2019-08-14 | Robert Bosch Automotive Steering Gmbh | BOLT FOR AN ELECTROMECHANICAL STEERING DEVICE |
DE102012102775B4 (en) | 2012-03-30 | 2020-10-22 | Robert Bosch Gmbh | Helical gear for an electromechanical steering device |
CN102865350B (en) * | 2012-07-12 | 2015-09-09 | 济南大学 | A kind of gear and manufacture method thereof |
DE102013226525A1 (en) * | 2013-12-18 | 2015-06-18 | Zf Friedrichshafen Ag | Cast hollow shaft with inlay |
ES2650398T3 (en) | 2014-01-23 | 2018-01-18 | Ims Gear Se & Co. Kgaa | Multi-component cogwheel |
DE102014104284A1 (en) * | 2014-03-27 | 2015-10-01 | Robert Bosch Automotive Steering Gmbh | GEAR |
DE102014104288A1 (en) * | 2014-03-27 | 2015-10-01 | Robert Bosch Automotive Steering Gmbh | GEAR |
DE102014104949B4 (en) * | 2014-04-08 | 2022-11-03 | Robert Bosch Gmbh | gear |
FR3020305B1 (en) | 2014-04-24 | 2017-01-06 | Jtekt Europe Sas | METHOD FOR MANUFACTURING A DOUBLE SURMOULAGE TOOTHED WHEEL |
FR3021576B1 (en) | 2014-06-03 | 2016-06-24 | Jtekt Europe Sas | METHOD FOR MANUFACTURING A WHEEL WITH REINFORCING STRAP |
FR3022172B1 (en) | 2014-06-11 | 2016-05-27 | Jtekt Europe Sas | METHOD FOR MANUFACTURING A CUT-OFF WHEEL WITH A COUPLED RIM |
CN104295700B (en) * | 2014-08-13 | 2017-03-15 | 上海胜华波汽车电器有限公司 | A kind of two-piece pinion gear of high intensity |
GB201510171D0 (en) * | 2015-06-11 | 2015-07-29 | Rolls Royce Plc | Gears, gear arrangements and gas turbine engines |
CN105172046A (en) * | 2015-09-14 | 2015-12-23 | 贾玉平 | Injection mold with inserts |
WO2017079730A1 (en) * | 2015-11-07 | 2017-05-11 | Eaton Corporation | Lightweight torque transmission gear |
JP6610413B2 (en) * | 2016-04-26 | 2019-11-27 | 中西金属工業株式会社 | Manufacturing method of insert molded product |
KR101849042B1 (en) * | 2017-02-17 | 2018-04-13 | 주식회사 만도 | Reducer for vehicle |
DE102017207951A1 (en) * | 2017-05-11 | 2018-11-15 | Robert Bosch Gmbh | Method for producing a gear |
DE102017131173A1 (en) * | 2017-12-22 | 2019-06-27 | Thyssenkrupp Ag | Worm wheel for a worm gear of a motor vehicle steering system with a carrier ring injected between a hub and a ring gear |
DE102017131180A1 (en) * | 2017-12-22 | 2019-06-27 | Thyssenkrupp Ag | Worm wheel for a worm gear of a motor vehicle steering system with an injected carrier ring |
DE102018205006A1 (en) | 2018-04-04 | 2019-10-10 | Robert Bosch Gmbh | gear |
CN108858907B (en) * | 2018-06-25 | 2023-11-07 | 英瑟泰科精密注塑(苏州)有限公司 | Material sucking mould for half-tooth product of automobile air inlet valve and processing technology of material sucking module of material sucking mould |
CN109854709B (en) * | 2018-12-19 | 2024-04-09 | 博世华域转向系统有限公司 | EPS gear |
CN110030364A (en) * | 2019-04-19 | 2019-07-19 | 浙江美亚特精密机械有限公司 | A kind of multiple field metal/resin gear and its manufacturing process and purposes |
CN110005783A (en) * | 2019-04-19 | 2019-07-12 | 浙江美亚特精密机械有限公司 | A kind of composite metal/plastic gear and its manufacturing process and purposes |
DE102019210668A1 (en) * | 2019-07-18 | 2021-01-21 | Robert Bosch Gmbh | Steering gear with a multi-part gear made of plastic, which is manufactured by means of laser transmission welding |
KR102670455B1 (en) * | 2019-09-03 | 2024-05-29 | 에이치엘만도 주식회사 | Worm Wheel of Reducer for Steering Apparatus and Manufacturing Method of The Same |
EP3789635B1 (en) | 2019-09-03 | 2022-06-01 | IMS Gear SE & Co. KGaA | Gearwheel |
DE102020201461A1 (en) * | 2020-02-06 | 2021-08-12 | Thyssenkrupp Ag | Method for producing a worm wheel for a power steering system of a motor vehicle, a worm wheel and a motor vehicle steering system |
CN111231342B (en) * | 2020-02-12 | 2022-03-11 | 南通市中吕齿轮有限公司 | Processing technology of nylon gear |
DE102020202922A1 (en) | 2020-03-06 | 2021-09-09 | Thyssenkrupp Ag | Method for manufacturing a gear wheel for an electromechanical power steering system |
DE102021211483B3 (en) | 2021-10-12 | 2022-08-25 | Robert Bosch Gesellschaft mit beschränkter Haftung | Plastic gear for a steering gear |
WO2023179916A1 (en) * | 2022-03-24 | 2023-09-28 | Intelligent Power Limited Eaton | Multi material gear assembly |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020043124A1 (en) * | 2000-04-20 | 2002-04-18 | Unisia Jecs Corporation | Plastic gear and method of producing the same |
US20020078777A1 (en) * | 2000-12-27 | 2002-06-27 | Witucki David E. | Gear assembly |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2839943A (en) * | 1954-05-28 | 1958-06-24 | Westinghouse Electric Corp | Molded article of manufacture and method of making the same |
JPH01250668A (en) * | 1988-03-31 | 1989-10-05 | Toshiba Corp | Gear |
CN2042912U (en) * | 1988-12-30 | 1989-08-16 | 邓圣金 | Inner-ratchet gear |
DE3942761A1 (en) * | 1989-12-23 | 1991-08-14 | Daimler Benz Ag | Sprocket of chain drive for IC engine - consists of a damping ring with outer toothed rim and hub |
CN2180833Y (en) * | 1993-05-22 | 1994-10-26 | 许德玲 | Gearing with teeth |
JPH0989081A (en) * | 1995-09-28 | 1997-03-31 | Fuji Heavy Ind Ltd | Injection molding gear for general purpose engine and manufacture thereof |
JP4331863B2 (en) * | 2000-05-09 | 2009-09-16 | 株式会社ショーワ | Manufacturing method of resin gear |
DE10127224A1 (en) * | 2001-05-28 | 2002-12-12 | Ensinger Kunststofftechnologie | Toothed wheel, especially for a worm gear mechanism, comprising a metal disc with a central opening for a shaft and a ring shaped plastic element |
CN2527786Y (en) * | 2002-01-18 | 2002-12-25 | 廖谊淙 | Combined gear |
CN2606220Y (en) * | 2002-09-06 | 2004-03-10 | 重庆宗申技术开发研究有限公司 | Balanced toothed gear |
JP4173053B2 (en) * | 2003-06-02 | 2008-10-29 | 株式会社エンプラス | Injection molding resin gear, injection molding resin sprocket, injection molding resin pulley, injection molding resin roller |
DE10350417A1 (en) * | 2003-10-28 | 2005-06-02 | Behr Gmbh & Co. Kg | Method of manufacturing a fan wheel and fan made by this method |
-
2006
- 2006-10-18 US US11/582,555 patent/US20070087617A1/en not_active Abandoned
- 2006-10-18 AT AT06021782T patent/ATE491903T1/en active
- 2006-10-18 ES ES06021782T patent/ES2354369T3/en active Active
- 2006-10-18 EP EP06021782A patent/EP1777439B1/en active Active
- 2006-10-18 DE DE502006008499T patent/DE502006008499D1/en active Active
- 2006-10-19 CN CN200610064309A patent/CN100578043C/en active Active
-
2010
- 2010-04-23 US US12/766,477 patent/US8795569B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020043124A1 (en) * | 2000-04-20 | 2002-04-18 | Unisia Jecs Corporation | Plastic gear and method of producing the same |
US20020078777A1 (en) * | 2000-12-27 | 2002-06-27 | Witucki David E. | Gear assembly |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120000307A1 (en) * | 2009-03-17 | 2012-01-05 | Quadrant Epp Ag | Composite gear blank and method for manufacturing same |
US9205611B2 (en) * | 2009-03-17 | 2015-12-08 | Quadrant Epp Ag | Composite gear blank |
US20150345615A1 (en) * | 2014-05-28 | 2015-12-03 | Skf Lubrication Systems Germany Gmbh | Lubrication pinion module, lubrication pinion, and method for manufacturing a lubrication pinion module |
US9816602B2 (en) * | 2014-05-28 | 2017-11-14 | Skf Lubrication Systems Germany Gmbh | Lubrication pinion module, lubrication pinion, and method for manufacturing a lubrication pinion module |
EP3078706A1 (en) | 2015-04-08 | 2016-10-12 | Jtekt Corporation | Sliding member, method of manufacturing sliding member, and gear |
US9896637B2 (en) | 2015-04-08 | 2018-02-20 | Jtekt Corporation | Sliding member, method of manufacturing sliding member, and gear |
US20190093748A1 (en) * | 2017-09-25 | 2019-03-28 | Ims Gear Se & Co. Kgaa | Spur gear for use in a spur gear unit, gearwheel pair for a spur gear unit, spur gear unit having such a gearwheel pair, and method for producing a spur gear and its use in spur gear units |
KR20210080315A (en) * | 2017-09-25 | 2021-06-30 | 이엠에스 기어 에스에 운트 코. 카케아아 | Spur gear for use in a spur gear unit, gearwheel pair for a spur gear unit, spur gear unit having such a gearwheel pair, and method for producing a spur gear and its use in spur gear units |
US11754164B2 (en) * | 2017-09-25 | 2023-09-12 | Ims Gear Se & Co. Kgaa | Gear, gearwheel pair, and method for producing a gear |
KR102592864B1 (en) * | 2017-09-25 | 2023-10-23 | 이엠에스 기어 에스에 운트 코. 카케아아 | Spur gear for use in a spur gear unit, gearwheel pair for a spur gear unit, spur gear unit having such a gearwheel pair, and method for producing a spur gear and its use in spur gear units |
US11680632B2 (en) * | 2019-10-01 | 2023-06-20 | Ims Gear Se & Co. Kgaa | Gear ring carrier part for a two- or multi-component gear and two- or multi-component gear with such a gear ring carrier part |
CN114945761A (en) * | 2020-01-15 | 2022-08-26 | Kyb株式会社 | Method for manufacturing gear and gear |
US20230058996A1 (en) * | 2020-01-15 | 2023-02-23 | Kyb Corporation | Gear manufacturing method and gear |
US11959538B2 (en) * | 2020-01-15 | 2024-04-16 | Kyb Corporation | Gear manufacturing method and gear |
Also Published As
Publication number | Publication date |
---|---|
ES2354369T3 (en) | 2011-03-14 |
CN100578043C (en) | 2010-01-06 |
US20100201030A1 (en) | 2010-08-12 |
EP1777439A1 (en) | 2007-04-25 |
EP1777439B1 (en) | 2010-12-15 |
ATE491903T1 (en) | 2011-01-15 |
US8795569B2 (en) | 2014-08-05 |
CN101016944A (en) | 2007-08-15 |
DE502006008499D1 (en) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8795569B2 (en) | Method for manufacturing a gearwheel | |
US8794096B2 (en) | Gearwheel and method for manufacturing a gearwheel | |
US10414078B2 (en) | Method for manufacturing a lightened toothed wheel by double overmoulding | |
JP2009541679A (en) | Screw gear | |
US7661333B2 (en) | Rotation transmission member and manufacturing method therefor | |
EP2754904B1 (en) | Lightweight wheel hub rolling bearing assembly and method of assembling the assembly | |
JP2013504289A (en) | Rotor vessel | |
JPH02229917A (en) | Body of transmission-connection device and manufacture thereof | |
US20210088112A1 (en) | Worm wheel, worm reduction gear, and method for producing worm wheel | |
JP2017082858A (en) | Gear, method of manufacturing gear, and steering device | |
US20190195271A1 (en) | Length-adjustable steering shaft and method for producing a length-adjustable steering shaft | |
JP6680696B2 (en) | Manufacturing method of gear having reinforcing ring | |
JP2018533497A (en) | Hollow profile members such as tubes made of thermosetting composites and corresponding methods | |
EP0329542A1 (en) | Method for manufacturing a steering wheel, particularly for an automotive vehicle | |
US11047466B1 (en) | Worm wheel, worm decelerator, and method for producing worm wheel | |
KR102017079B1 (en) | Manufacturing method of worm wheel | |
KR102324643B1 (en) | Reducer of Power Steering Apparatus for Vehicle and Manufacturing Method of The Same | |
WO1998034064A1 (en) | Pressure vessel and process for making the same | |
US11041544B2 (en) | Worm wheel and worm speed reducer | |
KR101971545B1 (en) | Worm wheel for electric power steering apparatus and method for manufacturing the same | |
JP2017061297A (en) | Output element, power device for driving at least one wind screen wiper arm of automatic vehicle, and method of manufacturing output element | |
JPS60104865A (en) | Compound gear | |
US9869341B2 (en) | Internally grooved components | |
JP2017082860A (en) | Gear and steering device | |
JP4442868B2 (en) | Resin gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMS GEAR GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OBERLE, STEPHAN;REEL/FRAME:018614/0812 Effective date: 20061122 |
|
AS | Assignment |
Owner name: IMS GEAR GMBH, GERMANY Free format text: RE-RECORD TO CORRECT THE ADDRESS OF THE ASSIGNEE, PREVIOUSLY RECORDED ON REEL 018614 FRAME 0812.;ASSIGNOR:OBERLE, STEPHAN;REEL/FRAME:018678/0853 Effective date: 20061122 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |