US20070079743A1 - Apparatus for cleaning the hull of a floating vessel - Google Patents

Apparatus for cleaning the hull of a floating vessel Download PDF

Info

Publication number
US20070079743A1
US20070079743A1 US11/583,241 US58324106A US2007079743A1 US 20070079743 A1 US20070079743 A1 US 20070079743A1 US 58324106 A US58324106 A US 58324106A US 2007079743 A1 US2007079743 A1 US 2007079743A1
Authority
US
United States
Prior art keywords
axis
brush
arm
drive means
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/583,241
Inventor
Adrian Hudd
Michael Wilford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lone Oak Investments Ltd
Original Assignee
Lone Oak Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/248,925 external-priority patent/US7363871B2/en
Application filed by Lone Oak Investments Ltd filed Critical Lone Oak Investments Ltd
Priority to US11/583,241 priority Critical patent/US20070079743A1/en
Assigned to LONE OAK INVESTMENTS LIMITED reassignment LONE OAK INVESTMENTS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUDD, ADRIAN GERALD, WILFORD, MICHAEL
Publication of US20070079743A1 publication Critical patent/US20070079743A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/06Cleaning devices for hulls
    • B63B59/08Cleaning devices for hulls of underwater surfaces while afloat

Definitions

  • the invention relates to improvements in apparatus for cleaning the hull of a floating vessel, and more particularly to a support for a rotating object, a rotary brush, an apparatus for manoeuvring a floating vessel, an arm arrangement for cleaning a surface and a cleaning assembly.
  • FIGS. 1 and 2 show a plan view and side elevation, respectively, of a boat cleaning assembly proposed in EP 1,196,321.
  • the cleaning assembly 1 comprises a pair of pivotable arms 3 and 4 which are each provided at their free ends with a rotatably mounted brush 5 and 6 respectively.
  • the arms are pivotable about an axis A-A on an axle 15 which is mounted on a base framework 18 , the arms being pivotable about axis A-A by means of an upright hydraulic ram 17 a and a tie rod 17 b which is connected to the ram 17 a.
  • the arms 3 and 4 each comprise a central portion 27 , 26 and two inwardly directed portions, 7 and 11 , and 8 and 12 respectively.
  • each of the arm portions 7 and 8 there is rotatably mounted on gimbals 9 and 10 a brush 5 and 6 , respectively.
  • the gimbals provide free suspension in all planes for the respective brush.
  • Each brush 5 and 6 comprises bristles provided on a front flat circular surface and on a tapered outer surface.
  • Each arm 3 and 4 is pivotally mounted for generally lateral movement about pivots 21 and 20 in arcs C and D respectively.
  • the assembly 1 further comprises arm mounting means 19 .
  • Hydraulic cylinder assemblies 13 and 14 are provided which are pivotally attached at one end to the arm portions 11 and 12 and at the opposite end to a bracket 35 , the bracket 35 being secured between the free ends of the mounting means 19 .
  • the mounting means 19 are fixedly secured to the axle 15 , the pivots for said axle being provided on two upstanding brackets 36 and 37 which are attached to the base framework 18 .
  • An operating arm 22 is attached at one end to the axle 15 and at its other end to the lower end of the tie rod 17 b.
  • a ram 17 a and the tie rod 17 b are enclosed by an upright framework 16 which comprises two opposing upright members 25 and a plurality of horizontal bridges 24 .
  • the assembly is submerged in a suitable region of water and the base framework 18 rests on the seabed.
  • a marine vessel for example a yacht (not shown), is then manoeuvred so that the vessel is positioned above the arms 3 and 4 .
  • a winch configuration (not shown) is then attached to a stem line and a bow line of the vessel so that the vessel may be conveyed across the axis A-A.
  • the tie rod 17 b is then actuated so that the arms 3 and 4 are pivoted upwardly about horizontal axis A-A towards the surface of the water.
  • a signal is sent to memory means of the assembly control means so that the vertical position of the tie rod 17 b, which corresponds to the arms being at the waterline, is stored.
  • Position sensing means are then operative to monitor the vertical position of the tie rod 17 b.
  • the control means which comprises a console
  • an operator then activates the hydraulic brush drive means so as to rotate the brushes 5 and 6 .
  • Hydraulic drive means associated with the hydraulic cylinder devices 13 and 14 is then activated so as to urge the arms 3 and 4 towards the hull of the vessel.
  • Sensing means are provided which is operative to monitor the back pressure of the hydraulic fluid used to actuate the brushes.
  • the cleaning operation is commenced and in so doing the hydraulic ram 17 a causes the arms 3 and 4 to pivot downwardly about axis A-A.
  • the correct pressure applied to the fouling on the hull is maintained as the arms pivot about pivots 21 and 20 to follow the curved profile of the hull.
  • the pivots 21 and 20 allow for displacement of the arms 3 and 4 which is generally lateral of the longitudinal axis of the hull of the vessel.
  • the control means controls the hydraulic cylinder assemblies 13 and 14 to urge the arms 3 and 4 apart and generally outwardly of the hull.
  • the control means then causes the winch means to be activated to convey the vessel a predetermined distance perpendicular to the axis A-A. Whilst the brushes are still apart, the arms are then pivoted generally upwardly of the hull through a predetermined angle by axle 15 and then towards the hull to contact with any fouling thereon. Once the predetermined value of back pressure of the hydraulic brush drive means is attained, the brushes are pivoted generally upwardly of the hull.
  • the arms 3 and 4 are urged laterally outwardly of the hull so that the brushes are no longer in contact therewith.
  • the vessel is then moved forward the predetermined distance by the winch means.
  • the arms are then urged laterally inwardly of the hull so that the brushes come into contact with the fouling with the required pressure.
  • the brushes are then caused to sweep generally downwardly of the hull. The cleaning process continues in the same fashion until the whole length of the hull has been subjected to the brushes, at which point the winch means will have conveyed the vessel clear of the paths of the brushes.
  • an arm arrangement for cleaning a surface comprising: an arm; a brush and gimbal arrangement on the end of the arm, the brush and gimbal arrangement including: a brush; a drive means for rotating the brush about a first axis; pivots to allow the brush and drive means to rotate about a second axis substantially perpendicular to the first axis and a third axis substantially perpendicular to the first axis and to the second axis to allow the brush to pivot on the end of the arm to follow the surface for cleaning.
  • a cleaning assembly comprising: a submersible framework; means for mounting the submersible framework to a fixed body; and two arm arrangements according to any preceding claim, each arm being pivoted to the submersible framework at the opposite end of the arm to the brush and gimbal arrangement, the arms being pivoted to allow the arms to move the brush to clean both sides of a floating vessel, arranged such that when the assembly is mounted the arms have a substantially horizontal rest position.
  • a support for a rotating object the object rotating about a first axis
  • the support comprises: a drive means for rotating the object about the first axis; a gimbal arrangement for supporting the drive means and the object, the gimbal arrangement having pivots to allow the drive means and object to rotate about a second axis substantially perpendicular to the first axis and a third axis substantially perpendicular to the first axis and to the second axis, and a pivot to allow the object to rotate about a fourth axis substantially parallel to the second axis and spaced from the second axis.
  • a rotary brush comprising: a surface that rotates about an axis; and a plurality of bristle clumps attached to the surface, the bristle clumps being arranged in rows extending radially from the first axis.
  • a rotary brush comprising: a surface that rotates about an axis; and a plurality of bristle clumps attached to the surface, wherein the bristle clumps are arranged to form a channel between adjacent bristle clumps, the channel having a lower density of bristles attached to the surface of the brush than that of the bristle clumps and extending outwardly from the axis of rotation to the edge of the brush surface.
  • an apparatus for manoeuvring a floating vessel forward and aft in the longitudinal direction comprising: bidirectional drive means having a plurality of longitudinally spaced drive positions; and attachment means adapted to attach a plurality of different places on the floating vessel to respective drive positions, wherein the bidirectional drive means is arranged to drive the plurality of longitudinally spaced drive positions together to move the floating vessel fore and aft.
  • apparatus for guiding the movement of a floating vessel comprising: at least one track elongated in a longitudinal direction; means for mounting the at least one track to a substantially upright side of a pontoon or fixed body; a carriage comprising coupling means for coupling the floating vessel to the carriage, wherein the carriage is arranged to engage with the at least one track such that the carriage can move along the longitudinal direction of the at least one track.
  • FIG. 1 shows a plan view of an existing boat cleaning assembly
  • FIG. 2 shows a side elevation of an existing boat cleaning assembly
  • FIG. 3 is a side elevation of a brush and gimbal arrangement according to an embodiment of the invention.
  • FIG. 4 shows a plan view of a brush and gimbal arrangement of FIG. 3 ;
  • FIG. 5 is an illustration of the relationship between the axes of rotation and pivot points for the brush and gimbal arrangement the arrangement of FIGS. 3 and 4 ;
  • FIG. 6 illustrates how the gimbal arrangement of FIG. 3 permits motion of a rotary brush
  • FIGS. 7 a and 7 b illustrate the motion provided by the brush mountings in the boat cleaning assembly shown in FIGS. 1 and 2 ;
  • FIG. 8 a is a plan view of a rotary connector according to an embodiment of the invention.
  • FIG. 8 b is a front elevation of a rotary connector according to an embodiment of the invention.
  • FIG. 9 is a longitudinal cross-section on the line IX-IX of FIG. 8 b;
  • FIG. 10 a is a plan view of a rotary connector according to another embodiment of the invention.
  • FIG. 10 b is a front elevation of a rotary connector according to another embodiment of the invention.
  • FIG. 11 shows a longitudinal cross-section on the line XI-XI of FIG. 10 b;
  • FIG. 12 a shows a front elevation of a brush according to an embodiment of the invention.
  • FIG. 12 b shows a vertical cross-section on the line XII-XII of FIG. 12 a;
  • FIG. 12 c shows a modification of the brush of FIG. 12 a
  • FIG. 12 d shows another modification of the brush of FIG. 12 a
  • FIG. 13 a is an illustration of a brush shown in FIGS. 12 a and 12 b cooperating with a curved surface to be cleaned, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a;
  • FIG. 13 b shows an alternative embodiment of a brush, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a;
  • FIG. 14 a is a front elevation of a boat cleaning assembly according to an embodiment of the invention.
  • FIG. 14 b is a side elevation of a boat cleaning assembly according to an embodiment of the invention.
  • FIG. 14 c is a plan view of a boat cleaning assembly according to an embodiment of the invention.
  • FIG. 15 a is a plan view of an apparatus for manoeuvring a floating boat according to an embodiment of the invention.
  • FIG. 15 b is a plan view of an apparatus for manoeuvring a floating boat according to an alternative embodiment of the invention.
  • FIGS. 15 c and 15 d show a front elevation and side elevation, respectively, of a traveller that may be used with the apparatus of FIG. 15 b;
  • FIG. 15 e shows a perspective view of a guide track and mooring pontoon that may be used with the apparatus of FIG. 15 b;
  • FIG. 15 f illustrates the traveller of FIGS. 15 c and 15 d cooperating with a guide track and mooring pontoon of FIG. 15 e;
  • FIG. 15 g shows a front elevation of a modification of the traveller of FIGS. 15 c and 15 d;
  • FIG. 16 is a side elevation of a brush and gimbal arrangement according to another embodiment of the invention.
  • FIG. 17 shows a plan view of a brush and gimbal arrangement of FIG. 16 ;
  • FIG. 18 show a plan view of a brush and gimbal arrangement of FIG. 16 when the fourth and fifth mounting brackets are rotated in an anti-clockwise direction about the Y 1 and Y 2 axes respectively;
  • FIG. 19 a shows a top view of a brush and gimbal arrangement according to another embodiment of the invention.
  • FIG. 19 b shows a modification of the embodiment of FIG. 19 a
  • FIG. 19C is a front elevation (in the direction of arrow S in FIG. 19 b ) of a modified version of the housing in FIG. 19 b;
  • FIG. 20 is a plan view of a complete boat cleaning assembly 600 according to an alternative embodiment of the invention.
  • FIGS. 21 a and 21 b show a plan view and side elevation, respectively, of a modification of the boat cleaning assembly shown in FIGS. 14 a - 14 c.
  • the embodiment described is a boat cleaning assembly.
  • the overall assembly is similar to that as shown in FIGS. 1 and 2 .
  • various components of the assembly are improved compared with the boat cleaning assembly of FIGS. 1 and 2 with the result that the overall assembly gives an improved performance.
  • a first improvement relates to the way in which the brush is mounted on gimballed bearings.
  • the mounting used in the embodiment will be described first, and then the reasons for using the mounting will be discussed.
  • FIG. 3 a side elevation of a brush and gimbal arrangement according to an embodiment of the invention is shown.
  • FIG. 4 shows a top view of the same arrangement.
  • the brush 31 comprises bristles (not shown) provided on a flat front circular surface 32 , on a tapered outer front surface 34 , and on a tapered outer rear surface 36 .
  • the brush 31 is rotatably connected to motorised drive means 38 , the drive means 38 being operative to rotate the brush 31 about a Z-axis Z-Z on an axle (not shown).
  • the brush 31 and drive means 38 are supported by a first mounting bracket 40 which is rotatably connected to a second mounting bracket 42 .
  • the first and second mounting brackets 40 and 42 cooperate such that the brush 31 and drive means 38 are free to rotate about an X-axis (indicated by X-X) on bearings.
  • the second mounting bracket 42 is rotatably connected and supported by a first arm portion 44 such that the second mounting bracket 42 is free to rotate about a Y-axis Y-Y on a bearing (not shown).
  • the first arm portion 44 is rotatably connected to a second arm portion 46 such that the first arm portion 44 may be rotated about an X 2 -axis X 2 -X 2 , the X 2 -axis X 2 -X 2 being substantially in the same direction as the X-axis X-X.
  • the second arm portion 46 is also rotatably connected to displacement means (not shown) of a cleaning assembly (for example, arm 3 or 4 of the assembly shown in FIGS. 1 and 2 ) such that the second arm portion 46 may be rotated about a Y 2 -axis Y 2 -Y 2 , the Y 2 -axis Y 2 -Y 2 being substantially in the same direction as the Y-axis Y-Y.
  • the brush is arranged to freely rotate about the X and Y axes according to external forces applied to the brush, whereas rotational motion of the brush about the X 2 and Y 2 axes is powered by drive means, the drive means being arranged such that the motion of the brush about the X 2 and Y 2 is programmable or controllable.
  • the brush may freely rotate about X 2 and Y 2 axes.
  • the rotation about the X-and Y-axes ensures that the face of the brush is against the boat during cleaning, and the brush 31 can be moved along the boat using the rotations about the X 2 and Y 2 axes.
  • FIG. 5 is an illustration of the relationship between the axes of rotation and pivot points for the arrangement of FIGS. 3 and 4 .
  • the relative location of the flat front circular surface 32 of the brush is indicated in the illustration.
  • the flat front circular surface 32 of the brush is rotatable about the Z-axis Z-Z on pivot 47
  • the brush 31 and drive means 38 are rotatable about the X-axis on bearings 48
  • the second mounting bracket 42 is rotatable about a Y-axis Y-Y on bearing 50 .
  • the axes, X, Y and Z are substantially orthogonal and are shown intersecting at a point 52 which is rather centrally located inside brush and drive means 38 .
  • Rotation of the brush 31 and drive means 38 about the X-axis generates movement of the surface 32 of the brush generally along arc E.
  • rotation of the second mounting bracket 42 about the Y-axis generates movement of the surface 32 of the brush generally along arc F.
  • the brush 31 is said to be in its reference position with zero angular displacement along the arcs E and F.
  • the front circular surface 32 of the brush may also be said to be in the reference plane.
  • the example of the present invention is arranged such that the reference plane is parallel to the X-Y plane.
  • the range of angular displacement of the brush and drive means about the X-axis X-X is limited to an angle ⁇ in a counter-clockwise direction, due to the proximity of the second mounting bracket 42 to the back of the flat brush face 32 .
  • FIG. 6 illustrates how the gimbal arrangement of FIG. 3 permits motion of the rotary brush 32 .
  • the first arm portion 44 may be rotated about the X 2 -axis with respect to the second arm portion 46 to move the second mounting bracket 42 generally along arc J.
  • Rotation by 900 results in the position illustrated by the dashed lines indicating the position of the surface of the brush 32 ′ (and the Z′ and Y′ axes).
  • rotation of the second arm portion 46 about the Y 2 -axis Y 2 -Y 2 generates movement (not shown) of the surface 32 of the brush about the Y 2 -axis Y 2 -Y 2 . It can therefore be appreciated that the allowable range of displacement of the surface 32 of the brush about the X 2 and Y 2 axes forms a semi-spherical surface.
  • Rotation of the first mounting bracket 40 , and hence the brush 31 , about the X-axis X-X with respect to the second mounting bracket 42 generates movement of the surface 32 of the brush generally along arc E, as shown in FIG. 5 and FIG. 6 .
  • first 44 and second 4 arm portions may also be preferable to move the first 44 and second 4 arm portions about the X 2 and Y 2 axes into a desired position and then releasably fix them in this desired position so that movement of the brush surface about the X 2 and Y 2 axes can be restricted. In this way, the orientation of the first arm portion 44 and the second portion 46 with respect to a supporting arm may be maintained for a required amount of time and re-adjusted as necessary.
  • the flat front circular surface 32 of the brush is rotatable about the Z 3 -axis Z 3 -Z 3 on pivot 54 .
  • This is in turn mounted on bearing 56 to allow the brush and drive means 38 to be rotatable about the X 3 -axis X 3 -X 3 .
  • This bearing is mounted on arm portion 57 linking to a second bearing 58 which permits the arm portion to rotate about the Z 3 -axis Z 3 -Z 3 .
  • Rotation of the brush and drive means 38 about the X 3 -axis generates movement of the surface 32 of the brush generally along arc G.
  • rotation of the arm portion about the Z 3 -axis Z 3 -Z 3 generates movement of the surface of the brush generally along arc H.
  • the allowable range of angular displacement of the surface 32 of the brush about the X 3 -axis X 3 -X 3 is limited to an angle of ⁇ /2 radians in a counter-clockwise direction and an angle of ⁇ /2 radians in a clockwise direction.
  • the allowable range of displacement of the surface 32 of the brush forms a semi-spherical surface, indicated generally by 60 .
  • the brush and gimbal arrangement avoids this difficulty.
  • FIG. 6 it may be seen that in both the initial and final positions the brush rotates about an axis perpendicular to the X-X and Y-Y axes. In this way the reference plane of the flat front circular surface 32 of the brush is parallel to the X-Y plane, the gimbal arrangement provides free suspension for the brush in all planes while also minimising unwanted forces resultant from the gyroscopic effect.
  • a disadvantage is that the allowable angular displacement ⁇ in the arrangement of FIG. 3 is less than that of the allowable angular displacement ⁇ /2 radians in the arrangement of FIG. 7 . Put more simply,
  • This is a direct consequence of arranging the reference plane of the flat front circular surface 32 of the brush such that it is parallel to the X-Y plane. In other words, arranging the pivot of the Y-axis vertically below the pivot of the X-axis (when referring the illustration of FIG. 3 ) introduces the second support bracket 42 , which ultimately limits the allowable range of angular displacement ⁇ of the brush and drive means about the X-axis X-X in a counter-clockwise direction.
  • the brush according to the embodiment is not merely provided with two gimbal axes X-X and Y-Y but additional gimbal axes X 2 and Y 2 are provided.
  • the first arm portion 44 may be rotated about the X 2 -axis X 2 -X 2 (the X 2 -axis X 2 -X 2 being substantially in the same direction as the X-axis X-X), and the second arm portion 46 may be rotated about a Y 2 -axis Y 2 -Y 2 (the Y 2 -axis Y 2 -Y 2 being substantially in the same direction as the Y-axis Y-Y) in the reference position.
  • the arrangement gives great flexibility of motion which is useful in particular for cleaning boats with a flat or substantially flat bottom.
  • first mounting bracket 40 comprising two sets of teeth 64 , 66 opposite each other, each set of teeth 64 , 66 comprising a plurality of teeth longitudinally spaced along the direction of Z-axis Z-Z in a periodic arrangement.
  • a bearing (not shown) supported by the second mounting bracket 42 is operatively connected to the sets of teeth 64 , 66 on the first mounting bracket 40 .
  • the position of the bearing and hence the second mounting bracket can be adjusted by moving the bearing along the Z axis to be supported by different teeth.
  • the bearing and sets of teeth 64 , 66 cooperate to support the first mounting bracket 40 and to locate it at discrete positions about the pivot point of the X-axis X-X with respect to the second mounting bracket 42 .
  • the position of the first mounting bracket 40 with respect to the second mounting bracket 42 can be adjusted longitudinally of the Z-axis Z-Z to balance the brush and drive means on either side of the X-axis, ensuring that the moment exerted by gravity of the brush balances the moment of the drive means 38 .
  • connection for example wire, a hydraulic hosing or a pneumatic hosing attached to the brush to deliver power, forced water or compressed air to the brush.
  • Such connections can unbalance the brush and drive means.
  • it may be desirable to minimise or remove any unbalancing effect about the X-axis X-X which may be caused by such attachments.
  • rotary connectors 70 ( FIG. 4 ) are supported by the second mounting bracket 42 and operatively connected to the first mounting bracket 40 such that the brush and drive means 38 are free to rotate about the X-axis X-X on the bearing of the each connector 70 .
  • the rotary connectors 70 in this embodiment are arranged such that all three of the connection ports of the three-way connector are on inside of the first mounting bracket 40 , i.e. on the side that faces inward towards the brush drive means 38 .
  • Attachments such as wire, hydraulic hosing or pneumatic hosing are connected between the ports of the three-way connector and the respective ports on the drive means 38 .
  • connections are internal to the volume defined by the extremities of the first and second mounting brackets 40 , 42 (for ease of reference, such connections are hereinafter referred to as internal connections) and rotate about the X-axis X-X with the brush and drive means 38 .
  • internal connections Such connections are internal to the volume defined by the extremities of the first and second mounting brackets 40 , 42 (for ease of reference, such connections are hereinafter referred to as internal connections) and rotate about the X-axis X-X with the brush and drive means 38 .
  • the rotary connectors 70 will now be described in more detail with reference to FIGS. 8 a and 8 b, which show a plan view and front elevation, respectively, of the rotary connector used in the previously described embodiment.
  • the rotary connector comprises a three-way hose connector, indicated generally by 80 , rotatably mounted on a ring bearing 82 .
  • the general configuration may be seen in FIG. 4 , which shows the ring bearing extending through mounting bracket 40 to bear within the second mounting bracket 42 .
  • the three-way hose connector comprises a generally cube shaped hollow body portion 84 with first and second male hose connectors, 86 and 88 , on opposing faces of the cube 84 , and a third male hose connector 90 on a third side of the cube 84 .
  • the ring bearing 82 is rotatably mounted on the side of the cube 84 which is adjacent to the three male hose connectors 86 , 88 , 90 . It can therefore be appreciated that the three-way hose connector 80 is free to rotate about the X-axis X-X.
  • the rotary connector 70 comprises a generally cube shaped hollow body portion 84 defining a cavity 92 and having first to third female threaded portions 94 into which first to third male hosing connectors 86 , 88 , 90 are received.
  • First, second and third male hosing connectors 86 , 88 , 90 each comprise a tubular body portion 96 of a first diameter, and a male threaded tubular portion 98 of lesser diameter at the cube connecting end of the connector.
  • the junction between the body portion 94 and the threaded portion 98 forms an annular seat 100 which bears against the cube shaped body portion 84 when the connectors and body portion are screwed together.
  • the cube shape body portion 84 and the first to third male hosing connectors 86 , 88 , 90 form a T or Y-shaped joint for effecting connection between hydraulic hosing.
  • This three-way hose connector 80 is also rotatable about an axis due attachment of the ring bearing 82 on a side of the cube shaped body portion 84 that is adjacent to the three male hose connectors 86 , 88 , 90 .
  • the illustrated embodiment of the rotary connector comprises a typical three-way connector. It is therefore to be understood that a rotary connector according to alternative embodiments of the invention need not comprise a three-way hose connector, but instead may comprise a connector with any suitable number of connectors, male and/or female.
  • the three-way connector allows all three hoses to be within the first mounting bracket. This gives a very distinct advantage since there is no risk that the hose end fitted over the connector comes into contact with the boat damaging the paintwork.
  • FIG. 10 a and 10 b a plan view and front elevation of a rotary connector according to an alternative embodiment of the invention are shown, respectively.
  • the rotary connector comprises a two-way hose connector, indicated generally by 102 , rotatably mounted on a combined ring bearing 104 and third male hose connector 106 arrangement.
  • the two-way hose connector comprises a generally cube shaped hollow body portion 108 with first and second male hose connectors, 110 and 112 , on opposing faces of the cube body portion 108 .
  • the ring bearing 104 is rotatably connected to a side of the cube shaped body portion 108 .
  • the outer bearing surface 114 cooperates with the cube shaped body potion 108 such that the body portion 108 is free to rotate about the X-axis X-X with respect to the third male hose connector 106 that is attached to an inner bearing surface (not visible).
  • the rotary connector comprises a generally cube shaped hollow body portion 108 defining a cavity 120 and having first and second female threaded portions 122 into which first and second male hosing connectors 110 , 112 are received.
  • First, and second hosing connectors 110 , 112 each comprise a tubular body portion 124 of a first diameter, and a male threaded tubular portion 126 of lesser diameter at the cube connecting end of the connector.
  • the junction between the body portion 124 and the threaded portion 126 forms an annular seat 128 which bears against the cube shaped body portion 108 when the connectors 110 , 112 and body portion 108 are screwed together.
  • the cube shaped hollow body portion 108 also has a bore 130 in one of its sides to receive and cooperate with an outer bearing surface 114 .
  • the ring bearing functions as would be generally expected by the skilled reader, rolling elements 132 being situated between the outer bearing surface 114 and an inner bearing surface 116 and enabling the outer bearing surface 114 to rotate freely about the X-axis X-X with respect to the inner bearing surface.
  • a third hosing connector 106 comprises a tubular bearing connecting body portion 134 connected to the inner bearing surface 116 and a hose connecting body portion 136 .
  • the third hosing connector 116 may rotate freely about the X-axis X-X with respect to the inner bearing surface 116 and the generally cube shaped hollow body portion 108 of the rotary connector.
  • the rotary connector detailed above forms a T or Y-shaped joint for effecting a rotary connection between hydraulic hosing.
  • This rotary connector enables two hosing connections to rotate about an axis with respect to a third hosing connection.
  • This rotary connector 70 enables an external hosing connection to be made with the rotary connector 70 , the hosing connection being centred about the X-axis which minimises any unbalancing effects caused by such an external attachment.
  • An external connection can therefore be made with the internal connections between the internal hose connectors and the respective ports 72 on the drive means 38 , the internal connections still being able to rotate about the X-axis X-X with the brush and drive means 38 .
  • connectors male and/or female
  • alternative embodiments may comprise connectors for alternative connection types, such as wire or pneumatic connections.
  • FIGS. 12 a shows a front elevation of a brush according to an embodiment of the invention.
  • FIG. 12 b shows a vertical cross-section on the line XII-XII.
  • the brush comprises bristles 30 attached to a flat front circular surface 32 , to a tapered outer front surface 34 , and to a tapered outer rear surface 36 . Note that, for the purpose of clarity, the bristles 30 attached to the tapered outer front surface 34 are not shown in FIG. 12 a
  • hydraulic drive means are operable to rotate the brush about a Z-axis Z-Z.
  • the Z-axis Z-Z intersects the flat front circular surface 32 at a point pivot point 47 which is substantially in the centre of the flat front circular surface 32 .
  • the Z-axis is also arranged such that it is substantially perpendicular to a directional plane within which the front surface 32 generally extends.
  • the bristles 30 attached to the flat front circular surface 32 are arranged in rows of bristle clumps extending radially from the central pivot point 47 of the brush. Consequently, the space between corresponding bristle clumps in adjacent rows increase with the radial distance of the bristle clumps from the pivot 47 . This spacing is indicated generally by dashed lines 140 and 145 .
  • This arrangement combines the effect of centrifugal force with support for wave motion between the bristle clumps to steer foreign matter outwardly from the centre of the brush as the brush rotates.
  • the feature of wave motion may be explained with reference to FIG. 12 a, wherein an ejection path of foreign matter as the brush rotates in a clockwise direction is in illustrated by arrow R.
  • arrow R an ejection path of foreign matter as the brush rotates in a clockwise direction
  • the clockwise rotation of the brush face results in the foreign matter moving towards a trailing row of bristle clumps which then displaces the foreign matter outwardly as before.
  • the foreign matter follows a wavelike path around the face, outwardly towards the edge of the brush whereby it is ejected from the brush face.
  • bristle clumps caters for clockwise and anti-clockwise rotation of the brush.
  • the brush according the present invention therefore allows foreign material to pass through channels formed between the bristle clumps 30 , irrespective of the direction of rotation of the brush.
  • a brush that is ‘self-cleaning’ the design of the bristle layout on the flat front surface 32 enabling foreign matter to be ejected due to the centrifugal force resultant from rotation of the brush and wave motion steering of the bristle clump arrangement.
  • the flat front surface is not limited to being of circular shape and may be of any suitable shape.
  • the bristles 30 are shown to be of equal length, the bristles may be of differing lengths.
  • the bristles 30 attached to the tapered outer rear surface 36 may be of a length such that all of the bristles 30 attached to the brush extend the same orthogonal distance from the plane of the flat front circular surface 32 .
  • FIGS. 12 c and 12 d Alternative arrangements of the bristles attached to the flat front circular surface 32 are illustrated in FIGS. 12 c and 12 d.
  • the bristles 30 attached to the flat front circular surface are arranged to form bristle segments 146 that are substantially triangular or wedge-like in shape.
  • the bristle segments 146 are of substantially the same size and adjacent segments (for example, 146 a and 146 b ) are spaced apart from each other such that a channel 147 is formed between adjacent segments, wherein each channel 147 is an area of the flat front circular surface to which not bristles 30 are attached.
  • the channels 147 extend radially from the central pivot point 47 of the brush.
  • This arrangement combines the effect of centrifugal force with spacing between adjacent bristles segments (i.e. 146 a and 146 b ) to allow foreign matter to move outwardly from the centre 47 of the brush as the brush rotates.
  • the layout illustrated in FIG. 12 c caters for clockwise and anti-clockwise rotation of the brush.
  • the brush therefore allows foreign material to pass through channels formed between the bristle segments 146 , irrespective of the direction of rotation of the brush.
  • the brush of FIG. 12 c is ‘self-cleaning’, the design of the bristle layout on the flat front surface 32 enabling foreign matter to be ejected due to the centrifugal force resultant from rotation of the brush.
  • a channel 147 may alternatively be formed from an area of the flat front circular surface having a lower density of bristles than that of the bristle segments 146 , the density of bristles being a measure of the number of bristles per unit area of the brush surface. In this way, movement of foreign matter towards the edge of the brush face is restricted by fewer bristles in a channel and the channel therefore assists the ejection of foreign matter from the brush.
  • FIG. 12 d shows a medication of the bristle layout of FIG. 12 c.
  • the bristles 30 attached to the flat front circular surface are, again, arranged to form bristle segments 148 of generally equal size and shape.
  • the bristle segments 148 are shaped and spaced apart form each other such that a channel 149 formed between adjacent segments (for example, 148 a and 148 b ), and containing no bristles, is curved in shape. More specifically, and as will be appreciated from FIG. 12 d, each channel 149 extends outwardly from the central pivot point 47 of the brush to the edge of the brush and is curved in shape.
  • all of the channels 149 shown in FIG. 12 d are formed such that they have substantially the same radius of curvature and are curved in an anti-clockwise direction about the central pivot point 47 of the brush.
  • this arrangement is designed to capture foreign matter within the area of the brush face and allow such matter to be easily removed through the channels 149 , via suction for example.
  • bristles of the trailing segment restrict outward movement of the foreign matter under centrifugal force.
  • the foreign matter within the channel may be removed along the channels, for example via suction that is arranged to draw the foreign matter towards the axis of rotation.
  • an exit hole is provided at the centre 47 of the brush to which a hose or tube may be attached. This enables the removal of the foreign matter along a channel and through the exit hole, for example via suction. The removal of the foreign matter is assisted by the fact that there are no bristles in the channels to restrict the movement of the foreign matter towards the exit hold.
  • FIG. 12 c caters for anti-clockwise rotation of the brush. It will, of course, be appreciated that reversal of the channels so that they curve in a clockwise direction about the centre of rotation 47 will cater for clockwise rotation of the brush.
  • a channel 149 may alternatively be formed from an area of the flat front circular surface having a lower density of bristles than that of the bristle segments 148 .
  • provision of means to remove debris from the brush via the curved channels (such as a vacuum or suction arrangement) with the bristle layout of FIG. 12 d means that the is ‘self-cleaning’, wherein the design of the bristle layout on the flat front surface 32 is such that the foreign matter is hindered from being ejected at the edge of the brush face due to the centrifugal force which is resultant from rotation of the brush.
  • FIG. 13 a is an illustration of a brush shown in FIG. 12 cooperating with a curved surface 150 to be cleaned, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a.
  • the bristles 30 attached to the tapered outer front and rear surfaces 34 and 36 are of a greater length than the bristles 30 attached to the flat front surface 32 and extend generally radially from the centre of the brush face in the same directional plane as the flat front surface 32 of the brush.
  • the brush is rotatably supported by supporting means (not shown) such that the brush is free to rotate about an X-axis X-X. It is preferable that the X-axis X-X is arranged a gap distance away from the back of the flat front surface 32 of the brush, the arrangement being less preferable as the distance between the X-axis X-X and back of the flat front surface 32 is increased.
  • the brush is operative to clean a curved surface 150 , after some motion the bristles attached to the flat front surface 32 of the brush will not be in contact with the curved surface 150 to be cleaned although the bristles attached to the tapered outer front and rear surfaces 34 and 36 do come into contact with the curved surface 150 .
  • the brush is manipulated by the turning force P to rotate about the X-axis such that bristles 30 attached to the flat front surface 32 of the brush regain contact with the curved surface 150 to be cleaned.
  • the brush is steered such that bristles 30 attached to the flat front surface 32 maintain contact with the surface 150 to be cleaned.
  • bristles attached to the tapered outer front and rear surfaces 34 and 36 are to be selected and/or arranged such that they have enough body or stiffness to withstand the turning force P to such a degree that a the rotational movement of the brush about the X-axis X-X is created without the curved surface coming into actual contact with any of the surfaces 32 , 34 , 36 of the brush.
  • the required body or stiffness of the bristles attached to the tapered outer front and rear surfaces 34 and 36 may be reduced. For example, use of bearing to pivot the brush about the X-axis X-X will help to minimise the frictional forces.
  • the brush is also rotatably supported such that the brush is free to rotate about the Y-axis which intersects the X-axis X-X and is substantially perpendicular to the X-axis X-X.
  • the flat front surface 32 of the brush may thus maintain contact with a surface such as a boat hull, for example.
  • a typical approach to reduce the drive requirements is to reduce the speed of rotation of the brush.
  • using hydraulics it is necessary to operate the motors at speed in order to lubricate the bearings.
  • the brush is rotated at a speed in the range of 10 rpm-200 rpm.
  • FIG. 13 b is an alternative embodiment of a brush, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a.
  • the flat front surface 32 of the brush may rotate about the Z-axis while the tapered outer front and rear surfaces 34 and 36 remain static and do not rotate about the Z-axis.
  • the tapered outer surfaces 34 and 36 of the brush are separated from the front surface 32 of the brush and attached to support arms 170 .
  • the support arms 170 are arranged such that the tapered outer surfaces 34 and 36 of the brush are free to rotate about the X and Y axes similarly to the previous embodiment. However, unlike the front surface 32 of the brush, they are not driven to rotate about the Z-axis Z-Z.
  • tapered outer surfaces 34 and 36 of the brush may be attached to the circumference of a generally circular supporting plate.
  • maximum power from the drive means can be used to rotate the flat front surface 32 of the bush, thereby removing a substantial amount of drag forces that would otherwise be created by the rotation of the tapered outer front and rear surfaces 34 and 36 .
  • Such an alternative arrangement may still provide the steering function of the brush according to the general concept illustrated in FIG. 13 and described above.
  • the bristles attached to the outer front and rear surfaces 34 and 36 may be replaced with skid pads or rollers, or any other suitable means that would provide a turning moment for the brush, while also protecting the surface to be cleaned from contacting the rigid surfaces of the brush.
  • fluid is supplied to the front surface 32 of the brush from behind as it rotates about the Z-axis Z-Z.
  • such fluid could comprise a cleaning agent or an anti-fouling agent.
  • the fluid is provided internally of the axle (not shown) upon which the brush rotates about the Z-axis.
  • the provision of the fluid may come from an internal connection between a rotary connector 70 and the drive means 38 .
  • the fluid may be provided via an external connection to axle.
  • Embodiments of the invention therefore provide a brush arrangement, whereby the brush is rotatably supported and the brush comprises cleaning means attached to a rear and/or side of the brush such that when the cleaning means come into contact with a surface, there is created a moment that results in rotational movement of the brush.
  • FIGS. 14 a, 14 b and 14 c the complete boat cleaning assembly 200 incorporating the above improvements over that of FIGS. 1 and 2 is shown in front elevation, side elevation, and plan view, respectively.
  • the assembly 200 is shown submerged in a suitable region of water, attached to a floating mooring pontoon 210 using a mounting frame 212 so that the base framework 18 is above the sea bed. Alternatively, if the region of water is not of substantial depth, the base framework 18 may rest on a sea bed.
  • the assembly 200 is arranged such that long arms 3 and 4 extend in the initial position generally in the longitudinal direction of the mooring 210 and are positioned one side of the mooring 210 .
  • the arm closest to the mooring 210 is hereafter referred to as the inner arm 3 and the arm furthest away from the mooring 210 is hereafter referred to as the outer arm 4 .
  • a brush and gimbal arrangement as described above is fixed to the end of each of the inner and outer arms.
  • the second arm portion 46 is directly fixed to each long arm 3 , 4 , extending in the same direction.
  • a brush 31 is fixed to first and second mounting brackets 40 , 42 and by first arm 44 to the second arm, to allow motion as described with reference to FIGS. 3 to 6 .
  • the assembly 200 further comprises a counter balance 220 attached to the side of the base framework 18 which is opposite to the side on which the arms 3 and 4 are positioned.
  • the counter balance is simply a piece of material of any suitable size, shape and mass such that that the weight of the assembly 200 is substantially balanced about the mooring 210 .
  • the lateral travel of the inner arm 3 along arc D is restricted by the edge of the mooring pontoon 210 .
  • the outer arm 4 can move more freely. Since the lateral movement of the outer arm 4 describes an arc C, the outer arm 4 falls lower than the inner arm 3 when at the maximum beam of the vessel being cleaned (when the arms 3 , 4 are rotated about axis A-A to the top of the vertical arc B). This effect increases as the depth of the assembly 200 and the distance travelled by the arms 3 , 4 to reach the surface of the water 215 is increased.
  • the mounting frame 212 is arranged such that, when the assembly 200 is attached to the pontoon 210 , the A-axis A-A, about which the arms 3 , 4 turn, is tilted upwards from horizontal so that the outer arm 4 is higher than the inner arm 3 .
  • the angle of tilt may be referred to as the angle between the horizontal and plane passing through the two arms 3 , 4 in their rest position, and is indicated in FIG. 14 b by the angle ⁇ .
  • the angle of tilt required to compensate may be optimised with respect to the depth of the base framework 18 , whereby the angle of tilt should be increased approximately 2° (two-degrees) for every 2 m (two-metres) of vertical depth below the surface of the water 215 the base framework 18 is submersed.
  • the arms 3 and 4 will be of greater length so that the required pivotal range of movement about the A-axis A-A for the arms to reach the surface of the water 215 is reduced.
  • the vertical arc B swept out by arms 3 and 4 tends towards an approximation of a vertical line.
  • FIG. 15 a a plan view of an apparatus for manoeuvring a floating boat 300 according to an embodiment of the invention is illustrated. Dotted lines indicated internal features that would not otherwise be visible.
  • the apparatus comprises attachment means and bi-directional drive means.
  • the attachment means is arranged such that it is connected to first and second places 314 and 316 on the boat 300 , first and second places 314 , 316 being longitudinally spaced apart.
  • the attachment means is releasably coupled to the bi-directional drive means so that the apparatus is operable to move the boat in either of two opposing directions, the opposing directions being in a generally longitudinal direction.
  • the attachment means is connected to first and second travellers 310 and 312 that each comprise connection means 318 and coupling means 320 , the coupling means 320 being operable to couple the respective traveller to the drive means.
  • the connection means comprises a cable 322 .
  • One end of a cable 322 is attached to the connections means 318 of the first traveller 310 and connected to the first place 314 on the boat 300 .
  • the other end of the cable 322 is attached to the connections means 318 of the second traveller 310 and connected to the second places 316 on the boat 300 .
  • the cable is also arranged such that it runs internally through protection means 324 .
  • the bi-directional drive means includes a bi-directional motor 326 that is operable to drive winching means 328 .
  • the bi-directional drive means further comprises a chain 330 that cooperates with the winching means 328 and a pulley block 332 such that the chain 330 may undergo bi-directional movement between the winching means 328 and the pulley block 332 .
  • the drive means also comprises a housing 334 within which the winching means 328 , chain 330 and pulley block 332 are enclosed, the winching means 328 and the pulley block 332 being fixed at opposing ends of the housing 334 .
  • the housing 334 and bi-directional motor 326 are attached to a mooring 336 such that they remain fixed in relation the mooring 336 .
  • the housing 334 also comprises an opening 336 in its top surface that extends substantially in the same direction as the chain 330 between the winching means 328 and the pulley block 332 .
  • the first and second travellers 310 and 312 are coupled to the chain through the opening 336 of the housing 334 such that their coupling means 320 are within the housing 334 and their connection means 318 protrude vertically through the opening so that a portion of their connection means is outside of the housing 334 .
  • the first and second travellers 310 and 312 are also arranged such that their longitudinal separation is generally the same as the longitudinal separation of the first and second places 314 and 316 on the boat 300 .
  • the coupling means 320 comprises a releasable clutch mechanism that functions to allow its associated traveller 310 or 312 to be freely manoeuvred back and forth along the chain 330 .
  • the clutch mechanism is operated to fixedly couple the attachment means to the chain so that it does not move relative to the chain 330 .
  • the clutch mechanism may also be released so that its associated traveller 310 or 312 can be repositioned as necessary.
  • the tension in the cable 322 is increased such that the boat 300 is pulled towards the first and second travellers 310 , 312 .
  • the tension is increased to a value that causes the cable between the first and second places 314 and 316 on the boat 300 to be urged against the side of the boat 300 and the boat 300 to be urged against the connection means 318 of a third traveller 338 , the third traveller 338 being coupled to the chain 330 in a similar manner to how the first 310 and second 312 travellers are coupled to the chain 330 (as described above).
  • the protection means 324 should be arranged such that it is placed between the side of the boat 300 and the connection means 318 of the third traveller 338 at the place on the side of the boat 300 that would otherwise make contact with the third traveller 338 as it is urged against the housing 334 .
  • the protection means 324 is then releasably attached to the connection means 318 of the third traveller 338 , using a suitable connection arrangement.
  • the tension in the cable may be controlled such that the pressure exerted by the boat 300 on the third traveller 338 is maintained at a predetermined value. In this way, the boat 300 and the third traveller 338 may be protected from experiencing excessive forces that may, for example, cause damage or increase the drive power requirements.
  • the protection means 324 would be positioned between the side of the boat 300 and the housing 334 of the drive means in order to prevent the side of the boat 300 contacting the housing 334 of the drive means.
  • the drive means are operated such that chain 330 undergoes movement that causes the first and second travellers 310 and 312 to undergo the same movement.
  • the boat 300 is moved in the same general direction as the travellers 310 , 312 due to the boat's 300 connection with the travellers 310 , 312 .
  • the bi-directional drive allows for the boat 300 to be manoeuvred relative to the fixed portion of the drive means in either of two opposing directions.
  • An apparatus for manoeuvring a floating boat thus comprises attachment means adapted for attachment to different places on the boat, and bi-directional drive means.
  • the attachment means is coupled to the drive means so that the apparatus is operable to move the boat in either of two opposing directions.
  • the illustrated embodiment of the invention uses the chain drive means set out above, it is also possible to use the boat cleaning apparatus with other more conventional means to move the boat backwards and forwards, such as a winch and rope.
  • the boat cleaning assembly may be moved forward leaving the boat stationary.
  • the boat cleaning assembly may be winched forward using a winch and rope or indeed the chain drive as set out above.
  • Alternative arrangements may further comprise control means such arranged such that the drive means is programmable or controllable.
  • embodiments of the invention may also cooperate with boat cleaning assemblies, such as those detailed above, so that boat manoeuvring apparatus and boat cleaning assembly are controlled together.
  • the drive means of the boat manoeuvring apparatus may be operated as the arms of the associated cleaning assembly are raised through their vertical cleaning arc.
  • the boat may be cleaned in straight vertical strokes instead of arc-shaped strokes.
  • the embodiments described refer to the vessel being cleaned as a boat or as a floating vessel. These terms are intended to include all forms of floating vessel, including for example ships, yachts, submarines, dinghies, barges and narrowboats, used both on sea and on inland waterways.
  • FIG. 15 b shows a modification of the apparatus of FIG. 15 a.
  • the modified apparatus comprises attachment means and bi-directional drive means.
  • the attachment means is arranged such that it is connected to first 338 and second 339 places on a boat 300 , first 338 and second 339 places being longitudinally spaced apart.
  • the attachment means is coupled to the bi-directional drive means so that the apparatus is operable to move the boat 300 in either of two opposing directions, the opposing directions being in a generally longitudinal direction.
  • the attachment means comprises first 340 to sixth 350 fenders connected end to end in a line, the first 340 and sixth 350 fenders being at opposite ends of the line.
  • First 352 and second 354 travellers are attached to the first 340 and sixth 350 fenders respectively, wherein the travellers are operable to move in either of two directions along a guide track 356 attached to a mooring 370 (the opposing directions being in a generally longitudinal direction).
  • the travellers are connected to the first 338 and second 339 places on a boat 300 , respectively, using first 355 a and second 355 b coupling means, for example rope.
  • first coupling means 355 a is releasably coupled to the first place 338 on the boat, and the other end of the first coupling means 355 a is releasably coupled to the first traveller 352 .
  • second coupling means 355 b is releasably coupled to the second place 339 on the boat, and the other end of the second coupling means 355 b is releasably coupled to the second traveller 354 .
  • the tension in the coupling means 355 a and 335 b is increased such that the boat 300 is pulled towards the first 352 and second 354 travellers.
  • the tension is increased to a value that causes the boat 300 against the first 340 to sixth 350 fenders.
  • the fenders are arranged such that they are positioned between the side of the boat 300 and the mooring 370 at places on the side of the boat that would otherwise contact the mooring 370 and/or the guide track 356 .
  • the tension in the coupling means 355 may be controlled such that the pressure exerted by the boat 300 on the fenders is maintained at a predetermined value. In this way, the boat 300 and the fenders may be protected from experiencing excessive forces that may, for example, cause damage or increase the drive power requirements.
  • the bi-directional drive means includes first 358 and second 360 bi-directional motors that are operable to drive first 362 and second 364 winching means.
  • the bi-directional drive means further comprises first 366 and second 368 coupling means (for example, a belt, chain or rope) that cooperate with the first and second winching means, respectively, such that the coupling means may undergo bi-directional movement between the winching means.
  • the first 362 and second 364 winching means are fixed at opposing ends of the mooring 370 .
  • the bi-directional motors and the winching means are attached to the mooring 370 such that they remain in a fixed position in relation to the mooring 370 .
  • the first 340 and sixth 350 fenders are coupled to the first 366 and second 368 coupling means, respectively.
  • the drive means are operated such that the coupling means 366 and 368 undergo movement that causes the fenders to undergo substantially the same movement, the movement of the fenders being guided by the travellers 352 and 354 cooperating with the guide track 356 . In this way, the boat 300 is moved in the same general direction as the travellers.
  • the bi-directional drive means allow for the boat 300 to be manoeuvred relative to the fixed position of the drive means in either of two opposing directions.
  • the traveller 352 comprises a substantially flat and rigid sheet 372 arranged in a substantially vertical plane. Protruding in a substantially perpendicular direction from a first surface of the sheet 372 (i.e. protruding in substantially horizontal direction from the sheet) are first 374 and second 376 elongate supporting members.
  • the first 374 and second 376 supporting members are spaced apart vertically (the first supporting member 374 being above the second supporting member 376 ) and arranged substantially parallel to each other so that they extend in the longitudinal direction (the direction indicated generally by arrow L in FIG. 15 c ) of the sheet 372 .
  • the first supporting member 374 is of a shorter length than the second supporting member 376 .
  • the first wheel supported by the first (upper) supporting member 374 is denoted with the suffix “A” (i.e. 378 A) and the second wheel supported by the first (upper) supporting member 374 is also denoted with the suffix “A” (i.e. 380 A).
  • the first wheel supported by the second (lower) supporting member 376 is denoted with the suffix “B” (i.e. 378 B) and the second wheel supported by the second (lower) supporting member 376 is also denoted with the suffix “B” (i.e. 380 B).
  • the axes about which the first 378 A and second 380 A wheels supported by the first supporting member 374 are free to rotate are denoted with the suffix “A” (i.e. V 1A and V 2A ).
  • the axes about which the first 378 B and second 380 B wheels supported by the second supporting member 376 are free to rotate are denoted with the suffix “B” (i.e. V 1B and V 2B ).
  • a fifth wheel 382 Rotatably connected to the first surface of the sheet 372 is a fifth wheel 382 such that it is free to rotate about a horizontal H 5 -axis H 5 -H 5 . Further, the fifth wheel 382 is arranged between the first 374 and second 376 supporting members and in a substantially central position of the first surface of the sheet 372 .
  • sixth 384 and seventh 386 wheels are rotatably connected to the first surface of the sheet 372 such that they are free to rotate about longitudinally spaced apart horizontal axes H 6 (H 6 -H 6 ) and H 7 (H 7 -H 7 ), respectively.
  • the sixth 384 and seventh 386 wheels are positioned vertically above the first lower wheel 378 B and second lower wheel 380 B, respectively, wherein the sixth 384 and seventh 386 wheels are also positioned substantially horizontally from the first 378 A and second 380 A upper wheels.
  • the traveller 352 cooperates with the guide track 356 of FIG. 15 b.
  • a more detailed illustration of this guide track 356 is provided in FIG. 15 e.
  • the guide track 356 is formed from an elongate extruded member with a generally U-shaped cross-section, wherein the opposing tongues of the U-shaped cross section are bent along the longitudinal length of the track 356 in the same direction and by approximately ninety degrees to form lips.
  • the guide track 356 comprises a base section 390 , a recess 392 for receiving at least one wheel of a traveller, and first 394 and second 396 lips.
  • the base section 390 is arranged in a substantially vertical plane such that the track extends in a substantially longitudinal direction (the direction indicated generally by arrow L in FIG. 15 e ) of a mooring pontoon 370 to which the guide track 356 is to be attached.
  • the base section 390 of the guide track 356 is then attached to the vertical side of the mooring pontoon, as illustrated in FIG. 15 f, using suitable attachment means.
  • the traveller 352 is then positioned to cooperate with the guide track 356 such that the recess 392 receives the first 378 A and second 380 A upper wheels, and the fifth 382 to seventh 386 wheels (as also illustrated in FIG. 15 f ).
  • the U-shaped channels formed by the guide track 356 and the side of the pontoon 370 are arranged such that one is directly above the other so that their edges are in registration. In other words, when viewed from above, their edges correspond. It should also be appreciated that it is not essential to the invention that U-shaped channels be arranged such that they are upside-down.
  • the U-shaped channels may alternatively be formed from two separate elongate members, each having a generally U-shaped cross-sectional shape. These separate elongate members may then be attached to the pontoon 370 to form a similar arrangement to that shown in FIG. 15 f, wherein the each member forms a guide channel for receiving wheels of a traveller 352 .
  • the pontoon 370 may be formed from more than one section (i.e. a first mooring section 370 A and a second mooring section 370 B). These sections may be movable independently of each other, thereby enabling the pontoon to change it shape, alignment or orientation as may be required. As a consequence of this feature, it may be preferable to provide a separate section of track 356 for each mooring section.
  • a problem associated with such an arrangement is the fact the sections of track may not be fully aligned with each other at all times, the individual movement of the respective mooring sections affecting the alignment of the tracks sections.
  • the traveller 352 FIGS. 15 c and 15 d may be modified as illustrated in FIG. 15 g.
  • the modified traveller 352 G is similar to the traveller 352 shown in FIGS. 15 c and 15 d. However, the modified traveller comprises more wheels than the traveller 352 of FIGS. 15 c and 15 d.
  • the modified traveller 352 G further comprises eighth 400 to eleventh 406 wheels.
  • the eighth 400 and ninth 402 wheels are rotatably supported at opposing ends of the upper surface of the second (lower) supporting member 376 such that the wheels are each free to rotate about a vertical V N -axis, where N denotes whether the axis is associated with the eighth 400 or ninth 402 wheel.
  • N denotes whether the axis is associated with the eighth 400 or ninth 402 wheel.
  • the tenth 404 an eleventh 406 wheels are rotatably connected to the first surface of the sheet 372 such that they are free to rotate about longitudinally spaced apart horizontal axes H 10 (H 10 -H 10 ) and H 11 (H 11 -H 11 ), respectively.
  • the tenth 404 an eleventh 406 wheels are positioned vertically above the eighth 400 and ninth wheel 402 , respectively, wherein the tenth 404 an eleventh 406 wheels are also positioned substantially horizontally from the first 378 A and second 380 A upper wheels and the sixth 384 and seventh 386 wheels.
  • a pair of wheels is provided at each end of the first surface of the sheet 372 , wherein each pair of wheels comprises longitudinally spaced apart wheels that are each rotatable about a horizontal axis.
  • At least one wheel of a pair can contact a section of track.
  • the other wheel of the pair is prevented from getting trapped or stuck in a gap that may be present between adjacent sections of track. Because the wheels must remain horizontally or vertically aligned with each other, contact with a track surface by one wheel of a pair supports the other wheel as it passes over the gap.
  • FIG. 16 a side elevation of a brush and gimbal arrangement according to an alternative embodiment of the invention is shown.
  • FIG. 17 shows a top view of the same arrangement.
  • the brush comprises bristles (not shown) provided on a flat front circular surface 32 , on a tapered outer front surface 34 , and on a tapered outer rear surface 36 .
  • the brush is rotatably connected to motorised drive means 38 , the drive means 38 being operative to rotate the brush 31 about a Z-axis Z-Z on an axle (not shown).
  • the brush 31 and drive means 38 are supported by a first mounting bracket 40 which is rotatably connected to second and third mounting brackets 500 , 510 .
  • the first, second and third mounting brackets 40 , 500 , 510 cooperate such that the brush 31 and drive means 38 are free to rotate about an X-axis (indicated by X-X) on bearings.
  • the second and third mounting brackets 500 and 510 are arranged parallel to each other, spaced apart in a lateral direction (the direction indicated generally by arrow L), and rotatably connected to fourth and fifth mounting brackets 520 , 530 .
  • the fourth and fifth mounting brackets 520 , 530 are arranged parallel to each other and spaced apart in a longitudinal direction (the direction indicated generally by arrow M).
  • the fourth and fifth mounting brackets 520 , 530 are rotatably connected and supported by a first arm portion 540 such that the fourth and fifth mounting brackets 520 , 530 are free to rotate about Y-axes Y 1 -Y 1 and Y 2 -Y 2 respectively, the Y-axes Y 1 -Y 1 and Y 2 -Y 2 being substantially in the same direction.
  • FIG. 18 shows a top view of the arrangement in FIGS. 16 and 17 when the fourth and fifth mounting brackets 520 , 530 are rotated in an anti-clockwise direction.
  • the first arm portion 540 is rotatably connected to the second arm portion 46 such that the first arm portion 540 may be rotated about an X 2 -axis X 2 -X 2 , the X 2 -axis X 2 -X 2 being substantially in the same direction as the X-axis X-X.
  • the second arm portion 46 is also rotatably connected to displacement means (not shown) of a cleaning assembly (for example, arm 3 or 4 of the assembly shown in FIGS. 1 and 2 ) such that the second arm portion 46 may be rotated about a Y 3 -axis Y 3 -Y 3 , the Y 3 -axis Y 3 -Y 3 being substantially in the same direction as the Y 1 , Y 2 and Y-axes.
  • a cleaning assembly for example, arm 3 or 4 of the assembly shown in FIGS. 1 and 2
  • the rotation about the X and Y-axes ensures that the face of the brush is against the boat during cleaning, and the brush 31 can be moved along the boat using the rotations about the X 2 and Y 3 axes.
  • the range of angular displacement of the brush and drive means about the X-axis X-X is not limited due to the proximity of the second mounting bracket to the back of the flat brush face 32 .
  • the arrangement shown in FIGS. 16 and 17 enables the axes X, Y and Z to intersect at a point 550 whilst also allowing a maximal range of angular displacement about the X, Y and Z axes to be realised.
  • FIG. 19 a a top view of a brush and gimbal arrangement according to another embodiment of the invention is shown.
  • the brush and gimbal arrangement is similar to that shown in FIGS. 16 and 17 , the brush 31 and drive means 38 being supported by a first mounting bracket 40 which is rotatably connected to a multi-portion parallel linkage.
  • compression springs 560 are connected between the first mounting bracket 40 and the second and third mounting brackets 500 , 510 at the locations where the first, second and third mounting brackets 40 , 500 , 510 cooperate.
  • the fourth and fifth mounting brackets 520 , 530 shown in FIG. 19 a are shaped such that the pivot points about the Y-axes (Y 1 -Y 1 and Y 2 -Y 2 ), by which the fourth 520 and fifth 530 mounting brackets are rotatably connected and supported by a first arm portion 540 , are offset longitudinally (the direction indicated generally by arrow M) from the pivots by which the fourth 520 and fifth 530 mounting brackets are rotatably connected to the second and third mounting brackets 500 and 510 .
  • the point 550 at which the X, Y and Z axes intersect is also offset longitudinally from the pivots by which the first mounting bracket 40 which is rotatably connected to the second and third mounting brackets 500 , 510 .
  • the longitudinal offset of all of the pivot points about the Y-axes (Y-Y, Y 1 -Y 1 and Y 2 -Y 2 ) is of substantially the same magnitude and in the same direction.
  • the parallel linkage formed by the mounting brackets enables rotation of the fourth and fifth mounting brackets 520 , 530 about the Y 1 and Y 2 axes to causes the brush 31 and drive means 38 to rotate about the Y-axis Y-Y, the Y-axis being in substantially the same direction as the Y 1 and Y 2 axes.
  • this embodiment illustrates how the longitudinal position of the pivot point 550 can be modified whilst also maintaining the functional feature of the parallel linkage arrangement.
  • the brush when the flat front circular surface 32 of the brush is parallel to the X-Y plane (as shown in FIG. 19 a ), the brush is said to be in its reference position with zero angular displacement about the X-axis X-X.
  • the embodiment is arranged such that the reference plane is parallel to the X-Y plane.
  • the compression springs 560 are arranged so that an equilibrium position of the brush 31 and drive means 38 is the same as the reference position and no net turning force is experienced by the brush 31 and drive means 38 about the X-axis X-X when it is in the reference position.
  • the compression springs 560 urge the brush 31 and drive means 38 back towards the reference position.
  • Alternative embodiments may further include means to retain and collect debris and foreign matter removed from the boat during the cleaning process.
  • FIG. 19 b Such an alternative embodiment is illustrated in FIG. 19 b, wherein a generally round housing 570 is arranged to surround the brush 31 and drive means 38 to form an enclosure around the brush 31 and drive means 38 during cleaning.
  • a generally round housing 570 is arranged to surround the brush 31 and drive means 38 to form an enclosure around the brush 31 and drive means 38 during cleaning.
  • debris removed from a surface of a boat by the brush 31 can be retained within the housing 570 and may then be removed and collected via a tube 575 , for example via suction.
  • a fender 580 is provided on the external surface of the housing 570 to prevent the side of the housing 570 from contacting the boat surface during the cleaning process.
  • the fender 580 is formed from rubber although it will be understood that the fender 580 may be formed from any suitable material. Further, although it is preferable to protect the side of the housing from contacting the boat surface, provision of a fender 580 or other such protection is optional.
  • a hollow ring 585 that has a plurality of holes 576 and are formed in its surface at spaced apart positions on the side of the ring that faces the surface to be cleaned.
  • the plurality of holes 576 enable passage of debris and water into the tube, from where it is removed through the tube 575 via an exit hole 587 .
  • the enclosure formed by the housing 570 may remain in contact with the surface of the boat (or a predetermined small distance away from the surface) during cleaning. Thus, during cleaning, most or all of the debris is retained within the enclosure for removal and/or collection.
  • FIG. 19 c is a front elevation (in the direction of arrow S in FIG. 19 b ) of a modified version of the housing 570 in FIG. 19 b, wherein the brush 31 is not shown for ease of understanding.
  • a portion of the housing 570 is removed from an area of the housing 570 which is controlled to stay below a water line during cleaning, (in other words, the area that is controlled to remain below the surface of the water during cleaning). In this way, water can circulate within the housing during cleaning.
  • a rigid and hollow container 588 of substantially the same diameter of the inner surface of the housing formed in the surface of the cylinder 588 facing the surface to be cleaned is a plurality of holes 586 .
  • the holes 586 are spaced apart from each other and at a distance R from the centre 589 of the cylinder surface such that a ring of radius R (as illustrated by dashed circle W) is created.
  • an exit hole 587 Formed in the surface of the cylinder facing away from the surface to be cleaned (to opposite surface) is an exit hole 587 to which a hose or tube can be attached.
  • the plurality of holes 586 enable passage of water and debris into the cylinder, from which it can be removed through a tube or hose via the exit hole 587 .
  • more than one exit hole 587 may be provided for the removal of water and debris.
  • a boat cleaning assembly 600 according to an alternative embodiment of the invention is shown in plan view.
  • the cleaning assembly 600 comprises a pair of pivotable arms 3 and 4 .
  • the arms are pivotable about an axis A-A on an axle 15 , the arms being pivotable about axis A-A by means of a hydraulic ram 602 and an arm 604 connected to the ram 602 .
  • the assembly 600 is arranged such that arms 3 and 4 extend in the initial position generally in a longitudinal direction which is substantially parallel to a longitudinal line N-N which is equidistant from arms 3 and 4 indicates a central line between the arms 3 and 4 .
  • the arms 3 and 4 are pivotally attached to the axle 15 at pivots 606 and 608 which are spaced apart laterally.
  • the arms may therefore pivot about pivots 606 and 608 to follow the curved profile of a hull.
  • a brush and gimbal arrangement as described above is fixed to the free end of each of the arms 3 and 4 .
  • the second arm portion 46 is directly fixed to each long arm 3 , 4 , extending in the same direction.
  • the assembly 600 further comprises a hydraulic cylinder assembly 610 which is pivotally attached at opposing ends to the arms 3 and 4 .
  • an arm connecting means 612 pivotally attached to brackets 614 and 616 formed on the arms 3 and 4 .
  • the arm connecting means 612 are also arranged such that it intersects a line P-P through pivots 606 and 608 at the same point it intersects the central line N-N.
  • Hydraulic drive means (not shown) associated with the hydraulic cylinder assembly 610 operate to urge the arms 3 and 4 laterally towards or apart from each other.
  • the pivots 606 and 608 therefore allow for displacement of the arms 3 and 4 which is generally lateral of the longitudinal axis the hull of the vessel (i.e. away from the central line N-N).
  • the linkage arrangement of the arm connecting means 612 ensures that lateral displacement of the arms is symmetrical about the central line N-N.
  • a single hydraulic assembly 610 can be used to provide laterally symmetrical motion of the arms 3 and 4 about the central line N-N.
  • the assembly 600 is submerged in a suitable region of water, attached to a floating mooring pontoon (not shown) or, if the region of water is not of substantial depth, it may rest on a sea bed.
  • the vessel To clean a marine vessel, the vessel is positioned above the arms 3 , 4 such that the longitudinal axis of the hull of the vessel corresponds to the central line N-N and moved in the longitudinal direction.
  • Drive means (not visible) are operable to repeatedly pivot the arms 3 , 4 outwardly, upwardly and then inwardly so that the brushes contact the hull.
  • the brushes are then moved up and down to clean the hull of the vessel.
  • the vessel is slowly moved forward so that the arms clean the whole length of the vessel.
  • FIGS. 21 a and 21 b show a plan view and side view, respectively, of a modification of the boat cleaning assembly shown in FIGS. 14 a - 14 c.
  • the assembly 200 A is submerged in a suitable region of water ( 215 ), attached to a floating mooring pontoon 210 A using a mounting frame 212 A. If the region of water is not of substantial depth, the base framework 18 A may rest on a sea bed.
  • the modified assembly 200 A further comprises a hydraulic cylinder assembly 205 connected between the base framework 18 A and the mounting frame 212 A. Hydraulic drive means associated with the hydraulic cylinder 205 operate to urge the base framework 18 A laterally away from the mooring pontoon 210 A.
  • the central line N-N can be moved laterally in order to align with the longitudinal axis of a vessel hull to be cleaned.
  • the base framework 18 A may be moved in either of two generally opposing lateral directions so that the assembly 200 A can cater for vessels of differing widths and maintain generally symmetrical operation and movement of the arms 3 and 4 about the central line N-N.
  • substantially parallel spaced apart guide rails 225 are provided, the guide rails 225 being connected to the mounting frame 212 A and extending in a lateral direction away from the mooring pontoon 210 A.
  • the allowable lateral travel of the inner arm 3 can be increased by moving the base framework 18 A away from the mooring pontoon 210 A.
  • the embodiment of FIG. 21 can be arranged so that the lateral movement of both arms 3 and 4 when cleaning a vessel hole is equal, thereby eliminating any imbalance in vertical movement of the arms. Accordingly, the axis A-A about which the arms 3 and 4 turn, is not tilted upwards from horizontal (unlike the apparatus 200 of FIGS. 14A-14C , which has a non zero value of ( ⁇ ).
  • the assembly further comprises buoyancy containers 230 attached to the base framework 18 A, and the substantially vertical beams of the mounting frame 212 A are arranged to pass through loops attached to the mooring pontoon 210 A.
  • the buoyancy containers 230 are arranged such that a ratio of water volume to air volume within the containers may be adjusted and/controlled.
  • the base 18 A may be lifted to the water surface.
  • the base 18 A may be submerged below the water surface.
  • the depth by which the base framework 18 A is submerged below the water surface can be adjusted and/or controlled.
  • the ratio of water to air ratio in each container may be individually controlled during the cleaning operation to stabilise the base framework 18 A and maintain it in a substantially horizontal arrangement.
  • buoyancy containers 230 for adjusting the depth of the base framework 18 A is not essential.
  • Alternative methods and/or arrangements may be employed to adjust the depth of the base framework 18 A.
  • a winching system may be provided on the pontoon 210 A and connected to the base framework to raise and lower the same.

Abstract

Improvements to a cleaning assembly include a support for a rotating object, a rotary brush, an apparatus for manoeuvring a floating vessel and an arm arrangement for cleaning a surface. Thus, an inventive cleaning assembly is provided, the cleaning assembly comprising a submersible framework, and two arms of the aforementioned arrangement pivoted to the submersible framework at the opposite end of the arm to the brush and gimbal arrangement, the arms having a substantially horizontal rest position and pivoted to allow the arms to move to move the brush to clean both sides of a floating vessel.

Description

    FIELD OF THE INVENTION
  • The invention relates to improvements in apparatus for cleaning the hull of a floating vessel, and more particularly to a support for a rotating object, a rotary brush, an apparatus for manoeuvring a floating vessel, an arm arrangement for cleaning a surface and a cleaning assembly.
  • RELATED ART
  • It is common practice for power and sailing craft to be cleaned at least twice a year, which can increase performance and fuel economy significantly. Such cleaning is assisted by anti-fouling paints. However, anti-fouling paints are becoming increasingly expensive and, because of world-wide anti-pollution laws, the paints available to both the commercial and leisure industries are becoming less effective.
  • FIGS. 1 and 2 show a plan view and side elevation, respectively, of a boat cleaning assembly proposed in EP 1,196,321. Referring to FIGS. 1 and 2, the cleaning assembly 1 comprises a pair of pivotable arms 3 and 4 which are each provided at their free ends with a rotatably mounted brush 5 and 6 respectively. The arms are pivotable about an axis A-A on an axle 15 which is mounted on a base framework 18, the arms being pivotable about axis A-A by means of an upright hydraulic ram 17 a and a tie rod 17 b which is connected to the ram 17 a.
  • With reference in particular to FIG. 1, the arms 3 and 4 each comprise a central portion 27, 26 and two inwardly directed portions, 7 and 11, and 8 and 12 respectively.
  • On each of the arm portions 7 and 8 there is rotatably mounted on gimbals 9 and 10 a brush 5 and 6, respectively. The gimbals provide free suspension in all planes for the respective brush. Each brush 5 and 6 comprises bristles provided on a front flat circular surface and on a tapered outer surface. Each arm 3 and 4 is pivotally mounted for generally lateral movement about pivots 21 and 20 in arcs C and D respectively.
  • The assembly 1 further comprises arm mounting means 19. Hydraulic cylinder assemblies 13 and 14 are provided which are pivotally attached at one end to the arm portions 11 and 12 and at the opposite end to a bracket 35, the bracket 35 being secured between the free ends of the mounting means 19. The mounting means 19 are fixedly secured to the axle 15, the pivots for said axle being provided on two upstanding brackets 36 and 37 which are attached to the base framework 18.
  • An operating arm 22 is attached at one end to the axle 15 and at its other end to the lower end of the tie rod 17 b. A ram 17 a and the tie rod 17 b are enclosed by an upright framework 16 which comprises two opposing upright members 25 and a plurality of horizontal bridges 24.
  • The assembly is submerged in a suitable region of water and the base framework 18 rests on the seabed. A marine vessel, for example a yacht (not shown), is then manoeuvred so that the vessel is positioned above the arms 3 and 4. A winch configuration (not shown) is then attached to a stem line and a bow line of the vessel so that the vessel may be conveyed across the axis A-A.
  • The tie rod 17 b is then actuated so that the arms 3 and 4 are pivoted upwardly about horizontal axis A-A towards the surface of the water. On reaching the surface of the water, a signal is sent to memory means of the assembly control means so that the vertical position of the tie rod 17 b, which corresponds to the arms being at the waterline, is stored. Position sensing means are then operative to monitor the vertical position of the tie rod 17 b. Using the control means, which comprises a console, an operator then activates the hydraulic brush drive means so as to rotate the brushes 5 and 6. Hydraulic drive means associated with the hydraulic cylinder devices 13 and 14 is then activated so as to urge the arms 3 and 4 towards the hull of the vessel. Sensing means are provided which is operative to monitor the back pressure of the hydraulic fluid used to actuate the brushes.
  • Once a predetermined pressure value has been reached, such that fouling is removed with the minimum of any hull paint, the cleaning operation is commenced and in so doing the hydraulic ram 17 a causes the arms 3 and 4 to pivot downwardly about axis A-A. The correct pressure applied to the fouling on the hull is maintained as the arms pivot about pivots 21 and 20 to follow the curved profile of the hull. The pivots 21 and 20 allow for displacement of the arms 3 and 4 which is generally lateral of the longitudinal axis of the hull of the vessel.
  • As the arms sweep downwards through arc B, the rotating brushes eventually meet underneath the hull. When the brushes come into rotational contact with each other, the control means controls the hydraulic cylinder assemblies 13 and 14 to urge the arms 3 and 4 apart and generally outwardly of the hull. The control means then causes the winch means to be activated to convey the vessel a predetermined distance perpendicular to the axis A-A. Whilst the brushes are still apart, the arms are then pivoted generally upwardly of the hull through a predetermined angle by axle 15 and then towards the hull to contact with any fouling thereon. Once the predetermined value of back pressure of the hydraulic brush drive means is attained, the brushes are pivoted generally upwardly of the hull.
  • Once the tie rod 17 b reaches the predetermined position corresponding to that angular position of the arms 3 and 4 at which the brushes are at water level, the arms 3 and 4 are urged laterally outwardly of the hull so that the brushes are no longer in contact therewith. The vessel is then moved forward the predetermined distance by the winch means. The arms are then urged laterally inwardly of the hull so that the brushes come into contact with the fouling with the required pressure. The brushes are then caused to sweep generally downwardly of the hull. The cleaning process continues in the same fashion until the whole length of the hull has been subjected to the brushes, at which point the winch means will have conveyed the vessel clear of the paths of the brushes.
  • Use of the above boat cleaning assembly proposed by the applicant has demonstrated that it exhibits a number of problems and, consequently, it does not provide for optimal cleaning. It is therefore desirable to realise an improved boat cleaning assembly
  • SUMMARY OF THE INVENTION
  • According to an aspect of the invention, there is provided an arm arrangement for cleaning a surface, comprising: an arm; a brush and gimbal arrangement on the end of the arm, the brush and gimbal arrangement including: a brush; a drive means for rotating the brush about a first axis; pivots to allow the brush and drive means to rotate about a second axis substantially perpendicular to the first axis and a third axis substantially perpendicular to the first axis and to the second axis to allow the brush to pivot on the end of the arm to follow the surface for cleaning.
  • According to another aspect of the invention, there is provided a cleaning assembly, comprising: a submersible framework; means for mounting the submersible framework to a fixed body; and two arm arrangements according to any preceding claim, each arm being pivoted to the submersible framework at the opposite end of the arm to the brush and gimbal arrangement, the arms being pivoted to allow the arms to move the brush to clean both sides of a floating vessel, arranged such that when the assembly is mounted the arms have a substantially horizontal rest position.
  • According to yet another aspect of the invention, there is provided a support for a rotating object, the object rotating about a first axis, wherein the support comprises: a drive means for rotating the object about the first axis; a gimbal arrangement for supporting the drive means and the object, the gimbal arrangement having pivots to allow the drive means and object to rotate about a second axis substantially perpendicular to the first axis and a third axis substantially perpendicular to the first axis and to the second axis, and a pivot to allow the object to rotate about a fourth axis substantially parallel to the second axis and spaced from the second axis.
  • According to a further aspect of the invention, there is provided a rotary brush comprising: a surface that rotates about an axis; and a plurality of bristle clumps attached to the surface, the bristle clumps being arranged in rows extending radially from the first axis.
  • According to another aspect of the invention, there is provided a rotary brush comprising: a surface that rotates about an axis; and a plurality of bristle clumps attached to the surface, wherein the bristle clumps are arranged to form a channel between adjacent bristle clumps, the channel having a lower density of bristles attached to the surface of the brush than that of the bristle clumps and extending outwardly from the axis of rotation to the edge of the brush surface.
  • According to a yet further aspect of the invention, there is provided an apparatus for manoeuvring a floating vessel forward and aft in the longitudinal direction comprising: bidirectional drive means having a plurality of longitudinally spaced drive positions; and attachment means adapted to attach a plurality of different places on the floating vessel to respective drive positions, wherein the bidirectional drive means is arranged to drive the plurality of longitudinally spaced drive positions together to move the floating vessel fore and aft.
  • According to another aspect of the invention, there is provided apparatus for guiding the movement of a floating vessel comprising: at least one track elongated in a longitudinal direction; means for mounting the at least one track to a substantially upright side of a pontoon or fixed body; a carriage comprising coupling means for coupling the floating vessel to the carriage, wherein the carriage is arranged to engage with the at least one track such that the carriage can move along the longitudinal direction of the at least one track.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the invention, embodiments will now be described, purely by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 shows a plan view of an existing boat cleaning assembly;
  • FIG. 2 shows a side elevation of an existing boat cleaning assembly;
  • FIG. 3 is a side elevation of a brush and gimbal arrangement according to an embodiment of the invention;
  • FIG. 4 shows a plan view of a brush and gimbal arrangement of FIG. 3;
  • FIG. 5 is an illustration of the relationship between the axes of rotation and pivot points for the brush and gimbal arrangement the arrangement of FIGS. 3 and 4;
  • FIG. 6 illustrates how the gimbal arrangement of FIG. 3 permits motion of a rotary brush;
  • FIGS. 7 a and 7 b illustrate the motion provided by the brush mountings in the boat cleaning assembly shown in FIGS. 1 and 2;
  • FIG. 8 a is a plan view of a rotary connector according to an embodiment of the invention;
  • FIG. 8 b is a front elevation of a rotary connector according to an embodiment of the invention;
  • FIG. 9 is a longitudinal cross-section on the line IX-IX of FIG. 8 b;
  • FIG. 10 a is a plan view of a rotary connector according to another embodiment of the invention;
  • FIG. 10 b is a front elevation of a rotary connector according to another embodiment of the invention;
  • FIG. 11 shows a longitudinal cross-section on the line XI-XI of FIG. 10 b;
  • FIG. 12 a shows a front elevation of a brush according to an embodiment of the invention.
  • FIG. 12 b shows a vertical cross-section on the line XII-XII of FIG. 12 a;
  • FIG. 12 c shows a modification of the brush of FIG. 12 a;
  • FIG. 12 d shows another modification of the brush of FIG. 12 a;
  • FIG. 13 a is an illustration of a brush shown in FIGS. 12 a and 12 b cooperating with a curved surface to be cleaned, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a;
  • FIG. 13 b shows an alternative embodiment of a brush, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a;
  • FIG. 14 a is a front elevation of a boat cleaning assembly according to an embodiment of the invention;
  • FIG. 14 b is a side elevation of a boat cleaning assembly according to an embodiment of the invention;
  • FIG. 14 c is a plan view of a boat cleaning assembly according to an embodiment of the invention;
  • FIG. 15 a is a plan view of an apparatus for manoeuvring a floating boat according to an embodiment of the invention;
  • FIG. 15 b is a plan view of an apparatus for manoeuvring a floating boat according to an alternative embodiment of the invention;
  • FIGS. 15 c and 15 d show a front elevation and side elevation, respectively, of a traveller that may be used with the apparatus of FIG. 15 b;
  • FIG. 15 e shows a perspective view of a guide track and mooring pontoon that may be used with the apparatus of FIG. 15 b;
  • FIG. 15 f illustrates the traveller of FIGS. 15 c and 15 d cooperating with a guide track and mooring pontoon of FIG. 15 e;
  • FIG. 15 g shows a front elevation of a modification of the traveller of FIGS. 15 c and 15 d;
  • FIG. 16 is a side elevation of a brush and gimbal arrangement according to another embodiment of the invention;
  • FIG. 17 shows a plan view of a brush and gimbal arrangement of FIG. 16;
  • FIG. 18 show a plan view of a brush and gimbal arrangement of FIG. 16 when the fourth and fifth mounting brackets are rotated in an anti-clockwise direction about the Y1 and Y2 axes respectively;
  • FIG. 19 a shows a top view of a brush and gimbal arrangement according to another embodiment of the invention;
  • FIG. 19 b shows a modification of the embodiment of FIG. 19 a;
  • FIG. 19C is a front elevation (in the direction of arrow S in FIG. 19 b) of a modified version of the housing in FIG. 19 b;
  • FIG. 20 is a plan view of a complete boat cleaning assembly 600 according to an alternative embodiment of the invention; and
  • FIGS. 21 a and 21 b show a plan view and side elevation, respectively, of a modification of the boat cleaning assembly shown in FIGS. 14 a-14 c.
  • Like reference numerals refer to like elements throughout.
  • DETAILED DESCRIPTION
  • The embodiment described is a boat cleaning assembly. The overall assembly is similar to that as shown in FIGS. 1 and 2. However, various components of the assembly are improved compared with the boat cleaning assembly of FIGS. 1 and 2 with the result that the overall assembly gives an improved performance.
  • A first improvement relates to the way in which the brush is mounted on gimballed bearings. The mounting used in the embodiment will be described first, and then the reasons for using the mounting will be discussed. Referring to FIG. 3, a side elevation of a brush and gimbal arrangement according to an embodiment of the invention is shown. FIG. 4 shows a top view of the same arrangement.
  • The brush 31 comprises bristles (not shown) provided on a flat front circular surface 32, on a tapered outer front surface 34, and on a tapered outer rear surface 36. The brush 31 is rotatably connected to motorised drive means 38, the drive means 38 being operative to rotate the brush 31 about a Z-axis Z-Z on an axle (not shown).
  • The brush 31 and drive means 38 are supported by a first mounting bracket 40 which is rotatably connected to a second mounting bracket 42. The first and second mounting brackets 40 and 42 cooperate such that the brush 31 and drive means 38 are free to rotate about an X-axis (indicated by X-X) on bearings.
  • The second mounting bracket 42 is rotatably connected and supported by a first arm portion 44 such that the second mounting bracket 42 is free to rotate about a Y-axis Y-Y on a bearing (not shown).
  • The first arm portion 44 is rotatably connected to a second arm portion 46 such that the first arm portion 44 may be rotated about an X2-axis X2-X2, the X2-axis X2-X2 being substantially in the same direction as the X-axis X-X. The second arm portion 46 is also rotatably connected to displacement means (not shown) of a cleaning assembly (for example, arm 3 or 4 of the assembly shown in FIGS. 1 and 2) such that the second arm portion 46 may be rotated about a Y2-axis Y2-Y2, the Y2-axis Y2-Y2 being substantially in the same direction as the Y-axis Y-Y.
  • The brush is arranged to freely rotate about the X and Y axes according to external forces applied to the brush, whereas rotational motion of the brush about the X2 and Y2 axes is powered by drive means, the drive means being arranged such that the motion of the brush about the X2 and Y2 is programmable or controllable.
  • Of course, it is not essential to power or control the motion of the brush about the X2 and Y2 axes. In alternative arrangements, the brush may freely rotate about X2 and Y2 axes.
  • Thus, the rotation about the X-and Y-axes ensures that the face of the brush is against the boat during cleaning, and the brush 31 can be moved along the boat using the rotations about the X2 and Y2 axes.
  • The brush and gimbal arrangement of FIG. 3 will now be further explained with reference to FIG. 5. FIG. 5 is an illustration of the relationship between the axes of rotation and pivot points for the arrangement of FIGS. 3 and 4. To assist understanding of the illustration, the relative location of the flat front circular surface 32 of the brush is indicated in the illustration.
  • The flat front circular surface 32 of the brush is rotatable about the Z-axis Z-Z on pivot 47, the brush 31 and drive means 38 are rotatable about the X-axis on bearings 48, and the second mounting bracket 42 is rotatable about a Y-axis Y-Y on bearing 50. The axes, X, Y and Z are substantially orthogonal and are shown intersecting at a point 52 which is rather centrally located inside brush and drive means 38.
  • Rotation of the brush 31 and drive means 38 about the X-axis generates movement of the surface 32 of the brush generally along arc E. Similarly, rotation of the second mounting bracket 42 about the Y-axis generates movement of the surface 32 of the brush generally along arc F.
  • It is to be appreciated that, in the illustration, the relative distances between the bearings 48,50 and the surface 32 of the brush are not to scale, being arranged solely for the purpose of clarity. It can be appreciated these distances affect the shape of the illustrated arcs E and F.
  • When then the flat front circular surface 32 of the brush is parallel to the X-Y plane, as illustrated in FIGS. 3, 4 and 5, the brush 31 is said to be in its reference position with zero angular displacement along the arcs E and F. When in this reference position, the front circular surface 32 of the brush may also be said to be in the reference plane. Thus, the example of the present invention is arranged such that the reference plane is parallel to the X-Y plane.
  • Referring back to FIG. 3, it can be appreciated that the range of angular displacement of the brush and drive means about the X-axis X-X is limited to an angle −θ in a counter-clockwise direction, due to the proximity of the second mounting bracket 42 to the back of the flat brush face 32.
  • FIG. 6 illustrates how the gimbal arrangement of FIG. 3 permits motion of the rotary brush 32. As may be seen, the first arm portion 44 may be rotated about the X2-axis with respect to the second arm portion 46 to move the second mounting bracket 42 generally along arc J. Rotation by 900 results in the position illustrated by the dashed lines indicating the position of the surface of the brush 32′ (and the Z′ and Y′ axes). Similarly, rotation of the second arm portion 46 about the Y2-axis Y2-Y2 generates movement (not shown) of the surface 32 of the brush about the Y2-axis Y2-Y2. It can therefore be appreciated that the allowable range of displacement of the surface 32 of the brush about the X2 and Y2 axes forms a semi-spherical surface.
  • Rotation of the first mounting bracket 40, and hence the brush 31, about the X-axis X-X with respect to the second mounting bracket 42 generates movement of the surface 32 of the brush generally along arc E, as shown in FIG. 5 and FIG. 6.
  • Similarly, rotation of the second mounting bracket 42 about the Y-axis Y-Y generates movement (illustrated by arc F in FIG. 5) of the surface 32 of the brush about the Y-axis Y-Y. Thus, the surface of the brush may be moved with a great deal of flexibility.
  • This enables the surface 32 of the brush to maintain contact with a curved or uneven surface to be cleaned. Minor variations in the shape or movement of the surface to be cleaned, for example a small movements of a boat hull due to wave motion, are accounted for by pivotal motion of the brush surface 32 about the X and Y axes. Larger variations in the shape or movement of the surface to be cleaned may also be accounted for by pivotal motion of the brush surface 32 about the X2 and Y2 axes.
  • It may also be preferable to move the first 44 and second 4 arm portions about the X2 and Y2 axes into a desired position and then releasably fix them in this desired position so that movement of the brush surface about the X2 and Y2 axes can be restricted. In this way, the orientation of the first arm portion 44 and the second portion 46 with respect to a supporting arm may be maintained for a required amount of time and re-adjusted as necessary.
  • The flat front circular surface 32 of the brush is rotatable about the Z3-axis Z3-Z3 on pivot 54. This is in turn mounted on bearing 56 to allow the brush and drive means 38 to be rotatable about the X3-axis X3-X3. This bearing is mounted on arm portion 57 linking to a second bearing 58 which permits the arm portion to rotate about the Z3-axis Z3-Z3.
  • Rotation of the brush and drive means 38 about the X3-axis generates movement of the surface 32 of the brush generally along arc G. Similarly, rotation of the arm portion about the Z3-axis Z3-Z3 generates movement of the surface of the brush generally along arc H.
  • Referring in particular to FIG. 7 b, it can be appreciated the allowable range of angular displacement of the surface 32 of the brush about the X3-axis X3-X3 is limited to an angle of −π/2 radians in a counter-clockwise direction and an angle of π/2 radians in a clockwise direction. Thus, the allowable range of displacement of the surface 32 of the brush forms a semi-spherical surface, indicated generally by 60.
  • Now, when the motor is operated with the axis of rotation of the motor parallel with the axis of rotation of the arm portion 57 with respect to the second bearing 58, the rotation of the motor causes forces to be exerted on the brush with the brush against the ship. It might be thought that this would simply cause rotation of the arm 57 about the bearing. However, in fact the inventors have realised that instead the brush tends to pivot about the X-axis at bearing 56. This causes great difficulty in keeping the brush against the sides of the boat. These twisting forces are amplified when the brush is rotating and the surface of the brush bridges two different environments, for example air and water. Consequently, the cleaning action of the rotating brushes is unpredictable and sub-optimal. The effect of these forces will be hereinafter referred to as a gyroscopic effect, since the direction of the twisting forces is the same.
  • Referring back to FIGS. 3 to 6, the brush and gimbal arrangement according to the embodiment avoids this difficulty. Referring to FIG. 6, it may be seen that in both the initial and final positions the brush rotates about an axis perpendicular to the X-X and Y-Y axes. In this way the reference plane of the flat front circular surface 32 of the brush is parallel to the X-Y plane, the gimbal arrangement provides free suspension for the brush in all planes while also minimising unwanted forces resultant from the gyroscopic effect.
  • A disadvantage is that the allowable angular displacement −θ in the arrangement of FIG. 3 is less than that of the allowable angular displacement −π/2 radians in the arrangement of FIG. 7. Put more simply, |θ|<|π/2|. This is a direct consequence of arranging the reference plane of the flat front circular surface 32 of the brush such that it is parallel to the X-Y plane. In other words, arranging the pivot of the Y-axis vertically below the pivot of the X-axis (when referring the illustration of FIG. 3) introduces the second support bracket 42, which ultimately limits the allowable range of angular displacement θ of the brush and drive means about the X-axis X-X in a counter-clockwise direction.
  • For this reason, the brush according to the embodiment is not merely provided with two gimbal axes X-X and Y-Y but additional gimbal axes X2 and Y2 are provided. As detailed above, the first arm portion 44 may be rotated about the X2-axis X2-X2 (the X2-axis X2-X2 being substantially in the same direction as the X-axis X-X), and the second arm portion 46 may be rotated about a Y2-axis Y2-Y2 (the Y2-axis Y2-Y2 being substantially in the same direction as the Y-axis Y-Y) in the reference position.
  • Referring back to FIG. 6, it will be noted that in the position shown by the dotted lines the Z′ axis is in fact parallel to the Y2 axis. However, since the first arm 44 is not free to rotate about the Y2 axis, but this is controlled, this does not cause the front face of the brush 32 to twist away from the hull.
  • The arrangement gives great flexibility of motion which is useful in particular for cleaning boats with a flat or substantially flat bottom.
  • Returning to FIGS. 3 and 4, the inventors have realised that further improvement in the performance of the cleaning assembly can be achieved by balancing the brush and the motor. Any imbalance will result in the brush and drive means 38 experiencing a net turning force about the X-axis.
  • The necessary adjustability is provided by first mounting bracket 40 comprising two sets of teeth 64,66 opposite each other, each set of teeth 64,66 comprising a plurality of teeth longitudinally spaced along the direction of Z-axis Z-Z in a periodic arrangement. A bearing (not shown) supported by the second mounting bracket 42 is operatively connected to the sets of teeth 64,66 on the first mounting bracket 40. The position of the bearing and hence the second mounting bracket can be adjusted by moving the bearing along the Z axis to be supported by different teeth. The bearing and sets of teeth 64,66 cooperate to support the first mounting bracket 40 and to locate it at discrete positions about the pivot point of the X-axis X-X with respect to the second mounting bracket 42.
  • Thus, the position of the first mounting bracket 40 with respect to the second mounting bracket 42 can be adjusted longitudinally of the Z-axis Z-Z to balance the brush and drive means on either side of the X-axis, ensuring that the moment exerted by gravity of the brush balances the moment of the drive means 38.
  • It is typically necessary to provide connections to the brush or drive means, for example wire, a hydraulic hosing or a pneumatic hosing attached to the brush to deliver power, forced water or compressed air to the brush. Such connections can unbalance the brush and drive means. As detailed above, when allowing for the brush and drive means 38 to freely rotate about the X-axis X-X, it may be desirable to minimise or remove any unbalancing effect about the X-axis X-X which may be caused by such attachments.
  • To this end, rotary connectors 70 (FIG. 4) are supported by the second mounting bracket 42 and operatively connected to the first mounting bracket 40 such that the brush and drive means 38 are free to rotate about the X-axis X-X on the bearing of the each connector 70.
  • Importantly, the rotary connectors 70 in this embodiment are arranged such that all three of the connection ports of the three-way connector are on inside of the first mounting bracket 40, i.e. on the side that faces inward towards the brush drive means 38. Attachments such as wire, hydraulic hosing or pneumatic hosing are connected between the ports of the three-way connector and the respective ports on the drive means 38.
  • Such connections are internal to the volume defined by the extremities of the first and second mounting brackets 40,42 (for ease of reference, such connections are hereinafter referred to as internal connections) and rotate about the X-axis X-X with the brush and drive means 38. Thus, it is to be appreciated that the orientation of the additional attachments with respect to the brush and drive means 38 remains fixed and can therefore be accounted for when balancing forces about the X-axis X-X using teeth 64,66.
  • The rotary connectors 70 will now be described in more detail with reference to FIGS. 8 a and 8 b, which show a plan view and front elevation, respectively, of the rotary connector used in the previously described embodiment. The rotary connector comprises a three-way hose connector, indicated generally by 80, rotatably mounted on a ring bearing 82. The general configuration may be seen in FIG. 4, which shows the ring bearing extending through mounting bracket 40 to bear within the second mounting bracket 42.
  • The three-way hose connector comprises a generally cube shaped hollow body portion 84 with first and second male hose connectors, 86 and 88, on opposing faces of the cube 84, and a third male hose connector 90 on a third side of the cube 84. The ring bearing 82 is rotatably mounted on the side of the cube 84 which is adjacent to the three male hose connectors 86,88,90. It can therefore be appreciated that the three-way hose connector 80 is free to rotate about the X-axis X-X.
  • Referring to FIG. 9, a longitudinal cross-section on the line IX-IX of FIG. 8 b is shown. The rotary connector 70 comprises a generally cube shaped hollow body portion 84 defining a cavity 92 and having first to third female threaded portions 94 into which first to third male hosing connectors 86,88,90 are received. First, second and third male hosing connectors 86,88,90 each comprise a tubular body portion 96 of a first diameter, and a male threaded tubular portion 98 of lesser diameter at the cube connecting end of the connector. The junction between the body portion 94 and the threaded portion 98 forms an annular seat 100 which bears against the cube shaped body portion 84 when the connectors and body portion are screwed together.
  • Thus, the cube shape body portion 84 and the first to third male hosing connectors 86,88,90 form a T or Y-shaped joint for effecting connection between hydraulic hosing. This three-way hose connector 80 is also rotatable about an axis due attachment of the ring bearing 82 on a side of the cube shaped body portion 84 that is adjacent to the three male hose connectors 86,88,90.
  • The illustrated embodiment of the rotary connector comprises a typical three-way connector. It is therefore to be understood that a rotary connector according to alternative embodiments of the invention need not comprise a three-way hose connector, but instead may comprise a connector with any suitable number of connectors, male and/or female.
  • It will be noted that the three-way connector allows all three hoses to be within the first mounting bracket. This gives a very distinct advantage since there is no risk that the hose end fitted over the connector comes into contact with the boat damaging the paintwork.
  • Referring to 10 a and 10 b, a plan view and front elevation of a rotary connector according to an alternative embodiment of the invention are shown, respectively.
  • The rotary connector comprises a two-way hose connector, indicated generally by 102, rotatably mounted on a combined ring bearing 104 and third male hose connector 106 arrangement. The two-way hose connector comprises a generally cube shaped hollow body portion 108 with first and second male hose connectors, 110 and 112, on opposing faces of the cube body portion 108. The ring bearing 104 is rotatably connected to a side of the cube shaped body portion 108. The outer bearing surface 114 cooperates with the cube shaped body potion 108 such that the body portion 108 is free to rotate about the X-axis X-X with respect to the third male hose connector 106 that is attached to an inner bearing surface (not visible).
  • Referring to FIG. 11, a longitudinal cross-section on the line XI-XI of FIG. 10 b is shown. The rotary connector comprises a generally cube shaped hollow body portion 108 defining a cavity 120 and having first and second female threaded portions 122 into which first and second male hosing connectors 110,112 are received. First, and second hosing connectors 110,112 each comprise a tubular body portion 124 of a first diameter, and a male threaded tubular portion 126 of lesser diameter at the cube connecting end of the connector. The junction between the body portion 124 and the threaded portion 126 forms an annular seat 128 which bears against the cube shaped body portion 108 when the connectors 110,112 and body portion 108 are screwed together.
  • The cube shaped hollow body portion 108 also has a bore 130 in one of its sides to receive and cooperate with an outer bearing surface 114. The ring bearing functions as would be generally expected by the skilled reader, rolling elements 132 being situated between the outer bearing surface 114 and an inner bearing surface 116 and enabling the outer bearing surface 114 to rotate freely about the X-axis X-X with respect to the inner bearing surface.
  • A third hosing connector 106 comprises a tubular bearing connecting body portion 134 connected to the inner bearing surface 116 and a hose connecting body portion 136. Thus, the third hosing connector 116 may rotate freely about the X-axis X-X with respect to the inner bearing surface 116 and the generally cube shaped hollow body portion 108 of the rotary connector.
  • It is to be appreciated that the rotary connector detailed above forms a T or Y-shaped joint for effecting a rotary connection between hydraulic hosing. This rotary connector enables two hosing connections to rotate about an axis with respect to a third hosing connection.
  • This rotary connector 70 enables an external hosing connection to be made with the rotary connector 70, the hosing connection being centred about the X-axis which minimises any unbalancing effects caused by such an external attachment. An external connection can therefore be made with the internal connections between the internal hose connectors and the respective ports 72 on the drive means 38, the internal connections still being able to rotate about the X-axis X-X with the brush and drive means 38.
  • As above, it is to be appreciated that any suitable number of connectors, male and/or female, may be employed in alternative embodiments of the rotary connector illustrated above. In addition, although the above embodiments have been detailed with respect to connectors for hydraulic hosing, alternative embodiments may comprise connectors for alternative connection types, such as wire or pneumatic connections.
  • FIGS. 12 a shows a front elevation of a brush according to an embodiment of the invention. FIG. 12 b shows a vertical cross-section on the line XII-XII.
  • The brush comprises bristles 30 attached to a flat front circular surface 32, to a tapered outer front surface 34, and to a tapered outer rear surface 36. Note that, for the purpose of clarity, the bristles 30 attached to the tapered outer front surface 34 are not shown in FIG. 12 a
  • As described above, hydraulic drive means (not illustrated) are operable to rotate the brush about a Z-axis Z-Z. The Z-axis Z-Z intersects the flat front circular surface 32 at a point pivot point 47 which is substantially in the centre of the flat front circular surface 32. The Z-axis is also arranged such that it is substantially perpendicular to a directional plane within which the front surface 32 generally extends.
  • Although the provision of hydraulic drive means to rotate the brush has been detailed, it will also be appreciated that rotation of the brush may be provided using any suitable arranged drive means, for example a rotating motor.
  • The bristles 30 attached to the flat front circular surface 32 are arranged in rows of bristle clumps extending radially from the central pivot point 47 of the brush. Consequently, the space between corresponding bristle clumps in adjacent rows increase with the radial distance of the bristle clumps from the pivot 47. This spacing is indicated generally by dashed lines 140 and 145.
  • This arrangement combines the effect of centrifugal force with support for wave motion between the bristle clumps to steer foreign matter outwardly from the centre of the brush as the brush rotates. The feature of wave motion may be explained with reference to FIG. 12 a, wherein an ejection path of foreign matter as the brush rotates in a clockwise direction is in illustrated by arrow R. As the brush rotates, foreign matter displaced by an inner bristle clump is forced outwards from the centre of the brush due to the centrifugal force. However, the clockwise rotation of the brush face results in the foreign matter moving towards a trailing row of bristle clumps which then displaces the foreign matter outwardly as before. Thus, the foreign matter follows a wavelike path around the face, outwardly towards the edge of the brush whereby it is ejected from the brush face.
  • It may also be appreciated that the layout of bristle clumps caters for clockwise and anti-clockwise rotation of the brush.
  • The brush according the present invention therefore allows foreign material to pass through channels formed between the bristle clumps 30, irrespective of the direction of rotation of the brush. Thus, there is provided a brush that is ‘self-cleaning’, the design of the bristle layout on the flat front surface 32 enabling foreign matter to be ejected due to the centrifugal force resultant from rotation of the brush and wave motion steering of the bristle clump arrangement.
  • It should be appreciated the flat front surface is not limited to being of circular shape and may be of any suitable shape. Similarly, although the bristles 30 are shown to be of equal length, the bristles may be of differing lengths. For example, the bristles 30 attached to the tapered outer rear surface 36 may be of a length such that all of the bristles 30 attached to the brush extend the same orthogonal distance from the plane of the flat front circular surface 32.
  • Alternative arrangements of the bristles attached to the flat front circular surface 32 are illustrated in FIGS. 12 c and 12 d.
  • In FIG. 12 c, the bristles 30 attached to the flat front circular surface are arranged to form bristle segments 146 that are substantially triangular or wedge-like in shape. The bristle segments 146 are of substantially the same size and adjacent segments (for example, 146 a and 146 b) are spaced apart from each other such that a channel 147 is formed between adjacent segments, wherein each channel 147 is an area of the flat front circular surface to which not bristles 30 are attached.
  • As illustrated in FIG. 12 c, the channels 147 extend radially from the central pivot point 47 of the brush.
  • This arrangement combines the effect of centrifugal force with spacing between adjacent bristles segments (i.e. 146 a and 146 b) to allow foreign matter to move outwardly from the centre 47 of the brush as the brush rotates.
  • As the brush rotates, foreign matter displaced by bristles of a bristle segment 146 is forced outwards from the centre of the brush due to the centrifugal force. However, rotation of the brush face during cleaning results in the movement of the foreign matter about the brush's axis of rotation (relative to the rotational movement of the brush) such that the matter moves towards a trailing channel. When the foreign matter enters a channel 147, its movement towards the edge of the brush face is not restricted by any bristles and, consequently, the foreign matter moves outwardly towards the edge of the brush along the channel, whereby it is ejected from the brush face.
  • The layout illustrated in FIG. 12 c caters for clockwise and anti-clockwise rotation of the brush. The brush therefore allows foreign material to pass through channels formed between the bristle segments 146, irrespective of the direction of rotation of the brush. As with the previously detailed bristle layout, the brush of FIG. 12 c is ‘self-cleaning’, the design of the bristle layout on the flat front surface 32 enabling foreign matter to be ejected due to the centrifugal force resultant from rotation of the brush.
  • Although the channels 147 in this embodiment do not contain any bristles, it will be understood that this is not essential. A channel 147 may alternatively be formed from an area of the flat front circular surface having a lower density of bristles than that of the bristle segments 146, the density of bristles being a measure of the number of bristles per unit area of the brush surface. In this way, movement of foreign matter towards the edge of the brush face is restricted by fewer bristles in a channel and the channel therefore assists the ejection of foreign matter from the brush.
  • FIG. 12 d shows a medication of the bristle layout of FIG. 12 c. As shown in FIG. 12 d, the bristles 30 attached to the flat front circular surface are, again, arranged to form bristle segments 148 of generally equal size and shape. However, the bristle segments 148 are shaped and spaced apart form each other such that a channel 149 formed between adjacent segments (for example, 148 a and 148 b), and containing no bristles, is curved in shape. More specifically, and as will be appreciated from FIG. 12 d, each channel 149 extends outwardly from the central pivot point 47 of the brush to the edge of the brush and is curved in shape. Although, not essential, all of the channels 149 shown in FIG. 12 d are formed such that they have substantially the same radius of curvature and are curved in an anti-clockwise direction about the central pivot point 47 of the brush.
  • Unlike the previously detailed bristle arrangements, this arrangement is designed to capture foreign matter within the area of the brush face and allow such matter to be easily removed through the channels 149, via suction for example.
  • As the brush rotates in an anti-clockwise direction, foreign matter displaced by bristles of a bristle segment 148 a is forced outwards from the centre of the brush due to the centrifugal force. Also, rotation of the brush face in the anti-clockwise direction results in the movement of the foreign matter in a clockwise direction, relative to the rotation of the brush, such that the matter moves towards a trailing channel. When the foreign matter enters the trailing channel 149, its movement towards the edge of the brush face is restricted by bristles of the trailing segment 148 b. This is because the curved shaped of channel 149 means that the portion of the trailing segment 148 b further from the centre of rotation 47 than the foreign matter has moved past the foreign matter in the anti-clockwise direction. Thus, bristles of the trailing segment restrict outward movement of the foreign matter under centrifugal force. However, the foreign matter within the channel may be removed along the channels, for example via suction that is arranged to draw the foreign matter towards the axis of rotation. For example, an exit hole is provided at the centre 47 of the brush to which a hose or tube may be attached. This enables the removal of the foreign matter along a channel and through the exit hole, for example via suction. The removal of the foreign matter is assisted by the fact that there are no bristles in the channels to restrict the movement of the foreign matter towards the exit hold.
  • The layout illustrated in FIG. 12 c caters for anti-clockwise rotation of the brush. It will, of course, be appreciated that reversal of the channels so that they curve in a clockwise direction about the centre of rotation 47 will cater for clockwise rotation of the brush.
  • As before, it is noted that a channel 149 may alternatively be formed from an area of the flat front circular surface having a lower density of bristles than that of the bristle segments 148.
  • Thus, provision of means to remove debris from the brush via the curved channels (such as a vacuum or suction arrangement) with the bristle layout of FIG. 12 d, means that the is ‘self-cleaning’, wherein the design of the bristle layout on the flat front surface 32 is such that the foreign matter is hindered from being ejected at the edge of the brush face due to the centrifugal force which is resultant from rotation of the brush.
  • The operation of a brush arrangement according to an embodiment of the invention will now be described with reference to FIG. 13 a. FIG. 13 a is an illustration of a brush shown in FIG. 12 cooperating with a curved surface 150 to be cleaned, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a.
  • The bristles 30 attached to the tapered outer front and rear surfaces 34 and 36 are of a greater length than the bristles 30 attached to the flat front surface 32 and extend generally radially from the centre of the brush face in the same directional plane as the flat front surface 32 of the brush.
  • Similarly to previously described embodiments of a brush and gimbal arrangement, the brush is rotatably supported by supporting means (not shown) such that the brush is free to rotate about an X-axis X-X. It is preferable that the X-axis X-X is arranged a gap distance away from the back of the flat front surface 32 of the brush, the arrangement being less preferable as the distance between the X-axis X-X and back of the flat front surface 32 is increased.
  • If the brush is operative to clean a curved surface 150, after some motion the bristles attached to the flat front surface 32 of the brush will not be in contact with the curved surface 150 to be cleaned although the bristles attached to the tapered outer front and rear surfaces 34 and 36 do come into contact with the curved surface 150.
  • As the bristles attached to the tapered outer front and rear surfaces 34 and 36 come into contact with the curved surface 150 to be cleaned, a force P perpendicular to the surface at the point of contact 160 is experienced by the bristles 30 and the brush. Force P is perpendicular distance 170 from the axis of rotation X-X of the brush. Thus, there is created a moment (whereby the term ‘moment’ refers to a turning force about a pivot) about the X-axis X-X of rotation that causes rotational movement of the brush about the X-axis X-X, indicated generally by arc T.
  • It may therefore be appreciated that the brush is manipulated by the turning force P to rotate about the X-axis such that bristles 30 attached to the flat front surface 32 of the brush regain contact with the curved surface 150 to be cleaned. In other words, the brush is steered such that bristles 30 attached to the flat front surface 32 maintain contact with the surface 150 to be cleaned.
  • It may be appreciated from the description above that bristles attached to the tapered outer front and rear surfaces 34 and 36 are to be selected and/or arranged such that they have enough body or stiffness to withstand the turning force P to such a degree that a the rotational movement of the brush about the X-axis X-X is created without the curved surface coming into actual contact with any of the surfaces 32,34,36 of the brush. However, it should also be understood that by minimising any forces resistive to the rotational movement of the brush about the X-axis X-X, the required body or stiffness of the bristles attached to the tapered outer front and rear surfaces 34 and 36 may be reduced. For example, use of bearing to pivot the brush about the X-axis X-X will help to minimise the frictional forces.
  • In the described embodiment, the brush is also rotatably supported such that the brush is free to rotate about the Y-axis which intersects the X-axis X-X and is substantially perpendicular to the X-axis X-X. The flat front surface 32 of the brush may thus maintain contact with a surface such as a boat hull, for example.
  • It has been appreciated by the applicant that if the brush is driven to rotate about a Z-axis Z-Z such as that illustrated in FIG. 12, operating the brush within a viscous or liquid environment results in substantial resistive forces being experienced by the brush that act against the rotational movement of the brush. Thus, it is desirable to reduce the power requirements imposed on drive means that are operative to rotate the brush in such environments.
  • A typical approach to reduce the drive requirements is to reduce the speed of rotation of the brush. However, using hydraulics it is necessary to operate the motors at speed in order to lubricate the bearings. Typically, the brush is rotated at a speed in the range of 10 rpm-200 rpm.
  • FIG. 13 b is an alternative embodiment of a brush, the brush being shown as an alternative vertical cross-section along the line XII-XII of FIG. 12 a.
  • In this alternative embodiment, in order to provide a rotary brush with the steering features of the embodiments while minimising the drive requirements, the flat front surface 32 of the brush may rotate about the Z-axis while the tapered outer front and rear surfaces 34 and 36 remain static and do not rotate about the Z-axis.
  • The tapered outer surfaces 34 and 36 of the brush are separated from the front surface 32 of the brush and attached to support arms 170. The support arms 170 are arranged such that the tapered outer surfaces 34 and 36 of the brush are free to rotate about the X and Y axes similarly to the previous embodiment. However, unlike the front surface 32 of the brush, they are not driven to rotate about the Z-axis Z-Z.
  • Of course, alternative arrangements may be used to support the tapered outer surfaces 34 and 36 of the brush so that they are not driven to rotate about the Z-axis Z-Z. For example, the tapered outer surfaces 34 and 36 may be attached to the circumference of a generally circular supporting plate.
  • Thus, maximum power from the drive means can be used to rotate the flat front surface 32 of the bush, thereby removing a substantial amount of drag forces that would otherwise be created by the rotation of the tapered outer front and rear surfaces 34 and 36.
  • Such an alternative arrangement may still provide the steering function of the brush according to the general concept illustrated in FIG. 13 and described above. However, the bristles attached to the outer front and rear surfaces 34 and 36 may be replaced with skid pads or rollers, or any other suitable means that would provide a turning moment for the brush, while also protecting the surface to be cleaned from contacting the rigid surfaces of the brush.
  • In another alternative embodiment, fluid is supplied to the front surface 32 of the brush from behind as it rotates about the Z-axis Z-Z. For example, such fluid could comprise a cleaning agent or an anti-fouling agent. To avoid the need for an additional attachment to the brush to supply such fluid as it rotates, the fluid is provided internally of the axle (not shown) upon which the brush rotates about the Z-axis. The provision of the fluid may come from an internal connection between a rotary connector 70 and the drive means 38. Alternatively, the fluid may be provided via an external connection to axle.
  • Embodiments of the invention therefore provide a brush arrangement, whereby the brush is rotatably supported and the brush comprises cleaning means attached to a rear and/or side of the brush such that when the cleaning means come into contact with a surface, there is created a moment that results in rotational movement of the brush.
  • Referring to FIGS. 14 a, 14 b and 14 c, the complete boat cleaning assembly 200 incorporating the above improvements over that of FIGS. 1 and 2 is shown in front elevation, side elevation, and plan view, respectively.
  • The assembly 200 is shown submerged in a suitable region of water, attached to a floating mooring pontoon 210 using a mounting frame 212 so that the base framework 18 is above the sea bed. Alternatively, if the region of water is not of substantial depth, the base framework 18 may rest on a sea bed.
  • The assembly 200 is arranged such that long arms 3 and 4 extend in the initial position generally in the longitudinal direction of the mooring 210 and are positioned one side of the mooring 210. The arm closest to the mooring 210 is hereafter referred to as the inner arm 3 and the arm furthest away from the mooring 210 is hereafter referred to as the outer arm 4.
  • A brush and gimbal arrangement as described above is fixed to the end of each of the inner and outer arms. The second arm portion 46 is directly fixed to each long arm 3,4, extending in the same direction. A brush 31 is fixed to first and second mounting brackets 40,42 and by first arm 44 to the second arm, to allow motion as described with reference to FIGS. 3 to 6.
  • The assembly 200 further comprises a counter balance 220 attached to the side of the base framework 18 which is opposite to the side on which the arms 3 and 4 are positioned. The counter balance is simply a piece of material of any suitable size, shape and mass such that that the weight of the assembly 200 is substantially balanced about the mooring 210.
  • To clean a marine vessel, it is positioned above the arms 3, 4 and moved along the mooring in the longitudinal direction. Drive means (not visible) are operable to repeatedly pivot the arms 3,4 upwardly, outwardly, downwardly and inwardly so that brushes 5 and 6 contact the hull. The brushes are moved up and down to clean the hull of the vessel and the vessel is slowly moved forward so that the arms clean the whole length of the vessel.
  • However, with the mounting frame 212 attached to the pontoon 210 such that base framework 18 and the A-axis A-A is arranged substantially horizontal, the lateral travel of the inner arm 3 along arc D is restricted by the edge of the mooring pontoon 210. The outer arm 4 can move more freely. Since the lateral movement of the outer arm 4 describes an arc C, the outer arm 4 falls lower than the inner arm 3 when at the maximum beam of the vessel being cleaned (when the arms 3,4 are rotated about axis A-A to the top of the vertical arc B). This effect increases as the depth of the assembly 200 and the distance travelled by the arms 3,4 to reach the surface of the water 215 is increased.
  • To compensate for the imbalance in vertical movement of the inner and outer arms, the mounting frame 212 is arranged such that, when the assembly 200 is attached to the pontoon 210, the A-axis A-A, about which the arms 3,4 turn, is tilted upwards from horizontal so that the outer arm 4 is higher than the inner arm 3. The angle of tilt may be referred to as the angle between the horizontal and plane passing through the two arms 3,4 in their rest position, and is indicated in FIG. 14 b by the angle φ.
  • Investigations by the applicant have shown that the angle of tilt required to compensate may be optimised with respect to the depth of the base framework 18, whereby the angle of tilt should be increased approximately 2° (two-degrees) for every 2 m (two-metres) of vertical depth below the surface of the water 215 the base framework 18 is submersed.
  • In alternative embodiments of the invention, the arms 3 and 4 will be of greater length so that the required pivotal range of movement about the A-axis A-A for the arms to reach the surface of the water 215 is reduced. By increasing the radius of the vertical arc B swept out by the arms 3 and 4 as they rotate about axis A A-A, thereby minimising the required pivotal range of motion, the vertical arc B swept out by arms 3 and 4 tends towards an approximation of a vertical line.
  • It will be appreciated that the arrangement requires the boat to be driven slowly forwards. Referring to FIG. 15 a, a plan view of an apparatus for manoeuvring a floating boat 300 according to an embodiment of the invention is illustrated. Dotted lines indicated internal features that would not otherwise be visible. The apparatus comprises attachment means and bi-directional drive means. The attachment means is arranged such that it is connected to first and second places 314 and 316 on the boat 300, first and second places 314,316 being longitudinally spaced apart. The attachment means is releasably coupled to the bi-directional drive means so that the apparatus is operable to move the boat in either of two opposing directions, the opposing directions being in a generally longitudinal direction.
  • The attachment means is connected to first and second travellers 310 and 312 that each comprise connection means 318 and coupling means 320, the coupling means 320 being operable to couple the respective traveller to the drive means.
  • The connection means comprises a cable 322. One end of a cable 322 is attached to the connections means 318 of the first traveller 310 and connected to the first place 314 on the boat 300. The other end of the cable 322 is attached to the connections means 318 of the second traveller 310 and connected to the second places 316 on the boat 300. The cable is also arranged such that it runs internally through protection means 324.
  • The bi-directional drive means includes a bi-directional motor 326 that is operable to drive winching means 328. The bi-directional drive means further comprises a chain 330 that cooperates with the winching means 328 and a pulley block 332 such that the chain 330 may undergo bi-directional movement between the winching means 328 and the pulley block 332. The drive means also comprises a housing 334 within which the winching means 328, chain 330 and pulley block 332 are enclosed, the winching means 328 and the pulley block 332 being fixed at opposing ends of the housing 334. The housing 334 and bi-directional motor 326 are attached to a mooring 336 such that they remain fixed in relation the mooring 336.
  • The housing 334 also comprises an opening 336 in its top surface that extends substantially in the same direction as the chain 330 between the winching means 328 and the pulley block 332.
  • The first and second travellers 310 and 312 are coupled to the chain through the opening 336 of the housing 334 such that their coupling means 320 are within the housing 334 and their connection means 318 protrude vertically through the opening so that a portion of their connection means is outside of the housing 334. Preferably, the first and second travellers 310 and 312 are also arranged such that their longitudinal separation is generally the same as the longitudinal separation of the first and second places 314 and 316 on the boat 300.
  • The coupling means 320 comprises a releasable clutch mechanism that functions to allow its associated traveller 310 or 312 to be freely manoeuvred back and forth along the chain 330. Once a desired position of the attachment means on the chain 330 is obtained, the clutch mechanism is operated to fixedly couple the attachment means to the chain so that it does not move relative to the chain 330. The clutch mechanism may also be released so that its associated traveller 310 or 312 can be repositioned as necessary.
  • The tension in the cable 322 is increased such that the boat 300 is pulled towards the first and second travellers 310,312. The tension is increased to a value that causes the cable between the first and second places 314 and 316 on the boat 300 to be urged against the side of the boat 300 and the boat 300 to be urged against the connection means 318 of a third traveller 338, the third traveller 338 being coupled to the chain 330 in a similar manner to how the first 310 and second 312 travellers are coupled to the chain 330 (as described above).
  • Thus, it may be appreciated that the protection means 324 should be arranged such that it is placed between the side of the boat 300 and the connection means 318 of the third traveller 338 at the place on the side of the boat 300 that would otherwise make contact with the third traveller 338 as it is urged against the housing 334.
  • The protection means 324 is then releasably attached to the connection means 318 of the third traveller 338, using a suitable connection arrangement.
  • It is to be appreciated that the tension in the cable may be controlled such that the pressure exerted by the boat 300 on the third traveller 338 is maintained at a predetermined value. In this way, the boat 300 and the third traveller 338 may be protected from experiencing excessive forces that may, for example, cause damage or increase the drive power requirements.
  • Although the provision of a third traveller 338 that attaches to the protection means 324 has been demonstrated, it should be understood that this is not essential. In an alternative arrangement, the third traveller may be omitted. In such an arrangement, the protection means 324 would be positioned between the side of the boat 300 and the housing 334 of the drive means in order to prevent the side of the boat 300 contacting the housing 334 of the drive means.
  • Once the tension in the cable has reached the required value, the drive means are operated such that chain 330 undergoes movement that causes the first and second travellers 310 and 312 to undergo the same movement. Thus, it may be appreciated that the boat 300 is moved in the same general direction as the travellers 310,312 due to the boat's 300 connection with the travellers 310,312.
  • Thus, the bi-directional drive allows for the boat 300 to be manoeuvred relative to the fixed portion of the drive means in either of two opposing directions.
  • An apparatus for manoeuvring a floating boat thus comprises attachment means adapted for attachment to different places on the boat, and bi-directional drive means. The attachment means is coupled to the drive means so that the apparatus is operable to move the boat in either of two opposing directions.
  • Although the illustrated embodiment of the invention uses the chain drive means set out above, it is also possible to use the boat cleaning apparatus with other more conventional means to move the boat backwards and forwards, such as a winch and rope.
  • In an alternative approach, the boat cleaning assembly may be moved forward leaving the boat stationary. In this alternative, the boat cleaning assembly may be winched forward using a winch and rope or indeed the chain drive as set out above.
  • Alternative arrangements may further comprise control means such arranged such that the drive means is programmable or controllable.
  • Furthermore, other embodiments of the invention may also cooperate with boat cleaning assemblies, such as those detailed above, so that boat manoeuvring apparatus and boat cleaning assembly are controlled together. In such examples, the drive means of the boat manoeuvring apparatus may be operated as the arms of the associated cleaning assembly are raised through their vertical cleaning arc. By controlling the movement such the boat is moved to compensate the curved shape of the arc, the boat may be cleaned in straight vertical strokes instead of arc-shaped strokes.
  • The embodiments described refer to the vessel being cleaned as a boat or as a floating vessel. These terms are intended to include all forms of floating vessel, including for example ships, yachts, submarines, dinghies, barges and narrowboats, used both on sea and on inland waterways.
  • FIG. 15 b shows a modification of the apparatus of FIG. 15 a. The modified apparatus comprises attachment means and bi-directional drive means. The attachment means is arranged such that it is connected to first 338 and second 339 places on a boat 300, first 338 and second 339 places being longitudinally spaced apart.
  • The attachment means is coupled to the bi-directional drive means so that the apparatus is operable to move the boat 300 in either of two opposing directions, the opposing directions being in a generally longitudinal direction.
  • The attachment means comprises first 340 to sixth 350 fenders connected end to end in a line, the first 340 and sixth 350 fenders being at opposite ends of the line. First 352 and second 354 travellers are attached to the first 340 and sixth 350 fenders respectively, wherein the travellers are operable to move in either of two directions along a guide track 356 attached to a mooring 370 (the opposing directions being in a generally longitudinal direction).
  • The travellers are connected to the first 338 and second 339 places on a boat 300, respectively, using first 355 a and second 355 b coupling means, for example rope. One end of the first coupling means 355 a is releasably coupled to the first place 338 on the boat, and the other end of the first coupling means 355 a is releasably coupled to the first traveller 352. Similarly, one end of the second coupling means 355 b is releasably coupled to the second place 339 on the boat, and the other end of the second coupling means 355 b is releasably coupled to the second traveller 354.
  • The tension in the coupling means 355 a and 335 b is increased such that the boat 300 is pulled towards the first 352 and second 354 travellers. The tension is increased to a value that causes the boat 300 against the first 340 to sixth 350 fenders.
  • From FIG. 15 b, it can be seen that the fenders are arranged such that they are positioned between the side of the boat 300 and the mooring 370 at places on the side of the boat that would otherwise contact the mooring 370 and/or the guide track 356.
  • It is to be appreciated that the tension in the coupling means 355 may be controlled such that the pressure exerted by the boat 300 on the fenders is maintained at a predetermined value. In this way, the boat 300 and the fenders may be protected from experiencing excessive forces that may, for example, cause damage or increase the drive power requirements.
  • The bi-directional drive means includes first 358 and second 360 bi-directional motors that are operable to drive first 362 and second 364 winching means. The bi-directional drive means further comprises first 366 and second 368 coupling means (for example, a belt, chain or rope) that cooperate with the first and second winching means, respectively, such that the coupling means may undergo bi-directional movement between the winching means. The first 362 and second 364 winching means are fixed at opposing ends of the mooring 370. Thus, the bi-directional motors and the winching means are attached to the mooring 370 such that they remain in a fixed position in relation to the mooring 370.
  • The first 340 and sixth 350 fenders are coupled to the first 366 and second 368 coupling means, respectively.
  • The drive means are operated such that the coupling means 366 and 368 undergo movement that causes the fenders to undergo substantially the same movement, the movement of the fenders being guided by the travellers 352 and 354 cooperating with the guide track 356. In this way, the boat 300 is moved in the same general direction as the travellers. Thus, the bi-directional drive means allow for the boat 300 to be manoeuvred relative to the fixed position of the drive means in either of two opposing directions.
  • It should be understood that any suitable number of travellers and fenders may b employed. Also, in an alternative arrangement the coupling means may be arranged internally of the track.
  • Referring to FIG. 15 c and 15 d, a detailed illustration of a traveller 352 of FIG. 15 b is provided. The traveller 352 comprises a substantially flat and rigid sheet 372 arranged in a substantially vertical plane. Protruding in a substantially perpendicular direction from a first surface of the sheet 372 (i.e. protruding in substantially horizontal direction from the sheet) are first 374 and second 376 elongate supporting members. The first 374 and second 376 supporting members are spaced apart vertically (the first supporting member 374 being above the second supporting member 376) and arranged substantially parallel to each other so that they extend in the longitudinal direction (the direction indicated generally by arrow L in FIG. 15 c) of the sheet 372. Also, the first supporting member 374 is of a shorter length than the second supporting member 376.
  • Rotatably supported by the upper surface of each supporting member are first 378 and second 380 wheels such that the wheels are each free to rotate about a vertical VN-axis VN-VN, where N=1,2 and denotes whether the axis is associated with a first or second wheel of each supporting member. Further, the wheels are arranged such that they are rotatably supported at opposing ends of the upper surface of their respective supporting member.
  • The first wheel supported by the first (upper) supporting member 374 is denoted with the suffix “A” (i.e. 378A) and the second wheel supported by the first (upper) supporting member 374 is also denoted with the suffix “A” (i.e. 380A). Similarly, the first wheel supported by the second (lower) supporting member 376 is denoted with the suffix “B” (i.e. 378B) and the second wheel supported by the second (lower) supporting member 376 is also denoted with the suffix “B” (i.e. 380B).
  • Furthermore, the axes about which the first 378A and second 380A wheels supported by the first supporting member 374 are free to rotate are denoted with the suffix “A” (i.e. V1A and V2A). Thus, in a similar fashion, the axes about which the first 378B and second 380B wheels supported by the second supporting member 376 are free to rotate are denoted with the suffix “B” (i.e. V1B and V2B).
  • Rotatably connected to the first surface of the sheet 372 is a fifth wheel 382 such that it is free to rotate about a horizontal H5-axis H5-H5. Further, the fifth wheel 382 is arranged between the first 374 and second 376 supporting members and in a substantially central position of the first surface of the sheet 372.
  • Also rotatably connected to the first surface of the sheet 372 are sixth 384 and seventh 386 wheels such that they are free to rotate about longitudinally spaced apart horizontal axes H6 (H6-H6) and H7 (H7-H7), respectively. The sixth 384 and seventh 386 wheels are positioned vertically above the first lower wheel 378B and second lower wheel 380B, respectively, wherein the sixth 384 and seventh 386 wheels are also positioned substantially horizontally from the first 378A and second 380A upper wheels.
  • The traveller 352, and its respective wheels, cooperates with the guide track 356 of FIG. 15 b. A more detailed illustration of this guide track 356 is provided in FIG. 15 e. The guide track 356 is formed from an elongate extruded member with a generally U-shaped cross-section, wherein the opposing tongues of the U-shaped cross section are bent along the longitudinal length of the track 356 in the same direction and by approximately ninety degrees to form lips.
  • Thus, the guide track 356 comprises a base section 390, a recess 392 for receiving at least one wheel of a traveller, and first 394 and second 396 lips.
  • The base section 390 is arranged in a substantially vertical plane such that the track extends in a substantially longitudinal direction (the direction indicated generally by arrow L in FIG. 15 e) of a mooring pontoon 370 to which the guide track 356 is to be attached. The base section 390 of the guide track 356 is then attached to the vertical side of the mooring pontoon, as illustrated in FIG. 15 f, using suitable attachment means.
  • The traveller 352 is then positioned to cooperate with the guide track 356 such that the recess 392 receives the first 378A and second 380A upper wheels, and the fifth 382 to seventh 386 wheels (as also illustrated in FIG. 15 f).
  • Thus, it will be appreciated that longitudinal movement of the traveller is guided by two upside-down generally U-shaped channels (as indicated by the dotted lines 398 and 399 in FIG. 15 f), wherein the U-shaped channels are positioned one above the other (facing in the same direction). From FIG. 15 f, it will be understood that the base sections of the upside-down U-shaped channels (i.e. the horizontal sections of lines 398 and 399) engage with the fifth 382 to seventh 386 wheels to restrict vertical movement of the traveller 352. Also, the vertical sides of the upside-down U-shaped channel (i.e. the vertical sections of lines 398 and 399) engage with the upper 378A,380A and lower 378B,380B wheels to restrict movement of the traveller 352 in the lateral direction (the direction indicated generally by arrow M of FIG. 15 f).
  • Although, not strictly essential, the U-shaped channels formed by the guide track 356 and the side of the pontoon 370 are arranged such that one is directly above the other so that their edges are in registration. In other words, when viewed from above, their edges correspond. It should also be appreciated that it is not essential to the invention that U-shaped channels be arranged such that they are upside-down.
  • Of course, rather than using a single elongate member to create the track 356, the U-shaped channels may alternatively be formed from two separate elongate members, each having a generally U-shaped cross-sectional shape. These separate elongate members may then be attached to the pontoon 370 to form a similar arrangement to that shown in FIG. 15 f, wherein the each member forms a guide channel for receiving wheels of a traveller 352.
  • As illustrated in FIG. 15 e, the pontoon 370 may be formed from more than one section (i.e. a first mooring section 370A and a second mooring section 370B). These sections may be movable independently of each other, thereby enabling the pontoon to change it shape, alignment or orientation as may be required. As a consequence of this feature, it may be preferable to provide a separate section of track 356 for each mooring section. A problem associated with such an arrangement is the fact the sections of track may not be fully aligned with each other at all times, the individual movement of the respective mooring sections affecting the alignment of the tracks sections. To cater for misalignment in track sections, the traveller 352 FIGS. 15 c and 15 d may be modified as illustrated in FIG. 15 g.
  • Referring to FIG. 15 g, the modified traveller 352G is similar to the traveller 352 shown in FIGS. 15 c and 15 d. However, the modified traveller comprises more wheels than the traveller 352 of FIGS. 15 c and 15 d.
  • In addition to having the same wheel arrangement as the traveller of FIGS. 15 c and 15 d, the modified traveller 352G further comprises eighth 400 to eleventh 406 wheels.
  • The eighth 400 and ninth 402 wheels are rotatably supported at opposing ends of the upper surface of the second (lower) supporting member 376 such that the wheels are each free to rotate about a vertical VN-axis, where N denotes whether the axis is associated with the eighth 400 or ninth 402 wheel. Thus, it will be seen from FIG. 15 g that a pair of wheels is provided at each end of the upper surface of the second supporting member, wherein each pair of wheels comprises longitudinally spaced apart wheels that are each rotatable about a vertical axis.
  • The tenth 404 an eleventh 406 wheels are rotatably connected to the first surface of the sheet 372 such that they are free to rotate about longitudinally spaced apart horizontal axes H10 (H10-H10) and H11 (H11-H11), respectively. The tenth 404 an eleventh 406 wheels are positioned vertically above the eighth 400 and ninth wheel 402, respectively, wherein the tenth 404 an eleventh 406 wheels are also positioned substantially horizontally from the first 378A and second 380A upper wheels and the sixth 384 and seventh 386 wheels. Thus, a pair of wheels is provided at each end of the first surface of the sheet 372, wherein each pair of wheels comprises longitudinally spaced apart wheels that are each rotatable about a horizontal axis.
  • In this way, as the traveller crosses a boundary between two sections of track, at least one wheel of a pair can contact a section of track. For example, by ensuring at least on wheel of a pair can contact a section of track, the other wheel of the pair is prevented from getting trapped or stuck in a gap that may be present between adjacent sections of track. Because the wheels must remain horizontally or vertically aligned with each other, contact with a track surface by one wheel of a pair supports the other wheel as it passes over the gap.
  • Referring to FIG. 16, a side elevation of a brush and gimbal arrangement according to an alternative embodiment of the invention is shown. FIG. 17 shows a top view of the same arrangement.
  • The brush comprises bristles (not shown) provided on a flat front circular surface 32, on a tapered outer front surface 34, and on a tapered outer rear surface 36. The brush is rotatably connected to motorised drive means 38, the drive means 38 being operative to rotate the brush 31 about a Z-axis Z-Z on an axle (not shown).
  • The brush 31 and drive means 38 are supported by a first mounting bracket 40 which is rotatably connected to second and third mounting brackets 500,510. The first, second and third mounting brackets 40,500,510 cooperate such that the brush 31 and drive means 38 are free to rotate about an X-axis (indicated by X-X) on bearings.
  • The second and third mounting brackets 500 and 510 are arranged parallel to each other, spaced apart in a lateral direction (the direction indicated generally by arrow L), and rotatably connected to fourth and fifth mounting brackets 520,530. The fourth and fifth mounting brackets 520,530 are arranged parallel to each other and spaced apart in a longitudinal direction (the direction indicated generally by arrow M).
  • The fourth and fifth mounting brackets 520,530 are rotatably connected and supported by a first arm portion 540 such that the fourth and fifth mounting brackets 520,530 are free to rotate about Y-axes Y1-Y1 and Y2-Y2 respectively, the Y-axes Y1-Y1 and Y2-Y2 being substantially in the same direction.
  • It can be appreciated that, as a result of the parallel linkage formed by the mounting brackets, rotation of the fourth and fifth mounting brackets 520,530 about the Y1 and Y2 axes causes the brush 31 and drive means 38 to rotate about the Y-axis Y-Y, the Y-axis being in substantially the same direction as the Y1 and Y2 axes. This is illustrated in FIG. 18 which shows a top view of the arrangement in FIGS. 16 and 17 when the fourth and fifth mounting brackets 520,530 are rotated in an anti-clockwise direction.
  • Referring back to FIGS. 16 and 17, the first arm portion 540 is rotatably connected to the second arm portion 46 such that the first arm portion 540 may be rotated about an X2-axis X2-X2, the X2-axis X2-X2 being substantially in the same direction as the X-axis X-X.
  • The second arm portion 46 is also rotatably connected to displacement means (not shown) of a cleaning assembly (for example, arm 3 or 4 of the assembly shown in FIGS. 1 and 2) such that the second arm portion 46 may be rotated about a Y3-axis Y3-Y3, the Y3-axis Y3-Y3 being substantially in the same direction as the Y1, Y2 and Y-axes.
  • Thus, the rotation about the X and Y-axes ensures that the face of the brush is against the boat during cleaning, and the brush 31 can be moved along the boat using the rotations about the X2 and Y3 axes.
  • Referring back to FIG. 16, it can be appreciated that, unlike the arrangement of FIG. 3, the range of angular displacement of the brush and drive means about the X-axis X-X is not limited due to the proximity of the second mounting bracket to the back of the flat brush face 32. Thus, the arrangement shown in FIGS. 16 and 17 enables the axes X, Y and Z to intersect at a point 550 whilst also allowing a maximal range of angular displacement about the X, Y and Z axes to be realised.
  • Referring to FIG. 19 a, a top view of a brush and gimbal arrangement according to another embodiment of the invention is shown.
  • It can be appreciated that the brush and gimbal arrangement is similar to that shown in FIGS. 16 and 17, the brush 31 and drive means 38 being supported by a first mounting bracket 40 which is rotatably connected to a multi-portion parallel linkage. However, in this embodiment compression springs 560 are connected between the first mounting bracket 40 and the second and third mounting brackets 500,510 at the locations where the first, second and third mounting brackets 40,500,510 cooperate.
  • Further, the fourth and fifth mounting brackets 520,530 shown in FIG. 19 a are shaped such that the pivot points about the Y-axes (Y1-Y1 and Y2-Y2), by which the fourth 520 and fifth 530 mounting brackets are rotatably connected and supported by a first arm portion 540, are offset longitudinally (the direction indicated generally by arrow M) from the pivots by which the fourth 520 and fifth 530 mounting brackets are rotatably connected to the second and third mounting brackets 500 and 510. Similarly, the point 550 at which the X, Y and Z axes intersect is also offset longitudinally from the pivots by which the first mounting bracket 40 which is rotatably connected to the second and third mounting brackets 500,510.
  • The longitudinal offset of all of the pivot points about the Y-axes (Y-Y, Y1-Y1 and Y2-Y2) is of substantially the same magnitude and in the same direction. In this way, it will again be appreciated that the parallel linkage formed by the mounting brackets enables rotation of the fourth and fifth mounting brackets 520,530 about the Y1 and Y2 axes to causes the brush 31 and drive means 38 to rotate about the Y-axis Y-Y, the Y-axis being in substantially the same direction as the Y1 and Y2 axes. However, this embodiment illustrates how the longitudinal position of the pivot point 550 can be modified whilst also maintaining the functional feature of the parallel linkage arrangement.
  • As above, when the flat front circular surface 32 of the brush is parallel to the X-Y plane (as shown in FIG. 19 a), the brush is said to be in its reference position with zero angular displacement about the X-axis X-X. Thus, the embodiment is arranged such that the reference plane is parallel to the X-Y plane.
  • The compression springs 560 are arranged so that an equilibrium position of the brush 31 and drive means 38 is the same as the reference position and no net turning force is experienced by the brush 31 and drive means 38 about the X-axis X-X when it is in the reference position. When the brush 31 and drive means 38 rotate about the X-axis X-X from the reference position, the compression springs 560 urge the brush 31 and drive means 38 back towards the reference position.
  • As a result, even if the brush 31 and drive means 38 rotate about the X-axis by an angle of 90° (in either a clockwise or anticlockwise direction), as may be the case when cleaning between the lower hull surface and the keel of a boat, the brush 31 and drive means 38 will be urged to revert back to the reference position.
  • Alternative embodiments may further include means to retain and collect debris and foreign matter removed from the boat during the cleaning process.
  • Such an alternative embodiment is illustrated in FIG. 19 b, wherein a generally round housing 570 is arranged to surround the brush 31 and drive means 38 to form an enclosure around the brush 31 and drive means 38 during cleaning. In this way, debris removed from a surface of a boat by the brush 31 can be retained within the housing 570 and may then be removed and collected via a tube 575, for example via suction.
  • A fender 580 is provided on the external surface of the housing 570 to prevent the side of the housing 570 from contacting the boat surface during the cleaning process. In this embodiment shown, the fender 580 is formed from rubber although it will be understood that the fender 580 may be formed from any suitable material. Further, although it is preferable to protect the side of the housing from contacting the boat surface, provision of a fender 580 or other such protection is optional.
  • Included inside the housing 570 is a hollow ring 585 that has a plurality of holes 576 and are formed in its surface at spaced apart positions on the side of the ring that faces the surface to be cleaned. The plurality of holes 576 enable passage of debris and water into the tube, from where it is removed through the tube 575 via an exit hole 587.
  • By arranging the housing 570 to cooperate with a brush and gimbal arrangement described above, the enclosure formed by the housing 570 may remain in contact with the surface of the boat (or a predetermined small distance away from the surface) during cleaning. Thus, during cleaning, most or all of the debris is retained within the enclosure for removal and/or collection.
  • To provide a better understanding of how the means for retaining and collecting debris removed during cleaning may be implemented, a modified version of the housing 570 of FIG. 19 b is shown in FIG. 19 c. FIG. 19 c is a front elevation (in the direction of arrow S in FIG. 19 b) of a modified version of the housing 570 in FIG. 19 b, wherein the brush 31 is not shown for ease of understanding.
  • A portion of the housing 570 is removed from an area of the housing 570 which is controlled to stay below a water line during cleaning, (in other words, the area that is controlled to remain below the surface of the water during cleaning). In this way, water can circulate within the housing during cleaning. Internally to the housing 570 there is provided a rigid and hollow container 588 of substantially the same diameter of the inner surface of the housing formed in the surface of the cylinder 588 facing the surface to be cleaned is a plurality of holes 586. The holes 586 are spaced apart from each other and at a distance R from the centre 589 of the cylinder surface such that a ring of radius R (as illustrated by dashed circle W) is created.
  • Formed in the surface of the cylinder facing away from the surface to be cleaned (to opposite surface) is an exit hole 587 to which a hose or tube can be attached.
  • As before, the plurality of holes 586 enable passage of water and debris into the cylinder, from which it can be removed through a tube or hose via the exit hole 587. Of course, more than one exit hole 587 may be provided for the removal of water and debris.
  • Referring to FIG. 20, a boat cleaning assembly 600 according to an alternative embodiment of the invention is shown in plan view.
  • The cleaning assembly 600 comprises a pair of pivotable arms 3 and 4. The arms are pivotable about an axis A-A on an axle 15, the arms being pivotable about axis A-A by means of a hydraulic ram 602 and an arm 604 connected to the ram 602.
  • The assembly 600 is arranged such that arms 3 and 4 extend in the initial position generally in a longitudinal direction which is substantially parallel to a longitudinal line N-N which is equidistant from arms 3 and 4 indicates a central line between the arms 3 and 4.
  • The arms 3 and 4 are pivotally attached to the axle 15 at pivots 606 and 608 which are spaced apart laterally. The arms may therefore pivot about pivots 606 and 608 to follow the curved profile of a hull.
  • A brush and gimbal arrangement as described above is fixed to the free end of each of the arms 3 and 4. The second arm portion 46 is directly fixed to each long arm 3,4, extending in the same direction.
  • The assembly 600 further comprises a hydraulic cylinder assembly 610 which is pivotally attached at opposing ends to the arms 3 and 4.
  • Opposed ends of an arm connecting means 612 are pivotally attached to brackets 614 and 616 formed on the arms 3 and 4. The arm connecting means 612, are also arranged such that it intersects a line P-P through pivots 606 and 608 at the same point it intersects the central line N-N.
  • Hydraulic drive means (not shown) associated with the hydraulic cylinder assembly 610 operate to urge the arms 3 and 4 laterally towards or apart from each other. The pivots 606 and 608 therefore allow for displacement of the arms 3 and 4 which is generally lateral of the longitudinal axis the hull of the vessel (i.e. away from the central line N-N).
  • It can be appreciated that the linkage arrangement of the arm connecting means 612 ensures that lateral displacement of the arms is symmetrical about the central line N-N. Thus, a single hydraulic assembly 610 can be used to provide laterally symmetrical motion of the arms 3 and 4 about the central line N-N.
  • The assembly 600 is submerged in a suitable region of water, attached to a floating mooring pontoon (not shown) or, if the region of water is not of substantial depth, it may rest on a sea bed.
  • To clean a marine vessel, the vessel is positioned above the arms 3, 4 such that the longitudinal axis of the hull of the vessel corresponds to the central line N-N and moved in the longitudinal direction. Drive means (not visible) are operable to repeatedly pivot the arms 3,4 outwardly, upwardly and then inwardly so that the brushes contact the hull. The brushes are then moved up and down to clean the hull of the vessel. The vessel is slowly moved forward so that the arms clean the whole length of the vessel.
  • FIGS. 21 a and 21 b show a plan view and side view, respectively, of a modification of the boat cleaning assembly shown in FIGS. 14 a-14 c. The assembly 200A is submerged in a suitable region of water (215), attached to a floating mooring pontoon 210A using a mounting frame 212A. If the region of water is not of substantial depth, the base framework 18A may rest on a sea bed.
  • Unlike the assembly 200 of FIGS. 14A-14C the modified assembly 200A further comprises a hydraulic cylinder assembly 205 connected between the base framework 18A and the mounting frame 212A. Hydraulic drive means associated with the hydraulic cylinder 205 operate to urge the base framework 18A laterally away from the mooring pontoon 210A.
  • In this way, the central line N-N can be moved laterally in order to align with the longitudinal axis of a vessel hull to be cleaned. Thus, the base framework 18A may be moved in either of two generally opposing lateral directions so that the assembly 200A can cater for vessels of differing widths and maintain generally symmetrical operation and movement of the arms 3 and 4 about the central line N-N.
  • To guide the resultant lateral movement of the base framework 18A, substantially parallel spaced apart guide rails 225 are provided, the guide rails 225 being connected to the mounting frame 212A and extending in a lateral direction away from the mooring pontoon 210A.
  • It will also be appreciated that the allowable lateral travel of the inner arm 3 can be increased by moving the base framework 18A away from the mooring pontoon 210A. For this reason, the embodiment of FIG. 21 can be arranged so that the lateral movement of both arms 3 and 4 when cleaning a vessel hole is equal, thereby eliminating any imbalance in vertical movement of the arms. Accordingly, the axis A-A about which the arms 3 and 4 turn, is not tilted upwards from horizontal (unlike the apparatus 200 of FIGS. 14A-14C, which has a non zero value of (φ).
  • The assembly further comprises buoyancy containers 230 attached to the base framework 18A, and the substantially vertical beams of the mounting frame 212A are arranged to pass through loops attached to the mooring pontoon 210A. The buoyancy containers 230 are arranged such that a ratio of water volume to air volume within the containers may be adjusted and/controlled. By substantially filling the containers 230 with air, the base 18A may be lifted to the water surface. Conversely, by substantially removing the air from the container 230, the base 18A may be submerged below the water surface. Thus, by adjusting the ratio of water volume to air volume within the containers 230, the depth by which the base framework 18A is submerged below the water surface can be adjusted and/or controlled.
  • Further, the ratio of water to air ratio in each container may be individually controlled during the cleaning operation to stabilise the base framework 18A and maintain it in a substantially horizontal arrangement.
  • It will be appreciated that provision of buoyancy containers 230 for adjusting the depth of the base framework 18A is not essential. Alternative methods and/or arrangements may be employed to adjust the depth of the base framework 18A. For example, a winching system may be provided on the pontoon 210A and connected to the base framework to raise and lower the same.
  • Those skilled in the art will realise that the above embodiments are purely by way of example and that modification and alterations are numerous and may be made while retaining the teachings of the invention.

Claims (46)

1. An arm arrangement for cleaning a surface, comprising:
an arm;
a brush and gimbal arrangement on the end of the arm, the brush and gimbal arrangement including:
a brush;
a drive means for rotating the brush about a first axis;
pivots to allow the brush and drive means to rotate about a second axis substantially perpendicular to the first axis and a third axis substantially perpendicular to the first axis and to the second axis to allow the brush to pivot on the end of the arm to follow the surface for cleaning.
2. An arm arrangement according to claim 1,
wherein the brush and drive means are fixed to a first mounting bracket pivoted to a second mounting bracket about the second axis,
3. An arm arrangement according to claim 2, wherein the second mounting bracket is a multi-portion linkage, a portion of the linkage being pivoted to a first arm portion about an axis parallel to and spaced apart from the third axis, wherein the linkage is arranged to translate rotation of the said portion about the pivot to rotation of the first mounting bracket about the third axis.
4. An arm arrangement according to claim 1 wherein the first, second and third axes intersect at a point.
5. An arm arrangement according to claim 1,
wherein the brush and drive means are spaced along the first axis on opposite sides of the pivot;
wherein the arm further includes adjustment means for adjusting the position of the pivot of the first mounting bracket in the second mounting bracket along the first axis to balance the brush and drive means.
6. An arm arrangement according to claim 5 further comprising:
a three-way connector having opposed first and second hose connectors, a third hose connector in communication with the first and second hose connectors, and a bearing, the three-way connector being mounted with the bearing; and
hoses connecting the first and second hose connectors to the drive means.
7. An arm arrangement according to claim 6, wherein the hose connectors are within the first mounting bracket.
8. An arm arrangement according to claim 2, further comprising a first arm portion, wherein the second mounting bracket is pivoted to the first arm portion around the third axis.
9. An arm arrangement according to claim 8 further comprising a second arm portion, wherein the first arm portion is pivoted to the second arm portion to allow motion about a fourth axis substantially parallel to the second axis and spaced from the second axis, and a fifth axis extending along the length of the second arm portion.
10. An arm arrangement according to claim 9 wherein the second arm portion is mounted on the end of the arm and extends in the longitudinal direction of the arm.
11. An arm arrangement according to claim 2, further comprising a first arm portion connected to the arm, wherein:
the second mounting bracket comprises first, second and third bracket portions;
the first mounting bracket is connected between opposing first and second bracket portions;
the third bracket portion is pivoted to the first arm portion around a fourth axis substantially parallel to the third axis and spaced apart from the third axis; and
the first and second bracket portions are pivotally connected to the third bracket portion such that the brush and drive means rotate about the third axis when the third bracket portion rotates about the fourth axis.
12. An arm arrangement according to claim 11 further comprising a second arm portion, wherein the first arm portion is pivoted to the second arm portion to allow motion about a fourth axis substantially parallel to the second axis and spaced from the second axis.
13. An arm arrangement according to claim 12 wherein the second arm portion is mounted on the end of the arm and extends in the longitudinal direction of the arm.
14. An arm arrangement according to claim 1, wherein the brush has an inner front face and an outer front face, wherein the inner front face rotates about the first axis and the outer front face does not rotate about the first axis.
15. An arm arrangement according to claim 1, wherein the brush has a substantially flat front face supporting a plurality of cleaning means, the cleaning means being arranged in rows extending radially from the first axis about which the brush rotates.
16. An arm arrangement according to claim 15 wherein the cleaning means are bristle clumps or cleaning pads.
17. An arm arrangement according to claim 1, wherein the brush has a flat front face and guide means arranged around the flat front face to guide the brush over the surface.
18. An arm arrangement according to claim 1, wherein the brush is in fluid communication with the drive means.
19. An arm arrangement according to claim 1, further comprising means to retain foreign matter removed from the surface during cleaning.
20. An arm arrangement according to claim 19 wherein the means to retain foreign matter are arranged to cooperate with the surface to form an enclosure around the brush and drive means during cleaning.
21. An arm arrangement according to any claim 1 further comprising resilient springs, the resilient springs being arranged such that when the brush and drive means are rotated about the second axis the brush and drive means are urged to an equilibrium position in which the first to third axes are substantially perpendicular to each other.
22. A cleaning assembly, comprising:
a submersible framework;
means for mounting the submersible framework to a fixed body; and
two arm arrangements according to any preceding claim, each arm being pivoted to the submersible framework at the opposite end of the arm to the brush and gimbal arrangement, the arms being pivoted to allow the arms to move the brush to clean both sides of a floating vessel, arranged such that when the assembly is mounted the arms have a substantially horizontal rest position.
23. A cleaning assembly according to claim 22,
further comprising a drive for moving the floating vessel forward and aft in the longitudinal direction;
bidirectional drive means having a plurality of longitudinally spaced drive positions; and
attachment means adapted to attach a plurality of different places on the floating vessel to respective drive positions;
wherein the bidirectional drive means is arranged to drive the plurality of longitudinally spaced drive positions together to move the vessel fore and aft.
24. A cleaning assembly according to claim 22, further comprising arm connecting means, opposed ends of the arm connecting means being attached to the two arms, wherein the arm connecting means are arranged such that substantially lateral displacement of the arms is substantially symmetrical about a substantially longitudinal axis.
25. A cleaning assembly according to claim 22, wherein the first and second arms rotate about a common substantially lateral axis on the submersible framework substantially perpendicular to the length of the arms,
wherein the mounting means is arranged such that the rest position of the lateral axis is tilted at an angle of 0.1° to 10° from the horizontal so that the one of the arms is slightly raised above the other of the arms.
26. A cleaning assembly according to claim 22, further comprising means for moving the submersible framework in either of two generally opposing lateral directions.
27. A cleaning assembly according to claim 22, further comprising buoyancy containers and means for adjusting the depth by which the submersible framework is submersed.
28. A support for a rotating object, the object rotating about a first axis, wherein the support comprises:
a drive means for rotating the object about the first axis;
a gimbal arrangement for supporting the drive means and the object, the gimbal arrangement having pivots to allow the drive means and object to rotate about a second axis substantially perpendicular to the first axis and a third axis substantially perpendicular to the first axis and to the second axis, and a pivot to allow the object to rotate about a fourth axis substantially parallel to the second axis and spaced from the second axis.
29. A support for a rotating object according to claim 28, wherein the gimbal arrangement further comprises a pivot to allow the object to rotate about a fifth axis substantially parallel to the third axis and spaced apart from the third axis.
30. A support for a rotating object according to claim 28, wherein the first, second and third axes intersect at a point.
31. A support for a rotating object according to claim 28, wherein the gimbal arrangement includes a first mounting bracket holding the brush and drive means, a second mounting bracket pivoted to the first mounting bracket about the second axis, and a first arm portion pivoted to the second mounting bracket about an axis substantially parallel to the third axis.
32. A support for a rotating object according to claim 31 wherein the first arm portion is pivoted to the second mounting bracket about the third axis.
33. A support according to claim 31, further comprising a second arm portion pivoted to the first arm portion to allow motion of the second arm portion about the fourth axis and the second arm portion is pivoted about the fifth axis.
34. A rotary brush comprising:
a surface that rotates about an axis; and
a plurality of bristle clumps attached to the surface, the bristle clumps being arranged in rows extending radially from the first axis.
35. A rotary brush according to claim 34 wherein the axis of rotation intersects the brush surface at a point that is substantially in the centre of the brush surface.
36. A rotary brush comprising:
a surface that rotates about an axis; and
a plurality of bristle clumps attached to the surface, wherein the bristle clumps are arranged to form a channel between adjacent bristle clumps, the channel having a lower density of bristles attached to the surface of the brush than that of the bristle clumps and extending outwardly from the axis of rotation to the edge of the brush surface.
37. A rotary brush according to claim 36, wherein the channel extends radially from the first axis.
38. A rotary brush according to claim 36, wherein the channel is curved in the direction of rotation.
39. Apparatus for manoeuvring a floating vessel forward and aft in the longitudinal direction comprising:
bidirectional drive means having a plurality of longitudinally spaced drive positions; and
attachment means adapted to attach a plurality of different places on the floating vessel to respective drive positions,
wherein the bidirectional drive means is arranged to drive the plurality of longitudinally spaced drive positions together to move the floating vessel fore and aft.
40. The apparatus according to claim 39 having a fixed portion of the drive means for attachment to a pontoon or mooring.
41. The apparatus according to claim 39 wherein the drive means comprises a chain, the longitudinally spaced drive positions being on the chain.
42. The apparatus according to claim 39, wherein the attachment means comprises at least one carriage arranged to cooperate with an elongated track such that the carriage is operable to move along the track.
43. Apparatus for guiding the movement of a floating vessel comprising:
at least one track elongated in a longitudinal direction;
means for mounting the at least one track to a substantially upright side of a pontoon or fixed body;
a carriage comprising coupling means for coupling the floating vessel to the carriage, wherein the carriage is arranged to engage with the at least one track such that the carriage can move along the longitudinal direction of the at least one track.
44. Apparatus according to claim 43, wherein the at least one track and the upright side are arranged to define a channel for guiding the longitudinal movement of the carriage, the comprising upper, lower, left and right surfaces,
and wherein the carriage comprises a plurality of wheels adapted such that:
a wheel is arranged to engage the upper surface of the channel to restrict movement of the carriage in a substantially vertical direction;
a wheel is arranged to engage the lower surface of the channel to restrict movement of the carriage in a substantially vertical direction;
a wheel is arranged to engage the left surface of the channel to restrict movement of the carriage in a substantially lateral direction; and
a wheel is arranged to engage the right surface of the channel to restrict movement of the carriage in a substantially lateral direction.
45. Apparatus according to claim 43, wherein the at least one track and the upright side are arranged to define two substantially parallel and spaced apart guide channels each having a substantially U-shaped cross-sectional shape, wherein the guide channels are oriented such that their U-shaped cross-sections face along substantially the same line of direction.
46. Apparatus according to claim 43, wherein the carriage comprises:
at least one wheel rotatably supported such that it may rotate about a first axis of rotation which is substantially perpendicular to the longitudinal direction of the at least track; and
at least one wheel rotatably supported such that it may rotate about a second axis of rotation which is substantially perpendicular to both the first axis of rotation and the longitudinal direction of the tracks, wherein,
the wheels of the carriage engage with the at least one track such that the carriage can move along the longitudinal direction of the at least one track while movement of the carriage in directions parallel to the first and second axes of rotation is restricted by the wheels.
US11/583,241 2005-10-11 2006-10-19 Apparatus for cleaning the hull of a floating vessel Abandoned US20070079743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/583,241 US20070079743A1 (en) 2005-10-11 2006-10-19 Apparatus for cleaning the hull of a floating vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/248,925 US7363871B2 (en) 2005-09-08 2005-10-11 Apparatus for cleaning the hull of a floating vessel
US11/583,241 US20070079743A1 (en) 2005-10-11 2006-10-19 Apparatus for cleaning the hull of a floating vessel

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/742,606 Continuation-In-Part US7261221B2 (en) 2003-04-16 2003-12-19 Inverted dispensing system and apparatus
US11/248,925 Continuation-In-Part US7363871B2 (en) 2005-09-08 2005-10-11 Apparatus for cleaning the hull of a floating vessel

Publications (1)

Publication Number Publication Date
US20070079743A1 true US20070079743A1 (en) 2007-04-12

Family

ID=37910056

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/583,241 Abandoned US20070079743A1 (en) 2005-10-11 2006-10-19 Apparatus for cleaning the hull of a floating vessel

Country Status (1)

Country Link
US (1) US20070079743A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070051291A1 (en) * 2005-09-08 2007-03-08 Hudd Adrian G Apparatus for cleaning the hull of a floating vessel
US20190039701A1 (en) * 2017-08-04 2019-02-07 Justo Garcia Diaz Machine for cleaning boat hulls in the water
CN114197562A (en) * 2021-12-20 2022-03-18 袁梅 A sediment removal device for hydraulic engineering construction
US11313846B1 (en) * 2020-02-10 2022-04-26 The United States Of America, As Represented By The Secretary Of The Navy Underwater ship hull cleaning tool test device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1221012A (en) * 1916-11-11 1917-04-03 James A Anderson Vessel mooring and positioning apparatus.
US1375102A (en) * 1920-06-26 1921-04-19 Turbine Auto Washer Company Washing and scrubbing brush
US3336896A (en) * 1965-10-20 1967-08-22 Arden L Burnett Ship docking device
US3396423A (en) * 1965-02-09 1968-08-13 Hope Leiv Device for treating large area surfaces
US3404653A (en) * 1965-05-10 1968-10-08 Sierra Charles Trolley for brushing and rubbing-down ships' hulls in dry dock
US3606855A (en) * 1969-07-22 1971-09-21 Whiting Corp Barge handling system
US3909875A (en) * 1972-10-26 1975-10-07 Vorwerk & Co Elektrowerke Kg Vacuum cleaner construction
US3946692A (en) * 1973-12-28 1976-03-30 Phoceenne Sous Marine - Psm Les Hommes Grenouilies Du Port De Marseille Device for cleaning ship's hulls and other immersed surfaces
US3951092A (en) * 1973-12-11 1976-04-20 Maastrichtse Machinefabriek Delnoz B.V. Arrangement for treating a ship's hull
US4011827A (en) * 1976-01-12 1977-03-15 Ben Fond Machine for cleaning the bottom of boats
US4046095A (en) * 1975-11-11 1977-09-06 Fike Don G Marine vessel scrubbing device and method
US4251896A (en) * 1979-06-19 1981-02-24 Clarke-Gravely Corporation Floor machine with gimballed brush drive
US4273061A (en) * 1978-05-25 1981-06-16 Gotaverken Arendal Ab Floating dock
US4445451A (en) * 1980-08-14 1984-05-01 Stork Services B.V. Dock device
US5007210A (en) * 1987-04-04 1991-04-16 Uragami Fukashi Device capable of suction-adhering to a wall surface and moving therealong
US5438728A (en) * 1994-03-18 1995-08-08 Minnesota Mining And Manufacturing Company Rotary brush with segmented fiber sections

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1221012A (en) * 1916-11-11 1917-04-03 James A Anderson Vessel mooring and positioning apparatus.
US1375102A (en) * 1920-06-26 1921-04-19 Turbine Auto Washer Company Washing and scrubbing brush
US3396423A (en) * 1965-02-09 1968-08-13 Hope Leiv Device for treating large area surfaces
US3404653A (en) * 1965-05-10 1968-10-08 Sierra Charles Trolley for brushing and rubbing-down ships' hulls in dry dock
US3336896A (en) * 1965-10-20 1967-08-22 Arden L Burnett Ship docking device
US3606855A (en) * 1969-07-22 1971-09-21 Whiting Corp Barge handling system
US3909875A (en) * 1972-10-26 1975-10-07 Vorwerk & Co Elektrowerke Kg Vacuum cleaner construction
US3951092A (en) * 1973-12-11 1976-04-20 Maastrichtse Machinefabriek Delnoz B.V. Arrangement for treating a ship's hull
US3946692A (en) * 1973-12-28 1976-03-30 Phoceenne Sous Marine - Psm Les Hommes Grenouilies Du Port De Marseille Device for cleaning ship's hulls and other immersed surfaces
US4046095A (en) * 1975-11-11 1977-09-06 Fike Don G Marine vessel scrubbing device and method
US4011827A (en) * 1976-01-12 1977-03-15 Ben Fond Machine for cleaning the bottom of boats
US4273061A (en) * 1978-05-25 1981-06-16 Gotaverken Arendal Ab Floating dock
US4251896A (en) * 1979-06-19 1981-02-24 Clarke-Gravely Corporation Floor machine with gimballed brush drive
US4445451A (en) * 1980-08-14 1984-05-01 Stork Services B.V. Dock device
US5007210A (en) * 1987-04-04 1991-04-16 Uragami Fukashi Device capable of suction-adhering to a wall surface and moving therealong
US5438728A (en) * 1994-03-18 1995-08-08 Minnesota Mining And Manufacturing Company Rotary brush with segmented fiber sections

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070051291A1 (en) * 2005-09-08 2007-03-08 Hudd Adrian G Apparatus for cleaning the hull of a floating vessel
US7363871B2 (en) * 2005-09-08 2008-04-29 Lone Oak Investments Limited Apparatus for cleaning the hull of a floating vessel
US20190039701A1 (en) * 2017-08-04 2019-02-07 Justo Garcia Diaz Machine for cleaning boat hulls in the water
US10562600B2 (en) * 2017-08-04 2020-02-18 Justo Garcia Diaz Machine for cleaning boat hulls in the water
US11313846B1 (en) * 2020-02-10 2022-04-26 The United States Of America, As Represented By The Secretary Of The Navy Underwater ship hull cleaning tool test device
CN114197562A (en) * 2021-12-20 2022-03-18 袁梅 A sediment removal device for hydraulic engineering construction

Similar Documents

Publication Publication Date Title
AU2008350457B2 (en) Underwater cleaning robot and auxiliary cleaning work machine
US20130263770A1 (en) Surface-cleaning device and vehicle
US20070079743A1 (en) Apparatus for cleaning the hull of a floating vessel
KR101581516B1 (en) A retractable thruster unit for a marine vessel
JP2000511488A (en) Marine propulsion and steering equipment
US7363871B2 (en) Apparatus for cleaning the hull of a floating vessel
EP3523194B1 (en) Tugboat having azimuthal propelling units
CN104619585A (en) Azimuth friction free towing point
CA1208986A (en) Marine outdrive apparatus
US20240025524A1 (en) Underwater snake robot with extreme length
CA1149684A (en) Marine outdrive apparatus
US5791954A (en) Vertically adjustable stern mounted marine drive
WO2005014387A1 (en) Apparatus for cleaning the hull exterior of a seagoing vessel
US10618619B2 (en) Closed tunnel system and directional device for outboard jet motors
US6508188B2 (en) Drag-free hull for marine vessels
CA2527147C (en) Marine vessel propulsion and tubular rudder system
WO2007028953A2 (en) Improvements to apparatus for cleaning the hull of a floating vessel
RU2135387C1 (en) Tug for docking/undocking the ships (versions)
CN101909985A (en) Sealing for fin propulsion
US10232913B1 (en) Pontoon boat driven by PWC
CA1251693A (en) Steering means for marine propulsion device
SU1087066A3 (en) Suction dredge and oil collecting vessel
SE513195C2 (en) Method and apparatus for combating oil
KR20230044796A (en) Underwater landing type ship bottom cleaning robot system
US6491554B1 (en) Watercraft with steerable planing surface

Legal Events

Date Code Title Description
AS Assignment

Owner name: LONE OAK INVESTMENTS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUDD, ADRIAN GERALD;WILFORD, MICHAEL;REEL/FRAME:018444/0437;SIGNING DATES FROM 20060510 TO 20060920

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION