US20070068668A1 - Water total heat exchange energy reclaiming apparatus - Google Patents
Water total heat exchange energy reclaiming apparatus Download PDFInfo
- Publication number
- US20070068668A1 US20070068668A1 US11/236,665 US23666505A US2007068668A1 US 20070068668 A1 US20070068668 A1 US 20070068668A1 US 23666505 A US23666505 A US 23666505A US 2007068668 A1 US2007068668 A1 US 2007068668A1
- Authority
- US
- United States
- Prior art keywords
- water
- heat exchange
- vaporizing device
- chassis
- reclaiming apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 159
- 230000008016 vaporization Effects 0.000 claims abstract description 54
- 239000012535 impurity Substances 0.000 claims description 11
- 238000009434 installation Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000004378 air conditioning Methods 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000004887 air purification Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
- F24F12/001—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
- F24F12/002—Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Definitions
- the invention relates to a water total heat exchange energy reclaiming apparatus and particularly to an energy reclaiming apparatus to purify and filter air and transfer heat in the air through water vaporization.
- the present invention aims to provide a water total heat exchange energy reclaiming apparatus to purify air quality, increase energy saving effect and facilitate installation thereby to improve environmental air and save energy.
- the invention includes a first chassis and a second chassis that are separated but connected through a piping.
- the first chassis includes a first air duct, a water vaporizing device, a first heat exchange coil and a first fan.
- the second chassis includes a second air duct, a cold water heat exchange tube, a second heat exchange coil and a second fan.
- the water vaporizing device is connected to a water level controller and a first pump through a piping, and connected to the cold water heat exchange tube to form a closed circulation piping to reclaim cold and heat energy.
- the first heat exchange coil is connected to a second pump through another piping, and connected to the second heat exchange coil to form another closed circulation piping to release or reclaim cold and heat-energy.
- FIG. 1 is a schematic view of the system configuration of the invention.
- FIG. 2 is another schematic view of the system configuration of the invention.
- FIG. 3 is a schematic view of an embodiment of the water vaporizing device of the invention.
- FIG. 4 is a schematic view of another embodiment of the water vaporizing device of the invention.
- FIG. 5 is a schematic view of the water level controller of the invention.
- FIG. 6 is a schematic view of another embodiment of the water level controller of the invention.
- FIG. 7 is a schematic view of another embodiment of the system configuration of the invention.
- FIG. 8 is another schematic view of another embodiment of the system configuration of the invention.
- the water total heat exchange energy reclaiming apparatus 2 includes a first chassis 21 and a second chassis 22 that are separated and connected through a piping.
- the first chassis 21 includes a first air duct 210 , a water vaporizing device 211 , a first heat exchange coil 213 and a first fan 214 on one side.
- the water vaporizing device 211 aims to vaporize and filter water, and has one end connecting to a cold water discharge end 2212 of a cold water heat exchange tube 221 of the second chassis 22 through a second piping L 2 .
- the water vaporizing device 211 has a water tray 212 on the bottom.
- the water tray 212 has one side connecting to a water level controller 24 and a first pump 25 through a first piping L 1 , and also connected to a cold water intake end 2211 of the cold water heat exchange tube 221 .
- the first heat exchange coil 213 is connected to the second chassis 22 through a third piping L 3 and a fourth piping L 4 .
- the third piping L 3 has a second pump 23 .
- the first fan 214 aims to convey airflow.
- the second chassis 22 includes a second air duct 220 , the cold water heat exchange tube 221 , a second heat exchange coil 222 , and a second fan 223 on another side.
- the cold water heat exchange tube 221 contains a heat exchange tube with the cold water intake end 2211 on one end and the cold water discharge end 2212 on another end, and is connected to the water vaporizing device 211 through the first and second piping L 1 and L 2 .
- the second heat exchange coil 222 is connected to the first heat exchange coil 213 of the first chassis 21 through the third and fourth piping L 3 and L 4 to form a closed circulation piping.
- the second fan 223 aims to convey airflow.
- the air in an indoor side I is drawn and discharged to an outdoor side O through the first fan 214 .
- the air flows through the water vaporizing device 211 of the first chassis 21 impurities in the air are filtered out through water vapor and precipitate on the water tray 212 .
- Water vaporizing in the water vaporizing device 211 can absorb heat to lower the temperature of water and air.
- the cooled water flows to the second chassis 22 through the first piping L 1 so that air entering from the outdoor side O to the cold water heat exchange tube 221 of the second chassis 22 can be pre-cooled (transfer heat) to save energy.
- the first heat exchange coil 213 consists of a plurality of tubes which contain a circulation medium (such as water, refrigerant or the like).
- a circulation medium such as water, refrigerant or the like.
- the air passing through the first heat exchange coil 213 absorbs heat and has a higher temperature.
- the air discharged from the indoor side I is purified without polluting the environment.
- the reclaimed cold energy can lower the temperature of the circulation medium in the first heat exchange coil 213 to save the energy of second heat exchange coil 222 .
- the air in the outdoor side O is drawn by the second fan 223 to enter the second heat exchange coil 222 through the second air duct 220 .
- the second heat exchange coil 222 is connected to the first heat exchange coil 213 through the third and fourth piping L 3 and L 4 , and the third piping L 3 has the second pump 23 , the cold energy generated by the heat exchange of the first heat exchange coil 213 is sent to the second heat exchange coil 222 to pre-cool the air entering from the outdoor side O.
- the pre-cooled air further is cooled by the cold water exchange tube 221 to save energy.
- the air in the outdoor side O enters the first air duct 210 of the first chassis 21 .
- the air passes through the first heat exchange coil 213 to absorb heat through heat exchange and has a higher temperature.
- impurities in the air is filtered out and precipitate on the water tray 212 .
- the air is purified and has a higher temperature due to water vaporization (during warm air circulation, the air temperature in the outdoor side O is much lower than the water temperature, thus the air absorbs the heat energy of the water during water vaporization).
- a moisturizing effect also takes places.
- the air in the indoor side I is drawn by the second fan 223 of the second chassis 22 and discharged to the outdoor side O.
- the air passes through the cold water heat exchange tube 221 of the second air duct 220 that absorbs heat to cool the temperature of the air.
- the cooled air goes through the heat exchange process of the second heat exchange coil 222 to further lower the temperature.
- the air temperature discharged to the outdoor side O is proximate to the ambient temperature. Hence heat pollution can be reduced, and heat energy can be reclaimed more effectively.
- the first chassis 21 and the second chassis 22 are configured separately, and may be installed on different locations according to environment and space conditions. Therefore the discharged air can be prevented from drawn indoors to avoid airflow mixing. And air quality can be maintained as desired.
- the water vaporizing device 211 is a porous filter consisting of a plurality of tubes or blades.
- a water permeable tray 215 is located on the top.
- FIG. 4 for another embodiment of the water vaporizing device 211 .
- a plurality of water ejection nozzles 216 are located on the top that can atomize water.
- the atomized water mist W can filter out the impurities in the air and precipitate the impurities on the water tray 212 to lower the temperature and reclaim the cooling energy.
- the water level controller 24 has a float ball 241 to control water consumption required in the circulation.
- a water intake tube 242 is provided to replenish water for circulation.
- a water discharge tube 243 is provided to discharge the impurities and extra circulating water.
- the water level controller 24 further is connected to the first pump 25 to send the water in the water level controller 24 to the cold water intake end 2211 of the cold water exchange tube 221 through the first piping L 1 .
- the water flows from the cold water discharge end 2212 to the top of the water vaporizing device 211 through the second piping L 2 to complete one cycle of water circulation.
- the water tray 212 ′ in the water vaporizing device 211 has a float ball 241 ′ on one side to control water consumption required in the circulation.
- the water tray 212 ′ has a higher stage portion 2121 ′ which is coupled with a water intake tube 242 ′ to replenish water required in the circulation.
- the water tray 212 ′ also has a lower stage portion 2122 ′ which is coupled with a water discharge tube 243 ′ to discharge the impurities and extra circulation water.
- the water total heat exchange energy reclaiming apparatus 3 includes a first chassis 31 which has a first air duct 310 , a water vaporizing device 311 , a first heat exchange coil 313 and a first fan 314 , and a second chassis 32 which has a second air duct 320 , a cold water heat exchange tube 321 , a second heat exchange coil 322 and a second fan 324 . It is largely structured like the embodiment shown in FIGS. 1 and 2 . However, this embodiment aims to further purify the air entering from the outdoor side O to the indoor side I.
- the first chassis 31 has a first auxiliary water vaporizing device 361 in the first air duct 310 on one end close to the outdoor side O.
- the second chassis 32 has a second auxiliary water vaporizing device 371 in the second air duct 320 on one end close to the outdoor side O.
- the first and second auxiliary water vaporizing devices 361 and 371 have the same structure and function of the water vaporizing device 311 . They mainly aim to filter out the impurities of the passing air through water vaporization.
- the first and second auxiliary water vaporizing devices 361 and 371 are connected respectively to a sixth piping L 6 and a seventh piping L 7 that have respectively a water level controller 363 and 373 and a pump 364 and 374 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
Abstract
A water total heat exchange energy reclaiming apparatus includes a first chassis and a second chassis. The first chassis includes a first air duct, a water vaporizing device, a first heat exchange coil and a first fan. The second chassis includes a second air duct, a cold water heat exchange tube, a second heat exchange coil and a second fan. The first chassis and the second chassis are separated. Installation can be done according to environment requirements and is more convenient. Mixing of discharge airflow and return airflow can be prevented. Thus air quality of the environment can be improved and energy saving can be achieved.
Description
- 1. Field of the Invention
- The invention relates to a water total heat exchange energy reclaiming apparatus and particularly to an energy reclaiming apparatus to purify and filter air and transfer heat in the air through water vaporization.
- 2. Description of the Prior Art
- In recent decades there is a growing awareness of the concept of environmental protection. However most preventive measures focus on the macro level. The pollution issues that are not very notable often are overlooked, such as the pollution resulting from air conditioning. In short, most improvements on air conditioning systems at present mainly focus on lower energy consumption, noise reduction, humanized control, mood enhancement, dehydration, indoor air purification, and the like. While the issue of indoor air purification has attracted a lot of attention, the impact of polluted air discharged from the air conditioning or operation space (such as plants, chicken farms, and the like) to the environment often is neglected. Some systems have used filters or other methods to get clean air conditioning space. But dusts, fibers and other ionized matters generated in the air conditioning space are discharged outdoors during air conditioning operation. Moreover, due to over-utilization of lands, building density increases greatly. The so called fresh air intake of building or during industrial process often is the polluted air discharged somewhere else. This creates a secondary public hazard and contamination, and becomes one of the air pollution sources. To prevent the secondary public hazard, a water-filtered air purifying and energy saving apparatus was proposed in R.O.C. patent No. 139014. It has a partition to divide a upper air vent that discharges the heated air and a lower vent that draws the outdoor air. However, the heated air discharged through the upper air vent is easily drawn into the apparatus through the lower air vent. As a result, the energy saving effect suffers. This is its big disadvantage.
- In view of the aforesaid disadvantages, the present invention aims to provide a water total heat exchange energy reclaiming apparatus to purify air quality, increase energy saving effect and facilitate installation thereby to improve environmental air and save energy.
- The invention includes a first chassis and a second chassis that are separated but connected through a piping. The first chassis includes a first air duct, a water vaporizing device, a first heat exchange coil and a first fan. The second chassis includes a second air duct, a cold water heat exchange tube, a second heat exchange coil and a second fan. The water vaporizing device is connected to a water level controller and a first pump through a piping, and connected to the cold water heat exchange tube to form a closed circulation piping to reclaim cold and heat energy. The first heat exchange coil is connected to a second pump through another piping, and connected to the second heat exchange coil to form another closed circulation piping to release or reclaim cold and heat-energy. By means of the separated first chassis and the second chassis, discharge airflow and return airflow do not mixed. Hence operation efficiency can be maintained. The configuration can be arranged according to environment requirements. Installation is more convenient.
- The foregoing, as well as additional objects, features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
-
FIG. 1 is a schematic view of the system configuration of the invention. -
FIG. 2 is another schematic view of the system configuration of the invention. -
FIG. 3 is a schematic view of an embodiment of the water vaporizing device of the invention. -
FIG. 4 is a schematic view of another embodiment of the water vaporizing device of the invention. -
FIG. 5 is a schematic view of the water level controller of the invention. -
FIG. 6 is a schematic view of another embodiment of the water level controller of the invention. -
FIG. 7 is a schematic view of another embodiment of the system configuration of the invention. -
FIG. 8 is another schematic view of another embodiment of the system configuration of the invention. - Referring to
FIGS. 1 and 2 , the water total heat exchangeenergy reclaiming apparatus 2 according to the invention includes afirst chassis 21 and asecond chassis 22 that are separated and connected through a piping. - The
first chassis 21 includes afirst air duct 210, a water vaporizingdevice 211, a firstheat exchange coil 213 and afirst fan 214 on one side. - The water vaporizing
device 211 aims to vaporize and filter water, and has one end connecting to a coldwater discharge end 2212 of a cold waterheat exchange tube 221 of thesecond chassis 22 through a second piping L2. The water vaporizingdevice 211 has awater tray 212 on the bottom. Thewater tray 212 has one side connecting to awater level controller 24 and afirst pump 25 through a first piping L1, and also connected to a coldwater intake end 2211 of the cold waterheat exchange tube 221. - The first
heat exchange coil 213 is connected to thesecond chassis 22 through a third piping L3 and a fourth piping L4. The third piping L3 has asecond pump 23. - The
first fan 214 aims to convey airflow. - The
second chassis 22 includes asecond air duct 220, the cold waterheat exchange tube 221, a secondheat exchange coil 222, and asecond fan 223 on another side. - The cold water
heat exchange tube 221 contains a heat exchange tube with the coldwater intake end 2211 on one end and the coldwater discharge end 2212 on another end, and is connected to the water vaporizingdevice 211 through the first and second piping L1 and L2. - The second
heat exchange coil 222 is connected to the firstheat exchange coil 213 of thefirst chassis 21 through the third and fourth piping L3 and L4 to form a closed circulation piping. - The
second fan 223 aims to convey airflow. - By means of the construction set forth above, when in use for cooling air circulation (referring to
FIG. 1 ), the air in an indoor side I is drawn and discharged to an outdoor side O through thefirst fan 214. When the air flows through the water vaporizingdevice 211 of thefirst chassis 21, impurities in the air are filtered out through water vapor and precipitate on thewater tray 212. Water vaporizing in the water vaporizingdevice 211 can absorb heat to lower the temperature of water and air. The cooled water flows to thesecond chassis 22 through the first piping L1 so that air entering from the outdoor side O to the cold waterheat exchange tube 221 of thesecond chassis 22 can be pre-cooled (transfer heat) to save energy. - As previously discussed, the air cooled by the water vaporizing
device 211 flows to the firstheat exchange coil 213 through thefirst air duct 210. The firstheat exchange coil 213 consists of a plurality of tubes which contain a circulation medium (such as water, refrigerant or the like). Through the heat exchange function of the circulation medium in the firstheat exchange coil 213, the air passing through the firstheat exchange coil 213 absorbs heat and has a higher temperature. Hence the air discharged from the indoor side I is purified without polluting the environment. Meanwhile, the reclaimed cold energy can lower the temperature of the circulation medium in the firstheat exchange coil 213 to save the energy of secondheat exchange coil 222. - The air in the outdoor side O is drawn by the
second fan 223 to enter the secondheat exchange coil 222 through thesecond air duct 220. As the secondheat exchange coil 222 is connected to the firstheat exchange coil 213 through the third and fourth piping L3 and L4, and the third piping L3 has thesecond pump 23, the cold energy generated by the heat exchange of the firstheat exchange coil 213 is sent to the secondheat exchange coil 222 to pre-cool the air entering from the outdoor side O. The pre-cooled air further is cooled by the coldwater exchange tube 221 to save energy. - When the invention is in use for warm air circulation (referring to
FIG. 2 ), through thefirst fan 214, the air in the outdoor side O enters thefirst air duct 210 of thefirst chassis 21. The air passes through the firstheat exchange coil 213 to absorb heat through heat exchange and has a higher temperature. Through vaporizing of thewater vaporizing device 211, impurities in the air is filtered out and precipitate on thewater tray 212. Moreover, the air is purified and has a higher temperature due to water vaporization (during warm air circulation, the air temperature in the outdoor side O is much lower than the water temperature, thus the air absorbs the heat energy of the water during water vaporization). A moisturizing effect also takes places. On the other hand, the air in the indoor side I is drawn by thesecond fan 223 of thesecond chassis 22 and discharged to the outdoor side O. The air passes through the cold waterheat exchange tube 221 of thesecond air duct 220 that absorbs heat to cool the temperature of the air. The cooled air goes through the heat exchange process of the secondheat exchange coil 222 to further lower the temperature. The air temperature discharged to the outdoor side O is proximate to the ambient temperature. Hence heat pollution can be reduced, and heat energy can be reclaimed more effectively. - The
first chassis 21 and thesecond chassis 22 are configured separately, and may be installed on different locations according to environment and space conditions. Therefore the discharged air can be prevented from drawn indoors to avoid airflow mixing. And air quality can be maintained as desired. - Referring to
FIG. 3 , thewater vaporizing device 211 is a porous filter consisting of a plurality of tubes or blades. A waterpermeable tray 215 is located on the top. Thus when water passes through thewater vaporizing device 211, beside vaporizing the water to perform heat exchange, the impurities in air can also be filtered out. - Refer to
FIG. 4 for another embodiment of thewater vaporizing device 211. A plurality ofwater ejection nozzles 216 are located on the top that can atomize water. Hence when contaminated air passes through thewater vaporizing device 211′, the atomized water mist W can filter out the impurities in the air and precipitate the impurities on thewater tray 212 to lower the temperature and reclaim the cooling energy. - The
water level controller 24 has afloat ball 241 to control water consumption required in the circulation. Awater intake tube 242 is provided to replenish water for circulation. Awater discharge tube 243 is provided to discharge the impurities and extra circulating water. Thewater level controller 24 further is connected to thefirst pump 25 to send the water in thewater level controller 24 to the coldwater intake end 2211 of the coldwater exchange tube 221 through the first piping L1. The water flows from the coldwater discharge end 2212 to the top of thewater vaporizing device 211 through the second piping L2 to complete one cycle of water circulation. - Refer to
FIG. 6 for another embodiment of thewater level controller 24′. Thewater tray 212′ in thewater vaporizing device 211 has afloat ball 241′ on one side to control water consumption required in the circulation. Thewater tray 212′ has ahigher stage portion 2121′ which is coupled with awater intake tube 242′ to replenish water required in the circulation. Thewater tray 212′ also has alower stage portion 2122′ which is coupled with awater discharge tube 243′ to discharge the impurities and extra circulation water. - Refer to
FIGS. 7 and 8 for another embodiment of the invention. The water total heat exchangeenergy reclaiming apparatus 3 includes afirst chassis 31 which has afirst air duct 310, awater vaporizing device 311, a firstheat exchange coil 313 and afirst fan 314, and asecond chassis 32 which has asecond air duct 320, a cold waterheat exchange tube 321, a secondheat exchange coil 322 and a second fan 324. It is largely structured like the embodiment shown inFIGS. 1 and 2 . However, this embodiment aims to further purify the air entering from the outdoor side O to the indoor side I. Thefirst chassis 31 has a first auxiliarywater vaporizing device 361 in thefirst air duct 310 on one end close to the outdoor side O. Thesecond chassis 32 has a second auxiliarywater vaporizing device 371 in thesecond air duct 320 on one end close to the outdoor side O. The first and second auxiliarywater vaporizing devices water vaporizing device 311. They mainly aim to filter out the impurities of the passing air through water vaporization. The first and second auxiliarywater vaporizing devices water level controller pump FIG. 7 ), the air first passes through the second auxiliarywater vaporizing devices 371 to be purified, then is used in the rear end. Adopted the same principle, when in use for warm air circulation, the air in the outdoor side O enters the first chassis 31 (referring toFIG. 8 ), the air first passes through the first auxiliarywater vaporizing devices 361 to be purified, then is used in the rear end. By means of the water vaporizing processes of the first and second auxiliarywater vaporizing devices
Claims (16)
1. A water total heat exchange energy reclaiming apparatus, comprising a first chassis and a second chassis that are separated and connected to each other through a piping, wherein:
the first chassis includes a first air duct, a water vaporizing device, a first heat exchange coil, and a first fan on a first side; and
the second chassis includes a second air duct, a cold water heat exchange tube, a second heat exchange coil, and a second fan on a second side.
2. The water total heat exchange energy reclaiming apparatus of claim 1 , wherein the water vaporizing device is a porous filter which includes a plurality of tubes or blades.
3. The water total heat exchange energy reclaiming apparatus of claim 1 , wherein the water vaporizing device has a plurality of water ejection nozzles on the top end to atomize water.
4. The water total heat exchange energy reclaiming apparatus of claim 1 , wherein the water vaporizing device has one end connecting to a cold water discharge end of the cold water heat exchange tube through a first piping.
5. The water total heat exchange energy reclaiming apparatus of claim 1 , wherein the water vaporizing device has a water tray on the bottom, the water tray having one side connecting to a water level controller and a first pump and communicating with a cold water intake end of the second chassis.
6. The water total heat exchange energy reclaiming apparatus of claim 1 , wherein the water vaporizing device has a water tray on the bottom, the water tray having a water level controller located therein.
7. The water total heat exchange energy reclaiming apparatus of claim 1 , wherein the second heat exchange coil is connected to the first heat exchange coil through a second piping which is coupled with a second pump.
8. A water total heat exchange energy reclaiming apparatus, comprising a first chassis and a second chassis that are separated and connected to each other through a piping, wherein:
the first chassis includes a first air duct, a water vaporizing device, a first heat exchange coil, a first auxiliary water vaporizing device, and a first fan on a first side; and
the second chassis includes a second air duct, a cold water heat exchange tube, a second heat exchange coil, a second auxiliary water vaporizing device, and a second fan on a second side.
9. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the water vaporizing device is a porous filter which includes a plurality of tubes or blades.
10. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the water vaporizing device has a plurality of water ejection nozzles on the top end to atomize water.
11. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the water vaporizing device has one end connecting to a cold water discharge end of the cold water heat exchange tube through a first piping.
12. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the water vaporizing device has a water tray on the bottom, the water tray having one side connecting to a water level controller and a first pump and communicating with a cold water intake end of the second chassis.
13. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the water vaporizing device has a water tray on the bottom, the water tray having a water level controller located therein.
14. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the second heat exchange coil is connected to the first heat exchange coil through a second piping which is coupled with a second pump.
15. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the first auxiliary water vaporizing device is located on one end of the first air duct close to an outdoor side and structured as the water vaporizing device to filter out impurities contained in passing air.
16. The water total heat exchange energy reclaiming apparatus of claim 8 , wherein the second auxiliary water vaporizing device is located on one end of the second air duct close to an outdoor side and structured as the water vaporizing device to filter out impurities contained in passing air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/236,665 US20070068668A1 (en) | 2005-09-28 | 2005-09-28 | Water total heat exchange energy reclaiming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/236,665 US20070068668A1 (en) | 2005-09-28 | 2005-09-28 | Water total heat exchange energy reclaiming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070068668A1 true US20070068668A1 (en) | 2007-03-29 |
Family
ID=37892457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/236,665 Abandoned US20070068668A1 (en) | 2005-09-28 | 2005-09-28 | Water total heat exchange energy reclaiming apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US20070068668A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150260456A1 (en) * | 2014-03-11 | 2015-09-17 | Her Jiu Technology Co., Ltd. | Dry air-water heat exchanger |
TWI564522B (en) * | 2013-03-15 | 2017-01-01 | Water resources energy conversion system | |
CN106482372A (en) * | 2016-10-18 | 2017-03-08 | 章晓晓 | A kind of dehumidifier |
TWI593859B (en) * | 2016-06-24 | 2017-08-01 | Mitsubishi Electric Corp | Water collector, water circulation system, control device, control method and control program product |
CN107560054A (en) * | 2017-08-29 | 2018-01-09 | 西安工程大学 | Two-stage residual heat recovery type Fresh air handling units |
CN112834260A (en) * | 2021-02-04 | 2021-05-25 | 浙江盾安热工科技有限公司 | Energy storage experiment system and control method |
CN116753619A (en) * | 2023-06-29 | 2023-09-15 | 钹鑫科技(上海)股份有限公司 | Cabinet type full fresh air purifying and dehumidifying device with auxiliary heat dissipation function |
-
2005
- 2005-09-28 US US11/236,665 patent/US20070068668A1/en not_active Abandoned
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI564522B (en) * | 2013-03-15 | 2017-01-01 | Water resources energy conversion system | |
US20150260456A1 (en) * | 2014-03-11 | 2015-09-17 | Her Jiu Technology Co., Ltd. | Dry air-water heat exchanger |
US9599355B2 (en) * | 2014-03-11 | 2017-03-21 | Her Jiu Technology Co., Ltd. | Dry air-water heat exchanger |
TWI593859B (en) * | 2016-06-24 | 2017-08-01 | Mitsubishi Electric Corp | Water collector, water circulation system, control device, control method and control program product |
CN106482372A (en) * | 2016-10-18 | 2017-03-08 | 章晓晓 | A kind of dehumidifier |
CN107560054A (en) * | 2017-08-29 | 2018-01-09 | 西安工程大学 | Two-stage residual heat recovery type Fresh air handling units |
CN112834260A (en) * | 2021-02-04 | 2021-05-25 | 浙江盾安热工科技有限公司 | Energy storage experiment system and control method |
CN116753619A (en) * | 2023-06-29 | 2023-09-15 | 钹鑫科技(上海)股份有限公司 | Cabinet type full fresh air purifying and dehumidifying device with auxiliary heat dissipation function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070068668A1 (en) | Water total heat exchange energy reclaiming apparatus | |
US20030037905A1 (en) | Air conditioning system performing composite heat transfer through change of water two phases (liquid vapor) | |
CN107300230B (en) | Evaporative cooling system | |
CA2863401C (en) | Air-to-air heat exchanger bypass for wet cooling tower apparatus and method | |
WO2020192070A1 (en) | Air conditioner cleaning device and cleaning method, and air conditioner | |
CN102650503B (en) | Evaporative condensing and cooling device | |
CN207599911U (en) | A kind of modularization air-conditioner set | |
GB2483095A (en) | Air handling unit | |
KR101222655B1 (en) | Water evaporative air cooler | |
CN110762669A (en) | Dual-purpose indirect evaporative cooling air-conditioning fish tank | |
CN103090481B (en) | Energy conversion and ventilation device for building | |
US20090301114A1 (en) | Heat exchange apparatus | |
CN103075769B (en) | Fresh air conditioning unit capable of realizing energy recovery and free cooling | |
CN105805876A (en) | Heat-recovery fresh air ventilator | |
CN211575407U (en) | Fresh air purification device with temperature and humidity coordinated regulation and control function | |
CN104121615A (en) | Air purification functional box | |
CN203464785U (en) | Dual-cooling type closed cooling system | |
CN209735257U (en) | Waste gas treatment system of setting machine | |
CN103090479B (en) | Passive window type energy conversion and air exchange device | |
CN204987294U (en) | Evaporation formula condensation regenerator | |
CN103090480B (en) | Active window type energy conversion and ventilation device | |
KR20160133980A (en) | Air-to-air heat exchanger bypass for wet cooling tower apparatus and method | |
JPH0760043B2 (en) | Cooling method for objects to be cooled using collected and filtered air | |
CN211345651U (en) | Fish tank combining indirect evaporative cooling and glass ring technology | |
CN221614486U (en) | Fresh air system of power distribution room |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COHAND TECHNOLOGY CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WENG, KUO-LIANG;REEL/FRAME:017041/0698 Effective date: 20050816 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |