US20070061690A1 - Block puncturing for turbo code based incremental redundancy - Google Patents
Block puncturing for turbo code based incremental redundancy Download PDFInfo
- Publication number
- US20070061690A1 US20070061690A1 US11/428,656 US42865606A US2007061690A1 US 20070061690 A1 US20070061690 A1 US 20070061690A1 US 42865606 A US42865606 A US 42865606A US 2007061690 A1 US2007061690 A1 US 2007061690A1
- Authority
- US
- United States
- Prior art keywords
- canceled
- bits
- row
- block
- parity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000009897 systematic effect Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000013507 mapping Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 description 23
- 239000011159 matrix material Substances 0.000 description 11
- 238000004891 communication Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 230000011218 segmentation Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 108010003272 Hyaluronate lyase Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0064—Concatenated codes
- H04L1/0066—Parallel concatenated codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0067—Rate matching
- H04L1/0068—Rate matching by puncturing
- H04L1/0069—Puncturing patterns
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
- H04L1/1819—Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
Definitions
- This invention relates generally to communication systems, and more particularly to coding in a turbo coded communication system.
- Convolutional codes are often used in digital communication systems to protect transmitted information from error.
- Such communication systems include the Direct Sequence Code Division Multiple Access (DS-CDMA) standard IS-95, the Global System for Mobile Communications (GSM), and next generation wideband communication systems.
- DS-CDMA Direct Sequence Code Division Multiple Access
- GSM Global System for Mobile Communications
- a signal is convolutionally coded into an outgoing code vector that is transmitted.
- a decoder such as a Viterbi decoder as is known in the art, uses a trellis structure to perform an optimum search for the transmitted signal bits based on maximum likelihood criterion.
- turbo codes have been developed that outperform conventional coding techniques.
- Turbo codes are generally composed of two or more convolutional codes and turbo interleavers.
- turbo decoding is iterative and uses a soft output decoder to decode the individual convolutional codes.
- the soft outputs of the decoders are used in the decoding procedure to iteratively approach the converged final results.
- FIG. 1 shows a typical turbo encoder that is constructed with one interleaver and two constituent codes which are recursive systematic convolutional (RSC) codes, but can be block codes, also.
- a turbo encoder is shown which is a parallel concatenation of two RSCs with an interleaver, ⁇ , between them.
- the output, c k , of the turbo encoder is generated by multiplexing (concatenating) the information bits, b k , and parity bits, P 1k and p 2k , from the two encoders.
- the parity bits are punctured as is known in the art to increase code rate.
- Each RSC has a one parity bit output, but the number of parity bits of the RSC can be more than one.
- the encoded data is transmitted to a receiver, which uses error detection. If an error is detected, the receiver can request that the transmitter, such as a base station for example, retransmit the data using an Automatic Repeat Request (ARQ).
- ARQ Automatic Repeat Request
- the radio can request the transmitter to resend that portion of bits from the block or a portion of a frame of data that failed so as to be properly decoded.
- ARQ a Hybrid Automatic Repeat Request
- HARQ Two known forms of HARQ are Chase combining and Incremental Redundancy (IR).
- Chase combining is a simplified form of HARQ wherein the receiver simply requests a retransmission of the same codeword again.
- IR is more complicated in that it provides for a retransmission of the code word using more parity bits. However, this involves a lowering of the code rate due to the added information, which can only be alleviated by further puncturing of bits.
- Conventional means of defining a puncturing pattern such as a rate matching algorithm or alternatively a classical code puncturing matrix, as are known in the art, are unable to provide the necessary smooth and flexible transition between changing coding rates, as are envisioned for next generation communication products.
- turbo coder that utilizes a unified puncturing scheme, which allows flexibility in choosing coding rates for the initial and subsequent transmissions. It would also be advantageous to provide this improvement using any of the combined ARQ techniques. It would also be of benefit to provide an improved turbo coder with a minimal increase of computational complexity or implementation effort.
- FIG. 1 shows a simplified block diagram for a turbo encoder as is known in the prior art
- FIG. 2 shows a simplified flow chart for a prior art coding structure
- FIG. 3 shows a simplified flow chart for a coding structure, in accordance with the present invention
- FIG. 4 shows a simplified block diagram for a turbo decoder, in accordance with the present invention
- FIG. 5 shows a chart for block interleaver management, in accordance with the present invention
- FIG. 6 shows simplified graphic representation for redundancy version, in accordance with the present invention.
- FIG. 7 shows a chart for bit priority mapping, in accordance with the present invention.
- FIG. 8 shows a matrix representation of a prior art puncture matrix
- FIG. 9 shows a set of puncturing matrices, in accordance with the present invention.
- FIG. 10 shows a first graphical representation of the improvement provided by the present invention
- FIG. 11 shows a first graphical representation of the improvement provided by the present invention.
- FIG. 12 shows a simplified flow chart of a method, in accordance with the present invention.
- the present invention provides a turbo coder that supports incremental redundancy (IR) as a form of ARQ combining, using a single, unified puncturing scheme.
- IR incremental redundancy
- the present invention uses a puncturing scheme based on a block interleaver. Codeword bits are read in column-wise while the desired amount of unpunctured data is then read out row-wise after row and column rearrangement.
- the block nature of the interleaver ensures a regular puncturing distributed throughout the encoder trellis ensuring good code performance.
- the block puncturing approach of the present invention has the advantage of ease of implementation as well as retaining the flexibility in adapting to any desired coding rate without a significant increase in complexity.
- the present invention provides for flexible and fine-grained support of predefined redundancy versions at each transmission with progressive reduction in effective coding rates and support for full and partial forms of both Chase combining and IR.
- the present invention also provides for symbol priority mapping onto the most reliable Quadrature Amplitude Modulation (QAM) constellation points to further reduce decoding errors.
- QAM Quadrature Amplitude Modulation
- the High Speed Downlink Packet Access (HSDPA) feature of the Third Generation Partnership Project (3GPP) UTRA (UMTS Terrestrial Radio Access) or Wideband Code Division Multiple Access (WCDMA) system details a hybrid-ARQ scheme based on Incremental Redundancy (IR) methods applied to a rate-1/3 turbo-code.
- the present invention defines the High Speed Downlink Shared Channel (HS-DSCH) coding and modulation scheme to permit the use of incremental redundancy block interleaving in user equipment (UE), such as a cellular radio communication device.
- UE user equipment
- the present invention describes a specific method and apparatus for applying IR to HSDPA.
- IR methods are known in the art, and have been applied before to systems such as Enhanced Data for GSM Evaluation (EDGE).
- EDGE Enhanced Data for GSM Evaluation
- the HSDPA problem is novel, in that the number of Soft Metric Locations (or SMLs) available to the Hybrid Acknowledge Repeat Request (HARQ) process can change depending on factors such as the number of ARQ processes in existence.
- the present invention allows for a change in the final coding rate according to the available coded symbol memory.
- prior systems such as EDGE, utilized convolutional codes rather than turbo-codes, and supported a different number of redundancy versions.
- the present invention provides a flexible IR scheme specifically applicable to HSDPA.
- the IR scheme of the present invention supports: a) a flexible method of controlling the instantaneous and variable final code rate of the HARQ process (ranging from Chase combining to rate-1/3 expansion), b) general QAM modulation, including 16-QAM, c) a specific set of possible redundancy versions from which can be selected an optimal (or simply preferred) sequence of redundancy versions, based on the specific acknowledge/negative acknowledge (ACK/NACK) signal evolution applicable to HSDPA, and d) a novel implementation of block interleavers.
- ACK/NACK acknowledge/negative acknowledge
- IR Prior art implementations for IR, such as those of EDGE, do not meet the specific requirements of the current problem since they cannot change the final coding rate according to the available coded symbol memory.
- the terminal memory requirements of the user equipment are derived based on Chase (soft) combining at the maximum data rate defined by the associated UE capability parameters.
- the UE has memory limitations and can only accept particular code rates.
- the present invention accounts for these memory limitations and allows the UE to vary coding rates accordingly.
- FIG. 2 shows the existing reference channel coding model for High Speed Downlink Packet Access (HSDPA) in accordance with the 3GPP specification protocols of section 4.2, “Technical Specification Group Radio Access Network; Multiplexing and Channel Coding (FDD) (Release 1999)”, TS 25.212 v3.5.0 (2000-12), which is hereby incorporated by reference.
- HSDPA High Speed Downlink Packet Access
- FDD Multiplexing and Channel Coding
- TS 25.212 v3.5.0 2000-12
- each of the code blocks are individually subjected to channel coding 208 and rate matching 210 for the puncturing and incremental redundancy used.
- the blocks are then subject to physical channel segmentation 212 , interleaving 214 , and physical channel mapping 216 , where physical channels 1 through K are output. [maybe give overview of what goes on in each of these blocks? what does the box shading on the last two blocks signify?]
- FIG. 3 shows a channel coding model for HSDPA in accordance with the present invention.
- the first four operations proceed according to the 3GPP protocols previously described.
- channel coding 208 proceeds according to a channel coder operable at a rate-1/3 turbo encoding function.
- the last three stages (physical channel segmentation 312 , (second) interleaver 314 , and physical channel mapping 316 ) also proceed similarly to the 3GPP protocols with the exception of operation on symbols instead of bits.
- the improvement of the present invention occurs in the first interleaver 300 , redundancy version selection 302 , and optional the bit priority mapper 304 . [I see that rate matching 210 is not present. Where does rate selection occur in this diagram?]
- FIG. 4 shows the operation of the first interleaver ( 300 in FIG. 3 ) in entering a codeword into puncturing matrices.
- the unpunctured codeword bits are bit separated into respective “Systematic”, “Parity 1 ” and “Parity 2 ” streams denoted by X S,k , p 1,k , p 2,k where k ⁇ 1, . . . , N info ⁇ .
- Each stream is read into separate N row ⁇ N col block matrix interleavers.
- the parity bits are combined into one puncturing matrix, but separate parity block interleavers can be used for each parity stream.
- x s ,k ⁇ 1,0 ⁇ and x P,k ⁇ p 1,k , p 2,k ⁇ where x P,k ⁇ 1,0 ⁇ , ⁇ 0,1 ⁇ , ⁇ 1,0 ⁇ , ⁇ 1,1 ⁇ .
- the tail bits from the coder are buffered separately and are later appended onto the unpunctured instantaneous codeword transmitted in a specific transmission time interval (TTI).
- TTI transmission time interval
- the number of rows, N row , and number of columns, N col , in each interleaver can be variable and allocated dynamically.
- the number of rows, N row is always fixed at thirty, while the number of columns, N col , is variable (dependent on the number of information bits N info ) and is determined in the same manner as the turbo code internal interleavers, such as is described in section 4.2.3.2.3.1 of “Technical Specification Group Radio Access Network; Multiplexing and Channel Coding (FDD) (Release 1999)”, TS 25.212 v3.5.0 (2000-12), which is hereby incorporated by reference.
- FDD Technical Specification Group Radio Access Network; Multiplexing and Channel Coding
- FIG. 5 shows the data stream of the interleavers of FIG. 4 .
- a novel aspect of the present invention is having data read in a column-wise fashion into each interleaver.
- These dummy bits are later removed when reading the codeword data row-wise from top-to-bottom from the block matrix, similar to the description in section 4.2.3.2.3.2 of TS 25.212, incorporated by reference.
- both columns and rows are permuted prior to reading out the block matrix contents.
- the desired number of codeword bits can then be read out in row-wise fashion.
- the parity bit p 1,k is used as a codeword bit while the parity bit p 2,k is discarded.
- the maximum number of rows that can be transmitted N p,max — row may be less than N row due to UE memory restrictions, while for the systematic interleaver N s,max — row is always equal to N row .
- N SML denotes the total number of Soft Metric Locations (SML's) provisioned at the UE
- N tail denotes the number of tail bits per code block
- N ARQ — proc denotes the number of ARQ processes currently defined in the UE
- N P , max_row min ⁇ ( ⁇ ⁇ ⁇ N ⁇ SML ⁇ 2 ⁇ ⁇ N ⁇ CB ⁇ ⁇ N ⁇ col ⁇ ⁇ N ⁇ ARQ_proc ⁇ - ⁇ ⁇ ⁇ N ⁇ row ⁇ 2 ⁇ ⁇ N ⁇ CB ⁇ - ⁇ ⁇ N ⁇ tail ⁇ 2 ⁇ ⁇ N ⁇ col ⁇ ⁇ N ⁇ CB ⁇ , N ⁇ row ) ( Eq . ⁇ 1 )
- Eq. (1) all the independent variables in Eq. (1) are derivable at the UE following delivery of the signaled Hybrid Automatic Repeat Request (HARQ) information on the High Speed Downlink Secondary Control Channel (HS-DSCCH).
- HARQ Hybrid Automatic Repeat Request
- HS-DSCCH High Speed Downlink Secondary Control Channel
- the above equation defines the memory available to a UE (given that the systematic matrix is substantially fixed), and accounts for the available SML's per ARQ process. Using the above information a transmitting base station can choose the transmit rate suitable to work with the available memory by selecting particular block rows to output to fit the chosen rate, as will be described below. [at what step in FIG. 3 does rate selection occur? Claim 16 ] Moreover, the block interleaver is not used in conventional block interleaving per se, but is used to select rows from the block that are not punctured, so as to provide a higher equivalent code rate. [correct?]
- the present invention also incorporates a redundancy version selector 302 . Since a different number of codeword bits may be obtained from the systematic and parity block interleavers, the framework of the present invention allows for both Chase and incremental redundancy (IR) coding schemes. In order to support different redundancy versions, any row may be assigned as a starting point at which to commence the readout of codeword bits. Preferably, a static set of starting point combinations is pre-defined, as shown in FIG. 6 . Although, smaller or larger sets of redundancy versions can be used, the eight redundancy versions (RVi,i ⁇ 0, . . . ,7 ⁇ ) shown require three bits for signaling in the HS-DSCCH with the following rules used to define all the versions shown.
- RVi,i ⁇ 0, . . . ,7 ⁇ the eight redundancy versions shown require three bits for signaling in the HS-DSCCH with the following rules used to define all the versions shown.
- the X (e.g. RV 1 , RV 2 , RV 3 ) signifies no bits are used from that interleaver to form the instantaneous codeword.
- Rule 3 The double arrowed line signifies all bits in 1 to N i,max — row in that block interleaver must be transmitted exactly once (e.g. RV 0 ).
- the present invention includes a specific set of eight redundancy versions for selecting coded bits from the systematic and parity interleavers in accordance with the above rules, as shown in FIG. 6 and as described below.
- Redundancy version zero the starting row is the top row of both the systematic and parity interleavers, and coded bits from the systematic interleaver is read from its starting row to completion before the remaining coded bits are read from the parity interleaver starting at its starting row.
- Redundancy version one the starting row is the top row of the parity interleaver, the coded bits are read from the parity interleaver starting at its starting row.
- Redundancy version two the starting row is N p,max — row /3 for the parity interleaver, and the coded bits are read from the parity interleaver starting at its starting row.
- Redundancy version three the starting row is 2 ⁇ N p,max — row /3 for the parity interleaver, and the coded bits are read from the parity interleaver starting at its starting row.
- Redundancy version four the respective starting rows are the top row of the parity interleaver and N S,max — row /2 for the systematic interleaver, and the coded bits are read equally from the systematic and parity interleaver starting at their respective starting rows.
- Redundancy version five the respective starting rows are N p,max — row /4 for the parity interleaver and 3 ⁇ N S,max — row /4 for the systematic interleaver, and the coded bits are read equally from the systematic and parity interleaver starting at their respective starting rows.
- Redundancy version six the respective starting rows are the top row of the systematic interleaver and N p,max — row /2 for the parity interleaver, and the coded bits are read equally from the systematic and parity interleaver starting at their respective starting rows.
- Redundancy version seven the respective starting rows are 3 ⁇ N p,max — row /4 for the parity interleaver and N S,max — row /4 for the systematic interleaver, and the coded bits are read equally from the systematic and parity interleaver starting at their respective starting rows.
- redundancy versions in the present invention are that their numbering does not suggest a particular order of transmission. For example, if on the first transmission RVO is signaled with enough codeword bits to result in a rate 3/5 code (exactly one third of the parity bits transmitted), the scheduler is permitted choose RV 2 for the second transmission. Similarly, if in the first transmission, a rate 1/4 code is desired, RV 4 might be selected for the second transmission. Moreover, systematic bits can be used in the first selected and unpunctured rows and parity bits in subsequent and punctured rows to reduce error. Using this approach, the chosen redundancy version can be used to support Chase, partial and full IR schemes in conjunction with any adaptive modulation and coding scheme (AMCS).
- AMCS adaptive modulation and coding scheme
- a preferred embodiment of the present invention incorporates a bit priority mapper (BPM), which further improves the performance of IR.
- BPM bit priority mapper
- Priority bit mapping is based on utilizing the differing bit reliability offered by higher order constellations (16-QAM or higher). It is well known that systematic portions of a turbo codeword are of greater importance to decoder performance than the parity portions. It naturally follows that system performance can be further improved by placing systematic bits in positions of high reliability if a higher order constellation is used.
- the symbol mapping is dependent on the type of modulation and the number of systematic and parity bits used in transmission. As an example, if redundancy version 0 (RV0) is used with an effective code rate of 3/4 and 16-QAM modulation, each QAM symbol comprises of three systematic bits and one parity bit, while if the same version is used with a code rate of 1/2 and 16-QAM modulation, each QAM symbol then comprises of two systematic and 2 parity bits.
- RV0 redundancy version 0
- each QAM symbol then comprises of two systematic and 2 parity bits.
- FIG. 7 shows an example of the proposed priority bit mapping for the case of 16-QAM modulation where a grouping of four bits is used to define one symbol.
- the four bits are denoted i 1 , q 1 , i 2 , q 2 with bits i 1 and q i offering greater reliability than bits i 2 and q 2 due to the nature of the constellation, as is known in the art.
- Systematic codeword bits 700 are read from left-to-right into the BPM array one code block at a time. Once all systematic codeword bits 700 have been read in, parity codeword bits 702 are read in again from left-to-right and one code block at a time.
- the output of the BPM is a sequence of QAM symbols or bit vectors (a vector of four bits in the case of 16-QAM and a vector of two bits in the case of QPSK) given by the columns of the BPM array, read in sequence from left-to-right.
- the puncturing matrix can then be chosen to select the rows of systematic bits to be unpunctured rows of the block for better accuracy. [correct? If not, why is having the systematic bits in the top row an advantage?]
- the physical channel segmentation 312 proceeds according to the 3GPP protocol of section 4.2.10 of TS 25.212, incorporated by reference, but with a modification. Instead of applying the algorithm on bits as in section 4.2.10, it is applied on the QAM symbols/bit vectors output from the BPM described above.
- second interleaving 314 is applied, again with a modification.
- the interleaver instead of applying the interleaver on the bits comprising each physical channel, it is applied on the QAM symbols values or symbol indices of each of the physical channel which are output from the physical channel segmentation 312 .
- the first curve 1000 represents the spectral efficiency of a signal using the traditional method of puncturing.
- the second curve 1002 represents the spectral efficiency of a signal using block puncturing in accordance with the present invention.
- the third curve 1004 represents the spectral efficiency of a signal using block puncturing and symbol mapping, in accordance with a preferred embodiment of the present invention. As can be seen there is no loss between traditional and block puncturing methods of the present invention, while the use of symbol mapping gives a significant advantage for 16QAM.
- FIG. 11 shows the simulated error for a rate 3/4 QPSK coding for both Chase and full IR combining.
- the traditional puncturing pattern is defined by the matrix of FIG. 8 for all transmissions.
- the puncturing matrices for the respective first, second and third block transmissions are shown in FIG. 9 , respectively.
- the simulation was conducted to determine frame error rate (FER) for a Quadrature Phase Shift Keying (QPSK) signal at a 3/4 rate with a spreading factor (SF) of 16 and Orthogonal Variable Spreading Factor (OVSF) of 1 over an AWGN channel.
- the first curve 1100 shows the FER of the traditional IR scheme with one transmission (Chase combining).
- the second curve 1102 shows the FER of the traditional IR scheme with two transmissions.
- the third curve 1104 shows the FER of the traditional IR scheme with three transmissions.
- the fourth curve 1106 shows the FER of the block puncturing IR scheme with one transmission
- the fifth curve 1108 shows the FER of the block puncturing IR scheme with two transmissions
- sixth curve 1110 shows the FER of the block puncturing IR scheme with three transmissions.
- the block puncturing of the present invention so no loss of performance, for both Chase and IR schemes, in all cases except for in the three transmission, full incremental redundancy where there a slight loss in performance of the proposed block-puncturing scheme versus the more traditional yet very inflexible matrix based traditional puncturing approach. Considering the overall improvement provided by the present invention, this is quite acceptable. Moreover, symbol remapping may be used to alleviate deficiency.
- FIG. 12 shows a flow chart representing a method of block puncturing for turbo code based incremental redundancy, in accordance with the present invention.
- a first step of the method is coding 1200 , such as turbo coding, an input data stream into systematic bits and parity bits.
- a next step is loading 1202 loading the systematic bits and parity bits into respective systematic and parity block interleavers in a column-wise manner, as described previously.
- a next step is selecting 1204 a predetermined redundancy. This step follows the redundancy rules previously described, and preferably utilizes the specific redundancy version outlined above.
- a next step is outputting 1206 data from the block interleavers in a row-wise manner in accordance with the selected redundancy.
- a outputting step includes mapping the bits from the systematic and parity block into a symbol mapping array wherein the systematic bits are mapped into the upper rows of the array and the parity bits are mapped into the lower rows of the array. This is followed by a step of selecting the final code rate dependant upon the available symbol memory, as defined by Eq. 1.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Error Detection And Correction (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/428,656 US20070061690A1 (en) | 2001-10-22 | 2006-07-05 | Block puncturing for turbo code based incremental redundancy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/986,241 US7260770B2 (en) | 2001-10-22 | 2001-10-22 | Block puncturing for turbo code based incremental redundancy |
US11/428,656 US20070061690A1 (en) | 2001-10-22 | 2006-07-05 | Block puncturing for turbo code based incremental redundancy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/986,241 Division US7260770B2 (en) | 2001-10-22 | 2001-10-22 | Block puncturing for turbo code based incremental redundancy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070061690A1 true US20070061690A1 (en) | 2007-03-15 |
Family
ID=25532224
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/986,241 Expired - Lifetime US7260770B2 (en) | 2001-10-22 | 2001-10-22 | Block puncturing for turbo code based incremental redundancy |
US11/428,656 Abandoned US20070061690A1 (en) | 2001-10-22 | 2006-07-05 | Block puncturing for turbo code based incremental redundancy |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/986,241 Expired - Lifetime US7260770B2 (en) | 2001-10-22 | 2001-10-22 | Block puncturing for turbo code based incremental redundancy |
Country Status (3)
Country | Link |
---|---|
US (2) | US7260770B2 (no) |
TW (1) | TW561695B (no) |
WO (1) | WO2003036890A1 (no) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133533A1 (en) * | 2004-12-22 | 2006-06-22 | Qualcomm Incorporated | Method and apparatus for using multiple modulation schemes for a single packet |
US20080256410A1 (en) * | 2005-09-23 | 2008-10-16 | Electronics And Telecommunications Research Instit | Mimo System Performing Hybrid Arq and Retransmission Method Thereof |
US20080317152A1 (en) * | 2005-07-05 | 2008-12-25 | Shanghai Ultimate Power Communications Technology, | Method and Apparatus for Multi-Carrier Hsdpa Traffic Transmission Channel Coding |
US20090327831A1 (en) * | 2008-06-30 | 2009-12-31 | Fujitsu Limited | Automatic Retransmission Controller And Retransmission Block Recombination Apparatus |
EP2178239A2 (en) | 2008-10-20 | 2010-04-21 | Fujitsu Limited | Retransmission data generating apparatus and receiver |
US20110119568A1 (en) * | 2009-11-18 | 2011-05-19 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data in a communication system |
US20110173517A1 (en) * | 2008-10-01 | 2011-07-14 | Kim Yong-Ho | Symbol-level random network coded cooperation with hierarchical modulation in relay communication |
CN105637791A (zh) * | 2014-05-27 | 2016-06-01 | 华为技术有限公司 | 一种循环映射方法和设备 |
CN107409023A (zh) * | 2015-03-17 | 2017-11-28 | 华为技术有限公司 | 一种合并层域中的数据和重传数据的方法和装置 |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7372837B2 (en) * | 2001-10-26 | 2008-05-13 | Texas Instrument Incorporated | Incremental redundancy using two stage rate matching for automatic repeat request to obtain high speed transmission |
KR100584426B1 (ko) * | 2001-12-21 | 2006-05-26 | 삼성전자주식회사 | 고속 패킷 이동통신시스템에서 심벌 매핑을 위한 인터리빙장치 및 방법 |
KR100754552B1 (ko) * | 2001-12-28 | 2007-09-05 | 삼성전자주식회사 | 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서고속 공통 제어 채널 송수신 장치 및 방법 |
US20030177047A1 (en) * | 2002-02-04 | 2003-09-18 | Buckley Michael E. | Method and system for decision oriented systems engineering |
US7236480B2 (en) * | 2002-06-07 | 2007-06-26 | Sandbridge Technologies, Inc. | Method of first interleaving of a two interleaver transmitter |
US7003703B2 (en) * | 2002-06-21 | 2006-02-21 | Sandbridge Technologies, Inc. | Method of interleaving/deinterleaving in a communication system |
US7245669B2 (en) * | 2003-04-14 | 2007-07-17 | Millimetrix Broadband Networks Ltd. | Dual polarity coding system and method for a millimeter wave communication system |
KR20050020526A (ko) * | 2003-08-23 | 2005-03-04 | 삼성전자주식회사 | 이동통신시스템에서 비트 인터리빙장치 및 방법 |
JP4224370B2 (ja) * | 2003-09-25 | 2009-02-12 | パナソニック株式会社 | 入力制御装置及び入力制御方法 |
US7925953B2 (en) * | 2003-10-07 | 2011-04-12 | Nokia Corporation | Redundancy strategy selection scheme |
GB2407945B (en) * | 2003-10-25 | 2006-04-19 | Andrew John Rogers | Cyclic redundancy check for error correcting codes with minimal code rate loss |
KR100770902B1 (ko) * | 2004-01-20 | 2007-10-26 | 삼성전자주식회사 | 고속 무선 데이터 시스템을 위한 가변 부호율의 오류 정정부호 생성 및 복호 장치 및 방법 |
US7366477B2 (en) * | 2004-05-06 | 2008-04-29 | Nokia Corporation | Redundancy version implementation for an uplink enhanced dedicated channel |
EP1779575A1 (en) | 2004-08-17 | 2007-05-02 | Nokia Corporation | Methods and apparatus for balancing modulation in cellular communications over noisy channels |
EP1794921B1 (en) | 2004-09-15 | 2009-04-15 | Nokia Siemens Networks Gmbh & Co. Kg | Decoding method |
FI20050264A0 (fi) * | 2005-03-11 | 2005-03-11 | Nokia Corp | Tietojenkäsittelymenetelmä, verkkoelementti, lähetin, komponentti ja tietokoneohjelmatuote |
US20070008944A1 (en) * | 2005-07-06 | 2007-01-11 | Qian Zhang | Method and system for spreading and scrambling downlike physical channels |
KR100875888B1 (ko) * | 2006-03-24 | 2008-12-26 | 삼성전자주식회사 | 무선 통신시스템에서 복합 자동 재전송 요청을 수행하기위한 장치 및 방법 |
US8065588B2 (en) * | 2007-01-17 | 2011-11-22 | Broadcom Corporation | Formulaic flexible collision-free memory accessing for parallel turbo decoding with quadratic polynomial permutation (QPP) interleave |
US8379738B2 (en) * | 2007-03-16 | 2013-02-19 | Samsung Electronics Co., Ltd. | Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks |
US8225165B2 (en) * | 2007-10-12 | 2012-07-17 | Industrial Technology Research Institute | Methods and devices for encoding data in communication systems |
WO2009057922A1 (en) * | 2007-10-29 | 2009-05-07 | Lg Electronics Inc. | Method of data transmission using harq |
US8386903B2 (en) * | 2007-10-31 | 2013-02-26 | Futurewei Technologies, Inc. | Bit reverse interleaving methods for QAM modulation in a wireless communication system |
CN102084683B (zh) * | 2008-03-12 | 2016-09-28 | 松下电器(美国)知识产权公司 | 无线通信装置、无线通信系统以及无线通信方法 |
US8873671B2 (en) | 2008-03-26 | 2014-10-28 | Qualcomm Incorporated | Method and system for LLR buffer reduction in a wireless communication modem |
US8787241B2 (en) * | 2008-07-07 | 2014-07-22 | Interdigital Patent Holdings, Inc. | Method and apparatus for use in cooperative relays using incremental redundancy and distributed spatial multiplexing |
US8565326B2 (en) * | 2008-07-08 | 2013-10-22 | Industrial Technology Research Institute | System and method for bit allocation and interleaving |
US8965320B2 (en) * | 2008-11-04 | 2015-02-24 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for enabling improved receiver quality for noise limited uplink signals |
RU2011147727A (ru) * | 2009-04-24 | 2013-05-27 | Панасоник Корпорэйшн | Устройство беспроводной связи и способ беспроводной связи |
KR101740335B1 (ko) * | 2011-01-03 | 2017-05-26 | 삼성전자주식회사 | 다중 안테나 통신 시스템에서 저밀도 패리티 검사 부호 기반의 채널 부호화 및 복호화 장치 및 방법 |
KR102046343B1 (ko) * | 2013-04-18 | 2019-11-19 | 삼성전자주식회사 | 디지털 영상 방송 시스템에서의 송신 장치 및 방법 |
JP2016174195A (ja) * | 2013-08-05 | 2016-09-29 | シャープ株式会社 | 基地局装置、端末装置、および集積回路 |
US10367621B2 (en) * | 2014-10-27 | 2019-07-30 | Qualcomm Incorporated | Fountain HARQ for reliable low latency communication |
TWI589125B (zh) * | 2016-08-26 | 2017-06-21 | 國立交通大學 | 渦輪編碼的數位資料之去穿刺方法與裝置及渦輪解碼器系統 |
US10324168B2 (en) | 2016-09-12 | 2019-06-18 | The Boeing Company | Systems and methods for spatial filtering using data with widely different error magnitudes |
US10429491B2 (en) | 2016-09-12 | 2019-10-01 | The Boeing Company | Systems and methods for pulse descriptor word generation using blind source separation |
US10324167B2 (en) | 2016-09-12 | 2019-06-18 | The Boeing Company | Systems and methods for adding functional grid elements to stochastic sparse tree grids for spatial filtering |
US9954561B2 (en) | 2016-09-12 | 2018-04-24 | The Boeing Company | Systems and methods for parallelizing and pipelining a tunable blind source separation filter |
CN109039546B (zh) * | 2016-12-28 | 2020-12-29 | 上海朗帛通信技术有限公司 | 一种用于信道编码的ue、基站中的方法和设备 |
CN115428370B (zh) * | 2020-04-08 | 2025-05-02 | 苹果公司 | 用于改进的数据传输的冗余间隙指示 |
CN116566404B (zh) * | 2023-07-11 | 2023-09-19 | 北京谷数科技股份有限公司 | 删余Turbo码交织映射关系的确定方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6192084B1 (en) * | 1998-05-28 | 2001-02-20 | Sony Corporation | Soft output decoding apparatus and method for convolutional code |
US6339834B1 (en) * | 1998-05-28 | 2002-01-15 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communication Research Centre | Interleaving with golden section increments |
US6370669B1 (en) * | 1998-01-23 | 2002-04-09 | Hughes Electronics Corporation | Sets of rate-compatible universal turbo codes nearly optimized over various rates and interleaver sizes |
US6430722B1 (en) * | 1998-01-23 | 2002-08-06 | Hughes Electronics Corporation | Forward error correction scheme for data channels using universal turbo codes |
US6480503B1 (en) * | 1998-12-28 | 2002-11-12 | Texas Instruments Incorporated | Turbo-coupled multi-code multiplex data transmission for CDMA |
US6621871B2 (en) * | 2001-03-30 | 2003-09-16 | Nokia Corporation | Incremental redundancy packet combiner and decoder |
US6744744B1 (en) * | 1999-04-13 | 2004-06-01 | Nortel Networks Limited | Rate matching and channel interleaving for a communications system |
-
2001
- 2001-10-22 US US09/986,241 patent/US7260770B2/en not_active Expired - Lifetime
-
2002
- 2002-09-26 WO PCT/US2002/030479 patent/WO2003036890A1/en not_active Application Discontinuation
- 2002-10-11 TW TW091123459A patent/TW561695B/zh not_active IP Right Cessation
-
2006
- 2006-07-05 US US11/428,656 patent/US20070061690A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6370669B1 (en) * | 1998-01-23 | 2002-04-09 | Hughes Electronics Corporation | Sets of rate-compatible universal turbo codes nearly optimized over various rates and interleaver sizes |
US6430722B1 (en) * | 1998-01-23 | 2002-08-06 | Hughes Electronics Corporation | Forward error correction scheme for data channels using universal turbo codes |
US6192084B1 (en) * | 1998-05-28 | 2001-02-20 | Sony Corporation | Soft output decoding apparatus and method for convolutional code |
US6339834B1 (en) * | 1998-05-28 | 2002-01-15 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communication Research Centre | Interleaving with golden section increments |
US6480503B1 (en) * | 1998-12-28 | 2002-11-12 | Texas Instruments Incorporated | Turbo-coupled multi-code multiplex data transmission for CDMA |
US6744744B1 (en) * | 1999-04-13 | 2004-06-01 | Nortel Networks Limited | Rate matching and channel interleaving for a communications system |
US6621871B2 (en) * | 2001-03-30 | 2003-09-16 | Nokia Corporation | Incremental redundancy packet combiner and decoder |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133533A1 (en) * | 2004-12-22 | 2006-06-22 | Qualcomm Incorporated | Method and apparatus for using multiple modulation schemes for a single packet |
US10291349B2 (en) | 2004-12-22 | 2019-05-14 | Qualcomm Incorporated | Method and apparatus for using multiple modulation schemes for a single packet |
US9385843B2 (en) * | 2004-12-22 | 2016-07-05 | Qualcomm Incorporated | Method and apparatus for using multiple modulation schemes for a single packet |
US20080317152A1 (en) * | 2005-07-05 | 2008-12-25 | Shanghai Ultimate Power Communications Technology, | Method and Apparatus for Multi-Carrier Hsdpa Traffic Transmission Channel Coding |
US8081696B2 (en) * | 2005-07-05 | 2011-12-20 | Shanghai Ultimate Power Communications Technology Co., Ltd. | Method and apparatus for multi-carrier HSDPA traffic transmission channel coding |
US20080256410A1 (en) * | 2005-09-23 | 2008-10-16 | Electronics And Telecommunications Research Instit | Mimo System Performing Hybrid Arq and Retransmission Method Thereof |
US8347161B2 (en) * | 2005-09-23 | 2013-01-01 | Electronics And Telecommunications Research Institute | MIMO system performing hybrid ARQ and retransmission method thereof |
US8631296B2 (en) | 2008-06-30 | 2014-01-14 | Fujitsu Limited | Automatic retransmission controller and retransmission block recombination apparatus |
US20090327831A1 (en) * | 2008-06-30 | 2009-12-31 | Fujitsu Limited | Automatic Retransmission Controller And Retransmission Block Recombination Apparatus |
EP2141851A2 (en) | 2008-06-30 | 2010-01-06 | Fujitsu Ltd. | Automatic retransmission controller and retransmission block recombination apparatus |
US20110173517A1 (en) * | 2008-10-01 | 2011-07-14 | Kim Yong-Ho | Symbol-level random network coded cooperation with hierarchical modulation in relay communication |
US8516344B2 (en) * | 2008-10-01 | 2013-08-20 | Lg Electronics Inc. | Symbol-level random network coded cooperation with hierarchical modulation in relay communication |
EP2178239A2 (en) | 2008-10-20 | 2010-04-21 | Fujitsu Limited | Retransmission data generating apparatus and receiver |
US20100100787A1 (en) * | 2008-10-20 | 2010-04-22 | Fujitsu Limited | Transmission data generating apparatus and receiver |
US8707125B2 (en) * | 2009-11-18 | 2014-04-22 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting and receiving data in a communication system |
US9154341B2 (en) | 2009-11-18 | 2015-10-06 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data in a communication system |
US20110119568A1 (en) * | 2009-11-18 | 2011-05-19 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data in a communication system |
US10038576B2 (en) | 2009-11-18 | 2018-07-31 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data in a communication system |
US10425258B2 (en) | 2009-11-18 | 2019-09-24 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting and receiving data in a communication system |
CN105637791A (zh) * | 2014-05-27 | 2016-06-01 | 华为技术有限公司 | 一种循环映射方法和设备 |
EP3142282A4 (en) * | 2014-05-27 | 2017-05-24 | Huawei Technologies Co. Ltd. | Cyclic mapping method and device |
CN107409023A (zh) * | 2015-03-17 | 2017-11-28 | 华为技术有限公司 | 一种合并层域中的数据和重传数据的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US7260770B2 (en) | 2007-08-21 |
TW561695B (en) | 2003-11-11 |
WO2003036890A1 (en) | 2003-05-01 |
US20030079170A1 (en) | 2003-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7260770B2 (en) | Block puncturing for turbo code based incremental redundancy | |
US7000173B2 (en) | Turbo code based incremental redundancy | |
JP3701263B2 (ja) | Cdma移動通信システムにおけるデータの送受信装置およびその方法 | |
CN100449974C (zh) | 在移动通信系统中用于分组重发的发送/接收装置和方法 | |
US7372837B2 (en) | Incremental redundancy using two stage rate matching for automatic repeat request to obtain high speed transmission | |
US8448053B2 (en) | Method and system for data-rate control by randomized bit-puncturing in communication systems | |
US6973611B2 (en) | Interleaved coder and method | |
CN101183875B (zh) | 一种Turbo码的有限长度循环缓存的速率匹配方法 | |
US7778197B2 (en) | Mobile communications terminal for supporting space-time hybrid automatic repeat request techniques and method thereof | |
US7272191B2 (en) | Method and apparatus for producing and processing sequences of modulation symbols | |
KR20010107647A (ko) | 복합 재전송형식을 사용하는 데이터 통신시스템의 데이터송수신장치 및 방법 | |
KR20080111342A (ko) | 직교주파수분할다중접속방식의 이동 통신시스템에서 심볼전송 방법 및 장치 | |
EP1914896A1 (en) | Transmitter apparatus, coder apparatus and decoder apparatus | |
EP2328296A1 (en) | HARQ procedure with processing of stored soft-bits | |
WO2009062425A1 (fr) | Procédé destiné à mettre en correspondance un débit de turbo code et à lire les bits de mot de code | |
EP2521270A1 (en) | Transmission device | |
US8074138B2 (en) | Decoding apparatus and method thereof | |
US20050050427A1 (en) | Method of rate matching for link adaptation and code space management | |
Kim et al. | Quasi-complementary turbo codes (QCTC) for applications in high-data-rate systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |