US20070055588A1 - Automatic watching system - Google Patents

Automatic watching system Download PDF

Info

Publication number
US20070055588A1
US20070055588A1 US11/594,507 US59450706A US2007055588A1 US 20070055588 A1 US20070055588 A1 US 20070055588A1 US 59450706 A US59450706 A US 59450706A US 2007055588 A1 US2007055588 A1 US 2007055588A1
Authority
US
United States
Prior art keywords
item
recording
monitoring system
security
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/594,507
Inventor
David Henderson
Gordon Henderson
Jerry Henderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
See Progress Inc
Original Assignee
See Progress Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by See Progress Inc filed Critical See Progress Inc
Priority to US11/594,507 priority Critical patent/US20070055588A1/en
Publication of US20070055588A1 publication Critical patent/US20070055588A1/en
Assigned to SEE PROGRESS, INC. reassignment SEE PROGRESS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENDERSON, JERRY, HENDERSON, DAVID, HENDERSON, GORDON
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders

Definitions

  • the present invention relates to an automated system for monitoring a selected item. More specifically, the present invention relates to an automated system functioning via the Internet.
  • Image communication systems span a variety of applications.
  • One such application is security monitoring.
  • Security monitoring typically involves system control and display functions located at a central station.
  • the central station includes multiple emanating video-communication paths, each path connecting to a remotely-located display camera.
  • the significant expense of security monitoring systems has limited their practicability to larger facilities.
  • Recent developments in communication standards and compression/decompression techniques have permitted enhanced security-system implementations.
  • One generally-described approach involves using a remote camera that responds to changes in motion or audio as a determining factor for transmitting captured video and audio data to the control station.
  • Another approach uses a remote server station that connects to several cameras, with the server station coupling to a telephone line for reporting back to the control station.
  • the security systems have revolved solely around homes. There has been no development of security or monitoring systems for use in monitoring items aside from homes. It would be beneficial to develop a security system which can be used for monitoring other items aside from homes. Such a system could be used for monitoring a day care center, an automobile repair shop, or other such item or location. It would also be beneficial if such monitoring system was able to be accessed via a communication system such as the Internet.
  • a monitoring system for remotely monitoring an item, the monitoring system including a recording device for recording a visual record of the item, a communicator for communicating the visual record, and a security device for controlling access to the monitoring system. Also provided is a method of remotely monitoring an item by recording a digital image of the item, communicating the digital image of the item through a communication system, and accessing the digital image using a secured access device.
  • FIG. 1 is a flow chart depicting the flow of information in the system of the present invention.
  • the present invention provides a monitoring system.
  • the monitoring system allows an individual to monitor a specific item via a communication system.
  • the communication system includes a recording device for recording a visual record of the item, and a communicating device for communicating the visual record.
  • the system can also include a security device for controlling access to the monitoring system.
  • the system is preferably automated.
  • items and/or “activities” are intended to include, but are not limited to, vehicles, manufacturing facilities/factories, storage facilities, construction sites, and other similar items. Activities or locations that can be monitored include, but are not limited to, day care centers, campgrounds, schools, and other similar facilities.
  • automated it is meant that a computer system, or any other automated system, is installed to control immediate and virtual management of the services.
  • recording device as used herein is intended to include, but is not limited to, a digital camera or other camera which can record an image.
  • the image can later be converted to a digital picture. This conversion can take place using a scanner or other similar device that converts the image to a digital image.
  • a preferred camera is described herein.
  • the preferred camera includes the following features.
  • On the upper panel of the camera housing there can be a digital display window composed of three sections. Adjacent these sections are positioned three controlling push buttons.
  • a recess In an upper right-hand portion of the front panel of the camera housing is formed a recess having an opening to receive a mode setting member or card. This card has six binary bits and a common bus that are to be read by respective sensing contacts within the camera housing.
  • the first three of the bits give information representative selectively of five automatic exposure modes, namely, the shutter pre-selection automatic diaphragm range (hereinafter referred to as TP), the diaphragm pre-selection automatic shutter time range (FP), the shutter pre-selection magic program (TPM), the diaphragm pre-selection magic program (FPM) and the dual-range automatic program (P).
  • TP shutter pre-selection automatic diaphragm range
  • FP diaphragm pre-selection automatic shutter time range
  • TPM shutter pre-selection magic program
  • FPM diaphragm pre-selection magic program
  • P dual-range automatic program
  • a safety button is provided to prevent the occurrence of accidental correction of the display of the mode symbol, accidental correction of a digital value of film speed, and accidental correction of a possible maximum number of film frames by the second and third buttons. While depressing the safety button, the photographer can depress the second button to sequentially display the values of the film speed in discrete progression, beginning with “100” in ASA as the cleared state. As soon as the corresponding value to that of the used film appears at the window, the photographer has to release either one of the buttons. Such setting procedure applies similarly to the third button for continuous progression of integer numbers from zero.
  • correction can be effected by first pushing a lock button which also serves as an actuator for the same switch of the safety button and then actuating a slide knob for upward or downward movement depending upon the setting of larger or smaller values, i.e., faster or slower, shutter time values, respectively. Just after the readout of the corresponding number to a value to be set appearing on the display, the photographer must rapidly release either the knob or the button to its initial inactive position.
  • the shutter time display is blanked out and, instead, the diaphragm value that depends on the last readout in “TP” or “TPM” mode is displayed in an F-number.
  • the photographer desires to change this value to a larger or smaller value, i.e., a smaller or larger size of the diaphragm aperture, he first presses the button and then moves the knob 9 upward or downward, respectively.
  • the shutter and diaphragm are controlled in accordance with a predetermined program, for example, at equal rates over the entire ranges of controls. Therefore, the digital display is maintained in a blanked-out condition.
  • the phrase “communicating system” is intended to include, but is not limited to, fax lines, phone lines, modem, TI line, Internet, DSL, cable modem, dial-up Internet, wide area network, Intranet, local area network, ISDN, wireless connections, satellite communications, direct cable connection, radio communication, and audio communication.
  • the communicating device of the present invention preferably includes a processor for processing and selectively communicating information.
  • the processor can include a security device that selectively allows access to the system. For example, an individual can only obtain access to their specific item.
  • the security device can be a passcode such as an access code, PIN number, a URL with an identification number, or other similar device as set forth in more detail below.
  • the processor is an i 960 SB processor capable of executing more than four million instructions per second.
  • the processor is not capable for calculating pixel data for animated images where the required rate of calculation is approximately 13.33 million pixels per second. This function is provided in a real-time object (RTO) processor.
  • RTO real-time object
  • the RTO processor reads object lists from the RAM and operates in real-time, rendering the outline information with the use of a dedicated quadratic polynomial fragment (QPF) RAM.
  • the RTO processor calculates outline intersections with every scanned line, re-sorts the outlines if any should cross over, and determines the viewing object priority. This priority determines which object is on top for each section of a scanned line.
  • the object priorities are output in real-time at a resolution of 720 pixels per line.
  • This information is then passed to a color look-up table included within the DAC that assigns a color to each object level. This color can be any of 16 million colors in a digital video palette. This output can be either RGB as shown illustrated, or YUV, in CCIR601 4:4:4 formats.
  • the DAC can, for example, be a standard 478 type RAM DAC.
  • a coder is designed to take an analog video input signal, in this case a standard NTSC analog signal, and convert that signal into digital form, in this case a standard CCIR (or D1) digital data stream.
  • D1 is a recognized standard format in the video and broadcast field and is in wide use in equipment that is designed to process digitized video signals. Therefore, the present invention is compatible and designed for use with any equipment adhering to the D1 standard.
  • An alternative embodiment utilizes streaming.
  • Streaming is an emerging technology. While some multimedia products use proprietary streaming mechanisms, other products incorporate standards. The following are examples of emerging standards for streaming protocols. Data streams are delivered using several protocols that are layered to assemble the necessary functionality.
  • Real-time Streaming Protocol is a draft Internet protocol for establishing and controlling on-demand delivery of real-time data.
  • clients can use RTSP to request specific media from a media server, to issue commands such as play, record and pause, and to control media delivery speed. Since RTSP simply controls media delivery, it is layered on top of other protocols, such as the following.
  • Real-Time Transport Protocol provides actual delivery of streaming data occurs through real-time protocols such as RTP.
  • RTP provides end-to-end data delivery for applications transmitting real-time data over multicast or unicast network services.
  • RTP conveys encoding, timing, and sequencing information to allow receivers to properly reconstruct the media stream.
  • RTP is independent of the underlying transport service, but it is typically used with UDP. It can also be used with Multicast UDP, TCP/IP, or IP Multicast.
  • Real-Time Control Protocol is a system where RTP is augmented by the Real-Time Control Protocol.
  • RTCP allows nodes to identify stream participants and communicate about the quality of data delivery.
  • Possible Product Options include Netscape's Media Server, Progressive Networks Real Audio/Video, and VXtremes WebTheater.
  • security device as used herein is intended to include, but is not limited to, an access code or other device used for enabling an individual to access the system.
  • Security Services enforce access control to ensure that records are only visible or editable by authorized people for approved purposes.
  • Most database management systems provide access control at the database, table, or row level as well as concurrency control.
  • the security component prevents unauthorized users from accessing the individual's information or viewing the individual's item by providing the users with access codes—password & ID—that allows the user to login to the system or execute any (or a particular) application.
  • This security device is optional. In other words, the invention as set forth herein is functional without the security device.
  • Security components can restrict access to functions within an application based on a users security level.
  • the highest level of security is whether the user has access to run the application.
  • the next level checks if the user has access to functions within the application, such as providing information regarding the items or updating the images.
  • Security usually resides on both the client and server platform in a distributed environment. True security should always be placed on the server platform, to protect the system through access outside of a client application.
  • Encryption services encrypt data prior to network transfer to prevent unauthorized interception. (Note that encryption can occur within the Communications Services layer, the Transport Services layer, or the Network Media Services layer.) Within the Communications Services layer, encryption occurs at the top of the protocol stack and is typically performed within an application (e.g., an e-mail application, a Web browser). This is an end-to-end approach that can leave the remainder of the protocol stack (i.e., the Transport services and the Network Media services) unaffected.
  • an application e.g., an e-mail application, a Web browser
  • Encryption has two main components: the encryption algorithm, which is the series of steps that is performed to transform the original data; and the key, which is used by the algorithm in some way to encrypt the message.
  • the algorithm is widely known, while the key is kept secret.
  • secret key cryptography uses one key (the secret key) both to encrypt the message on one side and to decrypt the message on the other side
  • public key cryptography uses two keys, the public key and the private key.
  • the public key and private key are mathematically related so that a message encrypted with the recipient's public key can be decrypted with the recipient's private key. Therefore, the public key can be widely published, while the private key is kept secret.
  • the system can be used for monitoring either items/objects and/or activities.
  • the items that can be monitored are any item that can be photographed and have it's image sent via the Internet.
  • the system functions as follows. First, a digital image is taken that captures the activity or item.
  • the digital image can be captured on any machine capable of producing digital images.
  • the preferred mode for capturing digital images is via a digital camera.
  • the camera can either be moved around by the individual taking the image or it can be mounted at a fixed location where it periodically takes additional images. Alternatively, real time video can be used in the system.
  • the image can contain additional information. If the image is to contain the additional information, then the following options can be added to the basic image. First, a photo of a clock can be taken, thus indicating the time at which the photo was taken. Second, a photo of status information can be taken. The status information is information that explains the current status of the item or activity. This information allows the viewer to know the exact status of the item or activity as of the time that the image is taken. For example, a form of listing the different stages available can be photographed. Also included in the image can be a visual identifier. The identifier appears in the image just prior to the item or activity to which it refers. The identifier can be a number a letter or any other symbol that distinguishes the item/activity from others. Once the identifier's image has been captured, the image of the desired item/activity must be captured. This procedure is then repeated for each additional item/activity.
  • the processor receives and stores the images.
  • the processor sifts through the images and assigns the images and status information to the appropriate item/activity. In other words, the processor organizes all of the images to be in proper order and in proper configuration for further processing.
  • the “processor” of the present invention is preferably a computer, computer program, or other device or individual that can differentiate between types of information and selectively distribute the information according to guidelines set forth herein.
  • the processor can be an individual who manually sorts the digital images and information.
  • the processor is software that controls the flow of information between the customer and the company.
  • the images are categorized and stored for future retrieval.
  • the storage can take place on server storage media, or any other similar media such as a database, which enables an individual to catalog information while retaining the ability to retrieve this information at a later time.
  • the information is requested from an individual partaking in the system. When the individual requests this information they connect to the server and request the information. The server then processes the request and retrieves links to the appropriate images. The image links and any status information are then sent to the requesting individual. This information can be refreshed at any time.
  • the above-described invention can be used to monitor the progress of vehicle repairs. In this situation, the status information enables the individual to know the stage of the repairs.
  • the benefit of the present system over the prior art is that the prior art is limited to surveillance systems for security purposes. The systems are maintained by a security company and the individual being protected does not monitor anything. The present invention instead enables the individual to take control and monitor the item without requiring the participation of a third party. There is no suggestion in the prior art for creating a monitoring system which is monitored by the owner of the item being monitored. The prior art instead teaches systems which take control away from the individual and instead transfer the control to a third party. Further, the system of the present invention which utilizes a recorded image, a communicating system, and a security device is not taught nor suggested by the prior art. The prior art instead pertains to a closed circuit system which is directly linked to the company maintaining the monitoring system.
  • the invention can also be used to monitor the progress of construction or to monitor the activities at a child's day care facility or campground.
  • the invention can include a survey system.
  • the survey system includes a questionnaire that allows the company using the above services to obtain feedback from their clients.
  • the survey enables the company to either resolve the problem before it occurs with another customer or resolve the problem with the current customer before the customer leaves. For example, if the customer is not pleased with the results of a dent removal, instead of having the customer complain at the end of the repair, the customer can register a complaint right away and have the problem corrected prior to the customer coming to pick up their vehicle.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Signal Processing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Multimedia (AREA)
  • Operations Research (AREA)
  • Accounting & Taxation (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

There is provided a monitoring system for remotely monitoring an item, the monitoring system including a recording device for recording a visual record of the item, a communicator for communicating the visual record, and a security device for controlling access to the monitoring system. Also provided is a method of remotely monitoring an item by recording a digital image of the item, communicating the digital image of the item through a communication system, and accessing the digital image using a secured access device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional Application of U.S. patent application Ser. No. 10/272,069, filed Oct. 16, 2002, which claims the benefit of priority under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Application No. 60/329,909, filed Oct. 17, 2001, and U.S. Provisional Patent Application No. 60/332,228, filed Nov. 14, 2001, all of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an automated system for monitoring a selected item. More specifically, the present invention relates to an automated system functioning via the Internet.
  • 2. Description of Related Art
  • Image communication systems span a variety of applications. One such application is security monitoring. Security monitoring typically involves system control and display functions located at a central station. The central station includes multiple emanating video-communication paths, each path connecting to a remotely-located display camera. Traditionally, the significant expense of security monitoring systems has limited their practicability to larger facilities.
  • Recent developments in communication standards and compression/decompression techniques have permitted enhanced security-system implementations. One generally-described approach involves using a remote camera that responds to changes in motion or audio as a determining factor for transmitting captured video and audio data to the control station. Another approach uses a remote server station that connects to several cameras, with the server station coupling to a telephone line for reporting back to the control station. These and other recent implementations are directed to markets ranging from retail shops to large industrial warehouses.
  • Widespread acceptance and usage of security-system implementations are largely a function of cost. As with most other systems, reduced cost is realized through cost-effective mass production. The initial costs to effect such a mass production, however, can be exorbitant. Moreover, widespread acceptance and usage of such technology cannot be forced, even when appropriately addressing the marketing needs and overcoming the exorbitant costs of the mass production equipment. Consequently, efforts to launch the appropriate technology for practicable acceptance and usage of security systems has been difficult.
  • Additionally, the security systems have revolved solely around homes. There has been no development of security or monitoring systems for use in monitoring items aside from homes. It would be beneficial to develop a security system which can be used for monitoring other items aside from homes. Such a system could be used for monitoring a day care center, an automobile repair shop, or other such item or location. It would also be beneficial if such monitoring system was able to be accessed via a communication system such as the Internet.
  • SUMMARY OF THE INVENTION
  • According to the present invention, there is provided a monitoring system for remotely monitoring an item, the monitoring system including a recording device for recording a visual record of the item, a communicator for communicating the visual record, and a security device for controlling access to the monitoring system. Also provided is a method of remotely monitoring an item by recording a digital image of the item, communicating the digital image of the item through a communication system, and accessing the digital image using a secured access device.
  • DESCRIPTION OF THE DRAWINGS
  • Other advantages of the present invention are readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing wherein FIG. 1 is a flow chart depicting the flow of information in the system of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Generally, the present invention provides a monitoring system. The monitoring system allows an individual to monitor a specific item via a communication system. The communication system includes a recording device for recording a visual record of the item, and a communicating device for communicating the visual record. The system can also include a security device for controlling access to the monitoring system. The system is preferably automated.
  • The terms “items” and/or “activities” are intended to include, but are not limited to, vehicles, manufacturing facilities/factories, storage facilities, construction sites, and other similar items. Activities or locations that can be monitored include, but are not limited to, day care centers, campgrounds, schools, and other similar facilities.
  • By “automated” it is meant that a computer system, or any other automated system, is installed to control immediate and virtual management of the services.
  • The phrase “recording device” as used herein is intended to include, but is not limited to, a digital camera or other camera which can record an image. The image can later be converted to a digital picture. This conversion can take place using a scanner or other similar device that converts the image to a digital image.
  • While any digital camera can be used a preferred camera is described herein. The preferred camera includes the following features. On the upper panel of the camera housing there can be a digital display window composed of three sections. Adjacent these sections are positioned three controlling push buttons. In an upper right-hand portion of the front panel of the camera housing is formed a recess having an opening to receive a mode setting member or card. This card has six binary bits and a common bus that are to be read by respective sensing contacts within the camera housing. The first three of the bits give information representative selectively of five automatic exposure modes, namely, the shutter pre-selection automatic diaphragm range (hereinafter referred to as TP), the diaphragm pre-selection automatic shutter time range (FP), the shutter pre-selection magic program (TPM), the diaphragm pre-selection magic program (FPM) and the dual-range automatic program (P). When the card is inserted into and seated in the recess, the symbol of the selected mode is displayed in the window. Without the use of any card, it is possible to set a desired mode into the camera by the first controlling push button.
  • As the mode symbol displayed is cleared by supply of a battery into the camera to “TP”, if the desired mode is different from “TP”, the photographer needs to depress the first button so that all the symbols are sequentially displayed, and this sequence repeats itself so long as the first button is depressed. As soon as the symbol of the desired mode appears, the photographer has to release the button. Thus, the desired mode is manually set into the camera. A safety button is provided to prevent the occurrence of accidental correction of the display of the mode symbol, accidental correction of a digital value of film speed, and accidental correction of a possible maximum number of film frames by the second and third buttons. While depressing the safety button, the photographer can depress the second button to sequentially display the values of the film speed in discrete progression, beginning with “100” in ASA as the cleared state. As soon as the corresponding value to that of the used film appears at the window, the photographer has to release either one of the buttons. Such setting procedure applies similarly to the third button for continuous progression of integer numbers from zero.
  • With “TP”, or “TPM” selected, when the shutter time takes a value of 1/500 second causing a number “500” to be displayed to the right of the heading “TP” or “TPM”, correction can be effected by first pushing a lock button which also serves as an actuator for the same switch of the safety button and then actuating a slide knob for upward or downward movement depending upon the setting of larger or smaller values, i.e., faster or slower, shutter time values, respectively. Just after the readout of the corresponding number to a value to be set appearing on the display, the photographer must rapidly release either the knob or the button to its initial inactive position. Next, upon change to “FP” or “FPM” mode, the shutter time display is blanked out and, instead, the diaphragm value that depends on the last readout in “TP” or “TPM” mode is displayed in an F-number. If the photographer desires to change this value to a larger or smaller value, i.e., a smaller or larger size of the diaphragm aperture, he first presses the button and then moves the knob 9 upward or downward, respectively. In the “P” position, the shutter and diaphragm are controlled in accordance with a predetermined program, for example, at equal rates over the entire ranges of controls. Therefore, the digital display is maintained in a blanked-out condition.
  • The phrase “communicating system” is intended to include, but is not limited to, fax lines, phone lines, modem, TI line, Internet, DSL, cable modem, dial-up Internet, wide area network, Intranet, local area network, ISDN, wireless connections, satellite communications, direct cable connection, radio communication, and audio communication. The communicating device of the present invention preferably includes a processor for processing and selectively communicating information.
  • The processor can include a security device that selectively allows access to the system. For example, an individual can only obtain access to their specific item. The security device can be a passcode such as an access code, PIN number, a URL with an identification number, or other similar device as set forth in more detail below.
  • Preferably, the processor is an i960SB processor capable of executing more than four million instructions per second. Generally however, the processor is not capable for calculating pixel data for animated images where the required rate of calculation is approximately 13.33 million pixels per second. This function is provided in a real-time object (RTO) processor.
  • The RTO processor reads object lists from the RAM and operates in real-time, rendering the outline information with the use of a dedicated quadratic polynomial fragment (QPF) RAM. The RTO processor calculates outline intersections with every scanned line, re-sorts the outlines if any should cross over, and determines the viewing object priority. This priority determines which object is on top for each section of a scanned line. The object priorities are output in real-time at a resolution of 720 pixels per line. This information is then passed to a color look-up table included within the DAC that assigns a color to each object level. This color can be any of 16 million colors in a digital video palette. This output can be either RGB as shown illustrated, or YUV, in CCIR601 4:4:4 formats. The DAC can, for example, be a standard 478 type RAM DAC.
  • A coder is designed to take an analog video input signal, in this case a standard NTSC analog signal, and convert that signal into digital form, in this case a standard CCIR (or D1) digital data stream. D1 is a recognized standard format in the video and broadcast field and is in wide use in equipment that is designed to process digitized video signals. Therefore, the present invention is compatible and designed for use with any equipment adhering to the D1 standard.
  • An alternative embodiment utilizes streaming. Streaming is an emerging technology. While some multimedia products use proprietary streaming mechanisms, other products incorporate standards. The following are examples of emerging standards for streaming protocols. Data streams are delivered using several protocols that are layered to assemble the necessary functionality.
  • Real-time Streaming Protocol (RTSP) is a draft Internet protocol for establishing and controlling on-demand delivery of real-time data. For example, clients can use RTSP to request specific media from a media server, to issue commands such as play, record and pause, and to control media delivery speed. Since RTSP simply controls media delivery, it is layered on top of other protocols, such as the following.
  • Real-Time Transport Protocol (RTP) provides actual delivery of streaming data occurs through real-time protocols such as RTP. RTP provides end-to-end data delivery for applications transmitting real-time data over multicast or unicast network services. RTP conveys encoding, timing, and sequencing information to allow receivers to properly reconstruct the media stream. RTP is independent of the underlying transport service, but it is typically used with UDP. It can also be used with Multicast UDP, TCP/IP, or IP Multicast.
  • Real-Time Control Protocol (RTCP) is a system where RTP is augmented by the Real-Time Control Protocol. RTCP allows nodes to identify stream participants and communicate about the quality of data delivery. Possible Product Options include Netscape's Media Server, Progressive Networks Real Audio/Video, and VXtremes WebTheater.
  • The following are examples of products that implement Streaming Messaging (based upon RTSP or other standards or proprietary approaches) Netscape's Media Server, Progressive Networks' Real Video, and VXtreme's WebTheater.
  • The phrase “security device” as used herein is intended to include, but is not limited to, an access code or other device used for enabling an individual to access the system. For example, Security Services enforce access control to ensure that records are only visible or editable by authorized people for approved purposes. Most database management systems provide access control at the database, table, or row level as well as concurrency control. The security component prevents unauthorized users from accessing the individual's information or viewing the individual's item by providing the users with access codes—password & ID—that allows the user to login to the system or execute any (or a particular) application. This security device is optional. In other words, the invention as set forth herein is functional without the security device.
  • Security components can restrict access to functions within an application based on a users security level. The highest level of security is whether the user has access to run the application. The next level checks if the user has access to functions within the application, such as providing information regarding the items or updating the images.
  • Security usually resides on both the client and server platform in a distributed environment. True security should always be placed on the server platform, to protect the system through access outside of a client application.
  • Another form of security is encryption services. Encryption services encrypt data prior to network transfer to prevent unauthorized interception. (Note that encryption can occur within the Communications Services layer, the Transport Services layer, or the Network Media Services layer.) Within the Communications Services layer, encryption occurs at the top of the protocol stack and is typically performed within an application (e.g., an e-mail application, a Web browser). This is an end-to-end approach that can leave the remainder of the protocol stack (i.e., the Transport services and the Network Media services) unaffected.
  • Encryption has two main components: the encryption algorithm, which is the series of steps that is performed to transform the original data; and the key, which is used by the algorithm in some way to encrypt the message. Typically, the algorithm is widely known, while the key is kept secret. There are several types of encryption in use today, including: secret key cryptography uses one key (the secret key) both to encrypt the message on one side and to decrypt the message on the other side and public key cryptography uses two keys, the public key and the private key. The public key and private key are mathematically related so that a message encrypted with the recipient's public key can be decrypted with the recipient's private key. Therefore, the public key can be widely published, while the private key is kept secret.
  • There are also varying methods of employing encryption types described above to encrypt data sent across a network: Examples of this include encryption on the data link layer. In this form of encryption data is encrypted before it is placed on the wire. Data link encryptors are generally hardware products. Another for is at the application layer. In this form data is encrypted by the application. Netscape's Secure Sockets Layer (SSL) is one example of application-layer encryption for WWW browsers. SSL uses RSA encryption to wrap security information around TCP/IP based protocols. Yet another form of encryption is at the network layer, here data is encrypted inside the network layer header, therefore relying on the network layer protocol.
  • As stated previously, the system can be used for monitoring either items/objects and/or activities. The items that can be monitored are any item that can be photographed and have it's image sent via the Internet.
  • In the preferred embodiment, the system functions as follows. First, a digital image is taken that captures the activity or item. The digital image can be captured on any machine capable of producing digital images. The preferred mode for capturing digital images is via a digital camera. The camera can either be moved around by the individual taking the image or it can be mounted at a fixed location where it periodically takes additional images. Alternatively, real time video can be used in the system.
  • While the digital image can be captured by simply taking a photograph of the desired object or activity, optionally the image can contain additional information. If the image is to contain the additional information, then the following options can be added to the basic image. First, a photo of a clock can be taken, thus indicating the time at which the photo was taken. Second, a photo of status information can be taken. The status information is information that explains the current status of the item or activity. This information allows the viewer to know the exact status of the item or activity as of the time that the image is taken. For example, a form of listing the different stages available can be photographed. Also included in the image can be a visual identifier. The identifier appears in the image just prior to the item or activity to which it refers. The identifier can be a number a letter or any other symbol that distinguishes the item/activity from others. Once the identifier's image has been captured, the image of the desired item/activity must be captured. This procedure is then repeated for each additional item/activity.
  • Once the entire image collection is captured, the images are transferred a processor. The processor receives and stores the images. The processor sifts through the images and assigns the images and status information to the appropriate item/activity. In other words, the processor organizes all of the images to be in proper order and in proper configuration for further processing.
  • The “processor” of the present invention is preferably a computer, computer program, or other device or individual that can differentiate between types of information and selectively distribute the information according to guidelines set forth herein. Alternatively, the processor can be an individual who manually sorts the digital images and information. In the preferred embodiment, the processor is software that controls the flow of information between the customer and the company.
  • The images are categorized and stored for future retrieval. The storage can take place on server storage media, or any other similar media such as a database, which enables an individual to catalog information while retaining the ability to retrieve this information at a later time.
  • The information is requested from an individual partaking in the system. When the individual requests this information they connect to the server and request the information. The server then processes the request and retrieves links to the appropriate images. The image links and any status information are then sent to the requesting individual. This information can be refreshed at any time.
  • The above-described invention can be used to monitor the progress of vehicle repairs. In this situation, the status information enables the individual to know the stage of the repairs. The benefit of the present system over the prior art is that the prior art is limited to surveillance systems for security purposes. The systems are maintained by a security company and the individual being protected does not monitor anything. The present invention instead enables the individual to take control and monitor the item without requiring the participation of a third party. There is no suggestion in the prior art for creating a monitoring system which is monitored by the owner of the item being monitored. The prior art instead teaches systems which take control away from the individual and instead transfer the control to a third party. Further, the system of the present invention which utilizes a recorded image, a communicating system, and a security device is not taught nor suggested by the prior art. The prior art instead pertains to a closed circuit system which is directly linked to the company maintaining the monitoring system.
  • The invention can also be used to monitor the progress of construction or to monitor the activities at a child's day care facility or campground.
  • Additionally, the invention can include a survey system. The survey system includes a questionnaire that allows the company using the above services to obtain feedback from their clients. The survey enables the company to either resolve the problem before it occurs with another customer or resolve the problem with the current customer before the customer leaves. For example, if the customer is not pleased with the results of a dent removal, instead of having the customer complain at the end of the repair, the customer can register a complaint right away and have the problem corrected prior to the customer coming to pick up their vehicle.
  • Throughout this application, various publications, including United States patents, are referenced by author and year and patents by number. Full citations for the publications are listed below. The disclosures of these publications and patents in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
  • The invention has been described in an illustrative manner, and it is to be understood that the terminology that has been used is intended to be in the nature of words of description rather than of limitation.
  • Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention can be practiced otherwise than as specifically described.

Claims (6)

1. A monitoring system for remotely monitoring an inanimate item, said monitoring system comprising:
recording means for recording at least one visual image of an inanimate item;
communicating means in communication with said recording means, said communicating means is used for communicating the visual record; and
security means operatively connected to said communicating means, wherein said security means is used for controlling access to the monitoring system.
2. The monitoring system according to claim 1, wherein said recording means includes recording a separate image of an identifier prior to recording the visual image of the inanimate item.
3. The monitoring system according to claim 1, wherein said recording means includes recording a separate image of an identifier after recording the visual image of the inanimate item.
4. A monitoring system for remotely monitoring an inanimate item, said monitoring system comprising:
communicating means for communicating at least one visual image of an inanimate item; and
security means operatively connected to said communicating means, wherein said security means is used for controlling access to the monitoring system.
5. The monitoring system according to claim 4, wherein said recording means includes recording a separate image of an identifier prior to recording the visual image of the inanimate item.
6. The monitoring system according to claim 4, wherein said recording means includes recording a separate image of an identifier after recording the visual image of the inanimate item.
US11/594,507 2001-10-17 2006-11-08 Automatic watching system Abandoned US20070055588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/594,507 US20070055588A1 (en) 2001-10-17 2006-11-08 Automatic watching system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32990901P 2001-10-17 2001-10-17
US33222801P 2001-11-14 2001-11-14
US10/272,069 US7151448B2 (en) 2001-10-17 2002-10-16 Automatic watching system
US11/594,507 US20070055588A1 (en) 2001-10-17 2006-11-08 Automatic watching system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/272,069 Division US7151448B2 (en) 2001-10-17 2002-10-16 Automatic watching system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/554,151 Continuation US8388975B2 (en) 2004-03-31 2009-09-04 Cancer antigen peptides derived from WT1

Publications (1)

Publication Number Publication Date
US20070055588A1 true US20070055588A1 (en) 2007-03-08

Family

ID=27402439

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/272,069 Expired - Lifetime US7151448B2 (en) 2001-10-17 2002-10-16 Automatic watching system
US11/594,507 Abandoned US20070055588A1 (en) 2001-10-17 2006-11-08 Automatic watching system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/272,069 Expired - Lifetime US7151448B2 (en) 2001-10-17 2002-10-16 Automatic watching system

Country Status (1)

Country Link
US (2) US7151448B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151448B2 (en) * 2001-10-17 2006-12-19 See Progress, Inc. Automatic watching system
US20040066456A1 (en) * 2002-06-21 2004-04-08 David Read Visual imaging network systems and methods
AU2003900756A0 (en) * 2003-02-20 2003-03-06 Mark Seton Chapman System for remotely recording landscape change
TWI305304B (en) * 2003-10-22 2009-01-11 Hon Hai Prec Ind Co Ltd An audio control system and method for long range monitoring
US20060139454A1 (en) * 2004-12-23 2006-06-29 Trapani Carl E Method and system for vehicle-mounted recording systems
US20090150200A1 (en) * 2007-12-10 2009-06-11 Steven Charles Siessman System and method for generating interpreted damage estimates information
US8250362B2 (en) * 2008-12-04 2012-08-21 Broadcom Corporation Home network encryption techniques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559769B2 (en) * 2001-10-01 2003-05-06 Eric Anthony Early warning real-time security system
US6573929B1 (en) * 1998-11-23 2003-06-03 Nestor, Inc. Traffic light violation prediction and recording system
US7151448B2 (en) * 2001-10-17 2006-12-19 See Progress, Inc. Automatic watching system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697103B1 (en) * 1998-03-19 2004-02-24 Dennis Sunga Fernandez Integrated network for monitoring remote objects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573929B1 (en) * 1998-11-23 2003-06-03 Nestor, Inc. Traffic light violation prediction and recording system
US6559769B2 (en) * 2001-10-01 2003-05-06 Eric Anthony Early warning real-time security system
US7151448B2 (en) * 2001-10-17 2006-12-19 See Progress, Inc. Automatic watching system

Also Published As

Publication number Publication date
US7151448B2 (en) 2006-12-19
US20030071898A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
US20070055588A1 (en) Automatic watching system
US9489558B2 (en) Bar code reading terminal with video capturing mode
JP4414345B2 (en) Video streaming
US8417090B2 (en) System and method for management of surveillance devices and surveillance footage
JP4479267B2 (en) Surveillance camera video distribution system
US9538127B2 (en) Remote customer assistance system having two-way audio and video interface
US20050078189A1 (en) Integrated Internet camera
US20040244056A1 (en) System and method for providing direct, context-sensitive customer support in an interactive television system
CA2172559A1 (en) Secure digital interactive system for unique product identification and sales
US7451473B2 (en) Video distribution method and video distribution system
US20060203001A1 (en) Clipping of media data transmitted in a network
US7339604B1 (en) Videoconferencing arrangement having multi-purpose digital still camera
JP2008042595A (en) Network camera apparatus and receiving terminal
US7202781B2 (en) Automatic watching system
JP2004040272A (en) Network camera, remote monitor / control system, and control method employing the same
US8174556B1 (en) Videoconferencing arrangement having multi-purpose digital still camera
KR20000063179A (en) Advertisement of goods, method of selling, system thereof, by utizing sound and motion image of famous men(talent, singer, sportsman, gag-man)
US8843980B1 (en) Network-based video source authentication
CN110753243A (en) Image processing method, image processing server and image processing system
KR100377315B1 (en) Remote Supervising method through network and apparatus therefor
JPH11331815A (en) Digital monitoring service system and its method
KR102225622B1 (en) Surveillance camera transmitting still image and video according to input of specific signal to server, Video management server providing video and still images related to the video
JP2008072431A (en) Communication control device and communication control method
JP2004173290A (en) Image data compression transmission system and image data compression apparatus
JP4780869B2 (en) Image processing system and image processing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEE PROGRESS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDERSON, DAVID;HENDERSON, GORDON;HENDERSON, JERRY;REEL/FRAME:020938/0739;SIGNING DATES FROM 20021212 TO 20021213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION