US20070039646A1 - Drag reduction using maleated fatty acids - Google Patents

Drag reduction using maleated fatty acids Download PDF

Info

Publication number
US20070039646A1
US20070039646A1 US11/586,065 US58606506A US2007039646A1 US 20070039646 A1 US20070039646 A1 US 20070039646A1 US 58606506 A US58606506 A US 58606506A US 2007039646 A1 US2007039646 A1 US 2007039646A1
Authority
US
United States
Prior art keywords
fluid
drag
salts
additive
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/586,065
Inventor
Vladimir Jovancicevic
Young Ahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US11/586,065 priority Critical patent/US20070039646A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHN, YOUNG SOO, VLADIMIR, JOVANCICEVIC
Publication of US20070039646A1 publication Critical patent/US20070039646A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • C10L1/1883Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/1905Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/17Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid, i.e. diluting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Definitions

  • the invention relates to agents to be added to fluids flowing through a conduit to reduce the drag therethrough, and most particularly relates, in one non-limiting embodiment, to non-polymeric drag reducing agents (DRAs) for liquids such as hydrocarbons, and emulsions of water and hydrocarbons.
  • DRAs non-polymeric drag reducing agents
  • polymeric DRAs additionally suffer from the problem that the high molecular weight polymer molecules can be irreversibly degraded (reduced in size and thus effectiveness) when subjected to conditions of high shear, such as when they pass through a pump. Additionally, some polymeric DRAs can cause undesirable changes in emulsion or fluid quality, or cause foaming problems when used to reduce the drag of multiphase liquids.
  • Surfactants such as quaternary ammonium salt cationic surfactants, are known drag reducing agents in aqueous (non-hydrocarbon) systems and have the advantage over polymeric DRAs in that they do not degrade irreversibly when sheared. In contrast, flow-induced structures in surfactant solutions are reversible.
  • a drag reducing agent could be developed which rapidly dissolves in the flowing hydrocarbon or emulsion, which could minimize or eliminate the need for special equipment for preparation and incorporation into the hydrocarbon or emulsion, and which could avoid shear degradation. It would be desirable to develop a drag reducing agent that does not cold flow and thus requires the use of cryogenic grinding and/or the extra addition of an anti-agglomeration additive.
  • An object of the invention is to provide a DRA that does not require the use of a polymeric material.
  • Another object of the invention is to provide a DRA that does not cold flow upon standing and is stable.
  • a method of reducing drag of a fluid involving first providing a fluid, and then adding to the fluid an amount of an additive effective to reduce the drag of the fluid.
  • the additive or agent includes maleated fatty acids, esters and salts thereof.
  • the claimed invention herein concerns implementing drag reduction in fluids.
  • drag reduction means that a given fluid creates a given amount of drag in a given conduit at a given flow rate, and that the goal is to reduce, lower, lessen, diminish and/or otherwise decrease the drag from these starting conditions whatever they may be.
  • drag reduction in fluids requires that the fluids be flowing; if the fluid is not flowing, there is no drag, and no friction loss, and thus no need to reduce the drag.
  • chemical agents added to fluids to reduce drag and friction begin their work and impart their effect when they are added to the fluid, although it is recognized that it takes some relatively short amount of time for the DRAs to dissolve and become effective.
  • the method and compositions find utility when the fluid is flowing in the turbulent flow regime.
  • the turbulent flow regime is defined as that when the Reynold's number (Re) for the fluid is above 3000. All of the testing and Examples herein were conducted in the turbulent flow regime.
  • Corrosion in the interior of a pipeline, tubing or other conduit may increase drag due to the increase in roughness of the surface over which the fluid passes when it is flowing.
  • corrosion is a phenomenon that takes a relatively long time. While a corrosion inhibitor assists the drag of a flowing fluid by inhibiting or preventing future corrosion and thus a rough interior surface from occurring, a corrosion inhibitor per se can do nothing to relatively quickly reduce the drag or friction or increase the flow of a fluid in a pipeline or conduit whether or not corrosion is already present.
  • a corrosion inhibitor does not remove corrosion (e.g. roughness and/or scaled surfaces) and thus improve flow, rather a corrosion inhibitor only inhibits or prevents corrosion in the future that may increase drag due to eventual surface roughness in the flow region.
  • the present invention relates to methods and compositions for reducing drag in multiphase flowlines (for example oil/water, water/oil, oil/water/gas) in oil and gas production systems. It is expected that the invention could apply to any hydrocarbon fluid flowing in a pipeline, whether or not water is present. It will be appreciated that by the term “hydrocarbon fluid”, it is expected that oxygenated hydrocarbons such as methanol, ethanol, ethers, and the like may be included within the definition. The term “hydrocarbon fluid” also means any fluid that contains hydrocarbons, as defined herein to also include oxygenated hydrocarbons.
  • the drag reducing methods of the invention comprise applying maleated fatty acids or its esters and salts to the system by either batch or continuous treatments at high enough concentrations to produce the desired reduction in drag and/or increase in flow for the same amount of motive energy.
  • the compositions containing maleated fatty acids are used effectively by maintaining drag reduction effectiveness over an extended period of time.
  • the use of these anionic types of surfactants present distinct advantages over the use of conventional polymeric drag reducers including the facts that they are not shear sensitive and do not cause undesirable changes in emulsion, foaming or fluid quality.
  • the microstructures or associations between the molecules of the inventive additives are believed to reform after the fluid is sheared.
  • Reduction in pressure drop in gas and oil multiphase flowlines using maleated fatty acid surfactants allows operators to increase production.
  • the oil/water solubility and/or dispersibility characteristics of the maleated fatty acids can be varied to allow their use in a broad range of oil/water ratios.
  • a mixture of maleated fatty acids with various oil/water solubilities can be used to cover a wide range of applications.
  • the drag reducing additives of this invention have the basic chemical structures of the maleated fatty acid drag reducers given below: and esters of these maleated fatty acids may also be employed, having structures such as: where R is an organic moiety including alkyl, aryl, aralkyl, alkaryl or amine groups;
  • R has from about 1 to about 20 carbon atoms, preferably from about 1 to about 5 carbon atoms. Most of the substituents containing amine groups expected to be useful are expected to contain primary amine groups.
  • the R substituent is that moiety from the alcoholic composition used to make the esters (III), (IV), (V) and/or (VI).
  • the alcoholic reactant ROH may be an ethoxylated alcohol or phenol in one non-limiting embodiment.
  • R 1 may preferably have from 2 to about 18 carbon atoms
  • R 2 is hydrogen or an organic moiety of up to 18 carbon atoms
  • the total number of carbon atoms in R 1 and R 2 ranges from about 10 to about 20 carbon atoms.
  • R 3 and R 4 may independently range from about 2 to about 13 carbon atoms.
  • maleated fatty acids and esters thereof include, but are not necessarily limited to, maleated oleic acid, maleated linoleic acid, and mixtures thereof.
  • the additive is any one or more of structures III, IV and/or V where R is isopropyl.
  • Organic and inorganic salts of maleated fatty acids are also part of this invention, such as sodium and potassium salts as well as various amine salts (e.g. imidazolines).
  • Suitable maleated fatty acids and salts thereof expected to be useful in the drag reducing methods of this invention include, but are not necessarily limited to imidazoline salts of; primary, secondary, and tertiary amine salts of; alkoxylated amine salts of; heterocyclic amine salts of maleated fatty acids and maleated fatty acid esters and mixtures thereof.
  • Specific salts of maleated fatty acids or salts of maleated fatty acid esters thereof include, but are not necessarily limited to, amine salts, amide salts, imidazoline salts, alkanolamine salts, and mixtures thereof.
  • the drag reducing additives herein are added in the absence of any polymeric drag reducing additive.
  • the drag reducing additives are employed in the absence of any other drag reducing additive, i.e. one that does not fall within the definitions of this invention.
  • the preferred manner of practicing the invention is batch treatment between two pigs or continuous treatment at the well head or pipeline through umbilical or capillary.
  • the product solution is used at high enough concentration to produce the desired drag reduction without causing emulsion, foaming or other oil/water quality problems.
  • the maleated fatty acids, esters and salts thereof may be combined with any suitable solvent prior to use as a drag reducing agent.
  • suitable solvents include, but are not necessarily limited to, aromatic solvents, aliphatic solvents, alcohols, ethers, sulfoxides, and compatible mixtures thereof.
  • inventive method will be additionally described by way of the following non-limiting Examples, which are intended only to further show specific embodiments of the invention.
  • the final tests were carried out in the DRA flow loop with different oil/brine (O/B) ratios.
  • a recirculated DRA flow loop was used to measure drag reduction properties ( ⁇ P, flow, fluid density) of DRAs.
  • the flow loop circulated 30 liters of fluid through a 1 ⁇ 2-inch ID stainless steel pipe (4-foot long section) equipped with a differential pressure transducer.
  • Differential pressure ( ⁇ P), flow rate (Q), fluid density, pressure and temperature were measured continuously during the test. Only the reduction in ⁇ P accompanied with a corresponding increase in Q as a result of the addition of DRA was considered as an indication of drag reduction.
  • the mass flow rate and density of fluids were measured using a mass flow meter, while ⁇ P was measured using a differential pressure transducer.
  • concentration of DRA was varied from 75-300 ppm. All experiments were carried out at 140° F. and 100 psi CO 2 .
  • the pressure drop ( ⁇ P), flow rate (Q), change in pressure drop ( ⁇ P), change in flow rate ( ⁇ Q) and calculated Fanning friction factor (f) were obtained using A and B drag reducers as shown in Table II. The reduction in Fanning friction factor for these two chemicals in 70/30 oil/brine mixture was close to 25%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

Non-polymeric drag reducing agents in the form of maleated fatty acids and the esters thereof and the organic, inorganic or amine salts thereof are described herein. These additives are useful to reduce drag in hydrocarbon fluids and multiphase fluids of hydrocarbon(s) and water. No injection probes or other special equipment is expected to be required to introduce the drag reducing agent into the liquid stream, nor is grinding (cryogenic or otherwise) of the additive necessary to form a suitable drag reducing agent. The drag reducing additives of the invention are not subject to shear degradation and do not cause undesirable changes in the emulsion or fluid quality of the fluid being treated, or undesirable foaming.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part application from U.S. Ser. No. 09/944,835 filed Aug. 30, 2001, now allowed, which in turn claims the benefit of U.S. Provisional Application No. 60/285,506 filed Apr. 19, 2001.
  • FIELD OF THE INVENTION
  • The invention relates to agents to be added to fluids flowing through a conduit to reduce the drag therethrough, and most particularly relates, in one non-limiting embodiment, to non-polymeric drag reducing agents (DRAs) for liquids such as hydrocarbons, and emulsions of water and hydrocarbons.
  • BACKGROUND OF THE INVENTION
  • The use of polyalpha-olefins or copolymers thereof to reduce the drag of a hydrocarbon flowing through a conduit, and hence the energy requirements for such fluid hydrocarbon transportation, is well known. These drag reducing agents or DRAs have taken various forms in the past, including slurries of ground polymer particulates. A problem generally experienced with simply grinding the polyalpha-olefins (PAOs) is that the particles will “cold flow” or stick together after the passage of time, thus making it impossible to place the PAO in the hydrocarbon in a form that will dissolve or otherwise mix with the hydrocarbon in an efficient manner. Further, the grinding process irreversibly degrades the polymer, thereby reducing the drag reduction efficiency of the polymer.
  • One common solution to preventing cold flow is to coat the ground polymer particles with an anti-agglomerating agent. Cryogenic grinding of the polymers to produce the particles prior to or simultaneously with coating with an anti-agglomerating agent has also been used. However, some powdered or particulate DRA slurries require special equipment for preparation, storage and injection into a conduit to ensure that the DRA is completely dissolved in the hydrocarbon stream.
  • Gel or solution DRAs have also been tried in the past. However, these drag reducing gels also demand specialized injection equipment, as well as pressurized delivery systems. They are also limited to about 10% polymer as a maximum concentration in a carrier fluid due to the high solution viscosity of these DRAs. Thus, transportation costs of the DRA are considerable, since up to about 90% of the volume being transported and handled is inert material.
  • Further, polymeric DRAs additionally suffer from the problem that the high molecular weight polymer molecules can be irreversibly degraded (reduced in size and thus effectiveness) when subjected to conditions of high shear, such as when they pass through a pump. Additionally, some polymeric DRAs can cause undesirable changes in emulsion or fluid quality, or cause foaming problems when used to reduce the drag of multiphase liquids.
  • Surfactants, such as quaternary ammonium salt cationic surfactants, are known drag reducing agents in aqueous (non-hydrocarbon) systems and have the advantage over polymeric DRAs in that they do not degrade irreversibly when sheared. In contrast, flow-induced structures in surfactant solutions are reversible.
  • Thus, it would be desirable if a drag reducing agent could be developed which rapidly dissolves in the flowing hydrocarbon or emulsion, which could minimize or eliminate the need for special equipment for preparation and incorporation into the hydrocarbon or emulsion, and which could avoid shear degradation. It would be desirable to develop a drag reducing agent that does not cold flow and thus requires the use of cryogenic grinding and/or the extra addition of an anti-agglomeration additive.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to provide a DRA that does not require the use of a polymeric material.
  • Other objects of the invention include providing a DRA that can be readily manufactured and which does not require special equipment for placement in a conduit transporting hydrocarbons or other fluids.
  • Another object of the invention is to provide a DRA that does not cold flow upon standing and is stable.
  • In carrying out these and other objects of the invention, there is provided, in one form, a method of reducing drag of a fluid involving first providing a fluid, and then adding to the fluid an amount of an additive effective to reduce the drag of the fluid. The additive or agent includes maleated fatty acids, esters and salts thereof.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The claimed invention herein concerns implementing drag reduction in fluids. It is well known that drag reduction means that a given fluid creates a given amount of drag in a given conduit at a given flow rate, and that the goal is to reduce, lower, lessen, diminish and/or otherwise decrease the drag from these starting conditions whatever they may be. By definition, drag reduction in fluids requires that the fluids be flowing; if the fluid is not flowing, there is no drag, and no friction loss, and thus no need to reduce the drag. It is well known that chemical agents added to fluids to reduce drag and friction (drag reducing agents or DRAs) begin their work and impart their effect when they are added to the fluid, although it is recognized that it takes some relatively short amount of time for the DRAs to dissolve and become effective. Furthermore, all commercial implementation of reducing drag in flowing fluids requires that the fluid move from one point to at least a second, distant point—otherwise there would be no reason for transporting or flowing the fluid. Reducing drag of flowing fluids occurs in loops only for test purposes, such as in Example 2 of the instant application. There is no commercial advantage (or reason) for pumping crude oil or other fluids around in loops or circles except for test purposes.
  • In a particular non-limiting embodiment herein, the method and compositions find utility when the fluid is flowing in the turbulent flow regime. The turbulent flow regime is defined as that when the Reynold's number (Re) for the fluid is above 3000. All of the testing and Examples herein were conducted in the turbulent flow regime.
  • Corrosion in the interior of a pipeline, tubing or other conduit may increase drag due to the increase in roughness of the surface over which the fluid passes when it is flowing. However, corrosion is a phenomenon that takes a relatively long time. While a corrosion inhibitor assists the drag of a flowing fluid by inhibiting or preventing future corrosion and thus a rough interior surface from occurring, a corrosion inhibitor per se can do nothing to relatively quickly reduce the drag or friction or increase the flow of a fluid in a pipeline or conduit whether or not corrosion is already present. A corrosion inhibitor does not remove corrosion (e.g. roughness and/or scaled surfaces) and thus improve flow, rather a corrosion inhibitor only inhibits or prevents corrosion in the future that may increase drag due to eventual surface roughness in the flow region. This is not the same as reducing drag that presently exists in a flowing fluid system. These basic differences between these two additive types and how they function and the phenomena they affect should be appreciated; for the language of the specification and claims herein to have meaning. It will further be appreciated that for the compositions and methods herein to be considered successful, it is only necessary that the drag of the fluid containing the drag reducing additive be reduced as compared with an identical fluid absent the additive. That is, it is not necessary that a particular level of drag reduction be achieved, although it is apparent that the more that drag is reduced, the better.
  • The present invention relates to methods and compositions for reducing drag in multiphase flowlines (for example oil/water, water/oil, oil/water/gas) in oil and gas production systems. It is expected that the invention could apply to any hydrocarbon fluid flowing in a pipeline, whether or not water is present. It will be appreciated that by the term “hydrocarbon fluid”, it is expected that oxygenated hydrocarbons such as methanol, ethanol, ethers, and the like may be included within the definition. The term “hydrocarbon fluid” also means any fluid that contains hydrocarbons, as defined herein to also include oxygenated hydrocarbons.
  • Many oil and gas production systems (e.g. those found in deep water rigs of the Gulf of Mexico) are limited in their production due to pressure drop in the flowlines under turbulent flow regime. The drag reducing methods of the invention comprise applying maleated fatty acids or its esters and salts to the system by either batch or continuous treatments at high enough concentrations to produce the desired reduction in drag and/or increase in flow for the same amount of motive energy. The compositions containing maleated fatty acids are used effectively by maintaining drag reduction effectiveness over an extended period of time. The use of these anionic types of surfactants present distinct advantages over the use of conventional polymeric drag reducers including the facts that they are not shear sensitive and do not cause undesirable changes in emulsion, foaming or fluid quality. Without wishing to be limited to any particular mechanism of operation, the microstructures or associations between the molecules of the inventive additives are believed to reform after the fluid is sheared. Reduction in pressure drop in gas and oil multiphase flowlines using maleated fatty acid surfactants allows operators to increase production. The oil/water solubility and/or dispersibility characteristics of the maleated fatty acids can be varied to allow their use in a broad range of oil/water ratios. A mixture of maleated fatty acids with various oil/water solubilities can be used to cover a wide range of applications.
  • The drag reducing additives of this invention have the basic chemical structures of the maleated fatty acid drag reducers given below:
    Figure US20070039646A1-20070222-C00001

    and esters of these maleated fatty acids may also be employed, having structures such as:
    Figure US20070039646A1-20070222-C00002

    where R is an organic moiety including alkyl, aryl, aralkyl, alkaryl or amine groups;
      • R1 is a generally linear organic moiety of from about 2 to about 20 carbon atoms;
      • R2 is hydrogen or a generally linear organic moiety of up to about 20 carbon atoms, where the total number of carbon atoms in R1 and R2 are from about 10 to about 20 carbon atoms;
    • R3 is an alkylene or alkenylene group of from about 2 to about 15 carbons; and
      • R4 is an alkylene or alkenylene group of from about 2 to about 15 carbons;
        and inorganic, organic, and amine salts thereof. By “alkenylene” is meant a hydrocarbon moiety bonded on either end to the shown structures (similar to alkylene) but which is unsaturated with at least one C═C double bond.
  • In water, compounds of structures I and II hydrolyze to form compounds of structures III and IV, respectively, where R═H. Such compounds are considered to be within the scope of the invention.
  • In non-limiting, preferred embodiments, R has from about 1 to about 20 carbon atoms, preferably from about 1 to about 5 carbon atoms. Most of the substituents containing amine groups expected to be useful are expected to contain primary amine groups. The R substituent is that moiety from the alcoholic composition used to make the esters (III), (IV), (V) and/or (VI). The alcoholic reactant ROH may be an ethoxylated alcohol or phenol in one non-limiting embodiment.
  • In another non-limiting embodiment of the invention, R1 may preferably have from 2 to about 18 carbon atoms, R2 is hydrogen or an organic moiety of up to 18 carbon atoms; and the total number of carbon atoms in R1 and R2 ranges from about 10 to about 20 carbon atoms. In another non-limiting but preferred embodiment, R3 and R4 may independently range from about 2 to about 13 carbon atoms.
  • Specific maleated fatty acids and esters thereof include, but are not necessarily limited to, maleated oleic acid, maleated linoleic acid, and mixtures thereof. In one non-limiting embodiment of the invention, the additive is any one or more of structures III, IV and/or V where R is isopropyl.
  • Organic and inorganic salts of maleated fatty acids are also part of this invention, such as sodium and potassium salts as well as various amine salts (e.g. imidazolines). Suitable maleated fatty acids and salts thereof expected to be useful in the drag reducing methods of this invention include, but are not necessarily limited to imidazoline salts of; primary, secondary, and tertiary amine salts of; alkoxylated amine salts of; heterocyclic amine salts of maleated fatty acids and maleated fatty acid esters and mixtures thereof.
  • Specific salts of maleated fatty acids or salts of maleated fatty acid esters thereof include, but are not necessarily limited to, amine salts, amide salts, imidazoline salts, alkanolamine salts, and mixtures thereof.
  • In one non-limiting embodiment of the invention, the drag reducing additives herein are added in the absence of any polymeric drag reducing additive. In another non-limiting embodiment of the invention, the drag reducing additives are employed in the absence of any other drag reducing additive, i.e. one that does not fall within the definitions of this invention. On the other hand, there may be situations or environments where it is advantageous to employ other drag reducing additives together with those of this invention in effective mixtures, such mixtures being within the bounds of this invention. Mixtures of additives falling within the scope of this invention may of course be used.
  • Compounds such as these are also known corrosion inhibitors (e.g. U.S. Pat. Nos. 4,927,669; 5,385,616; 5,582,792) that have been used extensively. The use of maleated fatty acids as drag reducers that are the subject of this invention, however, requires substantially lower use concentrations than those for corrosion inhibition. The typical use levels in the actual system for drag reduction is approximately 5-10 times lower than that for corrosion inhibition, based on total system fluid, i.e. from a lower limit of 100 ppm independently to an upper limit of 1000 ppm, or alternatively 725 ppm for methods and compositions of this invention, preferably from a lower limit of 150 to an upper limit of 600 ppm, and most preferably from a lower limit of 200 to an upper limit of 500 ppm. The maximum drag reduction effects observed, including both pressure reduction (ΔP) and flow increase (Q), in the laboratory testing were between 5-20%, depending on oil/water ratio, flow rates and type of test (Torque vs. Flow Loop). It will be appreciated that it is difficult to predict in advance what an effective amount of drag reducing agent would be in any particular circumstance since, as noted, there are a number of interrelated factors that must be considered including, but not necessarily limited to, the type of fluid having its friction characteristics modified, the flow rate of the fluid, the temperature of the fluid, the nature of the DRA, etc. Thus, the dosage ranges given above and used in the Examples should be understood as illustrative only.
  • The preferred manner of practicing the invention is batch treatment between two pigs or continuous treatment at the well head or pipeline through umbilical or capillary. In the continuous treatment, the product solution is used at high enough concentration to produce the desired drag reduction without causing emulsion, foaming or other oil/water quality problems.
  • The maleated fatty acids, esters and salts thereof may be combined with any suitable solvent prior to use as a drag reducing agent. Such solvents include, but are not necessarily limited to, aromatic solvents, aliphatic solvents, alcohols, ethers, sulfoxides, and compatible mixtures thereof. To further illustrate the invention, the inventive method will be additionally described by way of the following non-limiting Examples, which are intended only to further show specific embodiments of the invention.
  • EXAMPLE 1
  • The initial screening of potential DRA candidates selected based on their chemistry was performed in the torque test. In this experiment, a cylinder spins at a constant rate in a cylindrical container, which contains the fluid. The cylinder is attached to a torque meter, which sends an analog voltage signal to an A/D converter that feeds a computer. Percent drag reduction for a particular DRA/solvent system is calculated from the changes in torque with and without DRA. The results of this Example for a maleated fatty acid A, and the ester B thereof at different concentrations in a synthetic hydrocarbon are shown in Table I. Both compounds exhibited measurable reduction in torque at 200 ppm.
    TABLE I
    Torque Test Data
    DRA Concentration, ppm Torque, oz. in δ Torque (%)
    Blank 0.720
    A 200 0.705 2.1
    A 400 0.685 4.9
    B 400 0.709 1.6
  • EXAMPLE 2
  • The final tests were carried out in the DRA flow loop with different oil/brine (O/B) ratios. A recirculated DRA flow loop was used to measure drag reduction properties (ΔP, flow, fluid density) of DRAs. The flow loop circulated 30 liters of fluid through a ½-inch ID stainless steel pipe (4-foot long section) equipped with a differential pressure transducer. Differential pressure (ΔP), flow rate (Q), fluid density, pressure and temperature were measured continuously during the test. Only the reduction in ΔP accompanied with a corresponding increase in Q as a result of the addition of DRA was considered as an indication of drag reduction.
  • The mass flow rate and density of fluids were measured using a mass flow meter, while ΔP was measured using a differential pressure transducer. The concentration of DRA was varied from 75-300 ppm. All experiments were carried out at 140° F. and 100 psi CO2. The pressure drop (ΔP), flow rate (Q), change in pressure drop (δΔP), change in flow rate (δQ) and calculated Fanning friction factor (f) were obtained using A and B drag reducers as shown in Table II. The reduction in Fanning friction factor for these two chemicals in 70/30 oil/brine mixture was close to 25%.
    TABLE II
    DRA Flow Loop Data
    O/B ΔP δΔP Q
    DRA Ratio (psi) (%) (lb/min) δQ f
    Blank 30/70 6.90 126.0 0.0053
    50/50 6.70 115.0 0.047
    70/30 6.50 117.0 0.0041
    90/10 6.10 95.0 0.0055
    A 30/70 6.64 −3.8 130.5 3.6 0.0048
    50/50 6.33 −5.6 120.5 4.8 0.0040
    70/30 5.71 −12.1 125.9 7.6 0.0031
    90/10 5.87 −3.7 98.3 3.5 0.0050
    B 30/70 6.57 −4.7 130.4 3.5 0.0047
    50/50 6.37 −5.0 119.1 3.6 0.0042
    70/30 6.32 −2.8 119.9 2.5 0.0038
    90/10
  • Many modifications may be made in the composition and implementation of this invention without departing from the spirit and scope thereof that are defined only in the appended claims. For example, the exact combination of drag reducing additive(s) and liquid having its friction properties modified may be different from those used here. Additionally, derivatives other than those specifically mentioned may find utility in the methods of this invention. Various combinations of maleated fatty acids, esters and/or salts thereof alone or together with other materials, are also expected to find use as drag reducing agents.

Claims (16)

1. A reduced drag fluid, comprising:
a fluid; and
an amount of an additive effective to reduce the drag of the fluid, the additive being selected from the group consisting of imidazoline salts of; primary, secondary and tertiary salts of; heterocyclic amine salts of maleated fatty acids, and maleated fatty esters; and inorganic salts and organic salts of maleated fatty acids, and maleated fatty esters; and mixtures thereof;
where the amount of additive based on the total amount of fluid ranges from 100 to 725 ppm, where the drag of the fluid is reduced as compared with the drag of an identical fluid absence the additive.
2. The reduced drag fluid of claim 1 where the fluid is selected from the group consisting of hydrocarbons, mixtures of hydrocarbons and water, and mixtures of hydrocarbons, water and gas.
3. The reduced drag fluid of claim 1 where the additive is selected from the group consisting of:
Figure US20070039646A1-20070222-C00003
where R is an organic moiety including alkyl, aryl, aralkyl, alkaryl or amine groups;
R1 is a generally linear organic moiety of from about 2 to about 20 carbon atoms;
R2 is hydrogen or a generally linear organic moiety of up to about 20 carbon atoms, where the total number of carbon atoms in R1 and R2 are from about 2 to about 20 carbon atoms;
R3 is an alkylene or alkenylene group of from about 2 to about 15 carbons; and
R4 is an alkylene or alkenylene group of from about 2 to about 15 carbons;
and inorganic, organic, and amine salts thereof, where the amine salts are selected from the group consisting of imidazoline salts thereof; primary, secondary and tertiary salts thereof; heterocyclic amine salts thereof; and mixtures thereof.
4. The reduced drag fluid of claim 1 where the amount of additive based on the total amount of fluid ranges from 100 to 600 ppm.
5. The reduced drag fluid of claim 1 where the additive contains more than one maleated fatty acid, ester and salt thereof.
6. A reduced drag fluid, consisting essentially of:
a fluid selected from the group consisting of hydrocarbons, mixtures of hydrocarbons and water, and mixtures of hydrocarbons, water and gas; and
from 100 to 725 ppm based on the total amount of fluid of an additive selected from the group consisting of:
Figure US20070039646A1-20070222-C00004
where R is an organic moiety including alkyl, aryl, aralkyl, alkaryl or amine groups;
R1 is a generally linear organic moiety of from about 2 to about 20 carbon atoms;
R2 is hydrogen or a generally linear organic moiety of up to about 20 carbon atoms, where the total number of carbon atoms in R1 and R2 are from about 2 to about 20 carbon atoms;
R3 is an alkylene or alkenylene group of from about 2 to about 15 carbons; and
R4 is an alkylene or alkenylene group of from about 2 to about 15 carbons;
and inorganic, organic, and amine salts thereof, where the amine salts are selected from the group consisting of imidazoline salts thereof; primary, secondary and tertiary salts thereof; heterocyclic amine salts thereof; and mixtures thereof
where the drag of the fluid is reduced as compared with the drag of an identical fluid absence the additive.
7. The reduced drag fluid of claim 6 where the additive is selected from the group consisting of imidazoline salts of; primary, secondary, and tertiary amine salts of; alkoxylated amine salts of; heterocyclic amine salt forms of the maleated fatty acids and maleated fatty acid esters and mixtures thereof.
8. The reduced drag fluid of claim 6 where the amount of additive based on the total amount of fluid ranges from 100 to 600 ppm.
9. The reduced drag fluid of claim 6 where the additive contains more than one maleated fatty acid, ester and salt thereof.
10. A flowing, reduced drag fluid, comprising:
a fluid flowing in a turbulent flow regime; and
from 100 to 725 ppm based on the total amount of fluid of an additive continuously added to the fluid to reduce the drag of the fluid, the additive being selected from the group consisting of imidazoline salts of; primary, secondary and tertiary salts of; heterocyclic amine salts of maleated fatty acids, and maleated fatty esters; and inorganic salts and organic salts of maleated fatty acids, and maleated fatty esters; and mixtures thereof
where the drag of the fluid is reduced as compared with the drag of an identical fluid absence the additive.
11. The flowing, reduced drag fluid of claim 10 where the fluid is selected from the group consisting of hydrocarbons, mixtures of hydrocarbons and water, and mixtures of hydrocarbons, water and gas.
12. The flowing, reduced drag fluid of claim 10 where the additive is selected from the group consisting of:
Figure US20070039646A1-20070222-C00005
where R is an organic moiety including alkyl, aryl, aralkyl, alkaryl or amine groups;
R1 is a generally linear organic moiety of from about 2 to about 20 carbon atoms;
R2 is hydrogen or a generally linear organic moiety of up to about 20 carbon atoms, where the total number of carbon atoms in R1 and R2 are from about 2 to about 20 carbon atoms;
R3 is an alkylene or alkenylene group of from about 2 to about 15 carbons; and
R4 is an alkylene or alkenylene group of from about 2 to about 15 carbons;
and inorganic, organic, and amine salts thereof, where the amine salts are selected from the group consisting of imidazoline salts thereof; primary, secondary and tertiary salts thereof; heterocyclic amine salts thereof; and mixtures thereof.
13. The flowing, reduced drag fluid of claim 10 where the amount of additive based on the total amount of fluid ranges from 100 to 600 ppm.
14. The flowing, reduced drag fluid of claim 10 where the additive contains more than one maleated fatty acid, ester and salt thereof.
15. The flowing, reduced drag fluid of claim 10 where the continuously flowing, reduced drag fluid consists essentially of the continuously flowing fluid and the additive.
16. The flowing, reduced drag fluid of claim 10 where the continuously flowing, reduced drag fluid consists of the continuously flowing fluid and the additive.
US11/586,065 2001-04-19 2006-10-25 Drag reduction using maleated fatty acids Abandoned US20070039646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/586,065 US20070039646A1 (en) 2001-04-19 2006-10-25 Drag reduction using maleated fatty acids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28550601P 2001-04-19 2001-04-19
US09/944,835 US7137401B2 (en) 2001-04-19 2001-08-30 Drag reduction using maleated fatty acids
US11/586,065 US20070039646A1 (en) 2001-04-19 2006-10-25 Drag reduction using maleated fatty acids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/944,835 Continuation-In-Part US7137401B2 (en) 2001-04-19 2001-08-30 Drag reduction using maleated fatty acids

Publications (1)

Publication Number Publication Date
US20070039646A1 true US20070039646A1 (en) 2007-02-22

Family

ID=26963229

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/944,835 Expired - Fee Related US7137401B2 (en) 2001-04-19 2001-08-30 Drag reduction using maleated fatty acids
US11/586,065 Abandoned US20070039646A1 (en) 2001-04-19 2006-10-25 Drag reduction using maleated fatty acids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/944,835 Expired - Fee Related US7137401B2 (en) 2001-04-19 2001-08-30 Drag reduction using maleated fatty acids

Country Status (2)

Country Link
US (2) US7137401B2 (en)
WO (1) WO2002086031A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287540B2 (en) 2003-03-14 2007-10-30 Baker Hughes Incorporated Method for introducing drag reducers into hydrocarbon transportation systems
US8071715B2 (en) 2007-01-31 2011-12-06 Georgia-Pacific Chemicals Llc Maleated and oxidized fatty acids
CN101329011B (en) * 2007-06-20 2012-01-11 中国石油天然气股份有限公司 Gas pipeline drag reduction agent and preparing method thereof
CA2704147C (en) * 2007-07-03 2015-08-11 Georgia-Pacific Chemicals Llc Chemical modification of maleated fatty acids
CA2713773C (en) 2008-01-31 2017-05-30 Georgia-Pacific Chemicals Llc Oxidized and maleated derivative composition
WO2012128788A1 (en) 2011-03-24 2012-09-27 Elevance Renewable Sciences, Inc. Functionalized monomers and polymers
US9315748B2 (en) 2011-04-07 2016-04-19 Elevance Renewable Sciences, Inc. Cold flow additives
US9012385B2 (en) 2012-02-29 2015-04-21 Elevance Renewable Sciences, Inc. Terpene derived compounds
US20150057204A1 (en) 2013-03-12 2015-02-26 Elevance Renewable Sciences, Inc. Maleanized Ester Derivatives
US20140274832A1 (en) 2013-03-12 2014-09-18 Elevance Renewable Sciences, Inc. Maleinized ester derivatives
CN111220501B (en) * 2019-12-04 2022-04-29 西南石油大学 On-line evaluation method for drag reducer drag reduction effect in oil pipeline

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188882A (en) * 1934-12-24 1940-01-30 Edwin T Clocker Condensation product and method
US2188890A (en) * 1937-09-27 1940-01-30 Edwin T Clocker Olefinic condensation product combined with a phenol and method
US3981682A (en) * 1973-03-15 1976-09-21 Westvaco Corporation Corrosion inhibiting compositions and process for inhibiting corrosion of metals
US3985504A (en) * 1973-11-21 1976-10-12 Basf Aktiengesellschaft Anticorrosive agent
US4927669A (en) * 1988-07-15 1990-05-22 Westvaco Corporation Oil field corrosion inhibition
US5292480A (en) * 1992-06-11 1994-03-08 Westvaco Corporation Acid-anhydride esters as oil field corrosion inhibitors
US5582792A (en) * 1995-08-24 1996-12-10 Petrolite Corporation Corrosion inhibition by ethoxylated fatty amine salts of maleated unsaturated acids
US6620770B1 (en) * 2001-10-31 2003-09-16 Halliburton Energy Services, Inc. Additive for oil-based drilling fluids
US6774094B2 (en) * 2001-04-24 2004-08-10 Baker Hughes Incorporated Drag reduction using fatty acids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361213A (en) 1965-09-13 1968-01-02 Mobil Oil Corp Method of decreasing friction loss in turbulent liquids
JPS59120688A (en) 1982-12-27 1984-07-12 Lion Corp Fluidity improver
JPS6018583A (en) 1983-07-11 1985-01-30 Lion Corp Improver for fluidity
RU1152241C (en) * 1983-11-09 1992-10-23 V G Bedenko Fuel emulsion
US5385616A (en) 1994-02-14 1995-01-31 Petrolite Corporation Corrosion inhibition by formation of iron carboxylate
ATE474902T1 (en) 1997-12-12 2010-08-15 Talisman Capital Talon Fund Lt AQUEOUS FUEL MIXTURE WITH CONSTANT CALORICAL VALUE AND METHOD FOR FORMING IT

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188882A (en) * 1934-12-24 1940-01-30 Edwin T Clocker Condensation product and method
US2188890A (en) * 1937-09-27 1940-01-30 Edwin T Clocker Olefinic condensation product combined with a phenol and method
US3981682A (en) * 1973-03-15 1976-09-21 Westvaco Corporation Corrosion inhibiting compositions and process for inhibiting corrosion of metals
US3985504A (en) * 1973-11-21 1976-10-12 Basf Aktiengesellschaft Anticorrosive agent
US4927669A (en) * 1988-07-15 1990-05-22 Westvaco Corporation Oil field corrosion inhibition
US5292480A (en) * 1992-06-11 1994-03-08 Westvaco Corporation Acid-anhydride esters as oil field corrosion inhibitors
US5582792A (en) * 1995-08-24 1996-12-10 Petrolite Corporation Corrosion inhibition by ethoxylated fatty amine salts of maleated unsaturated acids
US6774094B2 (en) * 2001-04-24 2004-08-10 Baker Hughes Incorporated Drag reduction using fatty acids
US6620770B1 (en) * 2001-10-31 2003-09-16 Halliburton Energy Services, Inc. Additive for oil-based drilling fluids

Also Published As

Publication number Publication date
US20030060373A1 (en) 2003-03-27
WO2002086031A1 (en) 2002-10-31
US7137401B2 (en) 2006-11-21

Similar Documents

Publication Publication Date Title
US20070039646A1 (en) Drag reduction using maleated fatty acids
US6774094B2 (en) Drag reduction using fatty acids
US7468402B2 (en) Polymeric nanoemulsion as drag reducer for multiphase flow
RU2562974C2 (en) Composition and method of reducing agglomeration of hydrates
US9458373B2 (en) Composition and method for reducing hydrate agglomeration
US9920019B2 (en) Multifunctional composition base 1,3-oxazinan-6-ones with corrosion inhibition and heavy organic compounds inhibition and dispersants and obtaining process
US10167249B2 (en) Amino and imino propionic acids, process of preparation and use
WO2013048365A1 (en) Anti-agglomerate gas hydrate inhibitors for use in petroleum and natural gas systems
US20050049327A1 (en) Drag reducing agents for multiphase flow
US7288506B2 (en) Aluminum carboxylate drag reducers for hydrocarbon emulsions
US9988568B2 (en) Use of anti-agglomerants in high gas to oil ratio formations
US20160289581A1 (en) Fluorine-containing agents for enhancing hydrate inhibitors
US20220235260A1 (en) Dual cation hydrate inhibitors
US3434485A (en) Transportation of viscous liquids
Ramachandran et al. Development of high shear corrosion inhibitor for mild steel in different CO2 and CO2/H2S environments with and without sand
EP3947478A1 (en) Self-inverting polymer emulsions
US4238348A (en) Method and a composition for inhibiting corrosion
CN106590610B (en) Water-based fracturing fluid drag reducer and application thereof
RU2627355C1 (en) Turbulent viscosity reducing additive with anticorrosion properties
Gui et al. Inhibition of Carbon Steel Stress Corrosion Cracking in Fuel Grade Ethanol by Chemical Addition or Oxygen Control: A Feasibility Evaluation
US4663124A (en) Reaction product of hydrogen sulfide with the reaction product of a dione and a primary polyamine
PL226810B1 (en) Thermodynamic hydrate inhibitor of anticorrosion and anti-agglomeration to protect mining equipment, pipelines transporting of the crude oil and a method for its preparation
WO2021071480A1 (en) Multifunctional surfactant and corrosion inhibitor additives
OA16452A (en) Composition and method for reducing hydrate agglomeration.

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VLADIMIR, JOVANCICEVIC;AHN, YOUNG SOO;REEL/FRAME:018467/0588;SIGNING DATES FROM 20061010 TO 20061016

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION