US20070027332A1 - Semi-synthetic conversion of paclitaxel to docetaxel - Google Patents
Semi-synthetic conversion of paclitaxel to docetaxel Download PDFInfo
- Publication number
- US20070027332A1 US20070027332A1 US11/377,939 US37793906A US2007027332A1 US 20070027332 A1 US20070027332 A1 US 20070027332A1 US 37793906 A US37793906 A US 37793906A US 2007027332 A1 US2007027332 A1 US 2007027332A1
- Authority
- US
- United States
- Prior art keywords
- taxane
- hydroxy
- protecting
- group
- paclitaxel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 title claims abstract description 93
- 229930012538 Paclitaxel Natural products 0.000 title claims abstract description 90
- 229960001592 paclitaxel Drugs 0.000 title claims abstract description 90
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 title claims abstract description 70
- 229960003668 docetaxel Drugs 0.000 title claims abstract description 67
- 238000006243 chemical reaction Methods 0.000 title abstract description 35
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 claims abstract description 144
- 238000000034 method Methods 0.000 claims abstract description 127
- 230000008569 process Effects 0.000 claims abstract description 110
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 claims abstract description 63
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 33
- 125000003368 amide group Chemical group 0.000 claims abstract description 30
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 15
- 238000005580 one pot reaction Methods 0.000 claims abstract description 13
- 229940123237 Taxane Drugs 0.000 claims description 169
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 159
- -1 Li-t-OBu Substances 0.000 claims description 100
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 63
- 239000000203 mixture Substances 0.000 claims description 61
- 239000003795 chemical substances by application Substances 0.000 claims description 45
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 42
- YWLXLRUDGLRYDR-ZHPRIASZSA-N 5beta,20-epoxy-1,7beta,10beta,13alpha-tetrahydroxy-9-oxotax-11-ene-2alpha,4alpha-diyl 4-acetate 2-benzoate Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](O)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 YWLXLRUDGLRYDR-ZHPRIASZSA-N 0.000 claims description 36
- 239000000284 extract Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 34
- TYLVGQKNNUHXIP-MHHARFCSSA-N 10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=4C=CC=CC=4)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 TYLVGQKNNUHXIP-MHHARFCSSA-N 0.000 claims description 32
- 239000002699 waste material Substances 0.000 claims description 32
- 125000000217 alkyl group Chemical group 0.000 claims description 30
- 239000003223 protective agent Substances 0.000 claims description 30
- 125000006239 protecting group Chemical group 0.000 claims description 29
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical group CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 claims description 29
- OVMSOCFBDVBLFW-VHLOTGQHSA-N 5beta,20-epoxy-1,7beta,13alpha-trihydroxy-9-oxotax-11-ene-2alpha,4alpha,10beta-triyl 4,10-diacetate 2-benzoate Chemical compound O([C@@H]1[C@@]2(C[C@H](O)C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)O)C(=O)C1=CC=CC=C1 OVMSOCFBDVBLFW-VHLOTGQHSA-N 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 26
- ZVEGOBHUZTXSFK-TZIKQHFSSA-N 7-xylosyltaxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)CO3)O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 ZVEGOBHUZTXSFK-TZIKQHFSSA-N 0.000 claims description 25
- XKLJHFLUAHKGGU-UHFFFAOYSA-N nitrous amide Chemical compound ON=N XKLJHFLUAHKGGU-UHFFFAOYSA-N 0.000 claims description 25
- 239000002253 acid Substances 0.000 claims description 24
- 239000004202 carbamide Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 20
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical group CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 19
- 150000004579 taxol derivatives Chemical class 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 18
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 claims description 18
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 claims description 18
- 125000003342 alkenyl group Chemical group 0.000 claims description 17
- 229930182986 10-Deacetyltaxol Natural products 0.000 claims description 16
- WPPPFZJNKLMYBW-FAEUQDRCSA-N 13-acetyl-9-dihydrobaccatin iii Chemical compound O([C@@H]1[C@]2(O)C[C@@H](C(=C([C@@H](OC(C)=O)[C@H](O)[C@]3(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]31)OC(C)=O)C2(C)C)C)OC(=O)C)C(=O)C1=CC=CC=C1 WPPPFZJNKLMYBW-FAEUQDRCSA-N 0.000 claims description 16
- FFCWRLFQIKDRNO-UHFFFAOYSA-N 9-dihydro-13-acetyl baccatin III Natural products CC(=O)OC1C2C(O)CC(OC(=O)C)C3(CO3)C2C(OC(=O)C)C4(O)CC(OC(=O)C)C(=C(C1OC(=O)C)C4(C)C)C FFCWRLFQIKDRNO-UHFFFAOYSA-N 0.000 claims description 16
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 16
- DBXFAPJCZABTDR-KUEXGRMWSA-N Cephalomannine Natural products O=C(O[C@@H]1C(C)=C2[C@@H](OC(=O)C)C(=O)[C@]3(C)[C@@H](O)C[C@@H]4[C@](OC(=O)C)([C@H]3[C@H](OC(=O)c3ccccc3)[C@@](O)(C2(C)C)C1)CO4)[C@@H](O)[C@H](NC(=O)/C(=C\C)/C)c1ccccc1 DBXFAPJCZABTDR-KUEXGRMWSA-N 0.000 claims description 15
- 150000004703 alkoxides Chemical class 0.000 claims description 15
- DBXFAPJCZABTDR-WBYYIXQISA-N cephalomannine Chemical compound O([C@@H]1[C@]2(O)C[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]3(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]31)OC(C)=O)C2(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)C(/C)=C/C)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 DBXFAPJCZABTDR-WBYYIXQISA-N 0.000 claims description 15
- ORKLEZFXASNLFJ-DYLQFHMVSA-N O([C@H]1C[C@H]2OC[C@]2([C@@H]2[C@]1(C)C([C@H](O)C1=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=3C=CC=CC=3)C=3C=CC=CC=3)C[C@@](C1(C)C)(O)[C@H]2OC(=O)C=1C=CC=CC=1)=O)OC(=O)C)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O Chemical compound O([C@H]1C[C@H]2OC[C@]2([C@@H]2[C@]1(C)C([C@H](O)C1=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=3C=CC=CC=3)C=3C=CC=CC=3)C[C@@](C1(C)C)(O)[C@H]2OC(=O)C=1C=CC=CC=1)=O)OC(=O)C)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O ORKLEZFXASNLFJ-DYLQFHMVSA-N 0.000 claims description 14
- 239000003960 organic solvent Substances 0.000 claims description 13
- 229930014667 baccatin III Natural products 0.000 claims description 12
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 12
- 150000004692 metal hydroxides Chemical class 0.000 claims description 12
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 12
- 239000002168 alkylating agent Substances 0.000 claims description 10
- 229940100198 alkylating agent Drugs 0.000 claims description 10
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims description 10
- 238000013375 chromatographic separation Methods 0.000 claims description 10
- 150000002978 peroxides Chemical class 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 241001116500 Taxus Species 0.000 claims description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 8
- 238000001953 recrystallisation Methods 0.000 claims description 8
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 claims description 7
- 230000009935 nitrosation Effects 0.000 claims description 7
- 238000007034 nitrosation reaction Methods 0.000 claims description 7
- 125000000018 nitroso group Chemical group N(=O)* 0.000 claims description 7
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 6
- 230000003301 hydrolyzing effect Effects 0.000 claims description 6
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 claims description 6
- SIAPCJWMELPYOE-UHFFFAOYSA-N lithium hydride Chemical compound [LiH] SIAPCJWMELPYOE-UHFFFAOYSA-N 0.000 claims description 6
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 claims description 6
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 claims description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical group [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 claims description 5
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 claims description 5
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 claims description 5
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 claims description 5
- UTQNKKSJPHTPBS-UHFFFAOYSA-N 2,2,2-trichloroethanone Chemical group ClC(Cl)(Cl)[C]=O UTQNKKSJPHTPBS-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 4
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 claims description 4
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 claims description 4
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 claims description 4
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 239000007868 Raney catalyst Substances 0.000 claims description 3
- 229910000564 Raney nickel Inorganic materials 0.000 claims description 3
- AMJQWGIYCROUQF-UHFFFAOYSA-N calcium;methanolate Chemical group [Ca+2].[O-]C.[O-]C AMJQWGIYCROUQF-UHFFFAOYSA-N 0.000 claims description 3
- JILPJDVXYVTZDQ-UHFFFAOYSA-N lithium methoxide Chemical compound [Li+].[O-]C JILPJDVXYVTZDQ-UHFFFAOYSA-N 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 claims 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims 6
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 claims 3
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 claims 3
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 claims 3
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 claims 2
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 9
- 239000000543 intermediate Substances 0.000 description 37
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 33
- 239000000243 solution Substances 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 27
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 23
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 19
- 0 [1*]C(=O)N[C@@H](C1=CC=CC=C1)[C@@H](C)C(=O)C[C@H]1C[C@@]2(O)[C@@H](OC(=O)C3=CC=CC=C3)[C@]3([H])[C@]4(OC(C)=O)CO[C@@H]4C[C@H](C)[C@@]3(C)C(=O)[C@H]([Y])C(=C1C)C2(C)C Chemical compound [1*]C(=O)N[C@@H](C1=CC=CC=C1)[C@@H](C)C(=O)C[C@H]1C[C@@]2(O)[C@@H](OC(=O)C3=CC=CC=C3)[C@]3([H])[C@]4(OC(C)=O)CO[C@@H]4C[C@H](C)[C@@]3(C)C(=O)[C@H]([Y])C(=C1C)C2(C)C 0.000 description 15
- 125000000623 heterocyclic group Chemical group 0.000 description 15
- 239000007858 starting material Substances 0.000 description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 125000001072 heteroaryl group Chemical group 0.000 description 11
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 10
- 125000003396 thiol group Chemical group [H]S* 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 9
- 125000004104 aryloxy group Chemical group 0.000 description 9
- 238000004440 column chromatography Methods 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- DCFKHNIGBAHNSS-UHFFFAOYSA-N chloro(triethyl)silane Chemical compound CC[Si](Cl)(CC)CC DCFKHNIGBAHNSS-UHFFFAOYSA-N 0.000 description 8
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 238000000638 solvent extraction Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 7
- 150000003141 primary amines Chemical class 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 229960000583 acetic acid Drugs 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 239000012300 argon atmosphere Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 230000006181 N-acylation Effects 0.000 description 4
- 229910003827 NRaRb Inorganic materials 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 241000015728 Taxus canadensis Species 0.000 description 4
- 125000004414 alkyl thio group Chemical group 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000005947 deacylation reaction Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000000622 liquid--liquid extraction Methods 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229940063683 taxotere Drugs 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 150000001241 acetals Chemical class 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 239000007806 chemical reaction intermediate Substances 0.000 description 3
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000401 methanolic extract Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 3
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XJUZRXYOEPSWMB-UHFFFAOYSA-N Chloromethyl methyl ether Chemical compound COCCl XJUZRXYOEPSWMB-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 241001116498 Taxus baccata Species 0.000 description 2
- 241000202349 Taxus brevifolia Species 0.000 description 2
- 241001330449 Taxus wallichiana Species 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 2
- 239000012346 acetyl chloride Substances 0.000 description 2
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 2
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 2
- 229940073608 benzyl chloride Drugs 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000011210 chromatographic step Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000013058 crude material Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- FBCCMZVIWNDFMO-UHFFFAOYSA-N dichloroacetyl chloride Chemical compound ClC(Cl)C(Cl)=O FBCCMZVIWNDFMO-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 125000005368 heteroarylthio group Chemical group 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 2
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 125000000037 tert-butyldiphenylsilyl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1[Si]([H])([*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 2
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 2
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 2
- HZDNNJABYXNPPV-UHFFFAOYSA-N (2-chloro-2-oxoethyl) acetate Chemical compound CC(=O)OCC(Cl)=O HZDNNJABYXNPPV-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- HOJZAHQWDXAPDJ-UHFFFAOYSA-N 3-anilino-2-hydroxypropanoic acid Chemical group OC(=O)C(O)CNC1=CC=CC=C1 HOJZAHQWDXAPDJ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229930190007 Baccatin Natural products 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N CC(=O)C(C)C Chemical compound CC(=O)C(C)C SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N CC(=O)OC(C)C Chemical compound CC(=O)OC(C)C JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- BSMGLVDZZMBWQB-UHFFFAOYSA-N CC(C)C(=O)C1=CC=CC=C1 Chemical compound CC(C)C(=O)C1=CC=CC=C1 BSMGLVDZZMBWQB-UHFFFAOYSA-N 0.000 description 1
- KVWOTUDBCFBGFJ-UHFFFAOYSA-N CC(C)C(=O)OC(C)(C)C Chemical compound CC(C)C(=O)OC(C)(C)C KVWOTUDBCFBGFJ-UHFFFAOYSA-N 0.000 description 1
- FEXQDZTYJVXMOS-UHFFFAOYSA-N CC(C)OC(=O)C1=CC=CC=C1 Chemical compound CC(C)OC(=O)C1=CC=CC=C1 FEXQDZTYJVXMOS-UHFFFAOYSA-N 0.000 description 1
- IYZPIFPRGKIJQT-UHFFFAOYSA-N CC(C)OC(=O)OC(C)(C)C Chemical compound CC(C)OC(=O)OC(C)(C)C IYZPIFPRGKIJQT-UHFFFAOYSA-N 0.000 description 1
- NYWIINWPFLGRKE-UHFFFAOYSA-N CC[Si](CC)(CC)C(C)C Chemical compound CC[Si](CC)(CC)C(C)C NYWIINWPFLGRKE-UHFFFAOYSA-N 0.000 description 1
- UCUKUIPXDKEYLX-UHFFFAOYSA-N CC[Si](CC)(CC)OC(C)C Chemical compound CC[Si](CC)(CC)OC(C)C UCUKUIPXDKEYLX-UHFFFAOYSA-N 0.000 description 1
- JULZQKLZSNOEEJ-UHFFFAOYSA-N COC1=CC=C(C(C)C)C=C1 Chemical compound COC1=CC=C(C(C)C)C=C1 JULZQKLZSNOEEJ-UHFFFAOYSA-N 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- RZKYEQDPDZUERB-UHFFFAOYSA-N Pindone Chemical group C1=CC=C2C(=O)C(C(=O)C(C)(C)C)C(=O)C2=C1 RZKYEQDPDZUERB-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 244000234281 Tamarix gallica Species 0.000 description 1
- 244000162450 Taxus cuspidata Species 0.000 description 1
- 241000013869 Taxus floridana Species 0.000 description 1
- 241000013871 Taxus globosa Species 0.000 description 1
- 241001330459 Taxus wallichiana var. wallichiana Species 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- KVKWVIHYOWCBIK-UHFFFAOYSA-N [H]C(Cl)(Cl)C(=O)C(C)C Chemical compound [H]C(Cl)(Cl)C(=O)C(C)C KVKWVIHYOWCBIK-UHFFFAOYSA-N 0.000 description 1
- JBTISLVNJCYZCH-UHFFFAOYSA-N [H]C(Cl)(Cl)C(=O)OC(C)C Chemical compound [H]C(Cl)(Cl)C(=O)OC(C)C JBTISLVNJCYZCH-UHFFFAOYSA-N 0.000 description 1
- BZMGQWNOSJZKRQ-PTCWMCTNSA-N [H][C@]12[C@H](OC(=O)C3=CC=CC=C3)[C@]3(O)C[C@H](C)C(C)=C([C@@H](C)C(C)[C@]1(C)[C@@H](C)C[C@H]1OC[C@]12OC(C)=O)C3(C)C Chemical compound [H][C@]12[C@H](OC(=O)C3=CC=CC=C3)[C@]3(O)C[C@H](C)C(C)=C([C@@H](C)C(C)[C@]1(C)[C@@H](C)C[C@H]1OC[C@]12OC(C)=O)C3(C)C BZMGQWNOSJZKRQ-PTCWMCTNSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 125000005035 acylthio group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000004659 aryl alkyl thio group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000004200 baccatin III derivatives Chemical class 0.000 description 1
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 1
- FHRRJZZGSJXPRQ-UHFFFAOYSA-N benzyl phenylmethoxycarbonyl carbonate Chemical compound C=1C=CC=CC=1COC(=O)OC(=O)OCC1=CC=CC=C1 FHRRJZZGSJXPRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012455 biphasic mixture Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- KWYZNESIGBQHJK-UHFFFAOYSA-N chloro-dimethyl-phenylsilane Chemical compound C[Si](C)(Cl)C1=CC=CC=C1 KWYZNESIGBQHJK-UHFFFAOYSA-N 0.000 description 1
- YCXVDEMHEKQQCI-UHFFFAOYSA-N chloro-dimethyl-propan-2-ylsilane Chemical compound CC(C)[Si](C)(C)Cl YCXVDEMHEKQQCI-UHFFFAOYSA-N 0.000 description 1
- LADPCMZCENPFGV-UHFFFAOYSA-N chloromethoxymethylbenzene Chemical compound ClCOCC1=CC=CC=C1 LADPCMZCENPFGV-UHFFFAOYSA-N 0.000 description 1
- 239000012504 chromatography matrix Substances 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000007360 debenzoylation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical class OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 229930004069 diterpene Natural products 0.000 description 1
- 150000004141 diterpene derivatives Chemical class 0.000 description 1
- 150000004625 docetaxel anhydrous derivatives Chemical class 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005223 heteroarylcarbonyl group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical compound [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003808 methanol extraction Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000001301 oxygen Chemical group 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- XVSSGIXTKVRGAR-UHFFFAOYSA-N prop-2-enoxycarbonyl prop-2-enyl carbonate Chemical compound C=CCOC(=O)OC(=O)OCC=C XVSSGIXTKVRGAR-UHFFFAOYSA-N 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical compound [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical compound C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- DVFXLNFDWATPMW-IWOKLKJTSA-N tert-butyldiphenylsilyl Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO[Si](C=2C=CC=CC=2)(C=2C=CC=CC=2)C(C)(C)C)[C@@H](OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OC[C@@H]2[C@H](CC(O2)N2C3=NC=NC(N)=C3N=C2)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)C1 DVFXLNFDWATPMW-IWOKLKJTSA-N 0.000 description 1
- 125000004853 tetrahydropyridinyl group Chemical group N1(CCCC=C1)* 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 150000003555 thioacetals Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- UTXPCJHKADAFBB-UHFFFAOYSA-N tribenzyl(chloro)silane Chemical compound C=1C=CC=CC=1C[Si](CC=1C=CC=CC=1)(Cl)CC1=CC=CC=C1 UTXPCJHKADAFBB-UHFFFAOYSA-N 0.000 description 1
- 230000001875 tumorinhibitory effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 125000000969 xylosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)CO1)* 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D305/00—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
- C07D305/14—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
Definitions
- the present invention relates to a semi-synthesis of taxane derivatives useful in the preparation of docetaxel, from pure or crude paclitaxel or related taxane starting material, in particular, the semi-synthesis of protected taxane derivatives in a one pot reaction and its conversion to docetaxel.
- Taxotere a semi-synthetic analog
- Taxol paclitaxel
- Taxus brevifolia a complex diterpene isolated from the bark of the Pacific yew tree isolated from the bark of the Pacific yew tree
- paclitaxel has been found to have activity against different forms of leukemia and against solid tumors in the breast, ovary, brain, and lung in humans.
- paclitaxel can be obtained from the yew tree or semi-synthetically, only the latter option is currently available for the formation of non-natural docetaxel.
- the partial synthesis of this important compound has generally been accomplished through esterification of a derivative of the (2R,3S)phenylisoserine side chain with a protected form of 10-deacetylbaccatin III, a comparatively abundant natural product also present in the yew tree.
- Taxotere has been found to have very good anti-tumor activity and better bio-availability than paclitaxel. Taxotere is similar in structure to paclitaxel, having t-butoxycarbonyl instead of benzoyl on the amino group at the 3′ position, and a hydroxy group instead of the acetoxy group at the C-10 position.
- Docetaxel and paclitaxel may be prepared semi-synthetically from 10-deacetylbaccatin III or baccatin III as set forth in U.S. Pat. Nos. 4,924,011 and 4,924,012, by the reaction of a ⁇ -lactam and a suitably protected 10-deacetylbaccatin III or baccatin III derivative as set forth in U.S. Pat. No. 5,175,315, by a method using an oxazoline compound as set forth in International Patent Kokai No. Hei 7-504444, by a method using thioester compound as set forth in International Patent Kokai No.
- docetaxel and paclitaxel may also be prepared semi-synthetically from 9-dihydro-13-acetylbaccatin III.
- the present invention provides a simple process for conversion of paclitaxel or a paclitaxel-containing material to its synthetic analog—docetaxel. Accordingly, one embodiment of the present invention provides a process for producing a taxane intermediate under mild conditions using a pure or partially purified paclitaxel or a paclitaxel analog as a starting material, the taxane intermediate can later be used as a precursor to docetaxel.
- the process comprises protecting a compound of Formula (I): wherein, R 1 is alkyl, alkenyl or aryl; and X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- the process comprises: protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane; and introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of the taxane to provide a C-2′, C-7, C-10 and N-t-Boc protected paclitaxel derivative, wherein the steps of protecting one or more hydroxy groups and introducing the t-Boc group comprises combining, in a one pot reaction, the taxane with a hydroxy protecting group and a t-Boc agent.
- the hydroxy protecting groups at the C-2′, C-7 and C-10 positions can be the same or different.
- the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of a base.
- the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of an acid.
- a further embodiment of the present invention provides a process for preparing docetaxel from a taxane of Formula (I): wherein, R 1 is alkyl, alkenyl or aryl; and X, Y and Z are the same or different and independently hydroxy or protected hydroxy, the process comprising: protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane; introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of the taxane to provide a protected paclitaxel derivative having an urea linkage at the C-3′ position; selectively removing the —C(O)R 1 group from the urea linkage to provide a protected docetaxel; and converting the protected docetaxel to docetaxel by removing the hydroxy-protecting groups at the C-2′, C-7 and C-10 positions, wherein the step of protecting one or more hydroxy groups at C-2′, C-7 and C-10 positions, and introducing the t
- the hydroxy protecting groups at the C-2′, C-7 and C-10 positions can be the same or different.
- the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of a second base.
- the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of an acid.
- the present invention provides a simplified and efficient process for preparing docetaxel from an initial mixture of taxanes, wherein the initial mixture comprises paclitaxel and at least one additional taxane selected from the group of 10-deacetylbaccatin III, 9-dihydro-13-acetylbaccatin III, baccatin III, cephalomannine, 10-deacetyl taxol, 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol, the process comprising the steps of: protecting the hydroxy groups at the C-2′ and C-7 positions of paclitaxel; introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of paclitaxel to provide a protected paclitaxel derivative having an urea linkage at the C-3′ position; selectively removing the benzoyl group from the urea linkage to provide a protected docetaxel; and converting the protected docetaxel to docet
- the step of protecting the hydroxy group at the C-2′ and C-7 position of paclitaxel further comprises protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of each taxane in the initial mixture having a hydroxy group at these positions.
- Another embodiment of the present invention provides a process of converting a taxane of Formula (I) wherein, R 1 is alkyl, alkenyl or aryl, and X, Y and Z are the same or different and independently hydroxy or protected hydroxy, to docetaxel, via a primary amine intermediate.
- the process comprises: introducing a nitroso group (—NO) at the nitrogen of the amide group at the C-3′ position of the taxane to provide a N-nitrosoamide intermediate; hydrolyzing the N-nitrosoamide intermediate to provide a N-nitrosoamine intermediate; reducing the N-nitrosoamine intermediate to provide a primary amine intermediate; and converting the primary amine derivative to docetaxel,
- FIG. 1 illustrates a chemical route for the preparation of a protected taxane derivative from paclitaxel or paclitaxel containing material, and the conversion of such derivative to docetaxel according to the present invention.
- the present invention relates to processes for converting paclitaxel, paclitaxel containing material or other paclitaxel derivatives to docetaxel.
- “Silica matrix” is a solid media containing a silicate which is used as an adsorbent or column material in chromatographic separations, including (but not limited to) ordinary silica, Florisil, porous silica gels or any physical formulation of a silicate for use in chromatographic procedures.
- Tuxane-containing material refers to selected parts of a plant, plant tissues, cell cultures, microorganisms or extracts with extractable taxanes, including paclitaxel, 10-deacetylbaccatin III (10-DAB), baccatin III (BACC III), 9-dihydro-13-acetylbaccatin III (9-DHB), cephalomannine, 10-deacetyl taxol (10-DAT), 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol.
- “Crude taxane extract” refers to a composition obtained from a taxane-containing material by treating the taxane-containing material with at least one solvent.
- Partially purified taxane extract refers to a paclitaxel enriched composition obtained from the chromatographic separation and/or recrystallization of a crude or partially purified taxane extract.
- “Waste stream fractions” refers to fractions collected following the chromatographic separation and collection of paclitaxel enriched fractions from a crude or partially purified taxane extract by, for example, the process of U.S. Pat. No. 6,136,989.
- “Waste mother liquors” refers to mother liquors collected following the recrystallization of a crude or partially purified taxane extract by, for example, the process of U.S. Pat. No. 6,136,989.
- “Hydroxy-protecting group” refers to any derivative of a hydroxy group known in the art which can be used to mask the hydroxy group during a chemical transformation and later removed under conditions resulting in the hydroxy group being recovered without other undesired effects on the remainder of the molecule. Many esters, acetals, ketals and silyl ethers are suitable protecting groups.
- hydroxy-protecting groups include, without limitation, formyl, acetyl (Ac), benzyl (PhCH 2 ), 1-ethoxyethyl (EE), methoxymethyl (MOM), (methoxyethoxy)methyl (MEM), (p-methoxyphenyl)methoxymethyl (MPM), tert-butyldimethylsilyl (TBS), tert-butyldiphenylsilyl (TBPS), tert-butoxycarbonyl (tBoc, t-Boc, tBOC, t-BOC), tetrahydropyranyl (THP), triphenylmethyl (Trityl, Tr), 2-methoxy-2-methylpropyl, benzyloxycarbonyl (Cbz), dichloroacetyl, trichloroacetyl (OCCCl 3 ), 2,2,2-trichloroethoxycarbonyl (Troc), benzyloxymethyl (BOM
- protected hydroxy group refers to a hydroxy group that is bonded to a hydroxy-protecting group.
- protected hydroxy groups include, without limitation, —O-alkyl, —O-acyl, acetal, and —O-ethoxyethyl (OEE), where some specific protected hydroxy groups include, formyloxy, acetoxy, propionyloxy, chloroacetoxy, bromoacetoxy, dichloroacetoxy, trichloroacetoxy, trifluoroacetoxy, methoxyacetoxy, phenoxyacetoxy, benzoyloxy, benzoylformoxy, p-nitro benzoyloxy, ethoxycarbonyloxy, methoxycarbonyloxy, propoxycarbonyloxy, 2,2,2-trichloroethoxycarbonyloxy, benzyloxycarbonyloxy, tert-butoxycarbonyloxy, 1-cyclopropylethoxy, ethoxycarbonyloxy, methoxycarbony
- hydroxy protecting agent refers to a reagent that introduces a hydroxy protecting group to a free hydroxy functionality.
- a hydroxy protecting agent comprises a hydroxy protecting group as those listed above and a leaving group, such as a halide or a triflate.
- the hydroxy protecting group is an alkyl
- the hydroxy protecting agent is referred herein as an alkylating agent.
- the alkyl moiety of the alkylating agent can be optionally substituted by aryl, alkoxy, or aryloxy.
- Suitable alkylating agent includes benzyl bromide, benzyl chloride, methoxymethyl chloride, ethyl vinyl ether, and benzyloxymethyl chloride.
- the hydroxy protecting agent when the hydroxy protecting group is an acyl or silyl, the hydroxy protecting agent can be referred herein as an acylating agent or silylating agent, respectively.
- Suitable acylating agent includes, but not limited to, Boc 2 O and acetoxyacetyl chloride.
- Suitable silylating agents includes TMSCl (trimethylsilyl chloride), TESCl (triethylsilyl chloride), etc. More exemplary hydroxy-protecting groups and hydroxy protecting agents are described in, e.g., C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W.
- Thiol-protecting group refers to any derivative of a thiol group known in the art which can be used to mask the thiol group during a chemical transformation and later removed under conditions resulting in the thiol group being recovered without other undesired effects on the remainder of the molecule.
- thiol-protecting groups include, without limitation, triphenylmethyl (trityl, Trt), acetamidomethyl (Acm), benzamidomethyl, 1-ethoxyethyl, benzoyl, and the like.
- the related term “protected thiol group” refers to a thiol group that is bonded to a thiol-protecting group.
- protected thiol groups include, without limitation, —S-alkyl(alkylthio, e.g., C 1 -C 10 alkylthio), —S-acyl(acylthio), thioacetal, —S-aralkyl (aralkylthio, e.g., aryl(C 1 -C 4 )alkylthio), where some specific protected thiols groups include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio, neopentylthio, hexylthio, heptylthio, nonylthio, cyclobutylthio, cyclopentylthio and cyclohexylthio, benzylthio
- Thiol-protecting groups and protected thiol groups are described in, e.g., C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973, Chapters 3 and 4, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” Second Edition, John Wiley and Sons, New York, N.Y., 1991, Chapters 2 and 3.
- Alkyl refers to an optionally substituted hydrocarbon structure, containing no saturation, wherein the carbons are arranged in a linear, branched or cyclic manner, including combinations thereof.
- Lower alkyl refers to alkyl groups of 1 to 5 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like.
- Cycloalkyl is a subset of alkyl and includes mono or bi-cyclic hydrocarbon groups of from 3 to 13 carbon atoms.
- cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, norbornyl, adamantyl and the like.
- alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, “butyl” is meant to include n-butyl, sec-butyl, isobutyl and t-butyl; propyl includes n-propyl and isopropyl.
- Alkenyl refers to an optionally substituted alkyl group having at least one site of unsaturation, i.e., at least one double bond.
- Alkynyl refers to an optionally substituted alkyl group having at least one triple bond between two adjacent carbon atoms.
- Alkoxy refers to a radical of the formula —O-alkyl. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. Lower-alkoxy refers to groups containing one to five carbons.
- Alkoxycarbonyl refers to a radical of the formula —C(O)-alkoxy, wherein alkoxy is as defined herein.
- Aryl refers to optionally substituted phenyl or naphthyl.
- exemplary substituents for aryl include one or more of halogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, amino, alkylamino, dialkylamino, mercapto, alkylthio, arylthio, heteroarylthio, cyano, carboxyl, alkoxycarbonyl where the alkoxy portion contains 1 to 15 carbons, aryloxycarbonyl where the aryloxy portion contains 6 to 20 carbon, or heteroarylcarbonyl where the heteroaryl portion contains 3 to 15 carbon atoms.
- Aryloxy refers to a radical of the formula —O-aryl, wherein aryl is defined as above. Representative aryloxy includes phenoxy.
- Aryloxycarbonyl refers to a radical of the formula —C(O)-aryloxy, wherein aryloxy is as defined herein.
- Heteroaryl refers to an optionally substituted 5- or 6-membered heteroaromatic ring containing 1-3 heteroatoms selected from O, N or S; a bicyclic 9- or 10-membered heteroaromatic ring system containing 1-3 heteroatoms selected from O, N or S; or a tricyclic 13- or 14-membered heteroaromatic ring system containing 1-3 heteroatoms selected from O, N or S.
- Exemplary aromatic heterocyclic rings include, e.g., imidazole, pyridine, indole, thiophene, benzopyranone, thiazole, furan, benzimidazole, quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, tetrazole and pyrazole.
- Heterocycle means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated or aromatic, and which contains from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring.
- the heterocycle may be optionally substituted with 1-5 substituents.
- the heterocycle may be attached via any heteroatom or carbon atom.
- Heterocycles include heteroaryls as defined above.
- heterocycles also include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperazinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
- acyl refers to a radical of the formula —C( ⁇ O)—R, wherein R is alkyl, alkenyl, alkynyl, aryl, alkoxy, aryloxy, heterocycle or heteroaryl, where alkyl, alkenyl, alkynyl, aryl, alkoxy, aryloxy, heterocycle and heteroaryl are as defined herein.
- Representative acyl groups include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, and the like. Lower-acyl refers to groups containing one to five carbons.
- leaving group refers to a chemical moiety that may be displaced during a substitution or elimination reaction.
- exemplary leaving groups include halogen (e.g., bromide and chloride), triflate and tosyl.
- Halogen refers to fluoro, chloro, bromo or iodo.
- Oxo refers to ⁇ O.
- Hydrocarbonyl refers to alkyl, alkenyl, alkynyl or aryl.
- Metal alkoxide refers to a base of a general formula MO-alkyl, wherein M is a Group I, II, III or transition metal.
- Representative metal alkoxides are lithium t-butoxide, sodium t-butoxide, potassium t-butoxide, calcium methoxide, lithium methoxide.
- Metal hydroxide refers to a base of a general formula M-OH, wherein M is a Group I, II, III or transition metal.
- Representative metal hydroxide are lithium hydroxide (LiOH), sodium hydroxide (NaOH), calcium hydroxide (Ca(OH) 2 ).
- substituted means any of the above groups (e.g., alkyl, alkoxy, acyl, aryl, heteroaryl and heterocycle) wherein at least one hydrogen atom is replaced with a substituent.
- substituents e.g., alkyl, alkoxy, acyl, aryl, heteroaryl and heterocycle
- ⁇ O oxo substituent
- Substituents include halogen, hydroxy, oxo, alkyl, aryl, alkoxy, aryloxy, acyl, mercapto, cyano, alkylthio, arylthio, heteroarylthio, heteroaryl, heterocycle, —NR a R b , —NR a C( ⁇ O)R b , —NR c C( ⁇ O)NR a R b , —NR a C( ⁇ O)OR b , —NR a SO 2 R b , —C( ⁇ O)NR a R b , —OC( ⁇ O)R a , —OC( ⁇ O)OR a , —OC( ⁇ O)NR a R b , —NR a SO 2 R b or a radical of the formula —Y-Z-R a where Y is alkanediyl, substituted alkanediyl or a direct bond, alkane
- one pot reaction refers to a multi-step chemical reaction carried out in a reaction vessel.
- a reaction intermediate is generated in an initial step of reaction, the intermediate is then reacted in situ with other component(s) present in or introduced to the same vessel.
- the reaction intermediate generated is not isolated but serves directly as a reactant in a next step of reaction.
- one or more free hydroxy groups of a taxane are protected, the protected taxane intermediate is not isolated and is used directly in a next step of N-acylation whereby a t-butoxycarbonyl (t-Boc) group is attached to the nitrogen of the amide group at the C-3′ position.
- a taxane e.g., paclitaxel
- the present invention relates to a semi-synthesis of paclitaxel derivatives useful in the preparation of docetaxel.
- one embodiment of the present invention provides a process comprising protecting one or more of the free hydroxy groups at any of the C-7, C-10 and C-2′ positions, and introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of a compound of Formula (I) to provide a protected paclitaxel derivative having an urea linkage therein.
- One embodiment provides a process of protecting the hydroxy group(s) and introducing the t-Boc group, the process comprising, in one reaction vessel, combining a compound of Formula (I) with a base, a hydroxy protecting agent and a t-Boc agent.
- t-Boc agent refers to a reagent that introduces a t-Boc group to the nitrogen of the amide group at the C-3′ position, in other words, the t-Boc agent further acylates the nitrogen of the amide group.
- Suitable “t-Boc agent” can be the same as those hydroxy protecting agents having a t-Boc moiety, for example, Boc 2 O.
- the t-Boc agent is selected to react with the amide group in the presence of a base after the reactive hydroxy groups at the C-2′, C-7 and/or C-10 positions have been protected. Reaction Scheme 1 is shown below to illustrate this process: wherein,
- R 1 is alkyl, alkenyl or aryl
- R 2 , R 3 and R 4 are the same or different and independently a hydroxy protecting group
- X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- the protecting step provides protection to one or more reactive hydroxy groups in a compound of Formula (I).
- the protection step comprises protecting the hydroxy groups at both the C-7 and C-2′ positions.
- X, Y and Z are all free hydroxy groups, as in 10-DAT (7)
- the protection step comprises protecting all three hydroxy groups at C-2′, C-7 and C-10 positions.
- X and Y are free hydroxy, and Z is already a protected hydroxy, as in 10-deacetyl-7-xylosyl taxol (9), the protection step comprises protecting the free hydroxy groups at C-2′ and C-10 positions.
- the same hydroxy protecting agent is used to protect all the available reactive hydroxy groups.
- different hydroxy protecting agents can be used to protect the C-2′, C-7 and/or C-10 positions.
- the free hydroxy group at the C-2′ position is more reactive than the hydroxy group at the C-7, which is in turn more reactive than the hydroxy group at the C-10 positions. This leads to the preferential protection whereby the hydroxy group at C-2′ will be protected first, followed by those at the C-7 and C-10 positions.
- the hydroxy protecting step comprises sequential steps of protecting the C-2′, C-7 and C-10 positions, with a different protecting agent for each step.
- C-2′ can be protected, using about one equivalent of a first hydroxy protecting agent, followed by the protection of the C-7 position using a second hydroxy protecting agent and, if necessary, followed by the protection of the C-10 position using a third protecting agent.
- the reaction can be carried out in the same reaction vessel without isolating any of the protected intermediates.
- the hydroxy protecting agent is the same as the t-Boc agent.
- Boc 2 O can be employed as a hydroxy protecting agent to protect, where appropriate, one or more of the reactive hydroxy groups at any of the C-2′, C-7 and C-10 positions. After the protection is completed, without isolating the protected taxane intermediate, Boc 2 O can be used to introduce a t-Boc group to the nitrogen of the amide group at the C-3′ position in the presence of a base.
- hydroxy groups at the C-2′, C-7 and/or C-10 positions of a taxane of Formula (I) can be selectively protected using any of a variety of hydroxy protecting agents, such as silylating, acylating, alkylating agents and those agents forming acetal and ketal with the hydroxy group.
- the hydroxy protecting step can be carried out in the presence of a base or an acid, depending on the hydroxy protecting agent(s) used.
- One embodiment of the present invention provides the protection of one or more hydroxy groups at the C-2′, C-7 and/or C-10 in the presence of a base.
- Formula (I) is: wherein,
- R 1 is alkyl, alkenyl or aryl
- X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- the C-2′, C-7 and/or C-10 hydroxy group may be silylated using any of a variety of common silylating agents including, but not limited to, tri(hydrocarbonyl)silyl halides and tri(hydrocarbonyl)silyl triflates.
- the hydrocarbonyl moieties of these compounds may be optionally substituted and preferably are substituted or unsubstituted alkyl or aryl.
- Representative silylating agents include, tribenzylsilyl chloride, trimethylsilyl chloride, triethylsilyl chloride, dimethylisopropylsilyl chloride, dimethylphenylsilyl chloride and the like.
- selective acylation of the C-2′, C-7 and/or C-10 hydroxy group can be achieved using any of a variety of common acylating agents, but not limited to substituted and unsubstituted carboxylic acid derivatives, e.g., carboxylic acid halides, anhydrides, dicarbonates, isocyanates and haloformates.
- Representative acylating agents include, di-tert-butyl dicarbonate (Boc 2 O), dibenzyl dicarbonate, diallyl dicarbonate, 2,2,2-trichloroethyl chloroformate, benzyl chloroformate, dichloroacetyl chloride, acetyl chloride or another common acylating agent.
- selective alkylation of the C-2′, C-7 and/or C-10 hydroxy group can be achieved using any of a variety of common alkylating agents, such as benzyl chloride and benzyl bromide.
- the protecting step is carried out in the presence of a base, such as, for example, DMAP, pyridine, TEA, LiOH, Li-t-OBu, n-BuLi, LiH, LiHMDS, KHMDS, K-t-OBu, NaH, NaHMDS, Na-t-OBu and mixtures of any two or more of the foregoing, such as a mixture of n-BuLi/Li-t-OBu, and the hydroxy-protecting group is an alkylating agent, silylating agent or acylating agent.
- a base such as, for example, DMAP, pyridine, TEA, LiOH, Li-t-OBu, n-BuLi, LiH, LiHMDS, KHMDS, K-t-OBu, NaH, NaHMDS, Na-t-OBu and mixtures of any two or more of the foregoing, such as a mixture of n-BuLi/Li-t-OBu, and the hydroxy-protecting
- Exemplary reaction conditions are as follows: a taxane of Formula (I), or a mixture of taxanes, is dissolved in an organic solvent, such as anhydrous DCM (dichloromethane) or THF (tetrahydrofuran) or DMF (dimethyl formamide) or DMSO (dimethyl sulfoxide) or acetonitrile under an argon atmosphere at low to around room temperature.
- an organic solvent such as anhydrous DCM (dichloromethane) or THF (tetrahydrofuran) or DMF (dimethyl formamide) or DMSO (dimethyl sulfoxide) or acetonitrile under an argon atmosphere at low to around room temperature.
- DMAP dimethylaminopyridine
- any of the lithium, sodium or potassium base such as Li-t-OBu, K-t-OBu, n-BuLi, a mixture of n-BuLi/K-t-OBu or LiOH
- an hydroxy-protecting agent such as an acylating agent (e.g., di-tert-butyl dicarbonate), or an silylating agent (e.g., triethyl silyl chloride) or any other hydroxy-protecting agents as described herein.
- Low temperature refers to temperature between ⁇ 78° C. to room temperature.
- the protecting step can be carried out using the same hydroxy protecting agent for all the available reactive hydroxy groups at the C-2′, C-7 and/or C-10 positions, or using different hydroxy protecting agent for each of the hydroxy groups to be protected.
- different hydroxy protecting agent for each of the hydroxy groups to be protected.
- Another embodiment of the present invention provides the protection of one or more hydroxy groups at the C-2′, C-7 and/or C-10 in the presence of a catalytic amount of an acid.
- Formula (I) is: wherein,
- R 1 is alkyl, alkenyl or aryl
- X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- the C-2′, C-7 and/or C-10 hydroxy group may be alkylated with an alkylating agent such as ethyl vinyl ether and methoxymethyl chloride.
- Suitable acid includes p-toluenesulfonic acid and other protic acid.
- Protic acid refers to an acid that yields an H + ion. Only catalytic amount of the acid is needed to initiate the protecting step. Typically, less than 1 equivalent of the acid is used, more typically, less than 0.5 equivalent of the acid is used, more typically, less than 0.2 equivalent of the acid is used.
- C-2′ paclitaxel can be first protected using about one equivalent of ethyl vinyl ether in the presence of a catalytic amount of p-toluenesulfonic acid.
- a base and another hydroxy protecting agent are added.
- the amount of the base used is selected with the expectation that some of it will be consumed by the acid that might still be present in the reaction mixture.
- all the reactive hydroxy groups of a taxane of Formula (I) are to be protected by the same or different hydroxy protecting groups.
- the introduction of a t-Boc group at the nitrogen of the amide group of the taxane may be performed in the same vessel without isolating the product of the hydroxy-protecting step according to the following method.
- N-acylation step The introduction of a tert-butoxycarbonyl (t-Boc) to the above protected taxane is also referred herein as a N-acylation step, whereby a t-Boc group replaces the hydrogen of the —NHC(O)R 1 group to provide a taxane intermediate having an urea linkage at the C-3′ position, as represented by Formula (II) in Reaction Scheme 1.
- the N-acylation step is carried out in a combined step by adding to the hydroxy-protected taxane in the same reaction vessel, a base and a t-Boc agent.
- Representative bases include DMAP, TEA, LiOH, n-BuLi, LiH, LiHMDS, KHMDS, NaH, NaHMDS or a mixture of any two or more of the foregoing.
- the combined step may further comprise combining the taxane with a metal alkoxide, wherein the metal is selected from the group consisting of Group I, II and III metals and transition metals.
- Representative metal alkoxide includes, but is not limited to Li-t-Bu, Na-t-Bu and K-t-Bu.
- Representative t-Boc agent includes, but is not limited to, Boc 2 O.
- An exemplary reaction condition for introducing the t-Boc group includes, dissolving a C-7, C-2′ and/or C-10 protected taxane or a mixture of C-7, C-2′ and/or C-10 protected taxanes in an organic solvent under an argon atmosphere at low to around room temperature.
- a base such as DMAP, TEA, LiOH, Li-t-OBu, n-BuLi, LiH, LiHMDS, KHMDS, K-t-OBu, NaH, NaHMDS, Na-t-Bu or a mixture of any two or more of the foregoing, followed by addition of a t-Boc agent.
- the mixture is left to react at low to room temperature until complete consumption of the starting material, as visualized by TLC.
- a solution of an acid, such as AcOH, in an organic solvent is added to the mixture, and the mixture is partitioned between saturated aqueous sodium hydrogen carbonate and mixtures of DCM and ethyl acetate.
- the combined organic extracts are dried and evaporated to give the crude protected taxane derivative, which can be further purified by column chromatography or crystallized from a suitable solvent.
- Representative taxanes of Formula (I) include paclitaxel (2), cephalomannine (6), 10-deacetyl taxol (7), 7-xylosyl taxol (8) and 10-deacetyl-7-xylosyl taxol (9).
- other taxanes may also be present in the taxane starting material without affecting the conversion of Formula (I) to Formula (III), as illustrated in Reaction Scheme 1.
- taxanes of Formula (I) are a plurality of compounds of a generic tetracyclic baccatin molecular framework as represented by Formula (IV): wherein R A , R B , R C and R D represent substituents which vary between the taxanes. More specifically, R A is —OH, R B is —OH or —OAc, R C is ⁇ O, and R D is —OH or xylosyl.
- R A is —OH
- R B is —OH
- R C is ⁇ O and R D is —OH
- the foregoing structure represents 10 deacetylbaccatin III (3)
- R A is —OH
- R B is —OAc
- R C is ⁇ O
- R D is —OH
- the foregoing structure represents baccatin III (4)
- R A is —OAc
- R B is —OAc
- R C is —OH
- R D is —OH
- the forgoing structure represents 9-DHB (5).
- the t-Boc agent for acylating the amide group is less likely to be consumed by any reactive free hydroxy group.
- the taxanes utilized in the processes of the present invention may be pure, purified or partially purified taxanes.
- Such purified and partially purified taxanes may be obtained by any of a number of different methods well known in the art.
- paclitaxel can be obtained by the methods described in U.S. Pat. No. 6,136,989 to Foo et al. and references incorporated therein.
- the mixture of taxane utilized in the processes of the present invention may be a plurality of taxanes present in a crude taxane extract or in a waste taxane solution or from synthesis.
- the disclosed processes may be utilized for high yield and large scale conversion of taxanes present in a waste taxane solution into protected taxane derivatives, which can be used to further synthesize docetaxel.
- waste taxane solutions may comprise (1) pooled waste stream fractions collected following the chromatographic separation and collection of paclitaxel enriched fractions from a crude or partially purified taxane extract, and/or (2) pooled waste mother liquors collected following the recrystallization of a crude or partially purified taxane extract of paclitaxel.
- Representative waste taxane solutions may be obtained by a number of different methods, such as, for example, the methods disclosed in U.S. Pat. No. 6,136,989 to Foo et al., and other references cited therein, which patent is incorporated herein by reference in its entirety, and U.S. patent application Ser. No. 10/831,648, which application is assigned to the assignee of the present invention and is incorporated herein by reference in its entirety.
- a representative method of obtaining a waste taxane solution which comprises pooled waste stream fractions, comprises the following extraction and column chromatography steps.
- a suitable taxane-containing material is any tissue that contains a high taxane content.
- suitable taxane-containing material include tissues from various species of Yew plants comprising the genus Taxus , most preferably the roots and needles of ornamental Yew plants such as T. canadensis, T . x media spp Hicksii, T . x dark green spreader and Hill., T. chinensis, T. wallichiana, T. cuspidata, T. globosa, T. sumatrana, T. marei and T. floridana, and the bark of T. brevifolia or T. yunnanensis .
- Other suitable material include cultures of plant tissues obtained from a Taxus species.
- the taxane-containing material is either pulverized, chipped or otherwise ground into small pieces so as to increase efficiency of a solvent extraction.
- the taxane-containing material may also optionally be dried. Taxane-containing cell culture, cells, microorganisms and fermentation broths will typically be concentrated prior to solvent extraction. Cells and microorganisms can be processed as whole cells or cell paste or pulver.
- the taxane-containing material may be initially extracted by contacting the material with an organic solvent, usually for a prolonged period of at least 8 hours and typically for about 3 days with or without physical agitation to promote formation of a crude organic extract containing a plurality of taxanes.
- the extraction may employ any of the solvent systems that are known to be used for the extraction of paclitaxel, including but not limited to, acetone, methanol, ethanol, ethyl acetate, methylene chloride, chloroform, mixtures thereof, and mixtures containing an aqueous component of up to 60%. These solvents are typically added in an amount of about 4-20 liter per kg of the taxane-containing material to prepare the crude organic extract.
- the organic solvent is a polar organic solvent, typically an alcohol.
- methanol is preferred because of its low cost, ease of removal and efficiency of taxane extraction.
- about 6-15 liters of methanol is added for every kg of taxane-containing material to be extracted.
- the extraction is accelerated by agitating the taxane-containing material, for example, by stirring or percolating the methanol with the taxane-containing material for about 1-5 days at a temperature between room temperature and about 60° C., most typically at about 40° C.
- methanol extraction for three days as described above recovers at least 90% of the available paclitaxel from the taxane-containing material, in addition to a plurality of other taxanes, to form a crude methanol extract containing about 0.1-0.5% paclitaxel and having an overall solid content of about 0.5-5% (w/v).
- the large volume of methanol extract thus obtained is optionally concentrated, typically about 10-30 fold by evaporation to obtain a methanol extract concentrate having a solid content of about 100-400 g/L.
- the crude organic extract may be subsequently enriched for taxanes by performing 1-3 liquid-liquid extractions by mixing the organic extract with a non-miscible, organic solvent to form a two phase system wherein one phase contains the plurality of taxanes.
- the two phase system includes a polar phase.
- the taxane-containing phase is selected and concentrated by evaporation to form a concentrated extract having a solid content of about 100-400 g/L and a paclitaxel purity of about 1-4%.
- water is included to help remove preferentially water soluble materials and the less polar solvent is selected to remove undesirable compounds such as waxes, lipids, pigments, and sterols that are found in different amounts depending on the taxane-containing material used.
- Typical solvents for liquid-liquid partitioning include hexane, and methylene chloride. Methylene chloride has generally been found to be suitable for liquid-liquid extraction of taxane-containing material especially when the solvent used for the crude organic extract is an alcohol.
- the concentrated extract obtained is optionally evaporated and the residue is re-dissolved in a solvent for loading onto a silica chromatography matrix.
- liquid-liquid extraction may be omitted altogether when a plant extract containing high taxane levels is obtained by other methods such as for example, by intervening precipitation, crystallization or chromatography steps.
- WO 98/07712 by Zamir et al, which uses a precipitation step immediately after obtaining an initial organic extract to obtain a paclitaxel fraction that may be about 1% or higher.
- the concentrated extract may be further purified by normal phase silica chromatography.
- silica chromatography generally refers to the process of contacting a sample dissolved in a feed solvent with a silica matrix then eluting the silica matrix with an eluting solvent to obtain a fraction enriched with a desired component.
- the dimensions of the first silica column are selected according to the quantity and purity of the solids to be separated.
- a pilot scale process about 250 grams of solids are dissolved in about 0.75 liters of feed solvent which is then chromatographed over a Silica column of about 1.5-inches ⁇ 10-feet.
- about 40-50 kg of solids are dissolved in about 100-200 liters of feed solvent, and chromatographed over a Silica column of about 18-inches ⁇ 10-feet.
- the optimal eluting solvent for the Silica column should be a hexane/acetone mixture at a ratio of about 3:1 or a DCM/ethyl acetate mixture at a ratio of about 7:3.
- the ‘heart cut’ fractions containing at least 2% paclitaxel are pooled and further purified, for example, according to the process set forth in U.S. Pat. No. 6,136,989.
- the remaining waste stream fractions which contain a plurality of taxanes, including, paclitaxel, 10-deacetylbaccatin III (10-DAB), baccatin III (BACC III), 9-dihydro-13-acetylbaccatin III (9-DHB), cephalomannine, 10-deacetyl taxol (10-DAT), 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol are pooled into a waste taxane solution for further processing according to the present invention.
- the paclitaxel enriched ‘heart cut’ fractions obtained from the foregoing chromatography step may be further purified through one or more additional chromatographic or recrystallization steps. Any waste stream fractions or waste mother liquors collected during such additional purification steps may also be pooled and added to the waste taxane solution for further processing according to the present invention.
- a protected taxane of Formula (II) having an urea linkage at the C-3′ position further undergoes a N-deacylation step to remove the —C(O)R 1 group in the presence of a base.
- a protected docetaxel, as represented by Formula (III) is thus provided: wherein,
- R 1 is alkyl, alkenyl or aryl
- R 2 , R 3 and R 4 are the same or different and independently a hydroxy protecting group.
- R 1 is phenyl.
- R 1 is 2-(2-butenyl).
- compound of Formula (II) is a protected cephalomannine, whose subsequent conversion to docetaxel has been described in U.S. application Ser. No. 10/790,622 (hereafter referred as the '622 application).
- the '622 application is assigned to the assignee of the present invention and is incorporated herein by reference in its entirety.
- Suitable base includes metal hydroxide and metal alkoxide.
- Exemplary base can be, but are not limited to, LiOH, NaOH, Ca(OCH 3 ) 2 , or NaOCH 3 .
- the base is used in excess in order to avoid hydrolyzing any of the protected hydroxy group.
- the base is LiOH, two or more equivalents of LiOH is used. Typically, 5 or more equivalents of LiOH is used, and more typically, 10 or more equivalents of LiOH is used.
- a peroxide can be used in conjunction with the base in the N-deacylation step.
- Representative peroxide includes, but is not limited to, H 2 O 2 , t-butyl hydroperoxide (TBHB) and peroxy acid such as m-chloroperoxybenzoic acid (mCPBA).
- TBHB t-butyl hydroperoxide
- mCPBA m-chloroperoxybenzoic acid
- An exemplary N-deacylation condition includes the use of 20 equivalents of 30% H 2 O 2 with 10 equivalents of LiOH.
- the present invention provides an overall process for preparing docetaxel from paclitaxel, paclitaxel derivative or paclitaxel containing material, the process comprising:
- the step of protecting one or more hydroxy groups at C-2′, C-7 and C10 positions and introducing a t-Boc group at the nitrogen site of the amide group of the taxane comprises combining, in a one pot reaction, the taxane of Formula (I) with a base, a hydroxy-protecting group and a t-Boc agent; and wherein the step of removing the —C(O)R 1 group of the urea intermediate comprises subjecting the urea intermediate to a base.
- the present invention provides an overall process for preparing docetaxel from an initial mixture of taxanes, wherein the initial mixture comprises paclitaxel, and at least one additional taxane selected from 10 deacetylbaccatin III, baccatin III, cephalomannine, 9-dihydro-13-acetylbaccatin III, 10-deacetyl taxol, 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol, the process comprising:
- step of protecting the hydroxy groups at C-2′ and C-7 positions, and introducing a t-Boc group at the nitrogen site of the amide group of paclitaxel are carried out in a one pot reaction wherein the mixture containing paclitaxel is combined with a first base, a hydroxy protecting agent and a t-Boc agent; and wherein the step of selectively removing the benzoyl group comprises subjecting the protected paclitaxel derivative having the urea linkage to a second base.
- the step of protecting the hydroxy groups of paclitaxel further comprises protecting one or more hydroxy groups of each taxanes in the mixture having free hydroxy groups at any of the C-2′, C-7 and C-10 positions.
- the C-7, C-2′ and C-10 protected docetaxel derivatives may be converted to docetaxel by a number of different deprotection methods, such as, for example, the methods disclosed in U.S. patent application Ser. Nos. 10/683,865 and 10/790,622, which applications are assigned to the assignee of the present invention and are incorporated herein by reference in their entireties, and U.S. Pat. Nos. 6,365,750 and 6,307,071, and the references cited therein, which patents and references are incorporated herein by reference in their entireties.
- the present invention also provides a process for preparing docetaxel via an intermediate of primary amine derivative of paclitaxel.
- the process can be illustrated in Reaction Scheme 3.
- a paclitaxel or a derivative thereof as represented by Formula (I) is subjected to nitrosation condition whereby the amide group at the C-3′ position is converted to a N-nitrosoamide intermediate, as represented by Formula (V).
- Suitable nitrosation reagent includes, but is not limited to, NaNO 2 , LiNO 2 , KNO 2 and other like metal nitrites.
- an acid such as acetic acid, is present in the nitrosation step.
- N 2 O 4 gas can be used to provide the N-nitrosoamide intermediate.
- a N-nitrosoamine intermediate is obtained, as represented by Formula (VI).
- Representative metal hydroxide includes, but not limited to LiOH and NaOH.
- Representative peroxide includes, but is not limited to, H 2 O 2 , t-butyl hydroperoxide (TBHB) and peroxy acid such as m-chloroperoxybenzoic acid (mPCBA).
- TBHB t-butyl hydroperoxide
- mPCBA m-chloroperoxybenzoic acid
- LiOH is used.
- a mixture of LiOH and H 2 O 2 are used.
- Typical reduction condition includes, but is not limited to Raney nickel, palladium on carbon or platinum on carbon in the presence of hydrogen gas.
- Direct conversion of the primary amine derivative of paclitaxel to docetexel can be accomplished according the process as described in the '622 application.
- the present invention further provides an alternative overall process of converting a paclitaxel or a derivative thereof to docetaxel comprising:
- the compound of Formula (I) when R 1 is phenyl, the compound of Formula (I) can be paclitaxel, when R 1 is 2-(2-butenyl), the compound of Formula (I) can be cephalomannine.
- the present invention provides an overall process for preparing docetaxel from an initial mixture of taxanes, wherein the initial mixture comprises a compound of Formula (I), in particularly, paclitaxel, and at least one additional taxane selected from 10 deacetylbaccatin III, baccatin III, cephalomannine, 9-dihydro-13-acetylbaccatin III, 10-deacetyl taxol, 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol, the process comprising:
- a stirred solution of paclitaxel or paclitaxel containing material, in an organic solvent, such as THF, at around low to room temperature under an argon atmosphere was treated with a hydroxy-protecting agent, such as Boc 2 O, dichloroacetyl chloride, acetyl chloride, TESCl or like reagents in the presence of a base, such as 4-(N,N-dimethylamino)pyridine or n-BuLi or a mixture of n-BuLi/Li-t-OBu or like bases.
- a base such as 4-(N,N-dimethylamino)pyridine or n-BuLi or a mixture of n-BuLi/Li-t-OBu or like bases.
- the reaction was stirred at this temperature for a period between 30 minutes to 2 hours until complete consumption of the starting materials, as evidenced by TLC.
- paclitaxel or paclitaxel containing material in an organic solvent, such as THF, at around low to room temperature under an argon atmosphere can be treated with a hydroxy-protecting agent such as ethyl vinyl ether, in the presence of a catalytic amount of p-toluenesulfonic acid.
- organic solvent such as THF
- reaction mixture after the protecting step is used directly in the next step of N-acylation without isolating any of the reaction intermediate.
- paclitaxel N-t-Boc derivative a crude paclitaxel derivative having an urea linkage, i.e., a paclitaxel N-t-Boc derivative, which could be further purified by either column chromatography or crystallization to yield a pure protected paclitaxel derivative or used directly for the next step in the synthesis.
- C-2′, C-7 and C-10 protected docetaxel was hydrolyzed using formic acid to remove the C-7 and/or C-10 t-Boc protecting group and then with a mixture of NaHCO 3 /Na 2 CO 3 /H 2 O 2 to deprotect the C-2′ and/or C-10 acetate groups to yield docetaxel.
- the C-2′ protecting group is ethoxyethyl
- the deprotection is carried out under acidic condition, such as in the presence of acetic acid.
- Detailed description of deprotection at the C-2′, C-7 and C-10 positions are described in U.S. patent application Ser. No. 10/790,622, which application is assigned to the assignee of the present invention and is incorporated herein by reference in its entirety.
- the above hydrolyzed product can then be dissolved in ethanol at room temperature and Raney-Nickel is added in one portion to the stirred solution.
- the reaction mixture is stirred at this temperature and treated with hydrogen, until the complete consumption of the starting material.
- the reaction mixture can be filtered and the filtrate evaporated.
- the residue is then dissolved in an inert solvent such as dichloromethane and worked up as usual.
- the crude product can be purified by column chromatography using mixtures of dichloromethane and ethyl acetate to afford the pure primary amine derivative of paclitaxel.
- the primary amine derivative of paclitaxel (0.091 mmol) can be dissolved in ethyl acetate (9.1 ml) and a saturated solution of NaHCO 3 (9.1 ml) was added.
- Boc 2 O (0.18 mmol) can be added. The mixture is stirred for 12 h at room temperature and TLC showed complete consumption of the starting material.
- the reaction can be worked up as usual and the residue purified by column chromatography using mixtures of dichloromethane and ethyl acetate or acetone to give docetaxel.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Epoxy Compounds (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 10/881,711 filed Jun. 29, 2004, now pending, which application is incorporated herein by reference in its entirety.
- 1. Field of the Invention
- The present invention relates to a semi-synthesis of taxane derivatives useful in the preparation of docetaxel, from pure or crude paclitaxel or related taxane starting material, in particular, the semi-synthesis of protected taxane derivatives in a one pot reaction and its conversion to docetaxel.
- 2. Description of the Related Art
- The taxane family of terpenes has received much attention in the scientific and medical community because the members of this family have demonstrated broad spectrum anti-leukemic and tumor-inhibitory activity. Docetaxel (1, Taxotere), a semi-synthetic analog, and paclitaxel (2, Taxol), a complex diterpene isolated from the bark of the Pacific yew tree (Taxus brevifolia) are arguably the most outstanding cancer chemotherapeutic substances discovered in recent times. For example, paclitaxel has been found to have activity against different forms of leukemia and against solid tumors in the breast, ovary, brain, and lung in humans. While paclitaxel can be obtained from the yew tree or semi-synthetically, only the latter option is currently available for the formation of non-natural docetaxel. The partial synthesis of this important compound has generally been accomplished through esterification of a derivative of the (2R,3S)phenylisoserine side chain with a protected form of 10-deacetylbaccatin III, a comparatively abundant natural product also present in the yew tree.
- As disclosed in U.S. Pat. No. 4,814,470, taxotere has been found to have very good anti-tumor activity and better bio-availability than paclitaxel. Taxotere is similar in structure to paclitaxel, having t-butoxycarbonyl instead of benzoyl on the amino group at the 3′ position, and a hydroxy group instead of the acetoxy group at the C-10 position.
- Docetaxel and paclitaxel may be prepared semi-synthetically from 10-deacetylbaccatin III or baccatin III as set forth in U.S. Pat. Nos. 4,924,011 and 4,924,012, by the reaction of a β-lactam and a suitably protected 10-deacetylbaccatin III or baccatin III derivative as set forth in U.S. Pat. No. 5,175,315, by a method using an oxazoline compound as set forth in International Patent Kokai No. Hei 7-504444, by a method using thioester compound as set forth in International Patent Kokai No. Hei 10-505360 or by a method using cinnamic acid as set forth in Tetrahedron, Vol. 42, p. 4451, 1986, etc. 10-deacetylbaccatin III (10-DAB, 3) and Baccatin III (4) can be separated from mixtures extracted from natural sources such as the needles, stems, bark or heartwood of numerous Taxus species and have the following structures.
- Although much of the research towards the semi-synthesis of paclitaxel and taxotere has involved 10-deacetylbaccatin III as the starting material, other taxanes from the Taxus species, such as 9-dihydro-13-acetylbaccatin III (9-DHB, 5), present in the Canadian yew (Taxus Canadensis), cephalomannine (6), 10-deacetyl taxol (10-DAT, 7), 7-xylosyl taxol (8), 10-deacetyl-7-xylosyl taxol (9) and a number of 7-epi-taxanes have been collected and identified.
- As disclosed in U.S. patent application Ser. No. 10/695,416, which application is assigned to the assignee of the present invention, docetaxel and paclitaxel may also be prepared semi-synthetically from 9-dihydro-13-acetylbaccatin III.
- However, the above methods thus far developed involve subjects such as reaction under the conditions of extremely low temperatures, generation of diastereomers, use of asymmetry controlling agents, and the reaction under strongly alkaline conditions, which cause problems upon the industrialization thereof.
- Accordingly, there remains a need for new and improved processes for the preparation of taxane derivatives and their conversion to docetaxel, and also for the preparation of such taxane intermediates from crude and partially purified mixtures comprising a plurality of taxanes. The present invention addresses these needs and provides further related advantages.
- The present invention provides a simple process for conversion of paclitaxel or a paclitaxel-containing material to its synthetic analog—docetaxel. Accordingly, one embodiment of the present invention provides a process for producing a taxane intermediate under mild conditions using a pure or partially purified paclitaxel or a paclitaxel analog as a starting material, the taxane intermediate can later be used as a precursor to docetaxel. The process comprises protecting a compound of Formula (I):
wherein, R1 is alkyl, alkenyl or aryl; and X, Y and Z are the same or different and independently hydroxy or protected hydroxy. In particular, the process comprises: protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane; and introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of the taxane to provide a C-2′, C-7, C-10 and N-t-Boc protected paclitaxel derivative, wherein the steps of protecting one or more hydroxy groups and introducing the t-Boc group comprises combining, in a one pot reaction, the taxane with a hydroxy protecting group and a t-Boc agent. - In another embodiment, the hydroxy protecting groups at the C-2′, C-7 and C-10 positions can be the same or different.
- In another embodiment, the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of a base.
- In yet another embodiment, the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of an acid.
- A further embodiment of the present invention provides a process for preparing docetaxel from a taxane of Formula (I):
wherein, R1 is alkyl, alkenyl or aryl; and X, Y and Z are the same or different and independently hydroxy or protected hydroxy, the process comprising: protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane; introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of the taxane to provide a protected paclitaxel derivative having an urea linkage at the C-3′ position; selectively removing the —C(O)R1 group from the urea linkage to provide a protected docetaxel; and converting the protected docetaxel to docetaxel by removing the hydroxy-protecting groups at the C-2′, C-7 and C-10 positions, wherein the step of protecting one or more hydroxy groups at C-2′, C-7 and C-10 positions, and introducing the t-Boc group at the nitrogen site of the amide group of the taxane comprises combining, in a one pot reaction, the taxane of Formula (I) with a hydroxy protecting agent and a t-Boc agent, and wherein the step of selectively removing the —C(O)R1 group comprises subjecting the protected paclitaxel derivative having the urea linkage to a first base. - In another embodiment, the hydroxy protecting groups at the C-2′, C-7 and C-10 positions can be the same or different.
- In another embodiment, the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of a second base.
- In yet another embodiment, the step of protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of the taxane is carried out in the presence of an acid.
- In addition, the present invention provides a simplified and efficient process for preparing docetaxel from an initial mixture of taxanes, wherein the initial mixture comprises paclitaxel and at least one additional taxane selected from the group of 10-deacetylbaccatin III, 9-dihydro-13-acetylbaccatin III, baccatin III, cephalomannine, 10-deacetyl taxol, 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol, the process comprising the steps of: protecting the hydroxy groups at the C-2′ and C-7 positions of paclitaxel; introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of paclitaxel to provide a protected paclitaxel derivative having an urea linkage at the C-3′ position; selectively removing the benzoyl group from the urea linkage to provide a protected docetaxel; and converting the protected docetaxel to docetaxel by removing the hydroxy-protecting groups at the C-7, C-2′ and C-10 positions, wherein the step of protecting the hydroxy groups at C-2′ and C-7 positions, and introducing a t-Boc group at the nitrogen site of the amide group of paclitaxel are carried out in a one pot reaction wherein the mixture containing paclitaxel is combined with a hydroxy protecting agent and a t-Boc agent; and wherein the step of selectively removing the benzoyl group comprises subjecting the protected paclitaxel derivative having the urea linkage to a first base.
- In another embodiment, the step of protecting the hydroxy group at the C-2′ and C-7 position of paclitaxel further comprises protecting one or more hydroxy groups at the C-2′, C-7 and C-10 positions of each taxane in the initial mixture having a hydroxy group at these positions.
- Another embodiment of the present invention provides a process of converting a taxane of Formula (I)
wherein, R1 is alkyl, alkenyl or aryl, and X, Y and Z are the same or different and independently hydroxy or protected hydroxy, to docetaxel, via a primary amine intermediate. The process comprises: introducing a nitroso group (—NO) at the nitrogen of the amide group at the C-3′ position of the taxane to provide a N-nitrosoamide intermediate; hydrolyzing the N-nitrosoamide intermediate to provide a N-nitrosoamine intermediate; reducing the N-nitrosoamine intermediate to provide a primary amine intermediate; and converting the primary amine derivative to docetaxel, - These and other aspects of the invention will be apparent using chemical reactions that are mild, efficient and selective as described herein, upon reference to the attached figures and following detailed description.
-
FIG. 1 illustrates a chemical route for the preparation of a protected taxane derivative from paclitaxel or paclitaxel containing material, and the conversion of such derivative to docetaxel according to the present invention. - As mentioned above, the present invention relates to processes for converting paclitaxel, paclitaxel containing material or other paclitaxel derivatives to docetaxel.
- I. Definitions
- As used herein, the following terms have the following meanings.
- “Silica matrix” is a solid media containing a silicate which is used as an adsorbent or column material in chromatographic separations, including (but not limited to) ordinary silica, Florisil, porous silica gels or any physical formulation of a silicate for use in chromatographic procedures.
- “Taxane-containing material” refers to selected parts of a plant, plant tissues, cell cultures, microorganisms or extracts with extractable taxanes, including paclitaxel, 10-deacetylbaccatin III (10-DAB), baccatin III (BACC III), 9-dihydro-13-acetylbaccatin III (9-DHB), cephalomannine, 10-deacetyl taxol (10-DAT), 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol.
- “Crude taxane extract” refers to a composition obtained from a taxane-containing material by treating the taxane-containing material with at least one solvent.
- “Partially purified taxane extract” refers to a paclitaxel enriched composition obtained from the chromatographic separation and/or recrystallization of a crude or partially purified taxane extract.
- “Waste stream fractions” refers to fractions collected following the chromatographic separation and collection of paclitaxel enriched fractions from a crude or partially purified taxane extract by, for example, the process of U.S. Pat. No. 6,136,989.
- “Waste mother liquors” refers to mother liquors collected following the recrystallization of a crude or partially purified taxane extract by, for example, the process of U.S. Pat. No. 6,136,989.
- “Hydroxy-protecting group” refers to any derivative of a hydroxy group known in the art which can be used to mask the hydroxy group during a chemical transformation and later removed under conditions resulting in the hydroxy group being recovered without other undesired effects on the remainder of the molecule. Many esters, acetals, ketals and silyl ethers are suitable protecting groups. Examples of hydroxy-protecting groups include, without limitation, formyl, acetyl (Ac), benzyl (PhCH2), 1-ethoxyethyl (EE), methoxymethyl (MOM), (methoxyethoxy)methyl (MEM), (p-methoxyphenyl)methoxymethyl (MPM), tert-butyldimethylsilyl (TBS), tert-butyldiphenylsilyl (TBPS), tert-butoxycarbonyl (tBoc, t-Boc, tBOC, t-BOC), tetrahydropyranyl (THP), triphenylmethyl (Trityl, Tr), 2-methoxy-2-methylpropyl, benzyloxycarbonyl (Cbz), dichloroacetyl, trichloroacetyl (OCCCl3), 2,2,2-trichloroethoxycarbonyl (Troc), benzyloxymethyl (BOM), tert-butyl (t-Bu), triethylsilyl (TES), trimethylsilyl (TMS), triisopropylsilyl (TIPS), propionyl, isopropionyl, pivalyl, dimethylisopropylsilyl, diethylisopropylsilyl, methyldiphenylsilyl, dimethylphenylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triphenylsilyl, trichloroethoxycarbonyl, benzyl, para-nitrobenzyl, para-methoxybenzyl, benzoyl, methoxyethyl, para-methoxyphenyl, tetrahydrofuranyl, alkylsulfonyl and arylsulfonyl. The related term “protected hydroxy group” or “protected —OH” refers to a hydroxy group that is bonded to a hydroxy-protecting group. General examples of protected hydroxy groups include, without limitation, —O-alkyl, —O-acyl, acetal, and —O-ethoxyethyl (OEE), where some specific protected hydroxy groups include, formyloxy, acetoxy, propionyloxy, chloroacetoxy, bromoacetoxy, dichloroacetoxy, trichloroacetoxy, trifluoroacetoxy, methoxyacetoxy, phenoxyacetoxy, benzoyloxy, benzoylformoxy, p-nitro benzoyloxy, ethoxycarbonyloxy, methoxycarbonyloxy, propoxycarbonyloxy, 2,2,2-trichloroethoxycarbonyloxy, benzyloxycarbonyloxy, tert-butoxycarbonyloxy, 1-cyclopropylethoxycarbonyloxy, phthaloyloxy, butyryloxy, isobutyryloxy, valeryloxy, isovaleryloxy, oxalyoxy, succinyloxy and pivaloyloxy, phenylacetoxy, phenylpropionyloxy, mesyloxy, chlorobenzoyloxy, para-nitrobenzoyloxy, para-tert-butyl benzoyloxy, capryloyloxy, acryloyloxy, methylcarbamoyloxy, phenylcarbamoyloxy, naphthylcarbamoyloxy, and the like. The related term “hydroxy protecting agent” refers to a reagent that introduces a hydroxy protecting group to a free hydroxy functionality. Typically, a hydroxy protecting agent comprises a hydroxy protecting group as those listed above and a leaving group, such as a halide or a triflate. When the hydroxy protecting group is an alkyl, the hydroxy protecting agent is referred herein as an alkylating agent. The alkyl moiety of the alkylating agent can be optionally substituted by aryl, alkoxy, or aryloxy. Suitable alkylating agent includes benzyl bromide, benzyl chloride, methoxymethyl chloride, ethyl vinyl ether, and benzyloxymethyl chloride. Similarly, when the hydroxy protecting group is an acyl or silyl, the hydroxy protecting agent can be referred herein as an acylating agent or silylating agent, respectively. Suitable acylating agent includes, but not limited to, Boc2O and acetoxyacetyl chloride. Suitable silylating agents includes TMSCl (trimethylsilyl chloride), TESCl (triethylsilyl chloride), etc. More exemplary hydroxy-protecting groups and hydroxy protecting agents are described in, e.g., C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973,
Chapters 3 and 4, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” Second Edition, John Wiley and Sons, New York, N.Y., 1991,Chapters - “Thiol-protecting group” refers to any derivative of a thiol group known in the art which can be used to mask the thiol group during a chemical transformation and later removed under conditions resulting in the thiol group being recovered without other undesired effects on the remainder of the molecule. Examples of thiol-protecting groups include, without limitation, triphenylmethyl (trityl, Trt), acetamidomethyl (Acm), benzamidomethyl, 1-ethoxyethyl, benzoyl, and the like. The related term “protected thiol group” refers to a thiol group that is bonded to a thiol-protecting group. General examples of protected thiol groups include, without limitation, —S-alkyl(alkylthio, e.g., C1-C10alkylthio), —S-acyl(acylthio), thioacetal, —S-aralkyl (aralkylthio, e.g., aryl(C1-C4)alkylthio), where some specific protected thiols groups include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio, neopentylthio, hexylthio, heptylthio, nonylthio, cyclobutylthio, cyclopentylthio and cyclohexylthio, benzylthio, phenethylthio, propionylthio, n-butyrylthio and iso-butyrylthio. Thiol-protecting groups and protected thiol groups are described in, e.g., C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973,
Chapters 3 and 4, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” Second Edition, John Wiley and Sons, New York, N.Y., 1991,Chapters - The following Table shows the chemical structures of some protecting groups, as well as the nomenclatures used to identify these chemical structures.
TABLE 1 Acetyl (Ac) Acetoxy (—OAc) Dichloroacetyl Dichloroacetoxy Triethylsilyl (TES) Triethylsiloxy (—OTES) Benzoyl Benzoyloxy t-Butyloxycarbonyl (tBOC) t-Butoxycarbonyloxy (—O-tBOC) para-Methoxyphenyl (PMP) - “Alkyl” refers to an optionally substituted hydrocarbon structure, containing no saturation, wherein the carbons are arranged in a linear, branched or cyclic manner, including combinations thereof. Lower alkyl refers to alkyl groups of 1 to 5 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like. “Cycloalkyl” is a subset of alkyl and includes mono or bi-cyclic hydrocarbon groups of from 3 to 13 carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, norbornyl, adamantyl and the like. When an alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, “butyl” is meant to include n-butyl, sec-butyl, isobutyl and t-butyl; propyl includes n-propyl and isopropyl.
- “Alkenyl” refers to an optionally substituted alkyl group having at least one site of unsaturation, i.e., at least one double bond.
- “Alkynyl” refers to an optionally substituted alkyl group having at least one triple bond between two adjacent carbon atoms.
- “Alkoxy” refers to a radical of the formula —O-alkyl. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. Lower-alkoxy refers to groups containing one to five carbons.
- “Alkoxycarbonyl” refers to a radical of the formula —C(O)-alkoxy, wherein alkoxy is as defined herein.
- “Aryl” refers to optionally substituted phenyl or naphthyl. Exemplary substituents for aryl include one or more of halogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, amino, alkylamino, dialkylamino, mercapto, alkylthio, arylthio, heteroarylthio, cyano, carboxyl, alkoxycarbonyl where the alkoxy portion contains 1 to 15 carbons, aryloxycarbonyl where the aryloxy portion contains 6 to 20 carbon, or heteroarylcarbonyl where the heteroaryl portion contains 3 to 15 carbon atoms.
- “Aryloxy” refers to a radical of the formula —O-aryl, wherein aryl is defined as above. Representative aryloxy includes phenoxy.
- “Aryloxycarbonyl” refers to a radical of the formula —C(O)-aryloxy, wherein aryloxy is as defined herein.
- “Heteroaryl” refers to an optionally substituted 5- or 6-membered heteroaromatic ring containing 1-3 heteroatoms selected from O, N or S; a bicyclic 9- or 10-membered heteroaromatic ring system containing 1-3 heteroatoms selected from O, N or S; or a tricyclic 13- or 14-membered heteroaromatic ring system containing 1-3 heteroatoms selected from O, N or S. Exemplary aromatic heterocyclic rings include, e.g., imidazole, pyridine, indole, thiophene, benzopyranone, thiazole, furan, benzimidazole, quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, tetrazole and pyrazole.
- “Heterocycle” means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated or aromatic, and which contains from 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring. The heterocycle may be optionally substituted with 1-5 substituents. The heterocycle may be attached via any heteroatom or carbon atom. Heterocycles include heteroaryls as defined above. Thus, in addition to the heteroaryls listed above, heterocycles also include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperazinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
- “Acyl” refers to a radical of the formula —C(═O)—R, wherein R is alkyl, alkenyl, alkynyl, aryl, alkoxy, aryloxy, heterocycle or heteroaryl, where alkyl, alkenyl, alkynyl, aryl, alkoxy, aryloxy, heterocycle and heteroaryl are as defined herein. Representative acyl groups include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, and the like. Lower-acyl refers to groups containing one to five carbons.
- “Leaving group” refers to a chemical moiety that may be displaced during a substitution or elimination reaction. Exemplary leaving groups include halogen (e.g., bromide and chloride), triflate and tosyl.
- “Halogen” refers to fluoro, chloro, bromo or iodo.
- “Oxo” refers to ═O.
- “Hydrocarbonyl” refers to alkyl, alkenyl, alkynyl or aryl.
- “Metal alkoxide” refers to a base of a general formula MO-alkyl, wherein M is a Group I, II, III or transition metal. Representative metal alkoxides are lithium t-butoxide, sodium t-butoxide, potassium t-butoxide, calcium methoxide, lithium methoxide.
- “Metal hydroxide” refers to a base of a general formula M-OH, wherein M is a Group I, II, III or transition metal. Representative metal hydroxide are lithium hydroxide (LiOH), sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)2).
- The term “substituted” as used herein means any of the above groups (e.g., alkyl, alkoxy, acyl, aryl, heteroaryl and heterocycle) wherein at least one hydrogen atom is replaced with a substituent. In the case of an oxo substituent (“═O”) two hydrogen atoms are replaced. Substituents include halogen, hydroxy, oxo, alkyl, aryl, alkoxy, aryloxy, acyl, mercapto, cyano, alkylthio, arylthio, heteroarylthio, heteroaryl, heterocycle, —NRaRb, —NRaC(═O)Rb, —NRcC(═O)NRaRb, —NRaC(═O)ORb, —NRaSO2Rb, —C(═O)NRaRb, —OC(═O)Ra, —OC(═O)ORa, —OC(═O)NRaRb, —NRaSO2Rb or a radical of the formula —Y-Z-Ra where Y is alkanediyl, substituted alkanediyl or a direct bond, alkanediyl refers to a divalent alkyl with two hydrogen atoms taken from the same or different carbon atoms, Z is —O—, —S—, —S(═O)—, —S(═O)2—, —N(Rb)—, —C(═O)—, —C(═O)O—, —OC(═O)—, —N(Rb)C(═O)—, —C(═O)N(Rb)— or a direct bond, wherein Ra, Rb and RC are the same or different and independently hydrogen, amino, alkyl, substituted alkyl (including halogenated alkyl), aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocycle or substituted heterocycle or wherein Ra and Rb taken together with the nitrogen atom to which they are attached form a heterocycle or substituted heterocycle.
- The term “one pot reaction”, (also referred to herein as a “one pot synthesis”) refers to a multi-step chemical reaction carried out in a reaction vessel. Typically, a reaction intermediate is generated in an initial step of reaction, the intermediate is then reacted in situ with other component(s) present in or introduced to the same vessel. The reaction intermediate generated is not isolated but serves directly as a reactant in a next step of reaction. For example, in one embodiment of the instant invention, one or more free hydroxy groups of a taxane (e.g., paclitaxel) are protected, the protected taxane intermediate is not isolated and is used directly in a next step of N-acylation whereby a t-butoxycarbonyl (t-Boc) group is attached to the nitrogen of the amide group at the C-3′ position.
- II. Process for Protecting a Paclitaxel or a Related Taxane Thereof
- As noted above, the present invention relates to a semi-synthesis of paclitaxel derivatives useful in the preparation of docetaxel. In particular, one embodiment of the present invention provides a process comprising protecting one or more of the free hydroxy groups at any of the C-7, C-10 and C-2′ positions, and introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of a compound of Formula (I) to provide a protected paclitaxel derivative having an urea linkage therein. One embodiment provides a process of protecting the hydroxy group(s) and introducing the t-Boc group, the process comprising, in one reaction vessel, combining a compound of Formula (I) with a base, a hydroxy protecting agent and a t-Boc agent. The phrase “t-Boc agent” as used herein refers to a reagent that introduces a t-Boc group to the nitrogen of the amide group at the C-3′ position, in other words, the t-Boc agent further acylates the nitrogen of the amide group. Suitable “t-Boc agent” can be the same as those hydroxy protecting agents having a t-Boc moiety, for example, Boc2O. The t-Boc agent is selected to react with the amide group in the presence of a base after the reactive hydroxy groups at the C-2′, C-7 and/or C-10 positions have been protected. Reaction Scheme 1 is shown below to illustrate this process:
wherein, - R1 is alkyl, alkenyl or aryl;
- R2, R3 and R4 are the same or different and independently a hydroxy protecting group; and
- X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- The protecting step provides protection to one or more reactive hydroxy groups in a compound of Formula (I). In one embodiment, when X and Z are free hydroxy groups, as in paclitaxel (2) or cephalomannine (6), the protection step comprises protecting the hydroxy groups at both the C-7 and C-2′ positions. In another embodiment, X, Y and Z are all free hydroxy groups, as in 10-DAT (7), the protection step comprises protecting all three hydroxy groups at C-2′, C-7 and C-10 positions. In yet another embodiment, X and Y are free hydroxy, and Z is already a protected hydroxy, as in 10-deacetyl-7-xylosyl taxol (9), the protection step comprises protecting the free hydroxy groups at C-2′ and C-10 positions.
- In one embodiment, the same hydroxy protecting agent is used to protect all the available reactive hydroxy groups. In another embodiment, different hydroxy protecting agents can be used to protect the C-2′, C-7 and/or C-10 positions. Typically, the free hydroxy group at the C-2′ position is more reactive than the hydroxy group at the C-7, which is in turn more reactive than the hydroxy group at the C-10 positions. This leads to the preferential protection whereby the hydroxy group at C-2′ will be protected first, followed by those at the C-7 and C-10 positions. Thus, it is possible that the hydroxy protecting step comprises sequential steps of protecting the C-2′, C-7 and C-10 positions, with a different protecting agent for each step. For example, C-2′ can be protected, using about one equivalent of a first hydroxy protecting agent, followed by the protection of the C-7 position using a second hydroxy protecting agent and, if necessary, followed by the protection of the C-10 position using a third protecting agent. The reaction can be carried out in the same reaction vessel without isolating any of the protected intermediates.
- In a further embodiment, it is possible that the hydroxy protecting agent is the same as the t-Boc agent. For example, Boc2O can be employed as a hydroxy protecting agent to protect, where appropriate, one or more of the reactive hydroxy groups at any of the C-2′, C-7 and C-10 positions. After the protection is completed, without isolating the protected taxane intermediate, Boc2O can be used to introduce a t-Boc group to the nitrogen of the amide group at the C-3′ position in the presence of a base.
- The foregoing steps of protecting hydroxy groups and introducing the t-Boc group are further described below in details.
- General Method of Protection
- The hydroxy groups at the C-2′, C-7 and/or C-10 positions of a taxane of Formula (I) can be selectively protected using any of a variety of hydroxy protecting agents, such as silylating, acylating, alkylating agents and those agents forming acetal and ketal with the hydroxy group. The hydroxy protecting step can be carried out in the presence of a base or an acid, depending on the hydroxy protecting agent(s) used.
-
- R1 is alkyl, alkenyl or aryl; and
- X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- In particular, the C-2′, C-7 and/or C-10 hydroxy group may be silylated using any of a variety of common silylating agents including, but not limited to, tri(hydrocarbonyl)silyl halides and tri(hydrocarbonyl)silyl triflates. The hydrocarbonyl moieties of these compounds may be optionally substituted and preferably are substituted or unsubstituted alkyl or aryl. Representative silylating agents include, tribenzylsilyl chloride, trimethylsilyl chloride, triethylsilyl chloride, dimethylisopropylsilyl chloride, dimethylphenylsilyl chloride and the like.
- Alternatively, selective acylation of the C-2′, C-7 and/or C-10 hydroxy group can be achieved using any of a variety of common acylating agents, but not limited to substituted and unsubstituted carboxylic acid derivatives, e.g., carboxylic acid halides, anhydrides, dicarbonates, isocyanates and haloformates. Representative acylating agents include, di-tert-butyl dicarbonate (Boc2O), dibenzyl dicarbonate, diallyl dicarbonate, 2,2,2-trichloroethyl chloroformate, benzyl chloroformate, dichloroacetyl chloride, acetyl chloride or another common acylating agent.
- Alternatively, selective alkylation of the C-2′, C-7 and/or C-10 hydroxy group can be achieved using any of a variety of common alkylating agents, such as benzyl chloride and benzyl bromide.
- According to the present invention, the protecting step is carried out in the presence of a base, such as, for example, DMAP, pyridine, TEA, LiOH, Li-t-OBu, n-BuLi, LiH, LiHMDS, KHMDS, K-t-OBu, NaH, NaHMDS, Na-t-OBu and mixtures of any two or more of the foregoing, such as a mixture of n-BuLi/Li-t-OBu, and the hydroxy-protecting group is an alkylating agent, silylating agent or acylating agent.
- Exemplary reaction conditions are as follows: a taxane of Formula (I), or a mixture of taxanes, is dissolved in an organic solvent, such as anhydrous DCM (dichloromethane) or THF (tetrahydrofuran) or DMF (dimethyl formamide) or DMSO (dimethyl sulfoxide) or acetonitrile under an argon atmosphere at low to around room temperature. To this solution is added DMAP (dimethylaminopyridine) or any of the lithium, sodium or potassium base, such as Li-t-OBu, K-t-OBu, n-BuLi, a mixture of n-BuLi/K-t-OBu or LiOH, followed by an hydroxy-protecting agent, such as an acylating agent (e.g., di-tert-butyl dicarbonate), or an silylating agent (e.g., triethyl silyl chloride) or any other hydroxy-protecting agents as described herein. The mixture is left at low to around room temperature until complete consumption of the starting material, as visualized by TLC to afford a C-7, C-2′ and/or C-10 protected taxane or a mixture of C-7, C-2′ and/or C-10 protected taxanes. “Low temperature” as used herein refers to temperature between −78° C. to room temperature.
- As noted above, the protecting step can be carried out using the same hydroxy protecting agent for all the available reactive hydroxy groups at the C-2′, C-7 and/or C-10 positions, or using different hydroxy protecting agent for each of the hydroxy groups to be protected. In light of the different reactivities of the hydroxy groups at the C-2, C-7 and C-10 positions as described above, one skilled in the art will readily appreciate that by controlling the equivalency of a hydroxy protecting agent in each step, C-2′, C-7 and/or C-10 can be protected by different hydroxy protecting groups.
-
- R1 is alkyl, alkenyl or aryl; and
- X, Y and Z are the same or different and independently hydroxy or protected hydroxy.
- In particular, the C-2′, C-7 and/or C-10 hydroxy group may be alkylated with an alkylating agent such as ethyl vinyl ether and methoxymethyl chloride. Suitable acid includes p-toluenesulfonic acid and other protic acid. Protic acid refers to an acid that yields an H+ ion. Only catalytic amount of the acid is needed to initiate the protecting step. Typically, less than 1 equivalent of the acid is used, more typically, less than 0.5 equivalent of the acid is used, more typically, less than 0.2 equivalent of the acid is used.
- It is possible that one hydroxy group is protected in the presence of an acid, while the others are protected in the presence of a base. For example, C-2′ paclitaxel can be first protected using about one equivalent of ethyl vinyl ether in the presence of a catalytic amount of p-toluenesulfonic acid. Without isolating the C-2′ protected paclitaxel (i.e., 2′-OEE paclitaxel), a base and another hydroxy protecting agent are added. Advantageously, the amount of the base used is selected with the expectation that some of it will be consumed by the acid that might still be present in the reaction mixture. In any event, one skilled in the art will readily appreciate that all the reactive hydroxy groups of a taxane of Formula (I) are to be protected by the same or different hydroxy protecting groups.
- Following protection of the hydroxy groups at the C-7, C-2′ and/or C-10 positions of a taxane using the foregoing process, the introduction of a t-Boc group at the nitrogen of the amide group of the taxane may be performed in the same vessel without isolating the product of the hydroxy-protecting step according to the following method.
- General Method of Introducing t-BOC at the Nitrogen of the Amide Group
- The introduction of a tert-butoxycarbonyl (t-Boc) to the above protected taxane is also referred herein as a N-acylation step, whereby a t-Boc group replaces the hydrogen of the —NHC(O)R1 group to provide a taxane intermediate having an urea linkage at the C-3′ position, as represented by Formula (II) in Reaction Scheme 1. According to the present invention, the N-acylation step is carried out in a combined step by adding to the hydroxy-protected taxane in the same reaction vessel, a base and a t-Boc agent. Representative bases include DMAP, TEA, LiOH, n-BuLi, LiH, LiHMDS, KHMDS, NaH, NaHMDS or a mixture of any two or more of the foregoing. In addition, the combined step may further comprise combining the taxane with a metal alkoxide, wherein the metal is selected from the group consisting of Group I, II and III metals and transition metals. Representative metal alkoxide includes, but is not limited to Li-t-Bu, Na-t-Bu and K-t-Bu. Representative t-Boc agent includes, but is not limited to, Boc2O.
- An exemplary reaction condition for introducing the t-Boc group includes, dissolving a C-7, C-2′ and/or C-10 protected taxane or a mixture of C-7, C-2′ and/or C-10 protected taxanes in an organic solvent under an argon atmosphere at low to around room temperature. To this solution is added a base, such as DMAP, TEA, LiOH, Li-t-OBu, n-BuLi, LiH, LiHMDS, KHMDS, K-t-OBu, NaH, NaHMDS, Na-t-Bu or a mixture of any two or more of the foregoing, followed by addition of a t-Boc agent. The mixture is left to react at low to room temperature until complete consumption of the starting material, as visualized by TLC. A solution of an acid, such as AcOH, in an organic solvent is added to the mixture, and the mixture is partitioned between saturated aqueous sodium hydrogen carbonate and mixtures of DCM and ethyl acetate. The combined organic extracts are dried and evaporated to give the crude protected taxane derivative, which can be further purified by column chromatography or crystallized from a suitable solvent.
- III. Taxane Starting Material
- As noted above, the processes of the present invention may be utilized to convert taxanes of Formula (I), and mixtures of taxanes, into protected taxane derivatives as represented by Formula (II), which can then be used to further synthesize docetaxel. Representative taxanes of Formula (I) include paclitaxel (2), cephalomannine (6), 10-deacetyl taxol (7), 7-xylosyl taxol (8) and 10-deacetyl-7-xylosyl taxol (9). However, other taxanes may also be present in the taxane starting material without affecting the conversion of Formula (I) to Formula (III), as illustrated in Reaction Scheme 1. For example, in addition to one or more taxanes of Formula (I), other taxanes from a crude taxane extract or in a waste taxane solution may also be present in the starting material. These taxanes are a plurality of compounds of a generic tetracyclic baccatin molecular framework as represented by Formula (IV):
wherein RA, RB, RC and RD represent substituents which vary between the taxanes. More specifically, RA is —OH, RB is —OH or —OAc, RC is ═O, and RD is —OH or xylosyl. For example, when RA is —OH, RB is —OH, RC is ═O and RD is —OH, the foregoing structure represents 10 deacetylbaccatin III (3), and when RA is —OH, RB is —OAc, RC is ═O and RD is —OH, the foregoing structure represents baccatin III (4), when RA is —OAc, RB is —OAc, RC is —OH, and RD is —OH, the forgoing structure represents 9-DHB (5). - It is desirable to adjust the amounts of the base and hydroxy protecting in order to fully protect all the reactive hydroxy groups in the taxane starting material before the introduction of the t-Boc group to the nitrogen of the amide group. It can be readily appreciated by one skilled in the art that, in doing so, the t-Boc agent for acylating the amide group is less likely to be consumed by any reactive free hydroxy group.
- In certain embodiments, the taxanes utilized in the processes of the present invention may be pure, purified or partially purified taxanes. Such purified and partially purified taxanes may be obtained by any of a number of different methods well known in the art. For example, paclitaxel can be obtained by the methods described in U.S. Pat. No. 6,136,989 to Foo et al. and references incorporated therein.
- In other embodiments, the mixture of taxane utilized in the processes of the present invention may be a plurality of taxanes present in a crude taxane extract or in a waste taxane solution or from synthesis. In this way, the disclosed processes may be utilized for high yield and large scale conversion of taxanes present in a waste taxane solution into protected taxane derivatives, which can be used to further synthesize docetaxel. Such waste taxane solutions may comprise (1) pooled waste stream fractions collected following the chromatographic separation and collection of paclitaxel enriched fractions from a crude or partially purified taxane extract, and/or (2) pooled waste mother liquors collected following the recrystallization of a crude or partially purified taxane extract of paclitaxel.
- Representative waste taxane solutions may be obtained by a number of different methods, such as, for example, the methods disclosed in U.S. Pat. No. 6,136,989 to Foo et al., and other references cited therein, which patent is incorporated herein by reference in its entirety, and U.S. patent application Ser. No. 10/831,648, which application is assigned to the assignee of the present invention and is incorporated herein by reference in its entirety. A representative method of obtaining a waste taxane solution, which comprises pooled waste stream fractions, comprises the following extraction and column chromatography steps.
- Preparation of the Taxane-Containing Material
- A suitable taxane-containing material is any tissue that contains a high taxane content. Examples of suitable taxane-containing material include tissues from various species of Yew plants comprising the genus Taxus, most preferably the roots and needles of ornamental Yew plants such as T. canadensis, T. x media spp Hicksii, T. x dark green spreader and Hill., T. chinensis, T. wallichiana, T. cuspidata, T. globosa, T. sumatrana, T. marei and T. floridana, and the bark of T. brevifolia or T. yunnanensis. Other suitable material include cultures of plant tissues obtained from a Taxus species.
- In a typical practice, such as set forth in U.S. Pat. No. 6,139,989, the taxane-containing material is either pulverized, chipped or otherwise ground into small pieces so as to increase efficiency of a solvent extraction. The taxane-containing material may also optionally be dried. Taxane-containing cell culture, cells, microorganisms and fermentation broths will typically be concentrated prior to solvent extraction. Cells and microorganisms can be processed as whole cells or cell paste or pulver.
- Extraction
- The taxane-containing material may be initially extracted by contacting the material with an organic solvent, usually for a prolonged period of at least 8 hours and typically for about 3 days with or without physical agitation to promote formation of a crude organic extract containing a plurality of taxanes. The extraction may employ any of the solvent systems that are known to be used for the extraction of paclitaxel, including but not limited to, acetone, methanol, ethanol, ethyl acetate, methylene chloride, chloroform, mixtures thereof, and mixtures containing an aqueous component of up to 60%. These solvents are typically added in an amount of about 4-20 liter per kg of the taxane-containing material to prepare the crude organic extract. Reference is made for example, to U.S. Pat. No. 6,136,989 and the publications cited therein which provide a non-exclusive description of several solvent systems that may be used to prepare an organic extract containing a plurality of taxanes.
- In one embodiment, the organic solvent is a polar organic solvent, typically an alcohol. For some embodiments, methanol is preferred because of its low cost, ease of removal and efficiency of taxane extraction. In one embodiment, about 6-15 liters of methanol is added for every kg of taxane-containing material to be extracted. The extraction is accelerated by agitating the taxane-containing material, for example, by stirring or percolating the methanol with the taxane-containing material for about 1-5 days at a temperature between room temperature and about 60° C., most typically at about 40° C. When the taxane-containing material contains a paclitaxel content of at least 0.005%, methanol extraction for three days as described above recovers at least 90% of the available paclitaxel from the taxane-containing material, in addition to a plurality of other taxanes, to form a crude methanol extract containing about 0.1-0.5% paclitaxel and having an overall solid content of about 0.5-5% (w/v).
- The large volume of methanol extract thus obtained is optionally concentrated, typically about 10-30 fold by evaporation to obtain a methanol extract concentrate having a solid content of about 100-400 g/L.
- Liquid-Liquid Extraction
- The crude organic extract may be subsequently enriched for taxanes by performing 1-3 liquid-liquid extractions by mixing the organic extract with a non-miscible, organic solvent to form a two phase system wherein one phase contains the plurality of taxanes. Generally, the two phase system includes a polar phase. Optionally, the taxane-containing phase is selected and concentrated by evaporation to form a concentrated extract having a solid content of about 100-400 g/L and a paclitaxel purity of about 1-4%. In some embodiments, water is included to help remove preferentially water soluble materials and the less polar solvent is selected to remove undesirable compounds such as waxes, lipids, pigments, and sterols that are found in different amounts depending on the taxane-containing material used. Typical solvents for liquid-liquid partitioning include hexane, and methylene chloride. Methylene chloride has generally been found to be suitable for liquid-liquid extraction of taxane-containing material especially when the solvent used for the crude organic extract is an alcohol.
- The concentrated extract obtained is optionally evaporated and the residue is re-dissolved in a solvent for loading onto a silica chromatography matrix.
- Other example methods of performing a liquid-liquid extraction are illustrated in U.S. Pat. Nos. 5,475,120, 5,380,916, and 5,670,673 to Rao and references cited therein, and also in U.S. Pat. Nos. 5,618,538 and 5,480,639 to ElSohly et al. and references cited therein. These methods or variants thereof may alternatively be used in lieu of the embodiments described. Furthermore, liquid-liquid extraction may be omitted altogether when a plant extract containing high taxane levels is obtained by other methods such as for example, by intervening precipitation, crystallization or chromatography steps. One example of such a method is found in PCT Publication Nos. WO 98/07712 by Zamir et al, which uses a precipitation step immediately after obtaining an initial organic extract to obtain a paclitaxel fraction that may be about 1% or higher.
- Silica Gel Column Chromatography
- As further set forth in U.S. Pat. No. 6,136,989, the concentrated extract may be further purified by normal phase silica chromatography. As used herein, silica chromatography generally refers to the process of contacting a sample dissolved in a feed solvent with a silica matrix then eluting the silica matrix with an eluting solvent to obtain a fraction enriched with a desired component.
- The dimensions of the first silica column are selected according to the quantity and purity of the solids to be separated. In one embodiment of a pilot scale process, about 250 grams of solids are dissolved in about 0.75 liters of feed solvent which is then chromatographed over a Silica column of about 1.5-inches×10-feet. In another embodiment, about 40-50 kg of solids are dissolved in about 100-200 liters of feed solvent, and chromatographed over a Silica column of about 18-inches×10-feet.
- It has also been shown that a layer of about 1-15 cm of Celite, preferably about 2-8 cm, on top of the silica column is recommended as a column prefilter which substantially decreases the loading time of the sample. It has further been shown that the optimal eluting solvent for the Silica column should be a hexane/acetone mixture at a ratio of about 3:1 or a DCM/ethyl acetate mixture at a ratio of about 7:3. The ‘heart cut’ fractions containing at least 2% paclitaxel are pooled and further purified, for example, according to the process set forth in U.S. Pat. No. 6,136,989. The remaining waste stream fractions, which contain a plurality of taxanes, including, paclitaxel, 10-deacetylbaccatin III (10-DAB), baccatin III (BACC III), 9-dihydro-13-acetylbaccatin III (9-DHB), cephalomannine, 10-deacetyl taxol (10-DAT), 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol are pooled into a waste taxane solution for further processing according to the present invention.
- Further Purification Steps
- As set forth in more detail in U.S. Pat. No. 6,139,989, the paclitaxel enriched ‘heart cut’ fractions obtained from the foregoing chromatography step may be further purified through one or more additional chromatographic or recrystallization steps. Any waste stream fractions or waste mother liquors collected during such additional purification steps may also be pooled and added to the waste taxane solution for further processing according to the present invention.
- IV. Process of N-Deacylation of the Protected Taxane Intermediate Having an Urea Linkage
- According to the present invention, a protected taxane of Formula (II) having an urea linkage at the C-3′ position further undergoes a N-deacylation step to remove the —C(O)R1 group in the presence of a base. As illustrated in Reaction Scheme 2, a protected docetaxel, as represented by Formula (III) is thus provided:
wherein, - R1 is alkyl, alkenyl or aryl; and
- R2, R3 and R4 are the same or different and independently a hydroxy protecting group.
- In one embodiment, R1 is phenyl. In another embodiment, R1 is 2-(2-butenyl). In particular, when R1 is 2-(2-butenyl), compound of Formula (II) is a protected cephalomannine, whose subsequent conversion to docetaxel has been described in U.S. application Ser. No. 10/790,622 (hereafter referred as the '622 application). The '622 application is assigned to the assignee of the present invention and is incorporated herein by reference in its entirety.
- Suitable base includes metal hydroxide and metal alkoxide. Exemplary base can be, but are not limited to, LiOH, NaOH, Ca(OCH3)2, or NaOCH3. In one embodiment, the base is used in excess in order to avoid hydrolyzing any of the protected hydroxy group. For example, when the base is LiOH, two or more equivalents of LiOH is used. Typically, 5 or more equivalents of LiOH is used, and more typically, 10 or more equivalents of LiOH is used. In a further embodiment, a peroxide can be used in conjunction with the base in the N-deacylation step. Representative peroxide includes, but is not limited to, H2O2, t-butyl hydroperoxide (TBHB) and peroxy acid such as m-chloroperoxybenzoic acid (mCPBA). An exemplary N-deacylation condition includes the use of 20 equivalents of 30% H2O2 with 10 equivalents of LiOH.
- After the removal of the —C(O)R1 group, a C-2′, C-7 and C-10 protected docetaxel is obtained, as represented by Formula (III). The protected docetaxel can then be subjected to hydrolysis conditions to afford docetaxel.
- V. Process for Preparing Docetaxel
- As noted above, the C-7, C-2′ and/or C-10 hydroxy protected taxane derivatives prepared according to the foregoing semi-synthetic processes may be utilized to further synthesize docetaxel. In this regards, in one embodiment, the present invention provides an overall process for preparing docetaxel from paclitaxel, paclitaxel derivative or paclitaxel containing material, the process comprising:
-
- (2) introducing a t-Boc group at the nitrogen site of the amide group to provide a protected taxane intermediate with an urea linkage at the C-3′ position;
- (3) selectively removing the —C(O)R1 group of the protected taxane intermediate with an urea linkage to provide a C-2′, C-7 and C-10 protected docetaxel; and
- (4) converting C-2′, C-7 and C-10 hydroxy-protected docetaxel to docetaxel,
- wherein the step of protecting one or more hydroxy groups at C-2′, C-7 and C10 positions and introducing a t-Boc group at the nitrogen site of the amide group of the taxane comprises combining, in a one pot reaction, the taxane of Formula (I) with a base, a hydroxy-protecting group and a t-Boc agent; and wherein the step of removing the —C(O)R1 group of the urea intermediate comprises subjecting the urea intermediate to a base.
- In another embodiment, the present invention provides an overall process for preparing docetaxel from an initial mixture of taxanes, wherein the initial mixture comprises paclitaxel, and at least one additional taxane selected from 10 deacetylbaccatin III, baccatin III, cephalomannine, 9-dihydro-13-acetylbaccatin III, 10-deacetyl taxol, 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol, the process comprising:
- protecting the hydroxy groups at the C-7 and C-2′ positions of paclitaxel;
- introducing a t-Boc group at the nitrogen of the amide group at the C-3′ position of paclitaxel to provide a protected paclitaxel derivative having an urea linkage at the C-3′ position;
- selectively removing the benzoyl group from the urea linkage to provide a protected docetaxel; and
- converting the protected docetaxel to docetaxel by removing the hydroxy-protecting groups at the C-7, C-2′ and C-10 positions,
- wherein the step of protecting the hydroxy groups at C-2′ and C-7 positions, and introducing a t-Boc group at the nitrogen site of the amide group of paclitaxel are carried out in a one pot reaction wherein the mixture containing paclitaxel is combined with a first base, a hydroxy protecting agent and a t-Boc agent; and wherein the step of selectively removing the benzoyl group comprises subjecting the protected paclitaxel derivative having the urea linkage to a second base.
- In a further embodiment, the step of protecting the hydroxy groups of paclitaxel further comprises protecting one or more hydroxy groups of each taxanes in the mixture having free hydroxy groups at any of the C-2′, C-7 and C-10 positions.
- The C-7, C-2′ and C-10 protected docetaxel derivatives may be converted to docetaxel by a number of different deprotection methods, such as, for example, the methods disclosed in U.S. patent application Ser. Nos. 10/683,865 and 10/790,622, which applications are assigned to the assignee of the present invention and are incorporated herein by reference in their entireties, and U.S. Pat. Nos. 6,365,750 and 6,307,071, and the references cited therein, which patents and references are incorporated herein by reference in their entireties.
- VI. Preparation of Docetaxel from Primary Amine Derivatives of Paclitaxel
-
- In particular, a paclitaxel or a derivative thereof as represented by Formula (I) is subjected to nitrosation condition whereby the amide group at the C-3′ position is converted to a N-nitrosoamide intermediate, as represented by Formula (V). Suitable nitrosation reagent includes, but is not limited to, NaNO2, LiNO2, KNO2 and other like metal nitrites. Advantageously, an acid, such as acetic acid, is present in the nitrosation step. Alternatively, N2O4 gas can be used to provide the N-nitrosoamide intermediate.
- Under a suitable hydrolysis condition, which typically comprises subjecting the N-nitrosoamide intermediate to a metal hydroxide, or a mixture of metal hydroxide and a peroxide, a N-nitrosoamine intermediate is obtained, as represented by Formula (VI). Representative metal hydroxide includes, but not limited to LiOH and NaOH. Representative peroxide includes, but is not limited to, H2O2, t-butyl hydroperoxide (TBHB) and peroxy acid such as m-chloroperoxybenzoic acid (mPCBA). In one embodiment, LiOH is used. In another embodiment, a mixture of LiOH and H2O2 are used.
- The nitrosoamine intermediate further undergoes reduction to afford a primary amine derivative of paclitaxel, as represented by Formula (VII). Typical reduction condition includes, but is not limited to Raney nickel, palladium on carbon or platinum on carbon in the presence of hydrogen gas.
- Direct conversion of the primary amine derivative of paclitaxel to docetexel can be accomplished according the process as described in the '622 application.
- Accordingly, the present invention further provides an alternative overall process of converting a paclitaxel or a derivative thereof to docetaxel comprising:
-
- (2) hydrolyzing the N-nitrosoamide intermediate to provide a N-nitrosoamine intermediate;
- (3) reducing the N-nitrosoamine intermediate to provide a primary amine intermediate; and
- (4) converting the primary amine derivative to docetaxel.
- Specifically, when R1 is phenyl, the compound of Formula (I) can be paclitaxel, when R1 is 2-(2-butenyl), the compound of Formula (I) can be cephalomannine.
- In another embodiment, the present invention provides an overall process for preparing docetaxel from an initial mixture of taxanes, wherein the initial mixture comprises a compound of Formula (I), in particularly, paclitaxel, and at least one additional taxane selected from 10 deacetylbaccatin III, baccatin III, cephalomannine, 9-dihydro-13-acetylbaccatin III, 10-deacetyl taxol, 7-xylosyl taxol and 10-deacetyl-7-xylosyl taxol, the process comprising:
-
- hydrolyzing the N-nitrosoamide intermediate to provide a N-nitrosoamine intermediate;
- reducing the N-nitrosoamine intermediate to provide a primary amine intermediate; and
- converting the primary amine derivative to docetaxel.
- The following Examples disclose a representative process for synthesizing a protected taxane derivative from paclitaxel or paclitaxel containing material, and the subsequent conversion of such derivatives to docetaxel. Unless otherwise noted, all scientific and technical terms have the meanings as understood by one of ordinary skill in the art.
- As shown in
FIG. 1 , to a stirred solution of paclitaxel or paclitaxel containing material, in an organic solvent, such as THF, at around low to room temperature under an argon atmosphere was treated with a hydroxy-protecting agent, such as Boc2O, dichloroacetyl chloride, acetyl chloride, TESCl or like reagents in the presence of a base, such as 4-(N,N-dimethylamino)pyridine or n-BuLi or a mixture of n-BuLi/Li-t-OBu or like bases. The reaction was stirred at this temperature for a period between 30 minutes to 2 hours until complete consumption of the starting materials, as evidenced by TLC. - Alternatively, to a stirred solution of paclitaxel or paclitaxel containing material, in an organic solvent, such as THF, at around low to room temperature under an argon atmosphere can be treated with a hydroxy-protecting agent such as ethyl vinyl ether, in the presence of a catalytic amount of p-toluenesulfonic acid.
- The reaction mixture after the protecting step is used directly in the next step of N-acylation without isolating any of the reaction intermediate.
- Preparation of N-Acyl Paclitaxel Derivative
- To a solution of the C-7, C-2′ and/or C-10 protected paclitaxel derivative in an organic solvent, such as the freshly distilled THF, under argon atmosphere at low to around room temperature most preferably at 20° C., was added drop wise a solution of a base, such as DMAP or n-BuLi in hexanes or like bases. After stirring for 30 min to 1 hr at this temperature, a solution of Boc2O in anhydrous THF was added drop wise to the mixture. The solution was kept at that temperature for an additional 1 to 3 hrs, or until complete consumption of the starting material, as evidenced by TLC, before addition of a solution of an acid in an organic solvent, such as 5% AcOH in THF. The mixture was then partitioned between saturated aqueous sodium hydrogen carbonate and mixtures of dichloromethane and ethyl acetate. Evaporation of the organic layer yielded a crude paclitaxel derivative having an urea linkage, i.e., a paclitaxel N-t-Boc derivative, which could be further purified by either column chromatography or crystallization to yield a pure protected paclitaxel derivative or used directly for the next step in the synthesis.
- Alternatively, DMAP (0.1 mmol) was added to a stirred solution of the paclitaxel (1.0 mmol) in dry acetonitrile followed by BOC2O (1.1 mmol). After stirring for 4 h at room temperature, all starting material was consumed (TLC). The reaction mixture was evaporated at room temperature and the residue partitioned between ether and aqueous KHSO4. The organic extract was thoroughly washed in turn with aqueous solution of KHSO4 and NaHCO3 and finally brine and dried over MgSO4. Evaporation to complete dryness left a light yellow residue that was purified by column chromatography to afford the paclitaxel N-t-Boc derivative.
- N-Debenzoylation of the Paclitaxel N-t-Boc Derivative
- To the above solution in tetrahydrofuran was added a 1.0 N solution of lithium hydroxide. The solution was stirred for 12 h at room temperature. After removal of tetrahydrofuran in vacuo, the basic aqueous residue was acidified by the addition of 10% acetic acid and extracted with ether. Drying (MgSO4) and concentration afforded the crude material that was purified by column chromatography to afford the pure white C-2′, C-7 and C-10 protected docetaxel. (Note: The following could also be used: 10 equiv. LiOH, 20 equiv. 30% H2O2, 3:1 THF:H2O, 0° C.).
- As further shown in
FIG. 1 , C-2′, C-7 and C-10 protected docetaxel was hydrolyzed using formic acid to remove the C-7 and/or C-10 t-Boc protecting group and then with a mixture of NaHCO3/Na2CO3/H2O2 to deprotect the C-2′ and/or C-10 acetate groups to yield docetaxel. In the event that the C-2′ protecting group is ethoxyethyl, the deprotection is carried out under acidic condition, such as in the presence of acetic acid. Detailed description of deprotection at the C-2′, C-7 and C-10 positions are described in U.S. patent application Ser. No. 10/790,622, which application is assigned to the assignee of the present invention and is incorporated herein by reference in its entirety. - Nitrosation
- To a solution of paclitaxel (0.76 mmol) or a paclitaxel containing material in glacial acetic acid (2.5 ml) and acetic anhydride (5 ml) at 0° C. is added NaNO2 (7.6 mmol). The resulting solution can be stirred under argon at 0° C. for 16 h and then poured over ice and extracted with diethyl ether. The combined organic extracts can be washed with water, 5% Na2CO3, water and saturated NaCl and dried over MgSO4. The dry extracts can be filtered and then concentrated in vacuo, and the crude product is purified by column chromatography using mixtures of hexane-ethyl acetate to afford the pure product.
- Hydrolysis
- To the above solution in tetrahydrofuran is added a 1.0 N solution of lithium hydroxide. The solution was stirred for 12 h at room temperature. After the removal of tetrahydrofuran in vacuo, the basic aqueous residue can be acidified by the addition of 10% acetic acid and extracted with ether. Drying (MgSO4) and concentration afforded the crude material which can be purified by column chromatography to afford the pure primary amine taxane intermediate. (Note: The following can also be used: 10 equiv. LiOH, 20 equiv. 30% H2O2, in 3:1 THF:H2O)
- Reduction
- The above hydrolyzed product can then be dissolved in ethanol at room temperature and Raney-Nickel is added in one portion to the stirred solution. The reaction mixture is stirred at this temperature and treated with hydrogen, until the complete consumption of the starting material. The reaction mixture can be filtered and the filtrate evaporated. The residue is then dissolved in an inert solvent such as dichloromethane and worked up as usual. The crude product can be purified by column chromatography using mixtures of dichloromethane and ethyl acetate to afford the pure primary amine derivative of paclitaxel.
- Conversion to Docetaxel
- The primary amine derivative of paclitaxel (0.091 mmol) can be dissolved in ethyl acetate (9.1 ml) and a saturated solution of NaHCO3 (9.1 ml) was added. To this biphasic mixture Boc2O (0.18 mmol) can be added. The mixture is stirred for 12 h at room temperature and TLC showed complete consumption of the starting material. The reaction can be worked up as usual and the residue purified by column chromatography using mixtures of dichloromethane and ethyl acetate or acetone to give docetaxel.
- All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
- From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims (74)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/377,939 US20070027332A1 (en) | 2004-06-29 | 2006-03-16 | Semi-synthetic conversion of paclitaxel to docetaxel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/881,711 US20050288521A1 (en) | 2004-06-29 | 2004-06-29 | Semi-synthetic conversion of paclitaxel to docetaxel |
US11/377,939 US20070027332A1 (en) | 2004-06-29 | 2006-03-16 | Semi-synthetic conversion of paclitaxel to docetaxel |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/881,711 Continuation US20050288521A1 (en) | 2004-06-29 | 2004-06-29 | Semi-synthetic conversion of paclitaxel to docetaxel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070027332A1 true US20070027332A1 (en) | 2007-02-01 |
Family
ID=35385553
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/881,711 Abandoned US20050288521A1 (en) | 2004-06-29 | 2004-06-29 | Semi-synthetic conversion of paclitaxel to docetaxel |
US11/631,466 Expired - Fee Related US7906661B2 (en) | 2004-06-29 | 2005-06-29 | Semi-synthetic conversion of paclitaxel to docetaxel |
US11/377,939 Abandoned US20070027332A1 (en) | 2004-06-29 | 2006-03-16 | Semi-synthetic conversion of paclitaxel to docetaxel |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/881,711 Abandoned US20050288521A1 (en) | 2004-06-29 | 2004-06-29 | Semi-synthetic conversion of paclitaxel to docetaxel |
US11/631,466 Expired - Fee Related US7906661B2 (en) | 2004-06-29 | 2005-06-29 | Semi-synthetic conversion of paclitaxel to docetaxel |
Country Status (5)
Country | Link |
---|---|
US (3) | US20050288521A1 (en) |
EP (1) | EP1797058B1 (en) |
CN (1) | CN101048394A (en) |
CA (1) | CA2572315C (en) |
WO (1) | WO2006004898A2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2563838C (en) | 2004-04-23 | 2012-06-19 | Phytogen Life Sciences Inc. | Semi-synthesis and isolation of taxane intermediates from a mixture of taxanes |
US7893283B2 (en) | 2004-06-04 | 2011-02-22 | Chatham Biotec, Limited | Semi-synthesis of taxane intermediates and their conversion to paclitaxel and docetaxel |
US20050288520A1 (en) | 2004-06-25 | 2005-12-29 | Phytogen Life Sciences Inc. | One pot synthesis of taxane derivatives and their conversion to paclitaxel and docetaxel |
ATE428421T1 (en) | 2004-09-17 | 2009-05-15 | Eisai R&D Man Co Ltd | MEDICAL COMPOSITION WITH IMPROVED STABILITY AND REDUCED GELING PROPERTIES |
KR20080030013A (en) | 2005-06-10 | 2008-04-03 | 플로리다 스테이트 유니버시티 리서치 파운데이션, 인크 | Processes for the production of polycyclic fused ring compounds |
EP1893594A2 (en) | 2005-06-10 | 2008-03-05 | Florida State University Research Foundation, Inc. | Processes for the preparation of paclitaxel |
WO2007015578A1 (en) | 2005-08-02 | 2007-02-08 | Eisai R & D Management Co., Ltd. | Method for assay on the effect of vascularization inhibitor |
CN101443009A (en) | 2006-05-18 | 2009-05-27 | 卫材R&D管理有限公司 | Antitumor agent for thyroid cancer |
CN100374429C (en) * | 2006-06-19 | 2008-03-12 | 昆明多希生物技术有限公司 | Method for producing docetaxel using 10-deacetylpaclitaxel as raw material |
GB0701523D0 (en) * | 2007-01-26 | 2007-03-07 | Chatham Biotec Ltd | Semi-synthetic process for the preparation of taxane derivatives |
FR2914642B1 (en) * | 2007-04-03 | 2009-10-16 | Seripharm | PROCESS FOR THE PREPARATION OF 3'-N-SUBSTITUTED TAXANES FROM PACLITAXEL |
KR20100083177A (en) * | 2007-11-15 | 2010-07-21 | 인스티투트 오브 마타리아 메디카, 차이니즈 아카데미 오브 메디칼 사이언스 | Cephalomannine derivatives and their preparation, medicinal composition and use |
EA016434B1 (en) * | 2007-12-24 | 2012-04-30 | Сан Фарма Адвансед Ресёрч Компани Лимитед | Nanodispersion |
CA2713930A1 (en) * | 2008-01-29 | 2009-08-06 | Eisai R & D Management Co., Ltd. | Combined use of angiogenesis inhibitor and taxane |
CN101735179B (en) * | 2008-11-19 | 2012-09-12 | 上海百灵医药科技有限公司 | Method for preparing docetaxel, intermediate thereof and preparation method |
AU2010261342A1 (en) | 2009-06-19 | 2012-01-19 | Sun Pharma Advanced Research Company Ltd., | Nanodispersion of a drug and process for its preparation |
CN102050804B (en) * | 2009-10-30 | 2012-11-28 | 上海百灵医药科技有限公司 | Methods for preparing docetaxel and intermediates thereof |
WO2011134067A1 (en) * | 2010-04-29 | 2011-11-03 | 6570763 Canada Inc. | Novel amino acid molecule and uses thereof |
CN102516345B (en) * | 2011-11-01 | 2014-11-26 | 上海优拓医药科技有限公司 | Preparation method of ulipristal acetate and key intermediate thereof |
EP3444363B1 (en) | 2011-06-03 | 2020-11-25 | Eisai R&D Management Co., Ltd. | Biomarkers for prediciting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds |
CN102516207B (en) * | 2011-12-19 | 2014-10-08 | 河南省科学院化学研究所有限公司 | Method for preparing paclitaxel from 7-xylose-10-deacetyltaxanes |
KR20150098605A (en) | 2012-12-21 | 2015-08-28 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Amorphous form of quinoline derivative, and method for producing same |
SG11201509278XA (en) | 2013-05-14 | 2015-12-30 | Eisai R&D Man Co Ltd | Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds |
SI3524595T1 (en) | 2014-08-28 | 2022-10-28 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
WO2016136745A1 (en) | 2015-02-25 | 2016-09-01 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Method for suppressing bitterness of quinoline derivative |
KR102662228B1 (en) | 2015-03-04 | 2024-05-02 | 머크 샤프 앤드 돔 코포레이션 | Combination of PD-1 antagonists and VEGFR/FGFR/RET tyrosine kinase inhibitors to treat cancer |
CA2988707C (en) | 2015-06-16 | 2023-10-10 | Eisai R&D Management Co., Ltd. | Combination of cbp/catenin inhibitor and immune checkpoint inhibitor for treating cancer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5703247A (en) * | 1993-03-11 | 1997-12-30 | Virginia Tech Intellectual Properties, Inc. | 2-Debenzoyl-2-acyl taxol derivatives and methods for making same |
US5808113A (en) * | 1995-01-30 | 1998-09-15 | Hauser, Inc. | Preparation of Taxol and docetaxel through primary amines |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY110249A (en) | 1989-05-31 | 1998-03-31 | Univ Florida State | Method for preparation of taxol using beta lactam |
US5380916A (en) | 1990-11-02 | 1995-01-10 | University Of Florida | Method for the isolation and purification of taxane derivatives |
US5284864A (en) | 1991-09-23 | 1994-02-08 | Florida State University | Butenyl substituted taxanes and pharmaceutical compositions containing them |
WO1993021173A1 (en) | 1992-04-17 | 1993-10-28 | Abbott Laboratories | Taxol derivatives |
US5319112A (en) | 1992-08-18 | 1994-06-07 | Virgnia Tech Intellectual Properties, Inc. | Method for the conversion of cephalomannine to taxol and for the preparation of N-acyl analogs of taxol |
CA2188190A1 (en) | 1996-10-18 | 1998-04-18 | Sarala Balachandran | The semi-synthesis of a protected bacatin iii compound |
CA2204197A1 (en) | 1997-05-01 | 1998-11-01 | Jian Liu | Process for converting 9-dihydro-13-acetylbaccatin iii into taxol and derivatives thereof |
AU3402699A (en) | 1998-04-20 | 1999-11-08 | Gaetan Caron | The semi-synthesis of baccatin iii |
US6136989A (en) | 1998-12-30 | 2000-10-24 | Phytogen Life Sciences, Incorporated | Method for high yield and large scale extraction of paclitaxel from paclitaxel-containing material |
US20010041803A1 (en) | 2000-03-21 | 2001-11-15 | Kasitu Gertrude C. | Conversion of 9-dihydro-13-acetylbaccatin III to baccatin III and 10-deacetyl baccatin III |
US6812356B2 (en) | 2002-09-26 | 2004-11-02 | John Findlay | Conversion 9-dihydro-13-acetylbaccatin III into 10-deacetylbaccatin III |
AU2003273671A1 (en) | 2002-10-09 | 2004-05-04 | Phytogen Life Sciences, Inc. | Novel taxanes and methods related to use and preparation thereof |
US7202370B2 (en) | 2003-10-27 | 2007-04-10 | Conor Medsystems, Inc. | Semi-synthesis of taxane intermediates from 9-dihydro-13-acetylbaccatin III |
CA2598707A1 (en) | 2004-02-24 | 2005-09-09 | Phytogen Life Sciences Inc. | Semi-synthesis of taxane intermediates and aziridine analogues and their conversion to paclitaxel and docetaxel |
CA2563838C (en) | 2004-04-23 | 2012-06-19 | Phytogen Life Sciences Inc. | Semi-synthesis and isolation of taxane intermediates from a mixture of taxanes |
US7893283B2 (en) | 2004-06-04 | 2011-02-22 | Chatham Biotec, Limited | Semi-synthesis of taxane intermediates and their conversion to paclitaxel and docetaxel |
US20050272807A1 (en) | 2004-06-04 | 2005-12-08 | Phytogen Life Sciences Inc. | Semi-synthesis of taxane intermediates and their conversion to paclitaxel and docetaxel |
US20050288520A1 (en) | 2004-06-25 | 2005-12-29 | Phytogen Life Sciences Inc. | One pot synthesis of taxane derivatives and their conversion to paclitaxel and docetaxel |
-
2004
- 2004-06-29 US US10/881,711 patent/US20050288521A1/en not_active Abandoned
-
2005
- 2005-06-29 EP EP05763687A patent/EP1797058B1/en not_active Not-in-force
- 2005-06-29 WO PCT/US2005/023224 patent/WO2006004898A2/en active Application Filing
- 2005-06-29 CN CNA2005800219412A patent/CN101048394A/en active Pending
- 2005-06-29 US US11/631,466 patent/US7906661B2/en not_active Expired - Fee Related
- 2005-06-29 CA CA2572315A patent/CA2572315C/en not_active Expired - Fee Related
-
2006
- 2006-03-16 US US11/377,939 patent/US20070027332A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5703247A (en) * | 1993-03-11 | 1997-12-30 | Virginia Tech Intellectual Properties, Inc. | 2-Debenzoyl-2-acyl taxol derivatives and methods for making same |
US5808113A (en) * | 1995-01-30 | 1998-09-15 | Hauser, Inc. | Preparation of Taxol and docetaxel through primary amines |
Also Published As
Publication number | Publication date |
---|---|
CN101048394A (en) | 2007-10-03 |
CA2572315C (en) | 2013-10-01 |
CA2572315A1 (en) | 2006-01-12 |
EP1797058B1 (en) | 2012-08-15 |
US7906661B2 (en) | 2011-03-15 |
US20050288521A1 (en) | 2005-12-29 |
WO2006004898A3 (en) | 2006-03-09 |
EP1797058A2 (en) | 2007-06-20 |
US20080051590A1 (en) | 2008-02-28 |
WO2006004898A2 (en) | 2006-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906661B2 (en) | Semi-synthetic conversion of paclitaxel to docetaxel | |
US8293930B1 (en) | One pot synthesis of taxane derivatives and their conversion to paclitaxel and docetaxel | |
EP1814868B1 (en) | Semi-synthesis of taxane intermediates and their conversion to paclitaxel and docetaxel | |
US7838694B2 (en) | Semi-synthesis and isolation of taxane intermediates from a mixture of taxanes | |
US7585986B2 (en) | Semi-synthesis of taxane intermediates and aziridine analogues and their conversion to paclitaxel and docetaxel | |
US7893283B2 (en) | Semi-synthesis of taxane intermediates and their conversion to paclitaxel and docetaxel | |
US20070032668A1 (en) | Semi-synthesis of taxane intermediates from a mixture of taxanes | |
EP1727810B1 (en) | Semi-synthesis of taxane intermediates from 9-dihydro-13-acetylbaccatin iii | |
US20070073069A1 (en) | Semi-synthesis and isolation of taxane intermediates from a mixture of taxanes | |
WO2008032104A1 (en) | One pot synthesis of taxane derivatives and their conversion to paclitaxel and docetaxel | |
US20050192445A1 (en) | Semi-synthesis of taxane intermediates and aziridine analogues and their conversion to paclitaxel and docetaxel | |
EP1099696A2 (en) | Preparation of oxazolidine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INNOVATIONAL HOLDINGS LLC, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONOR MEDSYSTEMS, INC.;REEL/FRAME:019955/0487 Effective date: 20070306 Owner name: INNOVATIONAL HOLDINGS LLC,NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONOR MEDSYSTEMS, INC.;REEL/FRAME:019955/0487 Effective date: 20070306 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: INNOVATIONAL HOLDINGS LLC, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONOR MEDSYSTEMS, INC.;REEL/FRAME:023538/0021 Effective date: 20070306 Owner name: INNOVATIONAL HOLDINGS LLC,NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONOR MEDSYSTEMS, INC.;REEL/FRAME:023538/0021 Effective date: 20070306 |