US20070027143A1 - Novel substituted 2,3-benzodiazepine derivatives - Google Patents
Novel substituted 2,3-benzodiazepine derivatives Download PDFInfo
- Publication number
- US20070027143A1 US20070027143A1 US10/771,847 US77184704A US2007027143A1 US 20070027143 A1 US20070027143 A1 US 20070027143A1 US 77184704 A US77184704 A US 77184704A US 2007027143 A1 US2007027143 A1 US 2007027143A1
- Authority
- US
- United States
- Prior art keywords
- methyl
- dihydro
- benzodiazepine
- dioxolo
- thiadiazol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RPBDCDQMCRHNLM-UHFFFAOYSA-N C1=NNC=C2C=CC=CC2=C1 Chemical class C1=NNC=C2C=CC=CC2=C1 RPBDCDQMCRHNLM-UHFFFAOYSA-N 0.000 title abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 229
- 150000003839 salts Chemical class 0.000 claims abstract description 24
- 239000002253 acid Substances 0.000 claims abstract description 23
- 230000001154 acute effect Effects 0.000 claims abstract description 19
- 206010015037 epilepsy Diseases 0.000 claims abstract description 13
- 208000005392 Spasm Diseases 0.000 claims abstract description 10
- 208000007101 Muscle Cramp Diseases 0.000 claims abstract description 9
- 208000015122 neurodegenerative disease Diseases 0.000 claims abstract description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 9
- 230000001684 chronic effect Effects 0.000 claims abstract description 8
- 230000004770 neurodegeneration Effects 0.000 claims abstract description 8
- 208000037976 chronic inflammation Diseases 0.000 claims abstract description 5
- 208000037893 chronic inflammatory disorder Diseases 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 300
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 claims description 109
- 229940049706 benzodiazepine Drugs 0.000 claims description 102
- -1 cyanomethyl group Chemical group 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 30
- 241000124008 Mammalia Species 0.000 claims description 20
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 14
- 125000003277 amino group Chemical group 0.000 claims description 14
- 229930195712 glutamate Natural products 0.000 claims description 14
- 125000005843 halogen group Chemical group 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 125000000623 heterocyclic group Chemical group 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 208000006011 Stroke Diseases 0.000 claims description 8
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 8
- 208000027866 inflammatory disease Diseases 0.000 claims description 8
- 201000006417 multiple sclerosis Diseases 0.000 claims description 8
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 7
- 239000001961 anticonvulsive agent Substances 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- 230000004064 dysfunction Effects 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 208000006673 asthma Diseases 0.000 claims description 6
- 210000004556 brain Anatomy 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 230000036407 pain Effects 0.000 claims description 6
- 230000001575 pathological effect Effects 0.000 claims description 6
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 claims description 5
- 208000024827 Alzheimer disease Diseases 0.000 claims description 5
- 208000017667 Chronic Disease Diseases 0.000 claims description 5
- 208000002193 Pain Diseases 0.000 claims description 5
- 208000018737 Parkinson disease Diseases 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 206010046543 Urinary incontinence Diseases 0.000 claims description 5
- 125000002252 acyl group Chemical group 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- CPDCZSIMXFZSGX-SNVBAGLBSA-N 2-chloro-4-[(8r)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(Cl)C(N)=CC=2)=NN1C1=NN=C(C)S1 CPDCZSIMXFZSGX-SNVBAGLBSA-N 0.000 claims description 4
- HCOJNYUPUOBYDH-GFCCVEGCSA-N 2-methyl-4-[(8r)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(N)=CC=2)=NN1C1=NN=CS1 HCOJNYUPUOBYDH-GFCCVEGCSA-N 0.000 claims description 4
- DZISRJWEOMPAIL-ISZGNANSSA-N 2-methyl-4-[(8r)-8-methyl-7-[5-[(e)-prop-1-enyl]-1,3,4-thiadiazol-2-yl]-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound S1C(/C=C/C)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(N)=CC=2)=N1 DZISRJWEOMPAIL-ISZGNANSSA-N 0.000 claims description 4
- OTLOBZLSZJVQQA-CYBMUJFWSA-N 4-[(8r)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]-2-methylaniline Chemical compound S1C(CC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(N)=CC=2)=N1 OTLOBZLSZJVQQA-CYBMUJFWSA-N 0.000 claims description 4
- 208000030507 AIDS Diseases 0.000 claims description 4
- 201000006474 Brain Ischemia Diseases 0.000 claims description 4
- 206010012289 Dementia Diseases 0.000 claims description 4
- 208000023105 Huntington disease Diseases 0.000 claims description 4
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 4
- 230000003556 anti-epileptic effect Effects 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 206010006451 bronchitis Diseases 0.000 claims description 4
- 210000000278 spinal cord Anatomy 0.000 claims description 4
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 claims description 3
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 claims description 3
- JWLGGEABBPDPML-LLVKDONJSA-N 2-chloro-4-[(8r)-7-[5-(methoxymethyl)-1,3,4-thiadiazol-2-yl]-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound S1C(COC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(Cl)C(N)=CC=2)=N1 JWLGGEABBPDPML-LLVKDONJSA-N 0.000 claims description 3
- DBDUGNPURSLMPS-GFCCVEGCSA-N 2-methyl-4-[(8r)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(N)=CC=2)=NN1C1=NN=C(C)S1 DBDUGNPURSLMPS-GFCCVEGCSA-N 0.000 claims description 3
- ZMKBCJHGTFWHJI-GFCCVEGCSA-N 4-[(8r)-7-(4,5-dihydro-1,3-thiazol-2-yl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(N)=CC=2)=NN1C1=NCCS1 ZMKBCJHGTFWHJI-GFCCVEGCSA-N 0.000 claims description 3
- JRXDNQCAOCOIGM-GFCCVEGCSA-N 4-[(8r)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound S1C(CC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=CC(N)=CC=2)=N1 JRXDNQCAOCOIGM-GFCCVEGCSA-N 0.000 claims description 3
- LYMPRUAGULHXGA-CYBMUJFWSA-N 4-[(8r)-7-[5-(methoxymethyl)-1,3,4-thiadiazol-2-yl]-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]-2-methylaniline Chemical compound S1C(COC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(N)=CC=2)=N1 LYMPRUAGULHXGA-CYBMUJFWSA-N 0.000 claims description 3
- AQVHOPUVJNUMRK-LLVKDONJSA-N 4-[(8r)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(N)=CC=2)=NN1C1=NN=CS1 AQVHOPUVJNUMRK-LLVKDONJSA-N 0.000 claims description 3
- CUFZAXVDJYYCST-GFCCVEGCSA-N 4-[(8r)-8-methyl-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(N)=CC=2)=NN1C1=NC=CS1 CUFZAXVDJYYCST-GFCCVEGCSA-N 0.000 claims description 3
- CNJBMCKQTBPYCD-LLVKDONJSA-N 4-[(8r)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(N)=CC=2)=NN1C1=NN=C(C)O1 CNJBMCKQTBPYCD-LLVKDONJSA-N 0.000 claims description 3
- SGQFSRKCDSMQQY-LLVKDONJSA-N 4-[(8r)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(N)=CC=2)=NN1C1=NN=C(C)S1 SGQFSRKCDSMQQY-LLVKDONJSA-N 0.000 claims description 3
- 208000030090 Acute Disease Diseases 0.000 claims description 3
- 206010008120 Cerebral ischaemia Diseases 0.000 claims description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 3
- 208000010412 Glaucoma Diseases 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 230000000172 allergic effect Effects 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 208000010668 atopic eczema Diseases 0.000 claims description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 3
- 206010008118 cerebral infarction Diseases 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 201000006517 essential tremor Diseases 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 208000014674 injury Diseases 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 230000008733 trauma Effects 0.000 claims description 3
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 claims description 2
- OGVWWGVZVJUPHF-UHFFFAOYSA-N 1,2,4-thiadiazol-3-one Chemical compound O=C1N=CSN1 OGVWWGVZVJUPHF-UHFFFAOYSA-N 0.000 claims description 2
- FNMGRVLXWOVONV-UHFFFAOYSA-N 1,3-thiazin-4-one Chemical compound O=C1C=CSC=N1 FNMGRVLXWOVONV-UHFFFAOYSA-N 0.000 claims description 2
- CEBAFUFWRQAHJL-UHFFFAOYSA-N 1,4,2-oxathiazole Chemical compound C1ON=CS1 CEBAFUFWRQAHJL-UHFFFAOYSA-N 0.000 claims description 2
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 claims description 2
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 claims description 2
- OBQQXJNPNJYUKU-UHFFFAOYSA-N 2h-1,3,4-thiadiazol-5-one Chemical compound O=C1SCN=N1 OBQQXJNPNJYUKU-UHFFFAOYSA-N 0.000 claims description 2
- CZWWCTHQXBMHDA-UHFFFAOYSA-N 3h-1,3-thiazol-2-one Chemical compound OC1=NC=CS1 CZWWCTHQXBMHDA-UHFFFAOYSA-N 0.000 claims description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims description 2
- 206010006458 Bronchitis chronic Diseases 0.000 claims description 2
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 2
- 206010039085 Rhinitis allergic Diseases 0.000 claims description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 2
- 125000004849 alkoxymethyl group Chemical group 0.000 claims description 2
- 201000010105 allergic rhinitis Diseases 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 208000007451 chronic bronchitis Diseases 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 208000024711 extrinsic asthma Diseases 0.000 claims description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims description 2
- 201000010659 intrinsic asthma Diseases 0.000 claims description 2
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 claims description 2
- 150000002545 isoxazoles Chemical class 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 208000005069 pulmonary fibrosis Diseases 0.000 claims description 2
- 150000003536 tetrazoles Chemical class 0.000 claims description 2
- YGNGABUJMXJPIJ-UHFFFAOYSA-N thiatriazole Chemical compound C1=NN=NS1 YGNGABUJMXJPIJ-UHFFFAOYSA-N 0.000 claims description 2
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 claims description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims 1
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 claims 1
- 125000004521 1,3,4-thiadiazol-2-yl group Chemical group S1C(=NN=C1)* 0.000 claims 1
- MONKZQOLZPOZJW-CQSZACIVSA-N 2-methyl-4-[(8r)-8-methyl-7-(5-propyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]aniline Chemical compound S1C(CCC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(N)=CC=2)=N1 MONKZQOLZPOZJW-CQSZACIVSA-N 0.000 claims 1
- QBZMIFMKDXUHIR-NFKWMPFVSA-N C[C@H](C1)N(C2=NN=C(OC)[S+]2C)N=C(C(C=C2)=CC(Cl)=C2N)C2=C1C=C1OCOC1=C2 Chemical compound C[C@H](C1)N(C2=NN=C(OC)[S+]2C)N=C(C(C=C2)=CC(Cl)=C2N)C2=C1C=C1OCOC1=C2 QBZMIFMKDXUHIR-NFKWMPFVSA-N 0.000 claims 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 claims 1
- 230000003110 anti-inflammatory effect Effects 0.000 claims 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims 1
- 210000003205 muscle Anatomy 0.000 claims 1
- 230000002040 relaxant effect Effects 0.000 claims 1
- 208000024891 symptom Diseases 0.000 abstract description 19
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 170
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 131
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 108
- 239000000203 mixture Substances 0.000 description 107
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 80
- 238000005160 1H NMR spectroscopy Methods 0.000 description 74
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 65
- 239000007858 starting material Substances 0.000 description 64
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 61
- 239000000243 solution Substances 0.000 description 57
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 38
- UUDAMDVQRQNNHZ-UHFFFAOYSA-N (S)-AMPA Chemical compound CC=1ONC(=O)C=1CC(N)C(O)=O UUDAMDVQRQNNHZ-UHFFFAOYSA-N 0.000 description 36
- 230000000694 effects Effects 0.000 description 35
- 238000004440 column chromatography Methods 0.000 description 32
- 239000000047 product Substances 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000003480 eluent Substances 0.000 description 29
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 27
- 239000012043 crude product Substances 0.000 description 27
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 24
- 239000011541 reaction mixture Substances 0.000 description 24
- 235000019439 ethyl acetate Nutrition 0.000 description 22
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- JACAAXNEHGBPOQ-LLVKDONJSA-N Talampanel Chemical compound C([C@H](N(N=1)C(C)=O)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C(N)C=C1 JACAAXNEHGBPOQ-LLVKDONJSA-N 0.000 description 20
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 19
- 239000013078 crystal Substances 0.000 description 19
- LFBZZHVSGAHQPP-UHFFFAOYSA-N GYKI 52466 Chemical compound C12=CC=3OCOC=3C=C2CC(C)=NN=C1C1=CC=C(N)C=C1 LFBZZHVSGAHQPP-UHFFFAOYSA-N 0.000 description 17
- CXJGWOVUBVPLNO-UHFFFAOYSA-N 4h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C1=C2C=CN=NC=C2CC2=C1OCO2 CXJGWOVUBVPLNO-UHFFFAOYSA-N 0.000 description 15
- 241000700159 Rattus Species 0.000 description 15
- 239000003463 adsorbent Substances 0.000 description 15
- 239000000741 silica gel Substances 0.000 description 15
- 229910002027 silica gel Inorganic materials 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 13
- 230000005764 inhibitory process Effects 0.000 description 13
- 239000003158 myorelaxant agent Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000005557 antagonist Substances 0.000 description 12
- 238000010992 reflux Methods 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000003042 antagnostic effect Effects 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 10
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 9
- 230000001363 autoimmune Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 210000003979 eosinophil Anatomy 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 235000017557 sodium bicarbonate Nutrition 0.000 description 9
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 9
- 239000013589 supplement Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 0 [3*]N1N=C(C2=CC([7*])=C([6*])C([5*])=C2[4*])C2=CC([9*])=C([10*])C=C2CC1C Chemical compound [3*]N1N=C(C2=CC([7*])=C([6*])C([5*])=C2[4*])C2=CC([9*])=C([10*])C=C2CC1C 0.000 description 8
- 210000003169 central nervous system Anatomy 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- PKPLAAKGYFRITH-UHFFFAOYSA-N 5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioamide Chemical compound N=1N(C(=S)N)CCC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 PKPLAAKGYFRITH-UHFFFAOYSA-N 0.000 description 7
- 102000003678 AMPA Receptors Human genes 0.000 description 7
- 108090000078 AMPA Receptors Proteins 0.000 description 7
- 108010058846 Ovalbumin Proteins 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 206010044565 Tremor Diseases 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 201000002491 encephalomyelitis Diseases 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 238000011694 lewis rat Methods 0.000 description 7
- 229940092253 ovalbumin Drugs 0.000 description 7
- 230000007480 spreading Effects 0.000 description 7
- ATDLUVGEFJWWGK-UHFFFAOYSA-N 7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C1=CNN=CC2=C1C=C1OCOC1=C2 ATDLUVGEFJWWGK-UHFFFAOYSA-N 0.000 description 6
- JYKIDURCUGRSTD-UHFFFAOYSA-N 8-methyl-5-(4-methyl-3-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioamide Chemical compound N=1N(C(N)=S)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C(C)C([N+]([O-])=O)=C1 JYKIDURCUGRSTD-UHFFFAOYSA-N 0.000 description 6
- DJXIVFHYOLZSBW-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound N=1NC(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 DJXIVFHYOLZSBW-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 125000003310 benzodiazepinyl group Chemical class N1N=C(C=CC2=C1C=CC=C2)* 0.000 description 6
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 6
- 230000010083 bronchial hyperresponsiveness Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 238000011835 investigation Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- QMGVPVSNSZLJIA-FVWCLLPLSA-N strychnine Chemical compound O([C@H]1CC(N([C@H]2[C@H]1[C@H]1C3)C=4C5=CC=CC=4)=O)CC=C1CN1[C@@H]3[C@]25CC1 QMGVPVSNSZLJIA-FVWCLLPLSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 6
- ZOIDJSXQPWPCDP-UHFFFAOYSA-N 4,5-dihydro-3h-2,3-benzodiazepine Chemical class C1=NNCCC2=CC=CC=C21 ZOIDJSXQPWPCDP-UHFFFAOYSA-N 0.000 description 5
- NUKYPUAOHBNCPY-UHFFFAOYSA-N 4-aminopyridine Chemical compound NC1=CC=NC=C1 NUKYPUAOHBNCPY-UHFFFAOYSA-N 0.000 description 5
- GUUWYOOIPWWCNE-UHFFFAOYSA-N 7,8-dichloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepine-3-carbothioamide Chemical compound N=1N(C(N)=S)C(C)CC2=CC(Cl)=C(Cl)C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 GUUWYOOIPWWCNE-UHFFFAOYSA-N 0.000 description 5
- 206010010904 Convulsion Diseases 0.000 description 5
- 206010014950 Eosinophilia Diseases 0.000 description 5
- 102000018899 Glutamate Receptors Human genes 0.000 description 5
- 108010027915 Glutamate Receptors Proteins 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 5
- 206010060860 Neurological symptom Diseases 0.000 description 5
- OFLXLNCGODUUOT-UHFFFAOYSA-N acetohydrazide Chemical compound C\C(O)=N\N OFLXLNCGODUUOT-UHFFFAOYSA-N 0.000 description 5
- 229960004373 acetylcholine Drugs 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 229910052794 bromium Inorganic materials 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000002828 nitro derivatives Chemical class 0.000 description 5
- 239000012258 stirred mixture Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- SXFGVEYSGPJCQX-LLVKDONJSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H](NN=1)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1 SXFGVEYSGPJCQX-LLVKDONJSA-N 0.000 description 4
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 4
- LILXDMFJXYAKMK-UHFFFAOYSA-N 2-bromo-1,1-diethoxyethane Chemical compound CCOC(CBr)OCC LILXDMFJXYAKMK-UHFFFAOYSA-N 0.000 description 4
- ICFDTWVJYPOISV-UHFFFAOYSA-N 2-methyl-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C1CNN=CC2=C1C=C1OC(C)OC1=C2 ICFDTWVJYPOISV-UHFFFAOYSA-N 0.000 description 4
- FRQGOCXHYXSNBY-UHFFFAOYSA-N 7-bromo-8-methoxy-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepine-3-carbothiohydrazide Chemical compound C1=C(Br)C(OC)=CC2=C1CC(C)N(C(=S)NN)N=C2C1=CC=C([N+]([O-])=O)C=C1 FRQGOCXHYXSNBY-UHFFFAOYSA-N 0.000 description 4
- KHOORSIGKCMGKS-UHFFFAOYSA-N 8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C1CNN=CC2=C1C=C1OCOC1=C2 KHOORSIGKCMGKS-UHFFFAOYSA-N 0.000 description 4
- KGWCGCQXGHIUCY-UHFFFAOYSA-N 8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepine-3-carbothiohydrazide Chemical compound N=1N(C(=S)NN)C(C)CC2=CC=C(Cl)C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 KGWCGCQXGHIUCY-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- IDRGFNPZDVBSSE-UHFFFAOYSA-N OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F Chemical compound OCCN1CCN(CC1)c1ccc(Nc2ncc3cccc(-c4cccc(NC(=O)C=C)c4)c3n2)c(F)c1F IDRGFNPZDVBSSE-UHFFFAOYSA-N 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000002082 anti-convulsion Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 4
- RERZNCLIYCABFS-UHFFFAOYSA-N harmaline Chemical compound C1CN=C(C)C2=C1C1=CC=C(OC)C=C1N2 RERZNCLIYCABFS-UHFFFAOYSA-N 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- LPMDYDUHQBVIIQ-UHFFFAOYSA-N n'-hydroxy-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carboximidamide Chemical compound N=1N(C(N)=NO)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 LPMDYDUHQBVIIQ-UHFFFAOYSA-N 0.000 description 4
- 230000000926 neurological effect Effects 0.000 description 4
- 230000000324 neuroprotective effect Effects 0.000 description 4
- 230000036963 noncompetitive effect Effects 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 4
- 229940116357 potassium thiocyanate Drugs 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000006798 ring closing metathesis reaction Methods 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000008259 solid foam Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- DKACXUFSLUYRFU-UHFFFAOYSA-N tert-butyl n-aminocarbamate Chemical compound CC(C)(C)OC(=O)NN DKACXUFSLUYRFU-UHFFFAOYSA-N 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 3
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 3
- QJWWLBQBXWITIU-SNVBAGLBSA-N (8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound C([C@H](N(N=1)C(Cl)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 QJWWLBQBXWITIU-SNVBAGLBSA-N 0.000 description 3
- MOWXJLUYGFNTAL-DEOSSOPVSA-N (s)-[2-chloro-4-fluoro-5-(7-morpholin-4-ylquinazolin-4-yl)phenyl]-(6-methoxypyridazin-3-yl)methanol Chemical compound N1=NC(OC)=CC=C1[C@@H](O)C1=CC(C=2C3=CC=C(C=C3N=CN=2)N2CCOCC2)=C(F)C=C1Cl MOWXJLUYGFNTAL-DEOSSOPVSA-N 0.000 description 3
- FYIKHCFPHJRXPA-UHFFFAOYSA-N 1-cyclopropyl-3-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl]urea Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C(=S)NC(=O)NC1CC1 FYIKHCFPHJRXPA-UHFFFAOYSA-N 0.000 description 3
- YSGIWVCKMDYOCJ-UHFFFAOYSA-N 1-ethyl-3-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl]urea Chemical compound C12=CC=3OCOC=3C=C2CC(C)N(C(=S)NC(=O)NCC)N=C1C1=CC=C([N+]([O-])=O)C=C1 YSGIWVCKMDYOCJ-UHFFFAOYSA-N 0.000 description 3
- SFQUYDNKABFABN-UHFFFAOYSA-N 1-methyl-3-[[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl]amino]urea Chemical compound C12=CC=3OCOC=3C=C2CC(C)N(C(=S)NNC(=O)NC)N=C1C1=CC=C([N+]([O-])=O)C=C1 SFQUYDNKABFABN-UHFFFAOYSA-N 0.000 description 3
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 3
- ORRZGUBHBVWWOP-UHFFFAOYSA-N 4-ethyl-4-methylpiperidine-2,6-dione Chemical compound CCC1(C)CC(=O)NC(=O)C1 ORRZGUBHBVWWOP-UHFFFAOYSA-N 0.000 description 3
- GIVKPTXLEWJGPU-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbonitrile Chemical compound N=1N(C#N)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 GIVKPTXLEWJGPU-UHFFFAOYSA-N 0.000 description 3
- QJWWLBQBXWITIU-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound N=1N(C(Cl)=S)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 QJWWLBQBXWITIU-UHFFFAOYSA-N 0.000 description 3
- IYGYMKDQCDOMRE-QRWMCTBCSA-N Bicculine Chemical compound O([C@H]1C2C3=CC=4OCOC=4C=C3CCN2C)C(=O)C2=C1C=CC1=C2OCO1 IYGYMKDQCDOMRE-QRWMCTBCSA-N 0.000 description 3
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 102000000079 Kainic Acid Receptors Human genes 0.000 description 3
- 108010069902 Kainic Acid Receptors Proteins 0.000 description 3
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 3
- 102000006386 Myelin Proteins Human genes 0.000 description 3
- 108010083674 Myelin Proteins Proteins 0.000 description 3
- QMGVPVSNSZLJIA-UHFFFAOYSA-N Nux Vomica Natural products C1C2C3C4N(C=5C6=CC=CC=5)C(=O)CC3OCC=C2CN2C1C46CC2 QMGVPVSNSZLJIA-UHFFFAOYSA-N 0.000 description 3
- RSDOPYMFZBJHRL-UHFFFAOYSA-N Oxotremorine Chemical compound O=C1CCCN1CC#CCN1CCCC1 RSDOPYMFZBJHRL-UHFFFAOYSA-N 0.000 description 3
- 241001279009 Strychnos toxifera Species 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 229960000750 bemegride Drugs 0.000 description 3
- AACMFFIUYXGCOC-UHFFFAOYSA-N bicuculline Natural products CN1CCc2cc3OCOc3cc2C1C4OCc5c6OCOc6ccc45 AACMFFIUYXGCOC-UHFFFAOYSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- IYGYMKDQCDOMRE-UHFFFAOYSA-N d-Bicucullin Natural products CN1CCC2=CC=3OCOC=3C=C2C1C1OC(=O)C2=C1C=CC1=C2OCO1 IYGYMKDQCDOMRE-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229960004979 fampridine Drugs 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 3
- 150000007857 hydrazones Chemical class 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- HAMGRBXTJNITHG-UHFFFAOYSA-N methyl isocyanate Chemical compound CN=C=O HAMGRBXTJNITHG-UHFFFAOYSA-N 0.000 description 3
- 210000005012 myelin Anatomy 0.000 description 3
- 229960002715 nicotine Drugs 0.000 description 3
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 3
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- 229960005453 strychnine Drugs 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 150000003566 thiocarboxylic acids Chemical class 0.000 description 3
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- MAYZWDRUFKUGGP-VIFPVBQESA-N (3s)-1-[5-tert-butyl-3-[(1-methyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol Chemical compound CN1N=NN=C1CN1C2=NC(C(C)(C)C)=NC(N3C[C@@H](O)CC3)=C2N=N1 MAYZWDRUFKUGGP-VIFPVBQESA-N 0.000 description 2
- BCMYXYHEMGPZJN-UHFFFAOYSA-N 1-chloro-2-isocyanatoethane Chemical compound ClCCN=C=O BCMYXYHEMGPZJN-UHFFFAOYSA-N 0.000 description 2
- WJAXXWSZNSFVNG-UHFFFAOYSA-N 2-bromoethanamine;hydron;bromide Chemical compound [Br-].[NH3+]CCBr WJAXXWSZNSFVNG-UHFFFAOYSA-N 0.000 description 2
- BYJXGCRAXIIOLC-UHFFFAOYSA-N 3,4-dihydro-1h-isochromen-5-ol Chemical compound C1OCCC2=C1C=CC=C2O BYJXGCRAXIIOLC-UHFFFAOYSA-N 0.000 description 2
- FAXDZWQIWUSWJH-UHFFFAOYSA-N 3-methoxypropan-1-amine Chemical compound COCCCN FAXDZWQIWUSWJH-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- OQIYOQLUDTUKCB-UHFFFAOYSA-N 7-bromo-8-methoxy-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepine-3-carbothioyl chloride Chemical compound C1=C(Br)C(OC)=CC2=C1CC(C)N(C(Cl)=S)N=C2C1=CC=C([N+]([O-])=O)C=C1 OQIYOQLUDTUKCB-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- LIXCBBRNEBINEZ-UHFFFAOYSA-N 8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound N=1N(C(Cl)=S)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1 LIXCBBRNEBINEZ-UHFFFAOYSA-N 0.000 description 2
- CNWUTNMHEAETHR-UHFFFAOYSA-N 8-methyl-5-(3-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound N=1N(C(Cl)=S)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=CC([N+]([O-])=O)=C1 CNWUTNMHEAETHR-UHFFFAOYSA-N 0.000 description 2
- UJYWJAWGSVCETJ-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothiohydrazide Chemical compound N=1N(C(=S)NN)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 UJYWJAWGSVCETJ-UHFFFAOYSA-N 0.000 description 2
- 229940098747 AMPA receptor antagonist Drugs 0.000 description 2
- 239000000775 AMPA receptor antagonist Substances 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 206010066091 Bronchial Hyperreactivity Diseases 0.000 description 2
- AORYTULAIJANPL-UHFFFAOYSA-N CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1NNC=N1 Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1NNC=N1 AORYTULAIJANPL-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 206010013654 Drug abuse Diseases 0.000 description 2
- 238000001061 Dunnett's test Methods 0.000 description 2
- 208000005189 Embolism Diseases 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- VLSMHEGGTFMBBZ-OOZYFLPDSA-M Kainate Chemical compound CC(=C)[C@H]1C[NH2+][C@H](C([O-])=O)[C@H]1CC([O-])=O VLSMHEGGTFMBBZ-OOZYFLPDSA-M 0.000 description 2
- 238000006751 Mitsunobu reaction Methods 0.000 description 2
- 208000002740 Muscle Rigidity Diseases 0.000 description 2
- OKJIRPAQVSHGFK-UHFFFAOYSA-N N-acetylglycine Chemical compound CC(=O)NCC(O)=O OKJIRPAQVSHGFK-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CWRVKFFCRWGWCS-UHFFFAOYSA-N Pentrazole Chemical compound C1CCCCC2=NN=NN21 CWRVKFFCRWGWCS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000013566 allergen Substances 0.000 description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 230000001410 anti-tremor Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 208000029028 brain injury Diseases 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- FQTIYMRSUOADDK-UHFFFAOYSA-N ethyl 3-bromopropanoate Chemical compound CCOC(=O)CCBr FQTIYMRSUOADDK-UHFFFAOYSA-N 0.000 description 2
- OAMZXMDZZWGPMH-UHFFFAOYSA-N ethyl acetate;toluene Chemical compound CCOC(C)=O.CC1=CC=CC=C1 OAMZXMDZZWGPMH-UHFFFAOYSA-N 0.000 description 2
- WBJINCZRORDGAQ-UHFFFAOYSA-N ethyl formate Chemical compound CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910001679 gibbsite Inorganic materials 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- YDCHPLOFQATIDS-UHFFFAOYSA-N methyl 2-bromoacetate Chemical compound COC(=O)CBr YDCHPLOFQATIDS-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- YLJSVCDEUMMVJJ-LLVKDONJSA-N n'-[(8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl]acetohydrazide Chemical compound C([C@H](N(N=1)C(=S)NNC(C)=O)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 YLJSVCDEUMMVJJ-LLVKDONJSA-N 0.000 description 2
- OKAHFOJLGNJAAE-UHFFFAOYSA-N n-(2-chloroethyl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carboxamide Chemical compound N=1N(C(=O)NCCCl)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 OKAHFOJLGNJAAE-UHFFFAOYSA-N 0.000 description 2
- 239000007922 nasal spray Substances 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 210000004248 oligodendroglia Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229960005152 pentetrazol Drugs 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 208000011117 substance-related disease Diseases 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- ZWZVWGITAAIFPS-UHFFFAOYSA-N thiophosgene Chemical compound ClC(Cl)=S ZWZVWGITAAIFPS-UHFFFAOYSA-N 0.000 description 2
- 210000005062 tracheal ring Anatomy 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- OCCPWFCBTICIIN-UHFFFAOYSA-N (2,3,4,5,6-pentachlorophenyl) 2-chloroacetate Chemical compound ClCC(=O)OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl OCCPWFCBTICIIN-UHFFFAOYSA-N 0.000 description 1
- UTYPCOHINZNREU-UHFFFAOYSA-N (2,3,4,5,6-pentachlorophenyl) 2-methoxyacetate Chemical compound COCC(=O)OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl UTYPCOHINZNREU-UHFFFAOYSA-N 0.000 description 1
- RCIVUMDLBQZEHP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxycarbamic acid Chemical compound CC(C)(C)ONC(O)=O RCIVUMDLBQZEHP-UHFFFAOYSA-N 0.000 description 1
- UUDAMDVQRQNNHZ-YFKPBYRVSA-N (2s)-2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid Chemical compound CC=1ON=C(O)C=1C[C@H](N)C(O)=O UUDAMDVQRQNNHZ-YFKPBYRVSA-N 0.000 description 1
- YVKNNAAXBXSJCQ-UHFFFAOYSA-N (6-chloropyridazin-4-yl)hydrazine Chemical compound NNC1=CN=NC(Cl)=C1 YVKNNAAXBXSJCQ-UHFFFAOYSA-N 0.000 description 1
- HVLMJPAQWSOEQH-SNVBAGLBSA-N (8r)-5-(2-bromo-3-methyl-4-nitrophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C(=C(C)C(=CC=2)[N+]([O-])=O)Br)=NN1C1=NN=C(C)S1 HVLMJPAQWSOEQH-SNVBAGLBSA-N 0.000 description 1
- WERTVWRVSGDDOX-SECBINFHSA-N (8r)-5-(2-bromo-3-methyl-4-nitrophenyl)-8-methyl-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H](NN=1)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1Br WERTVWRVSGDDOX-SECBINFHSA-N 0.000 description 1
- BEOJVYZTRRAXEG-SECBINFHSA-N (8r)-5-(2-bromo-3-methyl-4-nitrophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound C([C@H](N(N=1)C(Cl)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1Br BEOJVYZTRRAXEG-SECBINFHSA-N 0.000 description 1
- DIVPTPMKMVSCLP-CQSZACIVSA-N (8r)-5-(3,5-dimethyl-4-nitrophenyl)-8-methyl-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=C(C)C=2)[N+]([O-])=O)=NN1C1=NC=CS1 DIVPTPMKMVSCLP-CQSZACIVSA-N 0.000 description 1
- SBRONXBSDYLLCQ-CYBMUJFWSA-N (8r)-5-(3,5-dimethyl-4-nitrophenyl)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=C(C)C=2)[N+]([O-])=O)=NN1C1=NN=C(C)O1 SBRONXBSDYLLCQ-CYBMUJFWSA-N 0.000 description 1
- DDVMJJFMWMVXPE-GFCCVEGCSA-N (8r)-5-(3,5-dimethyl-4-nitrophenyl)-8-methyl-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H](NN=1)C)C2=CC=3OCOC=3C=C2C=1C1=CC(C)=C([N+]([O-])=O)C(C)=C1 DDVMJJFMWMVXPE-GFCCVEGCSA-N 0.000 description 1
- SWRCLBIBNQYOTD-GFCCVEGCSA-N (8r)-5-(3,5-dimethyl-4-nitrophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioamide Chemical compound C([C@H](N(N=1)C(N)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC(C)=C([N+]([O-])=O)C(C)=C1 SWRCLBIBNQYOTD-GFCCVEGCSA-N 0.000 description 1
- CPYWJMLAXHUYQV-GFCCVEGCSA-N (8r)-5-(3,5-dimethyl-4-nitrophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound C([C@H](N(N=1)C(Cl)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC(C)=C([N+]([O-])=O)C(C)=C1 CPYWJMLAXHUYQV-GFCCVEGCSA-N 0.000 description 1
- FUGSSCMRTKBSBY-LLVKDONJSA-N (8r)-5-(3-chloro-4-nitrophenyl)-7-[5-(methoxymethyl)-1,3,4-thiadiazol-2-yl]-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(COC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(Cl)C(=CC=2)[N+]([O-])=O)=N1 FUGSSCMRTKBSBY-LLVKDONJSA-N 0.000 description 1
- DIKMAFLUBHOKMR-SNVBAGLBSA-N (8r)-5-(3-chloro-4-nitrophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(Cl)C(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)S1 DIKMAFLUBHOKMR-SNVBAGLBSA-N 0.000 description 1
- LODBAIZUQXKRMK-SECBINFHSA-N (8r)-5-(3-chloro-4-nitrophenyl)-8-methyl-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H](NN=1)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(Cl)=C1 LODBAIZUQXKRMK-SECBINFHSA-N 0.000 description 1
- DFTNBNHMCFJNMX-SECBINFHSA-N (8r)-5-(3-chloro-4-nitrophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothiohydrazide Chemical compound C([C@H](N(N=1)C(=S)NN)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(Cl)=C1 DFTNBNHMCFJNMX-SECBINFHSA-N 0.000 description 1
- AAQWORBQWWFSRE-GFCCVEGCSA-N (8r)-5-(4-chlorophenyl)-7-(4,5-dihydro-1,3-thiazol-2-yl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(Cl)=CC=2)=NN1C1=NCCS1 AAQWORBQWWFSRE-GFCCVEGCSA-N 0.000 description 1
- CEKCOOCMLAFGIH-LLVKDONJSA-N (8r)-5-(4-chlorophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(Cl)=CC=2)=NN1C1=NN=C(C)S1 CEKCOOCMLAFGIH-LLVKDONJSA-N 0.000 description 1
- KPQQXKCAAACKFK-SNVBAGLBSA-N (8r)-5-(4-chlorophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound C([C@H](N(N=1)C(Cl)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C(Cl)C=C1 KPQQXKCAAACKFK-SNVBAGLBSA-N 0.000 description 1
- YKOPJBHHCKRVDI-GFCCVEGCSA-N (8r)-7-(4,5-dihydro-1,3-thiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NCCS1 YKOPJBHHCKRVDI-GFCCVEGCSA-N 0.000 description 1
- FCVWQZJXEXYVJC-CYBMUJFWSA-N (8r)-7-(5-cyclopropyl-1,3,4-thiadiazol-2-yl)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C(S1)=NN=C1C1CC1 FCVWQZJXEXYVJC-CYBMUJFWSA-N 0.000 description 1
- AKHQAHQNNUGHJA-CYBMUJFWSA-N (8r)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(CC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 AKHQAHQNNUGHJA-CYBMUJFWSA-N 0.000 description 1
- UJPVUQLDZPMEHU-GFCCVEGCSA-N (8r)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(CC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=N1 UJPVUQLDZPMEHU-GFCCVEGCSA-N 0.000 description 1
- VMNMVGXWLBKLED-QGZVFWFLSA-N (8r)-7-(5-hexyl-1,3,4-thiadiazol-2-yl)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(CCCCCC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 VMNMVGXWLBKLED-QGZVFWFLSA-N 0.000 description 1
- NDQADITWFIYWGH-CYBMUJFWSA-N (8r)-7-[5-(methoxymethyl)-1,3,4-thiadiazol-2-yl]-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(COC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 NDQADITWFIYWGH-CYBMUJFWSA-N 0.000 description 1
- NRFLYWUNFIOYTG-CYBMUJFWSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NC=CS1 NRFLYWUNFIOYTG-CYBMUJFWSA-N 0.000 description 1
- LWXWQUFKOVKDQN-CQSZACIVSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-7-(5-propyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(CCC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 LWXWQUFKOVKDQN-CQSZACIVSA-N 0.000 description 1
- GSNJNRUIQLGOKI-CYBMUJFWSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-7-[5-(methylsulfanylmethyl)-1,3,4-thiadiazol-2-yl]-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(CSC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 GSNJNRUIQLGOKI-CYBMUJFWSA-N 0.000 description 1
- AIIMHSPFBGSYTF-ISZGNANSSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-7-[5-[(e)-prop-1-enyl]-1,3,4-thiadiazol-2-yl]-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(/C=C/C)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 AIIMHSPFBGSYTF-ISZGNANSSA-N 0.000 description 1
- BAINVVRRVYQWJT-LLVKDONJSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioamide Chemical compound C([C@H](N(N=1)C(N)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1 BAINVVRRVYQWJT-LLVKDONJSA-N 0.000 description 1
- ADTDDDSIERAFFT-LLVKDONJSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothiohydrazide Chemical compound C([C@H](N(N=1)C(=S)NN)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1 ADTDDDSIERAFFT-LLVKDONJSA-N 0.000 description 1
- LIXCBBRNEBINEZ-LLVKDONJSA-N (8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl chloride Chemical compound C([C@H](N(N=1)C(Cl)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1 LIXCBBRNEBINEZ-LLVKDONJSA-N 0.000 description 1
- QYDBUECWSSLHMG-LLVKDONJSA-N (8r)-8-methyl-5-(4-nitrophenyl)-7-(1,3,4-oxadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=CO1 QYDBUECWSSLHMG-LLVKDONJSA-N 0.000 description 1
- YJJQOWZZCCFVMX-LLVKDONJSA-N (8r)-8-methyl-5-(4-nitrophenyl)-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=CS1 YJJQOWZZCCFVMX-LLVKDONJSA-N 0.000 description 1
- OIOYYLKNYCTXQR-GFCCVEGCSA-N (8r)-8-methyl-5-(4-nitrophenyl)-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=CS1 OIOYYLKNYCTXQR-GFCCVEGCSA-N 0.000 description 1
- CZHZZFZBURUZQV-LLVKDONJSA-N (8r)-8-methyl-5-(4-nitrophenyl)-7-(thiadiazol-5-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=CN=NS1 CZHZZFZBURUZQV-LLVKDONJSA-N 0.000 description 1
- DJXIVFHYOLZSBW-SNVBAGLBSA-N (8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H](NN=1)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 DJXIVFHYOLZSBW-SNVBAGLBSA-N 0.000 description 1
- JAROUUAFUALQND-SNVBAGLBSA-N (8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioamide Chemical compound C([C@H](N(N=1)C(N)=S)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 JAROUUAFUALQND-SNVBAGLBSA-N 0.000 description 1
- YOLHTXQIBMVAPP-LLVKDONJSA-N (8r)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)O1 YOLHTXQIBMVAPP-LLVKDONJSA-N 0.000 description 1
- KSMOBZNRHRBZBO-LLVKDONJSA-N (8r)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)S1 KSMOBZNRHRBZBO-LLVKDONJSA-N 0.000 description 1
- YKOPJBHHCKRVDI-LBPRGKRZSA-N (8s)-7-(4,5-dihydro-1,3-thiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NCCS1 YKOPJBHHCKRVDI-LBPRGKRZSA-N 0.000 description 1
- OIOYYLKNYCTXQR-LBPRGKRZSA-N (8s)-8-methyl-5-(4-nitrophenyl)-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C([C@@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=CS1 OIOYYLKNYCTXQR-LBPRGKRZSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- ZGYIXVSQHOKQRZ-COIATFDQSA-N (e)-n-[4-[3-chloro-4-(pyridin-2-ylmethoxy)anilino]-3-cyano-7-[(3s)-oxolan-3-yl]oxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide Chemical compound N#CC1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC(C=C1Cl)=CC=C1OCC1=CC=CC=N1 ZGYIXVSQHOKQRZ-COIATFDQSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- ADFXKUOMJKEIND-UHFFFAOYSA-N 1,3-dicyclohexylurea Chemical compound C1CCCCC1NC(=O)NC1CCCCC1 ADFXKUOMJKEIND-UHFFFAOYSA-N 0.000 description 1
- APWRZPQBPCAXFP-UHFFFAOYSA-N 1-(1-oxo-2H-isoquinolin-5-yl)-5-(trifluoromethyl)-N-[2-(trifluoromethyl)pyridin-4-yl]pyrazole-4-carboxamide Chemical compound O=C1NC=CC2=C(C=CC=C12)N1N=CC(=C1C(F)(F)F)C(=O)NC1=CC(=NC=C1)C(F)(F)F APWRZPQBPCAXFP-UHFFFAOYSA-N 0.000 description 1
- IXVSRLFXCRPRJW-UHFFFAOYSA-N 1-(3-bromo-2,3-benzodiazepin-1-yl)ethanone Chemical class CC(=O)C1=NN(Br)C=CC2=CC=CC=C12 IXVSRLFXCRPRJW-UHFFFAOYSA-N 0.000 description 1
- YLIMHQRYPUMFDE-UHFFFAOYSA-N 1-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]butane-1,3-dione Chemical compound N=1N(C(=O)CC(C)=O)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 YLIMHQRYPUMFDE-UHFFFAOYSA-N 0.000 description 1
- QONCAABHQUCUKE-UHFFFAOYSA-N 1-chloro-4-methyl-4,5-dihydro-3h-2,3-benzodiazepine Chemical compound ClC1=NNC(C)CC2=CC=CC=C21 QONCAABHQUCUKE-UHFFFAOYSA-N 0.000 description 1
- QYCMQMYMZLHVED-LLVKDONJSA-N 1-methyl-3-[(8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl]urea Chemical compound CNC(=O)NC(=S)N([C@@H](CC1=CC=2OCOC=2C=C11)C)N=C1C1=CC=C([N+]([O-])=O)C=C1 QYCMQMYMZLHVED-LLVKDONJSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- MWYZEGLLCUEGLI-UHFFFAOYSA-N 2,3-benzodiazepine-3-carbothioamide Chemical class C1=NN(C(=S)N)C=CC2=CC=CC=C21 MWYZEGLLCUEGLI-UHFFFAOYSA-N 0.000 description 1
- OZRURMYVWOMCFP-UHFFFAOYSA-N 2,3-benzodiazepine-3-carbothioyl chloride Chemical class C1=NN(C(=S)Cl)C=CC2=CC=CC=C21 OZRURMYVWOMCFP-UHFFFAOYSA-N 0.000 description 1
- UXISYDMJUQAGDW-UHFFFAOYSA-N 2-(2h-2,3-benzodiazepin-1-yl)-1,3,4-thiadiazole Chemical class N1N=CC=C2C=CC=CC2=C1C1=NN=CS1 UXISYDMJUQAGDW-UHFFFAOYSA-N 0.000 description 1
- KZTGOELOFXHSNI-UHFFFAOYSA-N 2-(2h-2,3-benzodiazepin-1-yl)-4h-1,3,4-thiadiazin-5-one Chemical class N1C(=O)CSC(C=2NN=CC=C3C=CC=CC3=2)=N1 KZTGOELOFXHSNI-UHFFFAOYSA-N 0.000 description 1
- XZHJVWATDRVKMN-UHFFFAOYSA-N 2-(2h-2,3-benzodiazepin-1-yl)-5-methyl-6h-1,3,4-thiadiazine Chemical class S1CC(C)=NN=C1C1=C(C=CC=C2)C2=CC=NN1 XZHJVWATDRVKMN-UHFFFAOYSA-N 0.000 description 1
- CQBDKBFRLOQFFV-UHFFFAOYSA-N 2-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(C)=NN=C1C1OC2=CC(C=NNCC3)=C3C=C2O1 CQBDKBFRLOQFFV-UHFFFAOYSA-N 0.000 description 1
- JDDIHQZWCAUVKK-GFCCVEGCSA-N 2-[(8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-4h-1,3,4-thiadiazin-5-one Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NNC(=O)CS1 JDDIHQZWCAUVKK-GFCCVEGCSA-N 0.000 description 1
- AWEWNKPXWBJRCY-CYBMUJFWSA-N 2-[5-[(8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3,4-thiadiazol-2-yl]acetonitrile Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(CC#N)S1 AWEWNKPXWBJRCY-CYBMUJFWSA-N 0.000 description 1
- MLQSEQQFOJHRRH-UHFFFAOYSA-N 2-[7,8-dichloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-4-methyl-1,3-thiazole Chemical compound CC1CC2=CC(Cl)=C(Cl)C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(C)=CS1 MLQSEQQFOJHRRH-UHFFFAOYSA-N 0.000 description 1
- FDGJBAGYPVIXSM-UHFFFAOYSA-N 2-[7-bromo-8-methoxy-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-1,3-thiazole Chemical compound C1=C(Br)C(OC)=CC2=C1CC(C)N(C=1SC=CN=1)N=C2C1=CC=C([N+]([O-])=O)C=C1 FDGJBAGYPVIXSM-UHFFFAOYSA-N 0.000 description 1
- BWMSOYHUPMOGMI-UHFFFAOYSA-N 2-[8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-1,3,4-thiadiazole Chemical compound CC1CC2=CC=C(Cl)C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=CS1 BWMSOYHUPMOGMI-UHFFFAOYSA-N 0.000 description 1
- AKLVZQXOUXCKPW-UHFFFAOYSA-N 2-[8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-1,3-thiazole Chemical compound CC1CC2=CC=C(Cl)C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=CS1 AKLVZQXOUXCKPW-UHFFFAOYSA-N 0.000 description 1
- HSSBJZZUYGIGQE-UHFFFAOYSA-N 2-[8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-4,5-dihydro-1,3-thiazole Chemical compound CC1CC2=CC=C(Cl)C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NCCS1 HSSBJZZUYGIGQE-UHFFFAOYSA-N 0.000 description 1
- LLIBMUGHAMDKFB-UHFFFAOYSA-N 2-[8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-4-methyl-1,3-thiazole Chemical compound CC1CC2=CC=C(Cl)C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(C)=CS1 LLIBMUGHAMDKFB-UHFFFAOYSA-N 0.000 description 1
- TVEATVYDQSHLRA-UHFFFAOYSA-N 2-[8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepin-3-yl]-5-methyl-1,3,4-thiadiazole Chemical compound CC1CC2=CC=C(Cl)C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)S1 TVEATVYDQSHLRA-UHFFFAOYSA-N 0.000 description 1
- UYMAQCAMCNECPU-UHFFFAOYSA-N 2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3-thiazol-4-one Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(=O)CS1 UYMAQCAMCNECPU-UHFFFAOYSA-N 0.000 description 1
- NWJWYIURHKKVGU-UHFFFAOYSA-N 2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3-thiazole-4-carboxylic acid Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(C(O)=O)=CS1 NWJWYIURHKKVGU-UHFFFAOYSA-N 0.000 description 1
- FQASITFGZOPZIA-UHFFFAOYSA-N 2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-4h-1,3,4-thiadiazin-5-one Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NNC(=O)CS1 FQASITFGZOPZIA-UHFFFAOYSA-N 0.000 description 1
- HCGZIOBCKVPDEM-UHFFFAOYSA-N 2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-5,6-dihydro-1,3-thiazin-4-one Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(=O)CCS1 HCGZIOBCKVPDEM-UHFFFAOYSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- HFTQXLCZRCQAAX-UHFFFAOYSA-N 2-bromo-1,1-dimethoxypropane Chemical compound COC(OC)C(C)Br HFTQXLCZRCQAAX-UHFFFAOYSA-N 0.000 description 1
- KGGDGDGVUFLJFL-UHFFFAOYSA-N 2-bromo-1-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]ethanone Chemical compound N=1N(C(=O)CBr)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 KGGDGDGVUFLJFL-UHFFFAOYSA-N 0.000 description 1
- CYQUDJGXCABLPN-UHFFFAOYSA-N 2-bromo-3-methylbenzaldehyde Chemical compound CC1=CC=CC(C=O)=C1Br CYQUDJGXCABLPN-UHFFFAOYSA-N 0.000 description 1
- OPNOAGMBSBADLQ-UHFFFAOYSA-N 2-cyclopropyl-5-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,2,4-thiadiazol-3-one Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C(S1)=NC(=O)N1C1CC1 OPNOAGMBSBADLQ-UHFFFAOYSA-N 0.000 description 1
- QESZDEABMDMSIY-LLVKDONJSA-N 2-methyl-5-[(8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,2,4-thiadiazol-3-one Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(=O)N(C)S1 QESZDEABMDMSIY-LLVKDONJSA-N 0.000 description 1
- QESZDEABMDMSIY-UHFFFAOYSA-N 2-methyl-5-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,2,4-thiadiazol-3-one Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(=O)N(C)S1 QESZDEABMDMSIY-UHFFFAOYSA-N 0.000 description 1
- BDCFWIDZNLCTMF-UHFFFAOYSA-N 2-phenylpropan-2-ol Chemical class CC(C)(O)C1=CC=CC=C1 BDCFWIDZNLCTMF-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SJMJTTXKHFIOEV-UHFFFAOYSA-N 3,5-dimethyl-4-nitrobenzaldehyde Chemical compound CC1=CC(C=O)=CC(C)=C1[N+]([O-])=O SJMJTTXKHFIOEV-UHFFFAOYSA-N 0.000 description 1
- QVZNSGHGWUASMS-UHFFFAOYSA-N 3-(2,6-dichlorophenyl)-1,3-thiazolidin-2-imine Chemical compound ClC1=CC=CC(Cl)=C1N1C(=N)SCC1 QVZNSGHGWUASMS-UHFFFAOYSA-N 0.000 description 1
- WUHGQPHCMTWEDQ-UHFFFAOYSA-N 3-(2h-2,3-benzodiazepin-1-yl)-1,4,2-oxathiazole Chemical class S1CON=C1C1=C(C=CC=C2)C2=CC=NN1 WUHGQPHCMTWEDQ-UHFFFAOYSA-N 0.000 description 1
- BYHQTRFJOGIQAO-GOSISDBHSA-N 3-(4-bromophenyl)-8-[(2R)-2-hydroxypropyl]-1-[(3-methoxyphenyl)methyl]-1,3,8-triazaspiro[4.5]decan-2-one Chemical compound C[C@H](CN1CCC2(CC1)CN(C(=O)N2CC3=CC(=CC=C3)OC)C4=CC=C(C=C4)Br)O BYHQTRFJOGIQAO-GOSISDBHSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- LINXIPJBQRYFHA-UHFFFAOYSA-N 3-chloro-4-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=C(C=O)C=C1Cl LINXIPJBQRYFHA-UHFFFAOYSA-N 0.000 description 1
- OIMRLHCSLQUXLL-UHFFFAOYSA-N 3-chlorobutan-2-one Chemical compound CC(Cl)C(C)=O OIMRLHCSLQUXLL-UHFFFAOYSA-N 0.000 description 1
- MHKHYCQLDODSPH-UHFFFAOYSA-N 4,5-dihydro-2,3-benzodiazepine-3-carbothioamide Chemical class C1=NN(C(=S)N)CCC2=CC=CC=C21 MHKHYCQLDODSPH-UHFFFAOYSA-N 0.000 description 1
- LPQMJHRJUIHXDH-UHFFFAOYSA-N 4,5-dihydro-2,3-benzodiazepine-3-carbothiohydrazide Chemical class C1=NN(C(=S)NN)CCC2=CC=CC=C21 LPQMJHRJUIHXDH-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JTPAHRKRNBFQCX-UHFFFAOYSA-N 4-(9h-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl)aniline Chemical compound C1=CC(N)=CC=C1C(C1=C2)=NN=CCC1=CC1=C2OCO1 JTPAHRKRNBFQCX-UHFFFAOYSA-N 0.000 description 1
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 1
- ZKQRBWJCGRQJQD-UHFFFAOYSA-N 4-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-4-sulfanylidenebutan-2-one Chemical compound N=1N(C(=S)CC(C)=O)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 ZKQRBWJCGRQJQD-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- DZWDWGRVENWNCV-UHFFFAOYSA-N 5,5-dimethyl-2-[8-methyl-5-(4-nitrophenyl)-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3-thiazol-4-one Chemical compound CC1=CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(=O)C(C)(C)S1 DZWDWGRVENWNCV-UHFFFAOYSA-N 0.000 description 1
- UCVACFNOVCOJFP-UHFFFAOYSA-N 5,6-dihydro-1,3-thiazin-4-one Chemical group O=C1CCSC=N1 UCVACFNOVCOJFP-UHFFFAOYSA-N 0.000 description 1
- KHMFANZLDPTRIM-UHFFFAOYSA-N 5-(4-nitrophenyl)-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(C1=C2)=NN(C=3SC=CN=3)CCC1=CC1=C2OCO1 KHMFANZLDPTRIM-UHFFFAOYSA-N 0.000 description 1
- IRPVABHDSJVBNZ-RTHVDDQRSA-N 5-[1-(cyclopropylmethyl)-5-[(1R,5S)-3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl]pyrazol-3-yl]-3-(trifluoromethyl)pyridin-2-amine Chemical compound C1=C(C(F)(F)F)C(N)=NC=C1C1=NN(CC2CC2)C(C2[C@@H]3CN(C[C@@H]32)C2COC2)=C1 IRPVABHDSJVBNZ-RTHVDDQRSA-N 0.000 description 1
- PNQNDUWLSLPYLQ-UHFFFAOYSA-N 5-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-3h-1,3,4-thiadiazol-2-one Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NNC(=O)S1 PNQNDUWLSLPYLQ-UHFFFAOYSA-N 0.000 description 1
- JUJXQLCACJNOSY-UHFFFAOYSA-N 5-methyl-2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3-thiazol-4-one Chemical compound O=C1C(C)SC(N2C(CC3=CC=4OCOC=4C=C3C(C=3C=CC(=CC=3)[N+]([O-])=O)=N2)C)=N1 JUJXQLCACJNOSY-UHFFFAOYSA-N 0.000 description 1
- SCCXADHXVLCUPI-UHFFFAOYSA-N 5h-1,3-thiazol-2-one Chemical group O=C1SCC=N1 SCCXADHXVLCUPI-UHFFFAOYSA-N 0.000 description 1
- KCBWAFJCKVKYHO-UHFFFAOYSA-N 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-1-[[4-[1-propan-2-yl-4-(trifluoromethyl)imidazol-2-yl]phenyl]methyl]pyrazolo[3,4-d]pyrimidine Chemical compound C1(CC1)C1=NC=NC(=C1C1=NC=C2C(=N1)N(N=C2)CC1=CC=C(C=C1)C=1N(C=C(N=1)C(F)(F)F)C(C)C)OC KCBWAFJCKVKYHO-UHFFFAOYSA-N 0.000 description 1
- FGFFVJAHOULCCJ-UHFFFAOYSA-N 7-(2,4-dimethyl-1,3-oxazol-5-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C=1OC(C)=NC=1C FGFFVJAHOULCCJ-UHFFFAOYSA-N 0.000 description 1
- CLTHIHFQDFKBLS-UHFFFAOYSA-N 7-(4,5-dihydro-1,3-thiazol-2-yl)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NCCS1 CLTHIHFQDFKBLS-UHFFFAOYSA-N 0.000 description 1
- MNVHGIPAUWMLIB-UHFFFAOYSA-N 7-(4,5-dimethyl-1,3-thiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC(C)=C(C)S1 MNVHGIPAUWMLIB-UHFFFAOYSA-N 0.000 description 1
- UJPVUQLDZPMEHU-UHFFFAOYSA-N 7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound S1C(CC)=NN=C1N1C(C)CC2=CC(OCO3)=C3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=N1 UJPVUQLDZPMEHU-UHFFFAOYSA-N 0.000 description 1
- PVMUCHMZWQBDDI-UHFFFAOYSA-N 7-(6-chloropyridazin-3-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=CC=C(Cl)N=N1 PVMUCHMZWQBDDI-UHFFFAOYSA-N 0.000 description 1
- PVKQNCRLGHLUQL-UHFFFAOYSA-N 7-[5-(chloromethyl)-1,3,4-thiadiazol-2-yl]-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(CCl)S1 PVKQNCRLGHLUQL-UHFFFAOYSA-N 0.000 description 1
- GATVDTRCZZBSOF-UHFFFAOYSA-N 7-methyl-5-(4-nitrophenyl)-7,8-dihydro-5H-[1,3]dioxolo[4,5-g]isochromen-6-ium perchlorate Chemical compound [O-]Cl(=O)(=O)=O.[OH+]1C(C)CC2=CC=3OCOC=3C=C2C1C1=CC=C([N+]([O-])=O)C=C1 GATVDTRCZZBSOF-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RLDNQVKSRPKFBV-UHFFFAOYSA-N 7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine;hydrochloride Chemical compound Cl.C1=CNN=CC2=C1C=C1OCOC1=C2 RLDNQVKSRPKFBV-UHFFFAOYSA-N 0.000 description 1
- ZYPWMYAAUUCKMQ-UHFFFAOYSA-N 8-chloro-4-methyl-1-(4-nitrophenyl)-4,5-dihydro-2,3-benzodiazepine-3-carbothioamide Chemical compound N=1N(C(N)=S)C(C)CC2=CC=C(Cl)C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 ZYPWMYAAUUCKMQ-UHFFFAOYSA-N 0.000 description 1
- NRFLYWUNFIOYTG-UHFFFAOYSA-N 8-methyl-5-(3-methyl-4-nitrophenyl)-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NC=CS1 NRFLYWUNFIOYTG-UHFFFAOYSA-N 0.000 description 1
- DPKNPCFYRUSSKN-UHFFFAOYSA-N 8-methyl-5-(3-methyl-4-nitrophenyl)-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)S1 DPKNPCFYRUSSKN-UHFFFAOYSA-N 0.000 description 1
- HVNBQNJFIYNECB-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(1,2,4-oxadiazol-3-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C=1N=CON=1 HVNBQNJFIYNECB-UHFFFAOYSA-N 0.000 description 1
- YJJQOWZZCCFVMX-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=CS1 YJJQOWZZCCFVMX-UHFFFAOYSA-N 0.000 description 1
- OIOYYLKNYCTXQR-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=CS1 OIOYYLKNYCTXQR-UHFFFAOYSA-N 0.000 description 1
- YOWRGFQZNDYKND-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(2h-tetrazol-5-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=NN1 YOWRGFQZNDYKND-UHFFFAOYSA-N 0.000 description 1
- ACPUNVKGYMRATC-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(4-phenyl-1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C(SC=1)=NC=1C1=CC=CC=C1 ACPUNVKGYMRATC-UHFFFAOYSA-N 0.000 description 1
- ZHKLOVGEDQCOIQ-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(5-phenyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C(S1)=NN=C1C1=CC=CC=C1 ZHKLOVGEDQCOIQ-UHFFFAOYSA-N 0.000 description 1
- XGTWZOHDXULZGS-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-(thiatriazol-5-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=NS1 XGTWZOHDXULZGS-UHFFFAOYSA-N 0.000 description 1
- UXQZBUZVCWNIQN-UHFFFAOYSA-N 8-methyl-5-(4-nitrophenyl)-7-pyrimidin-2-yl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=CC=N1 UXQZBUZVCWNIQN-UHFFFAOYSA-N 0.000 description 1
- HZWPGVFGSFRDFT-UHFFFAOYSA-N 8-methyl-5-phenyl-7-(1,3-thiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC=CC=2)=NN1C1=NC=CS1 HZWPGVFGSFRDFT-UHFFFAOYSA-N 0.000 description 1
- AAHJYIKIPFDPTJ-UHFFFAOYSA-N 8-methyl-5-phenyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioamide Chemical compound N=1N(C(N)=S)C(C)CC2=CC=3OCOC=3C=C2C=1C1=CC=CC=C1 AAHJYIKIPFDPTJ-UHFFFAOYSA-N 0.000 description 1
- ULXFKWOOJHZVEA-UHFFFAOYSA-N 8-methyl-7-(1-methyl-1,2,4-triazol-3-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C=1N=CN(C)N=1 ULXFKWOOJHZVEA-UHFFFAOYSA-N 0.000 description 1
- QUNBVVFPYLTKCY-UHFFFAOYSA-N 8-methyl-7-(2-methyl-1,2,4-triazol-3-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=NN1C QUNBVVFPYLTKCY-UHFFFAOYSA-N 0.000 description 1
- YMINJPLUCROKOI-UHFFFAOYSA-N 8-methyl-7-(2-methyl-1,3-oxazol-5-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=CN=C(C)O1 YMINJPLUCROKOI-UHFFFAOYSA-N 0.000 description 1
- HLXHWNWKRQXIQS-UHFFFAOYSA-N 8-methyl-7-(2-methyl-1,3-thiazol-4-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=CSC(C)=N1 HLXHWNWKRQXIQS-UHFFFAOYSA-N 0.000 description 1
- CPRWIZNWJRVINW-UHFFFAOYSA-N 8-methyl-7-(3-methyl-1,2-oxazol-5-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=CC(C)=NO1 CPRWIZNWJRVINW-UHFFFAOYSA-N 0.000 description 1
- HGDKDKHNEBTPQY-UHFFFAOYSA-N 8-methyl-7-(5-methyl-1,2,4-oxadiazol-3-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NOC(C)=N1 HGDKDKHNEBTPQY-UHFFFAOYSA-N 0.000 description 1
- MLGNGJQRJCSVEC-UHFFFAOYSA-N 8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-5-(3-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=C(C=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)S1 MLGNGJQRJCSVEC-UHFFFAOYSA-N 0.000 description 1
- NDGPDYWNMLVTCC-UHFFFAOYSA-N 8-methyl-7-(5-methyl-1,3-thiazol-2-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NC=C(C)S1 NDGPDYWNMLVTCC-UHFFFAOYSA-N 0.000 description 1
- QFFVMOOUIZWYCP-UHFFFAOYSA-N 8-methyl-7-(5-methyl-6h-1,3,4-thiadiazin-2-yl)-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(C)CS1 QFFVMOOUIZWYCP-UHFFFAOYSA-N 0.000 description 1
- RFSCKANUAWCSRN-UHFFFAOYSA-N 8-methyl-8,9-dihydro-7h-[1,3]dioxolo[4,5-h][2,3]benzodiazepine Chemical compound C1=C2C=NNC(C)CC2=CC2=C1OCO2 RFSCKANUAWCSRN-UHFFFAOYSA-N 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010002660 Anoxia Diseases 0.000 description 1
- 241000976983 Anoxia Species 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- JWONCTNQCVZUSI-UHFFFAOYSA-N BrC#N.C1=NNC=C2C=CC=CC2=C1 Chemical class BrC#N.C1=NNC=C2C=CC=CC2=C1 JWONCTNQCVZUSI-UHFFFAOYSA-N 0.000 description 1
- 206010048962 Brain oedema Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- XKDWPUFOEVKZHT-UHFFFAOYSA-N CC1CC2=CC=3OCOC=3C=C2C(C=2C=C(C(C)=CC=2)[N+]([O-])=O)=NN1C1(C)SCN=N1 Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=C(C(C)=CC=2)[N+]([O-])=O)=NN1C1(C)SCN=N1 XKDWPUFOEVKZHT-UHFFFAOYSA-N 0.000 description 1
- YAJQVQLATCFZDC-FZHZQARLSA-N C[C@H](C1)N(C2=NN=C(C(OCC3=CC=CC=C3)=O)[S+]2CN)N=C(C(C=C2)=CC(C)=C2[N+]([O-])=O)C2=C1C=C1OCOC1=C2 Chemical compound C[C@H](C1)N(C2=NN=C(C(OCC3=CC=CC=C3)=O)[S+]2CN)N=C(C(C=C2)=CC(C)=C2[N+]([O-])=O)C2=C1C=C1OCOC1=C2 YAJQVQLATCFZDC-FZHZQARLSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- HTJDQJBWANPRPF-UHFFFAOYSA-N Cyclopropylamine Chemical compound NC1CC1 HTJDQJBWANPRPF-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 229940122459 Glutamate antagonist Drugs 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020852 Hypertonia Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 206010022520 Intention tremor Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- 208000037212 Neonatal hypoxic and ischemic brain injury Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 206010068956 Respiratory tract inflammation Diseases 0.000 description 1
- 238000000297 Sandmeyer reaction Methods 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 208000027520 Somatoform disease Diseases 0.000 description 1
- 208000020339 Spinal injury Diseases 0.000 description 1
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 101001018322 Sus scrofa Myelin basic protein Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 206010043994 Tonic convulsion Diseases 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 206010048010 Withdrawal syndrome Diseases 0.000 description 1
- LUBJCRLGQSPQNN-UHFFFAOYSA-N Z-phenylurea Natural products NC(=O)NC1=CC=CC=C1 LUBJCRLGQSPQNN-UHFFFAOYSA-N 0.000 description 1
- LXRZVMYMQHNYJB-UNXOBOICSA-N [(1R,2S,4R)-4-[[5-[4-[(1R)-7-chloro-1,2,3,4-tetrahydroisoquinolin-1-yl]-5-methylthiophene-2-carbonyl]pyrimidin-4-yl]amino]-2-hydroxycyclopentyl]methyl sulfamate Chemical compound CC1=C(C=C(S1)C(=O)C1=C(N[C@H]2C[C@H](O)[C@@H](COS(N)(=O)=O)C2)N=CN=C1)[C@@H]1NCCC2=C1C=C(Cl)C=C2 LXRZVMYMQHNYJB-UNXOBOICSA-N 0.000 description 1
- CAPPZWZXCXZANC-GFCCVEGCSA-N [5-[(8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3,4-thiadiazol-2-yl]methanol Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(CO)S1 CAPPZWZXCXZANC-GFCCVEGCSA-N 0.000 description 1
- YBAMEUAUHMJQFL-CYBMUJFWSA-N [5-[(8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3,4-thiadiazol-2-yl]methyl acetate Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=NN1C1=NN=C(COC(C)=O)S1 YBAMEUAUHMJQFL-CYBMUJFWSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000004479 aerosol dispenser Substances 0.000 description 1
- 206010001584 alcohol abuse Diseases 0.000 description 1
- 208000025746 alcohol use disease Diseases 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000009285 allergic inflammation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003194 amino acid receptor blocking agent Substances 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000007953 anoxia Effects 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000002253 anti-ischaemic effect Effects 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000005098 aryl alkoxy carbonyl group Chemical group 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 229940053197 benzodiazepine derivative antiepileptics Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 150000003979 beta-halocarboxylic acids Chemical class 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 208000006752 brain edema Diseases 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- FCCCRBDJBTVFSJ-UHFFFAOYSA-N butanehydrazide Chemical compound CCCC(=O)NN FCCCRBDJBTVFSJ-UHFFFAOYSA-N 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004651 carbonic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- SFZULDYEOVSIKM-UHFFFAOYSA-N chembl321317 Chemical compound C1=CC(C(=N)NO)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=N)NO)O1 SFZULDYEOVSIKM-UHFFFAOYSA-N 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- WASQWSOJHCZDFK-UHFFFAOYSA-N diketene Chemical compound C=C1CC(=O)O1 WASQWSOJHCZDFK-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000001037 epileptic effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- HGRWGVJUBLYJBO-UHFFFAOYSA-N ethyl 2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3-thiazole-4-carboxylate Chemical compound CCOC(=O)C1=CSC(N2C(CC3=CC=4OCOC=4C=C3C(C=3C=CC(=CC=3)[N+]([O-])=O)=N2)C)=N1 HGRWGVJUBLYJBO-UHFFFAOYSA-N 0.000 description 1
- IOLQWGVDEFWYNP-UHFFFAOYSA-N ethyl 2-bromo-2-methylpropanoate Chemical compound CCOC(=O)C(C)(C)Br IOLQWGVDEFWYNP-UHFFFAOYSA-N 0.000 description 1
- ARFLASKVLJTEJD-UHFFFAOYSA-N ethyl 2-bromopropanoate Chemical compound CCOC(=O)C(C)Br ARFLASKVLJTEJD-UHFFFAOYSA-N 0.000 description 1
- VICYTAYPKBLQFB-UHFFFAOYSA-N ethyl 3-bromo-2-oxopropanoate Chemical compound CCOC(=O)C(=O)CBr VICYTAYPKBLQFB-UHFFFAOYSA-N 0.000 description 1
- HDDIMVDSLSBDFB-CYBMUJFWSA-N ethyl 5-[(8r)-8-methyl-5-(3-methyl-4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3,4-thiadiazole-2-carboxylate Chemical compound S1C(C(=O)OCC)=NN=C1N1[C@H](C)CC2=CC(OCO3)=C3C=C2C(C=2C=C(C)C(=CC=2)[N+]([O-])=O)=N1 HDDIMVDSLSBDFB-CYBMUJFWSA-N 0.000 description 1
- UREBWPXBXRYXRJ-UHFFFAOYSA-N ethyl acetate;methanol Chemical compound OC.CCOC(C)=O UREBWPXBXRYXRJ-UHFFFAOYSA-N 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- MWSSSKLFXVVQBU-CQSZACIVSA-N ethyl n-[2-methyl-4-[(8r)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]phenyl]carbamate Chemical compound C1=C(C)C(NC(=O)OCC)=CC=C1C(C1=C2)=NN(C=3SC(C)=NN=3)[C@H](C)CC1=CC1=C2OCO1 MWSSSKLFXVVQBU-CQSZACIVSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 239000000928 excitatory amino acid agonist Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- XZBIXDPGRMLSTC-UHFFFAOYSA-N formohydrazide Chemical compound NNC=O XZBIXDPGRMLSTC-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007897 gelcap Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003825 glutamate receptor antagonist Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- BCQZXOMGPXTTIC-UHFFFAOYSA-N halothane Chemical compound FC(F)(F)C(Cl)Br BCQZXOMGPXTTIC-UHFFFAOYSA-N 0.000 description 1
- 229960003132 halothane Drugs 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- BRWIZMBXBAOCCF-UHFFFAOYSA-N hydrazinecarbothioamide Chemical compound NNC(N)=S BRWIZMBXBAOCCF-UHFFFAOYSA-N 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- YNRKXBSUORGBIU-UHFFFAOYSA-N hydroxycarbamothioic s-acid Chemical class ONC(S)=O YNRKXBSUORGBIU-UHFFFAOYSA-N 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 210000003657 middle cerebral artery Anatomy 0.000 description 1
- 201000007309 middle cerebral artery infarction Diseases 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- VJYWSEXXFSOEQC-UHFFFAOYSA-N n-[1-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1-oxopropan-2-yl]acetamide Chemical compound C12=CC=3OCOC=3C=C2CC(C)N(C(=O)C(NC(C)=O)C)N=C1C1=CC=C([N+]([O-])=O)C=C1 VJYWSEXXFSOEQC-UHFFFAOYSA-N 0.000 description 1
- KSSNZEOAUIDIMP-CYBMUJFWSA-N n-[2-methyl-4-[(8r)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-5-yl]phenyl]acetamide Chemical compound C([C@H]1C)C2=CC=3OCOC=3C=C2C(C=2C=C(C)C(NC(C)=O)=CC=2)=NN1C1=NN=C(C)S1 KSSNZEOAUIDIMP-CYBMUJFWSA-N 0.000 description 1
- OLZJAJLZNJEBKY-LLVKDONJSA-N n-[[(8r)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl]amino]formamide Chemical compound C([C@H](N(N=1)C(=S)NNC=O)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C=C1 OLZJAJLZNJEBKY-LLVKDONJSA-N 0.000 description 1
- ZWJCHQDEJMVBCT-UHFFFAOYSA-N n-[[5-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepin-7-yl]-1,3,4-thiadiazol-2-yl]methyl]cyclopropanamine Chemical compound CC1CC2=CC=3OCOC=3C=C2C(C=2C=CC(=CC=2)[N+]([O-])=O)=NN1C(S1)=NN=C1CNC1CC1 ZWJCHQDEJMVBCT-UHFFFAOYSA-N 0.000 description 1
- XBXCNNQPRYLIDE-UHFFFAOYSA-M n-tert-butylcarbamate Chemical compound CC(C)(C)NC([O-])=O XBXCNNQPRYLIDE-UHFFFAOYSA-M 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 208000027753 pain disease Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 208000033300 perinatal asphyxia Diseases 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- LIGACIXOYTUXAW-UHFFFAOYSA-N phenacyl bromide Chemical compound BrCC(=O)C1=CC=CC=C1 LIGACIXOYTUXAW-UHFFFAOYSA-N 0.000 description 1
- UOXGCZSZFCBBCB-UHFFFAOYSA-N phenyl 3-carbamothioyl-1h-1,2-benzodiazepine-4-carboxylate Chemical compound NC(=S)C1=NNC2=CC=CC=C2C=C1C(=O)OC1=CC=CC=C1 UOXGCZSZFCBBCB-UHFFFAOYSA-N 0.000 description 1
- AHWALFGBDFAJAI-UHFFFAOYSA-N phenyl carbonochloridate Chemical compound ClC(=O)OC1=CC=CC=C1 AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 1
- DJXGJYCSPXRZAK-UHFFFAOYSA-N phenyl n-(sulfanylidenemethylidene)carbamate Chemical compound S=C=NC(=O)OC1=CC=CC=C1 DJXGJYCSPXRZAK-UHFFFAOYSA-N 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- DXGIRFAFSFKYCF-UHFFFAOYSA-N propanehydrazide Chemical compound CCC(=O)NN DXGIRFAFSFKYCF-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000000449 purkinje cell Anatomy 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- QDGHXQFTWKRQTG-UHFFFAOYSA-N pyrimidin-2-ylhydrazine Chemical compound NNC1=NC=CC=N1 QDGHXQFTWKRQTG-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000010825 rotarod performance test Methods 0.000 description 1
- 210000003497 sciatic nerve Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- KEAYESYHFKHZAL-OUBTZVSYSA-N sodium-24 Chemical compound [24Na] KEAYESYHFKHZAL-OUBTZVSYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000003506 spasmogen Substances 0.000 description 1
- 230000002048 spasmolytic effect Effects 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229950004608 talampanel Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YNBSLPIJTRHSIX-GFCCVEGCSA-N tert-butyl (8r)-5-(2-bromo-3-methyl-4-nitrophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carboxylate Chemical compound C([C@H](N(N=1)C(=O)OC(C)(C)C)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C([N+]([O-])=O)C(C)=C1Br YNBSLPIJTRHSIX-GFCCVEGCSA-N 0.000 description 1
- AUQPQSRIDWPGSG-OAHLLOKOSA-N tert-butyl (8r)-5-(3,5-dimethyl-4-nitrophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carboxylate Chemical compound C([C@H](N(N=1)C(=O)OC(C)(C)C)C)C2=CC=3OCOC=3C=C2C=1C1=CC(C)=C([N+]([O-])=O)C(C)=C1 AUQPQSRIDWPGSG-OAHLLOKOSA-N 0.000 description 1
- VNUKSLYENILSCI-CYBMUJFWSA-N tert-butyl (8r)-5-(4-chlorophenyl)-8-methyl-8,9-dihydro-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carboxylate Chemical compound C([C@H](N(N=1)C(=O)OC(C)(C)C)C)C2=CC=3OCOC=3C=C2C=1C1=CC=C(Cl)C=C1 VNUKSLYENILSCI-CYBMUJFWSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- GZNAASVAJNXPPW-UHFFFAOYSA-M tin(4+) chloride dihydrate Chemical compound O.O.[Cl-].[Sn+4] GZNAASVAJNXPPW-UHFFFAOYSA-M 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- FWPIDFUJEMBDLS-UHFFFAOYSA-L tin(II) chloride dihydrate Substances O.O.Cl[Sn]Cl FWPIDFUJEMBDLS-UHFFFAOYSA-L 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D253/00—Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
- C07D253/08—Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 condensed with carbocyclic rings or ring systems
- C07D253/10—Condensed 1,2,4-triazines; Hydrogenated condensed 1,2,4-triazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/02—Nasal agents, e.g. decongestants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D243/00—Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
- C07D243/02—Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
Definitions
- the invention relates to new 2,3-benzodiazepine derivatives substituted by heterocycles, the acid addition salts thereof, as well as the pharmaceutical compositions containing them.
- the invention also relates to the use of said compounds as AMPA receptor antagonists.
- AMPA (2-amino-3-(3-hydroxy-5-methyl-4 isoxazolyl)-propionic acid) type glutamate receptors play a major role in a variety of central nervous system disorders. Inhibition of the activation of AMPA type receptors has been shown to have neuroprotective, antiepileptic and muscle-relaxant effects (see e.g., Cerebrovasc. Brain Metab. Rev. 6:225 (1994); Neurology 44 Suppl. 8, S14 (1994); J. Pharmacol. Exp. Ther. 260:742 (1992)).
- Glutamate receptors have been found not only in the CNS but also in peripheral tissues indicating therapeutic potential opportunities beyond the CNS (see e.g., Skery et al, Trends in Pharm. Sci., 22:74 (2001). Respiratory tract inflammation has been postulated to be beneficially influenced by NMDA-type glutamate antagonists (Said, Trends in Pharm. Sci. 20:132 (1999); and Said et al., Trends in Pharm. Sci., 22:344 (2001)).
- AMPA type receptors can be inhibited by various competitive and non-competitive antagonists.
- the therapeutic potential of non-competitive antagonists may be superior to that of competitive ones insofar as their activity is not dependent on high concentrations of endogenous glutamate (see e.g., Vizi et al., CNS Drug Reu, 2:91 (1996)).
- One of the most prominent non-competitive AMPA receptor antagonists is 5-(4-aminophenyl)-8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (also designated as GYKI 52466) possessing remarkable antiepileptic, muscle relaxant and neuroprotective activities.
- 5,795,886 describes several 2,3-benzodiazepine derivatives having aryl and heteroaryl substituents (e.g., pyridyl, thienyl, furyl, phenyl, imidazolyl, benzimidazolyl, etc.) at C3.
- aryl and heteroaryl substituents e.g., pyridyl, thienyl, furyl, phenyl, imidazolyl, benzimidazolyl, etc.
- the compounds listed above have been found to be particularly useful in diseases in which the over-function of the glutamate system can be detected.
- Such acute disorders of the CNS include for example stroke, brain ischemia, brain and spinal cord injuries, perinatal hypoxia, hypoglycemic nervous damage, etc.
- Additional chronic illnesses in which selected AMPA antagonists can be applied include e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, AIDS-induced dementia, glaucoma, diabetic retinopathy as well as Parkinson's disease.
- AMPA antagonists have beneficial effect on the autoimmune encephalomyelitis elicited in rats, which is the accepted model of multiple sclerosis (Smith et al., Nature Medicine 6:62 (2000)).
- AMPA and NMDA receptors in the spinal cord have been implicated in the contraction of the bladder and the urethra, suggesting that AMPA antagonists may be useful in the treatment of urinary incontinence (Nishizawa et al., A du in Exp. Med . & Biol. 4:275 (1999)).
- GYKI 52466 has been reported to inhibit growth of selected tumor cell types (colon adenocarcinoma, astrocytoma, breast carcinoma, lung carcinoma and neuroblastoma) (Rzeski et al., Proc. Nat. Acad. Sci. 98:6372 (2001)).
- the invention relates to new 2,3-benzodiazepine derivatives of formula (I) below, isomers and acid addition salts thereof and to pharmaceutical compositions containing the same, wherein the substituent meanings are as follows:
- R 3 represents a substituted or unsubstituted 5- or 6-membered, aromatic, saturated or partially saturated heterocyclic ring containing at least 2 heteroatoms, in which the heteroatom can be oxygen-, sulfur- or nitrogen atom and in the case when the heterocyclic ring contains 2 heteroatoms one of them is different from nitrogen;
- R 4 , R 5 , R 6 and R 7 independently from each other represent hydrogen atom, halogen atom, C 1 -C 3 alkyl group, nitro group or amino group, wherein the amino group can be substituted independently from each other with one or two C 1 -C 3 alkyl group, C 2 -C 5 acyl group, or C 2 -C 5 alkoxycarbonyl group, or aminocarbonyl group, or C 2 -C 5 alkylaminocarbonyl group; and
- R 9 represents C 1 -C 3 alkoxy group or halogen atom
- R 10 represents hydrogen or halogen atom
- R 9 and R 10 together can be C 1 -C 3 alkylendioxy group.
- Representative compounds include, without limitation, (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8-methyl-8,9-di
- the invention also discloses pharmaceutical compositions comprising a compound of formula (I) as the active ingredient, wherein the meaning of R 3 -R 7 , R 9 and R 10 is as defined herein, or a steroisomer or a pharmaceutically acceptable salt thereof together with pharmaceutically acceptable solvents, diluents, carriers and filling materials.
- the compounds are suitable for treating conditions associated with muscle spasms, epilepsy, acute and chronic forms of neurodegenerative diseases as well as preventing, treating or alleviating the symptoms of acute and chronic inflammatory disorders.
- neurodegenerative disorders include, for example, cerebral ischemia (stroke), brain and spinal cord trauma, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, AIDS-induced dementia, essential tremor, Parkinson's disease, multiple sclerosis and urinary incontinence.
- Acute or chronic disorders of the eyes associated with glutamate dysfunction include glaucoma or diabetic retinopathy.
- methods for treating epilepsy, reducing muscle spasms, reducing pain, or inflammatory disorders which comprise administering to the subject in need of such treatment a therapeutically effective amount of the compounds of the invention.
- inflammatory disorders include allergic inflammatory disorders of the airways which can encompass allergic rhinitis, intrinsic or extrinsic asthma bronchiale, acute or chronic bronchitis, chronic obstructive pulmonary disease and pulmonary fibrosis.
- the invention discloses novel substituted 2,3-benzodiazepine derivative compounds and methods of making the same.
- Pharmaceutical compositions employing the novel substituted 2,3-benzodiazepine derivative compounds and their use for the treatment for a number of disease conditions are also disclosed.
- the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases “having at least” or “including at least”.
- the term “comprising” means that the process includes at least the recited steps, but may include additional steps.
- the term “comprising” means that the compound or composition includes at least the recited features or components, but may also include additional features or components.
- variable can be equal to any integer value of the numerical range, including the end-points of the range.
- variable can be equal to any real value of the numerical range, including the end-points of the range.
- a variable which is described as having values between 0 and 2 can be 0, 1 or 2 for variables which are inherently discrete, and can be 0.0, 0.1, 0.01, 0.001, or any other real value for variables which are inherently continuous.
- mammals or “mammal in need” include humans as well as non-human mammals, particularly domesticated animals including, without limitation, cats, dogs, and horses.
- a compound of the invention may be administered prophylactically, prior to any development of symptoms.
- the term “therapeutic”, “therapeutically”, and permutations of these terms are used to encompass therapeutic, palliative as well as prophylactic uses.
- by “treating or alleviating the symptoms” is meant reducing, preventing, and/or reversing the symptoms of the individual to which a compound of the invention has been administered, as compared to the symptoms of an individual receiving no such administration.
- R 1 and R 2 independently of each other represent hydrogen atom or C 1 -C 3 alkyl group
- R 3 represents substituted or unsubstituted 5- or 6-membered, aromatic, saturated or partially saturated heterocyclic ring containing at least 2 hetero atoms, in which the hetero atom can be oxygen-, sulfur- or nitrogen atom and in the case when R 3 is a 5-membered ring one of the heteroatoms is different from nitrogen;
- R 4 , R 5 , R 6 , R 7 and R 8 independently from each other represent hydrogen atom, halogen atom, C 1 -C 3 alkyl group, nitro group or amino group, wherein the amino group can be substituted independently from each other with one or two C 1 -C 3 alkyl group, C 2 -C 5 acyl group, or C 2 -C 5 alkoxycarbonyl group, or aminocarbonyl group, or C 2 -C 5 alkylaminocarbonyl group,
- R 9 represents C 1 -C 3 alkoxy group or halogen atom
- R 10 represents hydrogen or halogen atom
- R 9 and R 10 together can be C 1 -C 3 alkylendioxy group.
- the present invention is directed to 2,3-benzodiazepine derivatives of formula (II) as shown below in formula (I): wherein R 1 and R 8 are hydrogen, R 2 is CH 3 , the meaning of R 4 , R 5 , R 6 , R 7 , R 9 and R 10 is as defined above, R 3 is a moiety selected from the group consisting of substituted or unsubstituted isoxazole, isothiazole, thiazole, thiazoline, 4-thiazolinone, oxazole, oxazoline, 1,2,3-thiadiazole, 1,3,4-thiadiazole, 1,3,4-thiadiazolin-2-one, 1,2,4-thiadiazolin-3-one, 1,4,2-oxathiazoline, 1,3,4-oxadiazole, 1,2,3-triazole, 1,3,4-triazole, 1,2,3,4-thiatriazole, tetrazole, 1,3-thiazin-4-one and 1,3,4-thiadiazin
- the heterocyclic substituent of the benzodiazepine ring as R 3 can be further substituted—among others—with one or more C 1 -C 6 alkyl group, C 2 -C 3 alkenyl, a C 3 -C 7 cycloalkyl, a trifluoromethyl, a C 1 -C 3 alkoxy or a phenyl group, an oxo, a formyl, a carboxyl or a C 2 -C 4 alkoxycarbonyl group, a C 1 -C 3 alkoxymethyl group, a hydroxymethyl group, wherein the hydroxy group can be alkylated or acylate, a C 1 -C 3 alkylthiomethyl group, a cyanomethyl group or an aminomehtyl group, wherein the amino group can be alkylated or acylated.
- alkyl group encompasses both straight and branched chain alkyl groups.
- alkenyl group can be vinyl, 1-propenyl or 2-propenyl group.
- halogen atom can be fluorine, chlorine, bromine, or iodine atom.
- the amino group can be unsubstituted or substituted with one or two alkyl groups, as well as acylated with aliphatic or aromatic carboxylic acid or any kind of carbonic acid esters.
- isomers means both enantiomers, as well as the E and Z isomers if applicable, furthermore, isomers shall include diastereomers, tautomers and mixture of them, for example racemic mixture.
- Salts of the compounds of formula (I) relate to physiologically acceptable salts formed with inorganic or organic acids.
- Suitable inorganic acids can be, for example, hydrochloric acid, hydrobromic acid, phosphoric acid or sulfuric acid.
- Suitable organic acids can be, for example, formic acid, acetic acid, maleic and fumaric acid, succinic acid, lactic acid, tartaric acid, citric acid or methanesulfonic acid.
- Representative compounds of formula (a) include, without limitation, (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8-methyl-8
- the compounds of formulas (I) and (II) can be prepared in the following way.
- the heterocycle corresponding to R 3 is built up starting from a compound of formula (III) below: wherein R 1 -R 10 are defined for formulas (I) and (II) above, by known methods or a compound having the following formula (IV) or the following isochromenilium salt having formula (IVa) which is formed from the compound of formula (IV), wherein the meaning of R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is as defined above:
- a compound of formulas (IV) or (IVa) is reacted with a compound having formula (V or (VI): H 2 N—NH—R 3 (V) H 2 N—NH—R 11 (VI) wherein the meaning of R 3 is as defined above and the meaning of R 11 is C 2 -C 8 alkoxycarbonyl or aryl alkoxycarbonyl group to obtain the compounds of formula
- the hydroxyl group of the compounds of formulas (VII) or (VIII) is transformed into a sulfonate ester, and the latter intermediate is submitted to ring-closure resulting in compounds of formulas (I), (II) or (IX): by applying a strong base.
- the compounds of formulas (VII) or (VIII) are transformed into compounds of formulas (I), (II) or (IX) according to Mitsunobu ( Synthesis , I:1 (1988)).
- the R 11 group is cleaved to give the compound of formula (III), which is converted into the compound of formulas (I) or (II) according to the method described in process as described above.
- a compound of formula (I) or (II) obtained according to any of the above processes the nitro group is reduced or the amino group is acylated, alkylated, or after diazotation, is exchanged by a halogen atom or hydrogen atom, or a halogen atom is exchanged by an amino group and in this way it is transformed into another compound of formula (I) or (II) and/or the isomers are separated and, if desired, salts are formed.
- the compounds of formulas (III) and (IX) are chiral compounds, and therefore formulas (III) and (IX) refers to either of the individual enantiomers or mixtures thereof.
- the hemiketal type compounds of formula (IV) as well as the hydrazone derivatives of formulas (VII) and (VIII) represent different stereoisomers and they refer to all of the individual stereoisomers and mixtures thereof.
- the R 11 group can be a C 2 -C 8 alkoxycarbonyl group, such as a tert-butoxycarbonyl or a benzyloxycarbonyl group.
- optically active compounds of formula (III) can be synthesized by reacting a hemiketal of formula (IV)—prepared for example from an optically active substituted phenyl-isopropanol according to Anderson et al. ( J. Am. Chem. Soc. 117:12358 (1995))—with an alkoxycarbonyl-hydrazide containing an easily removable alkoxycarbonyl group, such as a tert-butoxy-carbamate in the presence of catalytic amount of an acid.
- a hemiketal of formula (IV) prepared for example from an optically active substituted phenyl-isopropanol according to Anderson et al. ( J. Am. Chem. Soc. 117:12358 (1995))—with an alkoxycarbonyl-hydrazide containing an easily removable alkoxycarbonyl group, such as a tert-butoxy-carbamate in the presence of catalytic amount of an acid.
- the hydrazone of formula (VIII) obtained after isolation then is transformed into a mesyl ester e.g., with methanesulfonyl chloride in the presence of triethylamine, and the latter is treated with base, for example sodium hydroxide, in alcoholic solution to yield the benzodiazepine derivative of formula (IX) in a ring closure reaction.
- base for example sodium hydroxide
- the substituent of the N-3 atom numberbering according to the benzodiazepine ring
- the cleavage of the tert-butoxycarbonyl group may be carried out with trifluoroacetic acid, hydrogen bromide or zinc bromide in dichloromethane.
- heterocyclic moiety—corresponding to the R 3 substituent—of the compound of formula (I) or (II) is synthesized starting from the compounds of formula (III) according to methods known in the art relating to heterocyclic chemistry.
- Some of the compounds of formula (I) or (II) can be synthesized, for example, from the 4,5-dihydro-2,3-benzodiazepine derivatives substituted with thiocarbamoyl group at position 3 of the benzodiazepine ring.
- Latter compounds can be obtained from 4,5-dihydro-3H-2,3-benzodiazepine derivatives of formula (III), for example with potassium thiocyanate in acetic acid medium.
- the compounds of formula (I) or (II) containing 1,3,4-thiadiazole group as R 3 substituent can be synthesized for example by the following way. First, a trimethylsilyl derivative is prepared from a 4,5-dihydro-3H-[2,3]benzodiazepine of formula (III), which is then reacted with thiophosgene to give thiocarboxylic acid chloride. Finally, the latter is treated with hydrazine to yield the thiocarboxylic acid hydrazide derivatives.
- the 2,3-benzodiazepine derivatives substituted with carbothiohydrazide group are reacted with an acid anhydride or chloride and the thus-obtained partially occurring ring closure of the carbothio-N-acylhydrazides is promoted by further acid treatment to yield [1,3,4]thiadiazolyl-2,3-benzodiazepines.
- Another procedure for the synthesis of the latter compounds is to react the above-mentioned intermediate thiocarboxylic acid chloride with an acid hydrazide, and then the resulting carbothiohydrazide derivative containing an acyl group on the terminal N-atom is treated with acid to give the cyclic product.
- benzodiazepines of formula (I) or (II) containing a [1,3,4]oxadiazole ring can be obtained, for example, if the above mentioned N-acyl-thiocarboxylic acid hydrazide derivative is treated with a sulfur binding reagent, for example mercury (II) acetate.
- the 4,5-dihydro-2,3-benzodiazepin-3-carbothiohydrazides can serve as starting materials for further new compounds of formula (a) or (II) substituted with a hetero-ring.
- a hetero-ring For example, if the N-methyl-carbamoyl-carbothiohydrazide obtained with methyl isocyanate is heated with concentrated acid, for example hydrochloric acid, then new compounds of formula (I) or (II) substituted with (5-oxo-4,5-dihydro-[1,3,4]thiadiazol-2-yl) group can be obtained.
- thiohydroxamic acids can be obtained from [2,3]benzodiazepin-3-thiocarboxylic acid chlorides with hydroxylamine, which can be transformed into heterocyclic compounds by reacting with bifunctional alkylating agents.
- [1,4,2]oxathiazol-3-yl-2,3-benzodiazepines can be synthesized for example from thiohydroxamic acid derivatives with methylene iodide.
- the compounds of formula (I) or (II) containing 3-oxo-2,3-dihydro-[1,2,4]thiadiazol-5-yl group as R 3 substituent can be prepared, for example, by reacting the unsubstituted compounds of formula (III) with phenoxycarbonyl isothiocyanate, then the resulting phenoxycarbonyl-thiocarbamoyl-benzodiazepine transformed into N-alkyl-carbamoyl-thiocarbamoyl-benzodiazepine with primary amines and the latter is reacted e.g., with bromine to accomplish the ring closure between the sulfur and the nitrogen atoms.
- the compounds of formula (I) or (II) containing 4,5-dihydro-oxazol-2-yl group as an R 3 substituent can be synthesized by reacting the compounds of formula (III) with chloroethyl isocyanate to give an urea derivative, which is heated in the presence of sodium iodide and potassium carbonate in dimethylformamide to accomplish the ring closure.
- the compounds of formula (I) or (II) containing 2-alkyl-thiazol-4-yl group as R 3 substituent can be synthesized by reacting 3-bromo-acetyl-[2,3]benzodiazepines with the appropriate carboxylic acid thioamide.
- the tetrazolyl compounds can be synthesized by reacting the nitrile derivative with sodium azide in dimethylformamide in the presence of ammonium chloride, while if the nitrile compound is first treated with hydroxylamine and the thus obtained amidoxime is reacted with a carboxylic acid anhydride or chloride, then the appropriate 1,2,4-oxadiazolyl compounds can be obtained.
- the compounds of formula (I) or (II) containing 1,2,4-triazolyl group as R 3 substituent can be synthesized from a 3-thiocarbamoyl-[2,3]benzodiazepine derivative by reacting first with methyl iodide, then the obtained S-methyl compound is condensed with hydrazine and the so formed intermediate is treated with a carboxylic acid anhydride or chloride.
- hydrazones of formula (VII) are generally formed as a mixture of stereoisomers. They can be further reacted e.g., with methanesulfonyl chloride in dichloromethane in the presence of triethylamine, and the mesylate obtained after isolation is treated with a concentrated solution of a base in an alcohol or a mixture of alcohol-dichloromethane.
- the ring closure reaction can be achieved for example, by the Mitsunobu reaction (Mitsunobu Synthesis 1:1 (1981)) as well.
- the compounds of formula (I) or (II) obtained by different methods can be transformed into other compounds of formula (I) or (II) with further reactions.
- a reactive halogen atom in the side chain of the heterocycle—the R 3 substituent— can be exchanged for an amino group, for example by heating with an excess of a proper amine, or the NH group of a N-containing heterocyclic compound can be alkylated by known methods.
- the latter transformation for example in the case of a triazolyl compound, can be carried out with methyl iodide in the presence of potassium tert-butoxide.
- the reduction of the nitro group in the compounds of formula (I) or (II) is generally carried out in polar solvents at room temperature or at elevated temperature in the presence of catalysts such as Raney-nickel, platinum or palladium.
- catalysts such as Raney-nickel, platinum or palladium.
- other hydrogen sources e.g., hydrazine hydrate, ammonium formate, potassium formate or cyclohexene can also be applied.
- the nitro group can be reduced, for example, with tin in the presence of an acid, or with tin (II) chloride by heating in an alcohol as well.
- the amino group can be further derivatised by known methods, for example alkylation, acylation, or Sandmeyer reaction.
- the AMPA antagonistic activity of the compounds of formula (I) or (II) of the present invention is exemplified by the following experiments. Reference to compounds by number refers to compounds described in the numbered examples below.
- the AMPA antagonistic effect of the compounds of formula (I) or (II) was studied in the in vitro “spreading depression” model (Sheardown Brain Res. 607:189 (1993)).
- the AMPA antagonists prolong the latency of the development of the “spreading depression” caused by AMPA (5 ⁇ M).
- Table 1 The data of Table 1 indicate that the compounds of the present invention inhibit the AMPA-induced “spreading depression” with an IC 50 value of 0.4-5 ⁇ M.
- the activity of the compounds of the present invention was studied on acutely isolated cerebellar Purkinje cells by measuring the whole-cell current induced by 5 ⁇ M AMPA according for example to the method described by Bleakman et al ( Neuropharmacology 12:1689 (1996)). According to the IC 50 values obtained, the compounds of the present invention inhibit the AMPA-induced ion-current by one to two magnitudes greater than the internationally accepted reference compound GYKI 52466 (5-(4-aminophenyl)-9H-1,3-dioxolo[4,5-h][2,3]-benzodiazepine, Hungarian patent No.
- the anti-seizure activity of some of the compounds of the present invention was measured using the electroshock test ( J. Pharmacol. Exp. Ther. 106:319 (1952)) and the results are shown in Table 3.
- the spasmolytic activity of the compounds of the present invention was investigated by using e.g., pentetrazole ( J. Pharmacol. Exp. Ther. 108:168 (1953)), strychnine ( J. Pharmacol. Exp. Ther. 129:75 (1960)), bemegrid, nicotine, bicuculline, 4-aminopyridine and mercapto-propionic acid for inducing the clonic-tonic seizures and lethality.
- mice Compound (Number of example)/ED 50 mg/kg po.
- Central muscle relaxants are used in such clinical situations when the resting tone of the skeletal muscles is increased as a consequence of a cerebral trauma or due to a chronic neurodegenerative illness, resulting in muscle rigidity or tremor.
- the muscle spasm is often painful and hinders normal motion.
- the muscle relaxant activity of the compounds of formula (I) or (II) of the present invention was determined in the inclined screen test described by Randall ( J. Pharmacol. Exp. Ther. 129:163 (60)) as well as in the rotarod test (Dunham et al, J. Am. Pharm. Assoc. 46:208 (1957). The compounds were administered in three doses intraperitoneally using 10 CD1-mice/dose. The muscle relaxant activity of the compounds of the present invention was compared to that of the reference compounds GYKI 52466 and GYKI 53773. Representative, non-limiting results are summarized in Table 4.
- the muscle relaxant activity of the compounds of formula (I) or (I) determined in the above tests indicates potential therapeutic use in the treatment of such illnesses in which the increased muscle tone causes problems.
- the compounds may be useful in the treatment of essential tremor, multiple sclerosis (spasms+tremor) and Parkinson's disease (rigidity+tremor).
- the focal anti-ischemic activity of the compounds of formula (I) or (II) of the present invention was measured by the “middle cerebral artery occlusion” (MCAO) test (Bartus Stroke 11:2265 (1994) and Sydserff et al, Brit. J. Pharmacol. 114:1631 (1995)).
- MCAO middle cerebral artery occlusion
- the blood supply of the left middle cerebral artery of anaesthetized rats was temporarily blocked (60 min) by an embolus introduced intra-arterially following Halothane anesthesia, without craniotomy, thereafter the perfusion was reestablished by removing the embolus and thus a human “stroke-like” status was triggered in an experimental animal model.
- the investigated compounds possess a strong neuroprotective activity in this experimental model, which is considered the model of the human stroke.
- Multiple sclerosis is a chronic autoimmune inflammation of the central nervous system in which the axonal myelin coat, assuring the safe impulse conduction, is damaged.
- the oligodendrocytes forming the myelin coat express mainly AMPA/kainate receptors.
- the neurodegenerative process is further enhanced by glutamate, the excitatory neurotransmitter, which is released by the activated immune cells in large quantities which expresses its activity through AMPA/kainate receptors thereby damaging myelin oligodendrocytes and axons of neurons (Steinman Nature Medicare 6:15 (2000) and Werner et al., Neural Transmiss. Suppl., 60: 375 (2000)).
- Muscle spasticity and intention tremor belong to the most severe neurological symptoms of multiple sclerosis (Baker et al., Nature 404:84 (2000)). Moderation or cure of these symptoms by a proper therapy would be very important.
- the activity of the 2,3-benzodiazepine derivatives possessing AMPA antagonistic activity was further investigated in an autoimmune encephalomyelitis model (Smith et al., Nature Medicine, 6:62 (2000)) in rats, using immunization with guinea pig myelin basic protein (MBP) and complete Freund adjuvant.
- MBP myelin basic protein
- the compounds were administered intraperitoneally twice a day for 8 days, starting on day 10 after immunization and with an observation period until symptoms were present. 5-15 animals were used in each group. Their weights were 160-180 g (Lewis rats, female) and 180-220 g (Lewis rats, male).
- the activity of the compounds was determined according to the symptom score values, and compared to those of the control group (see Table 6).
- Example 86 and 61 proved to be more active than the reference compound GYKI 53773.
- the anti-tremor effect of the 2,3-benzodiazepine derivatives of the present invention, possessing AMPA antagonistic character in mouse models was studied using three tremorigen agents of different mechanism of action, such as oxotremorine (Rathbun et al., Psychopharmacology; 4:114 (1963)), GYKI 20039 (3-(2,6-dichlorophenyl)-2-imino-thiazolidine; (Andrasi et al., Acta Physiol. Acad. Sci. Hung. 37:183 (1970)) and harmaline. Number of animals: 5/group. Weight of animals: 20-25 g (CD1 mice, male). The activity of the investigated compounds was determined by their score values compared to those of the control group.
- the ED 50 values were calculated according to the Litchfield-Wilcoxon method and are listed in Table 8. TABLE 8 Effect of 2,3-benzodiazepine derivatives possessing AMPA antagonistic character on the tremor of CD1 mice induced by different chemical agents.
- Compound ED 50 (mg/kg po.) (Number of Dose range Oxotremorin GYKI 20039 Harmaline example) (mg/kg p.o.) 1 mg/kg ip. 10 mg/kg ip. 40 mg/kg ip.
- Example 86 the compound described in Example 86 was more active than the reference compounds GYKI 53773 and GYKI 52466, respectively.
- the 2,3-benzodiazepine derivatives with AMPA antagonistic character are therapeutically important.
- Their combined neuroprotective, muscle relaxant, tremor inhibiting etc. properties beneficially influence the progression of the pathological neurological disorders and diminish the pathological neurological symptoms, respectively.
- Bronchial hyperresponsiveness (BHR) and airway eosinophilia (AEP) are characteristic features of bronchial asthma.
- BHR is typified by an exaggerated response to a wide variety of stimuli that can induce an increased resistance to airflow in the airways.
- AEP is a result of prolonged eosinophil infiltration, mast cell, and T cell activation in the airways.
- In actively (e.g., ovalbumin) immunized rats (e.g., Brown Norway [BN] strain) repeated sensitization followed by antigenic challenge results in lung eosinophilia and bronchial hyperresponsiveness to different spasmogens (e.g., acetylcholine). This is the most frequently employed model for studying potential anti-asthmatic effects of new chemical entities.
- BN rats were actively immunized with allergen (ovalbumin).
- allergen ovalbumin
- rats were sensitized with the subcutaneous administration of ovalbumin suspended in Al(OH) 3 (2.5 ⁇ g ovalbumin +20 mg Al(OH) 3 in 0.5 ml saline).
- Booster injections (same dose and same route) were given at day 14 and 21.
- 0.25 ml of Bordatella pentussis vaccine was injected intraperitoneally.
- animals were challenged by inhalation of the antigen (vaporized 1% OVA solution for 1 hour). Test compounds were administered orally 2 hours pre-challenge.
- urethane 4-5 ml of 15% urethane given i.p.
- BALF bronchoalveolar lavage fluid
- Eosinophil cell count (cells/ml BALF) was determined manually using a selective stain for eosinophils and counting the cells in a Buerker chamber.
- BHR was determined using tracheal rings suspended in an organ bath. After an equilibration period of 30 minutes, cumulative concentration response curves to acetylcholine were determined. Maximal response of control (unchallenged, non-treated) tracheal rings is obtained at 10 ⁇ 3 M acetylcholine. The height of this response is defined as 100%. All other contractions are expressed as a percentage and related to the control response.
- the compounds of formula (I) or (II) of this invention are able to beneficially influence various diseases and disorders in which glutamate (AMPA/kainate) receptors have been implicated. Consequently the compounds according to the invention are suitable for treating neurological and psychiatric disorders, triggered by the extremely enhanced activity of the AMPA receptor. Therefore, they have therapeutic utility as anticonvulsants, muscle relaxants, as well as neuroprotective agents. They also display therapeutic value for the treatment of epilepsy, as well as different illnesses in which the spasm of skeletal-muscles is involved, and in the treatment of neurodegenerative disorders such as e.g., cerebral ischemia (stroke).
- AMPA/kainate glutamate receptor
- Exemplary neurological illnesses which can be beneficially influenced or prevented include Parkinson's disease, Alzheimer's disease, Huntington chorea, amyotrophic lateral sclerosis, olivopontocerebellaric atrophy, AIDS dementia, senile dementia.
- a similar beneficial effect can be achieved in the treatment of neurodegenerative processes caused by cerebrovascular catastrophe (stroke, brain, and spinal injuries) or hypoxia, anoxia or hypoglycemia.
- the compounds of the invention can be advantageously used for the treatment of different psychiatric diseases such as anxiety, schizophrenia, sleep disorders, as well as alleviating the withdrawal syndrome of alcohol and drug abuse. Furthermore they may inhibit tolerance development in the case of sedatives or analgesics.
- a method of blocking the activation of one or more excitatory amino acid receptors in mammals includes administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound of the formula (I) or (II).
- a method of treating epilepsy in mammals includes administering to a mammal in need of such treatment an antiepileptic amount of a compound of the formula (I) or (II).
- a method of treating spasms of the skeletal musculature in mammals includes administering to a mammal in need of such treatment a muscle-relaxing amount of a compound of the formula (I) or (II).
- a method of treating acute and chronic neurodegenerative disorders in mammals includes administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound of the formula (I) or (II).
- a method for treating inflammatory disorders in mammals includes administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound of the formula (I) or (II).
- the compounds of formula (I) or (II) can be advantageously used in the treatment of multiple sclerosis.
- a further therapeutic field, in which the compounds of formula (I) or (II) can be used, are illnesses that are caused by the over-function of the periferic glutamate receptors. Such illnesses include the acute and chronic inflammatory disorders of the airways particularly allergic inflammations such as asthma-related pathologies. This latter potential therapeutic use is supported by the results obtained in ovalbumin sensitized rats.
- a pharmaceutical composition including a compound of formula (I) or (II), or a stereoisomer, or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier, excipient or diluent.
- the compounds of formula (I) or (II) are formulated in a pharmaceutically acceptable vehicle with any of the well-known pharmaceutically acceptable carriers, including diluents and excipients (see Remington's Pharmaceutical Sciences, 18 th Ed., Gennaro, Mack Publishing Co., Easton, Pa. 1990 and Remington: The Science and Practice of Pharmacy , Lippincott, Williams & Wilkins, 1995). While the type of pharmaceutically acceptable carrier/vehicle employed in generating the compositions of the invention will vary depending upon the mode of administration of the composition to a mammal, generally pharmaceutically acceptable carriers are physiologically inert and non-toxic. Formulations of pharmaceutical compositions may contain more than one type of compound of formula (I) or (II), as well as any other pharmacologically active ingredient useful for the treatment of the particular conditions, disease, or symptom being treated.
- compositions of the invention can be administered by standard routes (e.g., oral, inhalation, rectal, nasal, topical, including buccal and sublingual, or parenteral, including subcutaneous, intramuscular, intravenous, intradermal, transdermal, and intratracheal).
- routes e.g., oral, inhalation, rectal, nasal, topical, including buccal and sublingual, or parenteral, including subcutaneous, intramuscular, intravenous, intradermal, transdermal, and intratracheal.
- polymers may be added according to standard methodologies in the art for sustained release of a given compound.
- compositions of the invention may be presented as discrete units such as capsules, caplets, gelcaps, cachets, pills, or tablets each containing a predetermined amount of the active ingredient as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion and as a bolus, etc.
- administration of a composition including the compound of formula (I) or (II) may be effected by liquid solutions, suspensions or elixirs, powders, lozenges, micronized particles and osmotic delivery systems.
- Formulations suitable for administration by inhalation include formulations that can be dispensed by inhalation devices known to those in the art. Such formulations may include carriers such as powder and aerosols. Liquid and powdered compositions suitable for nebulization and intrabronchial use, or aerosol compositions administered via an aerosol unit dispensing metered doses (“MDI”) are contemplated.
- MDI aerosol unit dispensing metered doses
- the active ingredient may be formulated in an aqueous pharmaceutically acceptable inhalant vehicle, such as, for example, isotonic saline or bacterostatic water and other types of vehicles that are well known in the art.
- aqueous pharmaceutically acceptable inhalant vehicle such as, for example, isotonic saline or bacterostatic water and other types of vehicles that are well known in the art.
- the solutions are administered by means of a pump or squeeze-actuated nebulized spray dispenser, or by any other conventional means for causing or enabling the requisite dosage amount of the liquid composition to be inhaled into the patient's lungs.
- Powder compositions include, by way of illustration, pharmaceutically acceptable powdered preparations of the active ingredient thoroughly intermixed with lactose or other inert powders acceptable for intrabronchial administration.
- the powder compositions can be administered via a dispenser, including, but not limited to, an aerosol dispenser or encased in a breakable capsule, which may be inserted by the patient into a device that punctures the capsule and blows the powder out in a steady stream.
- Aerosol formulations for use in the subject method typically include propellants, surfactants, and co-solvents and may be filled into conventional aerosol containers that are closed by a suitable metering valve.
- Formulations suitable for nasal administration include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner in which snuff is administered, i.e. by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations, wherein the carrier is a liquid, for administration, for example via a nasal spray, aerosol, or as nasal drops, include aqueous or oily solutions of the compound of formula (I) or (II).
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, stabilizers, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the dosage of the active ingredient depends on the route of administration, the type and severity of the disease as well as the weight and age of the patient.
- the daily dose for adult patients can be 0.1-500 mg, preferably 1-100 mg, in a single dose or divided in several doses.
- a method for treating (a) an acute or chronic neurodegenerative disease associated with glutamate dysfunction; (b) a method for treating epilepsy; (c) a method for reducing muscle spasm in mammals; (d) a method for preventing, treating or alleviating the symptoms of acute or chronic inflammatory disorders of the airways; (e) a method for relief of pathological pain in mammals.
- These methods include administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formula (I) or (II).
- therapeutically effective amount is used to denote treatments at dosages effective to achieve the therapeutic result sought.
- therapeutically effective amount of the compound of the invention may be lowered or increased by fine-tuning and/or by administering more than one compound of the invention, or by administering a compound of the invention with another pharmacologically active compound.
- the invention therefore provides a method to tailor the administration/treatment to the particular exigencies specific to a given mammal.
- therapeutically effective amounts may be easily determined for example empirically by starting at relatively low amounts and by step-wise increments with concurrent evaluation of beneficial effect.
- the thiocarbamoyl compounds II-X were synthesized from the corresponding dihydro-[2,3]benzodiazepine according to the above procedure.
- the compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358(1995)) with the exception that tert-butyl carbamate was used instead of acetic hydrazide.
- the title compound was obtained from the starting material XIX by carrying out the acylation with acetic anhydride according to the method described in Example 27.
- the obtained crude product was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of n-hexane-ethyl acetate (1:1) as eluent. After concentration of the fractions containing the title compound, the residue was treated with isopropyl ether to yield 0.95 g of a solid foam (polymorph). Yield: 89%.
- the title compound was obtained from the starting material XV according to the process described in method B of Example 28.
- Example 47 and 48 were obtained analogously from the starting materials XXVIII and XXIX, respectively.
- Step A The product obtained in Step A was dissolved in 45 ml of dimethylformamide and after adding 4.96 g (65 mmol) of thioacetamide it was stirred at 80° C. for 1 h, then cooled and poured into water. The precipitated crude product was filtered off, washed with water and purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of hexane-ethyl acetate (9:1) as eluent to yield 1.67 g (37%) of the tide compound; Mp.: 178-190° C.
- RaNi catalyst 5.5 g was prehydrogenated in 250 ml of a 2:1 mixture of methanol-dichloromethane, then 20.0 mmol of nitro compound was added in 250 ml of the above solvent mixture and the so obtained mixture was hydrogenated at atmospheric pressure. After filtration of the catalyst the filtrate was concentrated, the residue was treated with water, the product was filtered, washed and dried.
- 2,3-benzodiazepines containing an aminophenyl group were dissolved in dichloromethane and stirred at room temperature with an excess of acetic anhydride. After completion of the reaction the mixture was washed with sodium hydrogen carbonate solution and water, then dried and concentrated. TABLE 11 2,3-benzodiazepine derivatives substituted with acetylaminophenyl group Mp. (° C.) Number of Solvent of Yield (%) Example Name recrystall.
- This compound was prepared from starting compound XXXI according to the process described for starting compound I. Mp.: 123-125° C. Yield: 70%.
- Step A The product of Step A was transformed into the title compound according to the procedure described in Example 9. Mp.: 130-135° C. Yield: 81%.
- Examples 138-148 were prepared analogously to the method described in Example 137 using the appropriate activated carboxylic acid derivatives as reagents (e.g.: acyl chloride, acid anhydride, pentachlorophenol ester, N-hydroxysuccinimide ester of the corresponding carboxylic acids).
- reagents e.g.: acyl chloride, acid anhydride, pentachlorophenol ester, N-hydroxysuccinimide ester of the corresponding carboxylic acids.
- the compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358 (1995)) using 3-chloro-4-nitrobenzaldehyde and tert-butyl carbazate as key reagents. Mp.: 160-162° C.
- Step C of Example 153 The compound obtained in Step C of Example 153 was transformed into the title compound according to a method described for starting material XVIII. Mp.: 126-127° C.; yield: 85%.
- This intermediate was prepared from the compound obtained in Step B of Example 156 by a method described for starting material I, however, during the reaction significant hydrolysis of the title product to the corresponding urea derivative was noticed as well.
- Title compound was isolated by column chromatography using a mixture of hexane-ethyl acetate (3:1) as eluent. Mp.: 228-230° C.; yield: 18%.
- Step A Intermediate compound obtained in Step A was reacted with bromoacetaldehyde diethyl acetal as described in Example 1. Mp.: 167° C.; yield: 46%.
- the compound was prepared using 2-bromo-3-methylbenzaldehyde and tert-butylcarbazate according to a method published in the literature (Anderson et al., J. Am. Chem. Soc. 117:12358 (1995)).
- Step A Compound obtained in Step A was hydrolyzed according to method disclosed in Example 153, Step B.
- Step B The compound obtained in Step B was transformed into the title compound according to a method described for starting material XI.
- Step C The title compound obtained in Step C was further reacted with acetic hydrazide according to a method described in Method B of Example 28 to give the title compound as a foam.
- the compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358 (1995)) with the exception that tert-butylcarbazate and 4-chlorobenzaldehide were used instead of acetic hydrazide and 4-nitrobenzaldehide, respectively.
- the title product was isolated as a foam and used for the next step.
- mice Compound Inclined screen Rotarod (Number of example) ED 50 ip. (mg/kg) ED 50 ip. (mg/kg) 119 2.49 0.51 165 2.94 0.91 166 3.27 0.86 167 4.24 0.80 168 3.58 0.80 182 5.84 2.61
- mice 119 3.75 +3 ⁇ 90** 1.875 ⁇ 8 ⁇ 71** 1.0 ⁇ 3 ⁇ 72** 0.5 ⁇ 13 ⁇ 35 0.2 +2 ⁇ 37 3.75 ⁇ 32 ⁇ 61*** 1.875 ⁇ 42 ⁇ 50** 1.0 ⁇ 21 ⁇ 23 0.5 ⁇ 16 ⁇ 1 *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001 (Mann-Whitney test).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Pulmonology (AREA)
- Physical Education & Sports Medicine (AREA)
- Urology & Nephrology (AREA)
- Pain & Pain Management (AREA)
- Diabetes (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Psychology (AREA)
- Ophthalmology & Optometry (AREA)
- Rheumatology (AREA)
- Obesity (AREA)
- Vascular Medicine (AREA)
- Emergency Medicine (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Otolaryngology (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention relates to new 2,3-benzodiazepine derivatives of formula (I), isomers and acid addition salts thereof and to pharmaceutical compositions containing the same, as well as to pharmaceutical compositions and methods of using the same suitable for treating conditions associated with muscle spasms, epilepsy, acute and chronic forms of neurodegenerative diseases as well as preventing, treating or alleviating the symptoms of acute and chronic inflammatory disorders.
Description
- This application is a continuation-in-part of application Ser. No. 10/358,053, filed Feb. 4, 2003.
- 1. Field of Invention
- The invention relates to new 2,3-benzodiazepine derivatives substituted by heterocycles, the acid addition salts thereof, as well as the pharmaceutical compositions containing them. The invention also relates to the use of said compounds as AMPA receptor antagonists.
- 2. Summary of Related Art
- Over-activation of glutamate receptors has been associated with several acute and chronic diseases of the central nervous system (“CNS”). Various glutamate receptor antagonists have been investigated as therapeutic modalities (see for example Parsons et al., Drug News Perspect. 11:523 (1998) and Br{hacek over (a)}uner-Osborne et al., J. Med. Chem. 43:2609 (2000)).
- AMPA (2-amino-3-(3-hydroxy-5-methyl-4 isoxazolyl)-propionic acid) type glutamate receptors play a major role in a variety of central nervous system disorders. Inhibition of the activation of AMPA type receptors has been shown to have neuroprotective, antiepileptic and muscle-relaxant effects (see e.g., Cerebrovasc. Brain Metab. Rev. 6:225 (1994); Neurology 44 Suppl. 8, S14 (1994); J. Pharmacol. Exp. Ther. 260:742 (1992)).
- Glutamate receptors have been found not only in the CNS but also in peripheral tissues indicating therapeutic potential opportunities beyond the CNS (see e.g., Skery et al, Trends in Pharm. Sci., 22:74 (2001). Respiratory tract inflammation has been postulated to be beneficially influenced by NMDA-type glutamate antagonists (Said, Trends in Pharm. Sci. 20:132 (1999); and Said et al., Trends in Pharm. Sci., 22:344 (2001)).
- AMPA type receptors can be inhibited by various competitive and non-competitive antagonists. The therapeutic potential of non-competitive antagonists may be superior to that of competitive ones insofar as their activity is not dependent on high concentrations of endogenous glutamate (see e.g., Vizi et al., CNS Drug Reu, 2:91 (1996)). One of the most prominent non-competitive AMPA receptor antagonists is 5-(4-aminophenyl)-8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (also designated as GYKI 52466) possessing remarkable antiepileptic, muscle relaxant and neuroprotective activities. (Tarnawa et al. Eur. J. Pharmacol., 167:193 (1989); Smith, et al, Eur. J. Pharmacol., 187:131 (1990); Quardouz et al., Neurosci. Lett., 125:5 (1991); Donevan et al., I. Neuron., 10:51 (1993)).
- Several non-competitive AMPA antagonists have been described in the literature including 3,4-dihydro-5H- or 4,5-dihydro-3H-2,3-benzodiazepines, containing an acyl group at position 3 of the ring (see e.g., Hungarian Patent Nos. 206,719 B and 219,777 B, U.S. Pat. No. 5,536,832, European Patent Publication No. 0699 677 A1, and British Patent No. 2 311 779, as well as WO 96/04 283, WO 97/28 135, WO 99/07 707, WO 99/07 708 and WO 01/04 122). WO 96/06 606 (corresponding to U.S. Pat. No. 5,795,886) describes several 2,3-benzodiazepine derivatives having aryl and heteroaryl substituents (e.g., pyridyl, thienyl, furyl, phenyl, imidazolyl, benzimidazolyl, etc.) at C3.
- The compounds listed above have been found to be particularly useful in diseases in which the over-function of the glutamate system can be detected. Such acute disorders of the CNS include for example stroke, brain ischemia, brain and spinal cord injuries, perinatal hypoxia, hypoglycemic nervous damage, etc. Additional chronic illnesses in which selected AMPA antagonists can be applied include e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, AIDS-induced dementia, glaucoma, diabetic retinopathy as well as Parkinson's disease. Furthermore, enhanced activity of the glutamate system has also been shown in conditions associated with neural damage (e.g., epilepsy, migraine, urinary bladder incontinence, psychosis—anxiety, schizophrenia etc., drug-abuse, pathological pain, brain edema and tardive dyskinesia) implying an impressive therapeutic potential for AMPA antagonists.
- Recently, experimental data suggested that selected AMPA antagonists have beneficial effect on the autoimmune encephalomyelitis elicited in rats, which is the accepted model of multiple sclerosis (Smith et al., Nature Medicine 6:62 (2000)). In addition, AMPA and NMDA receptors in the spinal cord have been implicated in the contraction of the bladder and the urethra, suggesting that AMPA antagonists may be useful in the treatment of urinary incontinence (Nishizawa et al., A du in Exp. Med. & Biol. 4:275 (1999)).
- Two 2,3-benzodiazepine derivatives GYKI 52466 (supra), and (R)-7-acetyl-5-(4-aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (GYKI 53773, also known as Talampanel) were beneficial. The latter has proved to be active in clinical trials on epilepsy patients (Bialer et al., Epilepsy Res. 43:11 (2001)).
- In addition, GYKI 52466 has been reported to inhibit growth of selected tumor cell types (colon adenocarcinoma, astrocytoma, breast carcinoma, lung carcinoma and neuroblastoma) (Rzeski et al., Proc. Nat. Acad. Sci. 98:6372 (2001)).
-
- R3 represents a substituted or unsubstituted 5- or 6-membered, aromatic, saturated or partially saturated heterocyclic ring containing at least 2 heteroatoms, in which the heteroatom can be oxygen-, sulfur- or nitrogen atom and in the case when the heterocyclic ring contains 2 heteroatoms one of them is different from nitrogen;
- R4, R5, R6 and R7 independently from each other represent hydrogen atom, halogen atom, C1-C3 alkyl group, nitro group or amino group, wherein the amino group can be substituted independently from each other with one or two C1-C3 alkyl group, C2-C5 acyl group, or C2-C5 alkoxycarbonyl group, or aminocarbonyl group, or C2-C5 alkylaminocarbonyl group; and
- R9 represents C1-C3 alkoxy group or halogen atom
- R10 represents hydrogen or halogen atom or
- R9 and R10 together can be C1-C3 alkylendioxy group.
- Representative compounds include, without limitation, (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-propyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzo-diazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-{5-[1-(1E)-propen-1-yl]-1,3,4-thiadiazol-2-yl}-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; and (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine and the acid addition salts thereof.
- The invention also discloses pharmaceutical compositions comprising a compound of formula (I) as the active ingredient, wherein the meaning of R3-R7, R9 and R10 is as defined herein, or a steroisomer or a pharmaceutically acceptable salt thereof together with pharmaceutically acceptable solvents, diluents, carriers and filling materials.
- The compounds are suitable for treating conditions associated with muscle spasms, epilepsy, acute and chronic forms of neurodegenerative diseases as well as preventing, treating or alleviating the symptoms of acute and chronic inflammatory disorders.
- One of skill will appreciate, in light of the many publications relating to the expanding therapeutic values of AMPA type receptor antagonists, that the compounds of the invention are useful in a very large number of unrelated conditions.
- Hence, methods for treating glutamate dysfunction associated with an acute or chronic neurodegenerative disease or in acute or chronic disease of the eyes associated with glutamate dysfunction are provided. Representative neurodegenerative disorders include, for example, cerebral ischemia (stroke), brain and spinal cord trauma, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, AIDS-induced dementia, essential tremor, Parkinson's disease, multiple sclerosis and urinary incontinence. Acute or chronic disorders of the eyes associated with glutamate dysfunction include glaucoma or diabetic retinopathy. Disclosed also are methods for treating epilepsy, reducing muscle spasms, reducing pain, or inflammatory disorders which comprise administering to the subject in need of such treatment a therapeutically effective amount of the compounds of the invention. Included among the inflammatory disorders are allergic inflammatory disorders of the airways which can encompass allergic rhinitis, intrinsic or extrinsic asthma bronchiale, acute or chronic bronchitis, chronic obstructive pulmonary disease and pulmonary fibrosis.
- The patents, published applications, and scientific literature referred to herein establish the knowledge of those skilled in the art and are hereby incorporated by reference in their entirety to the same extent as if each was specifically and individually indicated to be incorporated by reference. Any conflict between any reference cited herein and the specific teachings of this specifications shall be resolved in favor of the latter. Likewise, any conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be resolved in favor of the latter.
- The invention discloses novel substituted 2,3-benzodiazepine derivative compounds and methods of making the same. Pharmaceutical compositions employing the novel substituted 2,3-benzodiazepine derivative compounds and their use for the treatment for a number of disease conditions are also disclosed.
- Technical and scientific terms used herein have the meaning commonly understood by one of skill in the art to which the present invention pertains, unless otherwise defined. Reference is made herein to various methodologies and materials known to those of skill in the art. Standard reference works setting forth the general principles of pharmacology include Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th Ed., McGraw Hill Companies Inc., New York (2001). Any suitable materials and/or methods known to those of skill can be utilized in carrying out the present invention. However, preferred materials and methods are described. Materials, reagents and the like to which reference are made in the following description and examples are obtainable from commercial sources, unless otherwise noted.
- As used in this specification, the singular forms “a”, “an” and “the” specifically also encompass the plural forms of the terms to which they refer, unless the content clearly dictates otherwise. For example, reference to “an antagonist” includes mixtures of antagonists.
- As used in this specification, whether in a transitional phrase or in the body of the claim, the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases “having at least” or “including at least”. When used in the context of a process, the term “comprising” means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound or composition, the term “comprising” means that the compound or composition includes at least the recited features or components, but may also include additional features or components.
- The term “about” is used herein to mean approximately, in the region of, roughly, or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20%.
- As used herein, unless specifically indicated otherwise, the word “or” is used in the “inclusive” sense of “and/or” and not the “exclusive” sense of “either/or”.
- As used herein, the recitation of a numerical range for a variable is intended to convey that the invention may be practiced with the variable equal to any of the values within that range. Thus, for a variable which is inherently discrete, the variable can be equal to any integer value of the numerical range, including the end-points of the range. Similarly, for a variable which is inherently continuous, the variable can be equal to any real value of the numerical range, including the end-points of the range. As an example, a variable which is described as having values between 0 and 2, can be 0, 1 or 2 for variables which are inherently discrete, and can be 0.0, 0.1, 0.01, 0.001, or any other real value for variables which are inherently continuous.
- The methods of the present invention are intended for use with any mammal that may experience the benefits of the methods of the invention. Foremost among such mammals are humans, although the invention is not intended to be so limited, and is applicable to veterinary uses. Thus, in accordance with the invention, “mammals” or “mammal in need” include humans as well as non-human mammals, particularly domesticated animals including, without limitation, cats, dogs, and horses.
- It will be understood that the subject to which a compound of the invention is administered need not suffer from a specific traumatic state. Indeed, the compounds of the invention may be administered prophylactically, prior to any development of symptoms. The term “therapeutic”, “therapeutically”, and permutations of these terms are used to encompass therapeutic, palliative as well as prophylactic uses. Hence, as used herein, by “treating or alleviating the symptoms” is meant reducing, preventing, and/or reversing the symptoms of the individual to which a compound of the invention has been administered, as compared to the symptoms of an individual receiving no such administration.
-
- R1 and R2 independently of each other represent hydrogen atom or C1-C3 alkyl group,
- R3 represents substituted or unsubstituted 5- or 6-membered, aromatic, saturated or partially saturated heterocyclic ring containing at least 2 hetero atoms, in which the hetero atom can be oxygen-, sulfur- or nitrogen atom and in the case when R3 is a 5-membered ring one of the heteroatoms is different from nitrogen;
- R4, R5, R6, R7 and R8 independently from each other represent hydrogen atom, halogen atom, C1-C3 alkyl group, nitro group or amino group, wherein the amino group can be substituted independently from each other with one or two C1-C3 alkyl group, C2-C5 acyl group, or C2-C5 alkoxycarbonyl group, or aminocarbonyl group, or C2-C5 alkylaminocarbonyl group,
- R9 represents C1-C3 alkoxy group or halogen atom,
- R10 represents hydrogen or halogen atom or
- R9 and R10 together can be C1-C3 alkylendioxy group.
- The present invention is directed to 2,3-benzodiazepine derivatives of formula (II) as shown below in formula (I):
wherein R1 and R8 are hydrogen, R2 is CH3, the meaning of R4, R5, R6, R7, R9 and R10 is as defined above, R3 is a moiety selected from the group consisting of substituted or unsubstituted isoxazole, isothiazole, thiazole, thiazoline, 4-thiazolinone, oxazole, oxazoline, 1,2,3-thiadiazole, 1,3,4-thiadiazole, 1,3,4-thiadiazolin-2-one, 1,2,4-thiadiazolin-3-one, 1,4,2-oxathiazoline, 1,3,4-oxadiazole, 1,2,3-triazole, 1,3,4-triazole, 1,2,3,4-thiatriazole, tetrazole, 1,3-thiazin-4-one and 1,3,4-thiadiazin-4-one ring. - The heterocyclic substituent of the benzodiazepine ring as R3 can be further substituted—among others—with one or more C1-C6 alkyl group, C2-C3 alkenyl, a C3-C7 cycloalkyl, a trifluoromethyl, a C1-C3 alkoxy or a phenyl group, an oxo, a formyl, a carboxyl or a C2-C4 alkoxycarbonyl group, a C1-C3 alkoxymethyl group, a hydroxymethyl group, wherein the hydroxy group can be alkylated or acylate, a C1-C3 alkylthiomethyl group, a cyanomethyl group or an aminomehtyl group, wherein the amino group can be alkylated or acylated.
- The meaning of alkyl group encompasses both straight and branched chain alkyl groups. The meaning of alkenyl group can be vinyl, 1-propenyl or 2-propenyl group. The meaning of halogen atom can be fluorine, chlorine, bromine, or iodine atom. The amino group can be unsubstituted or substituted with one or two alkyl groups, as well as acylated with aliphatic or aromatic carboxylic acid or any kind of carbonic acid esters.
- In the case of compounds of formula (I), the term “isomers” means both enantiomers, as well as the E and Z isomers if applicable, furthermore, isomers shall include diastereomers, tautomers and mixture of them, for example racemic mixture.
- Salts of the compounds of formula (I) relate to physiologically acceptable salts formed with inorganic or organic acids. Suitable inorganic acids can be, for example, hydrochloric acid, hydrobromic acid, phosphoric acid or sulfuric acid. Suitable organic acids can be, for example, formic acid, acetic acid, maleic and fumaric acid, succinic acid, lactic acid, tartaric acid, citric acid or methanesulfonic acid.
- Representative compounds of formula (a) include, without limitation, (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzo-diazepine; (R)-5-(4-amino-3-methylphenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-propyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzo-diazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-{5-[1-(1E)-propen-1-yl]-1,3,4-thiadiazol-2-yl}-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; and (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine and the acid addition salts thereof.
- The compounds of formulas (I) and (II) can be prepared in the following way. The heterocycle corresponding to R3 is built up starting from a compound of formula (III) below:
wherein R1-R10 are defined for formulas (I) and (II) above, by known methods or a compound having the following formula (IV) or the following isochromenilium salt having formula (IVa) which is formed from the compound of formula (IV), wherein the meaning of R1, R2, R4, R5, R6, R7, R8, R9 and R10 is as defined above:
A compound of formulas (IV) or (IVa) is reacted with a compound having formula (V or (VI):
H2N—NH—R3 (V)
H2N—NH—R11 (VI)
wherein the meaning of R3 is as defined above and the meaning of R11 is C2-C8 alkoxycarbonyl or aryl alkoxycarbonyl group to obtain the compounds of formulas (VII) or (VIII). - The hydroxyl group of the compounds of formulas (VII) or (VIII) is transformed into a sulfonate ester, and the latter intermediate is submitted to ring-closure resulting in compounds of formulas (I), (II) or (IX):
by applying a strong base. Alternatively, the compounds of formulas (VII) or (VIII) are transformed into compounds of formulas (I), (II) or (IX) according to Mitsunobu (Synthesis, I:1 (1988)). In the compound of formula (IX), the R11 group is cleaved to give the compound of formula (III), which is converted into the compound of formulas (I) or (II) according to the method described in process as described above. Then, if desired, in a compound of formula (I) or (II) obtained according to any of the above processes, the nitro group is reduced or the amino group is acylated, alkylated, or after diazotation, is exchanged by a halogen atom or hydrogen atom, or a halogen atom is exchanged by an amino group and in this way it is transformed into another compound of formula (I) or (II) and/or the isomers are separated and, if desired, salts are formed. - The compounds of formulas (III) and (IX) are chiral compounds, and therefore formulas (III) and (IX) refers to either of the individual enantiomers or mixtures thereof. The hemiketal type compounds of formula (IV) as well as the hydrazone derivatives of formulas (VII) and (VIII) represent different stereoisomers and they refer to all of the individual stereoisomers and mixtures thereof. The R11 group can be a C2-C8 alkoxycarbonyl group, such as a tert-butoxycarbonyl or a benzyloxycarbonyl group.
- The starting materials of formula (III) are known in the literature (U.S. Pat. No. 5,536,832 and British Patent No. 2,311,779, as well as WO 97/28 135 and WO 01/04 122). Hungarian Patent No. 219,777 and British Patent No. 2,311,779 describe the synthesis of optically active compounds of formula (III) as well.
- The optically active compounds of formula (III) can be synthesized by reacting a hemiketal of formula (IV)—prepared for example from an optically active substituted phenyl-isopropanol according to Anderson et al. (J. Am. Chem. Soc. 117:12358 (1995))—with an alkoxycarbonyl-hydrazide containing an easily removable alkoxycarbonyl group, such as a tert-butoxy-carbamate in the presence of catalytic amount of an acid. The hydrazone of formula (VIII) obtained after isolation then is transformed into a mesyl ester e.g., with methanesulfonyl chloride in the presence of triethylamine, and the latter is treated with base, for example sodium hydroxide, in alcoholic solution to yield the benzodiazepine derivative of formula (IX) in a ring closure reaction. Then the substituent of the N-3 atom (numbering according to the benzodiazepine ring) is cleaved, e.g., by hydrolysis or another method, for example hydrogenolysis, to yield the desired compound of formula (III). The cleavage of the tert-butoxycarbonyl group may be carried out with trifluoroacetic acid, hydrogen bromide or zinc bromide in dichloromethane.
- The heterocyclic moiety—corresponding to the R3 substituent—of the compound of formula (I) or (II) is synthesized starting from the compounds of formula (III) according to methods known in the art relating to heterocyclic chemistry.
- Some of the compounds of formula (I) or (II) can be synthesized, for example, from the 4,5-dihydro-2,3-benzodiazepine derivatives substituted with thiocarbamoyl group at position 3 of the benzodiazepine ring. Latter compounds can be obtained from 4,5-dihydro-3H-2,3-benzodiazepine derivatives of formula (III), for example with potassium thiocyanate in acetic acid medium. The thus obtained 4,5-dihydro-3-thiocarbamoyl-3H-2,3-benzodiazepines are reacted with α-halo ketones or α-halo aldehyde acetals to yield 2,3-benzodiazepine derivatives having a substituted or unsubstituted 2-thiazolyl group. In an analogous reaction, if 2-halo carboxylic acid esters are used instead of the α-halo oxo-compound, the appropriate compounds containing a 3-thiazolinone ring are formed.
- When the above-mentioned 4,5-dihydro-2,3-benzodiazepines containing thiocarbamoyl group in position 3 are reacted with β-halo carboxylic acid esters, for example ethyl 3-bromopropionate, then new 2,3-benzodiazepine derivatives substituted with 5,6-dihydro-[1,3]thiazin-4-one ring are obtained.
- The compounds of formula (I) or (II) containing 1,3,4-thiadiazole group as R3 substituent can be synthesized for example by the following way. First, a trimethylsilyl derivative is prepared from a 4,5-dihydro-3H-[2,3]benzodiazepine of formula (III), which is then reacted with thiophosgene to give thiocarboxylic acid chloride. Finally, the latter is treated with hydrazine to yield the thiocarboxylic acid hydrazide derivatives. The 2,3-benzodiazepine derivatives substituted with carbothiohydrazide group are reacted with an acid anhydride or chloride and the thus-obtained partially occurring ring closure of the carbothio-N-acylhydrazides is promoted by further acid treatment to yield [1,3,4]thiadiazolyl-2,3-benzodiazepines. Another procedure for the synthesis of the latter compounds is to react the above-mentioned intermediate thiocarboxylic acid chloride with an acid hydrazide, and then the resulting carbothiohydrazide derivative containing an acyl group on the terminal N-atom is treated with acid to give the cyclic product.
- In an analogous reaction benzodiazepines of formula (I) or (II) containing a [1,3,4]oxadiazole ring can be obtained, for example, if the above mentioned N-acyl-thiocarboxylic acid hydrazide derivative is treated with a sulfur binding reagent, for example mercury (II) acetate.
- The 4,5-dihydro-2,3-benzodiazepin-3-carbothiohydrazides can serve as starting materials for further new compounds of formula (a) or (II) substituted with a hetero-ring. For example, if the N-methyl-carbamoyl-carbothiohydrazide obtained with methyl isocyanate is heated with concentrated acid, for example hydrochloric acid, then new compounds of formula (I) or (II) substituted with (5-oxo-4,5-dihydro-[1,3,4]thiadiazol-2-yl) group can be obtained. If the carbothiohydrazide derivative is reacted with bromoacetic acid ester, (5-oxo-5,6-dihydro-4H-[1,3,4]thiadiazin-2-yl)-[2,3]benzodiazepine derivatives having a 6-membered ring as the R3 substituent are obtained. If the carbothiohydrazide derivatives are reacted with α-halo-ketones, for example chloroacetone, then e.g., (5-methyl-6H-[1,3,4]thiadiazin-2-yl)-[2,3]benzodiazepines are formed.
- The appropriate thiohydroxamic acids can be obtained from [2,3]benzodiazepin-3-thiocarboxylic acid chlorides with hydroxylamine, which can be transformed into heterocyclic compounds by reacting with bifunctional alkylating agents. Among others, [1,4,2]oxathiazol-3-yl-2,3-benzodiazepines can be synthesized for example from thiohydroxamic acid derivatives with methylene iodide.
- The compounds of formula (I) or (II) containing 3-oxo-2,3-dihydro-[1,2,4]thiadiazol-5-yl group as R3 substituent can be prepared, for example, by reacting the unsubstituted compounds of formula (III) with phenoxycarbonyl isothiocyanate, then the resulting phenoxycarbonyl-thiocarbamoyl-benzodiazepine transformed into N-alkyl-carbamoyl-thiocarbamoyl-benzodiazepine with primary amines and the latter is reacted e.g., with bromine to accomplish the ring closure between the sulfur and the nitrogen atoms.
- The compounds of formula (I) or (II) containing 4,5-dihydro-oxazol-2-yl group as an R3 substituent can be synthesized by reacting the compounds of formula (III) with chloroethyl isocyanate to give an urea derivative, which is heated in the presence of sodium iodide and potassium carbonate in dimethylformamide to accomplish the ring closure.
- The compounds of formula (I) or (II) containing 2-alkyl-thiazol-4-yl group as R3 substituent can be synthesized by reacting 3-bromo-acetyl-[2,3]benzodiazepines with the appropriate carboxylic acid thioamide.
- From 3-cyano-2,3-benzodiazepines—obtained from 2,3-benzodiazepines of formula (III) with cyanogen bromide-2,3-benzodiazepines containing among others (1H-tetrazol-5-yl) as well as (5-alkyl-[1,2,4]oxadiazol-3-yl) groups as an R3 substituent can be synthesized. The tetrazolyl compounds can be synthesized by reacting the nitrile derivative with sodium azide in dimethylformamide in the presence of ammonium chloride, while if the nitrile compound is first treated with hydroxylamine and the thus obtained amidoxime is reacted with a carboxylic acid anhydride or chloride, then the appropriate 1,2,4-oxadiazolyl compounds can be obtained.
- The compounds of formula (I) or (II) containing 1,2,4-triazolyl group as R3 substituent can be synthesized from a 3-thiocarbamoyl-[2,3]benzodiazepine derivative by reacting first with methyl iodide, then the obtained S-methyl compound is condensed with hydrazine and the so formed intermediate is treated with a carboxylic acid anhydride or chloride.
- Other illustrative processes for the synthesis of compounds of formula (I) or (II) are those, where a hemiketal of formula (IV) is reacted with a heterocyclic reagent substituted with a hydrazine group in the presence of an acid as catalyst. The condensation reaction can be carried out in the presence of hydrochloric acid as catalyst by heating e.g., in isopropanol or toluene and possibly with a Dean-Stark apparatus. It can be advantageous in some instances to first transform the hemiketal into an isochromenilium salt of formula (IVa) with a mineral acid e.g., perchloric acid and the latter is reacted with a hydrazine reagent, for example in isopropanol. The thus-obtained hydrazones of formula (VII) are generally formed as a mixture of stereoisomers. They can be further reacted e.g., with methanesulfonyl chloride in dichloromethane in the presence of triethylamine, and the mesylate obtained after isolation is treated with a concentrated solution of a base in an alcohol or a mixture of alcohol-dichloromethane. The ring closure reaction can be achieved for example, by the Mitsunobu reaction (Mitsunobu Synthesis 1:1 (1981)) as well.
- If desired, the compounds of formula (I) or (II) obtained by different methods can be transformed into other compounds of formula (I) or (II) with further reactions. For example, a reactive halogen atom in the side chain of the heterocycle—the R3 substituent—can be exchanged for an amino group, for example by heating with an excess of a proper amine, or the NH group of a N-containing heterocyclic compound can be alkylated by known methods. The latter transformation for example in the case of a triazolyl compound, can be carried out with methyl iodide in the presence of potassium tert-butoxide.
- The reduction of the nitro group in the compounds of formula (I) or (II) is generally carried out in polar solvents at room temperature or at elevated temperature in the presence of catalysts such as Raney-nickel, platinum or palladium. Besides gaseous hydrogen, other hydrogen sources e.g., hydrazine hydrate, ammonium formate, potassium formate or cyclohexene can also be applied. The nitro group can be reduced, for example, with tin in the presence of an acid, or with tin (II) chloride by heating in an alcohol as well. The amino group can be further derivatised by known methods, for example alkylation, acylation, or Sandmeyer reaction.
- The AMPA antagonistic activity of the compounds of formula (I) or (II) of the present invention is exemplified by the following experiments. Reference to compounds by number refers to compounds described in the numbered examples below.
- Inhibition of the AMPA Receptors
- Two experimental models were used for the demonstration of the inhibition of the AMPA receptor activation of the compounds of formula (I) or (II). In the first model the spreading depression caused by glutamate agonists (i.e., AMPA or kainate) was studied, while in the second one the transmembrane ion-current induced by the activation of the AMPA/kainate receptors was measured directly.
- Inhibition of AMPA Induced “Spreading Depression” in Isolated Chicken Retina—
- The AMPA antagonistic effect of the compounds of formula (I) or (II) was studied in the in vitro “spreading depression” model (Sheardown Brain Res. 607:189 (1993)). The AMPA antagonists prolong the latency of the development of the “spreading depression” caused by AMPA (5 μM).
TABLE 1 Inhibition of the “spreading depression” in chicken retina Compound (Number of example)/IC50 μM GYKI 52466 GYKI 53773 (reference) (reference) 61 69 86 84 9.5 1.2 1-5 0.9 0.42 0.85 - The data of Table 1 indicate that the compounds of the present invention inhibit the AMPA-induced “spreading depression” with an IC50 value of 0.4-5 μM.
- Inhibition of AMPA Induced Transmembrane Currents
- The activity of the compounds of the present invention was studied on acutely isolated cerebellar Purkinje cells by measuring the whole-cell current induced by 5 μM AMPA according for example to the method described by Bleakman et al (Neuropharmacology 12:1689 (1996)). According to the IC50 values obtained, the compounds of the present invention inhibit the AMPA-induced ion-current by one to two magnitudes greater than the internationally accepted reference compound GYKI 52466 (5-(4-aminophenyl)-9H-1,3-dioxolo[4,5-h][2,3]-benzodiazepine, Hungarian patent No. 191 698), or GYKI 53773 ((R)-7-acetyl-5-(4-aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine, U.S. Pat. No. 5,536,832), the IC50 values of which are 8.8 μM, and 1.57 μM, respectively. (See Table 2).
TABLE 2 Inhibition of the ion-currents caused by 5 μM AMPA determined by the whole cell patch clamp method Compound (Number of example)/IC50 μM GYKI 52466 GYKI 53773 (reference) (reference) 61 69 86 84 8.8 1.57 0.49 0.42 0.06 0.09
Anticonvulsant Activity - Although various drugs with different spectra of activity are used in the therapy of epilepsy, they show severe side effects. Furthermore, about 30% of epilepsy patients are refractory to these drugs. Consequently, there is a need for such new antiepileptic drugs, which act via a mechanism different from those in current use. There are great expectations towards those compounds that display their activity by diminishing the glutamate-induced over-activation of the central nervous system (TIPS, 15:456 (1994)).
- The anti-seizure activity of some of the compounds of the present invention was measured using the electroshock test (J. Pharmacol. Exp. Ther. 106:319 (1952)) and the results are shown in Table 3. The spasmolytic activity of the compounds of the present invention was investigated by using e.g., pentetrazole (J. Pharmacol. Exp. Ther. 108:168 (1953)), strychnine (J. Pharmacol. Exp. Ther. 129:75 (1960)), bemegrid, nicotine, bicuculline, 4-aminopyridine and mercapto-propionic acid for inducing the clonic-tonic seizures and lethality. The investigated compounds were administered orally in three doses using 10 male CD1 mice/dose, usually 60 min before the induction of seizures. Non-limiting, illustrative results are summarized in Table 3.
TABLE 3 Investigation of the anticonvulsive activity in mice Compound (Number of example)/ED50 mg/kg po. Method GYKI 52466 GYKI 53773 61 69 86 84 89 102 MES 37.4 8.6 13.1 14.7 6.1 12.5 10.5 13.9 MES 30′ 21.9 4.9 11.5 8.7 4.3 10-15 — — Pentetrazol 119.8 16.8 32.5 46.9 10.0 17.1 11.5 35.7 Strychnine 86.7 17.4 35.4 27.7 10.6 18.2 15.7 26.7 Bemegride 71.9 23.9 34.4 33.3 11.2 16.7 11.2 27.9 Bicuculline 35.0 14.6 31.0 18.1 4.6 17.0 17.1 25.8 Nicotine 71.8 22.7 59.3 16.8 16.5 77.2 45.9 31.7 4-AP 43.0 8.4 17.6 16.6 10.1 16.6 14.3 20.4 3-MPA 47.0 17.1 11.0 34.2 4.0 6.8 >50 >50
Abbreviations:
MES = maximal electroshock seizure;
4-AP = 4-aminopyridine;
3-MPA = 3-mercapto-propionic acid
- The data provided above indicate that the compounds of formula (I) or (II) of the present invention showed significant anticonvulsive activity in all of the eight tests studied. They reveal both a broader spectrum and more significant anticonvulsive efficacy compared to GYKI 52466 and GYKI 53773, both used as reference compounds in the literature. The protective effect displayed against the different convulsion inducing agents predicts favorably for their potential use in the treatment of the different kinds of epilepsy.
- Muscle Relaxant Activity
- Central muscle relaxants are used in such clinical situations when the resting tone of the skeletal muscles is increased as a consequence of a cerebral trauma or due to a chronic neurodegenerative illness, resulting in muscle rigidity or tremor. The muscle spasm is often painful and hinders normal motion.
- The muscle relaxant activity of the compounds of formula (I) or (II) of the present invention was determined in the inclined screen test described by Randall (J. Pharmacol. Exp. Ther. 129:163 (60)) as well as in the rotarod test (Dunham et al, J. Am. Pharm. Assoc. 46:208 (1957). The compounds were administered in three doses intraperitoneally using 10 CD1-mice/dose. The muscle relaxant activity of the compounds of the present invention was compared to that of the reference compounds GYKI 52466 and GYKI 53773. Representative, non-limiting results are summarized in Table 4. From these data, it is evident, that the muscle relaxant activity of the compounds of the present invention significantly exceeds that of GYKI 53773, which is now in clinical phase-II studies.
TABLE 4 Muscle relaxant activity in mice Compound Inclined screen Rotarod (Number of example) ED50 ip. (mg/kg) ED50 ip. (mg/kg) GYKI 52466 (reference) 47.1 25.1 GYKI 53773 (reference) 13.4 2.3 61 10.7 5.4 69 12.2 1.2 86 3.9 0.8 84 12.8 1.4 89 4.3 1.7 102 14.8 2.9 - The muscle relaxant activity of the compounds of formula (I) or (I) determined in the above tests indicates potential therapeutic use in the treatment of such illnesses in which the increased muscle tone causes problems. Considering their skeletal muscle relaxant and anti-tremor activity (discussed below), the compounds may be useful in the treatment of essential tremor, multiple sclerosis (spasms+tremor) and Parkinson's disease (rigidity+tremor).
- The Inhibition of Focal Ischemia
- The focal anti-ischemic activity of the compounds of formula (I) or (II) of the present invention was measured by the “middle cerebral artery occlusion” (MCAO) test (Bartus Stroke 11:2265 (1994) and Sydserff et al, Brit. J. Pharmacol. 114:1631 (1995)). The blood supply of the left middle cerebral artery of anaesthetized rats was temporarily blocked (60 min) by an embolus introduced intra-arterially following Halothane anesthesia, without craniotomy, thereafter the perfusion was reestablished by removing the embolus and thus a human “stroke-like” status was triggered in an experimental animal model. After a histological process (TTC staining) 24 h later, the infarcted area was determined by a computer assisted scanner program and was compared to the results obtained in a control group treated with the vehicle. Non-limiting, representative results are summarized in Table 5.
TABLE 5 Inhibition of focal ischemia in rats Decrease of the infracted area in % compared to Dose that of the control Compound mg/kg iv. 30 min 120 min 180 min (Number of (6x in every Time of first treatment example) 30 min) after occlusion GYKI 52466 HCl 2 39* (reference) 5 34* 47** GYKI 53773 2 47* 49** 26 (reference) 61 1 63** 16 2 46* 69 2 28 86 1 35*
*p < 0.05;
**p < 0.01; calculated with Dunnett test following ANOVA (Dunnett J. Amer. Statist Ass. 50:1096 (1955))
- The investigated compounds possess a strong neuroprotective activity in this experimental model, which is considered the model of the human stroke. Some of the compounds, egg, those described in Example 61 and 86, show significant activity even when administered 3 h after the occlusion predicting a potential useful clinical application.
- Inhibition of Autoimmune Inflammation
- Multiple sclerosis is a chronic autoimmune inflammation of the central nervous system in which the axonal myelin coat, assuring the safe impulse conduction, is damaged. The oligodendrocytes forming the myelin coat express mainly AMPA/kainate receptors. Thus, the neurodegenerative process is further enhanced by glutamate, the excitatory neurotransmitter, which is released by the activated immune cells in large quantities which expresses its activity through AMPA/kainate receptors thereby damaging myelin oligodendrocytes and axons of neurons (Steinman Nature Medicare 6:15 (2000) and Werner et al., Neural Transmiss. Suppl., 60: 375 (2000)). As a consequence of these processes, at first mild neurological symptoms, such as visual, sensory, balance, motion and urogenital problems develop which become increasingly serious. The therapy of multiple sclerosis is still an unsolved problem despite the intense research being pursued in this field (Bjartmar et al., Drugs of Today 38:17 (2002)).
- Muscle spasticity and intention tremor belong to the most severe neurological symptoms of multiple sclerosis (Baker et al., Nature 404:84 (2000)). Moderation or cure of these symptoms by a proper therapy would be very important.
- The activity of the 2,3-benzodiazepine derivatives possessing AMPA antagonistic activity was further investigated in an autoimmune encephalomyelitis model (Smith et al., Nature Medicine, 6:62 (2000)) in rats, using immunization with guinea pig myelin basic protein (MBP) and complete Freund adjuvant. The compounds were administered intraperitoneally twice a day for 8 days, starting on day 10 after immunization and with an observation period until symptoms were present. 5-15 animals were used in each group. Their weights were 160-180 g (Lewis rats, female) and 180-220 g (Lewis rats, male). The activity of the compounds was determined according to the symptom score values, and compared to those of the control group (see Table 6). Histopathological investigations were carried out on the brain stem, the spinal cord, and the sciatic nerve (Gijbels et al., J. Clin. Invest. 94:2177 (1994)) using 5-10 animal/group. Non-limiting, representative results are presented in Table 7.
TABLE 6 Effect of 2,3-benzodiazepines possessing AMPA antagonist activity on the clinical symptoms of autoimmune encephalomyelitis in Lewis rats Neurological symptoms Compound (change compared to controls, %) (Number of Dose Female rats Male rats example) (mg/kg ip.) 0-8 day 0-14 day 0-8 day 0-14 day GYKI 53773 30 −38* −27 −43* −29 (reference) 15 −60* −63** −8 +7 GYKI 52466 30 −45 −4 −1 −1 (reference) 86 15 −97** −85** −93* −67 7.5 −62** −66** −65** −70** 3.75 −3 −18 −70** −77** 1.875 −40* −39* +5 −8 61 7.5 −56* −53* −60* −63** 3.75 −44 −48 −44* −46* 1.875 −18 −7 +13 +5 69 7.5 −29 −24 −51* −50* 3.75 +43 +58* +35 −40*
*p < 0.05;
**p < 0.01 (Mann-Whitney test)
-
TABLE 7 Effect of 2,3-benzodiazepine derivatives possessing AMPA antagonistic character on the histological and clinical symptoms of autoimmune encephalomyelitis in Lewis rats on day 24 after immunization. Neurological Histological symptoms symptoms Compound (change, %) (change, %) (Number of Dose rats rats example) (mg/kg ip.) Male female male female GYKI 53773 30 +34 −16 −26 −41 (reference) 86 15 −66 −53 −67 −85 7.5 +1 −22 −66 −62 3.75 +4 −20 −72 −21 1.875 −25 −15 +54 −42 61 7.5 −20 −5 −54 −53 - According to our histopathological and pharmacological investigations the compounds described in, for example, Example 86 and 61 proved to be more active than the reference compound GYKI 53773.
- The anti-tremor effect of the 2,3-benzodiazepine derivatives of the present invention, possessing AMPA antagonistic character in mouse models was studied using three tremorigen agents of different mechanism of action, such as oxotremorine (Rathbun et al., Psychopharmacology; 4:114 (1963)), GYKI 20039 (3-(2,6-dichlorophenyl)-2-imino-thiazolidine; (Andrasi et al., Acta Physiol. Acad. Sci. Hung. 37:183 (1970)) and harmaline. Number of animals: 5/group. Weight of animals: 20-25 g (CD1 mice, male). The activity of the investigated compounds was determined by their score values compared to those of the control group. The ED50 values were calculated according to the Litchfield-Wilcoxon method and are listed in Table 8.
TABLE 8 Effect of 2,3-benzodiazepine derivatives possessing AMPA antagonistic character on the tremor of CD1 mice induced by different chemical agents. Compound ED50 (mg/kg po.) (Number of Dose range Oxotremorin GYKI 20039 Harmaline example) (mg/kg p.o.) 1 mg/kg ip. 10 mg/kg ip. 40 mg/kg ip. GYKI 52466 6.25-75.0 20.5(14.9-28.3) 37.1(25.2-54.7) 38.5(25.7-57.9) (reference) GYKI 53773 3.125-20.0 5.6(3.6-8.5) 10.6(7.2-15.5) 9.0(−7.4-10.9) (reference) 86 3.125-9.0 4.3(3.5-5.4) 6.8(5.5-8.5) 6.0(4.9-7.4) - According to our investigations, the compound described in Example 86 was more active than the reference compounds GYKI 53773 and GYKI 52466, respectively.
- The 2,3-benzodiazepine derivatives with AMPA antagonistic character, compensating for the harmful effect of glutamate by blocking the corresponding receptors, are therapeutically important. Their combined neuroprotective, muscle relaxant, tremor inhibiting etc. properties beneficially influence the progression of the pathological neurological disorders and diminish the pathological neurological symptoms, respectively.
- The Effect of the Compounds of the Present Intention on the Acute and Chromic Inflammatory Disorders of the Airways
- Bronchial hyperresponsiveness (BHR) and airway eosinophilia (AEP) are characteristic features of bronchial asthma. BHR is typified by an exaggerated response to a wide variety of stimuli that can induce an increased resistance to airflow in the airways. AEP is a result of prolonged eosinophil infiltration, mast cell, and T cell activation in the airways. In actively (e.g., ovalbumin) immunized rats (e.g., Brown Norway [BN] strain), repeated sensitization followed by antigenic challenge results in lung eosinophilia and bronchial hyperresponsiveness to different spasmogens (e.g., acetylcholine). This is the most frequently employed model for studying potential anti-asthmatic effects of new chemical entities.
- BN rats were actively immunized with allergen (ovalbumin). On day one, rats were sensitized with the subcutaneous administration of ovalbumin suspended in Al(OH)3 (2.5 μg ovalbumin +20 mg Al(OH)3 in 0.5 ml saline). Booster injections (same dose and same route) were given at day 14 and 21. Simultaneously at each occasion 0.25 ml of Bordatella pentussis vaccine was injected intraperitoneally. On day 28, animals were challenged by inhalation of the antigen (vaporized 1% OVA solution for 1 hour). Test compounds were administered orally 2 hours pre-challenge.
- 48 hours following challenge, they were sacrificed by an overdose of urethane (4-5 ml of 15% urethane given i.p.), bronchoalveolar lavage fluid (BALF) was obtained, and tracheae dissected from the animals. Eosinophil cell count (cells/ml BALF) was determined manually using a selective stain for eosinophils and counting the cells in a Buerker chamber. BHR was determined using tracheal rings suspended in an organ bath. After an equilibration period of 30 minutes, cumulative concentration response curves to acetylcholine were determined. Maximal response of control (unchallenged, non-treated) tracheal rings is obtained at 10−3 M acetylcholine. The height of this response is defined as 100%. All other contractions are expressed as a percentage and related to the control response.
- Results
TABLE 9 Effect of GYKI 52466 (reference), GYKI 53773 (reference) and the compound described in Example 86 on the bronchial hypersensitivity and the eosinophilia of the airways on BN-rats sensitized with ovalbumin and antigen challenged by inhalation (mean ± SE, p determined by Student's t-test). Compound (Number Experiment Parameter Control Challenge of example) GYKI 52466 (reference) 3.0 mg/kg po 1 ED50* 5.63 ± 0.46 6.74 ± 1.45 5.60 ± 1.53 p 0.002 0.028 MAX** 100 ± 0 276 ± 217 135 ± 105 p 0.001 0.037 Eosinophil*** 0.17 ± 0.01 1.24 ± 0.23 0.91 ± 0.13 p 0.010 NS‡ GYKI 53773 (reference) 3.0 mg/kg po 2 ED50* 5.22 ± 0.59 5.89 ± 0.66 4.64 ± 0.91 p 0.003 0.001 MAX** 100 ± 0 163 ± 65 85 ± 43 p <0.001 0.007 Eosinophil** 0.38 ± 0.11 1.24 ± 0.13 1.29 ± 0.11 p 0.004 NS‡ 86 3.0 mg/kg po 3 ED50* 5.78 ± 0.17 6.99 ± 0.32 4.95 ± 0.59 p 0.001 0.008 MAX** 100 ± 0 255 ± 50 81 ± 14 p 0.001 0.003 Eosinophil*** 0.23 ± 0.08 1.43 ± 0.27 1.32 ± 0.32 p 0.005 NS‡
*acetylcholine (Ach) concentration (−log M) which causes a 50% contraction compared to the control
**relative contraction compared to the control at a maximal Ach concentration
***BALF eosinophil number (×106/ml)
‡not significant (p > 0.05)
- The representative results presented in Table 9 show that representative compounds according to the present invention diminished the bronchial hyperresponsiveness caused by the allergen. The eosinophilia was not significantly influenced by the applied doses.
- The results of the different pharmacological investigations mentioned above show that the compounds of formula (I) or (II) of this invention are able to beneficially influence various diseases and disorders in which glutamate (AMPA/kainate) receptors have been implicated. Consequently the compounds according to the invention are suitable for treating neurological and psychiatric disorders, triggered by the extremely enhanced activity of the AMPA receptor. Therefore, they have therapeutic utility as anticonvulsants, muscle relaxants, as well as neuroprotective agents. They also display therapeutic value for the treatment of epilepsy, as well as different illnesses in which the spasm of skeletal-muscles is involved, and in the treatment of neurodegenerative disorders such as e.g., cerebral ischemia (stroke).
- Exemplary neurological illnesses which can be beneficially influenced or prevented include Parkinson's disease, Alzheimer's disease, Huntington chorea, amyotrophic lateral sclerosis, olivopontocerebellaric atrophy, AIDS dementia, senile dementia. A similar beneficial effect can be achieved in the treatment of neurodegenerative processes caused by cerebrovascular catastrophe (stroke, brain, and spinal injuries) or hypoxia, anoxia or hypoglycemia. The compounds of the invention can be advantageously used for the treatment of different psychiatric diseases such as anxiety, schizophrenia, sleep disorders, as well as alleviating the withdrawal syndrome of alcohol and drug abuse. Furthermore they may inhibit tolerance development in the case of sedatives or analgesics.
- It can be expected that they can be advantageously used in epileptic disease entities, in the cure or palliation of muscle spasms of central origin and in the relief of pathologic pain as well as in the treatment of urinary incontinence.
- In one aspect of the invention, a method of blocking the activation of one or more excitatory amino acid receptors in mammals is provided. This method includes administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound of the formula (I) or (II).
- In another aspect of the invention, a method of treating epilepsy in mammals is provided. This method includes administering to a mammal in need of such treatment an antiepileptic amount of a compound of the formula (I) or (II).
- In another aspect of the invention, a method of treating spasms of the skeletal musculature in mammals is provided. This method includes administering to a mammal in need of such treatment a muscle-relaxing amount of a compound of the formula (I) or (II).
- In still another aspect of the invention, a method of treating acute and chronic neurodegenerative disorders in mammals is provided. This method includes administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound of the formula (I) or (II).
- In yet another aspect of the invention, a method for treating inflammatory disorders in mammals is provided. This method includes administering to a mammal in need of such treatment a pharmaceutically effective amount of a compound of the formula (I) or (II).
- In other aspects of the invention, the compounds of formula (I) or (II) can be advantageously used in the treatment of multiple sclerosis. A further therapeutic field, in which the compounds of formula (I) or (II) can be used, are illnesses that are caused by the over-function of the periferic glutamate receptors. Such illnesses include the acute and chronic inflammatory disorders of the airways particularly allergic inflammations such as asthma-related pathologies. This latter potential therapeutic use is supported by the results obtained in ovalbumin sensitized rats.
- In one aspect of the invention, a pharmaceutical composition is provided including a compound of formula (I) or (II), or a stereoisomer, or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier, excipient or diluent.
- The compounds of formula (I) or (II) are formulated in a pharmaceutically acceptable vehicle with any of the well-known pharmaceutically acceptable carriers, including diluents and excipients (see Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, Mack Publishing Co., Easton, Pa. 1990 and Remington: The Science and Practice of Pharmacy, Lippincott, Williams & Wilkins, 1995). While the type of pharmaceutically acceptable carrier/vehicle employed in generating the compositions of the invention will vary depending upon the mode of administration of the composition to a mammal, generally pharmaceutically acceptable carriers are physiologically inert and non-toxic. Formulations of pharmaceutical compositions may contain more than one type of compound of formula (I) or (II), as well as any other pharmacologically active ingredient useful for the treatment of the particular conditions, disease, or symptom being treated.
- The compositions of the invention can be administered by standard routes (e.g., oral, inhalation, rectal, nasal, topical, including buccal and sublingual, or parenteral, including subcutaneous, intramuscular, intravenous, intradermal, transdermal, and intratracheal). In addition, polymers may be added according to standard methodologies in the art for sustained release of a given compound.
- For oral administration, the compositions of the invention may be presented as discrete units such as capsules, caplets, gelcaps, cachets, pills, or tablets each containing a predetermined amount of the active ingredient as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion and as a bolus, etc. Alternately, administration of a composition including the compound of formula (I) or (II) may be effected by liquid solutions, suspensions or elixirs, powders, lozenges, micronized particles and osmotic delivery systems.
- Formulations suitable for administration by inhalation include formulations that can be dispensed by inhalation devices known to those in the art. Such formulations may include carriers such as powder and aerosols. Liquid and powdered compositions suitable for nebulization and intrabronchial use, or aerosol compositions administered via an aerosol unit dispensing metered doses (“MDI”) are contemplated.
- The active ingredient may be formulated in an aqueous pharmaceutically acceptable inhalant vehicle, such as, for example, isotonic saline or bacterostatic water and other types of vehicles that are well known in the art. The solutions are administered by means of a pump or squeeze-actuated nebulized spray dispenser, or by any other conventional means for causing or enabling the requisite dosage amount of the liquid composition to be inhaled into the patient's lungs.
- Powder compositions include, by way of illustration, pharmaceutically acceptable powdered preparations of the active ingredient thoroughly intermixed with lactose or other inert powders acceptable for intrabronchial administration. The powder compositions can be administered via a dispenser, including, but not limited to, an aerosol dispenser or encased in a breakable capsule, which may be inserted by the patient into a device that punctures the capsule and blows the powder out in a steady stream.
- Aerosol formulations for use in the subject method typically include propellants, surfactants, and co-solvents and may be filled into conventional aerosol containers that are closed by a suitable metering valve.
- Formulations suitable for nasal administration, wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner in which snuff is administered, i.e. by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations, wherein the carrier is a liquid, for administration, for example via a nasal spray, aerosol, or as nasal drops, include aqueous or oily solutions of the compound of formula (I) or (II).
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, stabilizers, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- The dosage of the active ingredient depends on the route of administration, the type and severity of the disease as well as the weight and age of the patient. The daily dose for adult patients can be 0.1-500 mg, preferably 1-100 mg, in a single dose or divided in several doses.
- In another aspect of the present invention, a method is provided for treating (a) an acute or chronic neurodegenerative disease associated with glutamate dysfunction; (b) a method for treating epilepsy; (c) a method for reducing muscle spasm in mammals; (d) a method for preventing, treating or alleviating the symptoms of acute or chronic inflammatory disorders of the airways; (e) a method for relief of pathological pain in mammals. These methods include administering to a mammal in need of such treatment a therapeutically effective amount of a compound of formula (I) or (II).
- The term “therapeutically effective amount” is used to denote treatments at dosages effective to achieve the therapeutic result sought. Furthermore, one of skill will appreciate that the therapeutically effective amount of the compound of the invention may be lowered or increased by fine-tuning and/or by administering more than one compound of the invention, or by administering a compound of the invention with another pharmacologically active compound. The invention therefore provides a method to tailor the administration/treatment to the particular exigencies specific to a given mammal. As illustrated in the following examples, therapeutically effective amounts may be easily determined for example empirically by starting at relatively low amounts and by step-wise increments with concurrent evaluation of beneficial effect.
- It will be appreciated by those of skill in the art that the number of administrations of the compounds according to the invention will vary from patient to patient based on the particular medical status of that patient at any given time.
- The compounds according to the invention and the process for their preparation are illustrated in detail by the following Examples.
- The following examples are intended to further illustrate certain preferred embodiments of the invention and are not limiting in nature. Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein.
- The starting materials of the examples were synthesized as follows:
- A mixture of 0.90 g (9.26 mmol) of potassium thiocyanate, 2.00 g (6.15 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine and 40 ml of acetic acid was stirred at 100-110° C. for 6 h. After cooling, the precipitated crystals were filtered off, washed with water and dried to yield 1.80 g (76%) of the title compound. Mp.: 242-243° C.
- The thiocarbamoyl compounds II-X were synthesized from the corresponding dihydro-[2,3]benzodiazepine according to the above procedure.
- Mp.: 213-215° C. Yield: 73%, [α]D: −251° (c=0.5; CHCl3).
- Mp.: 213-214° C. Yield: 76%, [α]D: +252° (c=1; CHCl3).
- Mp.: 230-236° C. Yield: 86%.
- Mp.: 261-265° C. Yield: 72%.
- Mp.: amorphous. Yield: 59%.
- Mp.: 225-235° C. Yield: 86%.
- Mp.: 235-238° C. Yield: 62%.
- Mp.: 201-202° C. Yield: 84%.
- Mp.: 250-253° C. Yield: 94%.
- 3.25 g (10.0 mmol) of (±)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine was dissolved in 90 ml of dry toluene by warming and after adding 2.17 ml (15.5 mmol) of triethylamine, was reacted with 1.90 ml (15.0 mmol) of trimethylsilyl chloride at about 28-30° C. After stirring at room temperature for 16 h this reaction mixture was added dropwise over a period of about 2 h to the solution of 1.38 g (12.0 mmol) of thiophosgene in 30 ml of dry toluene. This mixture was stirred at room temperature for 5 h, and then diluted with 30 ml of toluene. It was then decomposed by addition of 30 ml of water. After separation, the toluene phase was washed twice with 30 ml of water, followed by a 10% aqueous sodium chloride solution. After drying, the solvent was evaporated and the residue was treated with diisopropyl ether to yield 3.27 g (81%) of the crude product.
- The crude product was recrystallized from chloroform, petroleum ether.
- Yield: 3.05 g. Mp.: about 185° C. it recrystallizes, then it melts at 210° C.
- The carbothioyl chloride type compounds XII-XVII were synthesized by analogous methods from racemic or optically active dihydro-[2,3]benzodiazepine derivatives:
- Mp.: 187-188° C. Yield: 80%, [α]D: −610° (c=0.5; CHCl3).
- Mp.: 198-199° C. Yield: 79%.
- Mp.: 210-215° C. Yield: 79%.
- Mp.: 201-202° C. Yield: 84%.
- Mp.: 210-214° C. (DMF). Yield: 70%.
- Mp.: 199-204° C. Yield: 82%.
- 1.0 g (2.47 mmol) of carbothioyl chloride XI was added to a stirred solution of 0.37 g (7.42 mmol) of hydrazine hydrate in 15 ml of tetrahydrofuran at 5-10° C. over a period of about 0.5 h, then after 1 h stirring, the mixture was poured into water and the precipitated product was filtered off to yield 0.89 g (90%) of the crude product. After drying, it was used in the further reaction steps. The melting point of the product after recrystallization from ethanol was 196° C.
- The carbothiohydrazide derivatives XIX-XXII were synthesized by analogous methods:
- Mp.: 140-142° C. Yield: 99%, [α]D: −201° (c=0.5; CHCl3).
- Mp.: 210-211° C. Yield: 61%.
- Mp.: 196-201° C. Yield: 98%.
- Mp.: 188-190° C. Yield: 98%.
- A mixture of 3.25 g (10 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine, 20 ml of dimethylformamide, 2.76 g (20 mmol) of potassium chloride and 1.80 g (17 mmol) of cyanogen bromide was stirred at room temperature for 20 h. After pouring into water, the precipitated crystals were filtered off, and washed with water to yield 3.34 g (95%) of the title compound, Mp.: 172-176° C.
- A mixture of 2.80 g (8.0 mmol) of compound XXIII, 30 ml of 2-methoxyethanol, 0.84 g (10 mmol) of sodium acetate and 0.60 g (8.8 mmol) of hydroxylamine hydrochloride was stirred for 0.5 h, then concentrated in vacuum. The residue was treated with water, the precipitated crystals were filtered off and washed with water to yield 3.05 g (100%) of the title compound, Mp.: 138-145° C.
- A mixture of 1.0 g (3.07 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine, 25 ml of dry dichloromethane and 0.62 g (5.88 mmol) of 2-chloroethyl isocyanate was stirred at room temperature for 24 h, then concentrated. The residue was purified by refluxing in ethanol to yield 1.25 g (94%) of the title compound, Mp.: 222-223° C.
- 0.37 g (3.80 mmol) of potassium thiocyanate was dissolved in 8 ml of acetone, then 0.48 ml (3.80 mmol) of phenyl chloroformate was added dropwise to the mixture at room temperature. The reaction mixture was stirred at room temperature for 0.5 h, then at 40° C. for 0.25 h. Then the mixture was cooled with ice-water and a solution of 1.04 g (3.20 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine in 15 ml of acetone was added dropwise over a period of 0.5 h. After stirring for 0.5 h the bulk of the solvent was evaporated and the residue was treated with water, the crystals were filtered and washed with water to yield 1.73 g, (90%) of the title compound. Mp.: 160° C.
- 1.57 g (3.11 mmol) of compound XXVI was dissolved in 8 ml of methylformamide and 0.35 ml (4.04 mmol of 40% aqueous methylamine solution was added dropwise to the ice cooled stirred solution. After stirring for 2 h the mixture was poured into water, the precipitated crystals were filtered off and washed with water to yield 1.56 g of the crude product, which was recrystallized from ethanol. Yield: 1.01 g (73%). Mp.: 192-193° C.
- The compounds XXVIII and XXIX were synthesized analogously.
- (±)-1-Cyclopropyl-3-{8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl}-urea (XXVIII)
- Mp.: 281-283° C. (ethyl acetate). Yield: 80%
- Mp.: 176-177° C. (methanol). Yield: 73%.
- To a stirred solution of 0.40 g (1.0 mmol) of compound XVIII in 15 ml of chloroform 0.07 ml (1.2 mmol) of methyl isocyanate was added. After 1 h the reaction mixture was washed with sodium hydrogen carbonate solution and water and after concentration the obtained solid material was purified by refluxing in ethanol. The desired product was 0.36 g, yield: 88%. Mp.: 200° C.
- The title compound was prepared based on the procedures described in the literature (Ling et al., J. Chem. Soc. Perkin Trans. 1:1423 (1995)) and the British patent specification No. 2,311,779.
- Mp.: 159-160° C. (ethanol). [α]D: +172° (c=1; CHCl3).
- The compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358(1995)) with the exception that tert-butyl carbamate was used instead of acetic hydrazide.
- Mp.: 168-169° C. (isopropanol). [α]D: −444° (c=0.6; CHCl3).
- (±)-8-Methyl-5-(4-nitrophenyl)-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine
- A mixture of 1.00 g (2.60 mmol) of the starting material I, 2.54 g (12.89 mmol) of bromoacetaldehyde diethyl acetal and 10 ml of dimethylformamide was stirred at 80° C. for 40 min. Then the reaction mixture was diluted with water and the crude product obtained was recrystallized from ethanol to yield 0.85 g (80%) of the title compound. Mp.: 145-150° C.
- The title compound was obtained from the starting material II according to the method described in Example 1. Mp.: 108-110° C., yield: 89%, [α]D: +514° (c=0.5; CHCl3)
- The title compound was obtained from the starting material III according to the method described in Example 1. Mp.: 114-116° C., yield: 83%, [α]D: −522° (c=0.6; CHCl3)
- A mixture of 0.76 g (1.98 mmol) of the starting material I, 1.10 g (11.88 mmol) of chloroacetone and 15 ml of dimethylformamide was stirred at 80-90° C. for 40 min. Then the reaction mixture was diluted with water, the precipitated crystals were filtered off, dried and purified by refluxing in ethanol to yield 0.69 g (82%) of the title compound; Mp.: 188-189° C.
- A mixture of 1.50 g (3.90 mmol) of starting material I, 3.57 g (19.50 mmol) of 2-bromopropionaldehyde dimethyl acetal and 15 ml of dimethylformamide was stirred at 90° C. for 1.5 h. Then the reaction mixture was diluted with water and the crude product obtained was purified by column chromatography using silica gel (MN Kieselgel 60; Macherey-Nagel, Düren, Germany) as adsorbent and a mixture of toluene—ethyl acetate (16:1) as eluent to yield 1.08 g (66%) of the title compound; Mp.: 193-195° C.
- A mixture of 0.60 g (1.56 mmol) of the starting material I, 1.02 g (9.57 mmol) of 3-chloro-2-butanone and 8 ml of dimethylformamide was stirred at 90° C. for 3 h. After cooling the precipitated crystals were filtered off, dried and purified by recrystallization from dimethylformamide and water to yield 0.49 g (76%) of the title compound; Mp.: >260° C. (dec.).
- A mixture of 0.45 g (1.17 mmol) of the starting material I, 0.35 g (1.76 mmol) of phenacyl bromide and 7 ml of dimethylformamide was stirred at 80° C. for 30 min. After cooling the precipitated crystals were filtered off, washed with ethanol and dried to yield 0.50 g (88%) of the title compound; Mp.: >260° C. (dec.).
- A mixture of 0.45 g (1.17 mmol) of the starting material I, 0.46 g (2.36 mmol) of ethyl bromopyruvate and 7 ml of dimethylformamide was stirred at 80° C. for 30 min. After cooling the precipitated crystals were filtered off, washed with ethanol and dried to yield 0.41 g (85%) of the title compound; Mp.: 242-243° C.
- A mixture of 1.00 g (2.6 mmol) of the starting material I, 2.13 g (10.40 mmol) of 2-bromoethylamine hydrobromide and 10 ml of dimethylformamide was stirred at 90-100° C. for 4 h. After diluting with water the precipitated crystals were filtered off, dissolved in dichloromethane and washed several times with 10% sodium hydrogen carbonate solution. After drying the product was purified by column chromatography using silica gel (Kieselgel 60) as adsorbent and a mixture of hexane—ethyl acetate (1:1) as eluent to yield 0.80 g (75%) of the title compound; Mp.: 185-187° C.
- The title compound was obtained from the starting material II according to the method described in Example 9.
- Mp.: 118-124° C. Yield: 73%, [α]D: +575° (c=0.4; CHCl3).
- The title compound was obtained from the starting material III according to the method described in Example 9.
- Mp.: 120-125° C. Yield: 71%. [α]D: −594° (c=0.4; CHCl3).
- A mixture of 1.00 g (2.6 mmol) of the starting material I, 1.19 g (7.78 mmol) of methyl bromoacetate and 10 ml of dimethylformamide was stirred at 80-90° C. for 1 h. After diluting with water the obtained crude product was purified by refluxing in methanol to yield 1.00 g (91%) of the title compound; Mp.: 218-220° C.
- A mixture of 1.00 g (2.60 mmol) of the starting material I, 0.94 g (5.19 mmol) of ethyl 2-bromopropionate and 10 ml of dimethylformamide was stirred at 80-90° C. for 2 h. After diluting with water the obtained crude product was purified by refluxing in 15 ml of ethanol to yield 1.08 g (95%) of the title compound; Mp.: 213-214° C.
- A mixture of 2.00 g (5.20 mmol) of the starting material I, 1.89 g (10.44 mmol) of ethyl 3-bromopropionate and 20 ml of dimethylformamide was stirred at 80-90° C. for 3 h. The reaction mixture was diluted with 25% sodium chloride solution and extracted with dichloromethane. After drying and concentration the crude product was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of ethyl acetate-methanol (2:1) as eluent to yield 1.34 g (59%) of the title compound; Mp.: 220-221° C.
- The title compound was obtained from the starting material VIII and bromoacetaldehyde diethyl acetal according to the method described in Example 1. Mp.: 203-215° C. Yield: 77%.
- The title compound was obtained from the starting material IV according to the method described in Example 1. Mp.: 171-175° C. Yield: 46%.
- The title compound was obtained from the starting material VII according to the method described in Example 1. Mp.: 180-184° C. Yield: 51%.
- The title compound was obtained from the starting material X according to the method described in Example 1. Mp.: 184-190° C. Yield: 54%.
- The title compound was obtained from the starting material V according to the method described in Example 1. Mp.: 213-216° C. Yield: 67%.
- The title compound was obtained from the starting material V according to the method described in Example 4. Mp.: 209-216° C. Yield: 94%.
- The title compound was obtained from the starting material V according to the method described in Example 9. Mp.: 225-227° C. Yield: 69%.
- The title compound was obtained from the starting material V according to the method described in Example 12. Mp.: 226-228° C. Yield: 96%.
- The title compound was obtained from the starting material VI according to the method described in Example 4. Mp.: 240-242° C. Yield: 77%.
- A mixture of 1.43 g (3.32 mmol) of the starting material XXV, 1.38 g (9.98 mmol) of anhydrous potassium carbonate, 0.24 g (1.60 mmol) of sodium iodide and 24 ml of dimethylformamide was stirred at 100-110° C. for 4 h. Then the mixture was diluted with water and the precipitated crude product was recrystallized from ethanol to yield 1.00 g (76%) of the title compound; Mp.: 194-196° C.
- A mixture of 0.57 g (1.43 mmol) of the starting material XVIII, 6 ml of triethyl orthoformate and a catalytic amount of hydrochloric acid was stirred at 80° C. for 1 h. After cooling the precipitated crystals were filtered off, washed with ethanol and dried to yield 0.45 g (77%) of the title compound; Mp.: 212-213° C.
- The title compound was obtained from the starting material XIX according to the method described in Example 25. Mp.: 144-147° C. (ethanol-water). Yield: 88%, [α]D: +428° (c=0.2; CHCl3)
- To an ice cooled stirred mixture of 1.0 g (2.50 mmol) of the starting material XVIII, 35 ml of dichloromethane, 0.40 ml (2.75 mmol) of triethylamine and 0.22 ml (2.80 mmol) of acetyl chloride was added. The so obtained solution was left at room temperature for 16 h, then 0.6 g of p-toluenesulfonic acid was added and the mixture was stirred at 40° C. for 2 h. Then the reaction mixture was washed with sodium hydrogen carbonate solution and water until neutrality, dried and concentrated. The crude product was treated with methanol, then recrystallized from ethanol to yield 0.99 g (91%) of the title compound. Mp.: 213-215° C.
- Method A.
- The title compound was obtained from the starting material XIX by carrying out the acylation with acetic anhydride according to the method described in Example 27. The obtained crude product was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of n-hexane-ethyl acetate (1:1) as eluent. After concentration of the fractions containing the title compound, the residue was treated with isopropyl ether to yield 0.95 g of a solid foam (polymorph). Yield: 89%.
- Method B.
- To a solution of 4.04 g (10.0 mmol) of the starting material XII, 3 ml of dimethylformamide, 1.40 ml (10.0 mmol) of triethylamine and 0.06 g (0.5 mmol) of 4-dimethylaminopyridine 1.48 g (20.0 mmol) of acetic hydrazide was added. The reaction mixture was stirred at 50° C. for 5 h, then diluted with water, the precipitated crystals were filtered off and washed with water. The so obtained 4.5 g of (R)—N′-{8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl}-acetic hydrazide according to its 1H-NMR spectrum was a mixture of rotation isomers. (The analyzed sample was purified by column chromatography using a mixture of n-hexane-ethyl acetate (1:1) as eluent and it was crystallized with 0.5 mol of ethyl acetate, Mp.: 118° C.).
- To a suspension of the above intermediate in 50 ml of ethanol 0.75 ml of concentrated hydrochloric acid was added, and the so obtained solution was refluxed for 2 h. After concentration and treatment with water 4.2 g of a crude product was obtained. Purification by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of n-hexane-ethyl acetate as eluent and drying at 60° C. in vacuum yielded the title compound with a melting point of 101-102° C. [α]D: +453° (c=0.5; CHCl3).
- The compounds of Examples 29-34 were obtained according to the method described in Example 27 using the appropriate acid chlorides.
- Mp.: 142-145° C.; yield: 49%.
- Mp.: 163-164° C.; yield: 84%.
- Mp.: 105° C.; yield: 63%. [α]D: +418° (c=0.5; CHCl3).
- Mp.: 184-185° C.; yield: 67%.
- Mp.: 210-212° C.; yield: 56%.
- Mp.: 210-211° C. yield: 64%.
- A mixture of 5 ml of dimethylformamide, 0.44 g (0.96 mmol) of (±)-7-(5-chloromethyl-1,3,4-thiadiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo
- [4,5-h][2,3]benzodiazepine (Example 34) and 0.37 ml (5.31 mmol) of cyclopropylamine was stirred at 70-80° C. for 1 h. Then the reaction mixture was poured into 20% sodium chloride solution and, the precipitated crude product was extracted into ethyl acetate. The solution was washed with water, dried and after evaporation yielded 0.39 g (85%) of the title compound, as solid foam.
- The title compound was obtained from the starting material XX according to the method described in Example 25. Mp.: 188° C.; yield: 86%
- The title compound was obtained from the starting material XX according to the method described in Example 27. Mp.: 162-164° C.; yield: 52%.
- The title compound was obtained from the starting material XXI according to the process described in method A of Example 28.
- Mp.: 228-240° C.; yield: 74%.
- The title compound was obtained from the starting material XV according to the process described in method B of Example 28.
- Mp.: 220° C. (ethanol); yield: 57%.
- The title compound was obtained from the starting material XII according to the process described in method B of Example 28.
- Mp.: 118-119° C., yield: 67%.
- The title compound was obtained from the starting material XXI according to the process described in method A of Example 28.
- Mp.: 229-233° C., yield: 76%.
- A mixture of 1.00 g (2.50 mmol) of the starting material XVIII, 20 ml of dimethylformamide and 0.57 g (6.16 mmol) of chloroacetone was stirred at room temperature for 2 h. After dilution with water the precipitated crystals were filtered off and purified by refluxing in ethyl acetate to yield 0.73 g (67%) of the title compound; Mp.: 203-204° C.
- A mixture of 1.00 g (2.50 mmol) of the starting material XVIII, 20 ml of dimethylformamide and 0.94 g (6.14 mmol) of methyl bromoacetate was stirred at 70° C. for 1.5 h. After dilution with water the precipitated crystals were filtered off and purified by refluxing in ethyl acetate to yield 0.41 g (37%) of the title compound; Mp.: 294-295° C. (dec.).
- A mixture of 2.14 g (4.69 mmol) of the starting material XXX and 122 ml of concentrated hydrochloric acid was stirred at 80° C. A solid material precipitated from the starting solution. The reaction mixture was concentrated to about half of its volume, diluted with 40 ml of water and made alkaline with sodium hydrogen carbonate solution. The precipitated product was filtered off and washed with water to yield 1.40 g (70%) of the tide compound. Mp.: 288° C.
- A stirred mixture of 2.2 g (5.15 mmol) of (R)—N′-(8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-7-carbothioyl)-acetic hydrazide (an intermediate of method B of Example 28), 44 ml of ethanol and 1.72 g (5.39 mmol) of mercury (II) acetate was refluxed for 2 h. The residue obtained on concentration was dissolved in dichloromethane and filtered through a neutral aluminum oxide column. After washing the column the filtrate was concentrated and the residue was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of n-hexane-ethyl acetate (1:2.5) as eluent to yield 1.07 g (51%) of the title compound. Mp.: 202-204° C. after recrystallization from ethanol. [α]: −249° (c=0.22; CHCl3).
- To an ice cooled stirred solution of 0.44 g (1.0 mmol) of the starting material XXVII in 8 ml of chloroform a solution of 0.19 g (1.2 mmol) of bromine in 3 ml of chloroform was added. After 0.5 h the reaction mixture was diluted with 15 ml of chloroform and washed with sodium hydrogen carbonate solution and water. The residue obtained on concentration was stirred with methanol and filtered to yield 0.36 g (82%) of the title compound. Mp.: 296° C. after recrystallization from ethyl acetate.
- The compounds of Example 47 and 48 were obtained analogously from the starting materials XXVIII and XXIX, respectively.
- Mp.: 246-247° C. (ethyl acetate), yield: 64%.
- Mp.: 250-256° C., yield: 60%.
- A mixture of 9 ml of ethanol, 0.85 g (1.89 mmol) of (±)-7-(4-ethoxycarbonyl-thiazol-2-yl)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine Example 8) and 7 ml of 1N sodium hydroxide solution was stirred at 90° C. After cooling, it was acidified with acetic acid, diluted with water and the precipitated crystals were filtered off, washed with water and dried to yield 0.78 g (98%) of the title compound; Mp.: >260° C.
- A mixture of 0.60 g (1.70 mmol) of the starting material XXIII, 3 ml of dimethylformamide, 0.12 g (1.87 mmol) of sodium azide and 0.10 g (1.87 mmol) of ammonium chloride was stirred at 140° C. for 30 min. The cooled reaction mixture was diluted with water and the precipitated crystals were filtered off. The so obtained product was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of chloroform-methanol (99:1) as eluent to yield 0.68 g (54%) of the title compound; Mp.: 263-264° C.
- A mixture of 1.50 g (3.91 mmol) of the starting material XXIV and 15 ml of triethyl orthoformate in the presence of 0.05 ml of 36% hydrochloric acid was stirred at 110° C. for 30 min, then concentrated in vacuum. The residue was stirred with water, the precipitated crystals were filtered off, washed with water and recrystallized from 2-methoxyethanol to yield 1.15 g (75%) of the title compound; Mp.: 190-196° C.
- A mixture of 3.0 g (7.82 mmol) of the starting material XXIV and 15 ml of acetic anhydride was stirred at 110° C. for 1 h, then after cooling it was diluted with water and extracted with dichloromethane. The organic layer was concentrated and the residue was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of n-hexane-ethyl acetate (2:1) as eluent to yield 1.58 g (50%) of the tide compound; Mp.: 191-200° C.
- Step A
- A mixture of 4.80 g (14.7 mmol) of the starting material I, 24 ml of dimethylformamide, 2.16 g (15.5 mmol) of bromoacetic acid and 4.56 g (22 mmol) of dicyclohexylcarbodiimide was stirred for 20 h. The reaction mixture was filtered and the filtrate was concentrated. The residue was taken up in ethyl acetate, washed with water, concentrated and recrystallized from ethanol to yield 4.83 g (73%) of the title compound; Mp.: 183-186° C.
- Step B
- The product obtained in Step A was dissolved in 45 ml of dimethylformamide and after adding 4.96 g (65 mmol) of thioacetamide it was stirred at 80° C. for 1 h, then cooled and poured into water. The precipitated crude product was filtered off, washed with water and purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of hexane-ethyl acetate (9:1) as eluent to yield 1.67 g (37%) of the tide compound; Mp.: 178-190° C.
- Step A
- A stirred mixture of 3.29 g (9.99 mmol) of (±)-7-methyl-5-(4-nitrophenyl)-7,8-dihydro-5H-[1,3]dioxolo[4,5-g]isochroman-5-ol, 40 ml of ethyl acetate and 1.0 ml (1.15 mmol) of perchloric acid was refluxed for 1 h. After cooling the precipitated (±)-7-methyl-5-(4-nitrophenyl)-7,8-dihydro-[1,3]dioxolo[4,5-g]isochromen-6-ylium perchlorate was filtered off, and it was stirred at reflux temperature with 1.6 g (14.55 mmol) of 2-hydrazinopyrimidine in 50 ml of isopropanol for 2 h, then concentrated. The residue was dissolved in dichloromethane and washed several times with water. After drying and evaporation the crude product was purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of toluene-ethyl acetate (0.1:4) as eluent to yield 2.71 g (64%) of the title compound; Mp.: 125-127° C.
- Step B
- 2.35 g (5.58 mmol) of the compound prepared in Step A was dissolved in 50 ml of dry dichloromethane. The solution was cooled to 0° C. and after addition of 2.1 ml (15.07 mmol) of triethylamine 0.87 ml (11.22 mmol) of methanesulfonyl chloride was added over a period of 20 min, then the mixture was stirred at room temperature for 3 h. After washing with water it was dried and concentrated to yield 2.69 g (54%) of the title compound as an intermediate; Mp.: 122-124° C.
- Step C
- A mixture of 3.13 g (6.27 mmol) of the compound obtained in Step B, 60 ml of a 1:1 mixture of dichloromethane-methanol and 0.52 ml (6.90 mmol) of 50% sodium hydroxide solution was stirred at room for 1.5 h. After filtration the reaction mixture was concentrated, the residue was treated with water and recrystallized from three fold dimethylformamide containing 10% water to yield 1.96 g (77%) of the title compound; Mp.: 261-263° C.
- Step A
- A stirred mixture of 2.00 g (6.07 mmol) of (±)-7-methyl-5-(4-nitrophenyl)-7,8-dihydro-5H-[1,3]dioxolo[4,5-g]isochroman-5-ol, 32 ml of isopropanol, 0.3 ml of hydrochloric acid and 1.04 g (7.28 mmol) of 4-hydrazino-6-chloropyridazine was refluxed for 3 h. After diluting with water, the precipitated crystals were filtered off, dried and recrystallized first from ethyl acetate, then from dimethylformamide containing 10% water to yield 1.53 g (55%) of the title compound; Mp.: 135-137° C.
- Step B
- A mixture of 0.3 g (0.66 mmol) of the compound prepared in Step A, 10 ml of dimethylformamide and 0.34 g (1.30 mmol) of triphenylphosphine was stirred at room temperature for 5 min, then 0.20 ml (1.27 mmol) of diethyl azodicarboxylate was added and stirring was continued for 24 h. After dilution with sodium chloride solution the precipitated product was filtered off, dried and purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of chloroform-methanol (99:1) as eluent. The residue obtained on concentration was crystallized by refluxing in ethanol to yield 0.12 g (42%) of the title compound; Mp.: 254-255° C.
- Step A
- The title compound was obtained from the starting material I in dimethylformamide with methyl iodide in the presence of potassium carbonate at room temperature. Mp.: 191-192° C., yield: 94%.
- Step B
- A mixture of 3.0 g (7.53 mmol) of the compound obtained in Step A, 110 ml of 2-methoxyethanol and 4.50 g (74.93 mmol) of formic hydrazide was stirred at 110° C. in the presence of catalytic amount of p-toluenesulfonic acid for 16 h. The residue obtained on concentration was treated with 10% sodium carbonate solution, the obtained crude product was filtered, dried and purified by column chromatography using silica gel WIN Kieselgel 60) as adsorbent and a mixture of hexane-ethyl acetate (1:2) as eluent to yield 1.86 g (63%) of the title compound; Mp.: 154-156° C.
- A mixture of 15 ml of 2-methoxyethanol, 0.41 g (1.03 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine-7-5-methyl-thiocarboximidate (Step A of Example 56) and 0.35 g (4.68 mmol) of acetic hydrazide was stirred at 110° C. in the presence of catalytic amount of p-toluenesulfonic acid for 16 h. The residue obtained on concentration was treated with 10% sodium carbonate solution, the obtained crude product was filtered, dried and purified by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and a mixture of hexane-ethyl acetate (1:2) as eluent to yield 0.32 g (78%) of the title compound; Mp.: 144-147° C. (solid foam).
- A mixture of 0.57 g (5.08 mmol) of potassium tert-butoxide, 2.05 g (5.04 mmol) of (±)-8-methyl-7-(5-methyl-2(1)H-1,2,4-triazol-3-yl)-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (Example 57), 40 ml of tetrahydrofuran and 0.32 ml (5.14 mmol) of methyl iodide was stirred at room temperature for 16 h. then the reaction mixture was diluted with water, extracted with ethyl acetate, the organic layer was dried and concentrated. The two products formed in the reaction were separated by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and ethyl acetate as eluent. Isomer II, having RF: 0.55 was first obtained, which was refluxed in ethanol to yield 0.30 g (14%), Mp.: 185-187° C. Then isomer I was collected, having RF: 0.26, which after refluxing in ethanol weighed 0.67 g (32%), Mp.: 193-195° C.
- (±)-8-Methyl-7-(1-methyl-1H-1,2,4-triazol-3-yl)-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (isomer I) and (±)-8-methyl-7-(2-methyl-2H-1,2,4-triazol-3-yl)-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (isomer II)
- A mixture of 0.41 g (3.65 mmol) of potassium tert-butoxide, 1.4 g (3.57 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-7-(1H(2H)-1,2,4-triazol-3-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (Example 56), 35 ml of tetrahydrofuran and 0.23 ml (3.69 mmol) of methyl iodide was stirred at room temperature for 16 h. After dilution with water the reaction mixture was extracted with ethyl acetate, the organic layer was dried and concentrated. The two products formed in the reaction were separated by column chromatography using silica gel (MN Kieselgel 60) as adsorbent and ethyl acetate as eluent. Isomer I, having RF: 0.22, weighed 0.37 g, yield: 26%, Mp.: 115-117° C. Isomer II, having RF: 0.63, was 0.35 g, yield: 24%, Mp.: 92-94° C.
- Method A
- 2.0 mmol of nitro compound was dissolved in a mixture of methanol-dichloromethane and after adding 6-10 mmol of 85-98% hydrazine hydrate and 0.1-2 g RaNi catalyst the mixture was stirred at 20-40° C. for 1-5 h. After filtration of the catalyst the filtrate was concentrated, the residue was treated with water and the product was filtered off.
- Method B
- 5.5 g of RaNi catalyst was prehydrogenated in 250 ml of a 2:1 mixture of methanol-dichloromethane, then 20.0 mmol of nitro compound was added in 250 ml of the above solvent mixture and the so obtained mixture was hydrogenated at atmospheric pressure. After filtration of the catalyst the filtrate was concentrated, the residue was treated with water, the product was filtered, washed and dried.
- Method C
- A stirred mixture of 1.82 mmol of nitro compound, 30 ml of ethanol and 2.46 g (10.91 mmol) of tin (II) chloride dihydrate was refluxed for 3 h. The reaction mixture was concentrated, then aqueous sodium hydrogen carbonate and ethyl acetate were added to the residue. After separation the water phase was extracted with ethyl acetate, the combined organic layers were washed with sodium chloride solution, dried and concentrated. If necessary the residue was purified either by column chromatography or by recrystallization.
- Method D
- 3.4 mmol of nitro compound was dissolved in 35 ml of a mixture of methanol-dichloromethane (1:1), 0.4 g of a 10% palladium on activated carbon catalyst and 0.47 g of potassium carbonate were added and the so obtained mixture was hydrogenated in the presence of 1 ml of water. After completion of the reaction the catalyst was filtered off, the filtrate was concentrated, the residue was treated with water and filtered.
- Method E
- 4.0 mmol of nitro compound was dissolved in 48 ml of methanol containing 5% water, then after addition of 0.20 g of the catalyst 10% palladium on activated carbon 3.5 equivalent of a concentrated aqueous solution of potassium formate was added dropwise at room temperature and the mixture was stirred at the above temperature. After completion of the reaction the catalyst was filtered off, the filtrate was concentrated, the residue is treated with water and filtered.
TABLE 10 2,3-Benzodiazepines containing aminophenyl group (The 1H NMR spectra were recorded at 250 MHz unless stated otherwise) Mp.(° C.) Number of Solvent of Yield (%) Example Name recrystall. [α]D 60 (±)-5-(4-Aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro- 187-190 78 7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 1.32(3H, d, 6.5 Hz), 2.78(1H, dd, 14.0 Hz, 9.7 Hz), 2.97(1H, dd, 14.0 Hz, 4.9 Hz), 3.80(2H, br), 5.26(1H, m), 5.98(2H, m), 6.65(1H, s), 6.67(1H, d, 4.0 Hz), 6.73(2H, dm), 6.80(1H, s), 7.37(1H, d, 4.0 Hz), 7.55(2H, dm) MS: EI(70eV): [M]+.: 378, m/z: 363, 279, 278, 253, 252 61 (R)-5-(4-Aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro- 125-130 84 7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine −578°(c=1, CHCl3) Method A 1H NMR(CDCl3) δ 1.29(3H, d, 6.5 Hz), 2.77(1H dd, 14.0 Hz, 9.7 Hz), 3.00(1H, dd, 14.0 Hz, 4.9 Hz), 3.92(2H, br), 5.23(1H, m), 5.98(2H, m), 6.62(1H, d, 4.0 Hz), 6.65(1H, s), 6.72(2H, dm), 6.80(1H, s), 7.32(1H, d, 4.0 Hz), 7.55(2H, dm) 62 (S)-5-(4-Aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9- 124-128 94 dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine +546°(c=0.34, CHCl3) Method A 1H NMR(DMSO-d6) δ 1.15(3H, d, 6.5 Hz), 2.60(1H, dd, 13.6 Hz, 10.5 Hz), 2.94(1H, dd, 13.6 Hz, 4.8 Hz), 4.99(1H, m), 5.72(2H, br), 6.03(2H, m), 6.60(2H, dm), 6.62(1H, s), 6.81(1H, d, 4.0 Hz), 7.04(1H, s), 7.27(1H, d, 4.0 Hz), 7.55(2H, dm) MS: EI(70eV): [M]+.: 378, m/z: 377, 363, 279, 278, 253, 252 CI: [M+H]+: 379, [M]+.: 378, m/z: 363 63 (±)-5-(4-Aminophenyl)-8-methyl-7-(4-methyl-thiazol-2- 190-191 65 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(CDCl3) δ 1.30(3H, d, 6.5 Hz), 2.29(3H, s), 2.77(1H, dd, 14.0 Hz, 10.0 Hz), 2.92(1H, dd, 14.0 Hz, 5.1 Hz), 3.94(2H, br), 5.27(1H, m), 5.97(2H, m), 6.20(1H, s), 6.53(2H, dm), 6.70(1H, s), 6.88(1H, s), 7.53(2H, dm) 64 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-thiazol-2- 165-167 47 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 1.17(3H, d, 6.5 Hz), 225(3H, s), 2.60(1H, dd, 13.9 Hz, 10.3 Hz), 2.94(1H, dd, 13.9 Hz, 5.1 Hz), 4.95(1H, m), 5.70(2H, br), 6.05(2H, dm), 6.57(1H, s), 6.62(2H, dm), 6.93(1H, s), 7.04(1H, s), 7.36(2H, dm) 65 (±)-5-(4-Aminophenyl)-8-methyl-7-(4,5-dimethyl-thiazol- 240-242 83 2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(DMSO-d6) δ 1.16(3H, d, 6.5 Hz), 2.06(3H, s), 2.13(3H, s), 2.62(1H, dd, 14.0 Hz, 10.0 Hz), 2.92(1H, dd, 14.0 Hz, 5.0 Hz), 4.97(1H, m), 5.70(2H, br), 6.04(2H, dm), 6.60(1H,s), 6.62(2H, dm), 7.02(1H, s), 7.34(2H, dm) 66 (±)-5-(4-Aminophenyl)-7-(4-phenyl-thiazol-2-yl)-8-methyl- 221-223 89 8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(CDCl3) δ 1.29(3H, d, 6.5 Hz), 2.80(1H, dd, 14.0 Hz, 9.4 Hz), 3.00(1H, dd, 14.0 Hz, 4.8 Hz), 3.93(2H, br), 5.40(1H, m), 5.98(2H, m), 6.62(1H, s), 6.70(2H, dm), 6.78(1H,s), 7.29(1H, t), 7.39(1H, t), 7.50(1H, s), 7.57(2H, dm), 7.86(2H, d) 67 (±)-5-(4-Aminophenyl)-7-(4-ethoxycarbonyl-thiazol-2-yl)-8- 251-252 83 methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(CDCl3) δ 1.29(3H, d, 6.5 Hz), 1.38(3H, t), 2.76(1H, dd, 14.0 Hz, 10.0 Hz), 2.92(1H, dd, 14.0 Hz, 5.0 Hz), 3.98(2H, br), 4.33(2H, q), 5.40(1H, m), 6.00(2H, m), 6.68(1H,s), 6.69(2H, dm), 6.82(1H, s), 6.86(1H, s), 7.51(2H, dm) 68 (±)-5-(4-Aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8- 145-150 84 methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(CDCl3) δ 1.21(3H, d, 6.5 Hz), 2.70(1H, dd, 14.0 Hz, 10.0 Hz), 2.96(1H, dd, 14.0 Hz, 5.0 Hz), 3.20(1H, m), 3.70(1H, m), 3.90(2H, br), 4.17(2H, m), 5.09(1H, m), 5.98(2H, dm), 6.60(1H, s), 6.66(2H, dm), 6.73(1H, s), 7.47(2H, dm) MS: EI(70eV): [M]+.: 380, m/z: 365, 339, 279, 264, 253, 252 69 (R)-5-(4-Aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8-methyl- 148-150 82 8,9-dihydro-7H-1,3-dioxolo- (EtOH) −239° [4,5-h][2,3]benzodiazepine (c=0.5, CHCl3) Method A 1H NMR(DMSO-d6) δ 1.16(3H, d, 6.5 Hz), 2.60(1H, dd, 14.0 Hz, 10.0 Hz), 2.90(1H, dd, 14.0 Hz, 4.0 Hz), 3.25(2H, m), 4.00(2H, m), 4.82(1H, m), 5.73(2H, br), 6.07(2H, dm), 6.64(s), 6.64(2H, dm), 7.02(1H, s), 7.30(2H, dm) MS: EI(70eV): [M]+.: 380, m/z: 365, 339, 279, 278, 264, 253, 252 CI: [M+H]+: 381, [M]+.: 380, m/z: 279 70 (S)-5-(4-Aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8- 150-152 92 methyl-8,9-dihydro-7H-1,3-dioxolo- +175°(c=0.51, CHCl3) [4,5-h][2,3]benzodiazepine Method A MS: EI(70eV): [M]+.: 380, m/z: 365, 339, 279, 278, 264, 253, 252 CI: [M+H]+: 381, [M]+.: 380, m/z: 279 71 (±)-5-(4-Aminophenyl)-7-(4,5-dihydro-4-oxo-thiazol-2-yl)-8- 218-220 85 methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(DMSO-d6)δ 1.29(3H, d, 6.5Hz), 2.61(1H, dd, 13.0Hz, 12.0Hz), 2.96(1H, dd, 13.0Hz, 5.0Hz), 3.72(2H, m), 5.08(1H, m), 6.01(2H, br), 6.06(2H, dm), 6.60(2H, dm), 6.62(1H, s), 7.10(1H, s), 7.40(2H, dm) 72 (±)-5-(4-Aminophenyl)-7-(4,5-dihydro-5-methyl-4-oxo- 200-204 63 thiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- (EtOH) [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6)δ 1.32(d) and 1.45(d, overlapping, diastereomers), 2.60(1H, dd, 13.0Hz, 12.0Hz), 2.94(1H, dd, 13.0Hz, 5.0Hz), 3.96 and 4.05(1H, q), 5.08(1H, m), 6.0(2H, br), 6.07(2H, dm), 6.60(2H, dm), 6.62(1H, s), 7.08(1H, s), 7.40(2H, dm) MS: EI(70eV): [M]+.: 408, m/z: 393, 279, 265, 253, 252 73 (±)-5-(4-Aminophenyl)-7-(5,6-dihydro-4-oxo-4H-1,3- 226-228 90 thiazin-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- (EtOH) [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6)δ 1.25(3H, d, 6.5 Hz), 2.35(2H, m), 2.57(1H, dd, 13.0 Hz, 12.0 Hz), 2.88(1H, dd, 13.0 Hz, 4.0 Hz), 3.05(2H, m), 5.21(1H, m), 5.97(2H, br), 6.09(2H, dm), 6.60(1H, s), 6.62(2H, dm), 7.04(1H, s), 7.42(2H, dm) MS: EI(70eV): [M]+.: 408, m/z: 295, 279, 253, 252 74 5-(4-Aminophenyl)-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo 200-204 52 [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 2.88(2H, t), 4.21(2H, t), 5.70(2H, s), 6.08(2H, s), 6.60(1H, s), 6.62(2H, dm), 6.89(1H, d, 4.0 Hz), 7.08(1H, s), 728(1H, d, 4.0 Hz), 7.37(2H, dm) 75 (±)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(2-thiazolyl)-8,9- 225-227 78 dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method B MS: EI(70eV): [M]+.: 392, m/z: 377, 293, 266 CI: [M+H]+: 393, [M]+.: 392, m/z: 266 76 (±)-1-(4-Aminophenyl)-4-methyl-8-methoxy-3-(2-thiazolyl)-4,5- 105-107 57 dihydro-3H-[2,3]benzodiazepine Method D MS: EI(70eV): [M]+.: 364, m/z: 349, 265, 223 CI: [M+H]+: 365, [M]+.: 364 77 (±)-1-(4-Aminophenyl)-8-chloro-4-methyl-3-(2-thiazolyl)-4,5- 104-107 72 dihydro-3H-[2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 1.31(3H, d, 6.5 Hz), 2.96(1H, dd, 13.0 Hz, 10.0Hz), 3.10(1H, dd, 13.0 Hz, 5.0 Hz), 5.35(1H, m), 6.68(1H, d, 4.0 Hz), 6.72(2H, dm), 7.21(1H, d, 4.0 Hz), 7.25(1H, d, 1.0Hz), 7.27(1H, d, 7.0 Hz), 7.34(1H, dd), 7.53(2H, dm) 78 (±)-1-(4-Aminophenyl)-8-chloro-4-methyl-3-(4-methyl-thiazol-2- 173-175 90 yl)-4,5-dihydro-3H-[2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 1.26(3H, d, 6.5 Hz), 227(3H, d, 1.0 Hz), 2.81(1H, dd, 14.0 Hz, 9.7 Hz), 3.02(1H, dd, 14.0 Hz, 5.0 Hz), 3.95(2H, br), 5.28(1H, m), 6.20(1H, q, 1.0 Hz), 6.70(2H, dm), 7.17(1H, d, 2.2 Hz), 7.22(1H, d, 8.2 Hz), 7.33(1H, dd, 8.2 Hz, 2.2 Hz), 7.51(2H, dm) 79 (±)-1-(4-Aminophenyl)-3-(4,5-dihydro-thiazol-2-yl)-8- 213-216 79 chloro-4-methyl-4,5-dihydro-3H-[2,3]benzodiazepine (MeOH) Method A 1H NMR(DMSO-d6) δ 1.08(3H, d, 6.5 Hz), 2.68(1H, dd, 14.0 Hz, 10.0 Hz), 3.06(1H, dd, 14.0 Hz, 5.0 Hz), 3.20(2H, m), 4.02(2H, m), 5.68(2H, s), 4.92(1H, m), 6.60(2H, dm), 7.09(1H, d, 1.0 Hz), 7.28(2H, dm), 7.41(1H, d, 7.0 Hz), 7.48(1H, dd) 80 (±)-1-(4-Aminophenyl)-3-(4,5-dihydro-4-oxo-thiazol-2- 226-228 75 yl)-8-chloro-4-methyl-4,5-dihydro-3H-[2,3]benzodiazepine (iPrOH) Method A 1H NMR(DMSO-d6) δ 1.32(3H, d, 6.5 Hz), 2.68(1H, dd, 13.8 Hz, 12.0 Hz), 3.08(1H, dd, 13.8 Hz, 4.8 Hz), 3.77(2H, m), 5.10(1H, m), 6.12(2H, br), 6.66(2H, dm), 7.17(1H, d, 2.0 Hz), 7.41(2H, dm), 7.52(1H, d, 8.0 Hz), 7.54(1H, dd, 8.0 Hz, 2.0 Hz) 81 (±)-1-(4-Aminophenyl)-7,8-dichloro-3-(4-methyl-thiazol-2- 182-184 48 yl)-4-methyl-4,5-dihydro-3H-[2,3]benzodiazepine (EtOH) Method A 1H NMR(CDCl3) δ 1.28(3H, d, 6.5 Hz), 2.30(3H, s), 2.80(1H, dd, 14.0 Hz, 9.6 Hz), 3.02(1H, dd, 14.0 Hz, 4.9 Hz), 3.96(2H, br), 5.31(1H, m), 6.22(1H, q, 1.0 Hz), 6.69(2H, dm), 7.28(1H, s), 7.39(1H, s), 7.50(2H, dm) 82 (±)-5-(4-Aminophenyl)-7-(4,5-dihydro-oxazol-2-yl)-8- 166-167 87 methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(DMSO-d6) δ 1.20(3H, d, 6.5 Hz), 2.31(1H, dd, 13.8 Hz, 12.0 Hz), 2.78(1H, dd, 13.8 Hz, 5.8 Hz), 3.61(2H, m), 4.18(2H, m), 4.51(1H, m), 5.66(2H, br), 6.03(2H, dm), 6.51(1H, s), 6.53(2H, dm), 6.98(1H, s), 7.30(2H, dm) MS: EI(70eV): [M]+.: 364, m/z: 349, 323, 279, 278, 252 CI: [M+H]+: 365, [M]+.: 364 83 (±)-5-(4-Aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2- 192-194 77 yl)-8,9-dihydro-7H-1,3-dioxolo- (50% [4,5-h][2,3]benzodiazepine EtOH—H2O) Method A 1H NMR(DMSO-d6) δ 1.20(3H, d, 6.5 Hz), 2.62(1H, dd, 13.9 Hz, 10.8 Hz), 2.99(1H, dd, 13.9 Hz, 5.2 Hz), 5.01(1H, m), 5.78(2H, br), 6.03(2H, dm), 6.58(1H, s), 6.60(2H, dm), 7.07(1H, s), 7.32(2H, dm,) 84 (R)-5-(4-Aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2- 219-220 67 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (ethyl formate) −490° (c=0.9, CHCl3) Method C 1H NMR(CDCl3) δ 1.33(3H, d, 6.5 Hz), 2.80(1H, dd, 14.0 Hz, 9.9 Hz), 2.97(1H, dd, 14.0 Hz, 5.0 Hz), 4.02(2H, br), 5.30(1H, m), 5.98(2H, dm), 6.65(1H, s), 6.68(2H, dm), 6.80(1H,s), 7.51(2H, dm,), 8.50(1H, s) 85 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2- 143-148 89 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 1.32(3H, d, 6.5 Hz), 2.56(3H, s), 2.76(1H, dd, 14.0 Hz, 10.0 Hz), 2.93(1H, dd, 14.0 Hz, 5.0 Hz), 4.00(2H, br), 5.19(1H, m), 5.98(2H, dm), 6.64(1H, s), 6.70(2H,dm), 6.79(1H, s), 7.48(2H, dm,) MS: EI(70eV): [M]+.: 393, m/z: 378, 279, 278, 253, 252 CI: [M+H]+: 394, [M]+.: 393, m/z: 252 86 (R)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2- 168-170 78 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (50% EtOH— −482° H2O) (c=0.5, CHCl3) Method 1H NMR(DMSO-d6) δ 1.23(3H, d, 6.5 Hz), 2.50(3H, s), 2.60(1H, dd, 13.8 Hz, 9.6 Hz), 2.97(1H, B, C dd, 13.8 Hz, 4.9 Hz), 4.93(1H, m), 5.78(2H, br), 6.03(2H, dm), 6.58(1H, s), 6.60(2H, dm), 7.09 (1H, s), 7.31(2H, dm) 87 (±)-5-(4-Aminophenyl)-7-(5-cyclopropyl-1,3,4-thiadiazol-2- 145-148 75 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3] (precipit. benzodiazepine with water) Method A 1H NMR(DMSO-d6) δ 0.88(2H, m), 1.05(2H, m), 1.22(3H, d, 6.5 Hz), 2.22(1H, m), 2.61(1H, dd, 14.0 Hz, 10.0 Hz), 2.99(1H, dd, 14.0 Hz, 5.0 Hz), 4.97(1H, m), 5.78(2H, br), 6.05(2H, dm), 6.60(1H, s), 6.63(2H, dm), 7.06(1H, s), 7.36(2H, dm) 88 (±)-5-(4-Aminophenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8- 135-138 67 methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] Method A 1H NMR(CDCl3) δ 1.35(3H, t), 1.36(3H, d, 6.5 Hz), 2.79(1H, dd, 14.0 Hz, 10.0 Hz), 2.98(2H, q), 2.99(1H, dd, 14.0 Hz, 5.0 Hz), 3.98(2H, br), 5.25(1H, m), 6.02(2H, dm), 6.63(1H, s), 6.73(2H, dm), 6.82(1H, s), 7.51(2H, dm,) 89 (R)-5-(4-Aminophenyl)-7-(5-ethyl-1,3,4-thiadiazol-2- 142-144 47 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- (precipit. −602° [4,5-h][2,3]benzodiazepine with water) (c=0.5, EtOH) Method E MS: EI(70eV): [M]+.: 407, m/z: 392, 279, 278, 253, 252 CI: [M+H]+: 408, [M]+.: 407 90 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-trifluoromethyl- 216-218 33 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 1.39(3H, d, 6.5 Hz), 2.80(1H, dd, 14.0 Hz, 10.0 Hz), 2.93(1H, dd, 14.0 Hz, 5.0 Hz), 4.06(2H, br), 5.28(1H, dm), 6.00(2H, dm), 6.61(1H, s), 6.69(2H, dm), 6.81(1H, s), 7.48 (2H, dm,) MS: EI(70eV): [M]+.: 447, m/z: 432, 279, 253, 252 CI: [M+H]+: 448, [M]+.: 447, m/z: 252 91 (±)-5-(4-Aminophenyl)-7-(5-phenyl-1,3,4-thiadiazol-2- 228-230 84 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] (50% benzodiazepine EtOH—H2O) Method A 1H NMR(DMSO-d6) δ 1.28(3H, d, 6.5 Hz), 2.67(1H, dd, 14.0 Hz, 10.0 Hz), 3.01(1H, dd, 14.0 Hz, 5.0 Hz), 5.02(1H, m), 5.81(2H, br), 6.07(2H, dm), 6.59(1H, s), 6.61(2H, dm), 7.08(1H, s), 7.40(2H, dm), 7.45(3H, m), 7.81(2H, d) MS: EI(70eV): [M]+.: 455, m/z: 440, 295, 279, 253, 252 CI: [M+H]+: 456, [M]+.: 455, m/z: 295 92 (±)-5-(4-Aminophenyl)-7-(5-cyclopropylamino-methyl-1,3,4- 135-138 35 thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h] [2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 0.45(4H, m), 1.33(3H, d, 6.5 Hz), 2.28(1H, m), 2.75(1H, dd, 14.0 Hz, 9.9 Hz), 2.85(1H, dd, 14.0 Hz, 4.9 Hz), 4.0(2H, br), 4.10(2H, s), 5.26(1H, m), 6.00(2H, m), 6.60(1H, s), 6.68(2H, dm), 6.80(1H, s), 7.49(2H, dm) 93 (±)-1-(4-Aminophenyl)-8-chloro-4-methyl-3-(1,3,4-thiadiazol-2- 125-128 79 yl)-4,5-dihydro-3H-[2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 1.18(3H, d, 6.5 Hz), 2.69(1H, dd, 14.0 Hz, 10.8 Hz), 3.14(1H, dd, 14.0 Hz, 5.1 Hz), 5.05(1H, m), 5.83(2H, s), 6.62(2H, dm), 7.10(1H, s), 7.33(2H, dm), 7.51(2H, m) 94 (±)-1-(4-Aminophenyl)-8-chloro-4-methyl-3-(5-methyl- 131-133 88 1,3,4-thiadiazol-2-yl)-4,5-dihydro-3H-[2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 1.18(3H, d, 6.5 Hz), 2.70(1H, dd, 14.0 Hz, 10.3 Hz), 3.11(1H, dd, 14.0 Hz, 5.3 Hz), 2.50(3H, s), 4.96(1H, m), 5.80(2H, s), 6.62(2H, dm), 7.10(1H, s), 7.32(2H, dm), 7.51 (2H, m) 95 (±)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(5-methyl- 140-144 72 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method B MS: EI(70eV): [M]+.: 407, m/z: 392, 293, 266 CI: [M+H]+: 408, [M]+.: 407, m/z: 266 96 (±)-5-(3-Amino-4-methylphenyl)-8-methyl-7-(5-methyl- 125 70 1,3,4-thiadiazol-2-yl)-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method B 1H NMR(500 MHz)(DMSO-d6) δ 1.17(3H, d, 6.5 Hz), 2.10(3H, s), 2.51(3H, s), 2.72(1H, dd, 14.1 Hz, 9.1 Hz), 3.05(1H, dd, 14.1 Hz, 4.5 Hz), 5.01(2H, s), 5.03(1H, m), 6.07(2H, dm), 6.55(1H, s), 6.70(1H, dd), 6.83(1H, d, 1.2 Hz), 7.00(1H, d, 7.8 Hz), 7.06(1H, s) 97 (±)-5-(3-Aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2- 197-198 77 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (iPrOH) Method 1H NMR(500 MHz)(DMSO-d6) δ 1.17(3H, d, 6.5 Hz), 2.51(3H, s), 2.77(1H, dd, 14.2 Hz, B, C 8.6 Hz), 3.08(1H, dd, 14.2 Hz, 4.3 Hz), 5.06(1H, m), 5.24(2H, s), 6.07(2H, dm), 6.54(1H, s), 6.67(1H, d), 6.71(1H, d), 6.74(1H, d), 7.06(1H, s) 98 (±)-1-(4-Aminophenyl)-4-methyl-3-(5-methyl-1,3,4-thiadiazol-2- 180-184 84 yl)-8-methoxy-4,5-dihydro-3H-[2,3]benzodiazepine Method D MS: EI(70eV): [M]+.: 379, m/z: 364, 265, 238, 223 CI: [M+H]+: 380, [M]+.: 379, m/z: 223 99 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-6H-1,3,4- 154-157 85 thiadiazin-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method A 1H NMR(DMSO-d6) δ 1.20(3H, d, 6.5 Hz), 2.10(3H, s), 2.55(1H, dd, 14.0Hz, 11 Hz), 2.92(1H, dm), 2.92(1H, dd, 14.5 Hz), 3.28(1H, d, 14.5 Hz), 5.10(1H, m), 5.70(2H, s), 6.02(2H, dm), 6.55 (2H, dm), 7.01(1H, s), 7.38(2H, dm), 7.60(1H, s) 100 (±)-5-(4-Aminophenyl)-7-(5,6-dihydro-5-oxo-4H-1,3,4- 172-176 83 thiadiazin-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5- h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 1.16(3H, d, 6.5 Hz), 2.49(1H, dd, 14.0 Hz, 10.0 Hz), 2.87(1H, dd, 14.0 Hz, 5.2 Hz), 3.31(2H, s), 4.78(1H, m), 5.68(2H, s), 6.05(2H, dm), 6.65(1H, s), 6.66(2H, dm), 7.00(1H, s), 7.32(2H, dm), 10.5(1H, s) 101 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-oxo-4,5-dihydro- 263-264 47 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine Method C 1H NMR(DMSO-d6) δ 1.17(3H, d, 6.5 Hz), 2.58(1H, dd, 14.0 Hz, 10.4 Hz), 2.97(1H, dd, 14.0 Hz, 5.4 Hz), 4.71(1H, m), 5.65(2H, s), 6.04(2H, dm), 6.61(2H, dm), 6.62(1H, s), 7.01(1H, s), 7.23(2H, dm), 11.81(1H, brs) MS: EI(70eV): [M]+.: 395, m/z: 394, 306, 252 CI: [M+H]+: 396, [M]+.: 395, m/z: 280 102 (R)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2- 145-149 86 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine −663°(c=0.5, EtOH Method A MS: EI(70eV): [M]+.: 377, m/z: 252 CI: [M+H]+: 378, [M]+.: 377, m/z: 252 103 (±)-5-(4-Aminophenyl)-8-methyl-7-(2-methyl-3-oxo-2,3- 213 67 dihydro-1,2,4-thiadiazol-5-yl)-8,9-dihydro-7H-1,3-dioxolo (EtOH) [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 1.23(3H, d, 6.5 Hz), 2.70(1H, dd, 13.8 Hz, 10.2 Hz), 3.03(1H, dd, 13.8 Hz, 4.2 Hz), 3.06(3H, s), 4.91(1H, m), 5.90(2H, s), 6.08(2H, dm), 6.61(1H, s), 6.61(2H, dm), 7.06(1H, s), 7.30(2H, dm) 104 (±)-5-(4-Aminophenyl)-7-(2-cyclopropyl-3-oxo-2,3-dihydro- 265-267 82 1,2,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) δ 0.85(4H, m), 1.22(3H, d, 6.5 Hz), 2.75(1H, dd, 14.0 Hz, 10.0 Hz), 2.75(1H, m), 3.02(1H, dd, 14.0 Hz, 4.7 Hz), 4.92(1H, m), 5.90(2H, s), 6.07(2H, dm), 6.60(1H, s), 6.63(2H, dm), 7.04(1H, s), 7.30(2H, dm) 105 (±)-5-(4-Aminophenyl)-7-(2-ethyl-3-oxo-2,3-dihydro-1,2,4- 212-214 59 thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo [4,5-h][2,3]benzodiazepine Method A 1H NMR(CDCl3) δ 1.25(3H, t), 1.27(3H, d, 6.5 Hz), 2.80(1H, dd, 14.0 Hz, 9.0 Hz), 3.01(1H, dd, 14.0 Hz, 4.0 Hz), 3.72(2H, q), 4.07(2H, br), 5.13(1H, m), 6.03(2H, dm), 6.65(1H, s), 6.67(2H, dm), 6.80(1H, s), 7.37(2H, dm) MS: EI(70eV): [M]+.: 423, m/z: 408, 279, 252, 160 CI: [M+H]+: 424, [M]+.: 423 106 (±)-5-(4-Aminophenyl)-7-(4-carboxy-thiazol-2-yl)-8-methyl- >260 97 8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (dec.) Method A MS: EI(70eV): [M]+.: 422, m/z: 407, 279, 253 107 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-tetrazolyl)-8,9-dihydro- >360 68 7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine Method A MS: EI(70eV): [M]+.: 363, m/z: 295, 294, 252 CI: [M+H]+: 364, [M]+.: 363, m/z: 295 108 (±)-5-(4-Aminophenyl)-8-methyl-7-(1,2,4-oxadiazol-3-yl)- 124-126 48 7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine hydrochloride Method A MS: EI(70eV): [M]+.: 363, m/z: 348, 253, 252 CI: [M+H]+: 364, [M]+.: 363, m/z: 252 109 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-1,2,4-oxadiazol- 130-135 74 3-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method A MS: EI(70eV)(of the hydrochloride salt): [M]+.: 377, m/z: 362, 278, 252 CI: [M+H]+: 378, [M]+.: 377, m/z: 252 110 (±)-5-(4-Aminophenyl)-8-methyl-7-(2-methyl-thiazol-4- 132-135 22 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method C MS: EI(70eV): [M]+.: 392, m/z: 377, 279, 253, 252 CI: [M+H]+: 393, [M]+.: 392 111 (±)-5-(4-Aminophenyl)-8-methyl-7-(2-pyrimidinyl)-8,9- 233-235 96 dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine (EtOH) Method A 1H NMR(DMSO-d6) δ 1.23(3H, d, 6.5 Hz), 2.50(1H, dd, 14.0 Hz, 10.0 Hz), 2.89(14.0 Hz, 4.8 Hz), 5.18(1H, m), 5.71(2H, s), 6.03(2H, dm), 6.58(2H, dm), 6.60(1H, s), 6.60(1H, t, 4.8 Hz), 7.43(1H, s), 7.30(2H, dm), 8.33(2H, d, 4.8 Hz) 112 (±)-5-(4-Aminophenyl)-7-(3-chloropyridazin-6-yl)-8-methyl- 164-166 94 8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine (EtOH) Method A MS: EI(70eV): [M]+.: 407/409, m/z: 392/394, 355, 279, 278, 253, 252 CI: [M+H]+: 408/410, [M]+.: 407/409, m/z: 279 113 (±)-5-(4-Aminophenyl)-8-methyl-7-(1H(2H)1,2,4-triazol-3- 178-181 64 yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method A MS: EI(70eV): [M]+.: 362, m/z: 347, 279, 252 114 (±)-5-(4-Aminophenyl)-8-methyl-7-(5-methyl-1H(2H)-1,2,4- 166-169 72 triazol-3-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method A MS: EI(70eV): [M]+.: 376, m/z: 361, 279, 252 115 (±)-5-(4-Aminophenyl)-8-methyl-7-(2-methyl-2H-1,2,4- 182-183 83 triazol-3-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method A MS: EI(70eV): [M]+.: 376, m/z: 361, 279, 252 116 (±)-5-(4-Aminophenyl)-8-methyl-7-(1-methyl-1H-1,2,4- 165-168 83 triazol-3-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method A MS: EI(70eV): [M]+.: 376, m/z: 361, 253, 252 117 (±)-5-(4-Aminophenyl)-8-methyl-7-(2,5-dimethyl-2H- 185-187 78 1,2,4-triazol-3-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3] benzodiazepine Method A MS: EI(70eV): [M]+.: 390, m/z: 375, 279, 265, 252 118 (±)-5-(4-Aminophenyl)-8-methyl-7-(1,5-dimethyl-1H-1,2,4- 197-200 85 triazol-3-yl)-8,9-dihydro-7H-1,3-dioxol[4,5-h][2,3] benzodiazepine Method C MS: EI(70eV): [M]+.: 390, m/z: 375, 253, 252 119 (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methyl- 158-160 83 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- −515°(c=0.38, CHCl3) [4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6)δ 1.18(3H, d, 5.4 Hz), 2.07(s, 3H), 2.47(s, 3H), 2.57(dd, 1H, 13.7 Hz, 10.3 Hz), 2.95(dd, 1H, 13.7 Hz, 4.9 Hz), 4.92(m, 1H), 5.2-5.8(br, 2H), 6.01(s, br, 1H), 6.06(s, br, 1H), 6.55(s, 1H), 6.64(d, 1H, 8.2 Hz), 7.04(s, 1H), 7.17(d, 1H, 8.2 Hz), 7.25(s, br, 1H) MS: EI(70eV): [M]+.: 407, m/z: 392, 293, 278, 266 CI: [M+H]+: 408, [M]+.: 407 - 2,3-benzodiazepines containing an aminophenyl group were dissolved in dichloromethane and stirred at room temperature with an excess of acetic anhydride. After completion of the reaction the mixture was washed with sodium hydrogen carbonate solution and water, then dried and concentrated.
TABLE 11 2,3-benzodiazepine derivatives substituted with acetylaminophenyl group Mp. (° C.) Number of Solvent of Yield (%) Example Name recrystall. [α]D 120 (±)-5-(4-Acetylaminophenyl)-8-methyl-7-(5-methyl- 176-179 65 thiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine 121 (±)-5-(4-Acetylaminophenyl)-8-methyl-7-(4-methyl- 236-238 65 thiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- (50% [4,5-h][2,3]benzodiazepine EtOH—H2O) 122 (±)-5-(4-Acetylaminophenyl)-7-(4,5-dihydro-thiazol-2- 211-213(EtOH) 96 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine 123 (R)-5-(4-Acetylaminophenyl)-8-methyl-7-(2-thiazolyl)- 126(rearrangement) 95 8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine 172-174(EtOH) −140°(c=0.44, CHCl3) 124 (S)-5-(4-Acetylaminophenyl)-8-methyl-7-(2-thiazolyl)- 124-128 95 8,9-dihydro-7H-1,3-dioxolo- +134° [4,5-h][2,3]benzodiazepine (c=0.48, CHCl3) 125 (R)-5-(4-Acetylaminophenyl)-7-(4,5-dihydro-thiazol-2- 143-145 95 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- +108° [4,5-h][2,3]benzodiazepine (c=0.45, CHCl3) 126 (S)-5-(4-Acetylaminophenyl)-7-(4,5-dihydro-thiazol-2- 148-154 91 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- −111° [4,5-h][2,3]benzodiazepine (c=048, CHCl3) 127 (±)-5-(4-Acetylaminophenyl)-7-(4,5-dihydro-oxazol-2- 124-128 44 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine 128 (±)-5-(4-Acetylaminophenyl)-8-methyl-7-(2- 162-163 96 pyrimidinyl)-8,9-dihydro-7H-1,3-dioxolo- (EtOH) [4,5-h][2,3]benzodiazepine 129 (±)-5-(4-Acetylaminophenyl)-7-(3-chloro-pyridazin-6- 164-170 78 yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine 130 (R)-5-(4-Acetylaminophenyl)-8-methyl-7-(5-methyl- 276-277 73 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- (MeOH) −114° [4,5-h][2,3]benzodiazepine (c=0.5, CHCl3) 131 (±)-5-(4-Acetylamino-3-methylphenyl)-8-methyl-7-(5- 258-262 63 methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3- dioxolo[4,5-h][2,3]benzodiazepine - Step A
- This compound was prepared from starting compound XXXI according to the process described for starting compound I. Mp.: 123-125° C. Yield: 70%.
- Step B
- The product of Step A was transformed into the title compound according to the procedure described in Example 9. Mp.: 130-135° C. Yield: 81%.
- The title compound was obtained from the intermediate described under Step A of Example 132 according to a method described in Example 1. Mp.: 138-142° C. Yield: 55%.
- Step A
- This compound was prepared from starting compound XXXI according to the method described for starting compound XI. Mp.: 193-196° C. Yield: 85%. [α]D: −500.0° (c=0.5; CHCl3).
- Step B
- 2.50 g (6.0 mmol) of the compound obtained in Step A was reacted with 1.28 g (21.3 mmol) of propionyl hydrazide in 10 ml of dimethylformamide at 70° C. for 2 h. The cooled reaction mixture was poured onto water and the resulting precipitate was collected by filtration. This wet substance was further reacted in 24 ml of ethanol with 0.5 ml conc. hydrochloric acid at boiling point for 1 h. Solvent was evaporated and the residue was dissolved in dichloromethane and extracted with sodium bicarbonate solution and water. Evaporation of the solvent gave the crude title product which was purified by column chromatography using a mixture of n-hexane-ethyl acetate (1:1) as eluent, giving 1.15 g (yield: 49%) of the product. Mp.: 129-130° C.
- The title compound was obtained according to the method described in Example 134 but using butyric hydrazide. Mp.: 143-145° C. Yield: 73%. [α]D: +343.3° (c=0.5; CHCl3).
- Step A
- The Step A intermediate of Example 134 was transformed into the carbothiohydrazide according to a method described for starting material XVIII. Mp.: 109-115° C. Yield: 91%. [α]D: −276.5°(c=0.5; CHCl3).
- Step B
- The compound of Step A was reacted with triethyl orthoformate and a catalytic amount of hydrochloric acid similarly to a method described in Example 25, to give the title product. Mp.: 182-189° C. Yield: 92%. [α]D: +356.0° (c=0.5; CHCl3).
- The compound of Step A of Example 136 (2.07 g, 5.0 mmol) was reacted in 10 ml of dimethylformamide with 1.86 g (5.5 mmol) of pentachlorophenol methoxyacetate at 50° C. for 2 h. The reaction mixture was diluted with water and the resulting precipitate was isolated by filtration. This wet intermediate was taken up in ethanol (24 ml), 0.50 ml of conc. hydrochloric acid was added and it was boiled for 1 h. Evaporation of the solvent gave a residue, which was dissolved in methylene chloride and the solution was washed with a 5% sodium carbonate solution and water. Evaporation of the solvent resulted in the crude title product that was purified with column chromatography, a mixture of n-hexane-ethyl acetate (2:1) was used as eluent to give 2.21 g of the pure product. Mp.: 153-155° C. Yield: 91%. [α]D: +317.5° (c=0.5; CHCl3).
- The compounds of Examples 138-148 were prepared analogously to the method described in Example 137 using the appropriate activated carboxylic acid derivatives as reagents (e.g.: acyl chloride, acid anhydride, pentachlorophenol ester, N-hydroxysuccinimide ester of the corresponding carboxylic acids).
- Mp.: 130-133° C. Yield: 90%.
- Mp.: 126-130° C. Yield: 93%.
- Mp.: 142-145° C. Yield: 67%.
- Mp.: 110-115° C. Yield: 97%.
- Mp.: 118-122° C. Yield: 98%.
- Mp.: 132-134° C. Yield: 96%.
- Mp.: 115-118° C. Yield: 80%. [α]D: +140.3°(c=0.5; CHCl3).
- Mp.: 240-243° C. Yield: 95%.
- Mp.: 232-237° C. Yield: 28%. [α]D: −359.2°(c=0.4; CHCl3).
- Mp.: 217-224° C. Yield: 66%.
- The title compound was prepared from the compound obtained in Step A of Example 136 applying the method described in Example 43, however pentachlorophenol chloroacetate was used as alkylating agent. Mp.: 207-211° C. Yield: 70%. [α]D: +378.5°(c=0.5; CHCl3).
- The title compound was obtained from (R)—N′-{8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine-7-carbothioyl}-formic hydrazide, according to the method described in Example 45. Mp.: 145-147° C. Yield: 35%, [α]D: −604.0° (c=0.5; CHCl3).
- A solution of 1.00 g (2.5 mmol) of starting material XVIII, 0.37 ml (4.6 mmol) of trifluoroacetic acid in 10 ml of formamid was stirred at 25° C. for 5 min. Then a solution of 0.16 g (2.5 mmol) of sodium nitrite in 0.30 ml of water was added dropwise. After 0.5 h the reaction mixture was diluted with water and the precipitate formed was filtered off, washed with water and dried to yield 0.92 g (90%) of the title compound. Mp.: 109-110° C.
- Step A
- A solution of 1.5 g (4.6 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine, 0.5 g (4.6 mmol) of N-acetylglycine and 1.0 g (5.0 mmol) of 1,3-dicyclohexylcarbodiimid was stirred in 15 ml of dichloromethane at 25° C. for 3 h. The precipitated 1,3-dicyclohexylurea was filtered off and the filtrate was evaporated to dryness. The crude product was purified by column chromatography using a mixture of ethyl acetate-hexane (1:1) as eluent to yield 1.1 g (58%) of the title compound.
- Step B
- 0.74 g (2.8 mmol) of triphenylphosphine was dissolved in 10 ml of dichloromethane and a solution of 0.2 ml (2.8 mmol) of bromine in 1 ml of dichloromethane was added. After 30 min a solution of 1.0 g (2.4 mmol) of the compound prepared in Step A and 1.0 ml (7.1 mmol) of triethylamine in 5 ml of dichloromethane was added and the mixture was boiled under nitrogen for 3 h. The resulting solution was washed with water, dried and concentrated to dryness. The crude product was purified by column chromatography using a mixture of ethyl acetate-hexane (1:1) as eluent to yield 0.6 g (62%) of the title compound. Mp.: 203-205° C.
- The title compound was obtained according to the method described in Example 151, but using (±)-N-{2-[8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine-7-yl]-1-methyl-2-oxoethyl}-acetamide as intermediate. Mp.: 76-78° C.; yield: 68%.
- Step A
- The compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358 (1995)) using 3-chloro-4-nitrobenzaldehyde and tert-butyl carbazate as key reagents. Mp.: 160-162° C.
- Step B
- The compound obtained in Step A (8.2 g; 18.2 mmol) was dissolved in ethyl acetate, containing 12% hydrochloric acid (82 ml). The solution was maintained at RT for 3 h. Then the solvent was evaporated and the residue was dissolved in ethyl acetate and washed with saturated sodium hydrogencarbonate solution and water. Evaporation yielded 5.3 g (81%) of the title product. Mp.: 165-170° C. [α]D: +65.0° (c=0.5; CHCl3).
- Step C
- The compound was prepared from the intermediate obtained in Step B according to the method described for starting material XI. Mp.: 132-134° C. Yield: 88%. [α]D: −533.0°(c=0.5; CHCl3).
- Step D
- The title compound was obtained from the compound prepared in Step C according to a method described in Method B of Example 28. Mp.: 151-152° C. Yield: 89%. [α]D: +284.1° (c=0.5; CHCl3).
- Step A
- The compound obtained in Step C of Example 153 was transformed into the title compound according to a method described for starting material XVIII. Mp.: 126-127° C.; yield: 85%.
- Step B
- The compound obtained in Step A was used to prepare the title compound according to the method described in Example 137. Mp.: 208-210° C.; yield: 65%. [α]D: +470.6° (c=0.5; CHCl3).
- Step A
- A solution of 4.0 g (12.3 mmol) of (±)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine, 0.52 ml (13.5 mmol) of diketene in 80 ml of toluene was stirred at 80° C. for 3 h. The reaction mixture was washed with water, dried and concentrated. The residue was triturated with diisopropyl ether to yield 4.0 g (80%) of the title compound. Mp.: 169-171° C.
- Step B
- A solution of 3.0 g (7.2 mmol) of a compound of Step A 2.4 g (5 mmol) of Lawesson's reagent in 500 ml of toluene was stirred at reflux temperature for 4 h. Then the reaction mixture was filtered and the solvent evaporated. The crude product was purified by column chromatography using a mixture of ethyl acetate-hexane (1:3) as eluent to yield 2.1 g (70%) of the title compound. Mp.: 178-185° C.
- Step C
- A solution of 1.9 g (4.5 mmol) of the compound obtained in Step B and 0.6 g (9.0 mmol) hydroxylamine hydrochloride was stirred in 20 ml of ethanol and heated at reflux for 3 h. The reaction mixture was diluted with water and the precipitate formed was filtered off. The crude product was purified by column chromatography using a mixture of ethyl acetate-hexane (1:3) as eluent to yield 0.60 g (32%) of the title compound. Mp.: 179-182° C.
- Step A
- The compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358 (1995)), however as key reagents 3,5-dimethyl-4-nitrobenzaldehyde and tert-butyl carbazate were used. Mp.: 222-223° C. [α]D: −443.0° (c=0.5; CHCl3).
- Step B
- The compound obtained in Step A was subjected to hydrolysis according to a method described in Example 153 under Step B. Mp.: 193° C.; yield: 88%. [α]D: +181° (c=0.5; CHCl3).
- Step C
- The compound obtained in Step B was transformed into the title carbothioyl derivative according to a method described for starting compound XI. Mp.: 216° C.; yield: 82%. [α]D: −389° (c=0.5; CHCl3).
- Step D
- The title compound of this example was prepared from compound obtained in Step C according to Method B described in Example 28. Mp.: 235° C.; yield: 86%. [α]D: +221° (c=0.5; CHCl3).
- The thiosemicarbazide type intermediate of Step D of Example 156 was treated with mercury(II)acetate for 16 h according to a procedure described in Example 45. Mp.: 132-133° C.; yield: 90%. [α]D: −436° (c=0.5; CHCl3).
- Step A
- This intermediate was prepared from the compound obtained in Step B of Example 156 by a method described for starting material I, however, during the reaction significant hydrolysis of the title product to the corresponding urea derivative was noticed as well. Title compound was isolated by column chromatography using a mixture of hexane-ethyl acetate (3:1) as eluent. Mp.: 228-230° C.; yield: 18%.
- Step B
- Intermediate compound obtained in Step A was reacted with bromoacetaldehyde diethyl acetal as described in Example 1. Mp.: 167° C.; yield: 46%.
- Step A
- Prepared according to the procedure described for starting compound XXVI, however, from (R)-8-methyl-5-(4-nitrophenyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine. The crude product was used without further purification.
- Step B
- Intermediate of Step A was reacted with methylamine according to the method described for the racemic starting compound XXVII. Mp.: 164° C.; yield: 63%. [α]D: −526° (c=0.5; CHCl3).
- Step C
- The compound of Step B was reacted with bromine according to a procedure described in Example 46 to give the title product. Mp.: 177-180° C.; yield: 98%. [α]D: +438° (c=0.5; CHCl3).
- To a suspension of 1.20 g (2.86 mmol) of starting material I in 10 ml of dimethylformamide 1.67 g (8.58 mmol) of ethyl-α-bromoisobutyrate were added. The mixture was stirred at 80° C. for 1 h and at 100-110° C. for 23 h. The solution was diluted with water and the separated oily substance was extracted into dichloromethane. After washing and drying the solvent was evaporated and the residue was purified by column chromatography, using a mixture of hexane-ethyl acetate (1:1) as eluent. Evaporation of the fractions containing the main product gave 0.80 g of the title compound as a gum.
- To an ethereal solution containing diazomethane in high excess, a solution of 2.42 g (3.0 mmol) of starting material XII in 40 ml of tetrahydrofurane was added dropwise at −15° C. The solution was kept at room temperature for 5 days, when TLC showed full conversion. Evaporation gave a residue which was purified by column chromatography, using a mixture of hexane-ethyl acetate (3:1) as eluent. 2.13 g of the title product was resulted. Mp.: 175-176° C. [α]D: −96° (c=0.5; CHCl3).
- Step A
- The compound was prepared using 2-bromo-3-methylbenzaldehyde and tert-butylcarbazate according to a method published in the literature (Anderson et al., J. Am. Chem. Soc. 117:12358 (1995)).
- Ms:EI (70 eV):[M]+: 517/519, m/z: 417/419, 376/378, 57
- CI:[M+H]+: 518/520
- Step B
- Compound obtained in Step A was hydrolyzed according to method disclosed in Example 153, Step B.
- Ms:EI (70 eV):[M]+: 417/419, m/z: 402/404, 374/376, 338, 160
- CI:[M+H]+: 418/420, [M]+: 417/419
- Step C
- The compound obtained in Step B was transformed into the title compound according to a method described for starting material XI.
- Ms:EI (70 eV):[M]+: 495/497, m/z: 460/462, 401/403, 355/357
- CI:[M+H]+: 496/498/500, m/z: 460/462
- Step D
- The title compound obtained in Step C was further reacted with acetic hydrazide according to a method described in Method B of Example 28 to give the title compound as a foam.
- MS:EI (70 eV)[M]+: 515/517, m/z: 500/502, 401/403, 59
- CI:[M+H]+: 516/518
TABLE 12 2,3-Benzodiazepines containing aminophenyl group (The 1H NMR spectra were recorded at 500 MHz unless stated otherwise) Mp. (° C.) Number of Solvent of Yield (%) Example Name recrystall. [α]D 163 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(4,5- 125-128 53 dihydro-thiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- −282.0°(c=0.5, CHCl3) [4,5-h][2,3]benzodiazepine Method* B 1H NMR(DMSO-d6) d 1.10(3H, d, 6.0 Hz), 2.06(3H, s), 2.53(1H, dd, 14.0 Hz, 10.0 Hz), 2.86(1H, dd, 14.0 Hz, 4.5 Hz), 3.0-3.2(2H, m), 3.93(1H, m), 4.05(1H, m), 4.85(1H, m), 5.35(2H, s), 6.04(1H, s), 6.07(1H, s), 6.55(1H, s), 6.61(1H, d, 8.5 Hz), 6.98(1H, s), 7.13(1H, d, br, 8.5 Hz), 7.22(1H, s, br) 164 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(thiazol-2- 124-127 86 yl)-8,9-dihydro-7H-1,3-dioxolo- −619.5°(c=0.5, CHCl3) [4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.16(3H, d, 6.0 Hz), 2.09(3H, s), 2.59(1H, dd, 14.0 Hz, 10.5 Hz), 2.95(1H, dd, 14.0 Hz, 5.5 Hz), 5.01(1H, m), 5.47(2H, s, br), 6.03(1H, d, 1.1 Hz), 6.08(1H, d, 1.1 Hz), 6.58(1H, s), 6.64(1H, d, 8.0 Hz), 6.83(1H, d, 3.5 Hz), 7.05(1H, s), 7.21(1H, dd, 8.0 Hz, 2.0 Hz), 7.28(1H, d, 3.5 Hz), 7.31(1H, d, 2.0 Hz) 165 (R)-5-(4-Amino-3-methylphenyl)-7-(5-ethyl-1,3,4- 129-133(EtOH) 90 thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo- −534.9°(c=0.5, CHCl3) [4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.20(3H, d, 6.1 Hz), 1.23(3H, t, 7.6 Hz), 2.07(3H, s), 2.58(1H, dd, 14.0 Hz, 10.6 Hz), 2.85(2H, q, 7.6 Hz), 2.95(1H, dd, 14.0 Hz, 5.4 Hz), 4.93(1H, m), 5.50(2H, s, br), 6.03(1H, d, 1.0 Hz), 6.08(1H, d, 1.0 Hz), 6.57(1H, s), 6.63(1H, d, 8.4 Hz), 7.06(1H, s), 7.20(1H, dd, 8.4 Hz, 2.1 Hz), 7.25(1H, d, 2.1 Hz) MS: EI(70eV): [M]+.: 421, m/z: 406, 293, 266 CI: [M+H]+: 422, [M]+.: 421 166 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(5-propyl- 150-154(EtOH) 56 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5- −516.0°(c=0.5, CHCl3) h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 0.91(t, 7.5 Hz), 1.20(3H, d, 6.1 Hz), 1.66(2H, m), 2.08(3H, s), 2.58(1H, dd, 13.8 Hz, 10.6 Hz), 2.80(2H, t, 7.2 Hz), 2.96(1H, dd, 13.8 Hz, 5.1 Hz), 4.94(1H, m), 5.50(2H, s), 6.03(1H, s), 6.08(1H, s), 6.57(1H, s), 6.64(1H, d, 8.3 Hz), 7.05(1H, s), 7.19(1H, dd, 8.3 Hz, 2.1 Hz), 7.25(1H, d, 2.1 Hz) 167 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(1,3,4- 143-148(EtOAc) 63 thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- −527.3°(c=0.5, CHCl3) [4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.21(3H, d, 6.1 Hz), 2.08(3H, s), 2.61(1H, dd, 13.6 Hz, 10.6 Hz), 3.00(1H, dd, 13.6 Hz, 5.0 Hz), 5.00(1H, m), 5.52(2H, s, br), 6.03(1H, d, 0.7 Hz), 6.08(1H, d, 0.7 Hz), 6.58(1H, s), 6.64(1H, d, 8.3 Hz), 7.07(1H, s), 7.20(1H, dd, 8.3 Hz, 2.1 Hz), 7.28(1H, d, 2.1 Hz), 8.78(1H, s) MS: EI(70eV): [M]+.: 393, m/z: 378, 266 CI: [M+H]+: 394, [M]+.: 393 168 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(5- 171-172(EtOH) 86 methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H- −540.0°(c=0.5, CHCl3) 1,3-dioxolo-[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.21(3H, d, 6.1 Hz), 2.08(3H, s), 2.60(1H, dd, 14.0 Hz, 11.0 Hz), 2.97(1H, dd, 14.0 Hz, 5.4 Hz), 4.57(1H, d, 12.7 Hz), 4.60(1H, d, 12.7 Hz), 4.98(1H, m), 5.3-5.8(2H), 6.03(1H, s), 6.08(1H, s), 6.58(1H, s), 6.65(1H, d, 8.6 Hz), 7.06(1H, s), 7.21(1H, dd, 8.6Hz, 2.2 Hz), 7.26(1H, d, 2.2 Hz) 169 (R)-5-(4-Amino-3-methylphenyl)-7-(5-isopropyl-1,3,4- 134-140 83 thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −518.8°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.20(3H, d, 6.2Hz), 1.26(3H, d, 6.9Hz), 128(3H, d, 6.9Hz), 2.07(3H, s), 2.58(1H, dd, 13.8 Hz, 10.8 Hz), 2.95(1H, dd, 13.8 Hz, 5.5 Hz), 3.18(1H, m), 4.94(1H, m), 5.51(2H, s, br), 6.03(1H, s), 6.08(1H, s), 6.57(1H, s), 6.64(1H, d, 8.4 Hz), 7.06(1H, s), 721(1H, dd, 8.4 Hz, 2.1 Hz), 7.24(1H, d, 2.1 Hz) 170 (R)-5-(4-Amino-3-methylphenyl)-7-(5-cyclopropyl- 124-128 47 1,3,4-thiadiazo1-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −504.1°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 0.86(2H, m), 1.03(2H, m), 1.16(3H, d, 6.2 Hz), 2.07(3H, s), 2.23(1H, m), 2.57(1H, dd, 14.0 Hz, 10.8 Hz), 2.95(1H, dd, 14.0 Hz, 5.5 Hz), 4.92(1H, m), 5.50(2H, s), 6.03(1H, s), 6.08(1H, s), 6.55(1H, s), 6.64(1H, d, 8.3 Hz), 7.05(1H, s), 7.19(1H, dd, 8.3 Hz, 2.1 Hz), 7.23(1H, d, 2.1 Hz) 171 (R)-5-(4-Amino-3-methylphenyl)-7-(5-hydroxymethyl- 184-186 75 1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −540.0°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.20(3H, d, 6.1 Hz), 2.08(3H, s), 2.60(1H, dd, 13.9 Hz, 10.6 Hz), 2.97(1H, dd, 13.9 Hz, 5.3 Hz), 4.61(2H, d, 5.8 Hz), 4.95(1H, m), 5.52(2H, s), 5.81(1H, t, 5.8 Hz), 6.03(1H, s), 6.08(1H, s), 6.58(1H, s), 6.65(1H, d, 8.5 Hz), 7.06(1H, s), 7.19(1H, dd, 8.5 Hz, 2.0 Hz), 7.26(1H, d, 2.0 Hz) 172 (R)-7-(5-Acetoxymethyl-1,3,4-thiadiazol-2-yl)-5-(4- 204-206(EtOH) 45 amino-3-methylphenyl)-8-methyl-8,9-dihydro-7H-1,3- −560.0°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method E 1H NMR(DMSO-d6) d 1.21(3H, d, 6.2 Hz), 2.07(3H, s), 2.08(3H, s), 2.60(1H, dd, 14.0 Hz, 11.0 Hz), 2.97(1H, dd, 14.0 Hz, 5.4 Hz), 4.99(1H, m), 5.20(1H, d, 13.1 Hz), 5.24(1H, d, 13.1 Hz), 5.55(2H, s), 6.03(1H, s), 6.09(1H, s), 6.59(1H, s), 6.65(1H, d, 8.4 Hz), 7.06(1H, s), 7.21(1H, dd, 8.4 Hz, 2.1 Hz), 7.26(1H, d, 2.1 Hz) 173 (R)-5-(4-Amino-3-methylphenyl)-7-(5-cyanomethyl- 135-140 25 1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −517.9°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.21(3H, d, 6.2 Hz), 2.08(3H, s), 2.61(1H, dd, 13.9 Hz, 11.0 Hz), 2.99(1H, dd, 13.9 Hz, 5.5 Hz), 4.40(2H, s), 4.96(1H, m), 5.55(2H, s), 6.03(1H, d, 0.7 Hz), 6.09(1H, d, 0.7 Hz), 6.59(1H, s), 6.65(1H, d, 8.3 Hz), 7.06(1H, s), 7.21(1H, dd, 8.3 Hz, 1.8 Hz), 7.26(1H, d, 1.8 Hz) 174 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(5- 177-180(EtOH) 57 methylthiomethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro- −496.0°(c=0.5, CHCl3) 7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.21(3H, d, 6.1 Hz), 2.03(3H, s), 2.08(3H, s), 2.60(1H, dd, 13.8 Hz, 10.6 Hz), 2.97(1H, dd, 13.8 Hz, 5.3 Hz), 3.91(1H, d, 14.7 Hz), 3.95(1H, d, 14.7 Hz), 4.96(1H, m), 5.52(2H, s), 6.03(1H, d, 0.9 Hz), 6.09(1H, d, 0.9 Hz), 6.59(1H, s), 6.65(1H, d, 8.4 Hz), 7.06(1H, s), 7.21(1H, dd, 8.4 Hz, 2.0 Hz), 7.25(1H, d, 2.0 Hz) 175 (R)-5-(4-Amino-3-methylphenyl)-7-(5-ethoxycarbonyl- 135-140 86 1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −606.3°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method E 1H NMR(DMSO-d6) d 1.15(3H, d, 6.2 Hz), 1.30(3H, t, 7.1 Hz), 2.09(3H, s), 2.64(1H, dd, 13.8 Hz, 11.3 Hz), 2.99(1H, dd, 13.8 Hz, 5.4 Hz), 4.30(2H, m), 5.11(1H, m), 5.65(2H, s), 6.04(1H, s), 6.09(1H, s), 6.61(1H, s), 6.65(1H, d, 8.3 Hz), 7.08(1H, s), 7.25(1H, dd, 8.3 Hz, 2.0 Hz), 7.26(1H, d, 2.0 Hz) 176 (R)-5-(4-Amino-3-methylphenyl)-7-(5-aminomethyl- 139-140(EtOH) 31 1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −482.2°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.21(3H, d, 6.0 Hz), 2.08(3H, s), 2.59(1H, dd, 13.9 Hz, 13.9 Hz), 2.95(1H, dd, 13.9 Hz, 5.1 Hz), 3.87(2H, s), 4.95(1H, m), 5.50(2H, s), 6.03(1H, s), 6.07(1H, s), 6.57(1H, s), 6.65(1H, d, 8.1 Hz), 7.05(1H, s), 7.21(1H, d, br, 8.1 Hz), 7.26(1H, s, br) 177 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-{5-[1- 139-143 65 (1E)-propen-1-yl]-1,3,4-thiadiazol-2-yl}-8,9-dihydro- −498.9°(c=0.5, CHCl3) 7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.21(3H, d, 6.2 Hz), 1.86(1H, dd, 6.8 Hz, 1.8 Hz), 2.08(3H, s), 2.59(1H, dd, 14.0 Hz, 10.8 Hz), 2.98(1H, dd, 14.0 Hz, 5.4 Hz), 4.98(1H, m), 5.53(2H, s, br), 6.03(1H, s), 6.08(1H, s), 6.32(1H, dq, 15.7 Hz, 6.8 Hz), 6.55(1H, dq, 15.7 Hz, 1.8 Hz), 6.57(1H, s), 6.44(1H, d, 8.4 Hz), 7.06(1H, s), 7.22(1H, dd, 8.4 Hz, 2.1 Hz), 7.26(1H, d, 2.1 Hz) 178 (R)-5-(4-Amino-3-methylphenyl)-7-(5-hexyl-1,3,4- 180-181 75 thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3- −485.2°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 0.84(3H, t, 7.0 Hz), 1.20(3H, d, 6.1 Hz), 1.2-1.3(6H, m), 1.62(2H, m), 2.07(3H, s), 2.58(1H, dd, 13.9 Hz, 10.5 Hz), 2.82(2H, t, 7.5 Hz), 2.95(1H, dd, 13.9 Hz, 5.4 Hz), 4.94(1H, m), 5.49(2H, s), 6.03(1H, s), 6.08(1H, s), 6.57(1H, s), 6.64(1H, d, 8.4 Hz), 7.05(1H, s), 7.19(1H, dd, 8.4 Hz, 2.2 Hz), 7.25(1H, d, 2.2 Hz) 179 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-(5,6- 175-180 61 dihydro-5-oxo-4H-1,3,4-thiadiazin-2-yl)-8,9-dihydro- −686.0°(c=0.5, CHCl3) 7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine Method B 1H NMR(DMSO-d6) d 1.15(3H, d, 6.4 Hz), 2.05(3H, s), 2.48(1H, dd, 13.8 Hz, 10.4 Hz), 2.85(1H, dd, 13.8 Hz, 5.3 Hz), 3.32(2H, s), 4.75(1H, m), 5.42(2H, s), 6.04(1H, s), 6.07(1H, s), 6.55(1H, s), 6.61(1H, d, 8.4 Hz), 6.99(1H, s), 7.15(1H, dd, 8.4 Hz, 1.8 Hz), 7.26(1H, d, 1.8 Hz), 10.47(1H, s) 180 (R)-5-(4-Aminophenyl)-8-methyl-7-(1,3,4-oxadiazol-2- 187-190 78 yl)-8,9-dihydro-7H-1,3-dioxolo[4,5- −604.0°(c=0.5, CHCl3) h][2,3]benzodiazepine Method A 1H NMR(CDCl3) d 1.45(3H, d, 6.0 Hz), 2.73(1H, dd, 14.0 Hz, 10.5 Hz), 2.86(1H, dd, 14.0 Hz, 5.5 Hz), 3.99(2H, s, br), 4.94(1H, m), 5.98(1H, d, 1.0 Hz), 6.02(1H, d, 1.0 Hz), 6.64(1H, s), 6.68(2H, d, 8.0 Hz), 6.82(1H, s), 7.56(2H, d, 8.0 Hz), 7.99(1H, s) 181 (R)-5-(4-Amino-3-methylphenyl)-8-methyl-7-(5- 140-145 85 methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-7H-1,3- −554.8°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method B MS: EI(70eV): [M]+.: 391, m/z: 266 CI: [M+H]+: 392 182 (R)-5-(4-Amino-3-chlorophenyl)-8-methyl-7-(5-methyl- 98-100 92 1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- −266.0°(c=0.5, CHCl3) [4,5-h][2,3]benzodiazepine Method C 1H NMR(DMSO-d6) d 1.18(3H, d, 6.0 Hz), 2.50(3H, s), 2.65(1H, dd, 14.0 Hz, 9.9 Hz), 2.98(1H, dd, 14.0 Hz, 4.9 Hz), 4.95(1H, m), 5.95(2H, s), 6.05(1H, s), 6.09(1H, s), 6.63(1H, s), 6.83(1H, d, 8.6 Hz), 7.07(1H, s), 7.24(1H, dd, 8.6 Hz, 2.0 Hz), 7.44(1H, d, 2.0 Hz) MS: EI(70eV): [M]+.: 427/429, m/z: 412/414, 313/315, 286/288, 160 CI: [M+H]+: 428/30, [M]+.: 427/429 183 (R)-5-(4-Amino-3-chlorophenyl)-8-methyl-7-(5- 105-109 91 methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H- −350.0°(c=0.5, CHCl3) 1,3-dioxolo[4,5-h][2,3]benzodiazepine Method C 1H NMR(DMSO-d6) d 1.20(3H, d, 6.1 Hz), 2.67(1H, dd, 14.1 Hz, 10.3 Hz), 3.00(1H, dd, 14.1 Hz, 5.4 Hz), 3.32(3H, s), 4.58(1H, d, 13.0 Hz), 4.62(1H, d, 13.0 Hz), 5.01(1H, m), 5.98(2H, s, br), 6.05(1H, s), 6.09(1H, s), 6.64(1H, s), 6.84(1H, d, 8.4 Hz), 7.07(1H, s), 7.29(1H, dd, 8.4 Hz, 1.8 Hz), 7.44(1H, d, 1.8 Hz) MS: EI(70eV): [M]+.: 457/459, m/z: 442/444, 313/315, 286/288, 160 CI: [M+H]+: 458/60, [M]+: 457/459 184 (R)-5-(4-Amino-2-bromo-3-methylphenyl)-8-methyl-7- foam 98 (5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3- dioxolo[4,5-h][2,3]benzodiazepine Method A 1H NMR(CDCl3) d 1.25(3H, d, 6.2 Hz), 2.25(3H, s), 2.53(3H, s), 2.93(1H, dd, 14.6 Hz, 7.3 Hz), 3.25(1H, dd, 14.6 Hz, 3.1 Hz), 3.4-4.3(2H), 5.43(1H, m), 5.92(1H, d, 1.4 Hz), 5.93(1H, d, 1.4 Hz), 6.36(1H, s), 6.69(1H, d, 8.1 Hz), 6.72(1H, s), 7.12(1H, d, 8.1 Hz) MS: EI(70eV): [M]+.: 485/487, m/z: 470/472, 406, 265, 219 CI: [M+H]+: 486/488 185 (±)-5-(4-Aminophenyl)-8-methyl-7-(3-methyl-isoxazol- 100-103 87 5-yl)-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine Method C 1H NMR(DMSO-d6) d 1.16(3H, d, 6.5 Hz), 2.07(3H, s), 2.45(1H, dd, 14.0 Hz, 11.5 Hz), 2.88(1H, dd, 14.0 Hz, 6.0 Hz), 4.58(1H, m), 5.26(1H, s), 5.70(2H, s), 6.02(1H, s), 6.07(1H, s), 6.56(1H, s), 6.58(2H, d, 8.5 Hz), 7.03(1H, s), 7.36(2H, d, 8.5 Hz) MS: EI(70eV): [M]+.: 376, m/z: 306, 265, 252, 82, 54 CI: [M+H]+: 377, [M]+: 376 186 (R)-5-(4-Aminophenyl)-8-methyl-7-(1,2,3-thiadiazol-5- 220-221 33 yl)-8,9-dihydro-7H-1,3-dioxolo- −705.0°(c=0.5, CHCl3) [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.18(3H, d, 6.1 Hz), 2.60(1H, dd, 13.8 Hz, 11.4 Hz), 2.95(1H, dd, 13.8 Hz, 5.1 Hz), 4.75(1H, m), 5.81(2H, s, br), 6.03(1H, s), 6.08(1H, s), 6.59(1H, s), 6.61(2H, d, 8.4 Hz), 7.08(1H, s), 7.35(2H, d, 8.4 Hz), 8.10(1H, s) MS: EI(70eV): [M]+.: 379, m/z: 351, 336, 279, 252 CI: [M+H]+: 380, m/z: 352 187 (±)-5-(4-Aminophenyl)-8-methyl-7-(2-methyl-1,3- 148-150 88 oxazol-5-yl)-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.07(3H, d, 5.3 Hz), 2.23(3H, br), 2.40(1H, dd, 13.7 Hz, 7.7 Hz), 2.83(1H, dd, 13.7 Hz, 5.6 Hz), 4.31(1H, m), 5.58(s, br), 6.03(1H, s), 6.05(1H, s), 6.54(2H, d, 8.2 Hz), 6.57(1H, s), 7.00(1H, s), 7.28(2H, d, 8.2 Hz) MS: EI(70eV): [M]+.: 376, m/z: 335, 306, 265, 252 CI: [M+H]+: 377 188 (±)-5-(4-Aminophenyl)-8-methyl-7-(2,4,dimethyl-1,3- 180-182 92 oxazol-5-yl)-8,9-dihydro-7H-1,3-dioxolo- [4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 0.94(3H, d, 6.1 Hz), 1.76(3H, s), 2.29(3H, s), 2.43(1H, dd, 13.8 Hz, 3.3 Hz), 2.79(1H, dd, 13.8 Hz, 6.6 Hz), 4.13(1H, m), 5.53(s, br), 6.07(1H, s), 6.08(1H, s), 6.52(2H, d, 8.4 Hz), 6.58(1H, s), 6.99(1H, s), 7.18(2H, d, 8.4 Hz) MS: EI(70eV): [M]+.: 390, m/z: 349, 334, 306, 279, 265, 252 CI: [M+H]+: 391, [M]+.: 390 189 (R)-5-(4-Amino-3,5-dimethylphenyl)-8-methyl-7- 202-203 75 (thiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo- −686.0°(c=0.3, CHCl3) [4,5-h][2,3]benzodiazepine Method A MS: EI(70eV): [M]+: 406, m/z: 391, 307, 280 190 (R)-5-(4-Amino-3,5-dimethylphenyl)-8-methyl-7-(5- 280-281 74 methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3- −538.0°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.18(3H, d, 6.1 Hz), 2.11(6H, s), 2.49(3H, s), 2.57(1H, dd, 13.9 Hz, 10.8 Hz), 2.95(1H, dd, 13.9 Hz, 5.1 Hz), 4.93(1H, m), 5.19(2H, s, br), 6.03(1H, d, 0.5 Hz), 6.08(1H, d, 0.5 Hz), 6.56(1H, s), 7.05(1H, s), 7.12(2H, s) MS: EI(70eV): [M]+.: 421, m/z: 406, 307, 306, 280 CI: [M+H]+: 422 191 (R)-5-(4-Amino-3,5-dimethylphenyl)-8-methyl-7-(5- 148-150 87 methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-7H-1,3- −705.0°(c=0.5, CHCl3) dioxolo[4,5-h][2,3]benzodiazepine Method A MS: EI(70eV): [M]+: 405, m/z: 280, 245, 134, 83, 77 CI: [M+H]+: 406 192 (R)-5-(4-Aminophenyl)-8-methyl-7-(2-methyl-3-oxo- 185-190 60 2,3-dihydro-1,2,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3- −45.0°(c=0.47, CHCl3) dioxolo-[4,5-h][2,3]benzodiazepine Method A 1H NMR(DMSO-d6) d 1.19(3H, d, 6.5 Hz), 2.69(1H, dd, 14.0 Hz, 10.0 Hz), 3.00(1H, dd, 14.0 Hz, 4.5 Hz), 3.05(3H, s), 4.89(1H, m), 5.81(2H, s, br), 6.05(1H, s), 6.08(1H, s), 6.58(2H, d, 8.5 Hz), 6.59(1H, s), 7.06(1H, s), 7.26(2H, d, 8.5 Hz) MS: EI(70eV): [M]+.: 409, m/z: 279, 252 CI: [M+H]+: 410, [M]+.: 409 193 (±)-5-(4-Aminophenyl)-8-methyl-7-(5,5-dimethyl-4- 124-130 75 oxo-4,5-dihydrothiazol-2-yl)-8,9-dihydro-7H-1,3- amorphous dioxolo-[4,5-h][2,3]benzodiazepine Method A MS: EI(70eV): [M]+.: 422, m/z: 407, 279, 252 CI: [M+H]+: 423
*See the general procedures given before Examples 60-118 for reduction of the nitro groups of various 2,3-benzodiazepines.
- Step A
- The compound was prepared according to a synthesis described in literature (Anderson et al., J. Am. Chem. Soc. 117: 12358 (1995)) with the exception that tert-butylcarbazate and 4-chlorobenzaldehide were used instead of acetic hydrazide and 4-nitrobenzaldehide, respectively. The title product was isolated as a foam and used for the next step.
- Step B
- 11.0 g (28.2 mmol) of the product obtained in Step A was dissolved in 120 ml of ethyl acetate containing 10% hydrochloric acid and stirred for 3 h, then the solution was washed with sodium carbonate and water. After drying and evaporation the crude product was recrystallized from ethyl acetate to yield 5.07 g (57°%) of the title compound. Mp.: 185-187° C.; [α]D: +241.0° (c=0.5; CHCl3).
- Step C
- A mixture containing 1.57 g (5.0 mmol) of the product obtained in Step B, 0.73 g (7.5 mmol) of potassium thiocyanate and 16 ml of acetic acid was stirred at 110° C. for 3 h. After cooling water was added and the precipitated crystals were filtered off, washed with water and dried to yield 1.73 g (92%) of the title compound. Mp.: 208-212° C.
- Step D
- The compound obtained in Step C (1.0 g, 2.66 mM) was reacted with 2.20 g (10.7 mmol) of 2-bromoethylamine hydrobromide in 5 ml of dimethylformamide according to the method described in Example 9. The product was isolated by column chromatography and an additional recrystallization from ethyl acetate to yield 0.26 g (25%) of the title compound. Mp.: 216-219° C.; [α]D: +326.7°(c=0.5; CHCl3).
- 1HNMR (DMSO-dα) δ 1.11 (3H, d, 5.7 Hz), 2.79 (1H, dd, 14.7 Hz, 6.4H), 3.16 (1H, dd, 14.7 Hz, 1.7 Hz), 3.25 (2H, m), 4.16 (2H, m), 4.28 (2H, m), 5.25 (1H, m), 5.99 (2H, s), 6.59 (1H, s), 6.71 (1H, s) 7.34 (2H, d, 8.0 Hz), 7.53 (2H, d, 8.0 Hz)
- The compound obtained in Step C of Example 194 (0.55 g, 1.47 mmol) was reacted with 0.22 ml (1.47 mmol) of bromoacetaldehyde diethyl acetal according to the method described in Example 1. The crude product was purified by column chromatography using a mixture of n-hexane-ethyl acetate (2:1) as eluent. After concentration of the fractions containing the title compound the residue was treated with water to yield 0.40 g (68%) of the title compound. Mp.: 116-117° C.; [α]D: +118.6° (c=0.5; CHCl3).
- 1H NMR (CDCl3) δ 1.22 (3H, d, 6.4 Hz), 2.83 (1H, dd, 14.6 Hz, 7.2 Hz), 3.18 (1H, dd, 14.6 Hz, 3.4 Hz), 5.38 (1H, m), 6.01 (2H, s), 6.61 (1H, s), 6.69 (1H d, 3.7 Hz), 6.78 (1H, s), 7.32 (1H, d, 3.7 Hz), 7.38 (2H d, 8.6H), 7.58 (2H, d, 8.6 Hz)
- Step A
- The compound obtained in Step B of Example 194 (2.20 g, 7.0 mmol was reacted according to the method described for starting compound XI. The crude product was purified by column chromatography using a mixture of n-hexane-ethyl acetate (4:1) as eluent to yield 1.38 g (49%) of the title compound as a solid foam.
- Step B
- 1.0 g (2.48 mmol) of the product obtained in Step A was used to prepare the title compound according to a method described in Example 28, Method B. The product, isolated by column chromatography, was solidified by water to give 0.42 g (52%), Mp.: 105-108° C.; [α]D: +103.2° (c=0.5; CHCl3).
- 1H NMR (CDCl3) δ 1.25 (3H, d, 6.2 Hz), 2.61 (3H, s), 2.84 (1H, dd, 14.3H, 7.1 Hz), 3.18 (1H, dd, 14.3 Hz, 3.6 Hz), 5.35 (1H, m), 6.02 (2H, s), 6.57 (1H, s), 6.79 (1H, s), 7.38 (2H, d, 8.2 Hz), 7.52 (2H, d, 8.2H)
- The compound of Example 119 was acetylated according to the general method described for Examples 120-131. Mp.: 267-269° C. Yield: 67%; [α]D: −121.0° (c=0.5; CHCl3).
- 1H NMR (DMSO-d6) δ 1.16 (3H, d, 6.1H), 2.10 (3H, s), 2.25 (1H, s), 2.50 (3H, s), 2.79 (1H, dd, 14.0H, 8.2 Hz), 3.09 (1H, dd, 14.0 Hz, 4.0 Hz), 5.08 (1H, m), 6.07 (1H, s), 6.09 (1H, s), 6.55 (1H, s), 7.07 (1H, s), 7.31 (1H, d, 8.3 Hz), 7.38 (1H, s, br), 7.59 (1H, d, br, 8.3H), 9.36 (1H, s)
- The substance (1.03 g, 2.53 mmol) obtained in Example 119 was reacted with 0.75 ml (12.6 mmol) of methyl isocyanate in 20 ml of dichloromethane for 6 days at RT. Evaporation of the solvent gave a crude product which was purified by column chromatography, using a mixture of hexane-ethyl acetate (2:1) as eluent to give 0.67 g (57%) of the title compound. Mp.: 237-242° C.; [α]D: −140.0° (c=0.5; CHCl3).
- 1H NMR (DMSO-d6) δ 1.17 (3H, d, 6.4 Hz), 2.21 (3H, s), 2.51 (3H, s), 2.66 (3H, d, 4.6 Hz), 2.71 (1H, dd, 14.2 Hz, 9.4 Hz), 3.04 (1H, dd, 14.2 Hz, 4.5 Hz), 5.02 (1H, m), 6.05 (1H, d, 0.9 Hz), 6.08 (1H, d, 0.9H), 6.55 (1H, s), 6.56 (1H, q, 4.6 H), 7.07 (1H, s), 7.30 (1H, dd, 8.4 Hz, 2.0 Hz), 7.34 (1H, d, 2.0 Hz), 7.82 (1H, s), 8.00 (1H, d, 8.4 Hz)
- The substance (0.90 g, 2.21 mmol) obtained in Example 119 was reacted with ethyl chloroformate (0.30 ml, 3.15 mmol) in dichloromethane in the presence of 0.40 ml (2.88 mmol) of triethylamine for 6 h at RT. The solution was washed with diluted hydrochloric acid and sodium hydrogen carbonate solution, dried and evaporated to dryness. The residue was purified by column chromatography using a mixture of hexane-ethyl acetate (2:1) as eluent to give 0.45 g (42%) of the title product. Mp.: 241-244° C.; [α]D: −180.0° (c=0.5; CHCl3).
- 1H NMR (DMSO-d6) δ 1.15 (3H, d, 6.1 Hz), 1.25 (3H, t, 7.0 Hz), 2.25 (3H, s), 2.51 (3H, s), 2.78 (1H, dd, 14.3 Hz, 8.7 Hz), 3.05 (1H, dd, 14.3 Hz, 4.3 Hz), 4.13 (2H, q, 7.0 Hz), 5.07 (1H, m), 6.06 (1H, d, 0.7 Hz), 6.08 (1H, d, 0.7 Hz), 6.55 (1H, s), 7.07 (1H, s), 7.31 (1H, dd, 8.3 Hz, 2.0 Hz), 7.36 (1H, d, 2.0 Hz), 7.53 (1H, d, 8.3 Hz), 8.96 (1H, s)
- Further results with compounds of the present invention are collected in the following tables, exemplifying the AMPA antagonistic activity of compounds of formula (I). (The corresponding in vitro and in vivo investigational methods and related references were described and cited earlier in this application.)
TABLE 13 (Supplement to Table 1) Inhibition of the “spreading depression” in chicken retina Compound (Number of example)/IC50 μM 119 165 166 167 168 182 0.069 0.113 0.201 0.064 0.082 0.020 -
TABLE 14 (Supplement to Table 2) Inhibition of ion-currents caused by 5 μM AMPA determined by the whole cell patch clamp method Compound (Number of example)/IC50 μM 119 165 166 167 168 182 0.026 0.024 0.028 0.070 0.011 0.031 -
TABLE 15 (Supplement to Table 3) Investigation of the anticonvulsive activity in mice Compound (Number of example)/ED50 mg/kg po. Method 119 165 166 167 168 182 MES 60′ 2.87 3.99 4.01 5.85 4.49 6.17 MES 30′ 2.15 2.39 4.54 4.78 2.21 5.08 Pentetrazol 5.00 10.10 9.18 9.66 6.90 8.37 Strychnine 8.40 10.20 7.29 10.50 10.00 5.90 Bemegride 5.70 10.00 7.77 8.33 6.70 7.94 Bicuculline 2.50 5.79 13.30 12.70 10.60 8.44 Nicotine 6.30 18.60 21.80 10.80 17.70 24.20 4-AP 2.68 8.60 6.81 10.80 4.60 5.44 3-MPA 3.37 8.53 9.92 10.30 4.62 7.57
Abbreviations:
MES = maximal electroshock seizure;
4-AP = 4-aminopyridine;
3-MPA = 3-mercapto-propionic acid
-
TABLE 16 (Supplement to Table 4) Muscle relaxant activity in mice Compound Inclined screen Rotarod (Number of example) ED50 ip. (mg/kg) ED50 ip. (mg/kg) 119 2.49 0.51 165 2.94 0.91 166 3.27 0.86 167 4.24 0.80 168 3.58 0.80 182 5.84 2.61 -
TABLE 17 (Supplement to Table 5) Inhibition of focal ischemia in rats Dose Decrease of the infracted area in % Compound mg/kg iv. compared to that of the control (Number of (6×in every 30 min 120 min 180 min 240 min example) 30 min) Time of first treatment after occlusion 119 0.5 7 1.0 38 1.5 51* 21 2.0 56* 44** 21
*p < 0.05;
**p < 0.01; calculated with Dunnett test following ANOVA (Dunnett J. Amer. Statist. Ass. 50: 1096 (1955))
- Compounds of the invention were further investigated in the autoimmune encephalomyelitis model in rats as outlined in this description before, with the variance that 10 animals were used in each group, of weights 140-160 g (Lewis rats, female). The results are shown in Tables 19 and 20.
TABLE 18 (Supplement to Table 6) Effect of 2,3-benzodiazepines possessing AMPA antagonist activity on the clinical symptoms of autoimmune encephalomyelitis in Lewis rats Neurological symptoms (change compared Compound to controls, %) (Number of Dose Female rats example) mg/kg i.p. mg/kg p.o. 0-8 day 0-14 day 119 3.75 −97*** −90** 1.875 −72* −71** 1.0 −75** −72** 0.5 −33 −35 0.2 −36 −37 3.75 −64*** −61*** 1.875 −50** −50** 1.0 −20 −23 0.5 +2 −1 166 7.5 −51* −53* 3.75 −6 −9 168 7.5 −55* −56* 3.75 −16 −23
For statistics see Table 20.
-
TABLE 19 (Supplement to Table 7) Effect of 2,3-benzodiazepine derivatives possessing AMPA antagonistic character on the histological and clinical symptoms of autoimmune encephalomyelitis in Lewis rats on day 24 after immunization. Histopathological Neurological Compound symptoms symptoms (Number of Dose (change %) (change %) example) mg/kg i.p. mg/kg p.o. Female rats 119 3.75 +3 −90** 1.875 −8 −71** 1.0 −3 −72** 0.5 −13 −35 0.2 +2 −37 3.75 −32 −61*** 1.875 −42 −50** 1.0 −21 −23 0.5 −16 −1
*p < 0.05;
**p < 0.01;
***p < 0.001 (Mann-Whitney test).
-
TABLE 20 (Supplement to Table 8) Effect of 2,3-benzodiazepine derivatives possessing AMPA antagonistic character on the tremor of CD1 mice induced by different chemical agents. Compound ED50 (mg/kg po.) (Number of Oxotremorin GYKI 20039 example) 1 mg/kg ip. 10 mg/kg ip. 119 1.38(0.80-2.38) 2.21(1.37-3.56) 165 4.63(3.66-5.85) 5.34(3.90-7.31) 166 2.74(1.97-3.00) 4.54(3.69-5.58) 167 4.81(3.45-6.72) 7.73(4.99-11.98) 168 3.29(2.63-4.12) 4.11(3.22-5.45) 182 2.66(1.24-5.72) 3.64(2.37-5.57) -
TABLE 21 (Supplement to Table 9) Effect of the compound described in Example 119 on the bronchial hypersensitivity and the eosinophilia of the airways of BN-rats sensitized with ovalbumin and antigen challenged by inhalation (mean ± SE, N = 10, p determined by Student's t-test). Compound (Number of example) 119 Parameter Control Challenge 3.0 mg/kg po ED50* 5.19 ± 0.07 5.97 ± 0.29 4.35 ± 0.36 p 0.001 0.001 MAX** 100 ± 0 154 ± 21 82 ± 7 p 0.001 0.009 Eosinophil*** 0.15 ± 0.03 1.17 ± 0.18 1.16 ± 0.24 p 0.001 NS‡
*acetylcholine (Ach) concentration (−log M) which causes a 50% contraction compared to the control
**relative contraction compared to the control at a maximal Ach concentration
***BALF eosinophil number (×106/ml)
‡not significant (p > 0.05)
- While the claimed invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made to the claimed invention without departing from the spirit and scope thereof. Thus, for example, those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein. Such equivalents are considered to be within the scope of this invention, and are covered by the following claims.
Claims (24)
1. A compound of formula (I), wherein
R3 represents a substituted or unsubstituted 5- or 6-membered, aromatic, saturated or partially saturated heterocyclic ring containing at least 2 hetero atoms, in which the hetero atom can be oxygen-, sulfur- or nitrogen atom and in the case when the heterocyclic ring contains 2 heteroatoms one of them is different from nitrogen;
R4, R5, R6, and R7 independently from each other represent hydrogen atom, halogen atom, C1-C3 alkyl group, nitro group, amino group, wherein the amino group can be substituted independently from each other with one or two C1-C3 alkyl group, C2-C5 acyl group, or C2-C5 alkoxycarbonyl group, or aminocarbonyl group, or C2-C5alkylaminocarbonyl group,
R9 represents C1-C3 alkoxy group or halogen atom,
R10 represents hydrogen or halogen atom or
R9 and R10 together can be C1-C3 alkylendioxy group; and
stereoisomers and acid-addition salts of said compound.
2. The compound according to claim 1 , wherein the heterocyclic ring of R3 can be further substituted with one or more C1-C5 alkyl group, a C2-C3 alkenyl, a C3-C7 cycloalkyl, a trifluoromethyl, a C1-C3 alkoxy or a phenyl group, an oxo, a formyl, a carboxyl or a C2-C4 alkoxycarbonyl group, a C1-C3 alkoxymethyl group, a halogen atom a hydroxymethyl group, wherein the hydroxyl group can be alkylated or acylated, a C1-C3 alkylthiomethyl group, a cyanomethyl group or an aminomethyl group, wherein the amino group can be alkylated or acylated.
3. The compound according to claim 1 , wherein R3 is selected from the group of substituted and unsubstituted isoxazole, isothiazole, thiazole, thiazoline, 4-thiazolinone, oxazole, oxazoline, 1,2,3-thiadiazole, 1,3,4-thiadiazole, 1,3,4-thiadiazolin-2-one, 1,2,4-thiadiazolin-3-one, 1,4,2-oxathiazoline, 1,3,4-oxadiazole, 1,2,3-triazole, 1,3,4-triazole, 1,2,3,4-thiatriazole, tetrazole, 1,3-thiazin-4-one and 1,3,4-thiadiazin-4-one ring.
4. The compound according to claim 1 , wherein R3 is a substituted or unsubstituted 1,3,4-thiadiazol-2-yl, 4,5-dihydro-thiazol-2-yl, 2-thiazolyl or 1,3,4-oxadiazolyl group, R5 is a hydrogen atom or methyl group, R6 substituent is an amino group, and R9 and R10 represent together a methylenedioxy group, or R9 is a chlorine atom or methoxy group and R10 is a hydrogen or chlorine atom.
5. The compound according to claim 1 selected from the group consisting of (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(2-thiazolyl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(4,5-dihydro-thiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-aminophenyl)-8-methyl-7-(5-methyl-1,3,4-oxadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzo-diazepine; (R)-5-(4-Amino-3-methylphenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-propyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzo-diazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-methylphenyl-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzo-diazepine; (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-{5-[1-(1E)-propen-1-yl]-1,3,4-thiadiazol-2-yl}-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine; and (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methoxy-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine and the acid addition salts thereof.
6. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine or the addition salt thereof.
7. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-methylphenyl)-7-(5-ethyl-1,3,4-thiadiazol-2-yl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine or the acid addition salt thereof.
8. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-propyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine or the acid addition salt thereof.
9. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine or the acid addition salt thereof.
10. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine or the acid addition salt thereof.
11. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-methylphenyl)-8-methyl-7-{5-[1-(1E)-propen-1-yl]-1,3,4-thiadiazol-2-yl}-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine or the acid addition salt thereof.
12. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine or the acid addition salt thereof.
13. The compound according to claim 1 , wherein the compound is (R)-5-(4-amino-3-chlorophenyl)-8-methyl-7-(5-methoxymethyl-1,3,4-thiadiazol-2-yl)-8,9-dihydro-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine or the acid addition salts thereof.
14. A pharmaceutical composition, comprising a compound of formula (I) according to any one of claims 1 to 14 , or a stereoisomer or a pharmaceutically acceptable salt thereof.
15. A method for treating glutamate dysfunction associated with an acute or chronic neurodegenerative disease, comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of claim 1 .
16. The method of claim 8 , wherein the neurodegenerative disease is selected from the group consisting of cerebral ischemia (stroke), brain and spinal cord trauma, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, AIDS-induced dementia, essential tremor, Parkinson's disease, multiple sclerosis and urinary incontinence.
17. A method for treating epilepsy comprising administering to a subject in need of such treatment a therapeutically effective antiepileptic amount of a compound of claim 1 .
18. A method for reducing muscle spasms comprising administering to a subject in need of such treatment a therapeutically effective muscle relaxing amount of a compound of claim 1 .
19. A method for treating acute and chronic inflammatory disorders, comprising administering to a mammal in need of such treatment a therapeutically effective anti-inflammatory amount of a compound of claim 1 .
20. The method of claim 19 wherein the inflammatory disorder treated is an allergic inflammatory disorder of the airways.
21. The method of claim 20 wherein the allergic inflammatory disorders of the airways is selected from the group consisting of allergic rhinitis, intrinsic or extrinsic asthma bronchiale, acute or chronic bronchitis, chronic obstructive pulmonary disease and pulmonary fibrosis.
22. A method for relief of pathological pain comprising administering to a subject in need of such treatment a pain reducing therapeutically effective amount of a compound of claim 1 .
23. A method for treating glutamate dysfunction in acute or chronic disease of the eyes associated with glutamate dysfunction, comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of claim 1 .
24. The method of claim 23 , wherein the disease treated is selected from glaucoma or diabetic retinopathy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/771,847 US20070027143A1 (en) | 2003-02-04 | 2004-02-03 | Novel substituted 2,3-benzodiazepine derivatives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/358,053 US6858605B2 (en) | 2003-02-04 | 2003-02-04 | Substituted 2,3-benzodiazepine derivatives |
US10/771,847 US20070027143A1 (en) | 2003-02-04 | 2004-02-03 | Novel substituted 2,3-benzodiazepine derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/358,053 Continuation-In-Part US6858605B2 (en) | 2003-02-04 | 2003-02-04 | Substituted 2,3-benzodiazepine derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070027143A1 true US20070027143A1 (en) | 2007-02-01 |
Family
ID=32771128
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/358,053 Expired - Fee Related US6858605B2 (en) | 2003-02-04 | 2003-02-04 | Substituted 2,3-benzodiazepine derivatives |
US10/771,847 Abandoned US20070027143A1 (en) | 2003-02-04 | 2004-02-03 | Novel substituted 2,3-benzodiazepine derivatives |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/358,053 Expired - Fee Related US6858605B2 (en) | 2003-02-04 | 2003-02-04 | Substituted 2,3-benzodiazepine derivatives |
Country Status (16)
Country | Link |
---|---|
US (2) | US6858605B2 (en) |
EP (1) | EP1592673A4 (en) |
JP (1) | JP2006516647A (en) |
KR (1) | KR20050105443A (en) |
CN (1) | CN1747938A (en) |
AR (1) | AR043023A1 (en) |
AU (1) | AU2004208825A1 (en) |
BR (1) | BRPI0407247A (en) |
CA (1) | CA2512616A1 (en) |
HR (1) | HRP20050765A2 (en) |
MX (1) | MXPA05008236A (en) |
NO (1) | NO20054067L (en) |
RU (1) | RU2005127584A (en) |
TW (1) | TW200500347A (en) |
WO (1) | WO2004069197A2 (en) |
ZA (1) | ZA200505352B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4702051B2 (en) | 2003-03-05 | 2011-06-15 | 東レ株式会社 | Aromatic polymers, films, electrolyte membranes and separators |
KR101032834B1 (en) * | 2003-10-15 | 2011-05-06 | 스미또모 가가꾸 가부시키가이샤 | 1,2,4-thiadiazole compounds and pests controlling composition containing the same |
AU2006334172A1 (en) * | 2005-12-30 | 2007-07-12 | Egis Gyogyszergyar Nyilvanosan Mukodo Reszvenytarsasag | Optical isomers of dihydro-2,3-benzodiazepines and their stereoselective synthesis |
TW200902024A (en) * | 2007-04-02 | 2009-01-16 | Teva Pharma | Novel 2,3-benzodiazepine derivatives and their use as antipsychotic agents |
US9890147B2 (en) * | 2012-08-16 | 2018-02-13 | Bayer Pharma Aktiengesellshaft | 2,3-benzodiazepines |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU191698B (en) | 1984-07-27 | 1987-03-30 | Gyogyszerkutato Intezet | Process for producing new 1-aryl-5h-2beta-benzodiazepines |
HU219778B (en) | 1990-12-21 | 2001-07-30 | Gyógyszerkutató Intézet Közös Vállalat | Process for producing n-acyl-2,3-benzodiazepine derivatives, their acid additional salts and pharmaceutical compositions containing them and a grop of the compounds and pharmaceutical compositions containing them |
HU206719B (en) | 1990-12-21 | 1992-12-28 | Gyogyszerkutato Intezet | Process for producing 1-/4-acylamino-phenyl/-7,8-methylenedioxy-5h-2,3-benzodiazepine derivatives, acid addicional salts and pharmaceutical compositions containing them |
HU219777B (en) | 1993-07-02 | 2001-07-30 | Gyógyszerkutató Intézet Kft. | Optical active 1-(4-nitrophenyl)-4-methyl-7,8-methylen dioxi-3,4-dihydro-5h-2,3-benzodiazepine and process for producing it |
DE4428835A1 (en) | 1994-08-01 | 1996-02-08 | Schering Ag | New 3-substituted 3H-2,3-benzodiazepine derivatives, their production and use as medicines |
TR199501071A2 (en) | 1994-08-31 | 1996-06-21 | Lilly Co Eli | Stereoselective process for producing dihydro-2,3-benzodiazepine derivatives. |
NZ292417A (en) | 1994-08-31 | 1998-09-24 | Lilly Co Eli | 7h-1,3-dioxolo[4,5-h] [2,3]-benzodiazepine derivatives and medicaments |
DE19604920A1 (en) | 1996-02-01 | 1997-08-07 | Schering Ag | New 2,3-benzodiazepine derivatives, their production and use as medicines |
HU9600871D0 (en) | 1996-04-04 | 1996-05-28 | Gyogyszerkutato Intezet | New 2,3-benzodiazepine derivatives |
UA67749C2 (en) | 1997-08-12 | 2004-07-15 | Егіш Дьйодьсердьяр Рт. | 8-substituted-9h-1,3-dioxolo-[4,5-h][2,3]benzodiazepine being inhibitors of the ampa/kainite receptor |
SK1792000A3 (en) | 1997-08-12 | 2000-09-12 | Egyt Gyogyszervegyeszeti Gyar | 1,3-DIOXOLO(4,5-H)(2,3)BENZODIAZEPINE DERIVATIVES, PROCESS FORì (54) THE PREPARATION THEREOF, PHARMACEUTICAL COMPOSITION CO |
HU227128B1 (en) | 1999-07-07 | 2010-07-28 | Egyt Gyogyszervegyeszeti Gyar | New 2,3-benzodiazepine derivatives |
-
2003
- 2003-02-04 US US10/358,053 patent/US6858605B2/en not_active Expired - Fee Related
-
2004
- 2004-02-03 BR BR0407247-2A patent/BRPI0407247A/en not_active IP Right Cessation
- 2004-02-03 CN CNA200480003526XA patent/CN1747938A/en active Pending
- 2004-02-03 ZA ZA200505352A patent/ZA200505352B/en unknown
- 2004-02-03 AU AU2004208825A patent/AU2004208825A1/en not_active Abandoned
- 2004-02-03 JP JP2006503283A patent/JP2006516647A/en not_active Withdrawn
- 2004-02-03 WO PCT/US2004/003041 patent/WO2004069197A2/en active Application Filing
- 2004-02-03 RU RU2005127584/04A patent/RU2005127584A/en not_active Application Discontinuation
- 2004-02-03 CA CA002512616A patent/CA2512616A1/en not_active Abandoned
- 2004-02-03 EP EP04707792A patent/EP1592673A4/en not_active Withdrawn
- 2004-02-03 MX MXPA05008236A patent/MXPA05008236A/en not_active Application Discontinuation
- 2004-02-03 KR KR1020057013696A patent/KR20050105443A/en not_active Application Discontinuation
- 2004-02-03 US US10/771,847 patent/US20070027143A1/en not_active Abandoned
- 2004-02-04 AR ARP040100342A patent/AR043023A1/en not_active Application Discontinuation
- 2004-02-04 TW TW093102551A patent/TW200500347A/en unknown
-
2005
- 2005-09-01 NO NO20054067A patent/NO20054067L/en not_active Application Discontinuation
- 2005-09-02 HR HR20050765A patent/HRP20050765A2/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2004069197A2 (en) | 2004-08-19 |
NO20054067L (en) | 2005-10-25 |
US6858605B2 (en) | 2005-02-22 |
HRP20050765A2 (en) | 2006-10-31 |
TW200500347A (en) | 2005-01-01 |
ZA200505352B (en) | 2007-01-31 |
EP1592673A4 (en) | 2006-10-25 |
NO20054067D0 (en) | 2005-09-01 |
BRPI0407247A (en) | 2006-01-31 |
CA2512616A1 (en) | 2004-08-19 |
KR20050105443A (en) | 2005-11-04 |
MXPA05008236A (en) | 2006-01-17 |
CN1747938A (en) | 2006-03-15 |
RU2005127584A (en) | 2006-01-27 |
AU2004208825A1 (en) | 2004-08-19 |
EP1592673A2 (en) | 2005-11-09 |
JP2006516647A (en) | 2006-07-06 |
WO2004069197A3 (en) | 2005-08-18 |
AR043023A1 (en) | 2005-07-13 |
US20040152693A1 (en) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5511379B2 (en) | CGRP receptor antagonist | |
CA3007724C (en) | 2-phenyl-3-(piperazinomethyl)imidazo[1,2-a]pyridine derivatives as blockers of task-1 and task-2 channels, for the treatment of sleep-related breathing disorders | |
US8969565B2 (en) | Imidazo[1,2-b]pyridazine-based compounds, compositions comprising them, and methods of their use | |
DE60318697T2 (en) | TRIAZONE DERIVATIVES AS TACHYKININ RECEPTOR ANTAGONISTS | |
JP5584466B2 (en) | Prinone derivatives as HM74a receptor agonists | |
US7442693B2 (en) | Diazepine compounds as ligands of the melanocortin 1 and/or 4 receptors | |
US9168248B2 (en) | Spiro compounds useful as inhibitors of stearoyl-coenzyme A delta-9 desaturase | |
IL271117A (en) | Diazabicyclic substituted imidazopyrimidines and their use for the treatment of breathing disorders | |
AU2004251668A1 (en) | 5-membered heterocycle-based p-38 inhibitors | |
AU2010319879A1 (en) | Tricyclic heterocyclic compounds | |
JP2004517070A (en) | Benzodiazepine derivatives as GABAA receptor modulators | |
US7998954B2 (en) | Pyrimidodiazepinone derivative | |
AU2020221370A1 (en) | Substituted bicyclic compounds as farnesoid x receptor modulators | |
JP2001517666A (en) | Thiazole derivatives | |
US6858605B2 (en) | Substituted 2,3-benzodiazepine derivatives | |
US20080269202A1 (en) | Novel 2,3-benzodiazepine derivatives and their use as antipsychotic agents | |
US20220162201A1 (en) | Substituted bicyclic compounds as farnesoid x receptor modulators | |
RU2107686C1 (en) | Derivative of 3-oxadiazolyl-5,6,7,8-tetrahydro-1,6-naphtiridine and derivative of 5,6,7,8-tetrahydro-1,6-naphtiridine | |
US7022724B2 (en) | Cognition enhancing derivatives of isoxazole triazoloindane GABA-A α5 receptor subunit ligands | |
US7300949B2 (en) | Thiazolopyrazoles and methods of their use | |
US20050026937A1 (en) | 3,7-dihydro-purine-2,6-dione derivatives as CRF receptor ligands |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IVAX DRUG RESEARCH INSTITUTE, LTD., HUNGARY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ABRAHAM, GIZELLA;ANDRASI, FERENC;BERZSENYI, PAL;AND OTHERS;REEL/FRAME:015958/0007;SIGNING DATES FROM 20040518 TO 20040520 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |