US20070001810A1 - Tags, wireless communication systems, tag communication methods, and wireless communications methods - Google Patents
Tags, wireless communication systems, tag communication methods, and wireless communications methods Download PDFInfo
- Publication number
- US20070001810A1 US20070001810A1 US11/517,744 US51774406A US2007001810A1 US 20070001810 A1 US20070001810 A1 US 20070001810A1 US 51774406 A US51774406 A US 51774406A US 2007001810 A1 US2007001810 A1 US 2007001810A1
- Authority
- US
- United States
- Prior art keywords
- tag
- antennas
- signals
- wireless communication
- processing circuitry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
- H01Q1/2225—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/0723—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/073—Special arrangements for circuits, e.g. for protecting identification code in memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
- G06K19/07766—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
- G06K19/07767—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the first and second communication means being two different antennas types, e.g. dipole and coil type, or two antennas of the same kind but operating at different frequencies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
- G06K19/07773—Antenna details
- G06K19/07786—Antenna details the antenna being of the HF type, such as a dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/30—Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
Definitions
- This invention relates to tags, wireless communication systems, tag communication methods, and wireless communications methods.
- Wireless communications between remotely located communicating devices may be implemented using radio frequency (RF) technology.
- Radio frequency communications have continued to improve through recent decades. Relatively sophisticated components are commonplace enabling radio frequency communications at microwave frequencies in compact components and at reasonable cost.
- Radio frequency identification device systems have been developed to facilitate identification operations. For example, one device may be arranged to output and receive radio frequency communications and one or more remotely located device may be configured to communicate with the one device using the radio frequency communications. The remotely located device may be referred to as a tag, while the other device may be referred to as a reader.
- RFID Radio frequency identification device
- Some advantages of radio frequency communications including exemplary radio frequency identification device communications include abilities to communicate without contact or line-of-sight, at relatively fast speeds, and with robust communication channels.
- Radio frequency systems typically enable communications between devices located at increased distances compared with inductively coupled identification device systems. Even with radio frequency systems, it may be desired in some communication system applications to increase or maximize a communications range between the remotely located devices. Alternatively or additionally, it may be desired to reduce the transmitting power of the reader device in a particular application. Accordingly, it may be preferred to increase the sensitivity of a tag of the system to provide improved wireless communications between the remotely located devices.
- Some aspects of the present invention described below provide wireless communication devices having increased sensitivity.
- FIG. 1 is functional block diagram of an exemplary wireless communication system.
- FIG. 2 is a functional block diagram of components of an exemplary wireless communication device of the system.
- FIG. 3 is a map showing how FIGS. 3A and 3B are to be assembled. Once assembled, FIGS. 3A and 3B are a schematic representation of exemplary circuitry of the device of FIG. 2 .
- FIG. 4 is an illustrative representation of an exemplary circuit component layout of one side of the device of FIG. 2 .
- FIG. 5 is an illustrative representation of an exemplary circuit component layout of another side of the device of FIG. 2 .
- FIG. 6 is an elevational view of an embodiment of an exemplary wireless communication device in a case.
- FIG. 7 is a cross-sectional view of the device of FIG. 6 .
- a tag comprises a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.
- a wireless communication system comprises a reader configured to output a plurality of first wireless communication signals comprising data and a tag comprising a plurality of antennas configured to receive the first wireless communication signals from the reader, processing circuitry configured to receive the data of the first wireless communication signals and to control backscatter modulation of radio frequency energy to communicate a plurality of second wireless communication signals to the reader, and a battery configured to provide operational electrical energy to the processing circuitry.
- a tag communication method comprises receiving a plurality of first wireless communication signals from a reader using a plurality of antennas of a tag, providing a plurality of electrical signals within the tag and corresponding to the first wireless communication signals received using respective ones of the antennas, combining the electrical signals using the tag, processing the combined electrical signals using the tag, and backscatter modulating radio frequency energy using the tag to output a plurality of second wireless communication signals for communication to the reader.
- a wireless communication method comprises providing a reader, providing a tag comprising a plurality of antennas, outputting a plurality of first wireless communication signals comprising data using the reader, receiving the first wireless communication signals using the antennas of the tag, combining electrical signals corresponding to respective ones of the first wireless communication signals within the tag, and processing data of the combined electrical signals using processing circuitry of the tag after the combining.
- the exemplary system 10 includes a first wireless communication device 12 and a second wireless communication device 14 .
- the depicted system 10 including a single device 12 and a single device 14 is illustrative and additional communication devices are typically provided in other system configurations.
- First and second communication devices 12 , 14 are arranged to implement wireless communications 16 in the depicted exemplary embodiment.
- Possible wireless communications 16 include first wireless communication signals 18 communicated from first communication device 12 and second wireless communication signals 20 communicated from second communication device 14 .
- device 14 is a transponder and communicates signals 20 responsive to the reception of signals 18 .
- first communication device 12 may be implemented as a reader
- second communication device 14 may be implemented as a transponder, such as a tag.
- first communication device 12 may be implemented as a reader
- second communication device 14 may be implemented as a transponder, such as a tag.
- RFID radio frequency identification device
- Exemplary wireless communications 16 include electromagnetic communication signals, such as radio frequency signals. Wireless communications 16 may additionally include other signals, such as continuous wave signals, communicated for example using device 12 implemented as a reader to facilitate the communication of signals 20 comprising backscatter signals in one exemplary configuration described in further detail below.
- the exemplary configuration of device 14 includes a plurality of antennas 30 , conditioning circuitry 32 , processing circuitry 33 , wake-up circuitry 34 and a battery 36 .
- the illustrated arrangement of second communication device 14 including battery 36 may be implemented in a semi-passive configuration or active device configuration. Other configurations of device 14 are possible including more, less or alternative components.
- battery 36 is utilized to provide electrical energy to processing circuitry 33 and wake-up circuitry 34 to implement processing of wireless signals 18 while electromagnetic energy received within device 14 is utilized to generate wireless signals 20 .
- battery 36 is utilized to provide operational electrical energy to processing circuitry 33 and wake-up circuitry 34 .
- electrical energy of battery 36 may also be utilized to generate radio frequency energy for communication of signals 20 .
- Device 14 may also be implemented in a passive configuration.
- received electromagnetic energy is utilized to provide operational electrical energy to components of device 14 (e.g., via a capacitor), as well as provide radio frequency energy for communicating wireless signals 20 (e.g., backscatter signals).
- battery 36 may be omitted.
- Antennas 30 are arranged in but one aspect to receive electromagnetic energy including signals 18 and to output electromagnetic energy including signals 20 .
- Alternative configurations are possible.
- antennas 30 may be arranged for receive operations and additional antennas (not shown) may be provided to communicate signals 20 .
- detected waveforms from antennas 30 may be added together to provide device 14 having increased sensitivity for utilization, for example, in long range or low RF power shortrange applications.
- antennas 30 are tuned to at least substantially the same frequency band.
- one of antennas 30 may be substantially tuned to a first frequency band and the other of antennas 30 may be substantially tuned to a second frequency band different than the first frequency band.
- conditioning circuitry 32 is configured to provide electrical signals corresponding to wireless signals 18 received via antennas 30 .
- circuitry 32 may rectify received waveforms providing electrical signals.
- the conditioning circuitry 32 may additionally combine or add the electrical signals together, provide filtering operations to remove spurious signals, and extract data communicated from communication device 12 using signals 18 for application to processing circuitry 33 and/or wake-up circuitry 34 .
- processing circuitry 33 includes a microprocessor 38 and supporting circuitry. Different circuitry of the processor 38 and/or device 14 may be activated and/or utilized during different modes of operation of device 14 responsive to wake-up circuitry 34 as described below.
- An exemplary processor comprises a model number MSP430F1121 available from Texas Instruments, Inc. Other processor configurations are possible.
- Processing circuitry 33 is configured in at least one embodiment to receive and process data communicated from communication device 12 using signals 18 and to control communication of signals 20 to device 12 .
- Generation of wireless signals 20 responsive to control from processor 38 may be responsive to processing of data received in signals 18 by processor 38 or responsive to other stimulus (e.g., internally generated).
- Processor 38 of processing circuitry 33 may be configured to execute code instructions to process data, to control communication operations, and to control other operations of device 14 .
- Processing circuitry 33 may control outputting of wireless signals 20 using backscatter modulation according to one backscatter embodiment.
- Processor 38 may provide a modulation signal to alter electrical characteristics of one or more of antennas 30 (or one or more dedicated backscatter antenna) wherein electromagnetic energy is selectively reflected by the controlled antenna(s).
- the controlled antenna(s) reflect electromagnetic energy creating wireless signals 20 responsive to the modulated signal including data from processor 38 according to one exemplary backscatter implementation.
- Processing circuitry 33 may implement communications according to a radio frequency identification device communications protocol in one arrangement.
- Processing circuitry 33 arranged to implement RFID communications may be referred to as radio frequency identification device communication circuitry.
- circuitry 33 may be operable to control communication of wireless signals 20 responsive to processing of one or more wireless signal 18 .
- circuitry 33 may implement backscattered transponder communications in one exemplary RFID embodiment.
- the modulated signal may be encoded with data or information to be communicated from device 14 to device 12 .
- Exemplary information includes identification information, such as a unique serial number which identifies the communicating device 14 , or any other desired information to be communicated.
- communication devices 12 , 14 are configured to communicate wireless signals 18 , 20 using on/off key (OOK) modulation, such as a FM 0 or FM 1 encoding scheme.
- OOK on/off key
- Other modulation techniques or protocols may be utilized to communicate information between devices 12 , 14 .
- Processing of received signals 18 within device 14 may include extracting an identifier from the wireless signals 18 (e.g., an identifier of the communicating device 12 and/or device 14 ) and/or processing of commands within signals 18 . Responsive to the processing, device 14 may selectively output or communicate wireless signals 20 including identification information or other desired information requested by first communication device 12 , or otherwise desired to be communicated to device 12 or other recipient.
- Wake-up circuitry 34 is coupled with processing circuitry 33 and processor 38 and is configured to control one or more operation of circuitry 33 and/or processor 38 .
- wake-up circuitry 34 is arranged to control operations of device 14 including processing circuitry 33 and/or processor 38 in a plurality of operational modes. For example, it may be desired to conserve electrical energy of battery 36 in order to extend the useful, operational life of battery 36 . The operational modes have different power requirements and result in the utilization of electrical energy of battery 36 at different rates.
- Wake-up circuitry 34 controls operation of device 14 in the different modes of operation in one exemplary embodiment to conserve electrical energy of battery 36 . Details regarding operations of exemplary wake-up circuitry 34 are described in co-pending U.S.
- Battery 36 is arranged to provide electrical energy to components of device 14 including processing circuitry 33 . As mentioned above, battery 36 may be omitted in some configurations and other power sources, such as received radio frequency energy, may be utilized for at least some device operations.
- FIGS. 3A-3B an exemplary configuration of device 14 of FIG. 2 is shown.
- Antennas 30 are coupled with conditioning circuitry 32 .
- the illustrated exemplary conditioning circuitry 32 includes plural respective rectifying circuits 40 , stub circuits 42 , an adaptive reference circuit 44 and a comparator 46 .
- individual electrical signals corresponding to received wireless signals 18 may be combined within conditioning circuitry 32 .
- the combined electrical signals may be utilized to adjust a reference signal which is provided to comparator 46 which in turn is configured to provide data of signals 18 to processing circuitry 33 responsive to comparison operations.
- rectifying circuits 40 are coupled with respective antennas 30 and are configured to provide rectified signals corresponding to signals 18 received during receive operations.
- Circuits 40 are arranged as cascaded voltage doubling circuits in the exemplary configuration.
- the depicted circuits 40 individually comprise a plurality of diodes 41 configured as a full-wave rectifier circuit.
- Common nodes 48 , 49 are illustrated and are individually coupled with diodes of circuits 40 .
- Node 48 is coupled with cathodes of the diodes and node 49 is coupled with anodes of the diodes.
- node 48 is coupled with an input of comparator 46 .
- Rectified signals from circuits 40 are combined at common node 48 to provide a composite signal which is applied to comparator 46 .
- the composite signal includes demodulated data or information of signals 18 .
- Stub circuits 42 may be utilized to increase sensitivity and maximize efficiency and performance of device 14 .
- Exemplary stub circuits 42 are described in a U.S. Patent Application entitled “Antenna Matching Circuit,” having Ser. No. 09/797,539, and the teachings of which are incorporated herein by reference.
- Adaptive reference circuit 44 is configured to apply a reference signal to comparator 46 for use in comparison with the composite signal via comparator 46 .
- Adaptive reference circuit 44 varies a voltage of the reference signal responsive to the composite signal in the depicted embodiment. Utilization of adaptive reference circuit 44 enhances the sensitivity of device 18 .
- Comparator 46 is coupled with rectifying circuits 40 and adaptive reference circuit 44 and is configured to compare the composite signal with the reference signal and to output data (e.g., FM 0 data) for application to processing circuitry 33 and wake-up circuitry 34 .
- data e.g., FM 0 data
- FIGS. 4 and 5 an exemplary layout of circuit components of a primary side ( FIG. 4 ) and a secondary side ( FIG. 5 ) of one possible embodiment of device 14 is shown.
- the illustrated exemplary embodiment is configured for applications using wireless communications having a carrier frequency of approximately 2.44 GHz.
- the circuit components may be placed upon a base material 60 which may be implemented using a laminate having a designation RO4003 and which is available from the Microwave Materials Division of Rogers Corporation of Chandler, Ariz., USA.
- An exemplary circuit board trace pattern 61 is shown for electrically connecting the circuit components.
- Antennas 30 are shown arranged in an opposing relationship with respect to one another.
- the antennas 30 of the exemplary embodiment comprise meander lines individually arranged in a compressed dipole configuration.
- Antennas 30 are tuned to 2.44 GHz in the illustrated configuration and individually form a dipole antenna in conjunction with a ground plane ( FIG. 5 ).
- Stub circuits 42 are also shown arranged in an opposing relationship with respect to one another and provided adjacent to respective antennas 30 to increase the sensitivity of device 14 .
- Initial tests of communication devices 14 in a free-space configuration and having antennas 30 configured as shown in FIG. 4 provided a 10 dBm performance advantage compared with single antenna configurations. Other configurations of antennas 30 are possible.
- Ground plane 62 is illustrated formed upon the secondary side of base material 60 .
- Ground plane 62 may be formed using an exemplary circuit board trace pattern 63 .
- Battery 36 may be positioned adjacent to ground plane 62 to provide a ground reference for antennas 30 resulting in increased sensitivity.
- Device 14 a includes a case 70 about the exemplary structures of FIGS. 4 and 5 in one exemplary embodiment.
- the illustrated case 70 shows one possible configuration and other case configurations are possible. Alternatively, case 70 may be omitted.
- Case 70 is configured to protect circuitry of device 14 a in the depicted embodiment.
- case 70 is arranged to space a reflector 72 from circuitry of base material 60 of device 14 a .
- Reflector 72 comprises metal in the depicted embodiment.
- the illustrated exemplary case 70 also includes a plurality of walls 74 configured to space circuitry of pattern 63 from reflector 72 by a desired distance d 1 .
- Exemplary distances d 1 are equal to approximately 1 ⁇ 4, 1 ⁇ 8, 1/16 or 1/32 of the wavelength of the carrier frequency of communication signals 18 . Other distances may be provided in other configurations of case 70 .
- Case 70 may be arranged to not substantially absorb or reflect radio frequency energy and may comprise plastic or epoxy in some exemplary embodiments.
- Case 70 including walls 74 may be constructed using ultrasonic welding, injection molding, etc. Air gaps may be provided intermediate base material 60 and case 70 .
- Case 70 and reflector 72 permit coupling of communication device 14 a to another object (not shown) and placement of antennas 30 outwardly with respect to the reflector 72 and object (e.g., the end of case 70 having reflector 72 coupled with the object).
- the exemplary configuration of FIGS. 6-7 allows mounting of device 14 a upon an object surface with minimal effects of the surface material with respect to the radio frequency communications of the device 14 a (e.g., metal, water filled plastic or glass container, or other materials which may be comparatively overly reflective or absorptive of radio frequency energy).
- communication device 14 a including reflector 72 may provide enhanced communications while mounted to a wide range of materials and utilized in an increased number of applications.
- Reflector 72 provides 180 degree directionally in the illustrated exemplary configuration.
- Reflector 72 may be omitted in other configurations of case 70 .
- devices 14 a (or devices 14 ) may be used for example on the human body, in free-space, etc., providing 360 degree reading capability in both X and Y planes when used in conjunction with a configuration of communication device 12 having circularly polarized antennas.
- some configurations described herein include communication devices arranged with a plurality of antennas tuned to substantially the same frequency bands. This configuration may be used to provide a fail safe mode to protect against electrostatic discharge (ESD) events. For example, if one of the antennas sustains an electrostatic discharge event of sufficient voltage magnitude, internal circuitry of the device coupled with the antenna, such as rectifying circuits 40 , may be disabled. The communication device could continue to operate after the disabling event, although the communications range would most likely be reduced by half.
- ESD electrostatic discharge
- Other configurations utilize communication devices having antennas tuned to different, respective frequency bands permitting robust operation in a plurality of frequency bands.
- the sensitivity of the latter configuration of devices is reduced by about half in the respective frequency bands compared with configurations of devices wherein the antennas are tuned to substantially the same frequency band.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.
Description
- This invention relates to tags, wireless communication systems, tag communication methods, and wireless communications methods.
- Wireless communications between remotely located communicating devices may be implemented using radio frequency (RF) technology. Radio frequency communications have continued to improve through recent decades. Relatively sophisticated components are commonplace enabling radio frequency communications at microwave frequencies in compact components and at reasonable cost.
- Some exemplary applications utilizing radio frequency technology include identification applications including, for example, locating, identifying, and tracking of objects. Radio frequency identification device (RFID) systems have been developed to facilitate identification operations. For example, one device may be arranged to output and receive radio frequency communications and one or more remotely located device may be configured to communicate with the one device using the radio frequency communications. The remotely located device may be referred to as a tag, while the other device may be referred to as a reader. Some advantages of radio frequency communications including exemplary radio frequency identification device communications include abilities to communicate without contact or line-of-sight, at relatively fast speeds, and with robust communication channels.
- Radio frequency systems typically enable communications between devices located at increased distances compared with inductively coupled identification device systems. Even with radio frequency systems, it may be desired in some communication system applications to increase or maximize a communications range between the remotely located devices. Alternatively or additionally, it may be desired to reduce the transmitting power of the reader device in a particular application. Accordingly, it may be preferred to increase the sensitivity of a tag of the system to provide improved wireless communications between the remotely located devices.
- Some aspects of the present invention described below provide wireless communication devices having increased sensitivity.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
-
FIG. 1 is functional block diagram of an exemplary wireless communication system. -
FIG. 2 is a functional block diagram of components of an exemplary wireless communication device of the system. -
FIG. 3 is a map showing howFIGS. 3A and 3B are to be assembled. Once assembled,FIGS. 3A and 3B are a schematic representation of exemplary circuitry of the device ofFIG. 2 . -
FIG. 4 is an illustrative representation of an exemplary circuit component layout of one side of the device ofFIG. 2 . -
FIG. 5 is an illustrative representation of an exemplary circuit component layout of another side of the device ofFIG. 2 . -
FIG. 6 is an elevational view of an embodiment of an exemplary wireless communication device in a case. -
FIG. 7 is a cross-sectional view of the device ofFIG. 6 . - According to one aspect of the invention, a tag comprises a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.
- According to another aspect of the invention, a wireless communication system comprises a reader configured to output a plurality of first wireless communication signals comprising data and a tag comprising a plurality of antennas configured to receive the first wireless communication signals from the reader, processing circuitry configured to receive the data of the first wireless communication signals and to control backscatter modulation of radio frequency energy to communicate a plurality of second wireless communication signals to the reader, and a battery configured to provide operational electrical energy to the processing circuitry.
- According to another aspect of the invention, a tag communication method comprises receiving a plurality of first wireless communication signals from a reader using a plurality of antennas of a tag, providing a plurality of electrical signals within the tag and corresponding to the first wireless communication signals received using respective ones of the antennas, combining the electrical signals using the tag, processing the combined electrical signals using the tag, and backscatter modulating radio frequency energy using the tag to output a plurality of second wireless communication signals for communication to the reader.
- According to yet another aspect of the invention, a wireless communication method comprises providing a reader, providing a tag comprising a plurality of antennas, outputting a plurality of first wireless communication signals comprising data using the reader, receiving the first wireless communication signals using the antennas of the tag, combining electrical signals corresponding to respective ones of the first wireless communication signals within the tag, and processing data of the combined electrical signals using processing circuitry of the tag after the combining.
- Referring to
FIG. 1 , an exemplarywireless communications system 10 is depicted. Theexemplary system 10 includes a firstwireless communication device 12 and a secondwireless communication device 14. The depictedsystem 10 including asingle device 12 and asingle device 14 is illustrative and additional communication devices are typically provided in other system configurations. - First and
second communication devices wireless communications 16 in the depicted exemplary embodiment. Possiblewireless communications 16 include firstwireless communication signals 18 communicated fromfirst communication device 12 and secondwireless communication signals 20 communicated fromsecond communication device 14. In some arrangements,device 14 is a transponder andcommunicates signals 20 responsive to the reception ofsignals 18. - As mentioned above,
system 10 is provided to illustrate exemplary structural and method aspects of the present invention. In one possible implementation ofsystem 10,first communication device 12 may be implemented as a reader, andsecond communication device 14 may be implemented as a transponder, such as a tag. Although onlyindividual devices FIG. 1 , onedevice 12 may be configured to communicate with a plurality ofdevices 14.System 10 may be arranged as a radio frequency identification device (RFID) communications system anddevice 14 may be referred to as a RFID tag. - Exemplary
wireless communications 16 include electromagnetic communication signals, such as radio frequency signals.Wireless communications 16 may additionally include other signals, such as continuous wave signals, communicated forexample using device 12 implemented as a reader to facilitate the communication ofsignals 20 comprising backscatter signals in one exemplary configuration described in further detail below. - Referring to
FIG. 2 , an exemplary arrangement ofsecond communication device 14 is shown. The exemplary configuration ofdevice 14 includes a plurality ofantennas 30,conditioning circuitry 32,processing circuitry 33, wake-upcircuitry 34 and abattery 36. The illustrated arrangement ofsecond communication device 14 includingbattery 36 may be implemented in a semi-passive configuration or active device configuration. Other configurations ofdevice 14 are possible including more, less or alternative components. - In semi-passive implementations of
device 14,battery 36 is utilized to provide electrical energy to processingcircuitry 33 and wake-upcircuitry 34 to implement processing ofwireless signals 18 while electromagnetic energy received withindevice 14 is utilized to generatewireless signals 20. - For active implementations,
battery 36 is utilized to provide operational electrical energy to processingcircuitry 33 and wake-upcircuitry 34. In addition, electrical energy ofbattery 36 may also be utilized to generate radio frequency energy for communication ofsignals 20. -
Device 14 may also be implemented in a passive configuration. For passive implementations ofdevice 14, received electromagnetic energy is utilized to provide operational electrical energy to components of device 14 (e.g., via a capacitor), as well as provide radio frequency energy for communicating wireless signals 20 (e.g., backscatter signals). In such an implementation,battery 36 may be omitted. -
Antennas 30 are arranged in but one aspect to receive electromagneticenergy including signals 18 and to output electromagneticenergy including signals 20. Alternative configurations are possible. For example,antennas 30 may be arranged for receive operations and additional antennas (not shown) may be provided to communicatesignals 20. - As described further below, detected waveforms from
antennas 30 may be added together to providedevice 14 having increased sensitivity for utilization, for example, in long range or low RF power shortrange applications. In one example of such a configuration,antennas 30 are tuned to at least substantially the same frequency band. In other configurations, one ofantennas 30 may be substantially tuned to a first frequency band and the other ofantennas 30 may be substantially tuned to a second frequency band different than the first frequency band. - In one exemplary embodiment,
conditioning circuitry 32 is configured to provide electrical signals corresponding towireless signals 18 received viaantennas 30. For example,circuitry 32 may rectify received waveforms providing electrical signals. Theconditioning circuitry 32 may additionally combine or add the electrical signals together, provide filtering operations to remove spurious signals, and extract data communicated fromcommunication device 12 usingsignals 18 for application to processingcircuitry 33 and/or wake-up circuitry 34. - In one exemplary configuration,
processing circuitry 33 includes amicroprocessor 38 and supporting circuitry. Different circuitry of theprocessor 38 and/ordevice 14 may be activated and/or utilized during different modes of operation ofdevice 14 responsive to wake-upcircuitry 34 as described below. An exemplary processor comprises a model number MSP430F1121 available from Texas Instruments, Inc. Other processor configurations are possible. -
Processing circuitry 33 is configured in at least one embodiment to receive and process data communicated fromcommunication device 12 usingsignals 18 and to control communication ofsignals 20 todevice 12. Generation of wireless signals 20 responsive to control fromprocessor 38 may be responsive to processing of data received insignals 18 byprocessor 38 or responsive to other stimulus (e.g., internally generated).Processor 38 ofprocessing circuitry 33 may be configured to execute code instructions to process data, to control communication operations, and to control other operations ofdevice 14. -
Processing circuitry 33 may control outputting of wireless signals 20 using backscatter modulation according to one backscatter embodiment.Processor 38 may provide a modulation signal to alter electrical characteristics of one or more of antennas 30 (or one or more dedicated backscatter antenna) wherein electromagnetic energy is selectively reflected by the controlled antenna(s). The controlled antenna(s) reflect electromagnetic energy creatingwireless signals 20 responsive to the modulated signal including data fromprocessor 38 according to one exemplary backscatter implementation. -
Processing circuitry 33 may implement communications according to a radio frequency identification device communications protocol in one arrangement.Processing circuitry 33 arranged to implement RFID communications may be referred to as radio frequency identification device communication circuitry. As mentioned above,circuitry 33 may be operable to control communication of wireless signals 20 responsive to processing of one ormore wireless signal 18. For example,circuitry 33 may implement backscattered transponder communications in one exemplary RFID embodiment. - The modulated signal may be encoded with data or information to be communicated from
device 14 todevice 12. Exemplary information includes identification information, such as a unique serial number which identifies the communicatingdevice 14, or any other desired information to be communicated. According to one exemplary arrangement,communication devices wireless signals devices - Processing of received
signals 18 withindevice 14 may include extracting an identifier from the wireless signals 18 (e.g., an identifier of the communicatingdevice 12 and/or device 14) and/or processing of commands within signals 18. Responsive to the processing,device 14 may selectively output or communicatewireless signals 20 including identification information or other desired information requested byfirst communication device 12, or otherwise desired to be communicated todevice 12 or other recipient. - Wake-up
circuitry 34 is coupled withprocessing circuitry 33 andprocessor 38 and is configured to control one or more operation ofcircuitry 33 and/orprocessor 38. In at least one embodiment, wake-upcircuitry 34 is arranged to control operations ofdevice 14 includingprocessing circuitry 33 and/orprocessor 38 in a plurality of operational modes. For example, it may be desired to conserve electrical energy ofbattery 36 in order to extend the useful, operational life ofbattery 36. The operational modes have different power requirements and result in the utilization of electrical energy ofbattery 36 at different rates. Wake-upcircuitry 34 controls operation ofdevice 14 in the different modes of operation in one exemplary embodiment to conserve electrical energy ofbattery 36. Details regarding operations of exemplary wake-upcircuitry 34 are described in co-pending U.S. patent application Ser. No. 10/263,940, filed on Oct. 2, 2002, entitled “Wireless Communication Devices, Radio Frequency Identification Devices, Backscatter Communication Device Wake-Up Methods, Communication Device Wake-Up Methods And A Radio Frequency Identification Device Wake-Up Method”, listing Richard M. Pratt and Mike A. Hughes as inventors, the teachings of which are incorporated herein by reference. -
Battery 36 is arranged to provide electrical energy to components ofdevice 14 includingprocessing circuitry 33. As mentioned above,battery 36 may be omitted in some configurations and other power sources, such as received radio frequency energy, may be utilized for at least some device operations. - Referring to
FIGS. 3A-3B , an exemplary configuration ofdevice 14 ofFIG. 2 is shown.Antennas 30 are coupled withconditioning circuitry 32. The illustratedexemplary conditioning circuitry 32 includes pluralrespective rectifying circuits 40,stub circuits 42, anadaptive reference circuit 44 and a comparator 46. - In general, individual electrical signals corresponding to received
wireless signals 18 may be combined withinconditioning circuitry 32. The combined electrical signals may be utilized to adjust a reference signal which is provided to comparator 46 which in turn is configured to provide data ofsignals 18 to processingcircuitry 33 responsive to comparison operations. - For example, rectifying
circuits 40 are coupled withrespective antennas 30 and are configured to provide rectified signals corresponding tosignals 18 received during receive operations.Circuits 40 are arranged as cascaded voltage doubling circuits in the exemplary configuration. For example, the depictedcircuits 40 individually comprise a plurality ofdiodes 41 configured as a full-wave rectifier circuit.Common nodes circuits 40.Node 48 is coupled with cathodes of the diodes andnode 49 is coupled with anodes of the diodes. As shown,node 48 is coupled with an input of comparator 46. Rectified signals fromcircuits 40 are combined atcommon node 48 to provide a composite signal which is applied to comparator 46. The composite signal includes demodulated data or information ofsignals 18. -
Stub circuits 42 may be utilized to increase sensitivity and maximize efficiency and performance ofdevice 14.Exemplary stub circuits 42 are described in a U.S. Patent Application entitled “Antenna Matching Circuit,” having Ser. No. 09/797,539, and the teachings of which are incorporated herein by reference. -
Adaptive reference circuit 44 is configured to apply a reference signal to comparator 46 for use in comparison with the composite signal via comparator 46.Adaptive reference circuit 44 varies a voltage of the reference signal responsive to the composite signal in the depicted embodiment. Utilization ofadaptive reference circuit 44 enhances the sensitivity ofdevice 18. - Comparator 46 is coupled with rectifying
circuits 40 andadaptive reference circuit 44 and is configured to compare the composite signal with the reference signal and to output data (e.g., FM0 data) for application toprocessing circuitry 33 and wake-upcircuitry 34. - Referring to
FIGS. 4 and 5 , an exemplary layout of circuit components of a primary side (FIG. 4 ) and a secondary side (FIG. 5 ) of one possible embodiment ofdevice 14 is shown. The illustrated exemplary embodiment is configured for applications using wireless communications having a carrier frequency of approximately 2.44 GHz. - Referring to
FIG. 4 , the circuit components (corresponding to the exemplary components ofFIGS. 3A-3B ) may be placed upon abase material 60 which may be implemented using a laminate having a designation RO4003 and which is available from the Microwave Materials Division of Rogers Corporation of Chandler, Ariz., USA. An exemplary circuitboard trace pattern 61 is shown for electrically connecting the circuit components. -
Antennas 30 are shown arranged in an opposing relationship with respect to one another. Theantennas 30 of the exemplary embodiment comprise meander lines individually arranged in a compressed dipole configuration.Antennas 30 are tuned to 2.44 GHz in the illustrated configuration and individually form a dipole antenna in conjunction with a ground plane (FIG. 5 ).Stub circuits 42 are also shown arranged in an opposing relationship with respect to one another and provided adjacent torespective antennas 30 to increase the sensitivity ofdevice 14. Initial tests ofcommunication devices 14 in a free-space configuration and havingantennas 30 configured as shown inFIG. 4 provided a 10 dBm performance advantage compared with single antenna configurations. Other configurations ofantennas 30 are possible. - Referring to
FIG. 5 , aground plane 62 is illustrated formed upon the secondary side ofbase material 60.Ground plane 62 may be formed using an exemplary circuitboard trace pattern 63.Battery 36 may be positioned adjacent to groundplane 62 to provide a ground reference forantennas 30 resulting in increased sensitivity. - Referring to
FIGS. 6 and 7 , another embodiment of a wireless communication device is depicted with respect to reference 14 a. Device 14 a includes acase 70 about the exemplary structures ofFIGS. 4 and 5 in one exemplary embodiment. The illustratedcase 70 shows one possible configuration and other case configurations are possible. Alternatively,case 70 may be omitted. -
Case 70 is configured to protect circuitry of device 14 a in the depicted embodiment. In addition,case 70 is arranged to space areflector 72 from circuitry ofbase material 60 of device 14 a.Reflector 72 comprises metal in the depicted embodiment. The illustratedexemplary case 70 also includes a plurality ofwalls 74 configured to space circuitry ofpattern 63 fromreflector 72 by a desired distance d1. Exemplary distances d1 are equal to approximately ¼, ⅛, 1/16 or 1/32 of the wavelength of the carrier frequency of communication signals 18. Other distances may be provided in other configurations ofcase 70.Case 70 may be arranged to not substantially absorb or reflect radio frequency energy and may comprise plastic or epoxy in some exemplary embodiments.Case 70 includingwalls 74 may be constructed using ultrasonic welding, injection molding, etc. Air gaps may be providedintermediate base material 60 andcase 70. -
Case 70 andreflector 72 permit coupling of communication device 14 a to another object (not shown) and placement ofantennas 30 outwardly with respect to thereflector 72 and object (e.g., the end ofcase 70 havingreflector 72 coupled with the object). The exemplary configuration ofFIGS. 6-7 allows mounting of device 14 a upon an object surface with minimal effects of the surface material with respect to the radio frequency communications of the device 14 a (e.g., metal, water filled plastic or glass container, or other materials which may be comparatively overly reflective or absorptive of radio frequency energy). Accordingly, communication device 14 a includingreflector 72 may provide enhanced communications while mounted to a wide range of materials and utilized in an increased number of applications.Reflector 72 provides 180 degree directionally in the illustrated exemplary configuration. -
Reflector 72 may be omitted in other configurations ofcase 70. In such configurations, devices 14 a (or devices 14) may be used for example on the human body, in free-space, etc., providing 360 degree reading capability in both X and Y planes when used in conjunction with a configuration ofcommunication device 12 having circularly polarized antennas. - As mentioned above, some configurations described herein include communication devices arranged with a plurality of antennas tuned to substantially the same frequency bands. This configuration may be used to provide a fail safe mode to protect against electrostatic discharge (ESD) events. For example, if one of the antennas sustains an electrostatic discharge event of sufficient voltage magnitude, internal circuitry of the device coupled with the antenna, such as rectifying
circuits 40, may be disabled. The communication device could continue to operate after the disabling event, although the communications range would most likely be reduced by half. - Other configurations utilize communication devices having antennas tuned to different, respective frequency bands permitting robust operation in a plurality of frequency bands. The sensitivity of the latter configuration of devices is reduced by about half in the respective frequency bands compared with configurations of devices wherein the antennas are tuned to substantially the same frequency band.
- In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (21)
1. A tag comprising:
a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader;
a plurality of rectifying circuits coupled with respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal;
an adaptive reference circuit configured to vary a reference signal responsive to the composite signal;
a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison; and
processing circuitry configured to receive the data from the comparator and to process the data.
2. The tag of claim 1 wherein the antennas individually comprise a meander line.
3. The tag of claim 1 wherein the antennas individually comprise a compressed dipole antenna.
4. The tag of claim 3 further comprising a ground plane spaced from the antennas.
5. The tag of claim 4 further comprising a metal reflector spaced from the ground plane.
6. The tag of claim 1 wherein the rectifying circuits comprise cascaded voltage doubling circuits.
7. The tag of claim 1 wherein the rectifying circuits individually comprise a plurality of diodes configured as a full-wave rectifier circuit.
8. The tag of claim 1 wherein the rectifying circuits comprise a plurality of diodes and a cathode of a diode of one of the rectifying circuits and a cathode of a diode of another of the rectifying circuits are coupled via a common node.
9. The tag of claim 8 wherein the common node is coupled to an input of the comparator.
10. The tag of claim 1 wherein the processing circuitry is configured to control the tag to output a plurality of second wireless communication signals comprising backscatter signals for communication to the reader.
11. The tag of claim 10 wherein the processing circuitry is configured to control the communication of the second wireless communication signals to implement radio frequency identification device communications with the reader.
12. The tag of claim 10 wherein the processing circuitry is configured to control at least one of the antennas to output the second wireless communication signals.
13. The tag of claim 10 wherein the processing circuitry is configured to control the plurality of antennas to output the second wireless communication signals.
14. The tag of claim 1 further comprising a battery configured to provide electrical energy to the processing circuitry.
15. The tag of claim 1 wherein the antennas are tuned to substantially the same frequency band.
16. The tag of claim 1 wherein one of the antennas is substantially tuned to a first frequency band and another of the antennas is substantially tuned to a second frequency band different than the first frequency band.
17. A wireless communication system comprising:
a reader configured to output a plurality of first wireless communication signals comprising data; and
a tag comprising a plurality of antennas configured to receive the first wireless communication signals from the reader, processing circuitry configured to receive the data of the first wireless communication signals and to control backscatter modulation of radio frequency energy to communicate a plurality of second wireless communication signals to the reader, and a battery configured to provide operational electrical energy to the processing circuitry.
18. The system of claim 17 wherein the tag is configured to combine a plurality of electrical signals corresponding to the first wireless communication signals.
19. The system of claim 18 wherein the tag comprises a plurality of rectifying circuits coupled with respective ones of the antennas and configured to provide the electrical signals comprising rectified signals.
20. The system of claim 18 wherein the tag comprises an adaptive reference circuit configured to provide a reference signal responsive to the combined electrical signals, and a comparator configured to compare the combined electrical signals with the reference signal.
21-43. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/517,744 US20070001810A1 (en) | 2003-01-03 | 2006-09-08 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/336,086 US7106173B2 (en) | 2003-01-03 | 2003-01-03 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
US11/517,744 US20070001810A1 (en) | 2003-01-03 | 2006-09-08 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/336,086 Continuation US7106173B2 (en) | 2003-01-03 | 2003-01-03 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070001810A1 true US20070001810A1 (en) | 2007-01-04 |
Family
ID=32680922
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/336,086 Expired - Lifetime US7106173B2 (en) | 2003-01-03 | 2003-01-03 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
US11/517,744 Abandoned US20070001810A1 (en) | 2003-01-03 | 2006-09-08 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/336,086 Expired - Lifetime US7106173B2 (en) | 2003-01-03 | 2003-01-03 | Tags, wireless communication systems, tag communication methods, and wireless communications methods |
Country Status (3)
Country | Link |
---|---|
US (2) | US7106173B2 (en) |
AU (1) | AU2003297529A1 (en) |
WO (1) | WO2004063982A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080080549A1 (en) * | 2006-09-29 | 2008-04-03 | Ahmadreza Rofougaran | Method and System for Minimizing Power Consumption in a Communication System |
US20090033468A1 (en) * | 2007-08-02 | 2009-02-05 | Brother Kogyo Kabushiki Kaisha | RFID tag information communicating apparatus |
US20090117872A1 (en) * | 2007-11-05 | 2009-05-07 | Jorgenson Joel A | Passively powered element with multiple energy harvesting and communication channels |
US20090146776A1 (en) * | 2007-11-19 | 2009-06-11 | Felica Networks, Inc. | Communication system, information processing method, and program product |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7023342B2 (en) * | 2003-09-17 | 2006-04-04 | The United States Of America As Represented By The Secretary Of The Navy | Continuous wave (CW)—fixed multiple frequency triggered, radio frequency identification (RFID) tag and system and method employing same |
JP3982476B2 (en) * | 2003-10-01 | 2007-09-26 | ソニー株式会社 | Communications system |
US7667589B2 (en) | 2004-03-29 | 2010-02-23 | Impinj, Inc. | RFID tag uncoupling one of its antenna ports and methods |
US7423539B2 (en) | 2004-03-31 | 2008-09-09 | Impinj, Inc. | RFID tags combining signals received from multiple RF ports |
AU2005258784A1 (en) * | 2004-07-01 | 2006-01-12 | Powerid Ltd. | Battery-assisted backscatter RFID transponder |
US7677438B2 (en) * | 2005-06-29 | 2010-03-16 | Microsoft Corporation | Radio frequency certificates of authenticity |
US20080272890A1 (en) * | 2005-06-30 | 2008-11-06 | Zvi Nitzan | Battery-assisted backscatter RFID transponder |
US20090045916A1 (en) * | 2005-06-30 | 2009-02-19 | Zvi Nitzan | Battery-assisted backscatter RFID transponder |
US8237561B2 (en) * | 2005-07-19 | 2012-08-07 | Precision Dynamics Corporation | Semi-active RFID tag and related processes |
US7659851B2 (en) * | 2006-01-11 | 2010-02-09 | Microsoft Corporation | Radio frequency certificates of authenticity and related scanners |
DE102006006144A1 (en) * | 2006-02-10 | 2007-08-23 | Lumberg Connect Gmbh | dipole antenna |
US20080231438A1 (en) * | 2007-03-23 | 2008-09-25 | Diamond Arrow Communications L.L.C. | Cargo Container Monitoring System |
US11476566B2 (en) | 2009-03-09 | 2022-10-18 | Nucurrent, Inc. | Multi-layer-multi-turn structure for high efficiency wireless communication |
WO2010127509A1 (en) * | 2009-05-08 | 2010-11-11 | Confidex Ltd. | Rfid transponder |
WO2011063572A1 (en) * | 2009-11-30 | 2011-06-03 | 西安西谷微功率数据技术有限责任公司 | Active electronic tag, application system and method thereof |
JP2011160236A (en) * | 2010-02-01 | 2011-08-18 | Asahi Glass Co Ltd | Glass antenna and window glass plate for vehicle having the same |
CN102956955A (en) * | 2011-08-22 | 2013-03-06 | 华硕电脑股份有限公司 | Portable electronic device |
CN104516381B (en) * | 2013-09-26 | 2016-04-27 | 上海华虹集成电路有限责任公司 | Regulator rectifier circuit in radio-frequency (RF) identification |
KR102102706B1 (en) | 2013-10-01 | 2020-05-29 | 삼성전자주식회사 | Receiver of NFC device and NFC device |
US11023692B2 (en) * | 2017-09-07 | 2021-06-01 | Teletracking Technologies, Inc. | Enhanced identification wristband |
JP7457519B2 (en) * | 2020-02-18 | 2024-03-28 | 株式会社ブリヂストン | aircraft tires |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234013A (en) * | 1992-07-07 | 1993-08-10 | Stant Manufacturing Inc. | Tank venting control assembly |
US5448110A (en) * | 1992-06-17 | 1995-09-05 | Micron Communications, Inc. | Enclosed transceiver |
US5572226A (en) * | 1992-05-15 | 1996-11-05 | Micron Technology, Inc. | Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels |
US5621913A (en) * | 1992-05-15 | 1997-04-15 | Micron Technology, Inc. | System with chip to chip communication |
US5776278A (en) * | 1992-06-17 | 1998-07-07 | Micron Communications, Inc. | Method of manufacturing an enclosed transceiver |
US5779839A (en) * | 1992-06-17 | 1998-07-14 | Micron Communications, Inc. | Method of manufacturing an enclosed transceiver |
US5787174A (en) * | 1992-06-17 | 1998-07-28 | Micron Technology, Inc. | Remote identification of integrated circuit |
US5889489A (en) * | 1995-08-31 | 1999-03-30 | International Business Machines Corporation | Diode receiver for radio frequency transponder |
US6045652A (en) * | 1992-06-17 | 2000-04-04 | Micron Communications, Inc. | Method of manufacturing an enclosed transceiver |
US6094138A (en) * | 1998-02-27 | 2000-07-25 | Motorola, Inc. | Integrated circuit assembly and method of assembly |
US6118379A (en) * | 1997-12-31 | 2000-09-12 | Intermec Ip Corp. | Radio frequency identification transponder having a spiral antenna |
US6144916A (en) * | 1992-05-15 | 2000-11-07 | Micron Communications, Inc. | Itinerary monitoring system for storing a plurality of itinerary data points |
US6150986A (en) * | 1995-08-16 | 2000-11-21 | Alfa Laval Agri Ab | Antenna system comprising driver circuits for transponder |
US6177872B1 (en) * | 1998-03-13 | 2001-01-23 | Intermec Ip Corp. | Distributed impedance matching circuit for high reflection coefficient load |
US6215402B1 (en) * | 1998-03-13 | 2001-04-10 | Intermec Ip Corp. | Radio frequency identification transponder employing patch antenna |
US6239703B1 (en) * | 1998-01-02 | 2001-05-29 | Intermec Ip Corp | Communication pad structure for semiconductor devices |
US6243013B1 (en) * | 1999-01-08 | 2001-06-05 | Intermec Ip Corp. | Cascaded DC voltages of multiple antenna RF tag front-end circuits |
US6281794B1 (en) * | 1998-01-02 | 2001-08-28 | Intermec Ip Corp. | Radio frequency transponder with improved read distance |
US6320509B1 (en) * | 1998-03-16 | 2001-11-20 | Intermec Ip Corp. | Radio frequency identification transponder having a high gain antenna configuration |
US6329915B1 (en) * | 1997-12-31 | 2001-12-11 | Intermec Ip Corp | RF Tag having high dielectric constant material |
US6400274B1 (en) * | 1995-08-31 | 2002-06-04 | Intermec Ip Corp. | High-performance mobile power antennas |
US20020067267A1 (en) * | 2000-03-15 | 2002-06-06 | Richard Kirkham | Package identification system |
US6424315B1 (en) * | 2000-08-02 | 2002-07-23 | Amkor Technology, Inc. | Semiconductor chip having a radio-frequency identification transceiver |
US20020118108A1 (en) * | 2001-02-28 | 2002-08-29 | Carrender Curtis Lee | Antenna matching circuit |
US6597316B2 (en) * | 2001-09-17 | 2003-07-22 | The Mitre Corporation | Spatial null steering microstrip antenna array |
US20040198233A1 (en) * | 2002-10-02 | 2004-10-07 | Pratt Richard M. | Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method |
US6914528B2 (en) * | 2002-10-02 | 2005-07-05 | Battelle Memorial Institute | Wireless communication systems, radio frequency identification devices, methods of enhancing a communications range of a radio frequency identification device, and wireless communication methods |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62275304A (en) * | 1986-05-22 | 1987-11-30 | Pioneer Electronic Corp | Magnetic recording and reproducing device |
DE4341779C2 (en) * | 1993-12-08 | 1995-12-07 | Knapp Juergen Michael | Lifting column for a lifting and lowering support element, in particular for a storage area of a patient bed or for industrial applications and a patient bed with such a lifting column |
JP3134724B2 (en) * | 1995-02-15 | 2001-02-13 | トヨタ自動車株式会社 | Valve drive for internal combustion engine |
US5858813A (en) * | 1996-05-10 | 1999-01-12 | Cabot Corporation | Chemical mechanical polishing slurry for metal layers and films |
US6144316A (en) * | 1997-12-01 | 2000-11-07 | Halliburton Energy Services, Inc. | Electromagnetic and acoustic repeater and method for use of same |
US6150926A (en) * | 1998-03-05 | 2000-11-21 | Flick; Kenneth E. | Vehicle security system including indicator mounted to window antenna unit and related methods |
JP2000075240A (en) * | 1998-08-26 | 2000-03-14 | Mr System Kenkyusho:Kk | Composite display device |
US6234013B1 (en) | 1999-11-02 | 2001-05-22 | Bobby A. Galloway | Solar-plasma meter |
US6220316B1 (en) * | 2000-02-23 | 2001-04-24 | Ching-Chi Lin | Repositionable supporting apparatus for a workpiece feeding device |
WO2001071848A1 (en) * | 2000-03-21 | 2001-09-27 | Mikoh Corporation | A tamper indicating radio frequency identification label |
ATE346347T1 (en) | 2000-03-22 | 2006-12-15 | Infineon Technologies Ag | DEVICE FOR RECEIVING DIGITAL DATA FROM A CONTACTLESS TRANSMITTER |
-
2003
- 2003-01-03 US US10/336,086 patent/US7106173B2/en not_active Expired - Lifetime
- 2003-12-24 WO PCT/US2003/041246 patent/WO2004063982A1/en not_active Application Discontinuation
- 2003-12-24 AU AU2003297529A patent/AU2003297529A1/en not_active Abandoned
-
2006
- 2006-09-08 US US11/517,744 patent/US20070001810A1/en not_active Abandoned
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5719586A (en) * | 1992-05-15 | 1998-02-17 | Micron Communications, Inc. | Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels |
US6144916A (en) * | 1992-05-15 | 2000-11-07 | Micron Communications, Inc. | Itinerary monitoring system for storing a plurality of itinerary data points |
US5572226A (en) * | 1992-05-15 | 1996-11-05 | Micron Technology, Inc. | Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels |
US5621913A (en) * | 1992-05-15 | 1997-04-15 | Micron Technology, Inc. | System with chip to chip communication |
US5779839A (en) * | 1992-06-17 | 1998-07-14 | Micron Communications, Inc. | Method of manufacturing an enclosed transceiver |
US5776278A (en) * | 1992-06-17 | 1998-07-07 | Micron Communications, Inc. | Method of manufacturing an enclosed transceiver |
US6220516B1 (en) * | 1992-06-17 | 2001-04-24 | Micron Technology, Inc. | Method of manufacturing an enclosed transceiver |
US5787174A (en) * | 1992-06-17 | 1998-07-28 | Micron Technology, Inc. | Remote identification of integrated circuit |
US6045652A (en) * | 1992-06-17 | 2000-04-04 | Micron Communications, Inc. | Method of manufacturing an enclosed transceiver |
US6078791A (en) * | 1992-06-17 | 2000-06-20 | Micron Communications, Inc. | Radio frequency identification transceiver and antenna |
US6375780B1 (en) * | 1992-06-17 | 2002-04-23 | Micron Technology, Inc. | Method of manufacturing an enclosed transceiver |
US20010007335A1 (en) * | 1992-06-17 | 2001-07-12 | Tuttle Mark E. | Method of manufacturing an enclosed transceiver |
US5448110A (en) * | 1992-06-17 | 1995-09-05 | Micron Communications, Inc. | Enclosed transceiver |
US5234013A (en) * | 1992-07-07 | 1993-08-10 | Stant Manufacturing Inc. | Tank venting control assembly |
US6150986A (en) * | 1995-08-16 | 2000-11-21 | Alfa Laval Agri Ab | Antenna system comprising driver circuits for transponder |
US5889489A (en) * | 1995-08-31 | 1999-03-30 | International Business Machines Corporation | Diode receiver for radio frequency transponder |
US6400274B1 (en) * | 1995-08-31 | 2002-06-04 | Intermec Ip Corp. | High-performance mobile power antennas |
US6329915B1 (en) * | 1997-12-31 | 2001-12-11 | Intermec Ip Corp | RF Tag having high dielectric constant material |
US6118379A (en) * | 1997-12-31 | 2000-09-12 | Intermec Ip Corp. | Radio frequency identification transponder having a spiral antenna |
US6281794B1 (en) * | 1998-01-02 | 2001-08-28 | Intermec Ip Corp. | Radio frequency transponder with improved read distance |
US6239703B1 (en) * | 1998-01-02 | 2001-05-29 | Intermec Ip Corp | Communication pad structure for semiconductor devices |
US6094138A (en) * | 1998-02-27 | 2000-07-25 | Motorola, Inc. | Integrated circuit assembly and method of assembly |
US6215402B1 (en) * | 1998-03-13 | 2001-04-10 | Intermec Ip Corp. | Radio frequency identification transponder employing patch antenna |
US6177872B1 (en) * | 1998-03-13 | 2001-01-23 | Intermec Ip Corp. | Distributed impedance matching circuit for high reflection coefficient load |
US6320509B1 (en) * | 1998-03-16 | 2001-11-20 | Intermec Ip Corp. | Radio frequency identification transponder having a high gain antenna configuration |
US6243013B1 (en) * | 1999-01-08 | 2001-06-05 | Intermec Ip Corp. | Cascaded DC voltages of multiple antenna RF tag front-end circuits |
US20020067267A1 (en) * | 2000-03-15 | 2002-06-06 | Richard Kirkham | Package identification system |
US6424315B1 (en) * | 2000-08-02 | 2002-07-23 | Amkor Technology, Inc. | Semiconductor chip having a radio-frequency identification transceiver |
US20020118108A1 (en) * | 2001-02-28 | 2002-08-29 | Carrender Curtis Lee | Antenna matching circuit |
US6597316B2 (en) * | 2001-09-17 | 2003-07-22 | The Mitre Corporation | Spatial null steering microstrip antenna array |
US20040198233A1 (en) * | 2002-10-02 | 2004-10-07 | Pratt Richard M. | Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method |
US6914528B2 (en) * | 2002-10-02 | 2005-07-05 | Battelle Memorial Institute | Wireless communication systems, radio frequency identification devices, methods of enhancing a communications range of a radio frequency identification device, and wireless communication methods |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080080549A1 (en) * | 2006-09-29 | 2008-04-03 | Ahmadreza Rofougaran | Method and System for Minimizing Power Consumption in a Communication System |
US8031651B2 (en) * | 2006-09-29 | 2011-10-04 | Broadcom Corporation | Method and system for minimizing power consumption in a communication system |
US8238285B2 (en) | 2006-09-29 | 2012-08-07 | Broadcom Corporation | Method and system for minimizing power consumption in a communication system |
US20090033468A1 (en) * | 2007-08-02 | 2009-02-05 | Brother Kogyo Kabushiki Kaisha | RFID tag information communicating apparatus |
US8169301B2 (en) * | 2007-08-02 | 2012-05-01 | Brother Kogyo Kabushiki Kaisha | RFID tag information communicating apparatus |
US20090117872A1 (en) * | 2007-11-05 | 2009-05-07 | Jorgenson Joel A | Passively powered element with multiple energy harvesting and communication channels |
US20090146776A1 (en) * | 2007-11-19 | 2009-06-11 | Felica Networks, Inc. | Communication system, information processing method, and program product |
US8604902B2 (en) * | 2007-11-19 | 2013-12-10 | Felica Networks, Inc. | Communication system, information processing method, and program product |
Also Published As
Publication number | Publication date |
---|---|
US7106173B2 (en) | 2006-09-12 |
WO2004063982A1 (en) | 2004-07-29 |
AU2003297529A1 (en) | 2004-08-10 |
US20040132406A1 (en) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070001810A1 (en) | Tags, wireless communication systems, tag communication methods, and wireless communications methods | |
US9893564B2 (en) | R.F. energy collection circuit for wireless devices | |
US6366260B1 (en) | RFID tag employing hollowed monopole antenna | |
US20040217865A1 (en) | RFID tag | |
US6914528B2 (en) | Wireless communication systems, radio frequency identification devices, methods of enhancing a communications range of a radio frequency identification device, and wireless communication methods | |
US7710273B2 (en) | Remote communication devices, radio frequency identification devices, wireless communication systems, wireless communication methods, radio frequency identification device communication methods, and methods of forming a remote communication device | |
US6570490B1 (en) | Contactless IC card | |
US20050093761A1 (en) | RFID tire belt antenna system and method | |
US8292175B2 (en) | Tag device, reader device, and RFID system | |
JP3063513B2 (en) | Microwave detection feed circuit | |
US20050024187A1 (en) | System and method for optimizing power usage in a radio frequency communication device | |
JP2001076111A (en) | Resonance circuit | |
WO2007010675A1 (en) | Antenna and radio tag | |
KR20050005427A (en) | Rectifier utilizing a grounded antenna | |
US7511621B1 (en) | High-performance mobile power antennas | |
KR20140094309A (en) | Hf/uhf rfid dual-band tag antenna | |
CN103810465A (en) | System and method for tracking | |
JPH11261456A (en) | Non-contact ic card | |
EP2171637B1 (en) | Radio frequency identification system provided for access control | |
EP2918020A2 (en) | Rfid communication system | |
JP2006185050A (en) | Information storage medium | |
JPH0683551B2 (en) | Wireless receiver | |
JP2003124841A (en) | System and device for radio communication | |
JP2007034385A (en) | Radio tag device | |
CN117952141B (en) | Carrier power supply type RFID tag circuit and data receiving and transmitting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |