US20060293946A1 - Method for evaluating a business using experiential data - Google Patents

Method for evaluating a business using experiential data Download PDF

Info

Publication number
US20060293946A1
US20060293946A1 US11/442,149 US44214906A US2006293946A1 US 20060293946 A1 US20060293946 A1 US 20060293946A1 US 44214906 A US44214906 A US 44214906A US 2006293946 A1 US2006293946 A1 US 2006293946A1
Authority
US
United States
Prior art keywords
activity
business
function
risk
metrics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/442,149
Inventor
Jill Eicher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blake Morrow Partners LLC
Original Assignee
Blake Morrow Partners LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blake Morrow Partners LLC filed Critical Blake Morrow Partners LLC
Priority to US11/442,149 priority Critical patent/US20060293946A1/en
Assigned to BLAKE MORROW PARTNERS LLC reassignment BLAKE MORROW PARTNERS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EICHER, JILL
Publication of US20060293946A1 publication Critical patent/US20060293946A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0203Market surveys; Market polls
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Asset management; Financial planning or analysis

Definitions

  • the present invention relates to a method of measuring enterprise risk, performance, and potential, and more particularly, measuring the enterprise risk, performance, and potential of financial services businesses.
  • Businesses generally strive to improve performance and lower risk with the goal of enhancing business potential.
  • Financial services businesses typically have more data, information and systems to measure the performance and risk of their investment portfolios than they have to manage the businesses supporting those portfolios.
  • financial services businesses have scant and fragmented information about their business operations, particularly information related to enterprise risk, performance and potential.
  • the present invention provides a method for evaluating a financial services business, such as an asset management business or hedge fund, by using experiential data, i.e., data produced in the course of operating the business, to measure business risk, performance, and potential.
  • the business is broken down into functions, each function being carried out through a number of activities.
  • Each activity produces experiential data, i.e., data produced by performing the activity.
  • Experiential data includes both qualitative and quantitative information compiled from operating systems, databases, interviews, paper-based files and financial records. Activities and functions are measured individually and then collectively to understand the business as a whole.
  • KBIs Key Business Indicators
  • OPBs Operational Performance Benchmarks
  • enterprise risk business drivers
  • consistency potential business rating for each function, activity, and the business (or enterprise) as a whole.
  • the inventive method measures the potential of a financial services business to perform consistently over time by assessing experiential data extracted from the full spectrum of the business' functions and activities.
  • the extracted data is fed into a series of metrics and algorithms that measure how well a business is performing from an operational (i.e., non-investment) standpoint.
  • the information generated by the metrics is then compared to industry best practices and ultimately combined, or rolled up, to assess enterprise risk, performance, and potential.
  • Two levels of analysis and perspective are provided, one at the functional level of the business (i.e., how well are the individual business functions performing) and the other, at the enterprise level (i.e., rolling up the business functions to understand the business as a whole).
  • the present invention provides 1) an understanding of the interdependency of the individual business functions and their impact on the business as a whole, and 2) the ability to quantify the effect and impact those interdependent relationships have on the business as a whole.
  • the present invention may be applied to examine specific aspects of a financial services business, and thus hone in on a particular area of concern.
  • the inventive method can be used to measure:
  • the method enables financial services businesses to utilize their own operational information to more effectively manage their businesses. Instead of having to rely on anecdotal information, they are able to manage their businesses as effectively as they manage their portfolios.
  • the method also allows financial services businesses to provide quantitative information about their businesses to the financial institutions employing them as a supplement to traditional investment results and qualitative survey information.
  • the method enables financial institutions to quantitatively evaluate the businesses of the asset managers they employ or are considering for employment. Further, financial institutions can understand an investment strategy within the context of the business supporting it rather than looking at the strategy in isolation.
  • the method comprises the steps of selecting a function; collecting data relevant to the function; selecting an activity; selecting a benchmark; applying a corresponding set of metrics to the data to produce metric values; determining a key business indicator (KBI) as a function of the activity and the benchmark; calculating a KBI value as a function of the metric values; comparing the KBI to a best practice indicator; and, determining a performance rating as a function of the KBI value.
  • KBI key business indicator
  • FIG. 1 illustrates the broad steps of a method in accordance with an embodiment of the present invention
  • FIG. 2 illustrates an exemplary set of metrics, KBls and their corresponding Business Drivers for the trade capture process in accordance with the method of the present invention
  • FIG. 3 is a flow chart illustrating the steps of a method in accordance with an embodiment of the present invention.
  • FIG. 4 is an exemplary set of experiential data for a trade capture activity in accordance with an embodiment of the present invention.
  • FIG. 5 is a mapped workflow of the trade capture process according to an embodiment of the present invention.
  • FIG. 6 is a comparison of the mapped workflow from FIG. 5 with industry best practices according to an embodiment of the present invention.
  • the present invention provides a method whereby the experiential data of a business is used to measure enterprise risk, performance, and the potential of the business to perform consistently over time.
  • the method uses the experiential data of the business to fuel specific, predetermined mathematical functions, or metrics and algorithms, to measure specific drivers of the business being evaluated.
  • a set of drivers may include: productivity, scalability, profitability, alpha generation and operational risk; and ultimately the potential of the business.
  • the first step is gathering data.
  • the data is compiled from the business processes supporting the functions and activities of the business being evaluated. Businesses are often thought of in terms of departments, however, the inventive method organizes a business by function and activity for greater specificity. Within each function is a sub-set of activities that make up the function. An exemplary set of functions and their associated activities is listed in Table 1. TABLE 1 Business Organization by Function and Activity.
  • FIG. 1 illustrates the major, broad steps and information involved with the inventive method, working from the bottom of the diagram to the top.
  • the left column 100 represents a broad description of the general steps for the present invention.
  • the middle column 200 represents the data associated with each step at its respective horizontal position. For example the Extraction step in the left column 100 is on the same line as “Summary Data,” “Workflows,” “Operating Data,” and Transaction Data.” The step of Extraction produces the data groups listed next to it.
  • the column 300 on the right is a list of the libraries, or databases in which information is organized and maintained.
  • the first step is to collect source (or experiential) data at the bottom of the left column 100 .
  • the areas of a business generating the source data are listed next to “Source Data”. Above “Source Data” is “Extraction” with the extraction results listed next to it.
  • Metrics and algorithms are applied to source data 200 to measure the performance of the functions and activities supporting the business in the “Business Functions” step. These measures, or criteria, may be expressed as key business indicators (KBIs), operational performance benchmarks (OPBs), enterprise risk, business drivers (productivity, scalability, profitability, alpha generation and operational risk) and consistency potential.
  • KBIs key business indicators
  • OOBs operational performance benchmarks
  • enterprise risk business drivers (productivity, scalability, profitability, alpha generation and operational risk) and consistency potential.
  • the selected measures, or criteria produce an evaluation and rating for each function, activity, and the business (or enterprise) as a whole. This analysis is done at the enterprise level (business as a whole) in “Enterprise Perspective.” Risk is assessed in “Risk Overlay,” and a measure of consistency potential is produced in “Outlook.”
  • the Research Function of Table 1 includes two activities, Idea Generation and Implementation Strategy.
  • the Research function generates ideas and formulates strategies for implementing those ideas.
  • the Research function's work process is scrutinized and subjected to specific statistical and mathematical analysis represented by a set of metrics designed to evaluate the specific activities of the Research function.
  • a set of metrics for the Research function measures the productivity of the activities. For example, to measure the productivity of “Idea Generation,” the frequency with which new ideas are generated, the quality of the ideas, and whether they are generated on a timely basis, would all be considered. Each of these criteria can be measured by metrics. Metrics may also be a certain statistical analysis, for example, the percentage of ideas generated that increase investment results. The metrics for “Implementation Strategy” might then include the frequency with which strategies are formulated, the quality of the strategy, and whether they are implemented on a timely basis.
  • These metrics establish a baseline of current operational performance that comprises the fundamental building blocks to understanding how well the business is performing.
  • the metrics are designed to gauge how well the people, processes and technology involved in the activities within the Research function are performing.
  • the business owner can evaluate the effectiveness of the activities over time as well as measure the impact of business dynamics on the activities.
  • KBIs Key Business Indicators
  • the activities within the function are weighted by their importance to the function. That is to say, the Research function KBI score is calculated by averaging the weighted KBIs of Idea Generation and Implementation Strategy, the two activities that comprise the Research function.
  • each of the activity KBIs is calculated in the same way as the example set out above for the Research Function.
  • the shift to the enterprise level is accomplished by first aggregating the metrics and KBIs by business driver.
  • each metric and KBI is linked at the outset to one of four business drivers: productivity, scalability, profitability or alpha generation.
  • productivity productivity
  • scalability profitability
  • profitability profitability or alpha generation.
  • FIG. 2 provides more examples of activities metrics and their corresponding business drivers as will be discussed below.
  • the workflows of the activities are compared to industry best practices.
  • industry best practices for Idea Generation include: 1) documenting the inspiration source for the new idea; 2) documenting the source data used in formulating the new idea; and 3) dating, documenting and signing all the steps in the formulating of the new idea. Enhancements to, or deviations from, industry best practices are scored. In this way, the inventive method provides a quantitative framework to easily identify and quantify performance contributors or detractors.
  • the functions are weighted by their importance to the business. These weightings are determined by a proprietary series of algorithms designed to account for the interdependence of the functions.
  • OPBs Operational Performance Benchmarks
  • the risk assessment is based on a number of factors, typically those that create a risk. For example, people, processes, technology and external factors. These risk factors are detailed in Table 2. TABLE 2 Risk Factors.
  • Risk Factors Drivers People Appropriateness of skills & experience Adequacy of resources Stability of staff Commitment to ethics Level of oversight Processes Effectiveness of control checks Prevalence of manual processes Awareness of risk exposures Accuracy & timeliness of data access, handling, processing & delivery Separation of responsibilities, control checks & oversight Clarity of policies and procedures Technology Reliability Redundancy Security Contingency External Factors Awareness of external factors (physical environment, counterparty, regulatory) Preparedness to respond to external factors
  • Risk assessment is accomplished by applying a risk assessment algorithm to the collective data to measure the operational risk of the activities, functions and the business as a whole.
  • the KBIs and OPBs are then adjusted and weighted for operational risk resulting in final measures of productivity, scalability, profitability, alpha generation and operational risk for the business, or enterprise, as a whole.
  • the method culminates in computing a measure of the consistency potential of the business by factoring the pre-selected business drivers together, the process of which is described below.
  • productivity productivity, profitability, scalability, alpha generation and operational risk.
  • FIG. 3 is a flowchart illustrating the method according to a preferred embodiment of the present invention.
  • inventive method is applied to the Trade Capture activity of the Operations function to provide a detailed example.
  • the first step is to collect relevant data (step 302 ).
  • the relevant data includes the experiential data (data from experience) produced by the trade capture activity. This data may be obtained from interviews, operating systems, databases, paper-based files and financial records.
  • the experiential data includes operational data 400 , processes (mapped workflows) 410 , people (census information) 420 and technology systems 430 .
  • a specific set of metrics is applied to the collected operating data (step 304 ). These metrics translate the raw operating data into measures that correspond to a specific driver.
  • a specific driver For this example, there are four business drivers: productivity, scalability, profitability, and alpha generation. The first three are familiar in the business world and self-explanatory.
  • the fourth, Alpha Generation is the contribution by the people of the financial services business in excess of industry standards.
  • the alpha generated by the portfolio managers of the financial services business could be defined as their contribution to financial growth or profit realized, in excess of market appreciation. So, if the relevant market grew by 10% and the financial services business realized a profit of 15%, its' alpha contribution was 5%, i.e., the excess realized profit over market appreciation.
  • the inventive method uses five business drivers as the criteria by which the method measures a financial services organization. They are: productivity, scalability, profitability, alpha generation and operational risk. Only the first four, productivity, scalability, profitability, and alpha generation are linked to the metrics and the Key Business Indicators (KBIs). Operational Risk is applied later in the method according to an overlay algorithm.
  • KBIs Key Business Indicators
  • each activity there is a specific, corresponding set of metrics to be applied to the activity's relevant experiential data. How many metrics and the ones used will depend on the activity being evaluated. Each activity is measured by a set of metrics linked to a business driver: productivity, scalability, profitability and alpha generation.
  • a KBI measuring trade capture productivity is calculated using simple math (step 306 ).
  • the KBI is a predetermined measure of how well the particular activity is being performed.
  • the KBI like the set of metrics, is different for every activity and for each business driver. Thus, there are four different KBIs for the Trade Capture activity, one for each driver.
  • An exemplary set of KBIs for the Trade Capture Activity is listed in Table 4. TABLE 4 Trade Capture Activity KBIs.
  • Business Driver KBI Productivity Percent of trades captured on trade date, electronically and error-free. Profitability Percent of maximum profitability target. Scalability Excess capacity. Alpha Percent of trade capture resources that add to the firm's competitiveness.
  • the Trade Capture Activity as it affects the driver Productivity, or, more simply put, trade capture productivity, is being evaluated. So the KBI corresponding to trade capture productivity is selected and applied to the metrics in Table 3 (step 306 ).
  • the percentage of trades that are captured on trade date, electronically, and error free is the strongest indicator of operational performance of the Trade Capture Activity with respect to Productivity.
  • the percentage of trades captured on the trade date, 88%, the trades captured electronically, 87%, and trades captured error-free, 82%, are extracted and their average obtained.
  • the average of the three metrics is 85.6% or 86%. So, 86% (out of a possible 100%) of the trades captured are done so electronically, on the trade date and error-free. This value serves as the indicator of productivity for the Trade Capture Activity.
  • FIG. 2 lists the Productivity Metrics 200 , the Profitability Metrics 210 , the Scalability Metrics 220 , and the Alpha Generation Metrics 230 along with their respective KBIs 240 . Averages and percentages are obtained in the ordinary manner as is commonly known and practiced in the field of mathematics.
  • the Activities are weighted according to their importance and impact on their corresponding function (step 308 ).
  • the weights are assigned according to the business being evaluated. For example, Research & Development (R&D) is more important to a pharmaceutical company than it is to a bank. In a pharmaceutical company, R&D would be more important and thus, carry more weight, when calculating function KBIs.
  • R&D Research & Development
  • the Trade Capture KBI After all the Trade Capture Activity KBIs are calculated, their average is calculated to produce the Function KBI (STEP 310 ). For this example, the Trade Capture KBI, along with the five other activity KBIs within the Operations Function listed in Table 1, are averaged by their productivity KBIs, which is selected as the Primary Business Driver of the Operations Function to provide a quantified analysis of the Operations Function, or Performance Rating 312 .
  • An exemplary set of Primary Business Drivers for each function of an asset management business is detailed in Table 5.
  • the Primary Business Driver for each Function is the Driver that is most effected by the Function. So, for example, Sales affects Profitability more than the other Drivers. TABLE 5 Primary Business Drivers. Function Primary Business Driver Research Alpha Generation Portfolio Management Alpha Generation GP/Management Alpha Generation Client Service Profitability Sales Profitability Treasury Profitability Compliance Operational Risk Controller Operational Risk Operations Productivity IT Scalability
  • Table 6 shows a simplified exemplary set of data with its corresponding metrics and KBI for Trade Error Resolution Activity, and is similar to the steps of FIG. 3 for Trade Capture Activity. TABLE 6 Trade Error Resolution Activity. Step Action
  • Example Data/Metrics/KBI/Logic Collect Data Compile experiential data on No. of trade errors activities No. of trade errors remedied electronically No. of trade errors caused by counterparty error Apply Metrics Establish baseline of current Avg. no. of daily trade errors operational performance, i.e., how Avg. time to remedy trade errors well people, processes and technology % of trade errors remedied are performing.
  • KBI Electronic Generate KBI Combine metrics using computed % of trade errors remedied before ratios, averages and percentages to T + 2 electronically produce KBIs.
  • Compute OPB Compute productivity, scalability, Weighting logic: profitability, and alpha generation by Timely identification and quick aggregating, factoring and weighting remediation of trade errors is key metrics, KBIs & best comparison to controlling costs and risk. results.
  • Table 7 shows a simplified exemplary set of data with its corresponding metrics and KBI for Pricing Activity. TABLE 7 Pricing Activity. Step Action Example Data/Metrics/KBI/Logic Collect Data Compile experiential data on No. of securities with missing activities prices No. of manually priced securities No. of securities with price overrides No. of unsupervised and non- priced securities Apply Metrics Establish baseline of current Avg. %. of securities priced daily operational performance, i.e., Avg. % of securities priced how well people, processes and manually technology are performing. Avg. % of unsupervised and non- priced securities. Avg. % of securities priced manually Generate KBI Combine metrics using % of securities with manual price computed ratios, averages and overrides percentages to produce KBIs. Compute OPB Compute productivity, Weighting logic: scalability, profitability, and As the frequency and number of alpha generation by aggregating, manually priced securities factoring and weighting metrics, increases, so do costs and risk. KBIs & best comparison results.
  • Table 8 shows a simplified exemplary set of data with its corresponding metrics and KBI for Reconciliation Activity. TABLE 8 Reconciliation Activity. Step Action
  • Example Data/Metrics/KBI/Logic Collect Data Compile experiential data on Total no. of position breaks activities No. of positions in portfolio No. of position breaks found through automated comparison
  • Apply Metrics Establish baseline of current Avg. no. of position breaks operational performance, i.e., % of total no. of positions how well people, processes and with breaks technology are performing.
  • Avg. time to remedy position breaks % of breaks identified electronically Generate KBI Combine metrics using % of position breaks remedied in computed ratios, averages and less than 2 days and via 1 percentages to produce KBIs.
  • notification Compute OPB Compute productivity, Weighting logic: scalability, profitability, and Position breaks increase cost and alpha generation by aggregating, risk factoring and weighting metrics, KBIs & best comparison results.
  • Table 9 shows a simplified exemplary set of data with its corresponding metrics and KBI for Proxy Voting Activity. TABLE 9 Proxy Voting Activity. Step Action Example Data/Metrics/KBI/Logic Collect Data Compile experiential data on Total no. of votes to vote activities No. of votes not voted No. of votes voted manually No. of votes archived Apply Establish baseline of current % of votes voted manually Metrics operational performance, i.e., how % of votes not voted well people, processes and % of vote overrides technology are performing. Generate Combine metrics using computed % of votes, voted error-free & archived KBI ratios, averages and percentages to produce KBIs. Compute Compute productivity, scalability, Weighting logic: OPB profitability, and alpha generation Automation provides increased by aggregating, factoring and efficiency with lower cost and risk. weighting metrics, KBIs & best comparison results.
  • the metrics and KBIs represent quantitative measures of how well the activities and functions of the business are performing.
  • the inventive method begins this next phase by utilizing the activity workflows gathered as experiential data ( 410 of FIG. 4 ).
  • the trade capture activity workflow is illustrated in FIG. 5 , generally indicated by reference numeral 500 .
  • the mapped workflow 500 is a flowchart for the steps that are taken in capturing a trade in the business being evaluated.
  • the mapped workflow of each activity is compared to industry best practices (step 314 ).
  • Table 10 shows industry best practices for trade capture. TABLE 10 Industry Best Practices for Trade Capture. Verification of number of trades (inbound) Verification of number of trades (outbound) Holdings check before trade capture Authorization check before trade capture Use of standard trade format Time stamp (inbound) Time stamp (outbound) Assigned batch numbers to processed trades
  • a link 606 shows where in the evaluated process 500 the deviation occurs. Another deviation occurs when the number of outbound trades is not verified 604 .
  • a corresponding link 608 indicates where, in the process, the number of outbound trades should be verified.
  • each enhancement and/or deviation is linked to one of the five business drivers: productivity, scalability, profitability, alpha generation or operational risk.
  • variances between the Trade Capture Activity workflow and industry best practices are shown in Table 11.
  • An “X” indicates that the variance has an impact on the particular driver.
  • TABLE 11 Variances From Industry Best Practices. Product- Scal- Profit- ivity ability ability Alpha Risk Variance Impact Impact Impact Impact Impact Manual trade X X X X verification No holdings check X before trade capture No authorization X check before trade capture No outbound trade X verification
  • the variances ( 602 and 604 in FIG. 6 ) found in the comparison of the mapped workflow activity to industry best practices are then scored beginning with an impressed base score of 50 .
  • Each variance has a pre-determined score depending on the business driver impacted by the variance. Variances that raise best practice standards are scored positively, variances that deviate from industry best practices are scored negatively. Best practice variance scores are shown in Table 12. TABLE 12 Best Practice Assigned Variance Scores. Business Driver Assigned Variance Score Alpha Generation 2.0 Operational Risk 1.5 Scalabilty 1.0 Productivity .5 Profitability .25
  • the impressed base score of 50 is reduced by the sum of the scored variances.
  • the sum of the variances is ⁇ 7.75, resulting in a score of 42.25.
  • the functions are then weighted vis-à-vis their importance to the business using an algorithm designed to account for the interdependence of the functions (step 316 ).
  • These measures are intermediate calculations and expressed as the Operational Performance Benchmarks (OPBs) as they do not yet include an operational risk perspective.
  • OPBs Operational Performance Benchmarks
  • a risk assessment is performed (step 320 ).
  • the risk assessment is based on four risk factors: people, processes, technology and external factors. Examples of risk factors are detailed in Table 14. TABLE 14 Risk Factors.
  • Risk Factors Drivers People Appropriateness of skills & experience Adequacy of resources Stability of staff Commitment to ethics Level of oversight Processes Effectiveness of control checks Prevalence of manual processes Awareness of risk exposures Accuracy & timeliness of data access, handling, processing & delivery Separation of responsibilities, control checks & oversight Clarity of policies and procedures Technology Reliability Redundancy Security Contingency External Factors Awareness of external factors (physical environment, counterparty, regulatory) Preparedness to respond to external factors
  • the risk assessment is accomplished by applying a risk assessment algorithm to the collective data as it effects the drivers for each Risk Factor.
  • the risk assessment algorithm may include a weighted average. That is, each Driver in Table 14 is assigned a grade, or score from 1-100 indicating how well the driver is performing. For example, the Technology Risk Factor may have a 90 in Reliability, 80 in Redundancy, 67 in Security and 75 in Contingency. These are the Risk Driver Ratings and the Security driver is creating the highest risk.
  • the weighted average of the Risk Driver Ratings for each Risk Factor is calculated to obtain the Risk Factor Weightings.
  • the weighted average of the Risk Factor Weightings is then calculated to obtain an overall Risk Assessment.
  • the inventive method calculates the enterprise risk level of the business using an enterprise risk algorithm in the same fashion using the Risk Ratings for each Function (step 322 ).
  • the enterprise risk score 324 measures the level of risk in the business.
  • the inventive method culminates in computing a measure of the consistency potential of the business (step 328 ) by factoring the business drivers together using a consistency potential algorithm that measures the potential of the business to perform consistently in the future.
  • the consistency potential algorithm may be a combined weighted average of any one or more of the Performance Ratings, Risk Ratings, KBIs and OPBs of each Function to obtain final measures of productivity, scalability, profitability, alpha generation and operational risk for the business, or enterprise, as a whole (step 326 ).
  • the assessment 330 of the consistency potential measures the potential of the business to perform consistently over time, thus providing a forward-looking perspective.
  • the inventive method may be implemented with software. It is well within the skill of an ordinary software engineer to develop a program that would do so. Therefore, any additional explanation and detail about computer systems is omitted.
  • a program would include computer-executable process steps, or program instructions, that would instruct a processor to gather the information and perform the mathematical calculations and statistical analyses required by the inventive metrics, in the manner and the order disclosed above.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Technology Law (AREA)
  • Data Mining & Analysis (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Debugging And Monitoring (AREA)

Abstract

A method for evaluating and quantifying the risk, performance and potential of a business is disclosed. Experiential data generated by the business' activities is extracted and used as source data in evaluating the business. Experiential data includes both qualitative and quantitative information compiled from operating systems, databases, interviews, paper-based files and financial records. Business activities are measured individually and then collectively to understand the business as a whole. A set of metrics and a series of algorithms are used to measure the risk, performance and potential of the business drawing from the outset on the experiential data collected and a comparison to industry best practices.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority from U.S. patent application Ser. No. 60/527,688, entitled “METHOD FOR ASSESSING, MEASURING AND RATING OPERATIONAL PERFORMANCE OF HEDGE FUND BUSINESS,” filed on Dec. 5, 2003.
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention relates to a method of measuring enterprise risk, performance, and potential, and more particularly, measuring the enterprise risk, performance, and potential of financial services businesses.
  • 2. Background
  • Businesses generally strive to improve performance and lower risk with the goal of enhancing business potential. Financial services businesses, however, typically have more data, information and systems to measure the performance and risk of their investment portfolios than they have to manage the businesses supporting those portfolios. As a result, financial services businesses have scant and fragmented information about their business operations, particularly information related to enterprise risk, performance and potential.
  • To evaluate enterprise (or operational) risk, prior art methods use loss event narrative summaries as source data, usually excerpted from loss event logs maintained by a compliance officer. This information summarizes past loss events in an effort to raise awareness and to document the type, frequency and magnitude of loss events. While instructive in understanding what happened and the resulting consequences, this approach does not lend itself to pro-active loss prevention, thus calling into question the efficacy of traditional source data and enterprise risk methods.
  • In the financial services industry, the data, information and systems available to manage investment portfolios are highly sophisticated and comprehensive, however, there is little in the way of data, information or systems to manage investment businesses. Prior art methods use portfolio performance data to gauge how well a financial services business is performing and make no attempt to access or employ business operating data. This results in a lack of understanding about the business operations of financial services businesses and a dependence on anecdotal information to make business decisions.
  • Lacking data, information and systems, the various constituencies of financial services businesses operate with an isolated view and do not have the means to understand the interdependencies across business lines, nor the impact of those interdependencies on the business. In addition, they do not have a quantitative framework to evaluate the business as a whole. Thus, there is no enterprise, or “big picture,” view to work from either to measure business performance or to root out operational problems or inefficiencies. Further, there is no effective way to measure business risk or identify and address risk exposure issues.
  • To understand the ability of a financial services business to perform well in the future, prior art methods rely on past performance history despite the conventional wisdom that past performance is not indicative of future results. What's more, this data concerns only investment results and not the people, processes and technology having generated the results. Consequently, this approach does not provide a forward-looking perspective and provides little insight to understanding a financial services business.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method for evaluating a financial services business, such as an asset management business or hedge fund, by using experiential data, i.e., data produced in the course of operating the business, to measure business risk, performance, and potential. The business is broken down into functions, each function being carried out through a number of activities. Each activity produces experiential data, i.e., data produced by performing the activity. Experiential data includes both qualitative and quantitative information compiled from operating systems, databases, interviews, paper-based files and financial records. Activities and functions are measured individually and then collectively to understand the business as a whole.
  • A specific set of mathematical functions, referred to as metrics and algorithms, are applied to the collected experiential data to measure enterprise risk, performance, and potential. The measures generated are expressed as Key Business Indicators (KBIs), Operational Performance Benchmarks (OPBs), enterprise risk, business drivers and consistency potential. These measures provide a business rating for each function, activity, and the business (or enterprise) as a whole.
  • The inventive method measures the potential of a financial services business to perform consistently over time by assessing experiential data extracted from the full spectrum of the business' functions and activities. The extracted data is fed into a series of metrics and algorithms that measure how well a business is performing from an operational (i.e., non-investment) standpoint. The information generated by the metrics is then compared to industry best practices and ultimately combined, or rolled up, to assess enterprise risk, performance, and potential.
  • Two levels of analysis and perspective are provided, one at the functional level of the business (i.e., how well are the individual business functions performing) and the other, at the enterprise level (i.e., rolling up the business functions to understand the business as a whole). In this way, the present invention provides 1) an understanding of the interdependency of the individual business functions and their impact on the business as a whole, and 2) the ability to quantify the effect and impact those interdependent relationships have on the business as a whole.
  • In addition, the present invention may be applied to examine specific aspects of a financial services business, and thus hone in on a particular area of concern. For example, the inventive method can be used to measure:
  • the level of operational risk;
  • the likelihood the business will perform consistently;
  • the effectiveness of the decision-making process;
  • alpha generation (growth in excess of market appreciation);
  • the short and long-term scalability of the business infrastructure;
  • the appropriateness of policies and procedures;
  • the adequacy of oversight and controls;
  • whether the business is being run responsibly; and
  • current practices as compared to best practices.
  • The method enables financial services businesses to utilize their own operational information to more effectively manage their businesses. Instead of having to rely on anecdotal information, they are able to manage their businesses as effectively as they manage their portfolios. The method also allows financial services businesses to provide quantitative information about their businesses to the financial institutions employing them as a supplement to traditional investment results and qualitative survey information.
  • The method enables financial institutions to quantitatively evaluate the businesses of the asset managers they employ or are considering for employment. Further, financial institutions can understand an investment strategy within the context of the business supporting it rather than looking at the strategy in isolation.
  • In further detail, the method comprises the steps of selecting a function; collecting data relevant to the function; selecting an activity; selecting a benchmark; applying a corresponding set of metrics to the data to produce metric values; determining a key business indicator (KBI) as a function of the activity and the benchmark; calculating a KBI value as a function of the metric values; comparing the KBI to a best practice indicator; and, determining a performance rating as a function of the KBI value.
  • In accordance with an alternative embodiment of the present invention, computer-executable process steps in a computer-readable format for carrying out the method is disclosed as well.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the broad steps of a method in accordance with an embodiment of the present invention;
  • FIG. 2 illustrates an exemplary set of metrics, KBls and their corresponding Business Drivers for the trade capture process in accordance with the method of the present invention;
  • FIG. 3 is a flow chart illustrating the steps of a method in accordance with an embodiment of the present invention;
  • FIG. 4 is an exemplary set of experiential data for a trade capture activity in accordance with an embodiment of the present invention;
  • FIG. 5 is a mapped workflow of the trade capture process according to an embodiment of the present invention; and
  • FIG. 6 is a comparison of the mapped workflow from FIG. 5 with industry best practices according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • The present invention provides a method whereby the experiential data of a business is used to measure enterprise risk, performance, and the potential of the business to perform consistently over time. To do so, the method uses the experiential data of the business to fuel specific, predetermined mathematical functions, or metrics and algorithms, to measure specific drivers of the business being evaluated. For example, a set of drivers may include: productivity, scalability, profitability, alpha generation and operational risk; and ultimately the potential of the business.
  • The first step is gathering data. The data is compiled from the business processes supporting the functions and activities of the business being evaluated. Businesses are often thought of in terms of departments, however, the inventive method organizes a business by function and activity for greater specificity. Within each function is a sub-set of activities that make up the function. An exemplary set of functions and their associated activities is listed in Table 1.
    TABLE 1
    Business Organization by Function and Activity.
    Function Activities
    Research Idea generation
    Implementation strategy
    Portfolio Management Investment due diligence
    Strategy & execution
    Investment risk management
    Sales Market research
    New business
    Prospective development
    Client Service Communication
    Retention
    Management/General Alpha generation
    Partners Business strategy & execution
    Compensation
    Governance/ownership
    Treasury Cash management
    Human resources
    Margin/financing
    Securities lending
    Compliance Business risk management
    External compliance
    Internal oversight
    Controller Audit/tax
    Corporate finance
    Portfolio (Partnership) accounting &
    reconciliation
    Pricing
    Operations Corporate actions
    Portfolio recordkeeping
    Proxy voting
    Trade capture
    Trade error resolution
    Trade settlement
    Information Technology Business continuity
    Security
    System administration
    System development
    Web presence
  • FIG. 1 illustrates the major, broad steps and information involved with the inventive method, working from the bottom of the diagram to the top. The left column 100 represents a broad description of the general steps for the present invention. The middle column 200 represents the data associated with each step at its respective horizontal position. For example the Extraction step in the left column 100 is on the same line as “Summary Data,” “Workflows,” “Operating Data,” and Transaction Data.” The step of Extraction produces the data groups listed next to it. The column 300 on the right is a list of the libraries, or databases in which information is organized and maintained.
  • As previously mentioned, the first step is to collect source (or experiential) data at the bottom of the left column 100. The areas of a business generating the source data are listed next to “Source Data”. Above “Source Data” is “Extraction” with the extraction results listed next to it.
  • Metrics and algorithms are applied to source data 200 to measure the performance of the functions and activities supporting the business in the “Business Functions” step. These measures, or criteria, may be expressed as key business indicators (KBIs), operational performance benchmarks (OPBs), enterprise risk, business drivers (productivity, scalability, profitability, alpha generation and operational risk) and consistency potential. The selected measures, or criteria, produce an evaluation and rating for each function, activity, and the business (or enterprise) as a whole. This analysis is done at the enterprise level (business as a whole) in “Enterprise Perspective.” Risk is assessed in “Risk Overlay,” and a measure of consistency potential is produced in “Outlook.”
  • For example, the Research Function of Table 1 includes two activities, Idea Generation and Implementation Strategy. In other words, the Research function generates ideas and formulates strategies for implementing those ideas. The Research function's work process is scrutinized and subjected to specific statistical and mathematical analysis represented by a set of metrics designed to evaluate the specific activities of the Research function.
  • Assume a set of metrics for the Research function measures the productivity of the activities. For example, to measure the productivity of “Idea Generation,” the frequency with which new ideas are generated, the quality of the ideas, and whether they are generated on a timely basis, would all be considered. Each of these criteria can be measured by metrics. Metrics may also be a certain statistical analysis, for example, the percentage of ideas generated that increase investment results. The metrics for “Implementation Strategy” might then include the frequency with which strategies are formulated, the quality of the strategy, and whether they are implemented on a timely basis.
  • These metrics establish a baseline of current operational performance that comprises the fundamental building blocks to understanding how well the business is performing. In this example, the metrics are designed to gauge how well the people, processes and technology involved in the activities within the Research function are performing. By using the experiential data of the business activities to establish a baseline of performance, the business owner can evaluate the effectiveness of the activities over time as well as measure the impact of business dynamics on the activities.
  • Pre-selected metrics are then combined to calculate Key Business Indicators (KBIs) for each activity. Selection is based on the critical aspect or task of the specific activity, and indicates how well the specific activity is performing in that one critical aspect. For example, a KBI for Idea Generation might be “the number of new ideas generated in the period that were presented to the investment committee and given a green light for further analysis.” A KBI for the Implementation Strategy might be “the number of new ideas approved for implementation into the portfolio”. A KBI is a definitive, quantitative measure of each activity's performance.
  • To quantify and determine the performance of the Research function as a whole, the activities within the function are weighted by their importance to the function. That is to say, the Research function KBI score is calculated by averaging the weighted KBIs of Idea Generation and Implementation Strategy, the two activities that comprise the Research function.
  • After calculating the KBIs for each activity, the analysis continues while shifting focus from the functional level of the business to the enterprise level. Each of the activity KBIs is calculated in the same way as the example set out above for the Research Function. The shift to the enterprise level is accomplished by first aggregating the metrics and KBIs by business driver. As discussed previously, in this example, each metric and KBI is linked at the outset to one of four business drivers: productivity, scalability, profitability or alpha generation. An example of a productivity metric has already been used in the discussion of Research activities and functions (“the number of new ideas generated in the period that were presented to the investment committee and were approved by the committee for further analysis.”). Additionally, FIG. 2 provides more examples of activities metrics and their corresponding business drivers as will be discussed below.
  • After the metrics and KBIs have been organized by business driver, the workflows of the activities are compared to industry best practices. For this simplified example, some of the industry best practices for Idea Generation include: 1) documenting the inspiration source for the new idea; 2) documenting the source data used in formulating the new idea; and 3) dating, documenting and signing all the steps in the formulating of the new idea. Enhancements to, or deviations from, industry best practices are scored. In this way, the inventive method provides a quantitative framework to easily identify and quantify performance contributors or detractors.
  • Following the best practice comparison of the activities workflows, the functions are weighted by their importance to the business. These weightings are determined by a proprietary series of algorithms designed to account for the interdependence of the functions. The collective information—metrics, KBIs, best practice comparisons and function weightings—is then used to calculate the productivity, scalability, profitability and alpha generation levels of the business. These measures are intermediate calculations and referred to as the Operational Performance Benchmarks (OPBs) for the purposes of this explanation as they do not yet include an operational risk perspective. The OPBs provide an understanding of the interdependence of the business activities and functions and their relation to the business as a whole.
  • After the Operational Performance Benchmarks have been computed, a risk assessment is performed. The risk assessment is based on a number of factors, typically those that create a risk. For example, people, processes, technology and external factors. These risk factors are detailed in Table 2.
    TABLE 2
    Risk Factors.
    Risk Factors Drivers
    People Appropriateness of skills & experience
    Adequacy of resources
    Stability of staff
    Commitment to ethics
    Level of oversight
    Processes Effectiveness of control checks
    Prevalence of manual processes
    Awareness of risk exposures
    Accuracy & timeliness of data access, handling,
    processing & delivery
    Separation of responsibilities, control checks &
    oversight
    Clarity of policies and procedures
    Technology Reliability
    Redundancy
    Security
    Contingency
    External Factors Awareness of external factors (physical
    environment, counterparty, regulatory)
    Preparedness to respond to external factors
  • Risk assessment is accomplished by applying a risk assessment algorithm to the collective data to measure the operational risk of the activities, functions and the business as a whole. The KBIs and OPBs are then adjusted and weighted for operational risk resulting in final measures of productivity, scalability, profitability, alpha generation and operational risk for the business, or enterprise, as a whole.
  • The method culminates in computing a measure of the consistency potential of the business by factoring the pre-selected business drivers together, the process of which is described below. Staying with our previous example for consistency, there are five business drivers: productivity, profitability, scalability, alpha generation and operational risk.
  • FIG. 3 is a flowchart illustrating the method according to a preferred embodiment of the present invention. For further illustration, the inventive method is applied to the Trade Capture activity of the Operations function to provide a detailed example.
  • The first step is to collect relevant data (step 302). For this example, since the Trade Capture Activity is being evaluated, the relevant data includes the experiential data (data from experience) produced by the trade capture activity. This data may be obtained from interviews, operating systems, databases, paper-based files and financial records.
  • An exemplary set of relevant experiential data is listed in FIG. 4. In this example, the experiential data includes operational data 400, processes (mapped workflows) 410, people (census information) 420 and technology systems 430.
  • Referring back to FIG. 3, once the relevant data is collected (step 302), a specific set of metrics is applied to the collected operating data (step 304). These metrics translate the raw operating data into measures that correspond to a specific driver. For this example, there are four business drivers: productivity, scalability, profitability, and alpha generation. The first three are familiar in the business world and self-explanatory. The fourth, Alpha Generation, is the contribution by the people of the financial services business in excess of industry standards. For example, the alpha generated by the portfolio managers of the financial services business could be defined as their contribution to financial growth or profit realized, in excess of market appreciation. So, if the relevant market grew by 10% and the financial services business realized a profit of 15%, its' alpha contribution was 5%, i.e., the excess realized profit over market appreciation.
  • In this example, the inventive method uses five business drivers as the criteria by which the method measures a financial services organization. They are: productivity, scalability, profitability, alpha generation and operational risk. Only the first four, productivity, scalability, profitability, and alpha generation are linked to the metrics and the Key Business Indicators (KBIs). Operational Risk is applied later in the method according to an overlay algorithm.
  • For each activity, there is a specific, corresponding set of metrics to be applied to the activity's relevant experiential data. How many metrics and the ones used will depend on the activity being evaluated. Each activity is measured by a set of metrics linked to a business driver: productivity, scalability, profitability and alpha generation.
  • In this example using trade capture productivity metrics for productivity, the metrics are applied to the relevant experiential data and scored using simple math as shown in Table 3. The calculation results of Table 3 are only examples and the values have been arbitrarily chosen.
    TABLE 3
    Trade Capture Metrics for Productivity
    Percent of trades captured on trade date = (trades captured on trade
    date/total number of trades = 88%)
    Percent of trades captured electronically = (trades captured electronically/
    total number of trades captured = 87%)
    Percent of trades captured error-free = (trades captured error-free/total
    number of trades captured = 82%)
  • After the metrics are scored, a KBI measuring trade capture productivity is calculated using simple math (step 306). The KBI is a predetermined measure of how well the particular activity is being performed. The KBI, like the set of metrics, is different for every activity and for each business driver. Thus, there are four different KBIs for the Trade Capture activity, one for each driver. An exemplary set of KBIs for the Trade Capture Activity is listed in Table 4.
    TABLE 4
    Trade Capture Activity KBIs.
    Business Driver KBI
    Productivity Percent of trades captured on trade date, electronically
    and error-free.
    Profitability Percent of maximum profitability target.
    Scalability Excess capacity.
    Alpha Percent of trade capture resources that add to the
    firm's competitiveness.
  • In this example, the Trade Capture Activity as it affects the driver Productivity, or, more simply put, trade capture productivity, is being evaluated. So the KBI corresponding to trade capture productivity is selected and applied to the metrics in Table 3 (step 306). In this example, for the Trade Capture Activity, the percentage of trades that are captured on trade date, electronically, and error free is the strongest indicator of operational performance of the Trade Capture Activity with respect to Productivity.
  • Looking at the values obtained by the metrics, the percentage of trades captured on the trade date, 88%, the trades captured electronically, 87%, and trades captured error-free, 82%, are extracted and their average obtained. In this case, the average of the three metrics is 85.6% or 86%. So, 86% (out of a possible 100%) of the trades captured are done so electronically, on the trade date and error-free. This value serves as the indicator of productivity for the Trade Capture Activity.
  • The method of the present invention calculates KBIs for the three other business drivers as well, following the same steps as described above for the trade capture productivity KBI. FIG. 2 lists the Productivity Metrics 200, the Profitability Metrics 210, the Scalability Metrics 220, and the Alpha Generation Metrics 230 along with their respective KBIs 240. Averages and percentages are obtained in the ordinary manner as is commonly known and practiced in the field of mathematics.
  • The Activities are weighted according to their importance and impact on their corresponding function (step 308). The weights are assigned according to the business being evaluated. For example, Research & Development (R&D) is more important to a pharmaceutical company than it is to a bank. In a pharmaceutical company, R&D would be more important and thus, carry more weight, when calculating function KBIs.
  • After all the Trade Capture Activity KBIs are calculated, their average is calculated to produce the Function KBI (STEP 310). For this example, the Trade Capture KBI, along with the five other activity KBIs within the Operations Function listed in Table 1, are averaged by their productivity KBIs, which is selected as the Primary Business Driver of the Operations Function to provide a quantified analysis of the Operations Function, or Performance Rating 312.
  • An exemplary set of Primary Business Drivers for each function of an asset management business is detailed in Table 5. The Primary Business Driver for each Function is the Driver that is most effected by the Function. So, for example, Sales affects Profitability more than the other Drivers.
    TABLE 5
    Primary Business Drivers.
    Function Primary Business Driver
    Research Alpha Generation
    Portfolio Management Alpha Generation
    GP/Management Alpha Generation
    Client Service Profitability
    Sales Profitability
    Treasury Profitability
    Compliance Operational Risk
    Controller Operational Risk
    Operations Productivity
    IT Scalability
  • For further illustration of activity metrics and their corresponding KBIs, a number of exemplary metric sets and KBIs for specific activities are provided. Table 6 shows a simplified exemplary set of data with its corresponding metrics and KBI for Trade Error Resolution Activity, and is similar to the steps of FIG. 3 for Trade Capture Activity.
    TABLE 6
    Trade Error Resolution Activity.
    Step Action Example Data/Metrics/KBI/Logic
    Collect Data Compile experiential data on No. of trade errors
    activities No. of trade errors remedied
    electronically
    No. of trade errors caused by
    counterparty error
    Apply Metrics Establish baseline of current Avg. no. of daily trade errors
    operational performance, i.e., how Avg. time to remedy trade errors
    well people, processes and technology % of trade errors remedied
    are performing. electronically
    Generate KBI Combine metrics using computed % of trade errors remedied before
    ratios, averages and percentages to T + 2 electronically
    produce KBIs.
    Compute OPB Compute productivity, scalability, Weighting logic:
    profitability, and alpha generation by Timely identification and quick
    aggregating, factoring and weighting remediation of trade errors is key
    metrics, KBIs & best comparison to controlling costs and risk.
    results.
  • Table 7 shows a simplified exemplary set of data with its corresponding metrics and KBI for Pricing Activity.
    TABLE 7
    Pricing Activity.
    Step Action Example Data/Metrics/KBI/Logic
    Collect Data Compile experiential data on No. of securities with missing
    activities prices
    No. of manually priced securities
    No. of securities with price
    overrides
    No. of unsupervised and non-
    priced securities
    Apply Metrics Establish baseline of current Avg. %. of securities priced daily
    operational performance, i.e., Avg. % of securities priced
    how well people, processes and manually
    technology are performing. Avg. % of unsupervised and non-
    priced securities.
    Avg. % of securities priced manually
    Generate KBI Combine metrics using % of securities with manual price
    computed ratios, averages and overrides
    percentages to produce KBIs.
    Compute OPB Compute productivity, Weighting logic:
    scalability, profitability, and As the frequency and number of
    alpha generation by aggregating, manually priced securities
    factoring and weighting metrics, increases, so do costs and risk.
    KBIs & best comparison results.
  • Table 8 shows a simplified exemplary set of data with its corresponding metrics and KBI for Reconciliation Activity.
    TABLE 8
    Reconciliation Activity.
    Step Action Example Data/Metrics/KBI/Logic
    Collect Data Compile experiential data on Total no. of position breaks
    activities No. of positions in portfolio
    No. of position breaks found
    through automated comparison
    Apply Metrics Establish baseline of current Avg. no. of position breaks
    operational performance, i.e., % of total no. of positions
    how well people, processes and with breaks
    technology are performing. Avg. time to remedy
    position breaks
    % of breaks identified electronically
    Generate KBI Combine metrics using % of position breaks remedied in
    computed ratios, averages and less than 2 days and via 1
    percentages to produce KBIs. notification
    Compute OPB Compute productivity, Weighting logic:
    scalability, profitability, and Position breaks increase cost and
    alpha generation by aggregating, risk
    factoring and weighting metrics,
    KBIs & best comparison results.
  • Table 9 shows a simplified exemplary set of data with its corresponding metrics and KBI for Proxy Voting Activity.
    TABLE 9
    Proxy Voting Activity.
    Step Action Example Data/Metrics/KBI/Logic
    Collect Data Compile experiential data on Total no. of votes to vote
    activities No. of votes not voted
    No. of votes voted manually
    No. of votes archived
    Apply Establish baseline of current % of votes voted manually
    Metrics operational performance, i.e., how % of votes not voted
    well people, processes and % of vote overrides
    technology are performing.
    Generate Combine metrics using computed % of votes, voted error-free & archived
    KBI ratios, averages and percentages to
    produce KBIs.
    Compute Compute productivity, scalability, Weighting logic:
    OPB profitability, and alpha generation Automation provides increased
    by aggregating, factoring and efficiency with lower cost and risk.
    weighting metrics, KBIs & best
    comparison results.
  • The metrics and KBIs represent quantitative measures of how well the activities and functions of the business are performing.
  • After the metrics (step 304) and KBIs (step 306) are calculated, the focus shifts to overall business, or enterprise, performance. The inventive method begins this next phase by utilizing the activity workflows gathered as experiential data (410 of FIG. 4). The trade capture activity workflow is illustrated in FIG. 5, generally indicated by reference numeral 500. The mapped workflow 500 is a flowchart for the steps that are taken in capturing a trade in the business being evaluated.
  • The mapped workflow of each activity is compared to industry best practices (step 314). Table 10 shows industry best practices for trade capture.
    TABLE 10
    Industry Best Practices for Trade Capture.
    Verification of number of trades (inbound)
    Verification of number of trades (outbound)
    Holdings check before trade capture
    Authorization check before trade capture
    Use of standard trade format
    Time stamp (inbound)
    Time stamp (outbound)
    Assigned batch numbers to processed trades
  • A comparison between the mapped workflow 500 and Industry Best Practices of Table 10 is made. The comparison between the Trade Capture Activity workflow and industry best practices is shown graphically in FIG. 6.
  • In the comparison process, enhancements to and deviations from industry best practices are noted. The mapped workflow deviates from industry best practice by executing trades manually, not holding checks before a trade capture, and not authorizing a check before trade capture 602. A link 606 shows where in the evaluated process 500 the deviation occurs. Another deviation occurs when the number of outbound trades is not verified 604. A corresponding link 608 indicates where, in the process, the number of outbound trades should be verified.
  • The impact of each enhancement and/or deviation is linked to one of the five business drivers: productivity, scalability, profitability, alpha generation or operational risk. For example, variances between the Trade Capture Activity workflow and industry best practices are shown in Table 11. An “X” indicates that the variance has an impact on the particular driver.
    TABLE 11
    Variances From Industry Best Practices.
    Product- Scal- Profit-
    ivity ability ability Alpha Risk
    Variance Impact Impact Impact Impact Impact
    Manual trade X X X X
    verification
    No holdings check X
    before trade
    capture
    No authorization X
    check before trade
    capture
    No outbound trade X
    verification
  • The variances (602 and 604 in FIG. 6) found in the comparison of the mapped workflow activity to industry best practices are then scored beginning with an impressed base score of 50.
  • Each variance has a pre-determined score depending on the business driver impacted by the variance. Variances that raise best practice standards are scored positively, variances that deviate from industry best practices are scored negatively. Best practice variance scores are shown in Table 12.
    TABLE 12
    Best Practice Assigned Variance Scores.
    Business Driver Assigned Variance Score
    Alpha Generation 2.0
    Operational Risk 1.5
    Scalabilty 1.0
    Productivity .5
    Profitability .25
  • To illustrate the scoring of an activity workflow comparison to industry best practices, the scored trade capture activity comparison to industry best practices is shown in Table 13.
    TABLE 13
    Trade Capture Comparison.
    Product- Scal-
    ivity ability Profitability Alpha Risk
    Variance Impact Impact Impact Impact Impact
    Manual trade −0.5 −1.0 −.25 −1.5
    verification
    No holdings −1.5
    check before
    trade capture
    No authorization −1.5
    check before
    trade capture
    No outbound −1.5
    trade verification
  • To compute the score for the trade capture activity comparison to industry best practices, or the Trade Capture Activity Best Practice Score, the impressed base score of 50 is reduced by the sum of the scored variances. In this example, the sum of the variances is −7.75, resulting in a score of 42.25.
  • Following the best practice comparison, the functions are then weighted vis-à-vis their importance to the business using an algorithm designed to account for the interdependence of the functions (step 316). The collective information—metrics, KBIs, best practice comparisons and function weightings—is then used to calculate the actual productivity, scalability, profitability and alpha generation levels of the business (step 318). These measures are intermediate calculations and expressed as the Operational Performance Benchmarks (OPBs) as they do not yet include an operational risk perspective. The OPBs provide an understanding of the interdependence of the business activities and functions and their relation to the business as a whole.
  • After the Operational Performance Benchmarks have been computed, a risk assessment is performed (step 320). For this example, the risk assessment is based on four risk factors: people, processes, technology and external factors. Examples of risk factors are detailed in Table 14.
    TABLE 14
    Risk Factors.
    Risk Factors Drivers
    People Appropriateness of skills & experience
    Adequacy of resources
    Stability of staff
    Commitment to ethics
    Level of oversight
    Processes Effectiveness of control checks
    Prevalence of manual processes
    Awareness of risk exposures
    Accuracy & timeliness of data access, handling,
    processing & delivery
    Separation of responsibilities, control checks &
    oversight
    Clarity of policies and procedures
    Technology Reliability
    Redundancy
    Security
    Contingency
    External Factors Awareness of external factors (physical
    environment, counterparty, regulatory)
    Preparedness to respond to external factors
  • The risk assessment is accomplished by applying a risk assessment algorithm to the collective data as it effects the drivers for each Risk Factor. The risk assessment algorithm may include a weighted average. That is, each Driver in Table 14 is assigned a grade, or score from 1-100 indicating how well the driver is performing. For example, the Technology Risk Factor may have a 90 in Reliability, 80 in Redundancy, 67 in Security and 75 in Contingency. These are the Risk Driver Ratings and the Security driver is creating the highest risk.
  • The weighted average of the Risk Driver Ratings for each Risk Factor is calculated to obtain the Risk Factor Weightings. The weighted average of the Risk Factor Weightings is then calculated to obtain an overall Risk Assessment.
  • The inventive method calculates the enterprise risk level of the business using an enterprise risk algorithm in the same fashion using the Risk Ratings for each Function (step 322). The enterprise risk score 324 measures the level of risk in the business.
  • The inventive method culminates in computing a measure of the consistency potential of the business (step 328) by factoring the business drivers together using a consistency potential algorithm that measures the potential of the business to perform consistently in the future. Again, the consistency potential algorithm may be a combined weighted average of any one or more of the Performance Ratings, Risk Ratings, KBIs and OPBs of each Function to obtain final measures of productivity, scalability, profitability, alpha generation and operational risk for the business, or enterprise, as a whole (step 326). The assessment 330 of the consistency potential measures the potential of the business to perform consistently over time, thus providing a forward-looking perspective.
  • In accordance with alternative embodiments of the present invention, the inventive method may be implemented with software. It is well within the skill of an ordinary software engineer to develop a program that would do so. Therefore, any additional explanation and detail about computer systems is omitted. Such a program would include computer-executable process steps, or program instructions, that would instruct a processor to gather the information and perform the mathematical calculations and statistical analyses required by the inventive metrics, in the manner and the order disclosed above.
  • In the preceding specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative manner rather than a restrictive sense.

Claims (14)

1. A method for evaluating performance comprising the steps of:
selecting an activity;
collecting data relevant to the activity;
selecting a driver;
selecting a set of metrics corresponding to the activity and the driver;
applying the metrics to the data to produce metric values;
determining a key business indicator (KBI) as a function of the metrics, the activity and the driver;
calculating a KBI value as a function of the metric values;
determining a performance rating as a function of the KPI value.
2. The method of claim 1 wherein the activity is selected from the group consisting of:
research,
portfolio management,
sales,
client service,
management,
treasury,
compliance,
controller
operations, and,
information technology.
3. The method of claim 1 wherein the data is collected from operating systems, databases, interviews and financial records.
4. The method of claim 1 wherein the driver is selected from the group consisting of:
productivity,
profitability,
scalability,
alpha generation, and
operational risk.
5. The method of claim 1 further comprising:
providing a mapped workflow for the activity;
comparing the mapped workflow to a best practice to obtain a variation;
scoring the variation to obtain a variation score;
calculating a best practice score for the activity as a function of the variation score.
6. The method of claim 1 further comprising:
weighting the activity to a function and the functions to a business, the weighting determined by importance to the business;
calculating benchmarks for the business;
assessing and weighting risk factors to quantify risk;
determining performance of the business against the benchmarks by factoring together measures of the specific drivers, thereby assessing its potential.
7. Computer-executable process steps in a computer-readable format, operable to control a computer and perform the steps of:
selecting an activity;
collecting data relevant to the activity;
selecting a driver;
selecting a set of metrics corresponding to the activity and the driver;
applying the metrics to the data to produce metric values;
determining a key business indicator (KBI) as a function of the metrics, the activity and the driver;
calculating a KBI value as a function of the metric values;
determining a performance rating as a function of the KPI value.
8. The computer-executable process steps of claim 7 wherein the activity is selected from the group consisting of:
research,
portfolio management,
sales,
client service,
management,
treasury,
compliance,
controller
operations, and,
information technology.
9. The computer-executable process steps of claim 7 wherein the data is collected from operating systems, databases, interviews and financial records.
10. The computer-executable process steps of claim 7 wherein the driver is selected from the group consisting of:
productivity,
profitability,
scalability,
alpha generation, and
operational risk.
11. The computer-executable process steps of claim 7 further comprising:
providing a mapped workflow for the activity;
comparing the mapped workflow -to a best practice to obtain a variation;
scoring the variation to obtain a variation score;
calculating a best practice score for the activity as a function of the variation score.
12. A method for evaluating performance comprising:
collecting data;
applying a first set of mathematical functions to calculate operational performance and obtain a performance rating;
applying a second set of mathematical functions to assess and weigh risk factors to obtain an enterprise risk rating;
applying a third set of mathematical functions to the data to produce a consistency potential rating;
13. The method of claim 12 wherein the step of applying a first set of mathematical functions to calculate operational performance benchmarks (OPBs) and obtain a performance rating further comprises:
computing an activity key business indicator (KBIs),
weighting the activity KBI to a function;
computing a function KBI according to the activity KBI;
calculating the performance rating according to the function KBI.
14. The method of claim 12 wherein the step of applying a second set of mathematical functions to assess and weigh risk factors to obtain an enterprise risk rating further comprises:
comparing an activity workflow mapping to a best practice to obtain a workflow mapping comparison;
corresponding the activity workflow to a function;
weighting the function in relation to the business to obtain a function weighting;
assessing risk of the function according to the workflow mapping comparison and the function weighting.
US11/442,149 2003-12-05 2006-05-30 Method for evaluating a business using experiential data Abandoned US20060293946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/442,149 US20060293946A1 (en) 2003-12-05 2006-05-30 Method for evaluating a business using experiential data

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US52768803P 2003-12-05 2003-12-05
US11/005,119 US7136827B2 (en) 2003-12-05 2004-12-06 Method for evaluating a business using experiential data
US11/442,149 US20060293946A1 (en) 2003-12-05 2006-05-30 Method for evaluating a business using experiential data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/005,119 Continuation US7136827B2 (en) 2003-12-05 2004-12-06 Method for evaluating a business using experiential data

Publications (1)

Publication Number Publication Date
US20060293946A1 true US20060293946A1 (en) 2006-12-28

Family

ID=34676768

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/005,119 Expired - Fee Related US7136827B2 (en) 2003-12-05 2004-12-06 Method for evaluating a business using experiential data
US11/442,149 Abandoned US20060293946A1 (en) 2003-12-05 2006-05-30 Method for evaluating a business using experiential data

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/005,119 Expired - Fee Related US7136827B2 (en) 2003-12-05 2004-12-06 Method for evaluating a business using experiential data

Country Status (2)

Country Link
US (2) US7136827B2 (en)
WO (1) WO2005057350A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060136922A1 (en) * 2004-12-20 2006-06-22 Michael Zimberg System and method for task management of rule geverned tasks
US20060287909A1 (en) * 2005-06-21 2006-12-21 Capital One Financial Corporation Systems and methods for conducting due diligence
US20080312988A1 (en) * 2007-06-14 2008-12-18 Akzo Nobel Coatings International B.V. Performance rating of a business
US7720822B1 (en) * 2005-03-18 2010-05-18 Beyondcore, Inc. Quality management in a data-processing environment
US20120005115A1 (en) * 2010-06-30 2012-01-05 Bank Of America Corporation Process risk prioritization application
US20120116848A1 (en) * 2010-11-10 2012-05-10 International Business Machines Corporation Optimizing business operational environments
US20120203597A1 (en) * 2011-02-09 2012-08-09 Jagdev Suman Method and apparatus to assess operational excellence
US8321363B2 (en) 2010-07-28 2012-11-27 Bank Of America Corporation Technology evaluation and selection application
US9390121B2 (en) 2005-03-18 2016-07-12 Beyondcore, Inc. Analyzing large data sets to find deviation patterns
US10127130B2 (en) 2005-03-18 2018-11-13 Salesforce.Com Identifying contributors that explain differences between a data set and a subset of the data set
US10796232B2 (en) 2011-12-04 2020-10-06 Salesforce.Com, Inc. Explaining differences between predicted outcomes and actual outcomes of a process
US10802687B2 (en) 2011-12-04 2020-10-13 Salesforce.Com, Inc. Displaying differences between different data sets of a process

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113914B1 (en) 2000-04-07 2006-09-26 Jpmorgan Chase Bank, N.A. Method and system for managing risks
US20040122936A1 (en) * 2002-12-20 2004-06-24 Ge Mortgage Holdings, Llc Methods and apparatus for collecting, managing and presenting enterprise performance information
US7941353B2 (en) * 2003-06-17 2011-05-10 Oracle International Corporation Impacted financial statements
US7899693B2 (en) * 2003-06-17 2011-03-01 Oracle International Corporation Audit management workbench
US8296167B2 (en) * 2003-06-17 2012-10-23 Nigel King Process certification management
US8005709B2 (en) * 2003-06-17 2011-08-23 Oracle International Corporation Continuous audit process control objectives
US20050027550A1 (en) * 2003-08-01 2005-02-03 Electronic Data Systems Corporation Process and method for lifecycle digital maturity assessment
US20050154769A1 (en) * 2004-01-13 2005-07-14 Llumen, Inc. Systems and methods for benchmarking business performance data against aggregated business performance data
US7958001B2 (en) * 2004-04-28 2011-06-07 Swiss Reinsurance Company Computer-based method for assessing competence of an organization
US20060089861A1 (en) * 2004-10-22 2006-04-27 Oracle International Corporation Survey based risk assessment for processes, entities and enterprise
US7849062B1 (en) * 2005-03-18 2010-12-07 Beyondcore, Inc. Identifying and using critical fields in quality management
US20070038501A1 (en) * 2005-08-10 2007-02-15 International Business Machines Corporation Business solution evaluation
US20070038465A1 (en) * 2005-08-10 2007-02-15 International Business Machines Corporation Value model
US20070129981A1 (en) * 2005-12-07 2007-06-07 International Business Machines Corporation Business solution management
US7885841B2 (en) * 2006-01-05 2011-02-08 Oracle International Corporation Audit planning
US20070214025A1 (en) * 2006-03-13 2007-09-13 International Business Machines Corporation Business engagement management
US20080004924A1 (en) * 2006-06-28 2008-01-03 Rong Zeng Cao Business transformation management
US7571109B2 (en) * 2006-07-14 2009-08-04 Fawls Robert A System and method for assessing operational process risk and quality by calculating operational value at risk
US10453029B2 (en) 2006-08-03 2019-10-22 Oracle International Corporation Business process for ultra transactions
US20080154679A1 (en) * 2006-11-03 2008-06-26 Wade Claude E Method and apparatus for a processing risk assessment and operational oversight framework
US20080281678A1 (en) * 2007-05-09 2008-11-13 Mclagan Partners, Inc. Practice management analysis tool for financial advisors
US20090030761A1 (en) * 2007-07-09 2009-01-29 Infosys Technologies Ltd. Predicting financial impact of business framework
US20090024425A1 (en) * 2007-07-17 2009-01-22 Robert Calvert Methods, Systems, and Computer-Readable Media for Determining an Application Risk Rating
US8539444B2 (en) * 2008-06-30 2013-09-17 International Business Machines Corporation System and method for platform-independent, script-based application generation for spreadsheet software
US8175911B2 (en) * 2008-10-01 2012-05-08 International Business Machines Corporation System and method for inferring and visualizing correlations of different business aspects for business transformation
US8359216B2 (en) * 2008-10-01 2013-01-22 International Business Machines Corporation System and method for finding business transformation opportunities by using a multi-dimensional shortfall analysis of an enterprise
US8145518B2 (en) * 2008-10-01 2012-03-27 International Business Machines Corporation System and method for finding business transformation opportunities by analyzing series of heat maps by dimension
US20100082385A1 (en) * 2008-10-01 2010-04-01 International Business Machines Corporation System and method for determining temperature of business components for finding business transformation opportunities
US20100094685A1 (en) * 2008-10-09 2010-04-15 Amy Lauren Young System and method for determining a value for an entity
US20100198661A1 (en) * 2009-01-30 2010-08-05 Bank Of America Corporation Supplier portfolio indexing
US20100198630A1 (en) * 2009-01-30 2010-08-05 Bank Of America Corporation Supplier risk evaluation
US8185430B2 (en) * 2009-01-30 2012-05-22 Bank Of America Corporation Supplier stratification
US20130096988A1 (en) * 2011-10-05 2013-04-18 Mastercard International, Inc. Nomination engine
US20140095268A1 (en) * 2012-09-28 2014-04-03 Avaya Inc. System and method of improving contact center supervisor decision making
US20140350994A1 (en) * 2013-05-23 2014-11-27 International Business Machines Corporation Providing best practice workflow to aid user in completing project that is constantly updated based on user feedback
CN104166934A (en) * 2014-08-29 2014-11-26 税友软件集团股份有限公司 Tax revenue analysis method and system of index model for industries and tax categories
US20170140472A1 (en) * 2015-11-16 2017-05-18 Massachusetts Institute Of Technology Method and system for assessing auditing likelihood
US20170161446A1 (en) * 2015-12-04 2017-06-08 Sectra Ab Systems and Methods for Continuous Optimization of Medical Treatments
US11315061B2 (en) * 2020-04-30 2022-04-26 Microstrategy Incorporated System and method for dossier creation with responsive visualization
US11818205B2 (en) 2021-03-12 2023-11-14 Bank Of America Corporation System for identity-based exposure detection in peer-to-peer platforms

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909669A (en) * 1996-04-01 1999-06-01 Electronic Data Systems Corporation System and method for generating a knowledge worker productivity assessment
US20030065543A1 (en) * 2001-09-28 2003-04-03 Anderson Arthur Allan Expert systems and methods
US20030182181A1 (en) * 2002-03-12 2003-09-25 Kirkwood Kenneth Scott On-line benchmarking
US20040068431A1 (en) * 2002-10-07 2004-04-08 Gartner, Inc. Methods and systems for evaluation of business performance
US20040128187A1 (en) * 2002-11-15 2004-07-01 Neuberger Lisa H. Public sector value model
US20050043976A1 (en) * 2003-08-19 2005-02-24 Michelin Recherche Et Technique S.A. Method for improving business performance through analysis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068861A2 (en) * 1999-05-12 2000-11-16 Mastercard International Incorporated Benchmark analysis system
US20050144114A1 (en) 2000-09-30 2005-06-30 Ruggieri Thomas P. System and method for providing global information on risks and related hedging strategies
US7590594B2 (en) 2001-04-30 2009-09-15 Goldman Sachs & Co. Method, software program, and system for ranking relative risk of a plurality of transactions
US7401048B2 (en) 2001-06-01 2008-07-15 Jpmorgan Chase Bank, N.A. System and method for trade settlement tracking and relative ranking
CA2474662A1 (en) 2002-01-31 2003-08-07 Seabury Analytic Llc Business enterprise risk model and method
US20040054563A1 (en) 2002-09-17 2004-03-18 Douglas William J. Method for managing enterprise risk
WO2004057503A2 (en) 2002-12-20 2004-07-08 Accenture Global Services Gmbh Quantification of operational risks
AU2004248608A1 (en) 2003-06-09 2004-12-23 Greenline Systems, Inc. A system and method for risk detection, reporting and infrastructure
US20050197952A1 (en) 2003-08-15 2005-09-08 Providus Software Solutions, Inc. Risk mitigation management

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909669A (en) * 1996-04-01 1999-06-01 Electronic Data Systems Corporation System and method for generating a knowledge worker productivity assessment
US20030065543A1 (en) * 2001-09-28 2003-04-03 Anderson Arthur Allan Expert systems and methods
US20030182181A1 (en) * 2002-03-12 2003-09-25 Kirkwood Kenneth Scott On-line benchmarking
US20040068431A1 (en) * 2002-10-07 2004-04-08 Gartner, Inc. Methods and systems for evaluation of business performance
US20040128187A1 (en) * 2002-11-15 2004-07-01 Neuberger Lisa H. Public sector value model
US20050043976A1 (en) * 2003-08-19 2005-02-24 Michelin Recherche Et Technique S.A. Method for improving business performance through analysis

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8499300B2 (en) * 2004-12-20 2013-07-30 Bank Of America Corporation System and method for task management of rule based tasks
US20060136922A1 (en) * 2004-12-20 2006-06-22 Michael Zimberg System and method for task management of rule geverned tasks
US9390121B2 (en) 2005-03-18 2016-07-12 Beyondcore, Inc. Analyzing large data sets to find deviation patterns
US7720822B1 (en) * 2005-03-18 2010-05-18 Beyondcore, Inc. Quality management in a data-processing environment
US10127130B2 (en) 2005-03-18 2018-11-13 Salesforce.Com Identifying contributors that explain differences between a data set and a subset of the data set
US20060287909A1 (en) * 2005-06-21 2006-12-21 Capital One Financial Corporation Systems and methods for conducting due diligence
US20080312988A1 (en) * 2007-06-14 2008-12-18 Akzo Nobel Coatings International B.V. Performance rating of a business
US20120005115A1 (en) * 2010-06-30 2012-01-05 Bank Of America Corporation Process risk prioritization application
US8321363B2 (en) 2010-07-28 2012-11-27 Bank Of America Corporation Technology evaluation and selection application
US20120116848A1 (en) * 2010-11-10 2012-05-10 International Business Machines Corporation Optimizing business operational environments
US20120203597A1 (en) * 2011-02-09 2012-08-09 Jagdev Suman Method and apparatus to assess operational excellence
US10796232B2 (en) 2011-12-04 2020-10-06 Salesforce.Com, Inc. Explaining differences between predicted outcomes and actual outcomes of a process
US10802687B2 (en) 2011-12-04 2020-10-13 Salesforce.Com, Inc. Displaying differences between different data sets of a process

Also Published As

Publication number Publication date
US7136827B2 (en) 2006-11-14
US20050125324A1 (en) 2005-06-09
WO2005057350A2 (en) 2005-06-23
WO2005057350A3 (en) 2005-09-09

Similar Documents

Publication Publication Date Title
US7136827B2 (en) Method for evaluating a business using experiential data
US20060010032A1 (en) System, method and computer program product for evaluating an asset management business using experiential data, and applications thereof
Boone et al. Did the 2007 PCAOB disciplinary order against Deloitte impose actual costs on the firm or improve its audit quality?
US8260638B2 (en) Method and system of insuring risk
Securities et al. Summary Report of Issues Identified in the Commission Staff's Examination of Select Credit Rating Agencies
US20080154679A1 (en) Method and apparatus for a processing risk assessment and operational oversight framework
US7707103B2 (en) System and method for rating lenders
Naik et al. Do dealer firms manage inventory on a stock-by-stock or a portfolio basis?
US20140257917A1 (en) Risk Management System for Calculating Residual Risk of a Process
US20070294119A1 (en) System, method and computer program product for evaluating and rating an asset management business and associate investment funds using experiential business process and performance data, and applications thereof
US20140257918A1 (en) Risk Management System for Calculating Residual Risk of an Entity
Ittner et al. The influence of board of directors’ risk oversight on risk management maturity and firm risk-taking
Danielsen et al. Auditor fees, market microstructure, and firm transparency
Evdokimov et al. Do generalist CEOs magnify boardroom backscratching?
Torre-Enciso et al. Operational risk management for insurers
Dong Earnings management in US hospitals
Wang Accounting restatements and bank liquidity creation
Yahaya The impact of risk management committee on firm risk, with risk management practices as a mediator
Miklaszewska et al. Is reputational risk important for bank performance? Evidence from CEE-11 countries
Muriithi Distressed debt management & lessons learnt through case management: Banking industry in Kenya
Miklaszewska et al. Reputational risk: problems with understanding the concept and managing its impact
Alali et al. GCC banking companies risk management practices and its impact on their financial performance
Erenburg et al. The Paradox of “Fraud‐on‐the‐Market Theory”: Who Relies on the Efficiency of Market Prices?
Al Janabi Market liquidity and strategic asset allocation: applications to GCC stock exchanges
Ferrantino Essays on ESG and Alliances

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLAKE MORROW PARTNERS LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EICHER, JILL;REEL/FRAME:017943/0650

Effective date: 20060404

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION