US20060287335A1 - Serotonergic agents for treating sexual dysfunction - Google Patents

Serotonergic agents for treating sexual dysfunction Download PDF

Info

Publication number
US20060287335A1
US20060287335A1 US11/396,307 US39630706A US2006287335A1 US 20060287335 A1 US20060287335 A1 US 20060287335A1 US 39630706 A US39630706 A US 39630706A US 2006287335 A1 US2006287335 A1 US 2006287335A1
Authority
US
United States
Prior art keywords
alkyl
compound
drug
aryl
sexual dysfunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/396,307
Inventor
Stacey Sukoff Rizzo
Sharon Rosenzweig-Lipson
Wayne Childers
Michael Kelly
Lee Schechter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/010,575 external-priority patent/US6469007B2/en
Priority claimed from US11/330,907 external-priority patent/US20060223824A1/en
Priority to US11/396,307 priority Critical patent/US20060287335A1/en
Application filed by Wyeth LLC filed Critical Wyeth LLC
Assigned to WYETH reassignment WYETH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROSENZWEIG-LIPSON, SHARON J., KELLY, MICHAEL, SUKOFF RIZZO, STACEY J., CHILDERS, WAYNE E., SCHECHTER, LEE E.
Assigned to WYETH reassignment WYETH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROSENZWEIG-LIPSON, SHARON J., KELLY, MICHAEL, SUKOFF RIZZO, STACEY J., CHILDERS, WAYNE E., SCHECHTER, LEE E.
Priority to US11/506,514 priority patent/US7425558B2/en
Publication of US20060287335A1 publication Critical patent/US20060287335A1/en
Priority to PE2007000351A priority patent/PE20080014A1/en
Priority to TW96110786A priority patent/TW200808322A/en
Priority to ARP070101333A priority patent/AR060221A1/en
Priority to US11/841,514 priority patent/US20080070925A1/en
Assigned to WYETH LLC reassignment WYETH LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: WYETH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • A61K31/515Barbituric acids; Derivatives thereof, e.g. sodium pentobarbital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/5415Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives

Definitions

  • the invention relates to the use of novel piperazine derivatives, their use for treating, e.g., sexual dysfunction, and to pharmaceutical compositions containing the compounds.
  • novel compounds are useful as 5-HT 1A binding agents, particularly as 5-HT 1A receptor antagonists.
  • Sexual dysfunction is associated with various drug treatments including treatments using antidepressant drugs, antipsychotic drugs, and anticonvulsant drugs. This manifestation of drug treatment is a significant cause of patient non-compliance with drug treatments. Accordingly, there is a need to identify compounds that are effective for ameliorating or preventing sexual dysfunction associated with drug treatment.
  • U.S. Pat. No. 6,127,357 discloses compounds of the general formula (I): and pharmaceutically acceptable acid addition salts thereof wherein: A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups, Z is oxygen or sulfur, R is H or lower alkyl, R 1 is a mono or bicyclic aryl or heteroaryl radical, R 2 is a mono or bicyclic heteroaryl radical, and R 3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR 4 R 5 [where R 4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R 5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, ary
  • WO 97/03982 discloses compounds of the general formula (II): including enantiomers and the pharmaceutically acceptable acid addition salts thereof.
  • the invention relates to a method for treating sexual dysfunction associated with drug treatment in a patient in need thereof.
  • the method includes administering to the patient an effective amount of a compound that is a 5-HT 1A antagonist.
  • the drug treatment is antidepressant drug treatment, antipsychotic drug treatment, or anticonvulsant drug treatment.
  • the compound can be a compound of formula (I),
  • A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups
  • Z is oxygen or sulfur
  • R is H or lower alkyl
  • R 1 is a mono or bicyclic aryl or heteroaryl radical
  • R 2 is a mono or bicyclic heteroaryl radical
  • R 3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR 4 R 5 [where R 4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R 5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, aryl(lower)alkyl, cycloalkyl, or cycloalkyl(lower)alkyl or R 4 and R 5 together with the nitrogen atom to which they are both attached represent a saturated hytrocyclic ring which may contain a further heteroatom], or a group of formula OR 6 [where R 6 is lower alkyl, cycloalkyl, cycloalkyl(lower)alkyl, aryl,
  • the compound is a compound of formula (III), as described herein or a pharmaceutically acceptable salt thereof. In yet other embodiments, the compound is a compound of formula (IV) as described herein.
  • the compound can be (R)-4-cyano-N- ⁇ 2-[4-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-piperazin-1-yl]propyl ⁇ -N-pyridin-2-yl-benzamide or a pharmaceutically acceptable acid addition salt thereof (Example compound 1), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 2) or a pharmaceutically acceptable acid addition salt thereof, or (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 3) or a pharmaceutically acceptable acid addition salt thereof.
  • the drug associated with sexual dysfunction is a selective serotonin reuptake inhibitor (SSRI) (for example, fluoxetine, citolopram, escitalopram oxalate, fluvoxamine maleate, paroxetine, or sertraline), a tricyclic antidepressant (for example, desipramine, amitriptiyline, amoxipine, clomipramine, doxepin, imipramine, nortriptyline, protriptyline, or trimipramine, an aminoketone class compound (for example, bupropion).
  • SSRI selective serotonin reuptake inhibitor
  • the drug is a monoamine oxidase inhibitor (MAOI) (for example, pheneizine), a serotonin and norepinepherine reuptake inhibitor (SNRI) (for example, venlafaxine, nefazodone, milnacipran, duloxetine), a norepinephrine reuptake inhibitor (NRI) (for example, reboxetine), a partial 5-HT 1A agonist (for example, buspirone), a 5-HT 2A receptor antagonist (for example, nefazodone), a typical antipsychotic drug, or an atypical antipsychotic drug.
  • MAOI monoamine oxidase inhibitor
  • SNRI serotonin and norepinepherine reuptake inhibitor
  • NRI norepinephrine reuptake inhibitor
  • a partial 5-HT 1A agonist for example, buspirone
  • a 5-HT 2A receptor antagonist for example, nefazodone
  • antipsychotic drugs examples include aliphatic phethiazine, a piperazine phenothiazine, a butyrophenone, a substituted benzamide, and a thioxanthine. Additional examples of such drugs include haloperidol, olanzapine, clozapine, risperidone, pimozide, aripiprazol, and ziprasidone.
  • the drug is an anticonvulsant, e.g., phenobarbital, phenyloin, primidone, or carbamazepine.
  • the patient in need of treatment for sexual dysfunction is being treated with at least two drugs that are antidepressant drugs, antipsychotic drugs, anticonvulsant drugs, or a combination thereof.
  • the invention includes oral delivery of the compound for treating sexual dysfunction.
  • the compound can be, in some cases, delivered as a sustained release compound sustained release compound.
  • the sexual dysfunction comprises a deficiency in penile erection.
  • the invention also relates to a method of improving sexual function in a patient in need thereof.
  • the method includes administering to the patient a pharmaceutically effective amount of a compound that is a 5-HT 1A antagonist.
  • the compound is a compound of formula (I) or a pharmaceutically acceptable acid addition salt thereof, wherein A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups, Z is oxygen or sulfur, R is H or lower alkyl, R 1 is a mono or bicyclic aryl or heteroaryl radical, R 2 is a mono or bicyclic heteroaryl radical, and R 3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR 4 R 5 [where R 4 is hydrogen, lower alkyl, aryl or aryl
  • the invention relates to a pharmaceutical composition for treating sexual dysfunction associated with drug treatment, the composition including a compound of formula (I), formula (III), or formula (IV).
  • the drug is an antidepressant, an antipsychotic, or an anticonvulsant.
  • the compound is effective for ameliorating sexual dysfunction in an animal model of sexual dysfunction associated with drug treatment, for example, in an animal model of sexual dysfunction that is an antidepressant drug-induced model of sexual dysfunction.
  • Yet another aspect of the invention relates to a package comprising a 5-HT 1A antagonist and instructions, such that the instructions comprise instructions for treating sexual dysfunction, e.g., the instructions are for treating sexual dysfunction associated with drug treatment.
  • the invention in another aspect, relates to a method for treating memory deficits or cognitive disorders; treating alcohol, nicotine, or drug withdrawal; treating Parkinson's disease or motor disorders; treating migraine; treating eating disorders; treating sexual dysfunction; treating urinary incontinence, treating stroke; treating endocrine disorders; treating sleep disorders; treating attention deficit disorders; treating Tourette's syndrome, autism, social phobias, hyperactivity disorders or thermoregulatory disorders in a patient in need thereof, comprising providing to the patient a therapeutically effective amount of a compound of formula (III): wherein R 1 is cyano, nitro, trifluoromethyl or halogen, or pharmaceutically acceptable acid addition salts thereof.
  • FIG. 1 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were treated with intraperitoneally (i.p.) with vehicle alone (0.9% saline), bupropion (20 mg/kg), desipramine (10 mg/kg), or fluoxetine (10 mg/kg) for 14 days.
  • FIG. 2 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were administered vehicle for 6 days and administered fluoxetine on day 7, administered fluoxetine for 7 days (subchronic); or administered fluoxetine for 14 days (chronic). Animals were tested immediately following the final administration of vehicle or drug in vehicle.
  • FIG. 3 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were treated with vehicle (0.9% saline) only, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl-N-(2-pyridinyl)cyclohexanecarboxamide) (Example compound 2), (acutely or subchronically), fluoxetine, or Example compound 2 and fluoxetine.
  • FIG. 6 is a drawing representing the chemical structures of Example compound 1, Example compound 2, and Example compound 3.
  • Novel compounds of the invention have the structural formula (III): wherein R 1 is cyano, nitro, trifluoromethyl or halogen, or pharmaceutically acceptable acid addition salts thereof.
  • Halogen refers to chlorine, fluorine, bromine and iodine.
  • the compounds of Formula III contain an asymmetric carbon atom. Accordingly, they may exist in different stereoisomeric forms. In some embodiments, the (R) stereoisomer having the formula (IIIa) is used.
  • the (R) stereoisomer is substantially free of the (S) stereoisomer.
  • substantially free means that the compound is made up of a significantly greater proportion of its (R) stereoisomer than the (S) stereoisomer.
  • the compound is made up of at least about 90% by weight of its (R) stereoisomer and about 10% by weight or less of its (S) stereoisomer.
  • the compound is made up of at least about 99% by weight of its (S) stereoisomer and about 1% by weight or less of the (R) stereoisomer.
  • stereoisomers may be isolated from racemic mixtures by any method known to those skilled in the art, including high performance liquid chromatography (HPLC) and the formation and crystallization of chiral salts.
  • HPLC high performance liquid chromatography
  • Jacques, et al. Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); Wilen, S. H. Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972).
  • Examples of compounds useful for treating sexual dysfunction such as sexual dysfunction associated with the use of a drug such as an antidepressant drug, antipsychotic drug, or anticonvulsant drug include, compounds disclosed in U.S. Pat. No. 6,127,357 (compounds of formula (I); compounds disclosed in WO 95/33725; compounds disclosed in WO 95/33743 such as compounds of formula (IV), wherein, Ra and Rb are each hydrogen or methyl and Rc is hydrogen, halo or C 1-4 alkyl; or a pharmaceutically acceptable acid addition salt thereof; and compounds disclosed herein.
  • Useful compounds are those that exhibit activity as 5-HT 1A antagonists and can inhibit or prevent sexual dysfunction (e.g., as shown using an animal model of sexual dysfunction due to administration of a drug).
  • Non-limiting examples of compounds useful in the invention are (R)-4-cyano-N- ⁇ 2-[4-(2,3-dihydrobenzo[1,4]dioxin-5-yl)-piperazin-1-yl]propyl ⁇ -N-pyridin-2-yl-benzamide and pharmaceutically acceptable acid addition salts thereof (Example compound 1), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 2) and pharmaceutically acceptable acid addition salts thereof, and (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexanecar
  • the pharmaceutically acceptable salts are generally the acid addition salts which can be formed from a compound of a general formula described herein and a pharmaceutically acceptable acid such as, for example, benzoic, phosphoric, sulfuric, hydrochloric, hydrobromic, citric, maleic, malic, mandelic, mucic, nitric, fumaric, succinic, tartaric, acetic, lactic, pamoic, pantothenic, benzenesulfonic, or methanesulfonic acid.
  • the acid addition salt is hydrochloric acid.
  • Other pharmaceutically acceptable salts known to those in the art can be used.
  • the compounds of the present invention can be prepared by known methods from known starting materials that are available by conventional methods.
  • the compounds may be prepared by the general methods disclosed in EP-A-0512755 and WO 97/03982.
  • Such disclosed methods include acylating an amine of formula (IV) with a known benzoyl chloride (V) or an alternative acylating derivative thereof.
  • acylating derivatives include the acid anhydride, imidazolides (e.g., obtained form carbonyldiimidazole), or activated esters.
  • R 1 is cyano, halogen, trifluoromethyl or nitro.
  • Novel compounds of the present invention are potent 5-HT 1A binding agents that selectively bind to the 5-HT 1A receptor. Furthermore, the novel compounds of the invention are 5-HT 1A receptor antagonists when tested by standard pharmacological procedures.
  • novel compounds of formula (III) are unique from previously disclosed 5-HT 1A receptor antagonists in that they possess a superior duration of action as a 5-HT 1A receptor antagonist when administered in vivo.
  • Methods of testing the effect of an invention compound on sexual dysfunction are described infra. Such methods are useful for identifying 5-HT 1A antagonists (i.e., 5-HT 1A receptor antagonists) that are effective for treating sexual dysfunction.
  • Other methods of testing the effect of a compound on sexual dysfunction include, e.g., paired mating observations (for example, of mounting, mount attempts, intromission, mount frequency, ejaculation, mount with intromission, ejaculation latency, intromission frequency, copulation efficiency, anogenital sniffing, or post-ejaculatory interval), or assay of penile erections (e.g., determining intracavernosal blood pressure or observation of non-contact penile erections in sexually na ⁇ ve male rats).
  • Example 1 was compared to representative compounds of U.S. Pat. No. 6,127,357 and WO 97/03892.
  • the ability of the compounds to function in vivo as 5-HT 1A antagonists was assessed in rats using a Fixed Responding Model (D. Blackman, in “Operant Conditioning: An Experimental Analysis of Behavior”, J. Butcher, ed., Methuen and Co., Ltd., London). In this model rats are trained to respond (lever pressing) under a fixed-ratio 30 schedule of food presentation in order to receive a food pellet reinforcer. Administration of the 5-HT 1A agonist 8-OH-DPAT reduces the control response rate (assessed by administration of vehicle placebo). The 5-HT 1A antagonist activity of a test compound is determined by measuring its ability to antagonize this agonist-induced decrease in response rate.
  • the duration of action in the Fixed Responding Model was assessed by pre-treating animals with test compound and then challenging with a 0.3 mg/kg dose of the 5-HT 1A agonist 8-OH-DPAT at various time intervals after the administration of test compound. All drug and vehicle administrations were made by the subcutaneous route. Doses of the test compounds selected for comparison were those that caused a ten-fold shift in the 8-OH-DPAT dose-response curve when administered 30 minutes prior to agonist. The doses selected for the duration of action comparison are listed in Table 3. TABLE 3 Dose Which Shifts Agonist Dose-response Curve by 10-fold Test Compound (mg/kg, sc) Compound A ( FIG. 1 ) 0.03 Compound B ( FIG. 1 ) 0.1 Example 1 1.0
  • Results are normalized to control values, with 100% being the control response rate observed when vehicle is administered rather than the agonist 8-OH-DPAT.
  • Example compound 1 As can be seen from Table 4, all three test compounds (Compound A, B, and Example compound 1) completely antagonize the agonist-induced decrease in responding 30 minutes after their administration, returning the response rate to control levels. However, when agonist is given 2 hours following test drug administration (Column 3), the 5-HT 1A antagonist effects of compounds A and B no longer return the response rate to control levels while Example compound 1 still displays complete 5-HT 1A antagonist effects. By four hours post-administration (Column 4), the 5-HT 1A antagonist effects of Compounds A and B are completely lost, while Example compound 1 continues to provide complete antagonism of the agonist-induced decrease in response rate. Thus, the duration of action of Example compound 1 is longer than 4 hours, while those of Compounds A and B are somewhere between 30 minutes and 2 hours.
  • Compounds of the present invention may be used to treat a subject suffering from CNS disorders such as schizophrenia, (and other psychotic disorders such as paranoia and mano-depressive illness), Parkinson's disease and other motor disorders, anxiety (e.g., generalized anxiety disorders, panic attacks, and obsessive compulsive disorders), depression (such as by the potentiation of serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors), Tourette's syndrome, migraine, autism, attention deficit disorders and hyperactivity disorders.
  • CNS disorders such as schizophrenia, (and other psychotic disorders such as paranoia and mano-depressive illness), Parkinson's disease and other motor disorders, anxiety (e.g., generalized anxiety disorders, panic attacks, and obsessive compulsive disorders), depression (such as by the potentiation of serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors), Tourette's syndrome, migraine, autism, attention deficit disorders
  • Compounds of the present invention may also be useful for the treatment of sleep disorders, social phobias, pain, thermoregulatory disorders, endocrine disorders, urinary incontinence, vasospasm, stroke, eating disorders such as for example obesity, anorexia and bulimia, sexual dysfunction, and the treatment of alcohol, drug and nicotine withdrawal.
  • Sexual dysfunction can be in a male or female subject.
  • the condition can include erectile dysfunction as well as disorders of arousal, motivation, desire, decreased libido, anorgasmia, delayed ejaculation, premature ejaculation, and sexual anxiety disorders, sexual pain disorders, sexual aversion disorders.
  • the cause can be undefined or can be due to a known cause, e.g., substance-related sexual dysfunction.
  • Antidepressant drugs include, for example, serotonin reuptake inhibitors (SRIs), norepinephrine reuptake inhibitors (NRIs), combined serotonin-norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOs), reversible inhibitors of monoamine oxidase (RIMAs), phosphodiesterase-4 (PDE4) inhibitors, corticotropin releasing factor (CRF) antagonists (e.g., compounds described in International Patent Specification Nos.
  • SRIs serotonin reuptake inhibitors
  • NRIs norepinephrine reuptake inhibitors
  • SNRIs combined serotonin-norepinephrine reuptake inhibitors
  • MAOs monoamine oxidase inhibitors
  • RIMAs reversible inhibitors of monoamine oxidase
  • PDE4 phosphodiesterase-4
  • CRF corticotropin
  • WO 94/13643, WO 94/13644, WO 94/13661, WO 94/13676 and WO 94/13677 alpha.-adrenoreceptor antagonists
  • alpha.-adrenoreceptor antagonists e.g., buproprion, lithium, nefazodone, trazodone, viloxazine, and pharmaceutically acceptable salts thereof, and sibutramine.
  • antidepressants include triple uptake inhibitors such as DOV 216303 and DOV 2194; melatonin agonists such as agomelotine, super neurotransmitter uptake blockers (SNUBs; e.g., NS-2389 from GlaxoSmithKline and Neurosearch; (R)-DDMA from Sepracor), and substance P/neurokinin receptor antagonists (e.g., aprepitant/MK-869 from Merck; NKP-608 from Novartis; CPI-122721 from Pfizer; R673 from Roche; TAK637 from Takeda; and GW-97599 from GlaxoSmithKline).
  • triple uptake inhibitors such as DOV 216303 and DOV 2194
  • melatonin agonists such as agomelotine, super neurotransmitter uptake blockers (SNUBs; e.g., NS-2389 from GlaxoSmithKline and Neurosearch; (R)-DDMA from Sepracor)
  • NaSSAs noradrenergic and specific serotonergic antidepressants
  • NRIs examples include tertiary amine tricyclics and secondary amine tricyclics.
  • Specific examples of tertiary amine tricyclics include, without limitation, amitriptyline, clomipramine, doxepin, imipramine and trimipramine, and pharmaceutically acceptable salts thereof.
  • Suitable examples of secondary amine tricyclics include, without limitation, amoxapine, desipramine, maprotiline, nortriptyline and protriptyline, and pharmaceutically acceptable salts thereof.
  • Another NRI that may be associated with sexual dysfunction is reboxetine (2-[.alpha.-(2-ethoxy)phenoxy-benzyl]morpholine), usually administered as the racemate.
  • SSRIs that may be associated with sexual dysfunction that can be treated using compounds and methods described herein include, without limitation, citalopram (1-[3-(dimethylamino)propyl]-(4-fluorophenyl)-1,3-dihydr-o-5-isobenzofurancarbonitrile; fluoxetine (N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine, marketed in the hydrochloride salt form and as the racemic mixture of its two isoforms; fluoxetine/olanzapine in combination; fluvoxamine (5-methoxy-1-[4-(trifluoromethyl)phenyl]-1-pentanone O-(2-aminoethyl)oxime; paroxetine (trans-( ⁇ )-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine); sertraline, (1S-cis)-4-(3,
  • MAOIs that may be associated with sexual dysfunction include, without limitation, isocarboxazid, phenelzine, selegiline and tranylcypromine, and pharmaceutically acceptable salts thereof.
  • Reversible MAOIs that may be associated with sexual dysfunction include, without limitation, moclobemide (4-chloro-N-[2-(4-morpholinyl)ethyl]benzamide; selegiline, and pharmaceutically acceptable salts thereof.
  • SNRIs that can be associated with sexual dysfunction include, without limitation, venlafaxine and pharmaceutically acceptable salts and analogs, including the O-desmethylvenlafaxine succinate salt; milnacipran (N,N-diethyl-2-aminomethyl-1-phenylcyclopropanecarboxamide; mirtazapine; nefazodone; duloxetine; and pharmaceutically acceptable salts thereof.
  • venlafaxine and pharmaceutically acceptable salts and analogs including the O-desmethylvenlafaxine succinate salt; milnacipran (N,N-diethyl-2-aminomethyl-1-phenylcyclopropanecarboxamide; mirtazapine; nefazodone; duloxetine; and pharmaceutically acceptable salts thereof.
  • Examples of specific antidepressants that can be associated with sexual dysfunction suitable for treatment using a compounds and methods described herein include, without limitation, adinazolam, alaproclate, alnespirone, amineptine, amitriptyline, amitriptyline/chlordiazepoxide combination, amoxapine, aprepitant, atipamezole, azamianserin, apelinaprine, befuraline, bifemelane, binodaline, bipenamol, brofaromine, buproprion, caroxazone, cericlamine, cianopramine, cimoxatone, citalopram, clemeprol, clomipramine, clovoxamine, dazepinil, deanol, demexiptiline, desipramine, O-desmethylvenlafaxine, dibenzepin, dothiepin, doxepin, droxidopa, duloxetine, el
  • anti-anxiety agents are associated with sexual dysfunction, which can be treated using compounds and methods described herein.
  • anti-anxiety agents may include, without limitation, neurokinin receptor (NK) antagonists (e.g., saredutant and osanetant) and corticotropin releasing factor (CRF) antagonists.
  • NK neurokinin receptor
  • CRF corticotropin releasing factor
  • Antipsychotic drugs are also associated with sexual dysfunction that can be treated using a 5-HT 1A antagonist as described herein.
  • Such drugs include, without limitation, a typical or atypical antipsychotic drug, for example, an aliphatic phethiazine, a piperazine phenothiazine, a butyrophenone, a substituted benzamide, or a thioxanthine.
  • drugs include amisulpiride, aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, loxapine, mesoridazine, molindone, olanzapine, perphenazine, pimozide, quetiapine, risperidone, seroquel, supiride, thioridazine, thiothixene, trifluoperazine, ziprasidone, and (S)-2-(benzylamino-methyl)-2,3,8,9-tetrahydro-7H-1,4-dioxino[2,3-e]indol-8-one, a D2 partial agonist, that is disclosed in U.S. Pat. No. 5,756,532; or pharmaceutically acceptable salts thereof.
  • 5-HT 1A receptor antagonists are also useful for treating sexual dysfunction in patients being treated with a combination of drugs, e.g., a combination of one or more antidepressant and antipsychotic compounds.
  • Anticonvulsant treatment is also associated with sexual dysfunction that can be treated with compounds disclosed herein. Examples of anticonvulsants associated with sexual dysfunction include phenobarbital, phenytoin, primidone, and carbamazepine.
  • Compounds of the present invention are also useful for the treatment of cognitive dysfunction.
  • compounds of the present invention may be useful for the treatment of cognitive dysfunction associated with mild cognitive impairment (MCI) Alzheimer's disease and other dementias including Lewy Body, vascular, and post stroke dementias.
  • MCI mild cognitive impairment
  • Cognitive dysfunction associated with surgical procedures, traumatic brain injury or stroke may also be treated in accordance with the present invention.
  • compounds of the present invention may be useful for the treatment of diseases in which cognitive dysfunction is a co-morbidity such as, for example, Parkinson's disease, autism and attention deficit disorders.
  • Prodrugs as used herein with respect to providing a compound or substance covered by this invention, means either directly administering such a compound or substance, or administering a prodrug, derivative, or analog which will form an equivalent amount of the compound or substance within the body.
  • Prodrugs can be prepared such as described in Design of Prodrugs , Bundgaard, H. ed., (Elsevier, N.Y. 1985); Prodrugs as Novel Drug Delivery Systems , Higuchi, T and Stella, V. eds, (American Chemical Society, Washington, D.C. 1975); Design of Biopharmaceutical Properties through Prodrugs and Analogs , Roche, E.
  • Compounds as described herein are useful for the preparation of a medicament for use in treating a sexual disorder, e.g., a sexual disorder associated with use of a drug such as an antidepressant drug, an antipsychotic drug, an anticonvulsant drug, or a combination of one or more of such drugs.
  • a sexual disorder e.g., a sexual disorder associated with use of a drug such as an antidepressant drug, an antipsychotic drug, an anticonvulsant drug, or a combination of one or more of such drugs.
  • the compounds of the present invention may be administered orally or parentally, neat or in combination with conventional pharmaceutical carriers.
  • Applicable solid carriers can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders, tablet-disintegrating agents or encapsulating materials.
  • the carrier is a finely divided solid that is in admixture with the finely divided active ingredient.
  • the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired.
  • the powders and tablets may contain up to 99% of the active ingredient.
  • Suitable solid carriers include, for example and without limitation, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
  • Liquid carriers may be used in preparing solutions, suspensions, emulsions, syrups and elixirs.
  • the active ingredient of this invention can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both, or pharmaceutically acceptable oils or fat.
  • the liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
  • suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
  • suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above, e.g., cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g., glycols) and their derivatives, and oils (e.g., fractionated coconut oil and arachis oil).
  • the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate.
  • Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.
  • Liquid pharmaceutical compositions that are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously.
  • Oral administration may be either in liquid or solid composition form.
  • the pharmaceutical compositions containing the present compounds are in unit dosage form, e.g., as tablets or capsules. In such form, the composition is sub-divided in unit dosages containing appropriate quantities of the active ingredients.
  • the unit dosage forms can be packaged compositions, for example, packaged powders, vials, ampoules, prefilled syringes or sachets containing liquids.
  • the unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.
  • the therapeutically effective dosage to be used may be varied or adjusted by the physician and generally ranges from 0.5 mg to 750 mg, according to the specific condition(s) being treated and the size, age and response pattern of the patient.
  • a packaged composition can also include instructions for use, e.g., to treat a pre-existing condition of sexual dysfunction or to prevent or ameliorate an anticipated condition of sexual dysfunction such as sexual dysfunction associated with a drug treatment (e.g., treatment with an antidepressant such as an SSRI, an antipsychotic drug, or an anticonvulsant drug).
  • a drug treatment e.g., treatment with an antidepressant such as an SSRI, an antipsychotic drug, or an anticonvulsant drug.
  • An animal model was used to demonstrate the utility of treating or preventing sexual dysfunction, e.g., sexual dysfunction associated with SSRI treatment, with a compound that can act as a 5-HT 1A antagonist.
  • the animal model is based on the finding that sexually experienced rats that are administered an SSRI, a drug used to treat certain conditions such as depression, display a reduction in the number of non-contact penile erections.
  • SSRI treatment is associated with sexual dysfunction in human subjects.
  • the animal model exposes sexually experienced male rats (Sprague-Dawley rats) to female rats in estrous in a novel testing arena that is not the regular housing environment.
  • rats that were handled and tested as described above were treated acutely: rats were treated with vehicle for 6 days, and on the test day (day 7) instead of vehicle, the animals received a single dose of fluoxetine in vehicle (i.p.).
  • fluoxetine was administered each day for 7 days and the animals were evaluated on test day 7.
  • fluoxetine was administered each day for 14 days and the animals were tested on day 14.
  • Each fluoxetine dose was 10 mg/kg in vehicle and was delivered i.p. on each of the test days as described above. The testing session for each section of the study was begun immediately following compound administration and the behavior observed for 30 minutes immediately following the drug administration.
  • a single acute dose of a compound ameliorated sexual dysfunction when the compound was administered after a period of time in which some level of drug-induced sexual dysfunction had occurred.
  • acute treatment of sexual dysfunction can result in an increased (e.g., normal) level of sexual functioning.
  • Example compound 2 or Example compound 3 were administered acutely after 7 or 14 days of fluoxetine treatment, and produced a complete and significant reversal of fluoxetine-induced sexual dysfunction.
  • These data indicate that acute administration of a 5-HT 1A antagonist with a drug that induces sexual dysfunction is useful for ameliorating the effects of the drug associated with sexual dysfunction.
  • These data also indicate that acute treatment with a 5-HT 1A antagonist alone improves sexual function ( FIG. 3 ).
  • Example compound 3 was administered to sexually experienced male rats using an acute schedule.
  • rats were treated with vehicle only on days 1-13 then administered a single acute dose of 0.1 mg/kg of the compound (group 1), vehicle only for days 1-13 and a single dose of 1.0 mg/kg compound in vehicle on day 14 (group 2), only vehicle on days 1-14 (group 3), fluoxetine on days 1-14 (group 4), fluoxetine on days 1-13 and a single administration of 0.1 mg/kg of the compound and fluoxetine on day 14 (group 5); and fluoxetine on days 1-13 and a single dose of 1.0 mg/kg compound with fluoxetine on day 14 (group 6).
  • the effects of 14 day chronic treatment of the animal model is tested in an animal provided with a 5-HT 1A antagonist that is administered orally (p.o.) or i.p., or fluoxetine (i.p.).
  • the effect of the two treatments on penile erections in sexually experienced male rats is tested.
  • the ability of the compounds to affect the number of non-contact penile erections relative to vehicle treated animals is determined and the results between the two treatment regimes are compared. It is expected that a compound useful for treating SSRI-related sexual dysfunction is will exhibit minimal or no effects on sexual function as determined by the assay relative to SSRI-treated animals.

Abstract

Methods and compositions are provided for treating sexual dysfunction, e.g., sexual dysfunction associated with drug treatment, using 5-HT1A receptor antagonists.

Description

  • This patent application is a continuation-in-part of co-pending application Ser. No. 11/330,907, filed on Jan. 11, 2006; which is a continuation of application Ser. No. 10/441,536, filed May, 20, 2003; which is a continuation of application Ser. No. 10/218,251, filed on Aug. 14, 2002; which is a continuation of application Ser. No. 10/010,575, filed Nov. 13, 2001; which claims the benefit of provisional application Ser. No. 60/253,301, filed Nov. 28, 2000 and provisional application Ser. No. 60/297,814, filed Jun. 13, 2001, each of which is hereby incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The invention relates to the use of novel piperazine derivatives, their use for treating, e.g., sexual dysfunction, and to pharmaceutical compositions containing the compounds. The novel compounds are useful as 5-HT1A binding agents, particularly as 5-HT1A receptor antagonists.
  • BACKGROUND
  • Sexual dysfunction is associated with various drug treatments including treatments using antidepressant drugs, antipsychotic drugs, and anticonvulsant drugs. This manifestation of drug treatment is a significant cause of patient non-compliance with drug treatments. Accordingly, there is a need to identify compounds that are effective for ameliorating or preventing sexual dysfunction associated with drug treatment.
  • U.S. Pat. No. 6,127,357 discloses compounds of the general formula (I):
    Figure US20060287335A1-20061221-C00001

    and pharmaceutically acceptable acid addition salts thereof wherein:
    A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups,
    Z is oxygen or sulfur,
    R is H or lower alkyl,
    R1 is a mono or bicyclic aryl or heteroaryl radical,
    R2 is a mono or bicyclic heteroaryl radical, and
    R3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR4R5 [where R4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, aryl(lower)alkyl, cycloalkyl, or cycloalkyl(lower)alkyl or R4 and R5 together with the nitrogen atom to which they are both attached represent a saturated hytrocyclic ring which may contain a further heteroatom], or a group of formula OR6 [where R6 is lower alkyl, cycloalkyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl or heteroaryl(lower)alkyl].
  • WO 97/03982 discloses compounds of the general formula (II):
    Figure US20060287335A1-20061221-C00002

    including enantiomers and the pharmaceutically acceptable acid addition salts thereof.
  • The compounds of formula (II) fall within the disclosure of U.S. Pat. No. 6,127,357 but are not specifically disclosed therein. Compounds of Formula II were taught to have potent 5-HT1A antagonist activity in vivo when administered by the oral route.
  • SUMMARY
  • It has been found that compounds that are 5-HT1A receptor antagonists are useful for treating sexual dysfunction, e.g., sexual dysfunction associated with drug treatment such as drug treatment with an antidepressant, an antipsychotic, or an anticonvulsant. Accordingly, the invention relates to a method for treating sexual dysfunction associated with drug treatment in a patient in need thereof. The method includes administering to the patient an effective amount of a compound that is a 5-HT1A antagonist. In some embodiments, the drug treatment is antidepressant drug treatment, antipsychotic drug treatment, or anticonvulsant drug treatment. The compound can be a compound of formula (I),
    Figure US20060287335A1-20061221-C00003
  • or a pharmaceutically acceptable acid addition salt thereof such that
  • A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups,
  • Z is oxygen or sulfur,
  • R is H or lower alkyl,
  • R1 is a mono or bicyclic aryl or heteroaryl radical,
  • R2 is a mono or bicyclic heteroaryl radical, and
  • R3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR4R5 [where R4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, aryl(lower)alkyl, cycloalkyl, or cycloalkyl(lower)alkyl or R4 and R5 together with the nitrogen atom to which they are both attached represent a saturated hytrocyclic ring which may contain a further heteroatom], or a group of formula OR6 [where R6 is lower alkyl, cycloalkyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl or heteroaryl(lower)alkyl].
  • In other embodiments, the compound is a compound of formula (III), as described herein or a pharmaceutically acceptable salt thereof. In yet other embodiments, the compound is a compound of formula (IV) as described herein.
  • The compound can be (R)-4-cyano-N-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-piperazin-1-yl]propyl}-N-pyridin-2-yl-benzamide or a pharmaceutically acceptable acid addition salt thereof (Example compound 1), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 2) or a pharmaceutically acceptable acid addition salt thereof, or (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 3) or a pharmaceutically acceptable acid addition salt thereof.
  • In certain embodiments of the invention the drug associated with sexual dysfunction is a selective serotonin reuptake inhibitor (SSRI) (for example, fluoxetine, citolopram, escitalopram oxalate, fluvoxamine maleate, paroxetine, or sertraline), a tricyclic antidepressant (for example, desipramine, amitriptiyline, amoxipine, clomipramine, doxepin, imipramine, nortriptyline, protriptyline, or trimipramine, an aminoketone class compound (for example, bupropion). In some embodiments, the drug is a monoamine oxidase inhibitor (MAOI) (for example, pheneizine), a serotonin and norepinepherine reuptake inhibitor (SNRI) (for example, venlafaxine, nefazodone, milnacipran, duloxetine), a norepinephrine reuptake inhibitor (NRI) (for example, reboxetine), a partial 5-HT1A agonist (for example, buspirone), a 5-HT2A receptor antagonist (for example, nefazodone), a typical antipsychotic drug, or an atypical antipsychotic drug. Examples of such antipsychotic drugs include aliphatic phethiazine, a piperazine phenothiazine, a butyrophenone, a substituted benzamide, and a thioxanthine. Additional examples of such drugs include haloperidol, olanzapine, clozapine, risperidone, pimozide, aripiprazol, and ziprasidone. In some cases, the drug is an anticonvulsant, e.g., phenobarbital, phenyloin, primidone, or carbamazepine. In some cases, the patient in need of treatment for sexual dysfunction is being treated with at least two drugs that are antidepressant drugs, antipsychotic drugs, anticonvulsant drugs, or a combination thereof.
  • In certain embodiments, the invention includes oral delivery of the compound for treating sexual dysfunction. The compound can be, in some cases, delivered as a sustained release compound sustained release compound. In other embodiments of the invention, the sexual dysfunction comprises a deficiency in penile erection.
  • The invention also relates to a method of improving sexual function in a patient in need thereof. The method includes administering to the patient a pharmaceutically effective amount of a compound that is a 5-HT1A antagonist. In some embodiments, the compound is a compound of formula (I)
    Figure US20060287335A1-20061221-C00004

    or a pharmaceutically acceptable acid addition salt thereof, wherein
    A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups,
    Z is oxygen or sulfur,
    R is H or lower alkyl,
    R1 is a mono or bicyclic aryl or heteroaryl radical,
    R2 is a mono or bicyclic heteroaryl radical, and
    R3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR4R5 [where R4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, aryl(lower)alkyl, cycloalkyl, or cycloalkyl(lower)alkyl or R4 and R5 together with the nitrogen atom to which they are both attached represent a saturated hytrocyclic ring which may contain a further heteroatom], or a group of formula OR6 [where R6 is lower alkyl, cycloalkyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl or heteroaryl(lower)alkyl]; or formula (III)
    Figure US20060287335A1-20061221-C00005

    such that R1 is cyano, nitro, trifluoromethyl or halogen, or a pharmaceutically acceptable acid addition salt thereof; or formula (IV)
    Figure US20060287335A1-20061221-C00006

    such that, Ra and Rb are each hydrogen or methyl and Rc is hydrogen, halo or C 1-4 alkyl; or a pharmaceutically acceptable acid addition salt thereof. In some embodiments, of the method, the compound is Example compound 1, Example compound 2, or Example compound 3.
  • In another aspect, the invention relates to a pharmaceutical composition for treating sexual dysfunction associated with drug treatment, the composition including a compound of formula (I), formula (III), or formula (IV). In some embodiments, the drug is an antidepressant, an antipsychotic, or an anticonvulsant. In other embodiments, the compound is effective for ameliorating sexual dysfunction in an animal model of sexual dysfunction associated with drug treatment, for example, in an animal model of sexual dysfunction that is an antidepressant drug-induced model of sexual dysfunction.
  • Yet another aspect of the invention relates to a package comprising a 5-HT1A antagonist and instructions, such that the instructions comprise instructions for treating sexual dysfunction, e.g., the instructions are for treating sexual dysfunction associated with drug treatment.
  • In another aspect, the invention relates to a method for treating memory deficits or cognitive disorders; treating alcohol, nicotine, or drug withdrawal; treating Parkinson's disease or motor disorders; treating migraine; treating eating disorders; treating sexual dysfunction; treating urinary incontinence, treating stroke; treating endocrine disorders; treating sleep disorders; treating attention deficit disorders; treating Tourette's syndrome, autism, social phobias, hyperactivity disorders or thermoregulatory disorders in a patient in need thereof, comprising providing to the patient a therapeutically effective amount of a compound of formula (III):
    Figure US20060287335A1-20061221-C00007

    wherein R1 is cyano, nitro, trifluoromethyl or halogen, or pharmaceutically acceptable acid addition salts thereof.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
  • Other features and advantages of the invention will be apparent from the detailed description, drawings, and from the claims.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were treated with intraperitoneally (i.p.) with vehicle alone (0.9% saline), bupropion (20 mg/kg), desipramine (10 mg/kg), or fluoxetine (10 mg/kg) for 14 days.
  • FIG. 2 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were administered vehicle for 6 days and administered fluoxetine on day 7, administered fluoxetine for 7 days (subchronic); or administered fluoxetine for 14 days (chronic). Animals were tested immediately following the final administration of vehicle or drug in vehicle.
  • FIG. 3 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were treated with vehicle (0.9% saline) only, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl-N-(2-pyridinyl)cyclohexanecarboxamide) (Example compound 2), (acutely or subchronically), fluoxetine, or Example compound 2 and fluoxetine. The treatment groups were as follows (from left to right in the Fig.): Group 1=vehicle on days 1-6, a single dose of Example compound 2 on day 7; Group 2=Example compound 2 on days 1-7; Group 3=vehicle only on days 1-7; Group 4=fluoxetine on days 1-7; Group 5=fluoxetine on days 1-6 and Example compound 2+fluoxetine on day 7; Group 6=Example compound 2+fluoxetine on days 1-7. Animals were tested immediately after the final treatment. Drugs and compounds were delivered in vehicle.
  • FIG. 4 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were treated with the following: (from left to right in the Fig.) Group 1=vehicle only on days 1-13+a single administration of 0.1 mg/kg (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 3) on day 14; Group 2=vehicle only on days 1-13+a single acute administration of 1.0 mg/kg Example compound 3 on day 14; Group 3=vehicle only on days 1-14; Group 4=fluoxetine on days 1-14; Group 5=fluoxetine only on days 1-13+single administration of 0.1 mg/kg Example compound 3+fluoxetine on day 14; Group 6=fluoxetine days 1-13+single administration of 1.0 mg/kg Example compound 3+fluoxetine on day 14. Animals were tested immediately after the final treatment on day 14. Drugs and compounds were delivered in vehicle.
  • FIG. 5 is a bar graph depicting the results of experiments assaying the number of non-contact penile erections in a 30 minute test period in sexually experienced rats that were treated with the following: (from left to right in the graph): Group 1=Example compound 2 for 14 days; Group 2=Example compound 3 for 14 days; Group 3=vehicle alone for 14 days; Group 4=fluoxetine for 14 days; Group 5=Example compound 2+fluoxetine for 14 days; Group 6=Example compound 3+fluoxetine for 14 days. Animals were tested immediately after administration of the final treatment. Drugs and compounds were delivered in vehicle.
  • FIG. 6 is a drawing representing the chemical structures of Example compound 1, Example compound 2, and Example compound 3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Novel compounds of the invention have the structural formula (III):
    Figure US20060287335A1-20061221-C00008

    wherein R1 is cyano, nitro, trifluoromethyl or halogen, or pharmaceutically acceptable acid addition salts thereof.
  • Halogen, as used herein, refers to chlorine, fluorine, bromine and iodine.
  • The compounds of Formula III contain an asymmetric carbon atom. Accordingly, they may exist in different stereoisomeric forms. In some embodiments, the (R) stereoisomer having the formula (IIIa) is used.
    Figure US20060287335A1-20061221-C00009
  • In accordance with some embodiments of the invention, the (R) stereoisomer is substantially free of the (S) stereoisomer. Substantially free, as used herein, means that the compound is made up of a significantly greater proportion of its (R) stereoisomer than the (S) stereoisomer. In certain embodiments, the compound is made up of at least about 90% by weight of its (R) stereoisomer and about 10% by weight or less of its (S) stereoisomer. In other embodiments of the invention, the compound is made up of at least about 99% by weight of its (S) stereoisomer and about 1% by weight or less of the (R) stereoisomer. In some cases, stereoisomers may be isolated from racemic mixtures by any method known to those skilled in the art, including high performance liquid chromatography (HPLC) and the formation and crystallization of chiral salts. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); Wilen, S. H. Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972).
  • Examples of compounds useful for treating sexual dysfunction such as sexual dysfunction associated with the use of a drug such as an antidepressant drug, antipsychotic drug, or anticonvulsant drug include, compounds disclosed in U.S. Pat. No. 6,127,357 (compounds of formula (I); compounds disclosed in WO 95/33725; compounds disclosed in WO 95/33743 such as compounds of formula (IV),
    Figure US20060287335A1-20061221-C00010

    wherein, Ra and Rb are each hydrogen or methyl and Rc is hydrogen, halo or C 1-4 alkyl; or a pharmaceutically acceptable acid addition salt thereof; and compounds disclosed herein.
  • Useful compounds are those that exhibit activity as 5-HT1A antagonists and can inhibit or prevent sexual dysfunction (e.g., as shown using an animal model of sexual dysfunction due to administration of a drug). Non-limiting examples of compounds useful in the invention are (R)-4-cyano-N-{2-[4-(2,3-dihydrobenzo[1,4]dioxin-5-yl)-piperazin-1-yl]propyl}-N-pyridin-2-yl-benzamide and pharmaceutically acceptable acid addition salts thereof (Example compound 1), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 2) and pharmaceutically acceptable acid addition salts thereof, and (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide (Example compound 3) and pharmaceutically acceptable acid addition salts thereof (FIG. 6).
  • The pharmaceutically acceptable salts are generally the acid addition salts which can be formed from a compound of a general formula described herein and a pharmaceutically acceptable acid such as, for example, benzoic, phosphoric, sulfuric, hydrochloric, hydrobromic, citric, maleic, malic, mandelic, mucic, nitric, fumaric, succinic, tartaric, acetic, lactic, pamoic, pantothenic, benzenesulfonic, or methanesulfonic acid. In some embodiments of the invention the acid addition salt is hydrochloric acid. Other pharmaceutically acceptable salts known to those in the art can be used.
  • The compounds of the present invention can be prepared by known methods from known starting materials that are available by conventional methods. For example the compounds may be prepared by the general methods disclosed in EP-A-0512755 and WO 97/03982.
  • Such disclosed methods include acylating an amine of formula (IV) with a known benzoyl chloride (V) or an alternative acylating derivative thereof. Examples of acylating derivatives include the acid anhydride, imidazolides (e.g., obtained form carbonyldiimidazole), or activated esters.
    Figure US20060287335A1-20061221-C00011
  • wherein R1 is cyano, halogen, trifluoromethyl or nitro.
  • Novel compounds of the present invention are potent 5-HT1A binding agents that selectively bind to the 5-HT1A receptor. Furthermore, the novel compounds of the invention are 5-HT1A receptor antagonists when tested by standard pharmacological procedures.
  • In addition, the novel compounds of formula (III) are unique from previously disclosed 5-HT1A receptor antagonists in that they possess a superior duration of action as a 5-HT1A receptor antagonist when administered in vivo.
  • EXAMPLES
  • The present invention is illustrated by reference to the following examples and additional information. The examples of experiments are provided for illustrative purposes only. They are not to be construed as limiting the scope or content of the invention in any way. Those skilled in the art of organic synthesis may be aware of still other synthetic routes to the invention compound. The reagents and intermediates used herein are either commercially available or prepared according to standard literature procedures.
  • Methods of testing the effect of an invention compound on sexual dysfunction are described infra. Such methods are useful for identifying 5-HT1A antagonists (i.e., 5-HT1A receptor antagonists) that are effective for treating sexual dysfunction. Other methods of testing the effect of a compound on sexual dysfunction are known in the art and include, e.g., paired mating observations (for example, of mounting, mount attempts, intromission, mount frequency, ejaculation, mount with intromission, ejaculation latency, intromission frequency, copulation efficiency, anogenital sniffing, or post-ejaculatory interval), or assay of penile erections (e.g., determining intracavernosal blood pressure or observation of non-contact penile erections in sexually naïve male rats).
  • Example 1 (R)-4-Cyano-N-{2-[4(2,3-Dihydro-Benzo[1,4]dioxin-5-yl)-piperazin-1-yl]-Propyl}-N-Pyridin-2-yl-Benzamide (Example compound 1)
  • A solution of {(R)-2-[4-(2,3-dihydrobenzo[1,4]dioxin-5-yl)piperazin-1-yl]propyl}-pyridin-2-ylamine (0.846 g, 2.38 mmol) in dichloromethane (20 mL) was treated at 0° C. with the dropwise addition of a dichloromethane solution of 4-cyanobenzoyl chloride (1.1 equivalents, 2.63 mmol in 5 mL). After stirring for 16 hours the mixture was poured onto hexane (100 mL) to precipitate the titled compound as its monohydrochloride salt (white solid, 1.2 g, 97% yield), which was recrystallized from dichloromethane/hexane.
  • MS (+) 484 (M+H)+.
  • m.p. 239-240° C.
  • [α]25/D=+56 (c=0.6, MeOH)
  • Elemental Analysis for: C28H29N5O3.1.0 HCl
  • Calculated: C, 64.67; H, 5.81; N, 13.47:
  • Found: C, 64.69; H, 5.93; N, 13.52:
  • In order to demonstrate the superior duration of action of the compounds of formula (III), Example 1 was compared to representative compounds of U.S. Pat. No. 6,127,357 and WO 97/03892.
  • Representative compounds of U.S. Pat. No. 6,127,357 possess a cyclohexylamide moiety and a 2-methoxyphenylpiperazine grouping. The most potent example of this general structure (and the most potent compound taught in U.S. Pat. No. 6,127,357) is compound A, described as “Example 3” in U.S. Pat. No. 6,127,357. The only other class of compounds in U.S. Pat. No. 6,127,357 for which data are given is that which possess a cyclohexylamide moiety and a benzodioxinylpiperazine grouping (“Example 17” in U.S. Pat. No. 6,127,357). A small subset of this class of compounds is specifically claimed in WO97/03892, with the preferred compound being compound B (“Example A1” in WO97/03892). Therefore, these two preferred examples from EP-A-0512755 and WO 97/03892 have been chosen as representatives for comparison to the compounds of formula (III).
    Figure US20060287335A1-20061221-C00012
  • Example 2
  • Binding Profile
  • Compounds were tested for binding to cloned human 5-HT1A receptors stably transfected into CHO cells using [3H]8-OH-DPAT as the 5-HT1A radioligand (according to general procedure described in J. Dunlop et al., J. Pharmacol. Tox. Methods, 40, 47-55 (1998)). As shown in Table 1, compounds of the present invention display high affinity for the 5-HT1A receptor.
  • Example 3
  • In Vitro Functional Activity
  • A clonal cell line stably transfected with the human 5-HT1A receptor was utilized to determine the intrinsic activity of compounds (according to the general procedure described in J. Dunlop et al., J. Pharmacol. Tox. Methods, 40, 47-55 (1998)). Data are provided in Table 1. As shown in Table 1, compounds of the present invention antagonized the ability of 10 nM 8-OH-DPAT to inhibit forskolin-stimulated cAMP production in a concentration-related fashion.
    TABLE 1
    5-HT1A Antagonist
    Activity
    5-HT1A Affinity cAMP Assay
    Compound Ki (nM) IC50 (nM)
    Example 1 1.6 25
    Compound A 0.96 7
    Compound B 0.97 20
  • Example 4
  • In Vivo Functional Activity
  • The ability of the compounds to function in vivo as 5-HT1A antagonists was assessed in rats using a Fixed Responding Model (D. Blackman, in “Operant Conditioning: An Experimental Analysis of Behavior”, J. Butcher, ed., Methuen and Co., Ltd., London). In this model rats are trained to respond (lever pressing) under a fixed-ratio 30 schedule of food presentation in order to receive a food pellet reinforcer. Administration of the 5-HT1A agonist 8-OH-DPAT reduces the control response rate (assessed by administration of vehicle placebo). The 5-HT1A antagonist activity of a test compound is determined by measuring its ability to antagonize this agonist-induced decrease in response rate. A full antagonist effect is considered one in which the test compound completely reverses the agonist-induced response rate, returning it to control levels. The data given in Table 2 demonstrate that a 1 mg/kg dose of the compound of Example 1 completely reverses the decrease in response rate induced by administration of a 0.3 mg/kg dose of 8-OH-DPAT. Thus, compounds of the present invention function as 5-HT1A antagonists in vivo.
    TABLE 2
    Response Rate (responses/second)
    8-OH-DPAT (0.3 mg/kg
    8-OH-DPAT sc) + Example
    Vehicle (0.3 mg/kg compound 1
    (Control) sc) (1 mg/kg sc)
    2.4 ± 0.5 0.5 ± 0.2 2.5 ± 0.2
  • Example 5
  • Duration of Action In Vivo
  • The duration of action in the Fixed Responding Model was assessed by pre-treating animals with test compound and then challenging with a 0.3 mg/kg dose of the 5-HT1A agonist 8-OH-DPAT at various time intervals after the administration of test compound. All drug and vehicle administrations were made by the subcutaneous route. Doses of the test compounds selected for comparison were those that caused a ten-fold shift in the 8-OH-DPAT dose-response curve when administered 30 minutes prior to agonist. The doses selected for the duration of action comparison are listed in Table 3.
    TABLE 3
    Dose Which Shifts
    Agonist
    Dose-response Curve by
    10-fold
    Test Compound (mg/kg, sc)
    Compound A (FIG. 1) 0.03
    Compound B (FIG. 1) 0.1
    Example 1 1.0
  • Data are presented for pre-treatment of the animals with test compound at 0.5 hours, 2 hours, and 4 hours prior to administration of a 0.3 mg/kg dose of 8-OH-DPAT. Results are normalized to control values, with 100% being the control response rate observed when vehicle is administered rather than the agonist 8-OH-DPAT.
    TABLE 4
    % Response Rate
    0.5 hour 2 hour 4 hour
    Compound pretreatment pretreatment pretreatment
    Compound A + 8- 90 ± 3 55 ± 28 41 ± 26
    OH-DPAT
    Control + 8- 23 ± 9 3 ± 1 3 ± 1
    OH-DPAT
    Compound B + 8- 100 ± 11 71 ± 12 27 ± 14
    OH-DPAT
    Control + 8- 21 ± 9 42 ± 6  42 ± 6 
    OH-DPAT
    Example 100 ± 7  118 ± 13  99 ± 16
    compound 1 + 8-
    OH-DPAT
    Control + 8- 29 ± 6 35 ± 10 35 ± 10
    OH-DPAT
  • As can be seen from Table 4, all three test compounds (Compound A, B, and Example compound 1) completely antagonize the agonist-induced decrease in responding 30 minutes after their administration, returning the response rate to control levels. However, when agonist is given 2 hours following test drug administration (Column 3), the 5-HT1A antagonist effects of compounds A and B no longer return the response rate to control levels while Example compound 1 still displays complete 5-HT1A antagonist effects. By four hours post-administration (Column 4), the 5-HT1A antagonist effects of Compounds A and B are completely lost, while Example compound 1 continues to provide complete antagonism of the agonist-induced decrease in response rate. Thus, the duration of action of Example compound 1 is longer than 4 hours, while those of Compounds A and B are somewhere between 30 minutes and 2 hours.
  • The increased duration of action of the novel compounds of the present invention, compared to that of the classes of compounds disclosed in U.S. Pat. No. 6,127,357 and WO 97/03892 is particularly advantageous in that a smaller number of doses of the compound can be administered to produce a similar therapeutic effect.
  • Compounds of the present invention may be used to treat a subject suffering from CNS disorders such as schizophrenia, (and other psychotic disorders such as paranoia and mano-depressive illness), Parkinson's disease and other motor disorders, anxiety (e.g., generalized anxiety disorders, panic attacks, and obsessive compulsive disorders), depression (such as by the potentiation of serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors), Tourette's syndrome, migraine, autism, attention deficit disorders and hyperactivity disorders. Compounds of the present invention may also be useful for the treatment of sleep disorders, social phobias, pain, thermoregulatory disorders, endocrine disorders, urinary incontinence, vasospasm, stroke, eating disorders such as for example obesity, anorexia and bulimia, sexual dysfunction, and the treatment of alcohol, drug and nicotine withdrawal.
  • Compounds of the present invention including those disclosed herein and those disclosed in U.S. Pat. No. 6,127,357 and WO 95/33743 are useful for treating sexual dysfunction, e.g., sexual dysfunction associated with a drug treatment. Sexual dysfunction can be in a male or female subject. The condition can include erectile dysfunction as well as disorders of arousal, motivation, desire, decreased libido, anorgasmia, delayed ejaculation, premature ejaculation, and sexual anxiety disorders, sexual pain disorders, sexual aversion disorders. The cause can be undefined or can be due to a known cause, e.g., substance-related sexual dysfunction.
  • Drugs associated with sexual dysfunction that can be treated as described herein include antidepressant drugs (antidepressants). Such antidepressant drugs include, for example, serotonin reuptake inhibitors (SRIs), norepinephrine reuptake inhibitors (NRIs), combined serotonin-norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOs), reversible inhibitors of monoamine oxidase (RIMAs), phosphodiesterase-4 (PDE4) inhibitors, corticotropin releasing factor (CRF) antagonists (e.g., compounds described in International Patent Specification Nos. WO 94/13643, WO 94/13644, WO 94/13661, WO 94/13676 and WO 94/13677), alpha.-adrenoreceptor antagonists, atypical antidepressants (e.g., buproprion, lithium, nefazodone, trazodone, viloxazine, and pharmaceutically acceptable salts thereof, and sibutramine). Additional examples of such antidepressants include triple uptake inhibitors such as DOV 216303 and DOV 2194; melatonin agonists such as agomelotine, super neurotransmitter uptake blockers (SNUBs; e.g., NS-2389 from GlaxoSmithKline and Neurosearch; (R)-DDMA from Sepracor), and substance P/neurokinin receptor antagonists (e.g., aprepitant/MK-869 from Merck; NKP-608 from Novartis; CPI-122721 from Pfizer; R673 from Roche; TAK637 from Takeda; and GW-97599 from GlaxoSmithKline).
  • Another class of antidepressant agents that may be associated with sexual dysfunction that can be treated as described herein is noradrenergic and specific serotonergic antidepressants (NaSSAs).
  • Examples of NRIs include tertiary amine tricyclics and secondary amine tricyclics. Specific examples of tertiary amine tricyclics include, without limitation, amitriptyline, clomipramine, doxepin, imipramine and trimipramine, and pharmaceutically acceptable salts thereof. Suitable examples of secondary amine tricyclics include, without limitation, amoxapine, desipramine, maprotiline, nortriptyline and protriptyline, and pharmaceutically acceptable salts thereof. Another NRI that may be associated with sexual dysfunction is reboxetine (2-[.alpha.-(2-ethoxy)phenoxy-benzyl]morpholine), usually administered as the racemate.
  • SSRIs that may be associated with sexual dysfunction that can be treated using compounds and methods described herein include, without limitation, citalopram (1-[3-(dimethylamino)propyl]-(4-fluorophenyl)-1,3-dihydr-o-5-isobenzofurancarbonitrile; fluoxetine (N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine, marketed in the hydrochloride salt form and as the racemic mixture of its two isoforms; fluoxetine/olanzapine in combination; fluvoxamine (5-methoxy-1-[4-(trifluoromethyl)phenyl]-1-pentanone O-(2-aminoethyl)oxime; paroxetine (trans-(−)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine); sertraline, (1S-cis)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-naphthylamine hydrochloride; escitalopram; new 5HT1A agonists variza, alnespirone, gepirone, sunepitron, MKC242, vilazodone, eptapirone, and ORG12962 from Organon; and pharmaceutically acceptable salts thereof.
  • MAOIs that may be associated with sexual dysfunction that can be treated using the methods and compounds disclosed herein include, without limitation, isocarboxazid, phenelzine, selegiline and tranylcypromine, and pharmaceutically acceptable salts thereof. Reversible MAOIs that may be associated with sexual dysfunction include, without limitation, moclobemide (4-chloro-N-[2-(4-morpholinyl)ethyl]benzamide; selegiline, and pharmaceutically acceptable salts thereof.
  • SNRIs that can be associated with sexual dysfunction that can be treated as described herein include, without limitation, venlafaxine and pharmaceutically acceptable salts and analogs, including the O-desmethylvenlafaxine succinate salt; milnacipran (N,N-diethyl-2-aminomethyl-1-phenylcyclopropanecarboxamide; mirtazapine; nefazodone; duloxetine; and pharmaceutically acceptable salts thereof.
  • Examples of specific antidepressants that can be associated with sexual dysfunction suitable for treatment using a compounds and methods described herein include, without limitation, adinazolam, alaproclate, alnespirone, amineptine, amitriptyline, amitriptyline/chlordiazepoxide combination, amoxapine, aprepitant, atipamezole, azamianserin, bazinaprine, befuraline, bifemelane, binodaline, bipenamol, brofaromine, buproprion, caroxazone, cericlamine, cianopramine, cimoxatone, citalopram, clemeprol, clomipramine, clovoxamine, dazepinil, deanol, demexiptiline, desipramine, O-desmethylvenlafaxine, dibenzepin, dothiepin, doxepin, droxidopa, duloxetine, elzasonan, enefexine, eptapirone, escitalopram, estazolam, etoperidone, femoxetine, fengabine, fezolamine, fluotracen, fluoxetine, fluvoxamine, gepirone, idazoxan, imipramine, indalpine, indeloxazine, iprindole, isocarboxazid, levoprotiline, litoxetine, lofepramine, maprotiline, medifoxamine, metapramine, metralindole, mianserin, milnacipran, minaprine, mirtazapine, moclobemide, montirelin, nebracetam, nefopam, nefozodine, nemititide, nialamide, nomifensine, norfluoxetine, nortriptyline, orotirelin, oxaflozane, paroxetine, pheneizine, pinazepam, pirlindone, pizotyline, protryptiline, reboxetine, ritanserin, robalzotan, rolipram, selegiline, sercloremine, sertraline, setiptiline, sibutramine, sulbutiamine, sulpiride, sunepitron, teniloxazine, thozalinone, thymoliberin, tianeptine, tiflucarbine, tofenacin, tofisopam, toloxatone, tomoxetine, tranylcypromine, trazodone, trimiprimine, venlafaxine, veralipride, vilazodone, viloxazine, viqualine, zimelidine and zometrapine, and pharmaceutically acceptable salts thereof, and St. John's wort herb, or Hypencuin perforatum, or extracts thereof.
  • In some cases, anti-anxiety agents are associated with sexual dysfunction, which can be treated using compounds and methods described herein. Such anti-anxiety agents may include, without limitation, neurokinin receptor (NK) antagonists (e.g., saredutant and osanetant) and corticotropin releasing factor (CRF) antagonists.
  • Antipsychotic drugs are also associated with sexual dysfunction that can be treated using a 5-HT1A antagonist as described herein. Such drugs include, without limitation, a typical or atypical antipsychotic drug, for example, an aliphatic phethiazine, a piperazine phenothiazine, a butyrophenone, a substituted benzamide, or a thioxanthine. Additional examples of such drugs include amisulpiride, aripiprazole, chlorpromazine, clozapine, fluphenazine, haloperidol, loxapine, mesoridazine, molindone, olanzapine, perphenazine, pimozide, quetiapine, risperidone, seroquel, supiride, thioridazine, thiothixene, trifluoperazine, ziprasidone, and (S)-2-(benzylamino-methyl)-2,3,8,9-tetrahydro-7H-1,4-dioxino[2,3-e]indol-8-one, a D2 partial agonist, that is disclosed in U.S. Pat. No. 5,756,532; or pharmaceutically acceptable salts thereof.
  • 5-HT1A receptor antagonists are also useful for treating sexual dysfunction in patients being treated with a combination of drugs, e.g., a combination of one or more antidepressant and antipsychotic compounds. Anticonvulsant treatment is also associated with sexual dysfunction that can be treated with compounds disclosed herein. Examples of anticonvulsants associated with sexual dysfunction include phenobarbital, phenytoin, primidone, and carbamazepine.
  • Compounds of the present invention are also useful for the treatment of cognitive dysfunction. Thus, compounds of the present invention may be useful for the treatment of cognitive dysfunction associated with mild cognitive impairment (MCI) Alzheimer's disease and other dementias including Lewy Body, vascular, and post stroke dementias. Cognitive dysfunction associated with surgical procedures, traumatic brain injury or stroke may also be treated in accordance with the present invention. Further, compounds of the present invention may be useful for the treatment of diseases in which cognitive dysfunction is a co-morbidity such as, for example, Parkinson's disease, autism and attention deficit disorders.
  • “Provided”, as used herein with respect to providing a compound or substance covered by this invention, means either directly administering such a compound or substance, or administering a prodrug, derivative, or analog which will form an equivalent amount of the compound or substance within the body. Prodrugs can be prepared such as described in Design of Prodrugs, Bundgaard, H. ed., (Elsevier, N.Y. 1985); Prodrugs as Novel Drug Delivery Systems, Higuchi, T and Stella, V. eds, (American Chemical Society, Washington, D.C. 1975); Design of Biopharmaceutical Properties through Prodrugs and Analogs, Roche, E. ed., (American Pharmaceutical Association Academy of Pharmaceutical Sciences, Washington, D.C., 1977); and Metabolic Considerations in Prodrug Design, Balant, L. P. and Doelker, E. in Burger's Medicinal Chemistry amd Drug Discovery, Fifth Edition, Wolff, M., ed, Volume 1, pages 949-982, (John Wiley & Sons, Inc. 1995).
  • Compounds as described herein are useful for the preparation of a medicament for use in treating a sexual disorder, e.g., a sexual disorder associated with use of a drug such as an antidepressant drug, an antipsychotic drug, an anticonvulsant drug, or a combination of one or more of such drugs.
  • The compounds of the present invention may be administered orally or parentally, neat or in combination with conventional pharmaceutical carriers. Applicable solid carriers can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders, tablet-disintegrating agents or encapsulating materials. In powders, the carrier is a finely divided solid that is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets may contain up to 99% of the active ingredient. Suitable solid carriers include, for example and without limitation, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins. Liquid carriers may be used in preparing solutions, suspensions, emulsions, syrups and elixirs. The active ingredient of this invention can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both, or pharmaceutically acceptable oils or fat. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above, e.g., cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g., glycols) and their derivatives, and oils (e.g., fractionated coconut oil and arachis oil). For parenteral administration the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration. Liquid pharmaceutical compositions that are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Oral administration may be either in liquid or solid composition form. Preferably, the pharmaceutical compositions containing the present compounds are in unit dosage form, e.g., as tablets or capsules. In such form, the composition is sub-divided in unit dosages containing appropriate quantities of the active ingredients. The unit dosage forms can be packaged compositions, for example, packaged powders, vials, ampoules, prefilled syringes or sachets containing liquids. Alternatively, the unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form. The therapeutically effective dosage to be used may be varied or adjusted by the physician and generally ranges from 0.5 mg to 750 mg, according to the specific condition(s) being treated and the size, age and response pattern of the patient. A packaged composition can also include instructions for use, e.g., to treat a pre-existing condition of sexual dysfunction or to prevent or ameliorate an anticipated condition of sexual dysfunction such as sexual dysfunction associated with a drug treatment (e.g., treatment with an antidepressant such as an SSRI, an antipsychotic drug, or an anticonvulsant drug).
  • Example 6
  • Treatment of Sexual Dysfunction
  • An animal model was used to demonstrate the utility of treating or preventing sexual dysfunction, e.g., sexual dysfunction associated with SSRI treatment, with a compound that can act as a 5-HT1A antagonist. The animal model is based on the finding that sexually experienced rats that are administered an SSRI, a drug used to treat certain conditions such as depression, display a reduction in the number of non-contact penile erections. SSRI treatment is associated with sexual dysfunction in human subjects. In general, the animal model exposes sexually experienced male rats (Sprague-Dawley rats) to female rats in estrous in a novel testing arena that is not the regular housing environment. The number of non-contact penile erections is assayed over a specified test period, e.g., 30 minutes (Sukoff Rizzo et al., 2006, Society for Neuroscience Abst. #559.4; U.S. Provisional Application Ser. No. 60/682,3379, filed May 19, 2005). In the experiments described herein, animals were generally treated either with 0.9% saline (vehicle) or a drug in the vehicle.
  • The ability of various drugs associated with sexual dysfunction in humans to cause sexual dysfunction in the animal model was tested using three different drugs, bupropion (20 mg/kg), desipramine (10 mg/kg), and fluoxetine (10 mg/kg), or vehicle alone (0.9% saline), each administered intraperitoneally (i.p.), once per day for 14 days. After the treatment period, animals were tested for the frequency of non-contact penile erections over a 30 minute trial period.
  • All three compounds produced a decrease in sexual function under the experimental conditions compared to treatment with vehicle alone (FIG. 1). These data demonstrate that sexual dysfunction is induced in the animal model using drugs that are associated with sexual dysfunction in humans, thereby providing support for the validity of using the animal model.
  • To examine the time course of the effects of a drug that causes sexual dysfunction, rats that were handled and tested as described above were treated acutely: rats were treated with vehicle for 6 days, and on the test day (day 7) instead of vehicle, the animals received a single dose of fluoxetine in vehicle (i.p.). For a subchronic (7 day) study, fluoxetine was administered each day for 7 days and the animals were evaluated on test day 7. For the chronic 14 day study, fluoxetine was administered each day for 14 days and the animals were tested on day 14. Each fluoxetine dose was 10 mg/kg in vehicle and was delivered i.p. on each of the test days as described above. The testing session for each section of the study was begun immediately following compound administration and the behavior observed for 30 minutes immediately following the drug administration.
  • It was found that both sub-chronic and chronic administration of fluoxetine were associated with a significant increase in sexual dysfunction (FIG. 2), further demonstrating the utility of the animal model for sexual dysfunction testing.
  • To test the ability of a 5-HT1A antagonist to ameliorate the effects of sexual dysfunction, sexually experienced rats were administered an SSRI using an acute or subchronic (7 day) schedule and then tested for sexual function as described above.
  • A single acute dose of a compound (Example compound 2) ameliorated sexual dysfunction when the compound was administered after a period of time in which some level of drug-induced sexual dysfunction had occurred. Thus, acute treatment of sexual dysfunction can result in an increased (e.g., normal) level of sexual functioning. This is supported by the data of those treatment groups in FIG. 3, FIG. 4, and FIG. 5, in which Example compound 2 or Example compound 3 were administered acutely after 7 or 14 days of fluoxetine treatment, and produced a complete and significant reversal of fluoxetine-induced sexual dysfunction. These data indicate that acute administration of a 5-HT1A antagonist with a drug that induces sexual dysfunction is useful for ameliorating the effects of the drug associated with sexual dysfunction. These data also indicate that acute treatment with a 5-HT1A antagonist alone improves sexual function (FIG. 3).
  • In an additional test of the ability of a 5-HT1A antagonist to ameliorate sexual dysfunction, Example compound 3 was administered to sexually experienced male rats using an acute schedule. In these experiments, rats were treated with vehicle only on days 1-13 then administered a single acute dose of 0.1 mg/kg of the compound (group 1), vehicle only for days 1-13 and a single dose of 1.0 mg/kg compound in vehicle on day 14 (group 2), only vehicle on days 1-14 (group 3), fluoxetine on days 1-14 (group 4), fluoxetine on days 1-13 and a single administration of 0.1 mg/kg of the compound and fluoxetine on day 14 (group 5); and fluoxetine on days 1-13 and a single dose of 1.0 mg/kg compound with fluoxetine on day 14 (group 6). For each group, behavior testing was performed for 30 minutes immediately following drug administration on day 14 only. In these experiments, two different doses of the compound were administered, 0.1 mg/kg or 1.0 mg/kg, and either dosage resulted in a full reversal of the deficits in the number of non-contact penile erections, produced by chronic (14 day) treatment with an SSRI, fluoxetine (10 mg/kg/day, i.p.). These data further indicate the efficacy of using a compound of the invention to treat sexual dysfunction, and also provide examples of effective dosages and an example of a dosage range (FIG. 4, FIG. 5).
  • Experiments were conducted to assess the ability of a 5-HT1A antagonist to prevent the effects of SSRI treatment. Rats, as described supra, were co-administered a 5-HT1A antagonist and an SSRI. The 5-HT1A antagonist was either Example compound 3 (1 mg/kg) or Example compound 2 (0.3 mg/kg). The administered SSRI was fluoxetine (10 mg/kg). The 5-HT1A antagonist and SSRI were co-administered for 7 or 14 days with the SSRI. Under these conditions, 5-HT1A antagonist prevented the deficit in non-contact penile erections produced by chronic fluoxetine treatment alone. These data demonstrate that chronic treatment with a 5-HT1A antagonist, when co-administered with an SSRI, can prevent or ameliorate sexual dysfunction associated with SSRI treatment (FIG. 5, FIG. 6)
  • Taken together these data demonstrate the efficacy of a 5-HT1A antagonist for treating sexual dysfunction, e.g., that is associated with antidepressant treatment, whether treatment with the 5-HT1A antagonist is initiated at the same time as antidepressant treatment (e.g., SSRI treatment) or when treatment with the 5-HT1A is provided after initiation of treatment with the antidepressant.
  • The effects of 14 day chronic treatment of the animal model is tested in an animal provided with a 5-HT1A antagonist that is administered orally (p.o.) or i.p., or fluoxetine (i.p.). The effect of the two treatments on penile erections in sexually experienced male rats is tested. The ability of the compounds to affect the number of non-contact penile erections relative to vehicle treated animals is determined and the results between the two treatment regimes are compared. It is expected that a compound useful for treating SSRI-related sexual dysfunction is will exhibit minimal or no effects on sexual function as determined by the assay relative to SSRI-treated animals.
  • The Examples provided supra illustrate methods that can be used to test compounds described herein for their ability to ameliorate sexual dysfunction associated with drug treatment. Other models known in the art for testing sexual dysfunction associated with antidepressant, antipsychotic, or anticonvulsant treatment can be used.
  • Other Embodiments
  • The present invention may be embodied in other specific forms without departing from the spirit and essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

Claims (39)

1. A method for treating sexual dysfunction associated with drug treatment in a patient in need thereof, the method comprising administering to the patient an effective amount of a compound that is a 5-HT1A antagonist.
2. The method of claim 1, wherein the drug treatment is antidepressant drug treatment, antipsychotic drug treatment, or anticonvulsant drug treatment.
3. The method of claim 1, wherein the compound is a compound of formula (I)
Figure US20060287335A1-20061221-C00013
or a pharmaceutically acceptable acid addition salt thereof wherein:
A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups,
Z is oxygen or sulfur,
R is H or lower alkyl,
R1 is a mono or bicyclic aryl or heteroaryl radical,
R2 is a mono or bicyclic heteroaryl radical, and
R3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR4R5 [where R4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, aryl(lower)alkyl, cycloalkyl, or cycloalkyl-(lower)alkyl or R4 and R5 together with the nitrogen atom to which they are both attached represent a saturated hytrocyclic ring which may contain a further heteroatom], or a group of formula OR6 [where R6 is lower alkyl, cycloalkyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl or heteroaryl(lower)alkyl].
4. The method of claim 3, wherein the compound is a compound of formula (III) or a pharmaceutically acceptable salt thereof.
5. The method of claim 1, wherein the compound is (R)-4-cyano-N-{2-[4-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-piperazin-1-yl]propyl}-N-pyridin-2-yl-benzamide or a pharmaceutically acceptable acid addition salt thereof (Example compound 1), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 2) or a pharmaceutically acceptable acid addition salt thereof, or (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide (Example compound 3) or a pharmaceutically acceptable acid addition salt thereof.
6. The method of claim 1, wherein the drug is a selective serotonin reuptake inhibitor (SSRI).
7. The method of claim 6, wherein the SSRI is fluoxetine, citolopram, escitalopram oxalate, fluvoxamine maleate, paroxetine, or sertraline.
8. The method of claim 1, wherein the drug is a tricyclic antidepressant.
9. The method of claim 8, wherein the tricyclic antidepressant is desipramine, amitriptiyline, amoxipine, clomipramine, doxepin, imipramine, nortriptyline, protriptyline, or trimipramine.
10. The method of claim 1, wherein the drug is an aminoketone class compound.
11. The method of claim 10, wherein the aminoketone class compound is bupropion.
12. The method of claim 1, wherein the drug is a monoamine oxidase inhibitor (MAOI).
13. The method of claim 12, wherein the monoamine oxidase inhibitor is phenelzine.
14. The method of claim 1, wherein the drug is a serotonin and norepinepherine reuptake inhibitor (SNRI).
15. The method of claim 14, wherein the SNRI is venlafaxine, nefazodone, milnacipran, or duloxetine.
16. The method of claim 1, wherein the drug is a norepinephrine reuptake inhibitor (NRI).
17. The method of claim 16, wherein the drug is reboxetine.
18. The method of claim 1, wherein the drug is a partial 5-HT1A agonist.
19. The method of claim 18, wherein the drug is buspirone.
20. The method of claim 1, wherein the drug is a 5-HT2A receptor antagonist.
21. The method of claim 20, wherein the drug is nefazodone.
22. The method of claim 1, wherein the drug is a typical antipsychotic drug.
23. The method of claim 1, wherein the drug is an atypical antipsychotic drug.
24. The method of claim 1, wherein the drug is an aliphatic phethiazine, a piperazine phenothiazine, a butyrophenone, a substituted benzamide, a thioxanthine.
25. The method of claim 1, wherein the drug is phenobarbital, phenyloin, primidone, or carbamazepine.
26. The method of claim 2, wherein the patient is being treated with at least two drugs that are antidepressant drugs, antipsychotic drugs, anticonvulsant drugs, or a combination thereof.
27. The method of claim 1, wherein the method comprises oral delivery of the compound.
28. The method of claim 1, wherein the method comprises delivery of a sustained release compound.
29. The method of claim 1, wherein the sexual dysfunction comprises a deficiency in penile erection.
30. A method of improving sexual function in a patient in need thereof, the method comprising administering to the patient a pharmaceutically effective amount of a compound that is a 5-HT1A antagonist.
31. The method of claim 30, wherein the compound is a compound of formula (I)
Figure US20060287335A1-20061221-C00014
or a pharmaceutically acceptable acid addition salt thereof, wherein
A is alkylene chain of 2 to 4 carbon atoms optionally substituted by one or more lower alkyl groups,
Z is oxygen or sulfur,
R is H or lower alkyl,
R1 is a mono or bicyclic aryl or heteroaryl radical,
R2 is a mono or bicyclic heteroaryl radical, and
R3 is hydrogen, lower alkyl, cycloalkyl, cycloalkenyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl, heteroaryl(lower)alkyl, a group of formula —NR4R5 [where R4 is hydrogen, lower alkyl, aryl or aryl(lower)alkyl and R5 is hydrogen, lower alkyl, —CO(lower)alkyl, aryl, —Coaryl, aryl(lower)alkyl, cycloalkyl, or cycloalkyl-(lower)alkyl or R4 and R5 together with the nitrogen atom to which they are both attached represent a saturated hytrocyclic ring which may contain a further heteroatom], or a group of formula OR6 [where R6 is lower alkyl, cycloalkyl, cycloalkyl(lower)alkyl, aryl, aryl(lower)alkyl, heteroaryl or heteroaryl(lower)alkyl]; a compound of formula (III)
Figure US20060287335A1-20061221-C00015
wherein R1 is cyano, nitro, trifluoromethyl or halogen, or pharmaceutically acceptable acid addition salts thereof, or formula (IV)
Figure US20060287335A1-20061221-C00016
wherein, Ra and Rb are each hydrogen or methyl and Rc is' hydrogen, halo or C 1-4 alkyl; or a pharmaceutically acceptable acid addition salt thereof.
32. The method of claim 30, wherein the compound is Example compound 1, Example compound 2, or Example compound 3.
33. A pharmaceutical composition for treating sexual dysfunction associated with drug treatment, the composition comprising a compound of formula (I), formula (III), or formula (IV).
34. The pharmaceutical composition of claim 33, wherein the drug is an antidepressant, an antipsychotic, or an anticonvulsant.
35. The pharmaceutical composition of claim 33, wherein the compound is effective for ameliorating sexual dysfunction in an animal model of sexual dysfunction associated with drug treatment.
36. The pharmaceutical composition of claim 35, wherein the animal model of sexual dysfunction is an antidepressant drug-induced model of sexual dysfunction.
37. A package comprising a 5-HT1A antagonist and instructions, wherein the instructions comprise instructions for treating sexual dysfunction.
38. The package of claim 37, wherein the instructions are for treating sexual dysfunction associated with drug treatment.
39.-50. (canceled)
US11/396,307 2000-11-28 2006-03-30 Serotonergic agents for treating sexual dysfunction Abandoned US20060287335A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/396,307 US20060287335A1 (en) 2000-11-28 2006-03-30 Serotonergic agents for treating sexual dysfunction
US11/506,514 US7425558B2 (en) 2000-11-28 2006-08-18 Serotonergic agents for treating sexual dysfunction
PE2007000351A PE20080014A1 (en) 2006-03-30 2007-03-28 PIPERAZINE DERIVATIVES AS ANTAGONISTS OF 5-HT1A RECEPTORS
TW96110786A TW200808322A (en) 2006-03-30 2007-03-28 Serotonergic agents for treating sexual dysfunction
ARP070101333A AR060221A1 (en) 2006-03-30 2007-03-29 SEROTONERGIC AGENTS TO TREAT SEXUAL DYSFUNCTION
US11/841,514 US20080070925A1 (en) 2000-11-28 2007-08-20 Serotonergic agents for treating sexual dysfunction

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US25330100P 2000-11-28 2000-11-28
US29781401P 2001-06-13 2001-06-13
US10/010,575 US6469007B2 (en) 2000-11-28 2001-11-13 Serotonergic agents
US10/218,251 US6586436B2 (en) 2000-11-28 2002-08-14 Serotonergic agents
US10/441,536 US7026320B2 (en) 2000-11-28 2003-05-20 Serotonergic agents
US11/330,907 US20060223824A1 (en) 2000-11-28 2006-01-11 Serotonergic agents
US11/396,307 US20060287335A1 (en) 2000-11-28 2006-03-30 Serotonergic agents for treating sexual dysfunction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/330,907 Continuation-In-Part US20060223824A1 (en) 2000-11-28 2006-01-11 Serotonergic agents

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/506,514 Continuation US7425558B2 (en) 2000-11-28 2006-08-18 Serotonergic agents for treating sexual dysfunction
US11/841,514 Continuation US20080070925A1 (en) 2000-11-28 2007-08-20 Serotonergic agents for treating sexual dysfunction

Publications (1)

Publication Number Publication Date
US20060287335A1 true US20060287335A1 (en) 2006-12-21

Family

ID=46205910

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/396,307 Abandoned US20060287335A1 (en) 2000-11-28 2006-03-30 Serotonergic agents for treating sexual dysfunction
US11/506,514 Expired - Fee Related US7425558B2 (en) 2000-11-28 2006-08-18 Serotonergic agents for treating sexual dysfunction
US11/841,514 Abandoned US20080070925A1 (en) 2000-11-28 2007-08-20 Serotonergic agents for treating sexual dysfunction

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/506,514 Expired - Fee Related US7425558B2 (en) 2000-11-28 2006-08-18 Serotonergic agents for treating sexual dysfunction
US11/841,514 Abandoned US20080070925A1 (en) 2000-11-28 2007-08-20 Serotonergic agents for treating sexual dysfunction

Country Status (1)

Country Link
US (3) US20060287335A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070027160A1 (en) * 2005-06-10 2007-02-01 Wyeth Piperazine-piperidine antagonists and agonists of the 5-HT1A receptor
US20090306026A1 (en) * 2005-11-11 2009-12-10 Tuiten Jan J A Pharmaceutical Formulations and Uses Thereof in the Treatment of Female Sexual Dysfunction
US20100093680A1 (en) * 2006-11-03 2010-04-15 Jan Johan Adriaan Tuiten Use of 3-alpha-androstanediol, optionally in combination with a 5-ht1a agonist, in the treatment of sexual dysfunction
US9192669B2 (en) 2004-05-11 2015-11-24 Eb Ip Lybrido B.V. Pharmaceutical formulations and uses thereof in the treatment of female sexual dysfunction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ523310A (en) * 2000-06-12 2005-07-29 Univ Rochester Tachykinin receptor antagonist to block receptors NK1, NK2, and NK3 and treat symptoms of hormonal variation
US20060223824A1 (en) * 2000-11-28 2006-10-05 Wyeth Serotonergic agents
CN102026639A (en) * 2008-05-08 2011-04-20 法布雷-克雷默医药公司 3-hydroxy gepirone for the treatment of attention deficit disorder and sexual dysfunction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532264A (en) * 1994-06-16 1996-07-02 Eli Lilly And Company Potentiation of drug response
US5756532A (en) * 1995-11-06 1998-05-26 American Home Products Corporation Aminomethyl-2 3 8 9-tetrahydro-7H-1 4-dioxino 2 3-E!-indol-8-ones and derivatives
US5776969A (en) * 1997-02-27 1998-07-07 Eli Lilly And Company Treatment of sleep disorders
US6127357A (en) * 1991-05-02 2000-10-03 John Wyeth & Brother, Ltd. N-((phenyl, benzodioxinyl or N-heteroarylpiperazinyl)alkyl)-N-(N-heteroaryl)substituted carboxamides
US6169105B1 (en) * 1994-11-28 2001-01-02 Eli Lilly And Company Potentiation of drug response
US6172062B1 (en) * 1998-09-10 2001-01-09 Syntex (Usa) Llc Dihydrobenzodioxine carboxamide and ketone derivatives
US6566112B2 (en) * 1997-11-19 2003-05-20 Genencor International, Inc. Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same
US7026320B2 (en) * 2000-11-28 2006-04-11 Wyeth Serotonergic agents

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9125900D0 (en) * 1991-12-05 1992-02-05 Wyeth John & Brother Ltd Piperazine derivatives
BR9307664A (en) 1992-12-17 1999-06-29 Pfizer Pyrazoles replaced as antagonists
CA2150483C (en) 1992-12-17 1999-09-14 Pfizer Limited Pyrazoles and pyrazolopyrimidines
TW444018B (en) 1992-12-17 2001-07-01 Pfizer Pyrazolopyrimidines
ES2128544T3 (en) 1992-12-17 1999-05-16 Pfizer PYROLOPYRIMIDINES AS CRF ANTAGONISTS.
TW336932B (en) 1992-12-17 1998-07-21 Pfizer Amino-substituted pyrazoles
WO1995033725A1 (en) 1994-06-03 1995-12-14 John Wyeth & Brother Limited Novel processes and intermediates for the preparation of piperazine derivatives
GB9411099D0 (en) 1994-06-03 1994-07-27 Wyeth John & Brother Ltd Piperazine derivatives
GB9514901D0 (en) 1995-07-20 1995-09-20 American Home Prod Piperazine derivatives
EP0792649A1 (en) 1996-02-29 1997-09-03 Eli Lilly And Company Treatment of sleep disorders
IT1318394B1 (en) * 2000-03-17 2003-08-25 Enichem Spa PROCESS FOR THE PREPARATION OF 1-ESENE.
US7091349B2 (en) * 2002-03-12 2006-08-15 Wyeth Process for synthesizing N-aryl piperazines with chiral N′-1-[benzoyl(2-pyridyl)amino]-2-propane substitution
DE60328756D1 (en) * 2002-03-12 2009-09-24 Wyeth Corp PROCESS FOR THE PREPARATION OF CHIRAL N-ARYL PIPERAZINES
US20040192730A1 (en) 2003-03-13 2004-09-30 Dynogen Pharmaceuticals, Inc. Methods of using compounds with combined 5-HT1A and SSRI activities as-needed to treat sexual dysfunction
US20050209245A1 (en) * 2004-03-19 2005-09-22 Wyeth Process for preparing N-aryl-piperazine derivatives
US20050215561A1 (en) * 2004-03-19 2005-09-29 Krishnendu Ghosh Pharmaceutical dosage forms and compositions

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127357A (en) * 1991-05-02 2000-10-03 John Wyeth & Brother, Ltd. N-((phenyl, benzodioxinyl or N-heteroarylpiperazinyl)alkyl)-N-(N-heteroaryl)substituted carboxamides
US5532268A (en) * 1994-06-16 1996-07-02 Eli Lilly And Company Potentiation of drug response
US5532244A (en) * 1994-06-16 1996-07-02 Eli Lilly And Company Potentiation of drug response
US5532250A (en) * 1994-06-16 1996-07-02 Eli Lilly And Company Potentiation of drug response
US5538992A (en) * 1994-06-16 1996-07-23 Eli Lilly And Company Potentiation of drug response
US5552429A (en) * 1994-06-16 1996-09-03 Eli Lilly And Company Potentiation of drug response
US5532264A (en) * 1994-06-16 1996-07-02 Eli Lilly And Company Potentiation of drug response
US6169105B1 (en) * 1994-11-28 2001-01-02 Eli Lilly And Company Potentiation of drug response
US5756532A (en) * 1995-11-06 1998-05-26 American Home Products Corporation Aminomethyl-2 3 8 9-tetrahydro-7H-1 4-dioxino 2 3-E!-indol-8-ones and derivatives
US5776969A (en) * 1997-02-27 1998-07-07 Eli Lilly And Company Treatment of sleep disorders
US6566112B2 (en) * 1997-11-19 2003-05-20 Genencor International, Inc. Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same
US6172062B1 (en) * 1998-09-10 2001-01-09 Syntex (Usa) Llc Dihydrobenzodioxine carboxamide and ketone derivatives
US7026320B2 (en) * 2000-11-28 2006-04-11 Wyeth Serotonergic agents

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192669B2 (en) 2004-05-11 2015-11-24 Eb Ip Lybrido B.V. Pharmaceutical formulations and uses thereof in the treatment of female sexual dysfunction
US10441592B2 (en) 2004-05-11 2019-10-15 Eb Ip Lybrido B.V. Pharmaceutical formulations and uses thereof in the treatment of female sexual dysfunction
US9700566B2 (en) 2004-05-11 2017-07-11 Eb Ip Lybrido B.V. Pharmaceutical formulations and uses thereof in the treatment of female sexual dysfunction
US7671056B2 (en) 2005-06-10 2010-03-02 Wyeth Llc Piperazine-piperidine antagonists and agonists of the 5-HT1A receptor
US20070027160A1 (en) * 2005-06-10 2007-02-01 Wyeth Piperazine-piperidine antagonists and agonists of the 5-HT1A receptor
US20090306026A1 (en) * 2005-11-11 2009-12-10 Tuiten Jan J A Pharmaceutical Formulations and Uses Thereof in the Treatment of Female Sexual Dysfunction
US9737548B2 (en) 2005-11-11 2017-08-22 Eb Ip Lybrido B.V. Pharmaceutical formulations and uses thereof in the treatment of female sexual dysfunction
US9333203B2 (en) 2005-11-11 2016-05-10 Eb Ip Lybrido B.V. Pharmaceutical formulations and uses thereof in the treatment of female sexual dysfunction
US20100152145A1 (en) * 2006-11-03 2010-06-17 Jan Johan Adriaan Tuiten Use of 3-alpha-androstanediol, optionally in combination with a pde5 inhibitor, in the treatment of sexual dysfunction
US8669242B2 (en) 2006-11-03 2014-03-11 Emotional Brain B.V. Use of testosterone and a 5-HT1A agonist in the treatment of sexual dysfunction
US8653051B2 (en) 2006-11-03 2014-02-18 Emotional Brain B.V. Use of 3-alpha-androstanediol in combination with a PDE5 inhibitor, in the treatment of sexual dysfunction
US9211334B2 (en) 2006-11-03 2015-12-15 Eb Ip Lybridos B.V. Use of testosterone and a 5-HT1A agonist in the treatment of sexual dysfunction
US8648060B2 (en) 2006-11-03 2014-02-11 Emotional Brain B.V. Use of 3-alpha-androstanediol in combination with a 5-HT1a agonist, in the treatment of sexual dysfunction
US9597335B2 (en) 2006-11-03 2017-03-21 Eb Ip Lybridos B.V. Use of testosterone and a 5-HT1A agonist in the treatment of sexual dysfunction
US8575139B2 (en) 2006-11-03 2013-11-05 Emotional Brain B.V. Use of testosterone and a 5-HT1a agonist in the treatment of sexual dysfunction
US20100160270A1 (en) * 2006-11-03 2010-06-24 Jan Johan Adriaan Tuiten Use of testosterone and a 5-ht1a agonist in the treatment of sexual dysfunction
US10314848B2 (en) 2006-11-03 2019-06-11 Eb Ip Lybridos B.V. Use of testosterone and a 5-HT1A agonist in the treatment of sexual dysfunction
US20100093680A1 (en) * 2006-11-03 2010-04-15 Jan Johan Adriaan Tuiten Use of 3-alpha-androstanediol, optionally in combination with a 5-ht1a agonist, in the treatment of sexual dysfunction

Also Published As

Publication number Publication date
US20080070925A1 (en) 2008-03-20
US20060287333A1 (en) 2006-12-21
US7425558B2 (en) 2008-09-16

Similar Documents

Publication Publication Date Title
US7396857B2 (en) Therapeutic combinations for the treatment or prevention of depression
US7425558B2 (en) Serotonergic agents for treating sexual dysfunction
US7402687B2 (en) Dihydrobenzofuran derivatives and uses thereof
US20060258739A1 (en) Dihydrobenzofuran derivatives and uses therof
US20070225279A1 (en) Therapeutic combinations for the treatment of depression
US6469007B2 (en) Serotonergic agents
WO2007081374A1 (en) Serotonergic agents for treating sexual dysfunction
MX2008008835A (en) Serotonergic agents for treating sexual dysfunction
TW200808322A (en) Serotonergic agents for treating sexual dysfunction

Legal Events

Date Code Title Description
AS Assignment

Owner name: WYETH, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUKOFF RIZZO, STACEY J.;ROSENZWEIG-LIPSON, SHARON J.;CHILDERS, WAYNE E.;AND OTHERS;REEL/FRAME:017903/0001;SIGNING DATES FROM 20060524 TO 20060629

AS Assignment

Owner name: WYETH, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUKOFF RIZZO, STACEY J.;ROSENZWEIG-LIPSON, SHARON J.;CHILDERS, WAYNE E.;AND OTHERS;REEL/FRAME:018040/0061;SIGNING DATES FROM 20060524 TO 20060629

AS Assignment

Owner name: WYETH LLC,NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:WYETH;REEL/FRAME:024541/0922

Effective date: 20091109

Owner name: WYETH LLC, NEW JERSEY

Free format text: CHANGE OF NAME;ASSIGNOR:WYETH;REEL/FRAME:024541/0922

Effective date: 20091109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE