US20060252745A1 - Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use - Google Patents

Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use Download PDF

Info

Publication number
US20060252745A1
US20060252745A1 US11/123,205 US12320505A US2006252745A1 US 20060252745 A1 US20060252745 A1 US 20060252745A1 US 12320505 A US12320505 A US 12320505A US 2006252745 A1 US2006252745 A1 US 2006252745A1
Authority
US
United States
Prior art keywords
disorders
eslicarbazepine
once
eslicarbazepine acetate
daily dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/123,205
Inventor
Jose Almeida
Patrício Manuel Soares-Da-Silva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bial Portela and Cia SA
Original Assignee
Bial Portela and Cia SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37394802&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060252745(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US11/123,205 priority Critical patent/US20060252745A1/en
Application filed by Bial Portela and Cia SA filed Critical Bial Portela and Cia SA
Assigned to PORTELA & C.A., S.A. reassignment PORTELA & C.A., S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALMEIDA, LUIS, SOARES-DA-SILVA, PATRICIO
Priority to US11/248,125 priority patent/US20060252746A1/en
Priority to ARP060101835A priority patent/AR055939A1/en
Publication of US20060252745A1 publication Critical patent/US20060252745A1/en
Priority to US12/535,268 priority patent/US20100222327A1/en
Priority to US13/017,732 priority patent/US20110319388A1/en
Priority to US14/187,018 priority patent/US20140288058A1/en
Priority to US15/422,278 priority patent/US10702536B2/en
Priority to US16/449,048 priority patent/US10675287B2/en
Priority to US16/449,057 priority patent/US10695354B2/en
Priority to US16/946,731 priority patent/US11364247B2/en
Priority to US17/748,098 priority patent/US20230129254A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia

Definitions

  • the present disclosure relates to a pharmaceutical composition and a treatment method using eslicarbazepine acetate.
  • Eslicarbazepine acetate (S)-( ⁇ )-10-acetoxy-10,11-dihydro-5H- dibenz/b,f/azepine-5-carboxamide (“BIA 2-093”), is a new drug currently being developed which is useful for the treatment of various conditions, such as, for example, epilepsy and affective brain disorders, as well as pain conditions and nervous function alterations in degenerative and post-ischemic diseases.
  • eslicarbazepine acetate is believed to avoid the production of certain toxic metabolites (such as, for example, epoxides) and to avoid the unnecessary production of enantiomers or diastereoisomers of metabolites and conjugates, without losing pharmacological activity.
  • toxic metabolites such as, for example, epoxides
  • eslicarbazepine acetate is believed to avoid the production of certain toxic metabolites (such as, for example, epoxides) and to avoid the unnecessary production of enantiomers or diastereoisomers of metabolites and conjugates, without losing pharmacological activity.
  • eslicarbazepine acetate is believed to be a voltage-gated sodium channel (VGSC) blocker that competitively interacts with site 2 of the inactivated state of the sodium channel.
  • VGSC voltage-gated sodium channel
  • the affinity for this state of the channel is similar to that of carbamazepine, while the affinity for the resting state of the channel is about 3-fold lower than that of carbamazepine.
  • This profile may suggest an enhanced inhibitory selectivity of eslicarbazepine acetate for rapidly firing neurons over those displaying normal activity.
  • the inventors performed entry-into-man studies in healthy subjects, the results of which they described in the Almeida I and Almeida II articles, both of which are hereby incorporated by reference.
  • the healthy subjects received a single oral dose of eslicarbazepine acetate wherein the dose ranged from 20 mg to 1200 mg (see Almeida II ), and multiple daily-doses of eslicarbazepine acetate ranging from 200 mg twice-daily to 1200 mg once-daily (see Almeida I ).
  • U.S. Pat. No. 6,296,873 discloses a sustained release delivery system for carbamazepine, which has a half-life ranging from 25 hours to 85 hours. To avoid adverse effects, U.S. Pat. No. 6,296,873 teaches that the carbamazepine should be administered in tablet form up to two or more times daily to slowly release the compound to maintain concentration levels between 4-12 ⁇ g/mL. Such a delivery system requires a form that is capable of delivering the compound over an extended period of time, such as a tablet form.
  • the inventors have unexpectedly discovered an enhanced efficacy of eslicarbazepine acetate in the treatment of various conditions, such as, for example, the treatment of epilepsy, using once-daily administration compared to twice-daily administration.
  • the inventors have also unexpectedly discovered an enhanced exposure to eslicarbazepine after once-daily administration of eslicarbazepine acetate versus the twice-daily regimen in humans.
  • Once-daily administration of eslicarbazepine acetate surprisingly provides an increase of exposure to eslicarbazepine than the same drug dosage divided into twice-daily doses.
  • FIG. 1 Percentage reduction in seizure number in each dose period versus baseline (400 mg once-daily versus twice-daily and placebo; 800 mg once-daily versus twice-daily and placebo; 1200 mg once-daily versus twice-daily and placebo).
  • FIG. 2 Mean (95% Cl) trough plasma concentrations ( ⁇ g/mL) of BIA 2-005 following a daily dose of 400 mg, 800 mg and 1200 mg of BIA-2-093 administered once-daily (o.d.) or twice-daily (b.i.d.).
  • One aspect of the present disclosure relates to a method for treating at least one disease or condition in a patient in need thereof by administering a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount.
  • the pharmaceutical composition comprising eslicarbazepine acetate is administered in a once-daily dosing regimen.
  • the pharmaceutical composition is administered in a dosage intended to maximize the total exposure to eslicarbazepine, as measured by the rate of exposure and extent of exposure (C max and AUC o- ⁇ ).
  • the at least one disease or condition treated may be chosen from, for example, epilepsy, central and peripheric nervous system disorders, affective disorders, schizoaffective disorders, bipolar disorders, attention disorders, anxiety disorders, neuropathic pain and neurophratic pain-related disorders, sensorimotor disorders, vestibular disorders, and nervous function alterations in degenerative and post-ischemic diseases.
  • affective disorders include depression, pre-menstrual dysphoric disorder, post-partum depression, post-menopausal depression, anorexia nervosa, bulimia nervosa, and neurodegeneration-related depressive symptoms.
  • the methods disclosed in the present disclosure may be used to treat schizoaffective disorders such as, for example, schizodepressive syndromes, schizophrenia, extreme psychotic states, schizomanic syndromes, dysphoric and aggressive behavior, episodic dyscontrol or intermittent explosive disorder, and borderline personality disorder.
  • schizoaffective disorders such as, for example, schizodepressive syndromes, schizophrenia, extreme psychotic states, schizomanic syndromes, dysphoric and aggressive behavior, episodic dyscontrol or intermittent explosive disorder, and borderline personality disorder.
  • Bipolar disorders that may be treated according to the methods of the present disclosure include, for example, bipolar disorder and unstable bipolar disorder with rapid fluctuations (rapid cyclers), manic-depressive disorders, acute mania, mood episodes, and manic and hypomanic episodes
  • attention disorders include attention deficit hyperactivity disorders and other attention disorders, such as, for example, autism.
  • Anxiety disorders may include conditions such as, for example, social anxiety disorders, post traumatic stress disorder, panic, obsessive-compulsive disorder, alcoholism, drug withdrawal syndromes, and cravings.
  • neuropathic pain and neurophratic pain-related disorders that may be treated according to the methods of the present disclosure include, by way of example, neuropathic pain and associated hyperalgesia, including trigeminal, herpetic, post-herpetic and tabetic neuralgia, diabetic neuropathic pain, migraines, tension-type headaches, causalgia, and deafferentation syndromes such as, for example, brachial plexus avulsion.
  • hyperalgesia including trigeminal, herpetic, post-herpetic and tabetic neuralgia, diabetic neuropathic pain, migraines, tension-type headaches, causalgia, and deafferentation syndromes such as, for example, brachial plexus avulsion.
  • sensorimotor disorders include Restless legs syndrome, spasticity, hemifacial spasm, nocturnal paroxysmal dystonia, brain ischemia associated motor and sensitive deficits, Parkinson's disease and parkinsonian disorders, antipsychotic-induced motor deficits, tardive dyskinesia, episodic nocturnal wandering, and myotonia.
  • Exemplary vestibular disorders include Tinnitus or other inner ear/cochlear excitability related diseases, such as, for example, neuronal loss, hearing loss, sudden deafness, vertigo, and Meniere's disease.
  • the at least one disease or condition may be chosen from epilepsy, bipolar disorder, and trigeminal neuralgia.
  • the disease may be refractory partial epilepsy.
  • Another aspect of the present disclosure relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eslicarbazepine acetate and at least one pharmaceutical excipient, at least one auxiliary substance, at least one carrier material, or combinations thereof.
  • a further aspect of the present disclosure relates to a method of preparing a pharmaceutical composition
  • a method of preparing a pharmaceutical composition comprising combining eslicarbazepine acetate with at least one excipient, at least one auxiliary substance, at least one carrier material, or combinations thereof.
  • Suitable excipients, carrier materials, and other auxiliary substances which would be useful in the present invention are known to those skilled in the art, and would be readily determined. Methods for preparing pharmaceutical compositions are also known to those skilled in the art.
  • the pharmaceutical composition may be in tablet form and may comprise at least one excipient, auxiliary substance, and/or carrier material.
  • the at least one excipient, auxiliary substance, and/or carrier material may be chosen from, for example, povidone, croscarmellose sodium, magnesium stearate, saccharin sodium, dibasic calcium phosphate dihydrate, sodium lauryl sulphate, flavorings, and combinations thereof.
  • Exemplary tablets may be formed using granulation liquids, such as, for example, purified water and ethanol.
  • the pharmaceutical composition may be in oral suspension form and may comprise at least one excipient, auxiliary substance, and/or carrier material.
  • the at least one excipient, auxiliary substance, and/or carrier material may be chosen from, for example, xantham gum, macrogol stearate (such as, for example, Myrj 59 P, produced by UNIQEMA), methylparaben, propylparaben, saccharin sodium, sorbitol, buffers, flavorings, and combinations thereof.
  • Another aspect of the present disclosure relates to a method for reducing or decreasing the number, duration, or frequency of epileptic seizures in a patient by administering to the patient a dose of a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount.
  • the method for reducing epileptic seizures in patients comprises administering a once-daily dose of the pharmaceutical composition comprising a pharmacologically effective amount of eslicarbazepine acetate.
  • the present disclosure also relates to a method for increasing the exposure to eslicarbazepine in a patient by administering to the patient a pharmaceutical composition comprising eslicarbazepine acetate in an amount effective to increase the plasma concentration of eslicarbazepine over the dosage interval.
  • the exposure to eslicarbazepine may be increased by delivering the pharmaceutical composition in a manner that minimizes the number of daily doses.
  • the method for increasing the exposure to eslicarbazepine in the patient comprises administering to a patient a once-daily dose of a pharmaceutical composition comprising an amount of eslicarbazepine acetate effective to increase the plasma concentration of eslicarbazepine over the dosage interval.
  • the active ingredient of the pharmaceutical composition may consist essentially of eslicarbazepine acetate.
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in a maximum plasma concentration (C max ) of eslicarbzepine greater than about 7,400 ng/mL.
  • C max maximum plasma concentration
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in a C max of eslicarbazepine greater than about 12,000 ng/mL or greater than about 16,100 ng/mL.
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in a C max of eslicarbazepine greater than about 22,700 ng/mL, such as greater than about 36,500 ng/ml, greater than about 45,200 ng/mL, or more.
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in a maximum plasma concentration (C max ) of eslicarbzepine up to about 58,800 ng/mL or up to about 67,800 ng/mL. In a further exemplary embodiment, eslicarbazepine acetate may be administered to a patient in an amount resulting in a maximum plasma concentration (C max ) of eslicarbzepine up to about 885,000 ng/mL or up to about 1,000,000 ng/mL.
  • C max maximum plasma concentration
  • a once-daily dose of about 400 mg may be administered to a patient resulting in a maximum plasma concentration (C max ) of eslicarbazepine greater than about 7,400 ng/mL.
  • C max maximum plasma concentration
  • a once-daily dose of about 800 mg or about 1200 mg may be administered to a patient resulting in a C max of eslicarbazepine greater than about 16,100 ng/mL or greater than about 22,700 ng/mL, respectively.
  • eslicarbazepine acetate may be administered in a once-daily dose greater than about 1200 mg, such as about 1800 mg or about 2400 mg, to result in a C max of eslicarbazepine greater than about 36,500 ng/mL, about 45,200 ng/mL, respectively.
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in an area under the concentration curve (which corresponds to the extent of systemic exposure) over the dosing interval (AUC 0- ⁇ ) of eslicarbazepine greater than about 110,000 ng ⁇ h/mL.
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in an AUC 0- ⁇ of eslicarbazepine greater than about 240,000 ng ⁇ h/mL or greater than about 375,000 ng ⁇ h/mL, respectively.
  • eslicarbazepine acetate may be administered to a patient in an amount resulting in an AUC 0- ⁇ of eslicarbazepine greater than about 595,000 ng ⁇ h/mL, greater than about 790,000 ng ⁇ h/mL, or more.
  • a once-daily dose of about 400 mg may be administered resulting in an area under the concentration curve (which corresponds to the extent of systemic exposure) over the dosing interval (AUC 0- ⁇ ) of eslicarbazepine greater than about 110,000 ng ⁇ h/mL.
  • a once-daily dose of about 800 mg or about 1200 mg may be administered resulting in an AUC 0- ⁇ of eslicarbazepine greater than about 240,000 ng ⁇ h/mL or greater than about 375,000 ng ⁇ h/mL, respectively.
  • eslicarbazepine acetate may be administered in a once-daily dose greater than about 1200 mg, such as about 1800 mg, about 2400 mg, or more, to result in a respective AUC 0- ⁇ of eslicarbazepine greater than about 595,000 ng ⁇ h/mL, greater than about 790,000 ng ⁇ h/mL, or more.
  • a once-daily dose may be administered in a dosage comprising at least about 400 mg of eslicarbazepine acetate. In another exemplary embodiment, a once-daily dose may be administered in a dosage comprising an amount of eslicarbazepine acetate ranging from about 800 mg to about 1200 mg. In further exemplary embodiments, a once-daily dose may be administered in a dosage comprising an amount of eslicarbazepine greater than about 1200 mg, such as about 1800 mg, about 2400 mg, or more.
  • composition comprising eslicarbazepine acetate may optionally be administered by any route known to those skilled in the art, and may be in a form chosen from, for example, tablets or oral suspensions, or other forms.
  • a “method of treating” as described herein refers to administering to a patient the compound described in any amount effective to reduce the effects of, counteract, or eliminate the disease or condition being treated, or the symptoms thereof.
  • a “method for increasing the exposure to eslicarbazepine in a patient” as described herein refers to administering to a patient the compound described in any amount effective to increase the plasma concentration of eslicarbazepine in the patient over the dosage interval. This may, for example, be an increase due to once-daily dosing relative to twice-daily dosing.
  • “Reducing epileptic seizures in a patient” as described herein refers to any decrease in the number, duration, or frequency of epileptic seizures in a patient relative to the number, duration, or frequency of epileptic seizures experienced by the patient without treatment.
  • a “pharmacologically effective amount” of eslicarbazepine acetate in a pharmaceutical composition as described herein refers to any amount sufficient to have the desired pharmacological activity.
  • eslicarbazepine acetate The effects of eslicarbazepine acetate in humans was studied in at least the following clinical studies.
  • a placebo-controlled therapeutic exploratory study once-daily and twice-daily dosing was compared in epileptic patients refractory to standard anti-epileptic drug therapy.
  • healthy subjects received either a once-daily (o.d.) oral dose of 900 mg of eslicarbazepine acetate or a twice-daily (b.i.d.) dose of 450 mg of eslicarbazepine acetate.
  • AEDs antiepileptic drugs
  • This human pharmacology trial was a study to investigate the steady-state pharmacokinetics of once-daily and twice-daily regimens of eslicarbazepine acetate in healthy subjects.
  • the study was a single center, open-label, randomized, two-way crossover study in 12 healthy volunteers (6 males and 6 females) that consisted of two 8-day treatment periods separated by a washout period of 10-15 days. On each of the treatment periods the volunteers received either a daily oral dose of eslicarbazepine acetate 900 mg once-daily (o.d.) or eslicarbazepine acetate 450 mg twice-daily (b.i.d.). Tablets with a strength of 450 mg of eslicarbazepine acetate, manufactured by BIAL (S. Mamede do Coronado, Portugal) in accordance with Good Manufacturing Practice, were used.
  • Plasma concentrations of eslicarbazepine acetate, eslicarbazepine, and R-licarbazepine were determined using isocratic liquid chromatography (LC) with single quadrupole mass spectrometric detection (MS).
  • the method involved the addition of 500 ⁇ L of approximately 0.5 ⁇ g/mL of 10,11-dihydrocarbamazepine (internal standard prepared in acetonitrile:water, 3:97, v:v) to 250 ⁇ L of plasma (centrifuged at 1800 rpm, prior to analysis) in a polypropylene tube. After vortex mixing for 10 seconds, the mixture was transferred to a Schleicher and Schuell C18/100 mg 96 well solid phase extraction plate. Each well was preconditioned with 800 ⁇ L methanol, followed by 800 ⁇ L acetonitrile and 800 ⁇ L acetonitrile:water (3:97, v:v) prior to application of the total sample volume. Each polypropylene tube was then washed with 500 ⁇ L acetonitrile:water (3:97, v:v) and the washings transferred to the respective well.
  • 10,11-dihydrocarbamazepine internal standard prepared in acetonitrile:water, 3
  • the compounds were eluted into a collection plate with 750 ⁇ L acetonitrile and the extract evaporated to dryness under oxygen-free nitrogen, at 40° C. All solid phase extraction manipulations were undertaken using the Tomtec QUADRA 96® Model 320 system and a vacuum was applied at each elution step.
  • the final extract was reconstituted in 100 ⁇ L of water:methanol (90:10, v:v) and mixed.
  • the collection plate was then centrifuged at approximately 3000 rpm (at approximately 4° C., for approximately 10 minutes) prior to analysis. An aliquot of the final extract (10 ⁇ L) was injected onto the LC-MS system.
  • the LC-MS system used in the analysis consisted of a Perkin Elmer series 200 micro pump, a Perkin Elmer series 200 autosampler, and a Perkin Elmer/Sciex API 150EX single quadrupole mass spectrometer fitted with a Turbo IonSpray® source.
  • LichroCART 250-4 ChiraDex column ⁇ -cyclodextrin, 5 ⁇ m
  • LichroCART 4-4 ChiraDex column guard column ⁇ -cyclodextrin, 5 ⁇ m
  • Jones Chromatography 7971 column heater at 50° C.
  • a mobile phase A 0.2 mM sodium acetate, aq
  • a mobile phase B 0.2 mM sodium acetate, MeOH
  • the MS detector was operated in positive ion mode with mass transitions for BIA 2-093, eslicarbazepine, R-licarbazepine, and the internal standard of 319.16 amu (200 ms), 277.08 amu (200 ms), 277.08 amu (200 ms) and 261.05 amu (200 ms), respectively.
  • the limit of quantification of the assay was 10 ng/mL for eslicarbazepine acetate and 100 ng/mL for eslicarbazepine and R-licarbazepine.
  • the internal standard, 10,11-dihydrocarbamazepine was supplied by Sigma-Aldrich (St. Louis, Mo.).
  • the pharmacokinetic parameters were derived from non-compartmental analysis using WinNonlin (Version 4.0, Pharsight Corporation, Mountain View, Calif.). The following parameters were derived, where appropriate, from the individual plasma concentration-time profiles: maximum observed plasma concentration (C max ); time of occurrence of C max (t max ); area under the plasma concentration versus time curve (AUC) from time zero to the last sampling time (t) at which concentrations were at or above the limit of quantification (AUC 0- ⁇ ), calculated by the linear trapezoidal rule; AUC over the dosing interval (AUC ⁇ ), i.e., 24 hours and 12 hours in the once-daily and the twice-daily group, respectively; AUC from time zero to infinity (AUC 0- ⁇ ), calculated from AUC 0- ⁇ +(C last / ⁇ z ), where C last is the last quantifiable concentration; apparent terminal rate constant ( ⁇ z ) calculated by log-linear regression of the terminal segment of the plasma concentration versus time curve;
  • This human pharmacology trial was a study to determine the pharmacokinetics of eslicarbazepine acetate following single and repeated doses.
  • the study integrated the results of three double-blind, randomized, placebo-controlled trials.
  • oral single doses of eslicarbazepine acetate ranging from 20 mg to 2400 mg were administered to healthy young male subjects (6 subjects per dose).
  • the pharmacokinetics of eslicarbazepine acetate following repeated doses were measured by administering repeated oral doses ranging from 400 mg to 2400 mg of eslicarbazepine acetate to healthy young male subjects (6 subjects per dose) over a period of 8 days.
  • Analytical test methods and experimental procedures were similar to those described for Trial A above.
  • the treatment groups were homogenous with regard to age, height, weight, and body mass index. All 143 patients were Caucasian. With respect to gender, there were relatively more female patients in the twice-daily group than in the once-daily and placebo groups (65.2%, 56.0% and 57.4%, respectively); this difference did not significantly affect the results. No significant differences were found in the number of AEDs used: respectively 30.0%, 34.8% and 29.8% of patients in the once-daily, twice-daily, and placebo groups were treated with 1 AED; the remaining patients were treated with 2 AEDs.
  • valproic acid 68.0%, 60.9% and 66.0% of patients in the once-daily, twice-daily, and placebo groups, respectively
  • topiramate 36.0%, 34.8%, and 21.3%, respectively
  • lamotrigine 30.0%, 28.3%, and 31.9%, respectively.
  • mean duration of epilepsy was 16.7, 19.5, and 20.0 years in the once-daily, twice-daily, and placebo groups, respectively.
  • seizure type frequency IA simple partial, IB complex partial, and IC partial evolving to secondarily generalized were present in, respectively, 34.0%, 72.0%, and 80.0%, in the once-daily group; 37.0%, 71.7%, and 80.4%, in the twice-daily group; and 27.7%, 80.9%, and 72.3%, in the placebo group.
  • the mean of total number of seizures per month prior to the study was 14.1, 13.6, and 11.8, in the once-daily, twice-daily, and placebo groups, respectively.
  • the proportion of patients with a 50% or greater reduction in seizure frequency in the treatment period compared to the baseline period in the intention-to-treat (ITT) population (n 143) was the primary efficacy endpoint.
  • the proportion of responders in the once-daily group (54%) was also higher than in the twice-daily (41%) group.
  • the proportion of responders in the once-daily group (58%) was significantly higher (p ⁇ 0.05) than in the twice-daily (33%) and placebo (38%) groups. At this dose level, no significant difference was found between the twice-daily and the placebo groups.
  • Secondary endpoints include the reduction in total seizure frequency, proportion of seizure-free patients, distribution of responders, comparison of once and twice daily regimens, and investigator's and patient's global evaluation.
  • Plasma/serum samples for the “trough” (pre-dose) levels of BIA 2-005 and concomitant AEDs were collected at all visits but V5 (post-study visit).
  • the objective was to characterize the influence of eslicarbazepine acetate on the pharmacokinetic behavior of the concomitant AEDs (e.g., phenyloin, valproate, primidone, phenobarbital, lamotrigine, gabapentin, topiramate, and clonazepam).
  • the mean trough plasma concentrations of BIA 2-005 are displayed in Table 1. As shown in FIG.
  • the mean trough serum concentrations of valproate were not significantly changed by concomitant administration of eslicarbazepine acetate once-daily (7.0%; 95% IC: ⁇ 7.6, 36.2) or twice-daily (6.3%; 95% IC: ⁇ 7.5, 20.1).
  • a significant increase in the serum levels of valproate was noticed (25.4%; 95% IC: 5.1, 45.8).
  • With respect to lamotrigine its serum levels were not significantly changed when eslicarbazepine acetate once-daily ( ⁇ 10.0%; 95% IC: ⁇ 46.2, 26.2) or placebo (12.6%; 95% IC: ⁇ 12.6, 37.8) were added to therapy.
  • Eslicarbazepine acetate was shown to be extensively metabolized to eslicarbazepine and, in a minor extent, to R-licarbazepine.
  • the steady-state of eslicarbazepine plasma concentrations was attained at 4 to 5 days of administration in both groups.
  • mean C max of eslicarbazepine and R-licarbazepine was, respectively, 22,210 ng/mL and 674 ng/mL and occurred at (median t max ) 2.45 hours and 9.42 hours post-dose, respectively.
  • Mean AUC 0-t of eslicarbazepine and R-licarbazepine was 381,601 ng ⁇ h/mL and 19,600 ng ⁇ h/mL, respectively.
  • mean C max of eslicarbazepine and R-licarbazepine was 16,667 ng/mL and 718 ng/mL, respectively, and occurred (median t max ) at 2.09 hours and 6.40 hours post-dose, respectively.
  • Mean AUC 0-t of eslicarbazepine and R-licarbazepine was 283,014 ng ⁇ h/mL and 19,661 ng ⁇ h/mL, respectively.
  • eslicarbazepine was shown to be the major metabolite, representing approximately 95% and 96% of total systemic drug exposure (as assessed by AUC 0-24 ) in once-daily and twice-daily subjects, respectively.
  • Tables 2 and 3 depict the eslicarbazepine and R-licarbazepine pharmacokinetic parameters in the once-daily and twice-daily groups following the last dose of eslicarbazepine acetate.
  • the total exposure of healthy volunteers to eslicarbazepine in the once-daily group was unexpectedly at least 26% higher than in the twice-daily group.
  • mean C max of eslicarbazepine ranged from 8,800 ng/ML ⁇ (16.0% coefficient of variation, CV) for 400 mg doses of eslicarbazepine acetate to 56,500 ng/ML ⁇ (20.0% CV) for 2400 mg doses of eslicarbazepine acetate.
  • the maximum plasma concentration for all dosages occurred (median t max ) at 2 hours to 3.5 hours.
  • the mean area under the concentration for the dosing interval of 24 hours, AUC 0-24h ranged from 126,300 ng/ML for 400 mg once-daily doses of eslicarbazepine acetate to 905,900 ng/ML for 2400 mg once-daily doses of eslicarbazepine acetate.
  • Tables 4 and 5 depict the eslicarbazepine and R-licarbazepine pharmacokinetic parameters following the single dose of eslicarbazepine acetate and the pharmacokinetic parameters following the last of the repeated doses of eslicarbazepine acetate.
  • Eslicarbazepine acetate was shown to be extensively metabolized to eslicarbazepine and, in a minor extent, to R-licarbazepine.
  • Eslicarbazepine represented between 95% and 98% of total systemic drug exposure (as assessed by AUC 0- ⁇ , i.e., AUC over the dosing interval) and, therefore, is believed to be mainly responsible for pharmacological activity following administration of eslicarbazepine acetate.
  • Plasma concentrations of parent drug (eslicarbazepine acetate) were systematically found to be below the limit of quantification. With multiple-dosing, steady-state plasma concentrations were attained at 4 to 5 days of administration in both groups, consistent with an effective half-life on the order of about 20-24 hours.
  • the kinetic profile of eslicarbazepine in the once-daily group was markedly different from the twice-daily group with statistical differences found for some of the pharmacokinetic parameters assessed (C max , AUC 0-t and AUC 0- ⁇ ) following multiple oral dosing of eslicarbazepine acetate.
  • C max , AUC 0-t and AUC 0- ⁇ the total exposure of healthy volunteers to eslicarbazepine in the once-daily group was unexpectedly at least 26% higher than in the twice-daily group. This unexpected result is in line with finding in epileptic patients that once-daily administration of eslicarbazepine acetate was more efficacious than the same total daily dosage divided into twice-daily doses.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present disclosure relates to the treatment of various diseases and conditions with eslicarbazepine acetate. The present disclosure also relates to the use of eslicarbazepine acetate in a method for reducing or decreasing epileptic seizures in a patient. The present disclosure also relates to a method for increasing the exposure to eslicarbazepine in a patient. The present disclosure also relates to a method of preparing a pharmaceutical composition comprising eslicarbazepine acetate.

Description

    BACKGROUND
  • The present disclosure relates to a pharmaceutical composition and a treatment method using eslicarbazepine acetate.
  • Epilepsy, pain conditions such as trigeminal neuralgia, and affective brain disorders such as bipolar disorder are commonly treated with carbamazepine. Treatment with carbamazepine, however, can lead to serious side effects due to the production of toxic metabolites. Oxcarbazepine was developed to reduce the severity of those side effects, but oxcarbazepine has a greatly reduced potency. See, e.g., Almeida, L. & Soares-da-Silva, P., “Safety, Tolerability, and Pharmacokinetic Profile of BIA 2-093, a Novel Putative Antiepileptic, in a Rising Multiple-Dose Study in Young Healthy Humans,” J. Clin. Pharmacol., 44, 906-918 (2004) (herein referred to as “Almeida I”).
  • Thus, there is a need for a pharmaceutical composition and method for treating various conditions or diseases such as, for example, epilepsy, trigeminal neuralgia, and affective brain disorders, that has a high potency and a low occurrence of side effects.
  • SUMMARY
  • Eslicarbazepine acetate, (S)-(−)-10-acetoxy-10,11-dihydro-5H- dibenz/b,f/azepine-5-carboxamide (“BIA 2-093”), is a new drug currently being developed which is useful for the treatment of various conditions, such as, for example, epilepsy and affective brain disorders, as well as pain conditions and nervous function alterations in degenerative and post-ischemic diseases. Although chemically related to carbamazepine and oxcarbazepine, eslicarbazepine acetate is believed to avoid the production of certain toxic metabolites (such as, for example, epoxides) and to avoid the unnecessary production of enantiomers or diastereoisomers of metabolites and conjugates, without losing pharmacological activity. See Benes et al., “Anticonvulsant and Sodium Channel-Blocking Properties of Novel 10,11-Dihydro-5H-dibenz[b,f]azepine-5-carboxamide Derivatives,” J. Med. Chem., 42, 2582-2587 (1999).
  • Like carbamazepine and oxcarbazepine, eslicarbazepine acetate is believed to be a voltage-gated sodium channel (VGSC) blocker that competitively interacts with site 2 of the inactivated state of the sodium channel. The affinity for this state of the channel is similar to that of carbamazepine, while the affinity for the resting state of the channel is about 3-fold lower than that of carbamazepine. This profile may suggest an enhanced inhibitory selectivity of eslicarbazepine acetate for rapidly firing neurons over those displaying normal activity. See Bonifacio et al., “Interaction of the Novel Anticonvulsant, BIA 2-093, with Voltage- Gated Sodium Channels: Comparison with Carbamazepine,” Epilepsia, 42, 600-608 (2001).
  • Evaluation of the metabolic profile of eslicarbazepine acetate, following chiral analysis, in liver microsomes from rats, dogs, monkeys and humans was found to give the S(+) enantiomer of licarbazepine, (S)-(+)-10,11-dihydro-10-hydroxy-5H dibenz/b,f/azepine-5-carboxamide (also known as “eslicarbazepine”), and not the R(−) form of licarbazepine, (R)-(−)-10,11-dihydro-10-hydroxy-5H dibenz/b,f/azepine-5-carboxamide (also known as “R-licarbazepine”).
  • Studies in humans have shown that, after oral administration, eslicarbazepine acetate appears to be rapidly and extensively metabolized to the active metabolite eslicarbazepine and, in a minor extent, to R-licarbazepine. See Silveira et al., “BIA 2-093 Pharmacokinetics in Healthy Elderly Subjects,” Epilepsia, 45 (suppl. 3), 157 (2004). For example, the plasma concentrations of the parent drug (eslicarbazepine acetate) have been systematically found below the limit of quantification (LOQ) of the assay (10 ng/mL). See Almeida I; Almeida, L. & Soares-da-Silva, P., “Safety, Tolerability and Pharmacokinetic Profile of BIA 2-093, a Novel Putative Antiepileptic Agent, during First Administration to Humans,” Drugs R&D, 4, 269-284 (2003) (herein referred to as “Almeida II”). When a non-chiral method is used, the assay does not distinguish between eslicarbazepine and the R-enantiomer, and the mixture was reported as “BIA 2-005” or “racemic licarbazepine.”
  • The inventors performed entry-into-man studies in healthy subjects, the results of which they described in the Almeida I and Almeida II articles, both of which are hereby incorporated by reference. In these studies, the healthy subjects received a single oral dose of eslicarbazepine acetate wherein the dose ranged from 20 mg to 1200 mg (see Almeida II), and multiple daily-doses of eslicarbazepine acetate ranging from 200 mg twice-daily to 1200 mg once-daily (see Almeida I). Further studies (not yet published) by the inventors have investigated higher doses of eslicarbazepine acetate, including, for example, doses ranging up to 2400 mg once-daily. The studies showed that BIA 2-005 maximum observed plasma concentration (Cmax) was attained at about 1 hour to about 4 hours post-dose (tmax), the extent of systemic exposure to BIA 2-005 was approximately dose-proportional, and steady-state of BIA 2-005 plasma concentrations was attained at about 4 to 5 days. The mean renal clearance of BIA 2-005 from plasma was about 20-30 mL/min, and the total amount of BIA 2-005 recovered in the urine was approximately 20% and 40% within 12 hours and 24 hours post-dose, respectively.
  • The studies also showed that the apparent terminal half-life of BIA 2-005 ranged from about 8 hours to about 17 hours. See, e.g., Almeida I.
  • U.S. Pat. No. 6,296,873 discloses a sustained release delivery system for carbamazepine, which has a half-life ranging from 25 hours to 85 hours. To avoid adverse effects, U.S. Pat. No. 6,296,873 teaches that the carbamazepine should be administered in tablet form up to two or more times daily to slowly release the compound to maintain concentration levels between 4-12 μg/mL. Such a delivery system requires a form that is capable of delivering the compound over an extended period of time, such as a tablet form.
  • In one aspect of the present disclosure, the inventors have unexpectedly discovered an enhanced efficacy of eslicarbazepine acetate in the treatment of various conditions, such as, for example, the treatment of epilepsy, using once-daily administration compared to twice-daily administration. This discovery is particularly surprising because the apparent half-life of eslicarbazepine acetate (t1/2=about 8 hours to about 17 hours) is significantly shorter than the half-life of carbamazepine (t1/2=25 hours to 85 hours), a compound typically administered 3-4 times daily.
  • In another aspect of the present disclosure, the inventors have also unexpectedly discovered an enhanced exposure to eslicarbazepine after once-daily administration of eslicarbazepine acetate versus the twice-daily regimen in humans. Once-daily administration of eslicarbazepine acetate surprisingly provides an increase of exposure to eslicarbazepine than the same drug dosage divided into twice-daily doses.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1: Percentage reduction in seizure number in each dose period versus baseline (400 mg once-daily versus twice-daily and placebo; 800 mg once-daily versus twice-daily and placebo; 1200 mg once-daily versus twice-daily and placebo).
  • FIG. 2: Mean (95% Cl) trough plasma concentrations (μg/mL) of BIA 2-005 following a daily dose of 400 mg, 800 mg and 1200 mg of BIA-2-093 administered once-daily (o.d.) or twice-daily (b.i.d.).
  • DETAILED DESCRIPTION
  • The foregoing and following aspects and embodiments, including the studies discussed herein, are described and illustrated in a manner intending to be exemplary only, and should not be construed as limiting in scope.
  • One aspect of the present disclosure relates to a method for treating at least one disease or condition in a patient in need thereof by administering a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount.
  • In one exemplary embodiment of the present disclosure, the pharmaceutical composition comprising eslicarbazepine acetate is administered in a once-daily dosing regimen.
  • In another exemplary embodiment of the present disclosure, the pharmaceutical composition is administered in a dosage intended to maximize the total exposure to eslicarbazepine, as measured by the rate of exposure and extent of exposure (Cmax and AUCo-τ).
  • In an exemplary embodiment of the present disclosure, the at least one disease or condition treated may be chosen from, for example, epilepsy, central and peripheric nervous system disorders, affective disorders, schizoaffective disorders, bipolar disorders, attention disorders, anxiety disorders, neuropathic pain and neurophratic pain-related disorders, sensorimotor disorders, vestibular disorders, and nervous function alterations in degenerative and post-ischemic diseases.
  • Examples of affective disorders include depression, pre-menstrual dysphoric disorder, post-partum depression, post-menopausal depression, anorexia nervosa, bulimia nervosa, and neurodegeneration-related depressive symptoms.
  • The methods disclosed in the present disclosure may be used to treat schizoaffective disorders such as, for example, schizodepressive syndromes, schizophrenia, extreme psychotic states, schizomanic syndromes, dysphoric and aggressive behavior, episodic dyscontrol or intermittent explosive disorder, and borderline personality disorder.
  • Bipolar disorders that may be treated according to the methods of the present disclosure include, for example, bipolar disorder and unstable bipolar disorder with rapid fluctuations (rapid cyclers), manic-depressive disorders, acute mania, mood episodes, and manic and hypomanic episodes
  • Examples of attention disorders include attention deficit hyperactivity disorders and other attention disorders, such as, for example, autism.
  • Anxiety disorders may include conditions such as, for example, social anxiety disorders, post traumatic stress disorder, panic, obsessive-compulsive disorder, alcoholism, drug withdrawal syndromes, and cravings.
  • The neuropathic pain and neurophratic pain-related disorders that may be treated according to the methods of the present disclosure include, by way of example, neuropathic pain and associated hyperalgesia, including trigeminal, herpetic, post-herpetic and tabetic neuralgia, diabetic neuropathic pain, migraines, tension-type headaches, causalgia, and deafferentation syndromes such as, for example, brachial plexus avulsion.
  • Examples of sensorimotor disorders include Restless legs syndrome, spasticity, hemifacial spasm, nocturnal paroxysmal dystonia, brain ischemia associated motor and sensitive deficits, Parkinson's disease and parkinsonian disorders, antipsychotic-induced motor deficits, tardive dyskinesia, episodic nocturnal wandering, and myotonia.
  • Exemplary vestibular disorders include Tinnitus or other inner ear/cochlear excitability related diseases, such as, for example, neuronal loss, hearing loss, sudden deafness, vertigo, and Meniere's disease.
  • In other exemplary embodiments, the at least one disease or condition may be chosen from epilepsy, bipolar disorder, and trigeminal neuralgia. In yet another embodiment, the disease may be refractory partial epilepsy.
  • One skilled in the art will understand that these conditions are exemplary only, and will understand from the disclosure what other diseases and conditions would be considered to be within the scope of the present disclosure.
  • Another aspect of the present disclosure relates to a pharmaceutical composition comprising eslicarbazepine acetate and at least one pharmaceutical excipient, at least one auxiliary substance, at least one carrier material, or combinations thereof.
  • A further aspect of the present disclosure relates to a method of preparing a pharmaceutical composition comprising combining eslicarbazepine acetate with at least one excipient, at least one auxiliary substance, at least one carrier material, or combinations thereof. Suitable excipients, carrier materials, and other auxiliary substances which would be useful in the present invention are known to those skilled in the art, and would be readily determined. Methods for preparing pharmaceutical compositions are also known to those skilled in the art.
  • In one exemplary embodiment of the present disclosure, the pharmaceutical composition may be in tablet form and may comprise at least one excipient, auxiliary substance, and/or carrier material. The at least one excipient, auxiliary substance, and/or carrier material may be chosen from, for example, povidone, croscarmellose sodium, magnesium stearate, saccharin sodium, dibasic calcium phosphate dihydrate, sodium lauryl sulphate, flavorings, and combinations thereof. Exemplary tablets may be formed using granulation liquids, such as, for example, purified water and ethanol.
  • In another exemplary embodiment of the present disclosure, the pharmaceutical composition may be in oral suspension form and may comprise at least one excipient, auxiliary substance, and/or carrier material. The at least one excipient, auxiliary substance, and/or carrier material may be chosen from, for example, xantham gum, macrogol stearate (such as, for example, Myrj 59 P, produced by UNIQEMA), methylparaben, propylparaben, saccharin sodium, sorbitol, buffers, flavorings, and combinations thereof.
  • Another aspect of the present disclosure relates to a method for reducing or decreasing the number, duration, or frequency of epileptic seizures in a patient by administering to the patient a dose of a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount. In one exemplary embodiment of the present disclosure, the method for reducing epileptic seizures in patients comprises administering a once-daily dose of the pharmaceutical composition comprising a pharmacologically effective amount of eslicarbazepine acetate.
  • The present disclosure also relates to a method for increasing the exposure to eslicarbazepine in a patient by administering to the patient a pharmaceutical composition comprising eslicarbazepine acetate in an amount effective to increase the plasma concentration of eslicarbazepine over the dosage interval. In one exemplary embodiment, the exposure to eslicarbazepine may be increased by delivering the pharmaceutical composition in a manner that minimizes the number of daily doses. In a further exemplary embodiment of the present disclosure, the method for increasing the exposure to eslicarbazepine in the patient comprises administering to a patient a once-daily dose of a pharmaceutical composition comprising an amount of eslicarbazepine acetate effective to increase the plasma concentration of eslicarbazepine over the dosage interval.
  • In a further exemplary embodiment of the present disclosure, the active ingredient of the pharmaceutical composition may consist essentially of eslicarbazepine acetate.
  • In a further aspect of the present disclosure, eslicarbazepine acetate may be administered to a patient in an amount resulting in a maximum plasma concentration (Cmax) of eslicarbzepine greater than about 7,400 ng/mL. In other exemplary embodiments, eslicarbazepine acetate may be administered to a patient in an amount resulting in a Cmax of eslicarbazepine greater than about 12,000 ng/mL or greater than about 16,100 ng/mL. In further exemplary embodiments, eslicarbazepine acetate may be administered to a patient in an amount resulting in a Cmax of eslicarbazepine greater than about 22,700 ng/mL, such as greater than about 36,500 ng/ml, greater than about 45,200 ng/mL, or more.
  • In a further exemplary embodiment, eslicarbazepine acetate may be administered to a patient in an amount resulting in a maximum plasma concentration (Cmax) of eslicarbzepine up to about 58,800 ng/mL or up to about 67,800 ng/mL. In a further exemplary embodiment, eslicarbazepine acetate may be administered to a patient in an amount resulting in a maximum plasma concentration (Cmax) of eslicarbzepine up to about 885,000 ng/mL or up to about 1,000,000 ng/mL.
  • For example, a once-daily dose of about 400 mg may be administered to a patient resulting in a maximum plasma concentration (Cmax) of eslicarbazepine greater than about 7,400 ng/mL. As a further example, a once-daily dose of about 800 mg or about 1200 mg may be administered to a patient resulting in a Cmax of eslicarbazepine greater than about 16,100 ng/mL or greater than about 22,700 ng/mL, respectively. In other examples, eslicarbazepine acetate may be administered in a once-daily dose greater than about 1200 mg, such as about 1800 mg or about 2400 mg, to result in a Cmax of eslicarbazepine greater than about 36,500 ng/mL, about 45,200 ng/mL, respectively.
  • In a further aspect of the present disclosure, eslicarbazepine acetate may be administered to a patient in an amount resulting in an area under the concentration curve (which corresponds to the extent of systemic exposure) over the dosing interval (AUC0-τ) of eslicarbazepine greater than about 110,000 ng·h/mL. In other exemplary embodiments, eslicarbazepine acetate may be administered to a patient in an amount resulting in an AUC0-τ of eslicarbazepine greater than about 240,000 ng·h/mL or greater than about 375,000 ng·h/mL, respectively. In other examples, eslicarbazepine acetate may be administered to a patient in an amount resulting in an AUC0-τ of eslicarbazepine greater than about 595,000 ng·h/mL, greater than about 790,000 ng·h/mL, or more.
  • For example, a once-daily dose of about 400 mg may be administered resulting in an area under the concentration curve (which corresponds to the extent of systemic exposure) over the dosing interval (AUC0-τ) of eslicarbazepine greater than about 110,000 ng·h/mL. In other exemplary embodiments, a once-daily dose of about 800 mg or about 1200 mg may be administered resulting in an AUC0-τ of eslicarbazepine greater than about 240,000 ng·h/mL or greater than about 375,000 ng·h/mL, respectively. In other examples, eslicarbazepine acetate may be administered in a once-daily dose greater than about 1200 mg, such as about 1800 mg, about 2400 mg, or more, to result in a respective AUC0-τ of eslicarbazepine greater than about 595,000 ng·h/mL, greater than about 790,000 ng·h/mL, or more.
  • In one exemplary embodiment of the present disclosure, a once-daily dose may be administered in a dosage comprising at least about 400 mg of eslicarbazepine acetate. In another exemplary embodiment, a once-daily dose may be administered in a dosage comprising an amount of eslicarbazepine acetate ranging from about 800 mg to about 1200 mg. In further exemplary embodiments, a once-daily dose may be administered in a dosage comprising an amount of eslicarbazepine greater than about 1200 mg, such as about 1800 mg, about 2400 mg, or more.
  • The pharmaceutical composition comprising eslicarbazepine acetate may optionally be administered by any route known to those skilled in the art, and may be in a form chosen from, for example, tablets or oral suspensions, or other forms.
  • The term “about” as used herein is meant to signify that the number modified by the term may be considered an approximation that may vary depending upon the desired properties or effect sought by the particular application, and thus should be considered to encompass the range that one of skill in the art would understand to achieve the desired or recited properties or effect.
  • A “method of treating” as described herein refers to administering to a patient the compound described in any amount effective to reduce the effects of, counteract, or eliminate the disease or condition being treated, or the symptoms thereof.
  • A “method for increasing the exposure to eslicarbazepine in a patient” as described herein refers to administering to a patient the compound described in any amount effective to increase the plasma concentration of eslicarbazepine in the patient over the dosage interval. This may, for example, be an increase due to once-daily dosing relative to twice-daily dosing.
  • “Reducing epileptic seizures in a patient” as described herein refers to any decrease in the number, duration, or frequency of epileptic seizures in a patient relative to the number, duration, or frequency of epileptic seizures experienced by the patient without treatment.
  • A “pharmacologically effective amount” of eslicarbazepine acetate in a pharmaceutical composition as described herein refers to any amount sufficient to have the desired pharmacological activity.
  • All effective amounts as described herein will vary according to various well-known and understood factors, such as, for example, the condition being treated and the physiological characteristics of the patient being treated. Accordingly, the effective amount will be well within the ability of one skilled in the art to determine.
  • Study Materials and Methods
  • The following demonstrates, as one example of the present disclosure, the determination and administration of an effective amount of a pharmaceutical composition comprising eslicarbazepine acetate to treat epilepsy in patients in need thereof. The effective amount of a pharmaceutical composition to treat other diseases and/or conditions would be determinable by one skilled in the art based on the techniques and concepts disclosed herein and known in the art.
  • The effects of eslicarbazepine acetate in humans was studied in at least the following clinical studies. In the first study, a placebo-controlled therapeutic exploratory study, once-daily and twice-daily dosing was compared in epileptic patients refractory to standard anti-epileptic drug therapy. In the second study, healthy subjects received either a once-daily (o.d.) oral dose of 900 mg of eslicarbazepine acetate or a twice-daily (b.i.d.) dose of 450 mg of eslicarbazepine acetate. In the third study, healthy subjects received single oral doses of eslicarbazepine acetate ranging from 20 mg to 2400 mg, and repeated once-daily (o.d.) oral doses ranging from 400 mg to 2400 mg of eslicarbazepine acetate.
  • The bioequivalence of tablets and oral suspensions was proven in a relative bioavailability study.
  • Study in Epileptic Patients
  • This clinical trial was a double-blind, randomized, placebo-controlled study performed by 20 centers in Croatia, Czech Republic, Germany, Lithuania and Poland. The stated objectives of the study were to assess the efficacy and safety of BIA 2-093 as adjunctive therapy in patients with refractory partial epilepsy. In total, 143 patients aged 18-65 years with at least 4 partial-onset seizures per month in spite of treatment with 1 or 2 antiepileptic drugs (AEDs) (e.g., phenyloin, valproate, primidone, phenobarbital, lamotrigine, gabapentin, topiramate or clonazepam) were randomly assigned to one of three groups: treatment with placebo (n=47), BIA 2-093 once-daily (n=50), or BIA 2-093 twice-daily (n=46), during 12 weeks (plus 1 week of tapering off). For the first 4 weeks, daily dose was 400 mg. Then, daily doses were increased to 800 mg (weeks 5-8), and finally to 1200 mg (weeks 9-12). Tablets with strengths of 200 mg, 400 mg, and 600 mg eslicarbazepine acetate and placebo tablets were manufactured by BIAL (S. Mamede do Coronado, Portugal) in accordance with Good Manufacturing Practice. The assay plasma to determine the concentration of BIA 2-005 was performed with a non-chiral method using isocratic liquid chromatography (LC) with single quadrupole mass spectrometric detection (MS), as described herein. See, e.g., Almeida I and Almeida II.
  • Study in Healthy Human Volunteers
  • Trial A
  • This human pharmacology trial was a study to investigate the steady-state pharmacokinetics of once-daily and twice-daily regimens of eslicarbazepine acetate in healthy subjects. The study was a single center, open-label, randomized, two-way crossover study in 12 healthy volunteers (6 males and 6 females) that consisted of two 8-day treatment periods separated by a washout period of 10-15 days. On each of the treatment periods the volunteers received either a daily oral dose of eslicarbazepine acetate 900 mg once-daily (o.d.) or eslicarbazepine acetate 450 mg twice-daily (b.i.d.). Tablets with a strength of 450 mg of eslicarbazepine acetate, manufactured by BIAL (S. Mamede do Coronado, Portugal) in accordance with Good Manufacturing Practice, were used.
  • Blood samples for drug plasma assays were taken at the following times:
  • Phase A:
      • pre-dose, and ½, 1, 1½, 2, 3, 4, 6, 8, 12, 24, 36, 48, 72, and 96 hours post-dose;
  • Phase B:
      • day 5 to day 11 (inclusive): before the daily dose (for “trough” concentrations assay);
      • day 12: pre-dose, and ½, 1, 1½, 2, 3, 4, 6, 8, 12, 24, 36, 48, 72, 96, and 120 hours post-dose.
        Blood samples were drawn either by direct venipuncture or via an intravenous catheter into lithium heparin tubes and centrifuged at approximately 1500 g for 10 minutes at 4° C. The resulting plasma was separated into 2 equal aliquots of 1 mL and stored at −20° C. until required for analysis.
  • Plasma concentrations of eslicarbazepine acetate, eslicarbazepine, and R-licarbazepine were determined using isocratic liquid chromatography (LC) with single quadrupole mass spectrometric detection (MS).
  • The method involved the addition of 500 μL of approximately 0.5 μg/mL of 10,11-dihydrocarbamazepine (internal standard prepared in acetonitrile:water, 3:97, v:v) to 250 μL of plasma (centrifuged at 1800 rpm, prior to analysis) in a polypropylene tube. After vortex mixing for 10 seconds, the mixture was transferred to a Schleicher and Schuell C18/100 mg 96 well solid phase extraction plate. Each well was preconditioned with 800 μL methanol, followed by 800 μL acetonitrile and 800 μL acetonitrile:water (3:97, v:v) prior to application of the total sample volume. Each polypropylene tube was then washed with 500 μL acetonitrile:water (3:97, v:v) and the washings transferred to the respective well.
  • The compounds were eluted into a collection plate with 750 μL acetonitrile and the extract evaporated to dryness under oxygen-free nitrogen, at 40° C. All solid phase extraction manipulations were undertaken using the Tomtec QUADRA 96® Model 320 system and a vacuum was applied at each elution step. The final extract was reconstituted in 100 μL of water:methanol (90:10, v:v) and mixed. The collection plate was then centrifuged at approximately 3000 rpm (at approximately 4° C., for approximately 10 minutes) prior to analysis. An aliquot of the final extract (10 μL) was injected onto the LC-MS system.
  • The LC-MS system used in the analysis consisted of a Perkin Elmer series 200 micro pump, a Perkin Elmer series 200 autosampler, and a Perkin Elmer/Sciex API 150EX single quadrupole mass spectrometer fitted with a Turbo IonSpray® source. Separation was achieved using a LichroCART 250-4 ChiraDex column (β-cyclodextrin, 5 μm), a LichroCART 4-4 ChiraDex column guard column (β-cyclodextrin, 5 μm), a Jones Chromatography 7971 column heater at 50° C., a mobile phase A (0.2 mM sodium acetate, aq) and a mobile phase B (0.2 mM sodium acetate, MeOH). The MS detector was operated in positive ion mode with mass transitions for BIA 2-093, eslicarbazepine, R-licarbazepine, and the internal standard of 319.16 amu (200 ms), 277.08 amu (200 ms), 277.08 amu (200 ms) and 261.05 amu (200 ms), respectively. The limit of quantification of the assay was 10 ng/mL for eslicarbazepine acetate and 100 ng/mL for eslicarbazepine and R-licarbazepine.
  • Eslicarbazepine acetate, (S)-(−)-10-acetoxy-10,11-dihydro-5H-dibenz/b,f/azepine-5-carboxamide; eslicarbazepine, (S)-(+)-10,11-dihydro-10-hydroxy-5H dibenz/b,f/azepine-5-carboxamide; and R-licarbazepine, (R)-(−)-10,11-dihydro-10-hydroxy-5H dibenz/b,f/azepine-5-carboxamide, were synthesized in the Laboratory of Chemistry, BIAL, with purities >99.5%. The internal standard, 10,11-dihydrocarbamazepine was supplied by Sigma-Aldrich (St. Louis, Mo.).
  • The pharmacokinetic parameters were derived from non-compartmental analysis using WinNonlin (Version 4.0, Pharsight Corporation, Mountain View, Calif.). The following parameters were derived, where appropriate, from the individual plasma concentration-time profiles: maximum observed plasma concentration (Cmax); time of occurrence of Cmax (tmax); area under the plasma concentration versus time curve (AUC) from time zero to the last sampling time (t) at which concentrations were at or above the limit of quantification (AUC0-τ), calculated by the linear trapezoidal rule; AUC over the dosing interval (AUCτ), i.e., 24 hours and 12 hours in the once-daily and the twice-daily group, respectively; AUC from time zero to infinity (AUC0-∞), calculated from AUC0-τ+(Clastz), where Clast is the last quantifiable concentration; apparent terminal rate constant (λz) calculated by log-linear regression of the terminal segment of the plasma concentration versus time curve; apparent terminal half-life (t1/2), calculated from ln 2/λz.
  • Actual sampling times were used for the pharmacokinetic analysis. Where an AUC was extrapolated to infinity, the percentage of the extrapolated area to the total area was assessed; if greater than 20%, the AUC value was flagged as unreliable. Plasma concentrations below the limit of quantification of the assay (BLQ) were taken as zero for all calculations. All calculations were made using raw data. Values for tmax were displayed as nominal times.
  • Summary statistics for each group and schedule sampling time were reported, as appropriate, using the geometric mean, arithmetic mean, standard deviation (SD), coefficient of variation (CV), median, minimum, and maximum. Comparisons between elderly versus young groups for the single-dose and multiple-dose data were based on analysis of variance (one-way ANOVA) of the logarithmic transformed Cmax, AUCτ and AUCO0-∞ parameters. A tmax comparison between age groups was performed assuming a non-parametric approach using the Wilcoxon signed rank test. In addition, differences in logarithmic transformed parameters (Cmax, AUCτ and AUC0-∞) and their associated 95% confidence intervals (95% Cl) were estimated between age groups to take the form of ratios on a linear scale. The median values and differences of tmax between age groups and 95% Cl were reported. All tests of significance were performed at the p=0.05 level. The statistical package SAS (Version 8.2, SAS Institute Inc, Cary, N.C.) was used.
  • Trial B
  • This human pharmacology trial was a study to determine the pharmacokinetics of eslicarbazepine acetate following single and repeated doses. The study integrated the results of three double-blind, randomized, placebo-controlled trials. To measure the pharmacokinetics of eslicarbazepine acetate following single doses, oral single doses of eslicarbazepine acetate ranging from 20 mg to 2400 mg were administered to healthy young male subjects (6 subjects per dose). The pharmacokinetics of eslicarbazepine acetate following repeated doses were measured by administering repeated oral doses ranging from 400 mg to 2400 mg of eslicarbazepine acetate to healthy young male subjects (6 subjects per dose) over a period of 8 days. Analytical test methods and experimental procedures were similar to those described for Trial A above.
  • Study Results
  • Study in Epileptic Patients
  • Baseline Characteristics
  • At baseline, the treatment groups were homogenous with regard to age, height, weight, and body mass index. All 143 patients were Caucasian. With respect to gender, there were relatively more female patients in the twice-daily group than in the once-daily and placebo groups (65.2%, 56.0% and 57.4%, respectively); this difference did not significantly affect the results. No significant differences were found in the number of AEDs used: respectively 30.0%, 34.8% and 29.8% of patients in the once-daily, twice-daily, and placebo groups were treated with 1 AED; the remaining patients were treated with 2 AEDs. The most frequently used concomitant AEDs were valproic acid (68.0%, 60.9% and 66.0% of patients in the once-daily, twice-daily, and placebo groups, respectively), topiramate (36.0%, 34.8%, and 21.3%, respectively) and lamotrigine (30.0%, 28.3%, and 31.9%, respectively).
  • At baseline, mean duration of epilepsy was 16.7, 19.5, and 20.0 years in the once-daily, twice-daily, and placebo groups, respectively. With respect to seizure type frequency, IA simple partial, IB complex partial, and IC partial evolving to secondarily generalized were present in, respectively, 34.0%, 72.0%, and 80.0%, in the once-daily group; 37.0%, 71.7%, and 80.4%, in the twice-daily group; and 27.7%, 80.9%, and 72.3%, in the placebo group. The mean of total number of seizures per month prior to the study was 14.1, 13.6, and 11.8, in the once-daily, twice-daily, and placebo groups, respectively.
  • Efficacy Results
  • The proportion of patients with a 50% or greater reduction in seizure frequency in the treatment period compared to the baseline period in the intention-to-treat (ITT) population (n=143) was the primary efficacy endpoint. At the dose of 1200 mg/day (weeks 9-12), the proportion of responders in the once-daily group (54%) was significantly higher (p=0.008) than in the placebo group (28%). The proportion of responders in the once-daily group (54%) was also higher than in the twice-daily (41%) group. At the dose of 800 mg/day (weeks 5-8), the proportion of responders in the once-daily group (58%) was significantly higher (p<0.05) than in the twice-daily (33%) and placebo (38%) groups. At this dose level, no significant difference was found between the twice-daily and the placebo groups.
  • Secondary endpoints include the reduction in total seizure frequency, proportion of seizure-free patients, distribution of responders, comparison of once and twice daily regimens, and investigator's and patient's global evaluation.
  • The greatest decrease in the number of seizures was achieved with 1200 mg and 800 mg once-daily doses, and the results with the once-daily group were better than those obtained in the twice-daily group (FIG. 1). For all dosages (400 mg, 800 mg, and 1200 mg), patients receiving once-daily doses of eslicarbazepine acetate had a substantially greater reduction in the number of seizures compared to patients in the twice-daily and placebo groups.
  • The number of seizures in patients receiving 1200 mg and 800 mg once-daily doses of eslicarbazepine acetate was reduced by 59.5% and 55.8%, respectively. In comparison, seizures in patients receiving 1200 mg and 800 mg twice-daily doses reduced by 47.5% and 38.1%, respectively. Patients receiving a 400 mg once-daily dose of eslicarbazepine acetate experienced a 38.9% reduction in the number of seizures, almost twice the reduction in seizures observed in patients receiving 400 mg twice-daily doses of eslicarbazepine acetate (20.2%).
  • At the end of the 12-week treatment phase, 27.9% of the patients in the once-daily dosing group became seizure-free.
  • In addition, the assessment of efficacy by the investigator (CGI—Clinical Global Impression) and of acceptability by patient was rated best in the once-daily group.
  • Pharmacokinetic Results
  • Plasma/serum samples for the “trough” (pre-dose) levels of BIA 2-005 and concomitant AEDs were collected at all visits but V5 (post-study visit). The objective was to characterize the influence of eslicarbazepine acetate on the pharmacokinetic behavior of the concomitant AEDs (e.g., phenyloin, valproate, primidone, phenobarbital, lamotrigine, gabapentin, topiramate, and clonazepam). The mean trough plasma concentrations of BIA 2-005 are displayed in Table 1. As shown in FIG. 2, no significant differences in the BIA 2-005 trough (pre-dose) values between the once-daily and twice-daily groups were found.
    TABLE 1
    Trough plasma concentrations of BIA 2-005 following oral
    administration of eslicarbazepine acetate once-daily (o.d.)
    and twice-daily (b.i.d)
    400 mg/day 800 mg/day 1200 mg/day
    o.d. b.i.d. o.d. b.i.d. o.d. b.i.d.
    group group group group group group
    Mean 4.0 4.9 10.7 (7.0) 13.5 (9.6) 14.6 (8.8) 15.5 (8.8)
    (μg/mL) (3.2) (2.3)

    Results expressed as arithmetic means with the correspondent standard deviations (sd) in parenthesis.
  • The relatively small number of patients being administered phenyloin, primidone, phenobarbital, gabapentin, and clonazepam precluded the appropriate characterization of the eventual effect of eslicarbazepine acetate on the pharmacokinetic behavior of these concomitant AEDs. For valproate, lamotrigine and topiramate, the number of patients was also small, but an exploratory analysis of the effect of eslicarbazepine acetate on the trough blood values of these concomitant AEDs was performed. The mean trough serum concentrations of valproate were not significantly changed by concomitant administration of eslicarbazepine acetate once-daily (7.0%; 95% IC: −7.6, 36.2) or twice-daily (6.3%; 95% IC: −7.5, 20.1). In the placebo group, a significant increase in the serum levels of valproate was noticed (25.4%; 95% IC: 5.1, 45.8). With respect to lamotrigine, its serum levels were not significantly changed when eslicarbazepine acetate once-daily (−10.0%; 95% IC: −46.2, 26.2) or placebo (12.6%; 95% IC: −12.6, 37.8) were added to therapy. With eslicarbazepine acetate twice-daily, the serum levels of lamotrigine decreased significantly (−46.7%; 95% IC: −69.7; −23.8). With respect to topiramate, its serum levels were not significantly changed when eslicarbazepine acetate once-daily (−15.2%; 95% IC: −34.8, 4.4) was added to the therapy. With eslicarbazepine acetate twice-daily, the serum levels of topiramate decreased significantly (−32.4%; 95% IC: −49.5; −15.3). One skilled in the art will know whether a change in serum levels is significant.
  • Study in Healthy Human Volunteers
  • Trial A
  • Pharmacokinetic Results
  • Eslicarbazepine acetate was shown to be extensively metabolized to eslicarbazepine and, in a minor extent, to R-licarbazepine. The steady-state of eslicarbazepine plasma concentrations was attained at 4 to 5 days of administration in both groups.
  • Following the last dose, in the once-daily group, mean Cmax of eslicarbazepine and R-licarbazepine was, respectively, 22,210 ng/mL and 674 ng/mL and occurred at (median tmax) 2.45 hours and 9.42 hours post-dose, respectively. Mean AUC0-t of eslicarbazepine and R-licarbazepine was 381,601 ng·h/mL and 19,600 ng·h/mL, respectively. In the twice-daily group, mean Cmax of eslicarbazepine and R-licarbazepine was 16,667 ng/mL and 718 ng/mL, respectively, and occurred (median tmax) at 2.09 hours and 6.40 hours post-dose, respectively. Mean AUC0-t of eslicarbazepine and R-licarbazepine was 283,014 ng·h/mL and 19,661 ng·h/mL, respectively. Following multiple administration of eslicarbazepine acetate for 8 days, eslicarbazepine was shown to be the major metabolite, representing approximately 95% and 96% of total systemic drug exposure (as assessed by AUC0-24) in once-daily and twice-daily subjects, respectively. Tables 2 and 3 depict the eslicarbazepine and R-licarbazepine pharmacokinetic parameters in the once-daily and twice-daily groups following the last dose of eslicarbazepine acetate. The total exposure of healthy volunteers to eslicarbazepine in the once-daily group was unexpectedly at least 26% higher than in the twice-daily group.
    TABLE 2
    Mean pharmacokinetic parameters of eslicarbazepine and R-licarbazepine
    following a multiple oral dose of 900 mg eslicarbazepine acetate
    once-daily.
    AUC0-τ
    Cmax tmax AUC0-t (ng · AUC0-∞ t1/2
    (ng/mL) (h) (ng · h/mL) h/mL) (ng · h/mL) (h)
    Eslicarbazepine
    n 11 11 11 11 11 11
    Amean 22210 2.45 381601 294019 389344 9.12
    SD 7257 0.879 95368 58364 97383 1.19
    R-licarbazepine
    n 12 12 12 12 12 12
    Amean 674 9.42 19600 13397 23989 15.0
    SD 184 6.48 6763 3187 7144 3.41

    n = Number of subjects;

    Amean = Arithmetic mean;

    SD = Standard deviation.
  • TABLE 3
    Mean pharmacokinetic parameters of eslicarbazepine and R-licarbazepine
    following a multiple oral dose of 900 mg eslicarbazepine acetate
    twice-daily.
    AUC0-τ
    Cmax tmax AUC0-t (ng · AUC0-∞ t1/2
    (ng/mL) (h) (ng · h/mL) h/mL) (ng · h/mL) (h)
    Eslicarbazepine
    n 11 11 11 11 11 11
    Amean 16667 2.09 283014 142080 289792 9.17
    SD 3981 0.664 74203 25933 74346 1.49
    R-licarbazepine
    n
    10 10 10 10 10 10
    Amean 718 6.40 19661 7783 23807 14.8
    SD 184 3.06 6049 2083 7150 4.09

    n = Number of subjects;

    Amean = Arithmetic mean;

    SD = Standard deviation.

    Trial B
    Pharmacokinetic Results
  • As in Trial A, eslicarbazepine acetate was extensively metabolized to eslicarbazepine and, in a minor extent, to R-licarbazepine. The steady-state of eslicarbazepine plasma concentrations was attained at 4 to 5 days of once-daily dosing.
  • Following the last dose, in the repeated once daily group, mean Cmax of eslicarbazepine ranged from 8,800 ng/ML·(16.0% coefficient of variation, CV) for 400 mg doses of eslicarbazepine acetate to 56,500 ng/ML·(20.0% CV) for 2400 mg doses of eslicarbazepine acetate. The maximum plasma concentration for all dosages occurred (median tmax) at 2 hours to 3.5 hours. The mean area under the concentration for the dosing interval of 24 hours, AUC0-24h, ranged from 126,300 ng/ML for 400 mg once-daily doses of eslicarbazepine acetate to 905,900 ng/ML for 2400 mg once-daily doses of eslicarbazepine acetate. Tables 4 and 5 depict the eslicarbazepine and R-licarbazepine pharmacokinetic parameters following the single dose of eslicarbazepine acetate and the pharmacokinetic parameters following the last of the repeated doses of eslicarbazepine acetate.
    TABLE 4
    Mean pharmacokinetic parameters of eslicarbazepine and R-licarbazepine
    following single doses of eslicarbazepine acetate
    (n = 6 subjects per dose group).
    Mean Mean
    AUC0-24h apparent
    Mean Cmax Median tmax ng · h/mL t1/2
    Dose ng/mL (% CV) h (range) (% CV) h (% CV)
     20 mg   300 (18.7) 0.8 (0.5-0.8)  2,400 (16.2)  9.1 (15.9)
     50 mg   900 (24.7) 0.8 (0.5-2)  6,700 (12.7) 8.1 (9.1)
    100 mg  1,500 (13.8) 1.5 (0.5-2)  16,400 (11.7) 9.3 (8.7)
    200 mg  2,900 (16.2) 1.5 (0.8-2.5)  30,500 (23.7)  8.4 (18.8)
    400 mg  5,200 (11.6)   4 (4-5)  81,500 (10.8) 11.7 (18.6)
    600 mg  8,500 (20.0)   4 (0.5-5) 119,700 (17.4) 12.3 (14.8)
    900 mg 15,000 (18.2) 2.3 (0.8-4) 210,300 (10.6) 16.3 (31.9)
    1200 mg  18,600 (16.3)   4 (2-6) 285,700 (16.7) 16.5 (6.8) 
    1800 mg  34,600 (16.3) 3.5 (3-6) 507,600 (17.0) 11.8 (11.7)
    2400 mg  35,900 (42.6)   3 (1.5-6)  445.6 (26.1) 11.1 (21.1)

    CV = Coefficient of variation (%);

    Cmax = Maximum plasma concentration;

    AUC0-24h = Area under the curve of plasma concentration-time over 24 h;

    tmax = Time to Cmax;

    t1/2 = Elimination half-life
  • TABLE 5
    Mean pharmacokinetic parameters of eslicarbazepine and R-licarbazepine
    following the last dose of an 8-day repeated dose regimen of
    eslicarbazepine acetate (n = 6 subjects per dose group).
    Mean Mean
    AUC0-24h apparent
    Mean Cmax Median tmax ng · h/mL t1/2
    Dose ng/mL (% CV) h (range) (% CV) h (% CV)
     400 mg  8,800 (16.0) 3 (0.5-7) 126,300 (11.7) 9.50 (18.8)
    o.d.
     800 mg 18,700 (14.0) 3.5 (1-7)   268,400 (10.3) 12.3 (22.9)
    o.d.
    1200 mg 25,500 (10.8) 3 (0.5-6) 423,000 (10.9) 13.1 (20.1)
    o.d.
    1800 mg 47,700 (23.3) 2 (0.5-4) 740,300 (19.6) 11.3 (28.8)
    o.d.
    2400 mg 56,500 (20.0) 2 (1.5-8) 905,900 (12.8) 10.4 (24.1)
    o.d.

    CV = Coefficient of variation (%);

    Cmax = Maximum plasma concentration;

    AUC0-24h = Area under the curve of plasma concentration-time over 24 h;

    tmax = Time to Cmax;

    t1/2 = Elimination half-life

    Study Discussion
  • Once-daily administration of eslicarbazepine acetate was found to be more efficacious than the same total dosage divided into twice-daily doses, and is clearly more efficacious in reducing epileptic seizures than placebo. 800 mg and 1200 mg once-daily doses of eslicarbazepine acetate were shown to be noticeably more efficacious in reducing epileptic seizures than twice-daily doses achieving the same total daily dosage.
  • Eslicarbazepine acetate was shown to be extensively metabolized to eslicarbazepine and, in a minor extent, to R-licarbazepine. Eslicarbazepine represented between 95% and 98% of total systemic drug exposure (as assessed by AUC0-τ, i.e., AUC over the dosing interval) and, therefore, is believed to be mainly responsible for pharmacological activity following administration of eslicarbazepine acetate. Plasma concentrations of parent drug (eslicarbazepine acetate) were systematically found to be below the limit of quantification. With multiple-dosing, steady-state plasma concentrations were attained at 4 to 5 days of administration in both groups, consistent with an effective half-life on the order of about 20-24 hours.
  • The kinetic profile of eslicarbazepine in the once-daily group was markedly different from the twice-daily group with statistical differences found for some of the pharmacokinetic parameters assessed (Cmax, AUC0-t and AUC0-∞) following multiple oral dosing of eslicarbazepine acetate. In fact, the total exposure of healthy volunteers to eslicarbazepine in the once-daily group was unexpectedly at least 26% higher than in the twice-daily group. This unexpected result is in line with finding in epileptic patients that once-daily administration of eslicarbazepine acetate was more efficacious than the same total daily dosage divided into twice-daily doses. Though this result might imply that the enhanced clinical efficacy would result from an increase in the rate (Cmax) and extent (AUC) of exposure to eslicarbazepine, the reasons for such an enhanced extent of exposure after once-daily versus twice-daily administration remain unexplained.
  • In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent to those skilled in the art by study of the foregoing description. Those skilled in the art will recognize that certain modifications of the above description are possible, and such modifications are considered to be within the scope of the invention. It is therefore intended that the following appended claims (including any amendments thereto) and any claims hereafter introduced should be interpreted to include all such aspects, embodiments, and modifications.

Claims (29)

1. A method for treating at least one condition or disease in a patient in need thereof, comprising:
administering to the patient a once-daily dose of a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount.
2. The method according to claim 1, wherein the once-daily dose is administered in an amount resulting in a maximum observed plasma concentration, Cmax, of eslicarbazepine greater than about 7,400 ng/mL.
3. The method according to claim 2, wherein the once-daily dose is administered in an amount resulting in a Cmax of eslicarbazepine greater than about 12,000 ng/mL.
4. The method according to claim 1, wherein the once-daily dose is administered in an amount resulting in an area under the concentration curve, AUC0-τ, of eslicarbazepine greater than about 111,000 ng·h/mL, wherein τ is the dosing interval.
5. The method according to claim 4, wherein the once-daily dose is administered in an amount resulting in a AUC0-τ of eslicarbazepine greater than about 140,000 ng·h/mL.
6. The method according to claim 1, wherein the once-daily dose is administered in a dosage comprising at least about 400 mg of eslicarbazepine acetate.
7. The method according to claim 6, wherein the once-daily dose is administered in a dosage comprising an amount of eslicarbazepine acetate ranging from about 800 mg to about 2400 mg.
8. The method according to claim 1, wherein the active ingredient in the pharmaceutical composition consists essentially of eslicarbazepine acetate.
9. The method according to claim 1, wherein the at least one disease or condition is chosen from epilepsy, central and peripheric nervous system disorders, affective disorders, schizoaffective disorders, bipolar disorders, attention disorders, anxiety disorders, neuropathic pain and neurophratic pain-related disorders, sensorimotor disorders, vestibular disorders, and nervous function alterations in degenerative and post-ischemic diseases.
10. The method according to claim 9, wherein the disease is epilepsy.
11. The method according to claim 10, wherein the once-daily dose of the pharmaceutical composition comprising eslicarbazepine acetate is administered concomitantly with at least one other anti-epileptic drug.
12. The method according to claim 11, where the concentration of the at least one other anti-epileptic drug is not significantly decreased by the once-daily dose of the pharmaceutical composition comprising eslicarbazepine acetate.
13. The method according to claim 11, wherein the at least one other anti-epileptic drug is chosen from valproate, lamotrigine, topiramate, and combinations thereof.
14. The method according to claim 1, wherein the disease is bipolar disorder, refractory partial epilepsy, or trigeminal neuralgia.
15. A method for reducing epileptic seizures in a patient, comprising:
administering to the patient a once-daily dose of a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount.
16. The method according to claim 15, wherein the active ingredient in the pharmaceutical composition consists essentially of eslicarbazepine acetate.
17. The method according to claim 15, wherein the once-daily dose is administered in a dosage comprising at least about 400 mg of eslicarbazepine acetate.
18. The method according to claim 17, wherein the once-daily dose is administered in a dosage comprising an amount of eslicarbazepine acetate ranging from about 800 mg to about 2400 mg.
19. A method for increasing the exposure to eslicarbazepine in a patient, comprising:
administering to the patient a once-daily dose of a pharmaceutical composition comprising eslicarbazepine acetate.
20. The method according to claim 19, wherein the active ingredient in the pharmaceutical composition consists essentially of eslicarbazepine acetate.
21. The method according to claim 19, wherein the once-daily dose is administered in an amount resulting in a maximum observed plasma concentration, Cmax, of eslicarbazepine greater than about 7,400 ng/mL.
22. The method according to claim 21, wherein the once-daily dose is administered in an amount resulting in an area under the concentration curve, AUC0-τ, of eslicarbazepine greater than about 111,000 ng·h/mL, wherein τ is the dosing interval.
23. The method according to claim 19, wherein the once-daily dose is administered in a dosage comprising at least about 400 mg of eslicarbazepine acetate.
24. The method according to claim 23, wherein the once-daily dose is administered in a dosage comprising an amount of eslicarbazepine acetate ranging from about 800 mg to about 2400 mg.
25. A method of preparing a pharmaceutical composition comprising:
combining an amount of eslicarbazepine acetate effective for treating at least one disease or condition in a patient in need thereof, with at least one pharmaceutically acceptable excipient, auxiliary substance, carrier material, or combination thereof,
wherein the at least one disease or condition is chosen from epilepsy, central and peripheric nervous system disorders, affective disorders, schizoaffective disorders, bipolar disorders, attention disorders, anxiety disorders, neuropathic pain and neurophratic pain-related disorders, sensorimotor disorders, vestibular disorders, and nervous function alterations in degenerative and post-ischemic diseases.
26. The method according to claim 25, wherein the active ingredient in the pharmaceutical composition consists essentially of eslicarbazepine acetate.
27. The method according to claim 25, wherein the pharmaceutical composition is administered in a form chosen from tablet form and oral suspension form.
28. A method for treating at least one condition or disease in a patient in need thereof, comprising:
administering to the patient a once-daily dose of a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount,
wherein the at least one disease and/or condition is chosen from epilepsy, central and peripheric nervous system disorders, affective disorders, schizoaffective disorders, bipolar disorders, attention disorders, anxiety disorders, neuropathic pain and neurophratic pain-related disorders, sensorimotor disorders, vestibular disorders, and nervous function alterations in degenerative and post-ischemic diseases.
29. A method for treating at least one condition or disease in a patient in need thereof, comprising:
administering to the patient a once-daily dose of a pharmaceutical composition comprising eslicarbazepine acetate in a pharmacologically effective amount sufficient to result in a maximum observed plasma concentration, Cmax, of eslicarbazepine greater than about 7,400 ng/mL,
wherein the at least one disease and/or condition is chosen from epilepsy, central and peripheric nervous system disorders, affective disorders, schizoaffective disorders, bipolar disorders, attention disorders, anxiety disorders, neuropathic pain and neurophratic pain-related disorders, sensorimotor disorders, vestibular disorders, and nervous function alterations in degenerative and post-ischemic diseases.
US11/123,205 2005-05-06 2005-05-06 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use Abandoned US20060252745A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US11/123,205 US20060252745A1 (en) 2005-05-06 2005-05-06 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US11/248,125 US20060252746A1 (en) 2005-05-06 2005-10-13 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
ARP060101835A AR055939A1 (en) 2005-05-06 2006-05-05 METHODS TO PREPARE PHARMACEUTICAL COMPOSITIONS THAT INCLUDE ACETATO DE ESLICARBAZEPINA AND METHODS OF USE
US12/535,268 US20100222327A1 (en) 2005-05-06 2009-08-04 Methods of Preparing Pharmaceutical Compositions Comprising Eslicarbazepine Acetate and Methods of Use
US13/017,732 US20110319388A1 (en) 2005-05-06 2011-01-31 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US14/187,018 US20140288058A1 (en) 2005-05-06 2014-02-21 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US15/422,278 US10702536B2 (en) 2005-05-06 2017-02-01 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/449,048 US10675287B2 (en) 2005-05-06 2019-06-21 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/449,057 US10695354B2 (en) 2005-05-06 2019-06-21 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/946,731 US11364247B2 (en) 2005-05-06 2020-07-02 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US17/748,098 US20230129254A1 (en) 2005-05-06 2022-05-19 Methods of treatment of partial onset seizures using eslicarbazepine acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/123,205 US20060252745A1 (en) 2005-05-06 2005-05-06 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/248,125 Continuation US20060252746A1 (en) 2005-05-06 2005-10-13 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US13/017,732 Continuation US20110319388A1 (en) 2005-05-06 2011-01-31 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use

Publications (1)

Publication Number Publication Date
US20060252745A1 true US20060252745A1 (en) 2006-11-09

Family

ID=37394802

Family Applications (10)

Application Number Title Priority Date Filing Date
US11/123,205 Abandoned US20060252745A1 (en) 2005-05-06 2005-05-06 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US11/248,125 Abandoned US20060252746A1 (en) 2005-05-06 2005-10-13 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US12/535,268 Abandoned US20100222327A1 (en) 2005-05-06 2009-08-04 Methods of Preparing Pharmaceutical Compositions Comprising Eslicarbazepine Acetate and Methods of Use
US13/017,732 Abandoned US20110319388A1 (en) 2005-05-06 2011-01-31 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US14/187,018 Abandoned US20140288058A1 (en) 2005-05-06 2014-02-21 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US15/422,278 Active US10702536B2 (en) 2005-05-06 2017-02-01 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/449,057 Active US10695354B2 (en) 2005-05-06 2019-06-21 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/449,048 Active US10675287B2 (en) 2005-05-06 2019-06-21 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/946,731 Active US11364247B2 (en) 2005-05-06 2020-07-02 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US17/748,098 Abandoned US20230129254A1 (en) 2005-05-06 2022-05-19 Methods of treatment of partial onset seizures using eslicarbazepine acetate

Family Applications After (9)

Application Number Title Priority Date Filing Date
US11/248,125 Abandoned US20060252746A1 (en) 2005-05-06 2005-10-13 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US12/535,268 Abandoned US20100222327A1 (en) 2005-05-06 2009-08-04 Methods of Preparing Pharmaceutical Compositions Comprising Eslicarbazepine Acetate and Methods of Use
US13/017,732 Abandoned US20110319388A1 (en) 2005-05-06 2011-01-31 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US14/187,018 Abandoned US20140288058A1 (en) 2005-05-06 2014-02-21 Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US15/422,278 Active US10702536B2 (en) 2005-05-06 2017-02-01 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/449,057 Active US10695354B2 (en) 2005-05-06 2019-06-21 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/449,048 Active US10675287B2 (en) 2005-05-06 2019-06-21 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US16/946,731 Active US11364247B2 (en) 2005-05-06 2020-07-02 Methods of treatment of partial onset seizures using eslicarbazepine acetate
US17/748,098 Abandoned US20230129254A1 (en) 2005-05-06 2022-05-19 Methods of treatment of partial onset seizures using eslicarbazepine acetate

Country Status (2)

Country Link
US (10) US20060252745A1 (en)
AR (1) AR055939A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090110722A1 (en) * 2007-10-26 2009-04-30 Bial- Portela & Ca, S.A. Composition
US20090209517A1 (en) * 2006-02-14 2009-08-20 Vieira Araujo Soares Da Silva Use of 5H-dibenz/b,f/azepine-5-carboxamide derivatives in the treatment of neuropathic pain and neurological disorders
US20100048538A1 (en) * 2007-01-15 2010-02-25 Bial - Portela & Ca S.A. Therapeutical Uses of Eslicarbazepine
WO2011031176A1 (en) * 2009-09-10 2011-03-17 Bial - Portela & C.A., S.A. Oral suspension formulations of esclicarbazepine acetate
US9855277B2 (en) 2009-07-27 2018-01-02 Bial—Portela & Ca, S.A. Use of 5H-dibenz/b,f/azepine-5-carboxamide derivatives for treating fibromyalgia
US11690821B2 (en) 2014-10-20 2023-07-04 Anavex Life Sciences Corp. A19-144, A2-73 and certain anticholinesterase inhibitor compositions and method for anti-seizure therapy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652527B1 (en) 2013-03-13 2014-02-18 Upsher-Smith Laboratories, Inc Extended-release topiramate capsules
US9101545B2 (en) 2013-03-15 2015-08-11 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489836A (en) * 1964-01-06 1970-01-13 Ici Ltd 5-amino - 10,11-dihydro - 5h - dibenzo (a,d)-cycloheptenes and derivatives in pharmaceutical compositions and the use thereof for the treatment of epilepsy
US3637661A (en) * 1970-03-04 1972-01-25 Ciba Geigy Corp 10-hydroxy-10 11-dihydro-dibenzazepine derivative
US3642775A (en) * 1969-03-10 1972-02-15 Ciba Geigy Corp 10-oxo-10 11-dihydro-dibenzazepine derivative
US4076812A (en) * 1974-09-27 1978-02-28 Ciba-Geigy Corporation 10-Halogeno- or 10,11-dihalogeno derivatives of 5H-dibenz[b,f]azepine
US4235895A (en) * 1978-11-10 1980-11-25 Ciba-Geigy Corporation Substituted 5H-dibenz[b,f]azepine
US4409212A (en) * 1981-04-16 1983-10-11 Ciba-Geigy Corporation Method of preventing and treating cerebral insufficiency
US4452738A (en) * 1979-10-30 1984-06-05 Ciba-Geigy Corporation Process for the manufacture of 5-carbamoyl-10-oxo-10,11-dihydro-5H-dibenz[b,]azepine
US5095033A (en) * 1991-03-01 1992-03-10 Laboratoires Biocodex Method for treating epilepsy
US5466683A (en) * 1994-08-25 1995-11-14 Teva Pharmaceutical Industries Ltd. Water-soluble analogs of carbamazepine
US5472714A (en) * 1993-09-08 1995-12-05 Ciba-Geigy Corporation Double-layered oxcarbazepine tablets
US5624945A (en) * 1993-03-05 1997-04-29 Rhone-Poulenc Rorer S.A. Use of riluzole for the treatment of neuro-aids
US5753646A (en) * 1995-06-30 1998-05-19 Portela & Ca., S.A. Substituted dihydrodibenzo/b,f/azepines, method of their preparation, their use in the treatment of some central nervous system disorders, and pharmaceutical compositions containing them
US5827819A (en) * 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5980942A (en) * 1997-01-23 1999-11-09 Yissum Research Development Company Of The Hebrew University Of Jerusalem Zero-order sustained release matrix tablet formulations of carbamazepine
US6296873B1 (en) * 1997-01-23 2001-10-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Zero-order sustained release delivery system for carbamazephine derivatives
US20010036934A1 (en) * 2000-02-29 2001-11-01 Shiaw-Min Hwang Use of chitinous materials for inhibiting cellular nitric oxide production
US20020037926A1 (en) * 1999-04-09 2002-03-28 Lan Nancy C. Sodium channel blocker compositions and the use thereof
US20030055008A1 (en) * 1999-05-24 2003-03-20 Marcotte David B. Anticonvulsant derivatives useful in treating psychosis
US20030056896A1 (en) * 1995-05-12 2003-03-27 Frank Jao Effective therapy for epilepsies
US20030225002A1 (en) * 2002-02-26 2003-12-04 Livingstone Ian R. Co-therapy for the treatment of migraine comprising anticonvulsant derivatives and anti-migraine agents
US20040158060A1 (en) * 2001-05-25 2004-08-12 Learmonth David Alexander Method for preparation of 10,11-dihydro-10-hydroxy-5h-dibenz/b, f/azepine-5-carboxamide and 10,11-dihydro-10-oxo-5h-dibenz/b, f/azepine-5-carboxamide
US20040162280A1 (en) * 2001-05-11 2004-08-19 Learmonth David Alexander Method for preparation of (s)-(+)-and(r)-(-)10,11-dihydro-10-hydrodoxy-5h-dibenz/b,f/azephine-5-carboxamide
US20040185097A1 (en) * 2003-01-31 2004-09-23 Glenmark Pharmaceuticals Ltd. Controlled release modifying complex and pharmaceutical compositions thereof
US20040233754A1 (en) * 2003-05-24 2004-11-25 Hynix Semiconductor Inc. Semiconductor memory device having sense amplifier and method for overdriving the sense amplifier
US20050004102A1 (en) * 2001-11-12 2005-01-06 Markus Schmutz Monohydroxycarbamazepine for use in the preparation of a medicament for the treatment of affective and attention disorder and neuropathic pain
US20070021356A1 (en) * 2002-03-18 2007-01-25 Cady Roger K Preemptive prophlyaxis of migraine

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB864536A (en) 1957-11-06 1961-04-06 Sapos S A Lab ª‡-ethyl-phenylacetylurea
CH505101A (en) 1969-03-31 1971-03-31 Ciba Geigy Ag Process for the production of new azepine derivatives
EP0346445A4 (en) 1987-12-22 1990-03-28 Ferkany John W Dextrorphan potentiator for anticonvulsant composition and method.
EP0435826A1 (en) 1989-12-27 1991-07-03 Ciba-Geigy Ag Intravenous solutions for epilepsy
IE65341B1 (en) 1990-11-08 1995-10-18 Fujisawa Pharmaceutical Co Suspensions containing tricyclic compounds
RU2079304C1 (en) 1990-11-08 1997-05-20 Фудзисава Фармасьютикал Ко., Лтд. Pharmaceutical composition showing immunosuppressive and antimicrobial activities
US5326570A (en) 1991-07-23 1994-07-05 Pharmavene, Inc. Advanced drug delivery system and method of treating psychiatric, neurological and other disorders with carbamazepine
FR2699077B1 (en) 1992-12-16 1995-01-13 Rhone Poulenc Rorer Sa Application of anticonvulsants in the treatment of neurological lesions linked to trauma.
IT1261808B (en) 1993-07-06 1996-06-03 USE OF L-CARNITINE OR L-CARNITINE AND VALPROATE ACID IN THE TREATMENT OF CONVULSIVE DISSODS
CA2575042A1 (en) 1994-04-28 1995-11-09 Alza Corporation Effective dosage form for antiepileptic drugs
IT1283594B1 (en) 1996-04-12 1998-04-22 Trifarma Srl DERIVATIVES OF 5H-DIBENZ- (B,F)-AZEPIN-5-CARBOXYAMIDE, THEIR PREPARATION AND USE AS SUBSTANCES WITH MEDICINAL ACTION
EP0946597B1 (en) 1996-10-19 2003-08-13 University Of Wales, Bangor Preparation of chemically reactive starch
CO4920215A1 (en) 1997-02-14 2000-05-29 Novartis Ag OXACARBAZEPINE TABLETS COATED WITH A FILM AND METHOD FOR THE PRODUCTION OF THESE FORMULATIONS
US6475510B1 (en) 1997-12-19 2002-11-05 Smithkline Beecham Corporation Process for manufacturing bite-dispersion tablets
IL125244A (en) 1998-07-07 2002-12-01 Yissum Res Dev Co Pharmaceutical compositions containing low-melting waxes
AU2384500A (en) 1998-12-23 2000-07-12 Cytoscan Sciences L.L.C. Compounds, methods of screening and methods of treatment for central and peripheral nervous system disorders
WO2000066096A2 (en) 1999-04-30 2000-11-09 Merab Lomia Use of antiepileptics for treating respiratory disorders, in particular asthmatic disorders
AU6448200A (en) 1999-06-15 2001-01-02 Rhodia Chimie Sulphonylamides and carboxamides and their use in asymmetrical catalysis
US20020147197A1 (en) 1999-10-08 2002-10-10 Newman Michael J. Methods and compositions for enhancing pharmaceutical treatments
GB9925962D0 (en) 1999-11-02 1999-12-29 Novartis Ag Organic compounds
IL149530A0 (en) 1999-12-01 2002-11-10 Ucb Sa A pyrrolidineacetamide derivative alone or in combination for treatment of cns disorders
GB9930058D0 (en) 1999-12-20 2000-02-09 Novartis Ag Organic compounds
US20010036943A1 (en) * 2000-04-07 2001-11-01 Coe Jotham W. Pharmaceutical composition for treatment of acute, chronic pain and/or neuropathic pain and migraines
US6191117B1 (en) 2000-07-10 2001-02-20 Walter E. Kozachuk Methods of producing weight loss and treatment of obesity
US20020077328A1 (en) 2000-07-13 2002-06-20 Fred Hassan Selective cyclooxygenase-2 inhibitors and vasomodulator compounds for generalized pain and headache pain
RU2178298C1 (en) 2000-12-20 2002-01-20 Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М. Бехтерева Method of therapy in patients with pharmacotherapy- resistant epilepsy forms
IN190699B (en) 2001-02-02 2003-08-16 Sun Pharmaceutical Ind Ltd
MXPA03010549A (en) 2001-05-18 2004-05-27 Ranbaxy Lab Ltd Oxcarbazepine dosage forms.
GB0113663D0 (en) 2001-06-05 2001-07-25 Novartis Ag Use of organic compounds
RU2236224C2 (en) 2001-10-16 2004-09-20 Российский научно-исследовательский нейрохирургический институт им. проф. А.Л. Поленова Epilepsy treatment method
WO2003075830A2 (en) 2002-03-14 2003-09-18 Sun Pharmaceutical Industries Limited Oral controlled drug delivery system containing carbamazepine
DE10224170A1 (en) 2002-05-31 2003-12-11 Desitin Arzneimittel Gmbh Retarded release pharmaceutical composition, obtained without use of organic solvents or water by densifying mixture of active agent and retarding polymer in heated rollers
PL374778A1 (en) 2002-05-31 2005-10-31 Desitin Arzneimittel Gmbh Pharmaceutical composition containing oxcarbazepine and having a controlled active substance release
WO2004014391A1 (en) 2002-08-06 2004-02-19 Novartis Ag Use of carboxamides for the treatment of tinnitus
US20040038874A1 (en) 2002-08-22 2004-02-26 Osemwota Omoigui Method of treatment of persistent pain
GB0221956D0 (en) 2002-09-20 2002-10-30 Novartis Ag Organic compounds
GB0223224D0 (en) 2002-10-07 2002-11-13 Novartis Ag Organic compounds
JP2006509735A (en) 2002-10-17 2006-03-23 ノバルティス アクチエンゲゼルシャフト A pharmaceutical composition for treating pain comprising oxcarbazepine or a derivative thereof and a COX2 inhibitor
JP2006516642A (en) 2003-02-03 2006-07-06 シャイア ラボラトリーズ,インコーポレイテッド Drug formulation and delivery using methylated cyclodextrin crystals
GB0303615D0 (en) 2003-02-17 2003-03-19 Novartis Ag Use of organic compounds
CA2514649A1 (en) 2003-02-17 2004-08-26 Novartis Ag Use of s-10 hydroxy-10, 11-dihydro-carbamazepine for the treatment of anxiety and bipolar disorders
TW200501962A (en) 2003-04-01 2005-01-16 Novartis Ag Use of carbamazepine derivatives for the treatment of agitation in dementia patients
TW200502222A (en) 2003-04-02 2005-01-16 Novartis Ag Use of 10-hydroxy-10,11-dihydrocarbamazepine derivatives for the treatment of affective disorders
GB0307860D0 (en) 2003-04-04 2003-05-14 Novartis Ag Organic compounds
GB2401605A (en) 2003-05-12 2004-11-17 Portela & Ca Sa Method for racemisation of (S)-(+)- and (R)-(-)-10,11-dihydro-10-hydroxy-5H-dibenz[b,f]azepine-5-carboxamide and optically enriched mixtures thereof
RU2005135454A (en) 2003-05-16 2006-06-27 Пфайзер Продактс Инк. (Us) THERAPEUTIC COMBINATIONS OF ATYPICAL NEUROLEPTICS WITH GABA MODULATORS AND / OR ANTI-VASCULAR DRUGS
US20050244503A1 (en) 2003-05-19 2005-11-03 Rabinow Barrett E Small-particle pharmaceutical formulations of antiseizure and antidementia agents and immunosuppressive agents
BRPI0413920A (en) 2003-08-29 2006-10-24 Allergan Inc selective persistent sodium current antagonists to treat neurological disorders and pain
AU2004268381B2 (en) 2003-09-03 2009-06-18 Novartis Ag Use of oxcarbazepine for the treatment of diabetic neuropathic pain and the improvement of sleep
US20050096311A1 (en) 2003-10-30 2005-05-05 Cns Response Compositions and methods for treatment of nervous system disorders
US7429580B2 (en) 2004-01-13 2008-09-30 Orexigen Therapeutics, Inc. Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
CA2556214A1 (en) 2004-02-13 2005-09-01 Neuromolecular, Inc. Combination of an nmda receptor antagonist and an anti-epileptic drug for the treatment of epilepsy and other cns disorders
AR048672A1 (en) 2004-03-22 2006-05-17 Novartis Ag DISINTEGRATION TABLETS THAT INCLUDE LICARBAZEPINA
AR048318A1 (en) 2004-03-22 2006-04-19 Novartis Ag ORAL MATRIX FORMULATIONS THAT INCLUDE LICARBAZEPINA
EP2384755A1 (en) 2005-05-06 2011-11-09 Bial-Portela & CA, S.A. Eslicarbazepine acetate and methods of use
GB0515690D0 (en) 2005-07-29 2005-09-07 Portela & Ca Sa Asymmetric catalytic reduction
GB0603008D0 (en) 2006-02-14 2006-03-29 Portela & Ca Sa Method
GB0700773D0 (en) 2007-01-15 2007-02-21 Portela & Ca Sa Drug therapies
US8372431B2 (en) 2007-10-26 2013-02-12 Bial-Portela & C.A., S.A. Pharmaceutical composition comprising licarbazepine acetate
RU2012106827A (en) 2009-07-27 2013-09-10 БИАЛ-ПОРТЕЛА энд КА., С.А. APPLICATION OF 5H-DIBENZE / B, F / AZEPIN-5-CARBOXAMIDE DERIVATIVES FOR THE TREATMENT OF FIBROMYALGIA
AU2011353171A1 (en) 2010-12-31 2013-07-11 Bial - Portela & Ca., S.A. Granulates comprising eslicarbazepine acetate
RU2639120C2 (en) 2011-08-26 2017-12-19 Биал-Портела Энд Ка, С.А. Treatment using eslicarbazepine acetate or eslicarbazepine

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489836A (en) * 1964-01-06 1970-01-13 Ici Ltd 5-amino - 10,11-dihydro - 5h - dibenzo (a,d)-cycloheptenes and derivatives in pharmaceutical compositions and the use thereof for the treatment of epilepsy
US3642775A (en) * 1969-03-10 1972-02-15 Ciba Geigy Corp 10-oxo-10 11-dihydro-dibenzazepine derivative
US3637661A (en) * 1970-03-04 1972-01-25 Ciba Geigy Corp 10-hydroxy-10 11-dihydro-dibenzazepine derivative
US4076812A (en) * 1974-09-27 1978-02-28 Ciba-Geigy Corporation 10-Halogeno- or 10,11-dihalogeno derivatives of 5H-dibenz[b,f]azepine
US4235895A (en) * 1978-11-10 1980-11-25 Ciba-Geigy Corporation Substituted 5H-dibenz[b,f]azepine
US4452738A (en) * 1979-10-30 1984-06-05 Ciba-Geigy Corporation Process for the manufacture of 5-carbamoyl-10-oxo-10,11-dihydro-5H-dibenz[b,]azepine
US4540514A (en) * 1979-10-30 1985-09-10 Ciba-Geigy Corporation 5-Cyano- and 5-carbamoyl-10-nitro-5H-dibenz[b,f]azepine
US4559174A (en) * 1979-10-30 1985-12-17 Ciba Geigy Corporation Process for the manufacture of 5-carbamoyl-10-oxo-10,11-dihydro-5H-dibenz[b,]azepine
US4409212A (en) * 1981-04-16 1983-10-11 Ciba-Geigy Corporation Method of preventing and treating cerebral insufficiency
US5827819A (en) * 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5095033A (en) * 1991-03-01 1992-03-10 Laboratoires Biocodex Method for treating epilepsy
US5624945A (en) * 1993-03-05 1997-04-29 Rhone-Poulenc Rorer S.A. Use of riluzole for the treatment of neuro-aids
US5472714A (en) * 1993-09-08 1995-12-05 Ciba-Geigy Corporation Double-layered oxcarbazepine tablets
US5695782A (en) * 1993-09-08 1997-12-09 Ciba Geigy Corporation Double-layered oxcarbazepine tablets
US5466683A (en) * 1994-08-25 1995-11-14 Teva Pharmaceutical Industries Ltd. Water-soluble analogs of carbamazepine
US20030056896A1 (en) * 1995-05-12 2003-03-27 Frank Jao Effective therapy for epilepsies
US5753646A (en) * 1995-06-30 1998-05-19 Portela & Ca., S.A. Substituted dihydrodibenzo/b,f/azepines, method of their preparation, their use in the treatment of some central nervous system disorders, and pharmaceutical compositions containing them
US6296873B1 (en) * 1997-01-23 2001-10-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Zero-order sustained release delivery system for carbamazephine derivatives
US5980942A (en) * 1997-01-23 1999-11-09 Yissum Research Development Company Of The Hebrew University Of Jerusalem Zero-order sustained release matrix tablet formulations of carbamazepine
US20020037926A1 (en) * 1999-04-09 2002-03-28 Lan Nancy C. Sodium channel blocker compositions and the use thereof
US20030055008A1 (en) * 1999-05-24 2003-03-20 Marcotte David B. Anticonvulsant derivatives useful in treating psychosis
US20010036934A1 (en) * 2000-02-29 2001-11-01 Shiaw-Min Hwang Use of chitinous materials for inhibiting cellular nitric oxide production
US20040162280A1 (en) * 2001-05-11 2004-08-19 Learmonth David Alexander Method for preparation of (s)-(+)-and(r)-(-)10,11-dihydro-10-hydrodoxy-5h-dibenz/b,f/azephine-5-carboxamide
US20040158060A1 (en) * 2001-05-25 2004-08-12 Learmonth David Alexander Method for preparation of 10,11-dihydro-10-hydroxy-5h-dibenz/b, f/azepine-5-carboxamide and 10,11-dihydro-10-oxo-5h-dibenz/b, f/azepine-5-carboxamide
US20050004102A1 (en) * 2001-11-12 2005-01-06 Markus Schmutz Monohydroxycarbamazepine for use in the preparation of a medicament for the treatment of affective and attention disorder and neuropathic pain
US20030225002A1 (en) * 2002-02-26 2003-12-04 Livingstone Ian R. Co-therapy for the treatment of migraine comprising anticonvulsant derivatives and anti-migraine agents
US20070021356A1 (en) * 2002-03-18 2007-01-25 Cady Roger K Preemptive prophlyaxis of migraine
US20040185097A1 (en) * 2003-01-31 2004-09-23 Glenmark Pharmaceuticals Ltd. Controlled release modifying complex and pharmaceutical compositions thereof
US20040233754A1 (en) * 2003-05-24 2004-11-25 Hynix Semiconductor Inc. Semiconductor memory device having sense amplifier and method for overdriving the sense amplifier

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090209517A1 (en) * 2006-02-14 2009-08-20 Vieira Araujo Soares Da Silva Use of 5H-dibenz/b,f/azepine-5-carboxamide derivatives in the treatment of neuropathic pain and neurological disorders
US20100048538A1 (en) * 2007-01-15 2010-02-25 Bial - Portela & Ca S.A. Therapeutical Uses of Eslicarbazepine
US9763954B2 (en) 2007-01-15 2017-09-19 Bial—Portela & Ca, S.A. Therapeutical uses of eslicarbazepine
US8372431B2 (en) 2007-10-26 2013-02-12 Bial-Portela & C.A., S.A. Pharmaceutical composition comprising licarbazepine acetate
JP2011500797A (en) * 2007-10-26 2011-01-06 バイアル−ポルテラ アンド シーエー,エス.エー. Oral dosage form containing licarbazepine acetate
US20090110722A1 (en) * 2007-10-26 2009-04-30 Bial- Portela & Ca, S.A. Composition
AU2008317584B2 (en) * 2007-10-26 2015-01-22 Bial - Portela & Ca., S.A. Oral dosage forms comprising licarbazepine acetate
US9566244B2 (en) 2007-10-26 2017-02-14 Bial-Portele & Ca, S.A. Pharmaceutical composition comprising licarbazepine acetate
EP3202392A1 (en) * 2007-10-26 2017-08-09 BIAL - Portela & Ca., S.A. Oral dosage forms comprising licarbazepine acetate
WO2009054743A1 (en) * 2007-10-26 2009-04-30 Bial - Portela & Ca., S.A. Oral dosage forms comprising licarbazξpine acetate
KR20190000929A (en) * 2007-10-26 2019-01-03 바이알 - 포르텔라 앤드 씨에이 에스에이 Oral dosage forms comprising licarbazepine acetate
KR102116087B1 (en) * 2007-10-26 2020-05-28 바이알 - 포르텔라 앤드 씨에이 에스에이 Oral dosage forms comprising licarbazepine acetate
US9855277B2 (en) 2009-07-27 2018-01-02 Bial—Portela & Ca, S.A. Use of 5H-dibenz/b,f/azepine-5-carboxamide derivatives for treating fibromyalgia
WO2011031176A1 (en) * 2009-09-10 2011-03-17 Bial - Portela & C.A., S.A. Oral suspension formulations of esclicarbazepine acetate
US11690821B2 (en) 2014-10-20 2023-07-04 Anavex Life Sciences Corp. A19-144, A2-73 and certain anticholinesterase inhibitor compositions and method for anti-seizure therapy

Also Published As

Publication number Publication date
US10675287B2 (en) 2020-06-09
US20210154203A1 (en) 2021-05-27
US11364247B2 (en) 2022-06-21
US20100222327A1 (en) 2010-09-02
US20190307764A1 (en) 2019-10-10
US20110319388A1 (en) 2011-12-29
US20170143736A1 (en) 2017-05-25
US20060252746A1 (en) 2006-11-09
AR055939A1 (en) 2007-09-12
US20190307765A1 (en) 2019-10-10
US20140288058A1 (en) 2014-09-25
US20230129254A1 (en) 2023-04-27
US10702536B2 (en) 2020-07-07
US10695354B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
US11364247B2 (en) Methods of treatment of partial onset seizures using eslicarbazepine acetate
EP2380574A1 (en) Eslicarbazepine acetate and methods of use
CA2607427C (en) Methods of preparing pharmaceutical compositions comprising eslicarbazepine acetate and methods of use
US20210008089A1 (en) Compositions and methods for treating an aggregation disease or disorder
KR20050116368A (en) Menthol solutions of drugs
US20080161404A1 (en) Bicalutamide for Delivering Increasing Steady State Plasma Levels
JP2016047838A (en) Eslicarbazepine acetate and methods of use
Fontes-Ribeiro et al. Dosage form proportionality and food effect of the final tablet formulation of eslicarbazepine acetate: randomized, open-label, crossover, single-centre study in healthy volunteers
RU2417085C2 (en) Eslicarbazepine acetate and methods for applying thereof
JP2013237676A (en) Eslicarbazepine acetate and use method
US20220288096A1 (en) Compositions and methods for treating an aggregation disease or disorder
Zhou et al. Pharmacokinetics, Safety and Tolerability of Tylerdipine Hydrochloride, a Novel Dihydropyridine Dual L/T-type Calcium Channel Blocker, after Single and Multiple Oral Doses in Healthy Chinese Subjects
CN105193822A (en) Eslicarbazepine acetate and application method thereof
Fontes-Ribeiro et al. Eslicarbazepine Acetate (BIA 2-093).

Legal Events

Date Code Title Description
AS Assignment

Owner name: PORTELA & C.A., S.A., PORTUGAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALMEIDA, LUIS;SOARES-DA-SILVA, PATRICIO;REEL/FRAME:016830/0273

Effective date: 20050606

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION