US20060235401A1 - Apparatus and method for repairing the femur - Google Patents

Apparatus and method for repairing the femur Download PDF

Info

Publication number
US20060235401A1
US20060235401A1 US11/370,645 US37064506A US2006235401A1 US 20060235401 A1 US20060235401 A1 US 20060235401A1 US 37064506 A US37064506 A US 37064506A US 2006235401 A1 US2006235401 A1 US 2006235401A1
Authority
US
United States
Prior art keywords
cable
connector
femur
greater trochanter
upper portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/370,645
Inventor
Eric Baldwin
Thomas Kilpela
Burns Severson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Laboratories Inc
Original Assignee
Pioneer Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17999900P priority Critical
Priority to US09/775,891 priority patent/US7207993B1/en
Application filed by Pioneer Laboratories Inc filed Critical Pioneer Laboratories Inc
Priority to US11/370,645 priority patent/US20060235401A1/en
Publication of US20060235401A1 publication Critical patent/US20060235401A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/809Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/842Flexible wires, bands or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8861Apparatus for manipulating flexible wires or straps

Abstract

Disclosed is a method and apparatus for repairing the femur. A connector is provided having a claw-like member to engage with the greater trochanter. Along the body of the connector are a plurality of cable apertures and cable screws to receive and engage with cables that loop around the femur. Along the inferior end of the connector are bone screw slots and bone screws engaging the connector with the femur. The bone screws provide added support to the re-attached greater trochanter and provide support for periprosthetic fractures. The connector may be used to re-attach the greater trochanter by impacting a connector onto the greater trochanter, positioning the greater trochanter onto the femur, passing cables around the femur and through the connector, tensioning the cables to provide engagement between the greater trochanter and the femur, and attaching the connector to the femur using at least one bone screw.

Description

  • This application is a continuation of application Ser. No. 09/775,891 filed Feb. 2, 2001 as This is a non-provisional application of Provisional Application Ser. No. 60/179,999 filed on Feb. 3, 2000 for which priority is claimed. These prior applications are This provisional application is incorporated herewith by reference as if reproduced in their entirety herein.
  • BACKGROUD OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates generally to surgical methods and apparatus for the repair of the femur and more particularly related to methods and apparatus for repairing periprosthetic fractures and/or re-attaching the greater trochanter to the femur.
  • 2. Description of the Prior Art
  • The bone structure of the hip joint often requires orthopedic surgery. Total hip replacements are performed most commonly because of progressively severe arthritis in the hip joint. The most common type of arthritis leading to total hip replacement is degenerative arthritis (osteoarthritis) of the hip joint. Other conditions leading to total hip replacement include bony fractures of the hip joint, and death (necrosis) of the femur. The progressively intense chronic pain together with impairment of daily function including walking, climbing stairs and even rising from a sitting position, eventually become reasons to consider a total hip replacement.
  • A total hip replacement is a surgical procedure whereby the diseased cartilage and bone of the hip joint is surgically replaced with artificial materials. As shown in FIG. 1, the normal hip joint is a ball and socket joint. The socket is a “cup-shaped” bone of the pelvis 180 called the acetabulum. The ball is at the head of the femur 170. Total hip joint replacement generally involves: (1) surgically removing the diseased ball and socket; and (2) replacing them with a metal ball and stem 210 inserted into the femur bone and an artificial plastic cup socket 220 (see FIG. 2). The metallic artificial ball and stem are referred to as the “prosthesis.” Upon inserting the prosthesis into the central core of the femur, it is fixed with a bony cement. Alternatively, a “cement-less” prosthesis may be used that allows bony in growth from the normal femur into the prosthesis stem. Even after hip replacement surgery, it often becomes necessary to perform further surgery due to further deterioration of the bone or to perform further repair of the replaced hip. If a patient falls and injures a replaced hip, the bone fracture will often occur at the distal tip of the prosthesis, thereby requiring replacement of the prosthesis and/or repair of the femur.
  • Presently, a number of orthopedic surgical techniques exist for replacing or repairing the hip joint. A number of these total hip procedures require osteotomizing or removing the greater trochanter (illustrated by line 205 in FIG. 2). Removal of this portion of the femur provides the surgeon with access to the stem of the prosthesis to conduct the necessary hip replacement procedure. After the necessary hip replacement procedure, the greater trochanter must then be re-attached to the femur.
  • A few tools exist to enable re-attachment of the greater trochanter to the femur. One known technique utilizes a cable implant to hold bone portions together. Cables and/or wires secure the bones and the bone fragments in place. Typically, surgical cables are implanted using tensioning devices, which apply tension to a cable looped around the bone. Crimps are then added and deformed to clamp the cable loop in place. One example of such techniques is disclosed in U.S. Pat. No. 5,415,658, the entire writing of which is incorporated herein by reference. Another such example is the CABLE-READY brand cable grip system sold by Zimmer of Warsaw, Ind.
  • These techniques, however, rely entirely on cables to ensure that the device is securely fastened to the bone or bone fragments. Accordingly, it is desirable to provide a technique to re-attach the greater trochanter to the femur that provides an additional level of stability to the fracture site.
  • It is also desirable to provide a technique to repair periprosthetic fractures. Periprosthetic fractures have become increasingly common as more patients undergo total hip replacement, and may occur intraoperatively or at some time after surgery. The patient must then have an additional surgical procedure to repair the fracture.
  • It is further desirable to provide a device that can be fitted to femoral heads and femoral shafts of a variety of sizes and shapes without need for manufacture and inventory of an unreasonable number of differently sized models of the apparatus.
  • SUMMARY OF THE INVENTION
  • The aforementioned problems are addressed by the present invention, which in a preferred embodiment, provides a connector for repairing a femur including techniques for repairing periprosthetic fractures and/or re-attaching the greater trochanter to the femur. The connector includes a claw-like member to engage with the greater trochanter. Along the body of the connector as well as along the superior end are a plurality of cable apertures and cable screws to receive and engage with cables that loop around the femur. Along the inferior end of the connector is at least one bone screw slot and bone screw engaging the connector with the femur. The bone screw provides torsional stability and provides a means for stabilizing bony fragments for periprosthetic fractures.
  • As preferred, the connector may be bowed or rotated at the inferior end to more properly align itself with the femur. Also to achieve this purpose, the connector may include a transition portion that allows the surgeon to bend the connector. Also included in the connector is a driver slot along the superior portion to allow the surgeon to place the connector to the greater trochanter.
  • The present invention also includes a method for repairing periprosthetic fractures and/or re-attaching the greater trochanter to the femur involving the steps of impacting a connector onto the greater trochanter, re-positioning the greater trochanter onto the femur, passing cables around the femur and through the connector, tensioning the cables to provide engagement between the greater trochanter and the femur, and attaching the connector to the femur by securing the cables with the cable screws and using at least one bone screw.
  • The invention may also include a modular feature that allows the apparatus to be assembled using a superior end and inferior end of choice size to closely fit the patient's skeletal frame. In the preferred embodiment, the superior connector includes a first transitional portion that mates with a second transitional portion of the inferior portion. The two portions may be secured together using one or more screws. It is clear, however, that one skilled in the art would be able to utilize a variety of methods for securing the two portions together.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other advantages and features of the invention will become apparent upon reading the following detailed description and referring to the accompanying drawings in which like numbers refer to like parts throughout and in which:
  • FIG. 1 is a diagram of the femur and pelvis;
  • FIG. 2 is a diagram of the replaced femoral head and pelvis;
  • FIG. 3 is a perspective view of an exemplary connector for repairing a femoral periprosthetic fracture and/or re-attaching the greater trochanter to the femur in accordance with a preferred embodiment of the present invention;
  • FIG. 4 an anterior/posterior view of the connector of FIG. 3;
  • FIG. 5 is a lateral view of the connector of FIG. 3;
  • FIG. 6 is a flow chart illustrating the procedure for re-attaching a greater trochanter to the femur in accordance with a preferred embodiment of the present invention;
  • FIGS. 7-12 are diagrams of the surgical procedure for re-attaching the greater trochanter to the femur in accordance with the steps detailed in FIG. 6; and
  • FIGS. 13-17 are diagrams of additional embodiments of a connector for re-attaching a greater trochanter to the femur in accordance with a preferred embodiment of the present invention; and
  • FIGS. 18-21 illustrate one embodiment of the present invention wherein the superior and inferior ends of the connector are modular.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIGS. 3-5 illustrate an exemplary connector 300 for re-attaching a greater trochanter 160 to the femur 150 in accordance with a preferred embodiment of the present invention. Connector 300 generally has a superior end 305, an inferior end 310, a transition portion 307, a lateral side 315, a medial side 320, and opposing anterior and posterior sides 325. Connector 300 may be of an implant grade material, preferably titanium or stainless steel, or of a bio-absorbable material.
  • The superior end 305 of the connector 300 has an improved anatomically-designed bow that fits and cradles the greater trochanter 160. In particular, the superior end 305 includes one or more cable apertures or grooves 340, and one or more claws or claw-like members 345. Claws 345 include extensions or hooks to allow the superior end to better grasp onto the greater trochanter 160. The cable apertures 340 serve to attach and fixate the connector 300 to the greater trochanter 160 in accordance with the present invention. The apertures 340 may be perpendicular to the sides 325 of the connector 300 (as shown in the figures), they may be angled to provide a cable path that reduces the stress on the cable, and/or they may have a curved path to help direct the cable in a stress relieving direction. The cables extending through the apertures 340 may be crimped. In this regard, crimping may be external or the superior end 305 may have integral crimps 330 attached thereto. The superior end 305 includes a driver slot 350 for engaging with a driver (not shown). As defined herein, apertures 340 may include surface grooves to route the cable over the connector 300.
  • The transition portion 307 of the connector 300 is preferably sufficiently narrow such that it may be bent by a surgeon to provide a better fit between the connector 300 and the femur 150. Optionally, as shown in FIG. 5A, the inferior end 310 of the connector 300 may be bowed to conform with the anterior bow in the femur 150. The inferior end 310 may also be bowed in other directions to follow any other unique bows or rotations of the femur 150.
  • The inferior end 310 of the connector 300 includes one or more bone screw slots 355 to receive a bone screw (not shown). The slots 355 include threaded holes and are preferably evenly spaced along the length of the inferior end 310, although any spacing geometry may be used and still be considered within the scope of the present invention. As illustrated in FIGS. 3-5, five slots 355, roughly one inch apart, are provided, however, those skilled in the art will appreciate that connector 300 may include any number of slots 355 to be considered within the scope of the present invention. As preferred, the range is between two and five slots 355. Slots 355 may be standard slots or may be compression slots. Compression slots are generally known in the art. Further, slots 355 may be of differing geometries. Advantageously, as shown herein, slots 355 allow bone screws to be inserted into the femur 150 to provide a more durable connection, to provide torsional stability, to provide stability for bony fragments of periprosthetic fractures, and to provide more support for the greater trochanter 160 while it heals. Bone screws cause connector 300 to create a force to push the greater trochanter 160 toward the femur 150. Further, slot 355 may be configured such that bone screws may be easily angled past the prosthesis, thereby avoiding the prosthesis when the bone screw is inserted. Bone screws may be unicortical or bicortical screws.
  • Inferior end 310 also includes one or more pairs of cable apertures 360. Though not required, the cable apertures 360 are shown as being evenly spaced along the length of the inferior end 310 in an alternating fashion with the slots 355. One or more of the paired apertures includes a cable screw slot 370 for receiving a cable screw 365. The cable screw 365 may be wound into the slot 370 to and affect the size of the cable aperture 360. The particulars of the cable mechanism are generally known in the art and are disclosed further in U.S. Pat. No. 5,415,658, the entire writing of which is incorporated herein by reference. Again, those skilled in the art will appreciate that any number of cable apertures 360 may be used to still be considered with the scope of the present invention.
  • FIGS. 13-17 disclose additional embodiments of connector for re-attaching a greater trochanter 160 to the femur 150 in accordance with a preferred embodiment of the present invention. As illustrated by these alternative embodiments, integral crimps may or may not be used for the cable apertures along the superior end of the connector. In addition, the number of slots 355, cable screws 365, and cable apertures 360 may be vary.
  • FIGS. 6-12 generally illustrate an exemplary procedure for re-attaching the greater trochanter 160 to the femur 150 in accordance with a preferred embodiment of the present invention. FIG. 7 illustrates a known procedure for passing a cable 705 around the femur 150 using a cable passer 710. After the underlying hip surgery, the cable passer 710 is passed around the superior femur 150 usually from the posterior to the anterior. The free end of the cable 705 is inserted into the tip of the cable passer 710 until the free end exits the cable passer on the other end as shown. The cable passer 710 is then removed, leaving the cable 705 around the femur 150.
  • Referring to FIGS. 6 and 8, at step 605, a driver 805 is screwed onto the driver slot 350 of the connector 300. At step 610, the connector 300 is impacted onto the greater trochanter 160. The claws 345 at the extreme tip of the superior end 305 of the connector 300 should engage the superior portion of the trochanter 160.
  • Referring next to FIGS. 6 and 9, at step 615, the driver 805 is used to advance the connector 300 and impacted greater trochanter 160 onto the femur 150.
  • Referring next to FIGS. 6 and 10, at step 620, one or more cables 705 are passed around the femur 150 and through the apertures 340 and 360 of the connector 300.
  • Referring next to FIGS. 6 and 11, at step 625, the cables 705 are tensioned using a tensioning tool 1100.
  • Referring next to FIGS. 6 and 12, at step 630, the bone screws 1200 are screwed through the bone screw slots 355 of the connector 300 and into the femur 150. Finally, step 635, the cables 705 are re-tensioned and locked-down with cable screws 365. Excess cable 705 is also cut away.
  • As will be recognized by those of ordinary skill, the present invention advantageously provides an improved technique for repairing periprosthetic fractures and/or re-attaching the greater trochanter 160 to the femur 150. Advantageously, slots 355 allow bone screws to be inserted into the femur 150 to provide a more durable connection, to provide torsional stability, to provide stability for bony fragments of periprosthetic fractures, and to provide more support for the greater trochanter 160 while it heals. The improved superior end 305 of the connector 300 provides an improved anatomically-designed bow that fits and cradles the greater trochanter 160. The superior end 305 allows cables 705 to be wrapped around that portion of the greater trochanter 160. Further, the improved inferior end 310 of the connector 300 allows the connector to be attached to the femur 150 with bone screws 1200 to provide a more durable connection, to provide more stability for the connector 300, and to provide more support for the greater trochanter 160 while it heals. In this regard, slots 355 are provided along the inferior end 310 of the connector 300.
  • In another aspect of the present invention, the device includes a modularity feature. The modularity feature may be implemented, for example, by using a superior end and an inferior end of choice size to closely fit the patient's skeletal frame. FIGS. 18-21 illustrate one embodiment of a modular construction of the connector 1800 having a superior end 1805 and an inferior end 1810. FIG. 18 illustrates the superior and inferior ends 1805 and 1810 mated together and FIG. 19 illustrates detached superior and inferior ends 1805 and 1810. FIG. 20 illustrates the superior end 1805 with a first transition portion 1815 and FIG. 21 illustrates the inferior end 1810 with a second transition portion 1820. In the embodiments of FIG. 20-21, the first and second transition portions 18101815 and 1820 are a tongue and groove, respectively. The two ends 1805 and 1810 may be secured together using one or more screws though apertures 1825. It is clear, however, that one skilled in the art would be able to utilize a variety of methods for securing the two portions together. This modularity feature allows the apparatus to be fitted to femoral heads and femoral shafts of a variety of sizes and shapes without need for manufacture and inventory of an unreasonable number of differently sized models of this apparatus.
  • As used herein, the present invention may be used in a number of applications for repairing the human femur, including, but not limited to, total hip replacements, hip revisions, and repair of periprosthetic bone fractures and/or re-attaching the greater trochanter to the femur.
  • Although the preferred embodiment of this invention has been described hereinabove in some detail, it should be appreciated that a variety of embodiments will be readily available to persons utilizing the invention for a specific end use. The description of this invention is not intended to be limiting on this invention, but is merely illustrative of the preferred embodiment of this invention. Other products, apparatus and methods which incorporate modifications or changes to that which has been described herein are equally included within this application. Additional objects, features and advantages of the present invention will become apparent by referring to the above description of the invention in connection with the accompanying drawings.

Claims (23)

1. A connector for engaging along a femur that has an upper head end thereof with a prosthetic hip implant including a stem extending in the femur and a ball projecting from the femur head end, the connector comprising:
an elongate lower portion for extending along the femur below the head end thereof;
a substantially rigid body of the lower portion;
a cable retaining structure in the rigid lower portion body for receiving cable extending therealong and about the femur;
a plurality of holding devices configured to be carried on the rigid lower portion body for securing the cable in the cable retaining structure to secure the lower portion to the femur;
an upper portion for greater trochanter reattachment to the femur upper head end;
a body of the upper portion that has a predetermined arcuate configuration to cradle the greater trochanter; and
at least one distal tip end of the arcuate upper portion body configured for biting into the greater trochanter so that the arcuate upper portion body securely cradles and grips the greater trochanter to avoid formation of screw through openings in the upper portion body and use of bone screws extending therethrough for securing the upper portion body to the greater trochanter and that may otherwise interfere with the prosthetic stem in the femur.
2. The connector of claim 1 wherein the cable retaining structure comprises a plurality of cable openings for receipt of cable therethrough.
3. The connector of claim 2 wherein each of the plurality of holding devices is configured to secure one cable received in at least two adjacent ones of the plurality of cable openings.
4. The connector of claim 1 wherein each of the plurality of holding devices is configured to be advanced toward the cable to supply a force thereto in the cable retaining structure securing the cable therein.
5. The connector of claim 1 wherein the lower portion body includes bone screw slots extending therethrough with the lower portion body having a longitudinal axis and the slots being elongated along the lower portion body axis to allow bone screws to be extended through the slots at various angles to the axis to avoid contacting the prosthetic stem in the femur.
6. The connector of claim 1 wherein the lower portion body includes bone screw through openings having tapered walls extending thereabout to provide a compression fit with bone screws received and tightened therein and for drawing the arcuate upper portion body tightly against the greater trochanter.
7. The connector of claim 1 wherein the upper portion body includes at least one cable retaining structure for receiving cable extending therealong and about the greater trochanter and femur head end to secure the greater trochanter thereon and at least one holding device configured to be carried on the upper portion body for securing the cable in the cable retaining structure to secure the upper portion body to the femur.
8. The connector of claim 7 wherein the cable retaining structure comprises a cable opening in the upper portion body for receipt of the cable therethrough.
9. The connector of claim 7 wherein the at least one holding device is configured to be advanced toward the cable to supply a force thereto in the cable retaining structure for securing the cable.
10. The connector of claim 1 wherein the upper portion body includes a portion proximal to the lower portion that is narrower than the lower portion body.
11. The connector of claim 1 wherein the upper portion body includes a driver opening generally aligned with and opposite the distal tip end allowing a driver tool to engage therewith for driving the tip end into the greater trochanter from a remote position relative thereto.
12. The connector of claim 1 wherein the upper portion body and the lower portion body are integral.
13. A connector for reattaching a greater trochanter to a femur, the connector comprising: An arcuate member for cradling the greater trochanter;
an elongate member for extending along the femur;
one of bone screw openings and cable retaining structure provided in at least one of the members;
an adjustable connection between the members at adjacent mating ends thereof that allows the members to be secured in different predetermined positions relative to each other; and
portions of the ends of the members that are configured to be in interference with each other in a direction extending away from and transverse to the femur with the members secured together at the ends by the adjustable connection.
14. The connector of claim 13 wherein one of the mating ends comprises a tongue having a generally T-shaped cross-sectional configuration and the other end comprises a groove having a generally T-shaped cross-sectional configuration complementary to that of the tongue to allow the tongue to slide in the groove with the tongue secured against being shifted out from the groove in a direction transverse to the sliding of the tongue.
15. The connector of claim 14 wherein the tongue end and the groove end both include screw apertures for being aligned to receive a screw fastener extending therethrough.
16. The connector of claim 13 wherein the arcuate member includes cable retaining structure and has a portion including the cable retaining structure that is narrower than the elongate member to minimize bending of a cable as the cable exits the retaining structure for extending about the femur and greater trochanter.
17. The connector of claim 16 wherein the cable retaining structure includes a cable opening in the arcuate member portion, and the arcuate member portion includes a cable holding device carried on the narrow arcuate member for securing the cable in the cable opening.
18. A connector for reattaching a greater trochanter to a femur, the connector comprising:
an elongate lower portion for extending along the femur;
a plurality of bone screw openings in the elongate lower portion for fastening the lower portion along the femur;
an arcuate upper portion configured for cradling the greater trochanter; and
cable retaining structure of the arcuate upper portion for receiving a cable extending therealong and about the greater trochanter and femur for securing the arcuate upper portion thereto.
19. The connector of claim 18 wherein the lower and upper portions have a transverse width dimension with the arcuate upper portion being narrower in the width dimension than the elongate lower portion to minimize bending of the cable as the cable exits the retaining structure for extending about the femur and greater trochanter.
20. The connector of claim 19 wherein the cable retaining structure comprises a cable opening, and the narrow arcuate upper portion includes an aperture and a cable holding device carried in the aperture of the narrow arcuate upper portion for being advanced in the aperture to secure the cable in the cable opening.
21. The connector of claim 20 wherein the narrow arcuate upper portion includes an enlarged width end portion having a tooth for biting into the greater trochanter.
22. The connector of claim 18 wherein the arcuate upper portion includes a driver opening for allowing a driver tool to engage therewith and manipulate the arcuate upper portion from a remote position relative to the greater trochanter and femur.
23. The connector of claim 18 wherein the elongate lower portion and the arcuate upper portion are either integral with each other or distinct members from each other.
US11/370,645 2000-02-03 2006-03-07 Apparatus and method for repairing the femur Abandoned US20060235401A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17999900P true 2000-02-03 2000-02-03
US09/775,891 US7207993B1 (en) 2000-02-03 2001-02-02 Apparatus and method for repairing the femur
US11/370,645 US20060235401A1 (en) 2000-02-03 2006-03-07 Apparatus and method for repairing the femur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/370,645 US20060235401A1 (en) 2000-02-03 2006-03-07 Apparatus and method for repairing the femur

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/775,891 Continuation US7207993B1 (en) 2000-02-03 2001-02-02 Apparatus and method for repairing the femur

Publications (1)

Publication Number Publication Date
US20060235401A1 true US20060235401A1 (en) 2006-10-19

Family

ID=37109510

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/775,891 Active US7207993B1 (en) 2000-02-03 2001-02-02 Apparatus and method for repairing the femur
US11/370,645 Abandoned US20060235401A1 (en) 2000-02-03 2006-03-07 Apparatus and method for repairing the femur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/775,891 Active US7207993B1 (en) 2000-02-03 2001-02-02 Apparatus and method for repairing the femur

Country Status (1)

Country Link
US (2) US7207993B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464294A1 (en) 2003-04-02 2004-10-06 Benoist Girard Sas Greater trochanter re-attachment device
US20090105717A1 (en) * 2007-10-17 2009-04-23 Stryker Trauma Gmbh Cam-locking of cable for fracture plate
US20090171357A1 (en) * 2007-12-20 2009-07-02 Medicineloge, Inc. Collet fixation system
WO2009100520A1 (en) * 2008-02-16 2009-08-20 Mcmaster University Method and apparatus for treating periprosthetic fractures of the distal femur
EP2117452A2 (en) * 2007-02-13 2009-11-18 Kinamed, Inc. Trochanteric grip
US20100042106A1 (en) * 2008-08-12 2010-02-18 Bryant Mark A Surgical cable tensioning apparatus and method
WO2010061410A1 (en) * 2008-11-25 2010-06-03 Intrauma S.R.L Modular osteosynthesis hook plate
US20100292698A1 (en) * 2009-05-12 2010-11-18 Urs Hulliger Self-Retaining Cable Tie
US20110152864A1 (en) * 2009-12-18 2011-06-23 Emil Schemitsch Bone fixation system
US20130053899A1 (en) * 2011-08-31 2013-02-28 Stryker Trauma Sa Bone plate with hook portion
WO2013055858A1 (en) * 2011-10-11 2013-04-18 Norris Brent Lane Low profile periarticular tension band plating system with soft tissue neutralization cable tunnel/channel
EP2606861A2 (en) * 2010-08-13 2013-06-26 Jeesun Park Femoral lesser trochanter securing device for firmly securing the lesser trochanter and the surrounds and stably strengthening the same so as to allow artificial hip replacement surgery
US20130245699A1 (en) * 2011-09-06 2013-09-19 Jorge L. Orbay Fracture fixation plate, system and methods of use
KR101604668B1 (en) * 2016-02-01 2016-03-18 주식회사 아이피컨텍 Variable implant for fixing the femoral
US9439698B2 (en) 2013-03-15 2016-09-13 Frontier Medical Devices, Inc. Cable fixation device
KR20160112533A (en) * 2015-03-19 2016-09-28 아이엠 바이오(주) Grip plate for trochanteric fracture of femur
KR101772533B1 (en) * 2016-06-07 2017-08-29 김정엽 Hanger type bone fixing module
KR101834075B1 (en) 2016-06-07 2018-03-02 김정엽 Installation method for hanger type bone fixing module
KR101840934B1 (en) * 2016-06-07 2018-03-22 김정엽 Bone fixing module and installation method of thereof
RU2681245C1 (en) * 2018-02-22 2019-03-05 Федеральное государственное бюджетное учреждение "Российский ордена Трудового Красного Знамени научно-исследовательский институт травматологии и ортопедии имени Р.Р. Вредена" Министерства здравоохранения Российской Федерации (ФГБУ "РНИИТО им. Р.Р. Вредена" Минздрава России) Fixer for osteosynthesis of greater trochanter

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7207993B1 (en) * 2000-02-03 2007-04-24 Pioneer Laboratories, Inc. Apparatus and method for repairing the femur
DE10107369B4 (en) * 2001-02-16 2016-03-24 Ernst Wiedemann Implant plate
US7857838B2 (en) 2003-03-27 2010-12-28 Depuy Products, Inc. Anatomical distal radius fracture fixation plate
EP1464295A3 (en) * 2003-04-01 2006-04-26 Zimmer GmbH Implant
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9078644B2 (en) * 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US10092288B2 (en) 2006-02-03 2018-10-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US9408599B2 (en) 2006-02-03 2016-08-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
EP1700572B1 (en) * 2005-03-11 2008-01-16 ORTHOFIX S.r.l. Device for the osteosynthesis of proximal humerus fractures
JP4898192B2 (en) * 2005-10-31 2012-03-14 浩 三上 Femoral stem for artificial hip joint and artificial hip joint including the same
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US20080021475A1 (en) * 2006-07-24 2008-01-24 Steven Alan Lawrie Orthopaedic appliances
US7601165B2 (en) 2006-09-29 2009-10-13 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable suture loop
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010006195A1 (en) 2008-07-09 2010-01-14 Amei Technologies, Inc. Ankle arthrodesis nail and outrigger assembly
CN102413780B (en) * 2009-04-25 2014-08-20 新特斯有限责任公司 System and method for minimally invasive crimp and cable for bone cerclage
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
GB2471290A (en) * 2009-06-23 2010-12-29 Keith Borowsky Joint repair apparatus
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
KR101930228B1 (en) 2011-07-16 2018-12-18 디퍼이 신테스 프로덕츠, 인코포레이티드 Minimally invasive crimp and cable for bone cerclage
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US9265543B2 (en) 2011-12-27 2016-02-23 Pioneer Surgical Technology, Inc. Bone plate system and method
CN102835994B (en) * 2012-08-17 2014-04-02 苏州瑞华医院有限公司 Three-jaw bone holder
AU2013306050C1 (en) 2012-08-20 2018-05-24 Zimmer, Inc. Trochanter attachment device
US9561064B2 (en) 2012-11-21 2017-02-07 Pioneer Surgical Technology, Inc. Bone plate system and method
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US9549768B2 (en) * 2014-04-17 2017-01-24 Biomet Manufacturing, Llc Medical implant system for securing bone fragments
US10314635B2 (en) 2014-05-28 2019-06-11 A&E Advanced Closure Systems, Llc Tensioning instruments
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10231762B2 (en) * 2016-03-01 2019-03-19 Advanced Orthopaedic Solutions, Inc. Bone plate system
US10143506B2 (en) 2016-03-17 2018-12-04 Arthrex, Inc. Method and system for providing a suture wrap cerclage
US10314628B2 (en) * 2016-03-17 2019-06-11 Arthrex, Inc. Method and system for providing a suture wrap cerclage
WO2018169869A1 (en) * 2017-03-13 2018-09-20 DePuy Synthes Products, Inc. Proximal femur hook plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651724A (en) * 1984-05-18 1987-03-24 Technomed Gmk Bone joining plate
US5665089A (en) * 1992-03-19 1997-09-09 Dall; Desmond Meiring Bone fixation system
US5702399A (en) * 1996-05-16 1997-12-30 Pioneer Laboratories, Inc. Surgical cable screw connector
US5797916A (en) * 1996-12-10 1998-08-25 Johnson & Johnson Professional, Inc. Trochanteric reattachment cerclage device
US7207993B1 (en) * 2000-02-03 2007-04-24 Pioneer Laboratories, Inc. Apparatus and method for repairing the femur

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824995A (en) 1972-07-24 1974-07-23 Villiers E Trochanteric plate
GB1515293A (en) 1974-05-29 1978-06-21 Nat Res Dev Endoprosthetic devices
US4120298A (en) 1976-12-06 1978-10-17 Fixel Irving E Implant to secure the greater trochanter
ZA7701690B (en) 1977-04-21 1978-06-28 C Grobbelaar Improved hip joint
US4163292A (en) 1977-11-21 1979-08-07 Averett James E Jr Hip prosthesis
ZA7901284B (en) 1978-03-30 1980-08-27 D Dall Implant
US4473068A (en) 1982-01-18 1984-09-25 Indong Oh Trochanteric basket
US4465065A (en) * 1983-01-07 1984-08-14 Yechiel Gotfried Surgical device for connection of fractured bones
FR2614781B1 (en) 1987-05-05 1989-08-04 Galline Yves Attachment device and tools for its installation, in particular for securing the trochanter at femur
US4875474A (en) 1988-01-29 1989-10-24 Biomet, Inc. Variable wall thickness interlocking intramedullary nail
EP0359793A4 (en) 1988-02-03 1990-10-10 Inc. Biomet Variable length fixation device
DE8808123U1 (en) 1988-06-24 1988-09-22 Herzberg, Wolfgang, Dr. Med., 2000 Wedel, De
US5019083A (en) 1989-01-31 1991-05-28 Advanced Osseous Technologies, Inc. Implanting and removal of orthopedic prostheses
US5382251A (en) 1989-01-31 1995-01-17 Biomet, Inc. Plug pulling method
US5015248A (en) * 1990-06-11 1991-05-14 New York Society For The Relief Of The Ruptured & Crippled, Maintaining The Hospital For Special Surgery Bone fracture fixation device
CH686222A5 (en) 1991-05-30 1996-02-15 Synthes Ag The trochanter stabilization.
US5342366A (en) 1992-02-19 1994-08-30 Biomet, Inc. Surgical instruments for hip revision
US5376120A (en) 1992-10-21 1994-12-27 Biomet, Inc. Biocompatible implant and method of using same
US5324291A (en) 1992-12-21 1994-06-28 Smith & Nephew Richards, Inc. Bone section reattachment apparatus and method
US5830396A (en) 1993-01-21 1998-11-03 Biomet, Inc. Method for processing thermoplastics, thermosets and elastomers
US5505984A (en) 1993-01-21 1996-04-09 England; Garry L. Method for forming biocompatible components using an isostatic press
US5370221A (en) 1993-01-29 1994-12-06 Biomet, Inc. Flexible package for bone cement components
FR2711505B1 (en) * 1993-10-25 1995-12-29 Tornier Sa A synthesis of fractures of the proximal femur.
US5468242A (en) 1993-11-19 1995-11-21 Leibinger Gmbh Form-fitting mesh implant
US5527342A (en) 1993-12-14 1996-06-18 Pietrzak; William S. Method and apparatus for securing soft tissues, tendons and ligaments to bone
US5415658A (en) 1993-12-14 1995-05-16 Pioneer Laboratories, Inc. Surgical cable loop connector
US5569250A (en) 1994-03-01 1996-10-29 Sarver; David R. Method and apparatus for securing adjacent bone portions
US5643259A (en) 1994-03-31 1997-07-01 Ricardo C. Sasso Spine fixation instrumentation
US5702656A (en) 1995-06-07 1997-12-30 United States Surgical Corporation Process for making polymeric articles
US5607430A (en) 1995-08-25 1997-03-04 Biomet, Inc. Bone stabilization implant having a bone plate portion with integral cable clamping means
US5993449A (en) * 1995-11-30 1999-11-30 Synthes (Usa) Bone-fixing device
US5598937A (en) 1996-02-14 1997-02-04 Keystone Industries, Inc. Slackless drawbar assembly
US5741259A (en) * 1996-02-22 1998-04-21 Chan; Kwan-Ho Surgical fastener device for use in bone fracture fixation
US5976139A (en) * 1996-07-17 1999-11-02 Bramlet; Dale G. Surgical fastener assembly
US5885295A (en) 1996-08-07 1999-03-23 Biomet, Inc. Apparatus and method for positioning an orthopedic implant
US5741266A (en) 1996-09-19 1998-04-21 Biomet, Inc. Pin placement guide and method of making a bone entry hole for implantation of an intramedullary nail
US5766218A (en) * 1996-10-01 1998-06-16 Metamorphic Surgical Devices, Inc. Surgical binding device and method of using same
US5810821A (en) 1997-03-28 1998-09-22 Biomet Inc. Bone fixation screw system
US5792143A (en) 1997-04-21 1998-08-11 Biomet, Inc Neck length measuring device and method of using same for implanting a hip prosthesis
US5860969A (en) 1997-04-30 1999-01-19 Biomet, Inc. Version adjustment instrument for modular femoral components and method of using same
GB9715440D0 (en) * 1997-07-22 1997-09-24 Dall Desmond Meiring Bone grip
US5935127A (en) 1997-12-17 1999-08-10 Biomet, Inc. Apparatus and method for treatment of a fracture in a long bone
US5941881A (en) 1998-01-09 1999-08-24 Medidea, Llc Bone fastening apparatus and related procedures
US6155812A (en) 1998-07-15 2000-12-05 Biomet, Inc Cement mold for a temporary implant
US5993452A (en) 1998-08-24 1999-11-30 Biomet Inc. Cerclage system
DE69936862D1 (en) 1998-10-16 2007-09-27 Biomet Inc From a modular nonmodularen in a convertible in vivo joint prosthesis
US6338734B1 (en) * 2000-03-14 2002-01-15 Biomet, Inc. Method and apparatus for trochanter fixation
US6508819B1 (en) * 2001-08-28 2003-01-21 Hand Innovations, Inc. Method of dorsal wrist fracture fixation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651724A (en) * 1984-05-18 1987-03-24 Technomed Gmk Bone joining plate
US5665089A (en) * 1992-03-19 1997-09-09 Dall; Desmond Meiring Bone fixation system
US5702399A (en) * 1996-05-16 1997-12-30 Pioneer Laboratories, Inc. Surgical cable screw connector
US5797916A (en) * 1996-12-10 1998-08-25 Johnson & Johnson Professional, Inc. Trochanteric reattachment cerclage device
US7207993B1 (en) * 2000-02-03 2007-04-24 Pioneer Laboratories, Inc. Apparatus and method for repairing the femur

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464294A1 (en) 2003-04-02 2004-10-06 Benoist Girard Sas Greater trochanter re-attachment device
EP2117452A4 (en) * 2007-02-13 2013-07-17 Kinamed Inc Trochanteric grip
EP2117452A2 (en) * 2007-02-13 2009-11-18 Kinamed, Inc. Trochanteric grip
US20090105717A1 (en) * 2007-10-17 2009-04-23 Stryker Trauma Gmbh Cam-locking of cable for fracture plate
US8142434B2 (en) * 2007-10-17 2012-03-27 Stryker Trauma Gmbh Cam-locking of cable for fracture plate
US20090171357A1 (en) * 2007-12-20 2009-07-02 Medicineloge, Inc. Collet fixation system
US8241288B2 (en) 2007-12-20 2012-08-14 Imds Corporation Collet fixation system
WO2009100520A1 (en) * 2008-02-16 2009-08-20 Mcmaster University Method and apparatus for treating periprosthetic fractures of the distal femur
US20100318086A1 (en) * 2008-02-16 2010-12-16 Mitchell Winemaker Method and apparatus for treating periprosthetic fractures of the distal femur
US9216047B2 (en) 2008-08-12 2015-12-22 Pioneer Surgical Technology, Inc. Surgical cable tensioning apparatus and method
US8257367B2 (en) 2008-08-12 2012-09-04 Pioneer Surgical Technology, Inc. Surgical cable tensioning apparatus and method
US20100042106A1 (en) * 2008-08-12 2010-02-18 Bryant Mark A Surgical cable tensioning apparatus and method
WO2010061410A1 (en) * 2008-11-25 2010-06-03 Intrauma S.R.L Modular osteosynthesis hook plate
US20100292698A1 (en) * 2009-05-12 2010-11-18 Urs Hulliger Self-Retaining Cable Tie
US8231626B2 (en) 2009-05-12 2012-07-31 Synthes Usa, Llc Self-retaining cable tie
US20110152864A1 (en) * 2009-12-18 2011-06-23 Emil Schemitsch Bone fixation system
US8579899B2 (en) * 2009-12-18 2013-11-12 Emil Schemitsch Bone fixation system
EP2606861A4 (en) * 2010-08-13 2014-07-30 Jeesun Park Femoral lesser trochanter securing device for firmly securing the lesser trochanter and the surrounds and stably strengthening the same so as to allow artificial hip replacement surgery
EP2606861A2 (en) * 2010-08-13 2013-06-26 Jeesun Park Femoral lesser trochanter securing device for firmly securing the lesser trochanter and the surrounds and stably strengthening the same so as to allow artificial hip replacement surgery
CN103298431A (en) * 2010-08-13 2013-09-11 朴智善 Femoral lesser trochanter securing device for firmly securing the lesser trochanter and the surrounds and stably strengthening the same so as to allow artificial hip replacement surgery
US8961574B2 (en) * 2011-08-31 2015-02-24 Stryker Trauma Sa Bone plate with hook portion
EP2564797A1 (en) * 2011-08-31 2013-03-06 Stryker Trauma SA Bone place with hook portion
US20130053899A1 (en) * 2011-08-31 2013-02-28 Stryker Trauma Sa Bone plate with hook portion
EP2753257A4 (en) * 2011-09-06 2015-11-04 Skeletal Dynamics Llc Fracture fixation plate, system and methods of use
JP2014530658A (en) * 2011-09-06 2014-11-20 スケルタル ダイナミクス エルエルシー Fracture fixation plate, system and method of use
US20130245699A1 (en) * 2011-09-06 2013-09-19 Jorge L. Orbay Fracture fixation plate, system and methods of use
US8906073B2 (en) 2011-10-11 2014-12-09 Brent Lane Norris Low profile periarticular tension band plating system with soft tissue neutralization cable tunnel/channel for use on the greater tuberosity of the humerus
US8906071B2 (en) 2011-10-11 2014-12-09 Brent Lane Norris Low profile periartiular tension band plating system with soft tissue neutralization cable tunnel/channel for use on the olecranon
US8906072B2 (en) 2011-10-11 2014-12-09 Brent Lane Norris Low profile periartiular tension band plating system with soft tissue neutralization cable tunnel/channel for use on the greater trochanter
US8551143B2 (en) 2011-10-11 2013-10-08 Brent Lane Norris Low profile periarticular tension band plating system with soft tissue neutralization cable tunnel/channel
WO2013055858A1 (en) * 2011-10-11 2013-04-18 Norris Brent Lane Low profile periarticular tension band plating system with soft tissue neutralization cable tunnel/channel
EP2765933A4 (en) * 2011-10-11 2015-12-23 Brent Lane Norris Low profile periarticular tension band plating system with soft tissue neutralization cable tunnel/channel
US9439698B2 (en) 2013-03-15 2016-09-13 Frontier Medical Devices, Inc. Cable fixation device
KR20160112533A (en) * 2015-03-19 2016-09-28 아이엠 바이오(주) Grip plate for trochanteric fracture of femur
KR101686863B1 (en) * 2015-03-19 2016-12-16 아이엠 바이오(주) Grip plate for trochanteric fracture of femur
KR101604668B1 (en) * 2016-02-01 2016-03-18 주식회사 아이피컨텍 Variable implant for fixing the femoral
WO2017135476A1 (en) * 2016-02-01 2017-08-10 주식회사 아이피컨텍 Variable implant for fixing femur
KR101772533B1 (en) * 2016-06-07 2017-08-29 김정엽 Hanger type bone fixing module
KR101834075B1 (en) 2016-06-07 2018-03-02 김정엽 Installation method for hanger type bone fixing module
KR101840934B1 (en) * 2016-06-07 2018-03-22 김정엽 Bone fixing module and installation method of thereof
RU2681245C1 (en) * 2018-02-22 2019-03-05 Федеральное государственное бюджетное учреждение "Российский ордена Трудового Красного Знамени научно-исследовательский институт травматологии и ортопедии имени Р.Р. Вредена" Министерства здравоохранения Российской Федерации (ФГБУ "РНИИТО им. Р.Р. Вредена" Минздрава России) Fixer for osteosynthesis of greater trochanter

Also Published As

Publication number Publication date
US7207993B1 (en) 2007-04-24

Similar Documents

Publication Publication Date Title
KR101185942B1 (en) Sternal reconstruction system
JP4421474B2 (en) Intramedullary fixation device for long bone metaphyseal fractures
US8252027B2 (en) System and method for facet joint replacement
US5643264A (en) Iliac screw
US9358132B2 (en) Linked bilateral spinal facet implants and methods of use
US4651724A (en) Bone joining plate
EP0706782B1 (en) Osteosynthetic longitudinal alignment and/or fixation device
CN101965157B (en) Elbow fracture fixation system
EP0906065B1 (en) Intermedullary rod apparatus for repairing proximal humerus fractures
EP1861032B1 (en) Modular fracture fixation plate system
EP0853930B1 (en) Offset coupling for joint prosthesis
US7115129B2 (en) Bone compression devices and systems and methods of contouring and using same
US9387019B2 (en) Joint arthrodesis and arthroplasty
JP5254989B2 (en) Intervertebral and interspinous vertebra stabilization systems
US5352227A (en) Intercalary device
JP4361339B2 (en) Humeral shoulder joint prosthesis
US7909829B2 (en) Tissue retractor and drill guide
AU2006252612B2 (en) Bone implants with integrated line locks
US6997953B2 (en) Method for implanting a laminoplasty
JP5507463B2 (en) Distal tibial plate fixation device
US6086589A (en) Method and device for fixing spondylolisthesis posteriorly
JP4303437B2 (en) Rod system in the bone marrow of thigh
AU2002245390B2 (en) Apparatus for implantation into bone
US5628740A (en) Articulating toggle bolt bone screw
US8317845B2 (en) Screw and method of use

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION