US20060210853A1 - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- US20060210853A1 US20060210853A1 US10/568,286 US56828606A US2006210853A1 US 20060210853 A1 US20060210853 A1 US 20060210853A1 US 56828606 A US56828606 A US 56828606A US 2006210853 A1 US2006210853 A1 US 2006210853A1
- Authority
- US
- United States
- Prior art keywords
- fuel cell
- gas
- fuel
- cells
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04365—Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04402—Pressure; Ambient pressure; Flow of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04552—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04761—Pressure; Flow of fuel cell exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04231—Purging of the reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell system, more particularly a purge control in a fuel cell system having an anode gas circulation system.
- a fuel cell is an electrochemical device to convert chemical energy of fuel gas such as hydrogen gas and oxidant gas containing oxygen supplied thereto, directly to electric energy which is extracted from electrodes provided on both sides of an electrolyte thereof.
- a fuel cell using a solid polymer electrolyte membrane has low operation temperature and can be easily handled, and therefore, it has been a focus of attention as a power source for an electric vehicle.
- the solid polymer electrolyte membrane is required to be retained in a moderately humidified state in order to exert sufficient hydrogen ion conductivity.
- the fuel gas or the oxidant gas or the both gases are humidified to be supplied to the fuel cell.
- water added for the humidification and water produced by a power generation reaction in the fuel cell are condensed and may cause clogging or blocking of a gas passage in the fuel cell, depending on operating conditions of the fuel cell.
- nitrogen contained in the air passes through a solid polymer membrane thereof, and accumulates in a fuel gas circulation system. Consequently, a fuel gas partial pressure decreases at a fuel electrode of the fuel cell, lowering operation efficiency thereof.
- purging is performed for the fuel gas circulation system.
- Japanese Patent Laid-Open Publication No. 2002-243417 discloses a fuel cell system which removes impurities accumulated in a hydrogen gas circulation system by opening a purge valve provided in the system and releasing anode off-gas to outside of the system.
- An object of the present invention is to provide a fuel cell system which removes clogging of gas passages in the fuel cell without lowering the operation efficiency thereof.
- An aspect of the present invention is a fuel cell system comprising: a fuel cell to be supplied with a gas for power generation, the gas unused for the power generation to be discharged out of the fuel cell; a circulation flow path through which the gas discharged out of the fuel cell is resupplied to the fuel cell; a variable flow rate circulation pump for circulating the gas through the circulation flow path; a valve for discharging the gas in the circulation flow path to the outside of the circulation flow path; a voltage sensor for measuring voltage of the fuel cell; and a controller for controlling the circulation pump and the valve, wherein the circulation pump and the valve are controlled based on the voltage measured by the voltage sensor.
- FIG. 1 is a block diagram of a fuel cell system according to a first embodiment of the present invention
- FIG. 2 shows relationship between fuel cell load and operation pressure of a fuel cell of the first embodiment
- FIG. 3 shows relationship between fuel cell load and average cell voltage of the fuel cell of the first embodiment
- FIG. 4 is a flowchart of a purge operation of the first embodiment
- FIG. 5 shows a relationship between fuel cell load and hydrogen gas circulation flow rate Qh of the first embodiment
- FIG. 6 is a flowchart of a purge operation of a second embodiment of the present invention.
- FIG. 7 shows a relationship between fuel cell load and purge flow rate Qp of the second embodiment.
- FIG. 8 is a flowchart of a purge operation of a third embodiment of the present invention.
- a fuel cell system 1 includes a fuel cell stack 2 , a hydrogen gas supply system 1 a which supplies hydrogen gas as fuel gas to the fuel cell stack 2 , an air supply system 1 b which supplies air to the fuel cell stack 2 , and a control unit 32 .
- the hydrogen gas supply system 1 a includes: a hydrogen tank 3 which stores hydrogen gas; a pressure control valve 4 which regulates pressure of the hydrogen gas taken out of the hydrogen tank 3 ; a hydrogen gas supply line 5 through which the pressure control valve 4 and the fuel cell stack 2 are communicated with each other; a hydrogen circulation pump 6 which feeds hydrogen gas discharged from the fuel cell stack 2 back to an inlet of the fuel cell stack 2 and circulates the hydrogen gas through a hydrogen gas circulation flow path 8 ; and a purge valve 7 which discharges the hydrogen gas discharged from the fuel cell stack 2 to the outside of the system.
- the air supply system 1 b includes: a compressor 9 which takes in air from the outside of the system and compresses the air; a humidifier 12 which humidifies the compressed air to supply the humidified air to the fuel cell stack 2 ; a condenser 13 which collects water from the air discharged from the fuel cell stack 2 ; a pressure control valve 14 which regulates pressure of the discharged air; a water tank 17 which stores the water collected by the condenser 13 ; and a water pump 18 which sends the water in the water tank 17 to the humidifier 12 .
- the fuel cell stack 2 is formed of a plurality of unit cells stacked on one another. Each of the cells has an anode AN, a cathode CA, and a solid electrolyte membrane M sandwiched therebitween, wherein the hydrogen gas is supplied to the anode AN and the air is supplied to the cathode CA.
- a temperature sensor 21 which detects a temperature Tc of the fuel cell stack 2
- a cell voltage sensor 22 which detects cell voltages CV of the respective cells of the fuel cell stack 2
- a pressure sensor 34 which detects hydrogen gas pressure at an outlet of the fuel cell stack 2 .
- the hydrogen gas discharged from the fuel cell stack 2 is pressure-fed and resupplied to the fuel cell stack 2 through the hydrogen gas circulation flow path 8 by the hydrogen circulation pump 6 .
- the hydrogen gas from the hydrogen tank 3 is introduced into the hydrogen gas circulation flow path 8 on the downstream of the hydrogen circulation pump 6 and supplied to the fuel cell stack 2 .
- the purge valve 7 When impurities such as nitrogen, CO and water are accumulated in the hydrogen gas circulation flow path 8 or when starting up the system, the purge valve 7 is opened to release the circulating hydrogen gas to the outside of the circulation flow path 8 . The operation of this purging operation will be described later.
- Each cell voltage CV of the fuel cell stack 2 is detected by the cell voltage sensor 22 and the detected value is sent to the control unit 32 .
- the temperature Tc of the fuel cell stack 2 and the hydrogen gas pressure Ph are detected by the temperature sensor 21 and the pressure sensor 34 , respectively, and are sent to the control unit 32 .
- the control unit 32 is a controller which controls the fuel cell system 1 based on the values of CV, Ph and Tc detected by the sensors 21 , 22 and 34 and controls the hydrogen circulation pump 6 and the purge valve 7 based on the cell voltages CV detected by the cell voltage sensor 22 .
- control unit 32 although not particularly limited, is formed of a microprocessor including a CPU, a program ROM, a work RAM and an input-output interface.
- the purge valve 7 is a valve which allows the hydrogen gas circulation flow path 8 and the outside of the system to communicate/non-communicate with each other and has a variable opening which can be adjusted arbitrarily.
- the compressor 9 compresses air taken in from the outside of the system.
- the compressed air is humidified by the humidifier 12 provided on an air supply line 11 and supplied to the fuel cell stack 2 .
- Air discharged from the fuel cell stack 2 contains water produced in reaction of power generation in the fuel cell stack 2 .
- the condenser 13 provided downstream of the fuel cell stack 2 collects the water.
- the pressure control valve 14 which provides the air supply system 1 b with a desired pressure.
- the water condensed and collected by the condenser 13 is introduced into the water tank 17 via an ON/OFF valve 15 in a water channel 16 .
- the water in the water tank 17 is pressure-fed by the pump 18 and supplied to the humidifier 12 through a feed line 19 .
- the excess water is returned to the water tank 17 through a return line 20 .
- the hydrogen gas and air are regulated according to this requested output and supplied to anode AN side passage and cathode CA side passage of the fuel cell stack 2 , respectively.
- a hydrogen gas pressure in the anode AN and an air pressure in the cathode CA are set to be higher as the fuel cell load becomes heavier.
- a closed loop is formed in the hydrogen gas supply system 1 a .
- the hydrogen gas discharged from an anode side outlet of the fuel cell stack 2 is fed to an anode side inlet and circulated through the hydrogen gas circulation flow path 8 by the hydrogen circulation pump 6 .
- a purge operation is performed. Specifically, in the purge operation, the purge valve 7 is temporarily opened and the gas containing impurities in the hydrogen gas circulation flow path 8 is released to the outside of the system.
- the control unit 32 reads each cell voltage CV of the fuel cell stack 2 from the cell voltage sensor 22 and computes an average cell voltage AVG. CV of all the cells.
- S 2 it is determined whether or not there is a cell with its voltage lower than the average cell voltage AVG. CV computed in S 1 by a predetermined value (for example, 0.1 V) or more.
- a hydrogen gas circulation flow rate Qh 1 in a normal operation is increased at a constant rate as fuel cell load (output current) of the fuel cell stack 2 increases, while in a low load range, regardless of a change in the fuel cell load, the flow rate Qh is maintained substantially constant for ensuring even distribution of the supplied gas.
- the increase of the hydrogen gas circulation flow rate Qh can be adjusted.
- the hydrogen gas circulation flow rate Qh is increased at a substantially constant increase rate as the fuel cell load increases.
- the flow rate may be increased by a substantially constant increase amount (indicated by a thin line in FIG. 5 ) over the whole fuel cell load range, or alternatively, the increase rate may be varied along with the load.
- the lowering of the average cell voltage AVG. CV is caused by accumulation of impurities in the hydrogen gas circulation flow path 8 due to diffusion of nitrogen from the cathode CA or the like. If the average cell voltage AVG. CV is lowered by a predetermined value (for example, 0.1 V) or more, the purge valve 7 is opened for a predetermined period of time (for example, 5 seconds) in S 6 and S 8 . Accordingly, nitrogen and the like are discharged to the outside of the system together with the hydrogen gas in the hydrogen gas circulation flow path 8 . Thus, the average cell voltage AVG. CV is restored.
- CV 1 for a current fuel cell load FCL 1 is obtained from the corrected voltage characteristic and compared with the average cell voltage AVG. CV in the actual operation.
- the clogging of gas passages in the fuel cells can be eliminated by increasing the hydrogen gas circulation flow rate Qh.
- the hydrogen gas circulation flow rate Qh is increased without opening the purge valve 7 . Consequently, amount of the hydrogen gas to be discharged to the outside of the system is suppressed and fuel gas consumption is improved.
- the purge valve 7 For the lowering of the cell voltages caused by the increasing concentration of impurities in the circulated hydrogen gas due to nitrogen diffusion or the like, the purge valve 7 is opened to discharge the impurities. Thus, the cell voltages can be surely restored.
- the lowering of the cell voltages due to long-term factors, such as aged deterioration of the cells, may be corrected by learning.
- the determinations or judgments described above are possible even if the average cell voltage of the fuel cell gradually drops.
- the cause of the lowering of the cell voltages is determined based on the cell-to-cell variation in the cell voltages CV.
- the cause of the lowering of the cell voltages may be determined based on a hydrogen concentration detected by a hydrogen concentration sensor provided on a hydrogen gas circulation system.
- the hydrogen circulation pump is used as means for circulating hydrogen
- an ejector may be used in conjunction therewith.
- a second embodiment of the present invention has the same configuration as that of the first embodiment shown in FIG. 1 and is different from the first embodiment only in an operation thereof. With reference to the flowchart shown in FIG. 6 , description will be given to the only difference. S 1 to S 7 in FIG. 6 are the same as those of the first embodiment shown in FIG. 4 .
- a hydrogen gas circulation flow rate Qh 2 of the hydrogen circulation pump 6 is reduced in S 21 .
- Opening the purge valve 7 downstream the fuel cell stack 2 necessarily increases a flow rate of hydrogen gas supplied to the fuel cell stack 2 . This will compensate for the reduction in the hydrogen gas circulation flow rate Qh 2 .
- the flow rate Qh 2 is set to be smaller in order to efficiently discharge high concentration of impurities of gas in the hydrogen gas circulation flow path 8 to the outside of the system. Thus, a nitrogen concentration can be reduced in a shorter period of time.
- the reduction in the flow rate Qh 2 is set to be approximately equivalent to the increase in the flow rate of hydrogen gas supplied to the fuel cell stack 2 when the purge valve 7 is opened.
- a purge flow rate Qp at the purge valve 7 when the purge valve 7 is opened changes depending on pressure difference between upstream and downstream of the purge valve and a fluid flowing therethrough.
- the value obtained by subtracting the flow rate Qp from the hydrogen gas circulation flow rate Qh obtained from the curve of thick line in FIG. 5 (Qh ⁇ Qp) is set as the circulation flow rate Qh 2 of the hydrogen circulation pump 6 .
- the amount of reduction in the hydrogen gas circulation flow rate Qh 2 in the purge operation may be set to be smaller, for example, than the purge flow rate Qp, as long as the fuel cell to be used is not particularly affected thereby. In this case, efficiency in purging the hydrogen gas circulation flow path 8 is further improved.
- the processing proceeds to S 22 after S 21 and the purge valve 7 is kept open until valve opening time of the purge valve 7 reaches a predetermined time. After the predetermined time has elapsed in S 22 , the processing proceeds to S 23 and the purge valve 7 is closed. Subsequently, in S 24 , the hydrogen gas circulation flow rate Qh is restored to the normal flow rate Qh 1 and the processing returns.
- the hydrogen gas circulation flow rate Qh is reduced when opening the purge valve.
- the duration of purging can be shortened while suppressing unnecessary discharge of hydrogen.
- the hydrogen gas circulation flow rate Qh is increased in S 2 and S 3 .
- the increase in the hydrogen gas circulation flow rate Qh is accompanied by an increase in power consumption of the hydrogen circulation pump 6 .
- a selection may be made between only increasing the flow rate Qh and the combination of opening the purge valve with increasing the flow rate Qh.
- a third embodiment has the same configuration as that of the first embodiment shown in FIG. 1 and is different from the first embodiment only in an operation thereof. With reference to the flowchart shown in FIG. 8 , description will be given to the only differences. S 1 to S 4 in FIG. 8 are the same as those of the first embodiment shown in FIG. 4 .
- the processing proceeds to S 31 and the circulation flow rate is kept until a predetermined period of time (for example, 5 seconds) elapses. After the predetermined time has elapsed in S 31 , the processing proceeds to S 32 . Also when the hydrogen gas circulation flow rate Qh is set to the normal value Qh 1 in S 4 , the processing proceeds to S 32 .
- the processing proceeds to S 33 and the purge valve 7 is opened and kept open until a predetermined period of time (for example, 5 seconds) elapses in S 35 . After the predetermined time has elapsed in S 35 , the processing proceeds to S 36 and the purge valve 7 is closed. Subsequently, in S 37 , the hydrogen gas circulation flow rate Qh is returned to the value Qh 1 in the normal operation. Thereafter, the processing returns to the start.
- a predetermined period of time for example, 5 seconds
- the case where lowering of the cell voltages are caused by nitrogen diffusion is less urgent than the case where lowering thereof is caused by clogging.
- the concentration of nitrogen increases, there occurs variation in the cell voltages CV.
- the hydrogen gas circulation flow rate is increased without discharging the hydrogen gas to the outside of the system, without specifying the cause of the lowered cell voltages. If the lowering of the cell voltages cannot be resolved even after taking the step described above, the purge valve 7 is opened. Consequently, even if the cause of the lowered cell voltages is the clogging or the nitrogen diffusion and the like, performance of the fuel cell and the like are not deteriorated.
- Whether to adopt the method of the first embodiment or to use the method of the third embodiment may be determined, taking into consideration the power consumption of the circulation pump and lowering of efficiency caused by nitrogen diffusion.
- the fuel cell system 1 includes: the fuel cell stack 2 which is supplied with fuel gas to the anode AN thereof and oxidant gas to the cathode CA thereof for power generation; the anode gas circulation flow path 8 which returns the fuel gas discharged from the outlet of the anode gas passage in the fuel cell stack 2 , to the inlet of the anode gas passage; the variable flow rate hydrogen circulation pump 6 which circulates the gas in the anode gas circulation flow path 8 ; the purge valve 7 which discharges the anode off-gas from the outlet of the anode gas passage to the outside of the system; the cell voltage sensor 22 for measuring the cell voltages CV of the fuel cell stack 2 ; and the controller 32 for controlling the hydrogen circulation pump 6 and the purge valve 7 based on the cell voltages CV measured by the cell voltage sensor 22 .
- the cell voltage sensor 22 measures voltages of a plurality of cells included in the fuel cell stack 2 , respectively.
- the controller 32 controls, in purge operation, the hydrogen circulation pump 6 to have a smaller circulation flow rate Qh, and the purge valve 7 to have a larger amount of the gas discharged, as there are more cells of which voltages are significantly lowered, or as the variation between the cell voltages is smaller, when the cell voltages are lowered.
- the fuel cell system 1 further includes clogging detector for detecting clogging of the anode gas passages in the fuel cell stack 2 .
- This clogging detector determines possibility of clogging to be low, as there are more cells of which voltages are significantly lowered, or as the variation between the cell voltages is smaller, when the cell voltages are lowered.
- the controller 32 controls, in the purge operation, the hydrogen circulation pump 6 to have a smaller circulation flow rate Qh, and the purge valve 7 to have a larger amount of the gas discharged, as the possibility of clogging becomes lower, when the cell voltages are lowered.
- the controller 32 sets the circulation flow rate Qh of the hydrogen circulation pump 6 to be larger than the circulation flow rate Qh 1 in the normal operation. Thereafter, if increase rate of the cell voltages CV are low, the controller 32 sets the amount of the gas discharged from the purge valve 7 to be large.
- a gas circulation pump with variable flow rate, provided on an anode gas circulation flow path, and a purge valve which discharges anode off-gas to the outside of the system are controlled based on the measured cell voltages.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
A fuel cell system (1) which includes: a fuel cell (2) to be supplied with a gas for power generation, the gas unused for the power generation to be discharged out of the fuel cell (2); a circulation flow path (8) through which the discharged gas is resupplied to the fuel cell (2); a variable flow rate circulation pump (6) for circulating the gas through the circulation flow path (8); a valve (7) for discharging the gas in the circulation flow path (8) to the outside thereof; a voltage sensor (22) for measuring voltage of the fuel cell (2); and a controller (32) for controlling the circulation pump (6) and the valve (7). The circulation pump (6) and the valve (7) are controlled based on the voltage (CV) measured by the voltage sensor (22).
Description
- The present invention relates to a fuel cell system, more particularly a purge control in a fuel cell system having an anode gas circulation system.
- A fuel cell is an electrochemical device to convert chemical energy of fuel gas such as hydrogen gas and oxidant gas containing oxygen supplied thereto, directly to electric energy which is extracted from electrodes provided on both sides of an electrolyte thereof. A fuel cell using a solid polymer electrolyte membrane has low operation temperature and can be easily handled, and therefore, it has been a focus of attention as a power source for an electric vehicle.
- The solid polymer electrolyte membrane is required to be retained in a moderately humidified state in order to exert sufficient hydrogen ion conductivity. The fuel gas or the oxidant gas or the both gases are humidified to be supplied to the fuel cell. Thus, water added for the humidification and water produced by a power generation reaction in the fuel cell are condensed and may cause clogging or blocking of a gas passage in the fuel cell, depending on operating conditions of the fuel cell.
- Moreover, in a fuel cell using air as the oxidant gas, nitrogen contained in the air passes through a solid polymer membrane thereof, and accumulates in a fuel gas circulation system. Consequently, a fuel gas partial pressure decreases at a fuel electrode of the fuel cell, lowering operation efficiency thereof. In order to resolve the clogging and the accumulation of nitrogen, purging is performed for the fuel gas circulation system.
- Japanese Patent Laid-Open Publication No. 2002-243417 discloses a fuel cell system which removes impurities accumulated in a hydrogen gas circulation system by opening a purge valve provided in the system and releasing anode off-gas to outside of the system.
- In the system described above, however, even in the case that clogging in the hydrogen gas circulation system is required to be resolved, hydrogen containing fuel gas is released to the outside of the system through the purge valve, whereby operation efficiency thereof is lowered.
- The present invention was made in the light of the problem. An object of the present invention is to provide a fuel cell system which removes clogging of gas passages in the fuel cell without lowering the operation efficiency thereof.
- An aspect of the present invention is a fuel cell system comprising: a fuel cell to be supplied with a gas for power generation, the gas unused for the power generation to be discharged out of the fuel cell; a circulation flow path through which the gas discharged out of the fuel cell is resupplied to the fuel cell; a variable flow rate circulation pump for circulating the gas through the circulation flow path; a valve for discharging the gas in the circulation flow path to the outside of the circulation flow path; a voltage sensor for measuring voltage of the fuel cell; and a controller for controlling the circulation pump and the valve, wherein the circulation pump and the valve are controlled based on the voltage measured by the voltage sensor.
- The invention will now be described with reference to the accompanying drawings wherein:
-
FIG. 1 is a block diagram of a fuel cell system according to a first embodiment of the present invention; -
FIG. 2 shows relationship between fuel cell load and operation pressure of a fuel cell of the first embodiment; -
FIG. 3 shows relationship between fuel cell load and average cell voltage of the fuel cell of the first embodiment; -
FIG. 4 is a flowchart of a purge operation of the first embodiment; -
FIG. 5 shows a relationship between fuel cell load and hydrogen gas circulation flow rate Qh of the first embodiment; -
FIG. 6 is a flowchart of a purge operation of a second embodiment of the present invention; -
FIG. 7 shows a relationship between fuel cell load and purge flow rate Qp of the second embodiment; and -
FIG. 8 is a flowchart of a purge operation of a third embodiment of the present invention. - Embodiments of the present invention will be described in detail with reference to the drawings. In all of the embodiments, described is a fuel cell system suitable for a fuel cell vehicle.
- As shown in
FIG. 1 , afuel cell system 1 includes afuel cell stack 2, a hydrogengas supply system 1 a which supplies hydrogen gas as fuel gas to thefuel cell stack 2, anair supply system 1 b which supplies air to thefuel cell stack 2, and acontrol unit 32. - The hydrogen
gas supply system 1 a includes: a hydrogen tank 3 which stores hydrogen gas; apressure control valve 4 which regulates pressure of the hydrogen gas taken out of the hydrogen tank 3; a hydrogengas supply line 5 through which thepressure control valve 4 and thefuel cell stack 2 are communicated with each other; ahydrogen circulation pump 6 which feeds hydrogen gas discharged from thefuel cell stack 2 back to an inlet of thefuel cell stack 2 and circulates the hydrogen gas through a hydrogen gascirculation flow path 8; and apurge valve 7 which discharges the hydrogen gas discharged from thefuel cell stack 2 to the outside of the system. - The
air supply system 1 b includes: acompressor 9 which takes in air from the outside of the system and compresses the air; ahumidifier 12 which humidifies the compressed air to supply the humidified air to thefuel cell stack 2; acondenser 13 which collects water from the air discharged from thefuel cell stack 2; apressure control valve 14 which regulates pressure of the discharged air; awater tank 17 which stores the water collected by thecondenser 13; and awater pump 18 which sends the water in thewater tank 17 to thehumidifier 12. - The
fuel cell stack 2 is formed of a plurality of unit cells stacked on one another. Each of the cells has an anode AN, a cathode CA, and a solid electrolyte membrane M sandwiched therebitween, wherein the hydrogen gas is supplied to the anode AN and the air is supplied to the cathode CA. In thefuel cell stack 2, provided are: atemperature sensor 21 which detects a temperature Tc of thefuel cell stack 2; acell voltage sensor 22 which detects cell voltages CV of the respective cells of thefuel cell stack 2; and apressure sensor 34 which detects hydrogen gas pressure at an outlet of thefuel cell stack 2. - The hydrogen gas discharged from the
fuel cell stack 2 is pressure-fed and resupplied to thefuel cell stack 2 through the hydrogen gascirculation flow path 8 by thehydrogen circulation pump 6. The hydrogen gas from the hydrogen tank 3 is introduced into the hydrogen gascirculation flow path 8 on the downstream of thehydrogen circulation pump 6 and supplied to thefuel cell stack 2. - When impurities such as nitrogen, CO and water are accumulated in the hydrogen gas
circulation flow path 8 or when starting up the system, thepurge valve 7 is opened to release the circulating hydrogen gas to the outside of thecirculation flow path 8. The operation of this purging operation will be described later. - Each cell voltage CV of the
fuel cell stack 2 is detected by thecell voltage sensor 22 and the detected value is sent to thecontrol unit 32. Moreover, the temperature Tc of thefuel cell stack 2 and the hydrogen gas pressure Ph are detected by thetemperature sensor 21 and thepressure sensor 34, respectively, and are sent to thecontrol unit 32. - The
control unit 32 is a controller which controls thefuel cell system 1 based on the values of CV, Ph and Tc detected by thesensors hydrogen circulation pump 6 and thepurge valve 7 based on the cell voltages CV detected by thecell voltage sensor 22. - In this embodiment, the
control unit 32, although not particularly limited, is formed of a microprocessor including a CPU, a program ROM, a work RAM and an input-output interface. - The
purge valve 7 is a valve which allows the hydrogen gascirculation flow path 8 and the outside of the system to communicate/non-communicate with each other and has a variable opening which can be adjusted arbitrarily. - The
compressor 9 compresses air taken in from the outside of the system. The compressed air is humidified by thehumidifier 12 provided on anair supply line 11 and supplied to thefuel cell stack 2. - Air discharged from the
fuel cell stack 2 contains water produced in reaction of power generation in thefuel cell stack 2. Thecondenser 13 provided downstream of thefuel cell stack 2 collects the water. On a line downstream of thecondenser 13, provided is thepressure control valve 14 which provides theair supply system 1 b with a desired pressure. - The water condensed and collected by the
condenser 13 is introduced into thewater tank 17 via an ON/OFF valve 15 in awater channel 16. - The water in the
water tank 17 is pressure-fed by thepump 18 and supplied to thehumidifier 12 through afeed line 19. When excessive water is supplied to thehumidifier 12, the excess water is returned to thewater tank 17 through areturn line 20. - Next, description will be given to operations.
- A requested output (=required power) of the fuel cell is set based on a throttle opening of an accelerator operated by a driver, and the like. The hydrogen gas and air are regulated according to this requested output and supplied to anode AN side passage and cathode CA side passage of the
fuel cell stack 2, respectively. - As shown in
FIG. 2 , a hydrogen gas pressure in the anode AN and an air pressure in the cathode CA, both of which are represented as operation pressure, are set to be higher as the fuel cell load becomes heavier. - In a normal operation, a closed loop is formed in the hydrogen
gas supply system 1 a. Specifically, in the closed loop, the hydrogen gas discharged from an anode side outlet of thefuel cell stack 2 is fed to an anode side inlet and circulated through the hydrogen gascirculation flow path 8 by thehydrogen circulation pump 6. - Inside the
fuel cell stack 2, nitrogen in the air supplied to the cathode CA passes through the solid polymer electrolyte membrane M to the anode AN. Thus, concentration of impurities in anode gas in the closed loop is gradually increased. Moreover, the gas passage in thestack 2 is clogged with humidifying water or produced water. As a result, the cell voltages CV of the fuel cell stack are lowered. - When the
cell voltage sensor 22 detects the cell voltages CV and thecontrol unit 32 determines, based on the detected cell voltages, that the cell voltages are lowered, a purge operation is performed. Specifically, in the purge operation, thepurge valve 7 is temporarily opened and the gas containing impurities in the hydrogen gascirculation flow path 8 is released to the outside of the system. - Next, the purge operation will be described with reference to the flowchart of
FIG. 4 . A series of processes shown in the flowchart is repeatedly carried out every predetermined time. - First, in S1, the
control unit 32 reads each cell voltage CV of thefuel cell stack 2 from thecell voltage sensor 22 and computes an average cell voltage AVG. CV of all the cells. Next, in S2, it is determined whether or not there is a cell with its voltage lower than the average cell voltage AVG. CV computed in S1 by a predetermined value (for example, 0.1 V) or more. - When there exists even one lower voltage cell, it is determined that clogging has occurred in the gas passage in the fuel cell stack and the processing proceeds to S3. When there exists no relevant cell, the processing proceeds to S4. In other words, a clogging detector is thus formed of the
cell voltage sensor 22 and thecontrol unit 32. - In S3, in order to resolve the clogging, the
hydrogen circulation pump 6 is speeded up and a hydrogen gas circulation flow rate Qh is increased. - As indicated by a thick line in
FIG. 5 , a hydrogen gas circulation flow rate Qh1 in a normal operation is increased at a constant rate as fuel cell load (output current) of thefuel cell stack 2 increases, while in a low load range, regardless of a change in the fuel cell load, the flow rate Qh is maintained substantially constant for ensuring even distribution of the supplied gas. In accordance with characteristics of the fuel cell to be used, the increase of the hydrogen gas circulation flow rate Qh can be adjusted. InFIG. 5 , the hydrogen gas circulation flow rate Qh is increased at a substantially constant increase rate as the fuel cell load increases. However, the flow rate may be increased by a substantially constant increase amount (indicated by a thin line inFIG. 5 ) over the whole fuel cell load range, or alternatively, the increase rate may be varied along with the load. - In S4, the normal hydrogen gas circulation flow rate Qh1 corresponding to the thick line in
FIG. 5 is set. - In S5, it is determined whether or not the average cell voltage AVG. CV is lower than a table value TV, which is previously stored in a ROM of the
control unit 32, by 0.1 V. Accordingly, if the average cell voltage AVG. CV is lower than the table value TV by 0.1 V or more, the processing proceeds to S6, and if not, the processing proceeds to S7. - The lowering of the average cell voltage AVG. CV is caused by accumulation of impurities in the hydrogen gas
circulation flow path 8 due to diffusion of nitrogen from the cathode CA or the like. If the average cell voltage AVG. CV is lowered by a predetermined value (for example, 0.1 V) or more, thepurge valve 7 is opened for a predetermined period of time (for example, 5 seconds) in S6 and S8. Accordingly, nitrogen and the like are discharged to the outside of the system together with the hydrogen gas in the hydrogen gascirculation flow path 8. Thus, the average cell voltage AVG. CV is restored. - Here, for detecting lowering of the average cell voltage AVG. CV, a judgment is performed in the following manner. Voltage characteristics (I-V characteristics) of each of the fuel cells with respect to the fuel cell load as shown in
FIG. 3 are stored in thecontrol unit 32 as table data, from which a voltage characteristic curve in the full range of the fuel cell load, giving a certain average cell voltage at a certain temperature T1 is obtained. A correction is then made to put this voltage characteristic as voltage characteristic at the measured fuel cell temperature Tc (=T1). An estimated average cell voltage AVG. CV1 for a current fuel cell load FCL1 is obtained from the corrected voltage characteristic and compared with the average cell voltage AVG. CV in the actual operation. - As described above, the clogging of gas passages in the fuel cells can be eliminated by increasing the hydrogen gas circulation flow rate Qh. Thus, in this embodiment, for the lowering of the cell voltages due to the clogging, the hydrogen gas circulation flow rate Qh is increased without opening the
purge valve 7. Consequently, amount of the hydrogen gas to be discharged to the outside of the system is suppressed and fuel gas consumption is improved. - For the lowering of the cell voltages caused by the increasing concentration of impurities in the circulated hydrogen gas due to nitrogen diffusion or the like, the
purge valve 7 is opened to discharge the impurities. Thus, the cell voltages can be surely restored. - Furthermore, the lowering of the cell voltages due to long-term factors, such as aged deterioration of the cells, may be corrected by learning. Thus, the determinations or judgments described above are possible even if the average cell voltage of the fuel cell gradually drops.
- Note that, in S2, the cause of the lowering of the cell voltages is determined based on the cell-to-cell variation in the cell voltages CV. However, the cause of the lowering of the cell voltages may be determined based on a hydrogen concentration detected by a hydrogen concentration sensor provided on a hydrogen gas circulation system.
- Although, in the
fuel cell system 1 of this embodiment, the hydrogen circulation pump is used as means for circulating hydrogen, an ejector may be used in conjunction therewith. - A second embodiment of the present invention has the same configuration as that of the first embodiment shown in
FIG. 1 and is different from the first embodiment only in an operation thereof. With reference to the flowchart shown inFIG. 6 , description will be given to the only difference. S1 to S7 inFIG. 6 are the same as those of the first embodiment shown inFIG. 4 . - After the
purge valve 7 is opened in S6, a hydrogen gas circulation flow rate Qh2 of thehydrogen circulation pump 6 is reduced in S21. Opening thepurge valve 7 downstream thefuel cell stack 2 necessarily increases a flow rate of hydrogen gas supplied to thefuel cell stack 2. This will compensate for the reduction in the hydrogen gas circulation flow rate Qh2. The flow rate Qh2 is set to be smaller in order to efficiently discharge high concentration of impurities of gas in the hydrogen gascirculation flow path 8 to the outside of the system. Thus, a nitrogen concentration can be reduced in a shorter period of time. - In this embodiment, the reduction in the flow rate Qh2 is set to be approximately equivalent to the increase in the flow rate of hydrogen gas supplied to the
fuel cell stack 2 when thepurge valve 7 is opened. A purge flow rate Qp at thepurge valve 7 when thepurge valve 7 is opened changes depending on pressure difference between upstream and downstream of the purge valve and a fluid flowing therethrough. In this embodiment, as shown inFIG. 2 , the hydrogen gas pressure (=operation pressure) is changed according to the fuel cell load. Therefore, if the fuel cell load is determined, the flow rate Qp can be obtained, whereby table data of the graph as shown inFIG. 7 is provided. - The value obtained by subtracting the flow rate Qp from the hydrogen gas circulation flow rate Qh obtained from the curve of thick line in
FIG. 5 (Qh−Qp) is set as the circulation flow rate Qh2 of thehydrogen circulation pump 6. - Moreover, the amount of reduction in the hydrogen gas circulation flow rate Qh2 in the purge operation may be set to be smaller, for example, than the purge flow rate Qp, as long as the fuel cell to be used is not particularly affected thereby. In this case, efficiency in purging the hydrogen gas
circulation flow path 8 is further improved. - The processing proceeds to S22 after S21 and the
purge valve 7 is kept open until valve opening time of thepurge valve 7 reaches a predetermined time. After the predetermined time has elapsed in S22, the processing proceeds to S23 and thepurge valve 7 is closed. Subsequently, in S24, the hydrogen gas circulation flow rate Qh is restored to the normal flow rate Qh1 and the processing returns. - In this embodiment, unlike the first embodiment, the hydrogen gas circulation flow rate Qh is reduced when opening the purge valve. Thus, the duration of purging can be shortened while suppressing unnecessary discharge of hydrogen.
- Moreover, in this embodiment, when the cell voltages are not uniformly lowered, that is, when the voltages are lowered due to the clogging, the hydrogen gas circulation flow rate Qh is increased in S2 and S3. By simultaneously opening the purge valve in this event, the purge operation can be promptly carried out.
- The increase in the hydrogen gas circulation flow rate Qh is accompanied by an increase in power consumption of the
hydrogen circulation pump 6. In consideration of the power consumption, a selection may be made between only increasing the flow rate Qh and the combination of opening the purge valve with increasing the flow rate Qh. - A third embodiment has the same configuration as that of the first embodiment shown in
FIG. 1 and is different from the first embodiment only in an operation thereof. With reference to the flowchart shown inFIG. 8 , description will be given to the only differences. S1 to S4 inFIG. 8 are the same as those of the first embodiment shown inFIG. 4 . - After the hydrogen gas circulation flow rate Qh is increased in S3, the processing proceeds to S31 and the circulation flow rate is kept until a predetermined period of time (for example, 5 seconds) elapses. After the predetermined time has elapsed in S31, the processing proceeds to S32. Also when the hydrogen gas circulation flow rate Qh is set to the normal value Qh1 in S4, the processing proceeds to S32.
- In S32, the average cell voltage AVG. CV of all the cells, which is computed in S1, is compared with the cell voltage CV of each cells. Accordingly, it is determined whether or not there is a cell having voltage lower than the average cell voltage AVG. CV by 0.1 V or more. If even one such cell exists, the processing proceeds to S33 and the
purge valve 7 is opened and kept open until a predetermined period of time (for example, 5 seconds) elapses in S35. After the predetermined time has elapsed in S35, the processing proceeds to S36 and thepurge valve 7 is closed. Subsequently, in S37, the hydrogen gas circulation flow rate Qh is returned to the value Qh1 in the normal operation. Thereafter, the processing returns to the start. - Meanwhile, when there exists no cell which satisfies the condition described above in S32, the processing proceeds to S34 and the
purge valve 7 is closed. Thereafter, the processing returns to the start. - In this embodiment, the same logic is used in both of S2 and S32 to simplify the determination whether nitrogen and the like are diffused into the anode gas.
- Specifically, the case where lowering of the cell voltages are caused by nitrogen diffusion is less urgent than the case where lowering thereof is caused by clogging. Also in this case, as the concentration of nitrogen increases, there occurs variation in the cell voltages CV. For the reasons described above; the following two steps are taken. Specifically, when the variation in the cell voltages CV is detected, first, the hydrogen gas circulation flow rate is increased without discharging the hydrogen gas to the outside of the system, without specifying the cause of the lowered cell voltages. If the lowering of the cell voltages cannot be resolved even after taking the step described above, the
purge valve 7 is opened. Consequently, even if the cause of the lowered cell voltages is the clogging or the nitrogen diffusion and the like, performance of the fuel cell and the like are not deteriorated. - Whether to adopt the method of the first embodiment or to use the method of the third embodiment may be determined, taking into consideration the power consumption of the circulation pump and lowering of efficiency caused by nitrogen diffusion.
- In other words, the
fuel cell system 1 according to the present invention includes: thefuel cell stack 2 which is supplied with fuel gas to the anode AN thereof and oxidant gas to the cathode CA thereof for power generation; the anode gascirculation flow path 8 which returns the fuel gas discharged from the outlet of the anode gas passage in thefuel cell stack 2, to the inlet of the anode gas passage; the variable flow ratehydrogen circulation pump 6 which circulates the gas in the anode gascirculation flow path 8; thepurge valve 7 which discharges the anode off-gas from the outlet of the anode gas passage to the outside of the system; thecell voltage sensor 22 for measuring the cell voltages CV of thefuel cell stack 2; and thecontroller 32 for controlling thehydrogen circulation pump 6 and thepurge valve 7 based on the cell voltages CV measured by thecell voltage sensor 22. - The
cell voltage sensor 22 measures voltages of a plurality of cells included in thefuel cell stack 2, respectively. Thecontroller 32 controls, in purge operation, thehydrogen circulation pump 6 to have a smaller circulation flow rate Qh, and thepurge valve 7 to have a larger amount of the gas discharged, as there are more cells of which voltages are significantly lowered, or as the variation between the cell voltages is smaller, when the cell voltages are lowered. - The
fuel cell system 1 further includes clogging detector for detecting clogging of the anode gas passages in thefuel cell stack 2. This clogging detector determines possibility of clogging to be low, as there are more cells of which voltages are significantly lowered, or as the variation between the cell voltages is smaller, when the cell voltages are lowered. - The
controller 32 controls, in the purge operation, thehydrogen circulation pump 6 to have a smaller circulation flow rate Qh, and thepurge valve 7 to have a larger amount of the gas discharged, as the possibility of clogging becomes lower, when the cell voltages are lowered. - Moreover, in the
fuel cell system 1, in the beginning of the purge operation, thecontroller 32 sets the circulation flow rate Qh of thehydrogen circulation pump 6 to be larger than the circulation flow rate Qh1 in the normal operation. Thereafter, if increase rate of the cell voltages CV are low, thecontroller 32 sets the amount of the gas discharged from thepurge valve 7 to be large. - The present disclosure relates to subject matters contained in Japanese Patent Application No. 2003-333656, filed on Sep. 25, 2003, the disclosure of which is expressly incorporated herein by reference in its entirety.
- The preferred embodiments described herein are illustrative and not restrictive, and the invention may be practiced or embodied in other ways without departing from the spirit or essential character thereof. The scope of the invention being indicated by the claims, and all variations which come within the meaning of claims are intended to be embraced herein.
- In a fuel cell system according to the present invention, voltages of the respective cells of the fuel cell are measured, and a gas circulation pump with variable flow rate, provided on an anode gas circulation flow path, and a purge valve which discharges anode off-gas to the outside of the system, are controlled based on the measured cell voltages. Thus, clogging of gas passages in the fuel cell, causing voltage drops in the cell voltages, can be detected, and the clogging can be eliminated by increasing the flow rate of the gas circulation pump. Moreover, frequency of discharge of hydrogen by the purge valve can be reduced. Thus, the present invention is industrially applicable as a technology for improving fuel gas consumption of the fuel cell system.
Claims (8)
1. A fuel cell system comprising:
a fuel cell to be supplied with a gas for power generation, the gas unused for the power generation to be discharged out of the fuel cell;
a circulation flow path through which the gas discharged out of the fuel cell is resupplied to the fuel cell;
a variable flow rate circulation pump for circulating the gas through the circulation flow path;
a valve for discharging the gas in the circulation flow path to the outside of the circulation flow path;
a voltage sensor for measuring voltage of the fuel cell; and
a controller for controlling the circulation pump and the valve,
wherein the circulation pump and the valve are controlled based on the voltage measured by the voltage sensor.
2. The fuel cell system of claim 1 , wherein
the fuel cell comprises a plurality of cells stacked on one another, and the voltage sensor measures voltages of the respective cells, and wherein
the circulation pump is controlled to reduce flow rate of the gas circulated, and the valve is controlled to increase an amount of gas to be discharged, as the number of cells with substantial voltage drops increases.
3. The fuel cell system of claim 1 , wherein
the fuel cell comprises a plurality of cells stacked on one another, and the voltage sensor measures voltages of the respective cells, and wherein
the circulation pump is controlled to reduce flow rate of the gas circulated, and the valve is controlled to increase an amount of gas to be discharged, as a variation in the measured voltages between the cells becomes smaller.
4. The fuel cell system of claim 1 , further comprising:
a clogging detector for determining possibility of clogging of a gas passage in the fuel cell,
wherein the circulation pump is controlled to reduce flow rate of the gas circulated, and the valve is controlled to increase an amount of gas to be discharged, as the possibility of the clogging is determined to be low.
5. The fuel cell system of claim 4 , wherein
the fuel cell comprises a plurality of cells stacked on one another, and the voltage sensor measures voltages of the respective cells, and wherein
the possibility of clogging is determined to be lower, as the number of cells with substantial voltage drops increases.
6. The fuel cell system of claim 4 , wherein
the fuel cell comprises a plurality of cells stacked on one another, and the voltage sensor measures voltages of the respective cells, and wherein
the possibility of clogging is determined to be lower, as a variation in the measured voltages between the cells becomes smaller.
7. The fuel cell system of claim 1 , wherein
the valve is controlled to increase an amount of gas to be discharged, as a rate of increase in the measured voltage is low, after the circulation pump is controlled to increase flow rate of the gas circulated more than that in a normal operation.
8. A method for improving fuel gas consumption in power generation of fuel cells, wherein the fuel gas unused for the power generation is resupplied to the fuel cells through a fuel gas circulation system, the method comprising:
monitoring output voltages of the respective fuel cells;
increasing flow rate of the fuel gas in the fuel gas circulation system, if variation in the output voltages is larger than a predetermined range; and
discharging the fuel gas out of the fuel gas circulation system, if the variation in the output voltages is within the predetermined range and an average value of the output voltages of the respective fuel cells is lower than a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/174,233 US8617753B2 (en) | 2003-09-25 | 2008-07-16 | Fuel cell system with voltage sensor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003333656A JP4882198B2 (en) | 2003-09-25 | 2003-09-25 | Fuel cell system |
JP2003333656 | 2003-09-25 | ||
PCT/JP2004/011803 WO2005031901A2 (en) | 2003-09-25 | 2004-08-11 | Fuel cell system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/174,233 Continuation US8617753B2 (en) | 2003-09-25 | 2008-07-16 | Fuel cell system with voltage sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060210853A1 true US20060210853A1 (en) | 2006-09-21 |
Family
ID=34385994
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/568,286 Abandoned US20060210853A1 (en) | 2003-09-25 | 2004-08-11 | Fuel cell system |
US12/174,233 Expired - Fee Related US8617753B2 (en) | 2003-09-25 | 2008-07-16 | Fuel cell system with voltage sensor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/174,233 Expired - Fee Related US8617753B2 (en) | 2003-09-25 | 2008-07-16 | Fuel cell system with voltage sensor |
Country Status (4)
Country | Link |
---|---|
US (2) | US20060210853A1 (en) |
EP (1) | EP1678773B1 (en) |
JP (1) | JP4882198B2 (en) |
WO (1) | WO2005031901A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090258260A1 (en) * | 2006-05-10 | 2009-10-15 | Toyota Jidosha Kabushiki Kaisha | Fuel Cell System and Method for Calculating Circulation Ratio in the Same |
US20120019255A1 (en) * | 2010-07-20 | 2012-01-26 | Gm Global Technology Operations, Inc. | Stack-powered fuel cell monitoring device with prioritized arbitration |
US20120062166A1 (en) * | 2009-05-22 | 2012-03-15 | Battelle Memorial Institute | Integrated Fuel Processor and Fuel Cell System Control Method |
US20130236804A1 (en) * | 2012-03-12 | 2013-09-12 | Nuevera Fuel Cells | Cooling system and method for use with a fuel cell |
US20160141905A1 (en) * | 2014-11-15 | 2016-05-19 | Toyota Jidosha Kabushiki Kaisha | Power supply system and voltage control method for fuel cell |
US20160204457A1 (en) * | 2013-08-20 | 2016-07-14 | Siemens Aktiengesellschaft | Method For Operating A Fuel Cell Stack |
EP3333952A1 (en) * | 2016-12-07 | 2018-06-13 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell system and method of operating fuel cell system |
EP3506406A4 (en) * | 2016-09-27 | 2020-05-13 | Brother Kogyo Kabushiki Kaisha | Fuel cell system, control method for fuel cell system, and computer program |
US20210328239A1 (en) * | 2020-04-20 | 2021-10-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60221392T2 (en) | 2001-05-24 | 2008-04-17 | Eli Lilly And Co., Indianapolis | NEW PYROL DERIVATIVES AS PHARMACEUTICAL AGENTS |
JP4710246B2 (en) | 2004-05-14 | 2011-06-29 | トヨタ自動車株式会社 | Fuel cell system |
EP1882280B1 (en) * | 2005-05-13 | 2014-11-12 | Canon Kabushiki Kaisha | Electronic apparatus, control method and program thereof, and battery for operating electronic apparatus |
EP1897165B1 (en) | 2005-06-13 | 2012-05-23 | Nissan Motor Co., Ltd. | Fuel cell system and start-up method therefor |
JP5011670B2 (en) * | 2005-07-28 | 2012-08-29 | 日産自動車株式会社 | Fuel cell voltage regulator |
JP4730023B2 (en) * | 2005-08-29 | 2011-07-20 | トヨタ自動車株式会社 | Fuel cell system |
JP5044918B2 (en) * | 2005-10-03 | 2012-10-10 | 日産自動車株式会社 | Operation method of fuel cell system |
JP4666629B2 (en) * | 2005-12-20 | 2011-04-06 | 本田技研工業株式会社 | Fuel cell system |
JP4978007B2 (en) | 2006-01-10 | 2012-07-18 | トヨタ自動車株式会社 | Fuel cell system |
US20090136793A1 (en) * | 2006-02-14 | 2009-05-28 | Yoshihito Kanno | Hydrogen supply for a fuel cell system |
JP5061526B2 (en) * | 2006-08-07 | 2012-10-31 | トヨタ自動車株式会社 | Fuel cell system and control method thereof |
JP5125103B2 (en) * | 2007-01-11 | 2013-01-23 | トヨタ自動車株式会社 | Fuel cell system |
JP2008293824A (en) * | 2007-05-25 | 2008-12-04 | Toyota Motor Corp | Fuel cell system |
US8057941B2 (en) | 2007-06-15 | 2011-11-15 | GM Global Technology Operations LLC | Comprehensive method for triggering anode bleed events in a fuel cell system |
JP5303904B2 (en) * | 2007-10-31 | 2013-10-02 | 日産自動車株式会社 | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM |
JP5146053B2 (en) * | 2008-03-28 | 2013-02-20 | 株式会社エクォス・リサーチ | Fuel cell system |
JP2010238651A (en) * | 2009-03-31 | 2010-10-21 | Honda Motor Co Ltd | Fuel cell system |
CN102484265B (en) * | 2009-08-21 | 2014-07-30 | 丰田自动车株式会社 | Fuel cell system |
US8451735B2 (en) | 2009-09-28 | 2013-05-28 | Symbol Technologies, Inc. | Systems and methods for dynamic load balancing in a wireless network |
JP5591056B2 (en) * | 2010-10-08 | 2014-09-17 | 三菱重工業株式会社 | Fuel cell power generation system |
WO2012127361A1 (en) * | 2011-03-23 | 2012-09-27 | Tata Motors Limited | A system and method for recirculating hydrogen and bleeding of impurities from fuel cell stack |
JP5757227B2 (en) * | 2011-12-13 | 2015-07-29 | トヨタ自動車株式会社 | Fuel cell system and control method thereof |
CN106299401B (en) | 2015-05-20 | 2019-07-16 | 通用电气公司 | Fuel cell system and its control method |
JP6780593B2 (en) * | 2017-07-07 | 2020-11-04 | トヨタ自動車株式会社 | Fuel cell system and fuel cell system control method |
CN109524690B (en) * | 2017-09-20 | 2021-08-24 | 上海汽车集团股份有限公司 | Hydrogen circulation control system and method for fuel cell |
CN109713334B (en) * | 2019-02-01 | 2023-10-31 | 清华大学 | Fuel cell stack test bench and use method thereof |
JP7208832B2 (en) * | 2019-03-07 | 2023-01-19 | 株式会社豊田自動織機 | FUEL CELL SYSTEM, VEHICLE, AND CONTROL METHOD FOR FUEL CELL SYSTEM |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666562A (en) * | 1968-03-15 | 1972-05-30 | Varta Ag | Fuel cell with control system and method |
US6106962A (en) * | 1997-09-24 | 2000-08-22 | Aer Energy Resources Inc. | Air manager control using cell voltage as auto-reference |
US20010014415A1 (en) * | 2000-02-16 | 2001-08-16 | Nissan Motor Co., Ltd. | Fuel cell system and method |
US20010055705A1 (en) * | 2000-06-01 | 2001-12-27 | Nissan Motor Co., Ltd. | Fuel cell system |
US20020094467A1 (en) * | 2001-01-18 | 2002-07-18 | Toyota Jidosha Kabushiki Kaisha | On-board fuel cell system and method of controlling the same |
US6960401B2 (en) * | 2001-07-25 | 2005-11-01 | Ballard Power Systems Inc. | Fuel cell purging method and apparatus |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3659147B2 (en) * | 2000-09-11 | 2005-06-15 | 日産自動車株式会社 | Fuel cell device |
JP3634253B2 (en) * | 2000-09-13 | 2005-03-30 | 本田技研工業株式会社 | Fuel cell system and control method thereof |
JP2002243417A (en) | 2001-02-14 | 2002-08-28 | Toray Ind Inc | Method and instrument for measuring shape characteristics of yarn and manufacturing method for yarn |
JP3882513B2 (en) * | 2001-03-05 | 2007-02-21 | 日産自動車株式会社 | Fuel cell control device |
JP3840908B2 (en) * | 2001-03-19 | 2006-11-01 | 日産自動車株式会社 | Fuel cell system |
JP3731517B2 (en) * | 2001-10-02 | 2006-01-05 | 日産自動車株式会社 | Control device for fuel cell system |
JP3588776B2 (en) * | 2001-11-09 | 2004-11-17 | 本田技研工業株式会社 | Fuel circulation type fuel cell system |
JP3659582B2 (en) * | 2001-11-20 | 2005-06-15 | 本田技研工業株式会社 | Fuel circulation fuel cell system |
JP3972675B2 (en) * | 2002-02-15 | 2007-09-05 | 日産自動車株式会社 | Fuel cell system |
-
2003
- 2003-09-25 JP JP2003333656A patent/JP4882198B2/en not_active Expired - Fee Related
-
2004
- 2004-08-11 EP EP04771764.0A patent/EP1678773B1/en not_active Expired - Lifetime
- 2004-08-11 WO PCT/JP2004/011803 patent/WO2005031901A2/en active Application Filing
- 2004-08-11 US US10/568,286 patent/US20060210853A1/en not_active Abandoned
-
2008
- 2008-07-16 US US12/174,233 patent/US8617753B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666562A (en) * | 1968-03-15 | 1972-05-30 | Varta Ag | Fuel cell with control system and method |
US6106962A (en) * | 1997-09-24 | 2000-08-22 | Aer Energy Resources Inc. | Air manager control using cell voltage as auto-reference |
US20010014415A1 (en) * | 2000-02-16 | 2001-08-16 | Nissan Motor Co., Ltd. | Fuel cell system and method |
US20010055705A1 (en) * | 2000-06-01 | 2001-12-27 | Nissan Motor Co., Ltd. | Fuel cell system |
US20020094467A1 (en) * | 2001-01-18 | 2002-07-18 | Toyota Jidosha Kabushiki Kaisha | On-board fuel cell system and method of controlling the same |
US6960401B2 (en) * | 2001-07-25 | 2005-11-01 | Ballard Power Systems Inc. | Fuel cell purging method and apparatus |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8383279B2 (en) * | 2006-05-10 | 2013-02-26 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and method for calculating circulation ratio in the same |
US20090258260A1 (en) * | 2006-05-10 | 2009-10-15 | Toyota Jidosha Kabushiki Kaisha | Fuel Cell System and Method for Calculating Circulation Ratio in the Same |
US8917051B2 (en) * | 2009-05-22 | 2014-12-23 | Battelle Memorial Institute | Integrated fuel processor and fuel cell system control method |
US20120062166A1 (en) * | 2009-05-22 | 2012-03-15 | Battelle Memorial Institute | Integrated Fuel Processor and Fuel Cell System Control Method |
US20120019255A1 (en) * | 2010-07-20 | 2012-01-26 | Gm Global Technology Operations, Inc. | Stack-powered fuel cell monitoring device with prioritized arbitration |
US8450965B2 (en) * | 2010-07-20 | 2013-05-28 | GM Global Technology Operations LLC | Stack-powered fuel cell monitoring device with prioritized arbitration |
US10547066B2 (en) | 2012-03-12 | 2020-01-28 | Nuvera Fuel Cells, LLC | Cooling system and method for use with a fuel cell |
US9780393B2 (en) * | 2012-03-12 | 2017-10-03 | Nuvera Fuel Cells, LLC | Cooling system and method for use with a fuel cell |
US20130236804A1 (en) * | 2012-03-12 | 2013-09-12 | Nuevera Fuel Cells | Cooling system and method for use with a fuel cell |
US20160204457A1 (en) * | 2013-08-20 | 2016-07-14 | Siemens Aktiengesellschaft | Method For Operating A Fuel Cell Stack |
US20160141905A1 (en) * | 2014-11-15 | 2016-05-19 | Toyota Jidosha Kabushiki Kaisha | Power supply system and voltage control method for fuel cell |
US9768631B2 (en) * | 2014-11-15 | 2017-09-19 | Toyota Jidhosha Kabushiki Kaisha | Power supply system and voltage control method for fuel cell |
EP3506406A4 (en) * | 2016-09-27 | 2020-05-13 | Brother Kogyo Kabushiki Kaisha | Fuel cell system, control method for fuel cell system, and computer program |
EP3333952A1 (en) * | 2016-12-07 | 2018-06-13 | Panasonic Intellectual Property Management Co., Ltd. | Fuel cell system and method of operating fuel cell system |
US20210328239A1 (en) * | 2020-04-20 | 2021-10-21 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
US11962048B2 (en) * | 2020-04-20 | 2024-04-16 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system with improved low temperature operation |
Also Published As
Publication number | Publication date |
---|---|
WO2005031901A3 (en) | 2006-06-15 |
JP4882198B2 (en) | 2012-02-22 |
WO2005031901A2 (en) | 2005-04-07 |
EP1678773B1 (en) | 2016-10-12 |
JP2005100827A (en) | 2005-04-14 |
US8617753B2 (en) | 2013-12-31 |
EP1678773A2 (en) | 2006-07-12 |
US20080280176A1 (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8617753B2 (en) | Fuel cell system with voltage sensor | |
CN110010932B (en) | Vehicle-mounted fuel cell water management system and method | |
US8247121B2 (en) | Fuel cell system with purging and method of operating the same | |
JP4350944B2 (en) | Method for improving operating efficiency of fuel cell power equipment | |
US7585578B2 (en) | Fuel cell system | |
US20070122668A1 (en) | Fuel cell system and method of starting it | |
RU2567233C2 (en) | Fuel-cell based system for electric power generation and method for control of above electric power generation system | |
US7875398B2 (en) | Fuel cell system | |
US7348083B2 (en) | Fuel cell system | |
US8790834B2 (en) | Fuel cell system and method for controlling the fuel cell system | |
US20100167145A1 (en) | Fuel cell system and fuel cell system control method | |
JP2014059969A (en) | Fuel cell system and control method thereof | |
US7662494B2 (en) | Fuel cell system | |
US20060159968A1 (en) | Fuel cell device and fuel-feeding method for fuel cell | |
US20150004512A1 (en) | Fuel cell system | |
JP5804181B2 (en) | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM | |
US7564211B2 (en) | Electric power generation control system and electric power generation control method for fuel cell | |
US20150017562A1 (en) | Fuel cell system and control method of fuel cell system | |
JP4731804B2 (en) | Discharge method of fuel cell system | |
JP5109284B2 (en) | Fuel cell system | |
JP2005108698A (en) | Fuel cell system | |
US8039155B2 (en) | Fuel-cell system and method of controlling fuel cell | |
US8273501B2 (en) | System and method for hydrating a proton exchange membrane fuel cell | |
JP2004172024A (en) | Operation control of fuel cell system | |
US11682780B2 (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NISSAN MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUKUDA, TAKASHI;REEL/FRAME:017587/0693 Effective date: 20050913 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |