US20060195195A1 - Mobile bearing knee prosthesis - Google Patents
Mobile bearing knee prosthesis Download PDFInfo
- Publication number
- US20060195195A1 US20060195195A1 US11/356,802 US35680206A US2006195195A1 US 20060195195 A1 US20060195195 A1 US 20060195195A1 US 35680206 A US35680206 A US 35680206A US 2006195195 A1 US2006195195 A1 US 2006195195A1
- Authority
- US
- United States
- Prior art keywords
- tibial
- tibial tray
- knee prosthesis
- mobile bearing
- bearing knee
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3868—Joints for elbows or knees with sliding tibial bearing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/389—Tibial components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30113—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30112—Rounded shapes, e.g. with rounded corners
- A61F2002/30133—Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/3011—Cross-sections or two-dimensional shapes
- A61F2002/30138—Convex polygonal shapes
- A61F2002/30143—Convex polygonal shapes hexagonal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/30364—Rotation about the common longitudinal axis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/30364—Rotation about the common longitudinal axis
- A61F2002/30365—Rotation about the common longitudinal axis with additional means for limiting said rotation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/30369—Limited lateral translation of the protrusion within a larger recess
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/3037—Translation along the common longitudinal axis, e.g. piston
- A61F2002/30373—Translation along the common longitudinal axis, e.g. piston with additional means for preventing said translation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30487—Circumferential cooperating grooves and beads on cooperating lateral surfaces of a mainly longitudinal connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30492—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking pin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30934—Special articulating surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0015—Kidney-shaped, e.g. bean-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0017—Angular shapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00574—Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
- A61F2310/0058—Coating made of diamond or of diamond-like carbon DLC
Definitions
- a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert.
- an interface e.g., a spherical radius interface
- a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert.
- an interface e.g., a spherical radius interface
- a mobile bearing knee prosthesis may include a bi-concave interface (e.g., having a “wave” like surface geometry).
- This “wave” like surface geometry may be at the interface between a tibial insert and a tibial tray in the mobile bearing knee (as opposed to the interface between the tibial insert and a femoral component).
- this “wave” like surface geometry may allow a “virtual” or “artificial” axis of rotation to be provided by the interface between the tibial insert and the tibial tray in the mobile bearing knee.
- the tibial insert may include a polyethylene articulating surface.
- the tibial tray may include a metal articulating surface (e.g., a highly polished metal articulating surface).
- one or both of the articulating surfaces may include diamond (e.g., to improve wear characteristics on one or more mating surfaces).
- rotational constraint is intended to refer to essentially stopping rotation of an object at a given point.
- rotational control is intended to refer to exercising control over the amount of force required to rotate an object.
- first bearing is intended to refer to the articulation between the bottom surface of the femoral component and the top surface of the tibial insert.
- second bearing is intended to refer to the articulation between the bottom surface of the tibial insert and the top surface of the tibial tray.
- U.S. Pat. No. 6,319,283 relates to a tibial knee component with a mobile bearing. More particularly, this patent relates to an orthopaedic knee component for implanting within a proximal tibia.
- the orthopaedic knee component includes a tibial tray with a proximal tibial plateau and a projection extending generally orthogonal to the tibial plateau.
- the tibial tray also includes a distally extending stem.
- a bearing is coupled with the tibial plateau and has an articular bearing surface for engagement with a femoral component.
- the bearing is rotationally movable between a first rotational limit and a second rotational limit about an axis extending generally orthogonal to the tibial plateau.
- the bearing has a backing surface engaging the tibial plateau which is sized and shaped such that the backing surface is substantially entirely supported by the tibial plateau at any position during rotational movement between the first rotation limit and the second rotational limit.
- U.S. Pat. No. 5,683,468 relates to a mobile bearing total joint replacement. More particularly, this patent relates to a prosthetic component provided for a condylar joint.
- the prosthetic component includes a platform having a bearing surface and a pair of side walls.
- the side walls include a pair of concave surfaces which face one another and define arcs of the same right circular cylinder.
- the prosthetic component also includes a plastic bearing having a bearing surface slidably engaged with the bearing surface of the platform.
- the bearing also includes thrust surfaces defining arcs of two right circular cylinders having radii less than the radius of the side wall surfaces of the platform. The thrust surfaces are spaced from one another to permit only limited sliding movement of the bearing in medial to lateral directions, but greater sliding movement in anterior to posterior directions.
- U.S. Pat. No. 5,556,432 relates to an artificial joint. More particularly, this patent relates to an endoprothesis for the human knee joint, consisting of at least two joint parts moving with respect to each other, a joint head and a joint base, with toroidal joint surfaces, that have function surfaces with differing circular intersection contours in mutually perpendicular planes—a longitudinal plane and a transverse plane—whereby the curve ratios of the function surfaces are defined in each of the planes as either convex—convex, convex-concave, or concave—concave, and the joint geometry of the function areas to each other in each of the two planes is determined by a link chain with two link axes (dimeric link chain), which proceed through the rotation centers of the function areas with the radii of the attendant intersection contours, respectively.
- a link chain with two link axes dimeric link chain
- U.S. Pat. No. 5,358,530 relates to a mobile bearing knee. More particularly, this patent relates to a prosthetic mobile bearing knee including a femoral implant having condyle sections attached to a femur and a tibial tray implant having a plateau attached to a tibia.
- the tibial tray implant has a pair of spaced apart, concavely curved plateau bearing surfaces for cooperation and sliding with convexly curved surfaces on a tibial bearing.
- the tibial tray plateau bearing surfaces are shaped to create a gradually increasing resistance to sliding and rotational movement of the tibial bearing.
- the tibial bearing that interfits between the femoral and tibial tray implants is constructed in one or two portions.
- U.S. Pat. No. 4,224,696 relates to a prosthetic knee. More particularly, this patent relates to a prosthetic knee having as its component parts a femoral implant, a tibial implant, and a meniscal plate disposed between the implants. Knee flexion and extension is permitted by compoundly curved condyle surfaces of the femoral implant, which resemble corresponding surfaces of a natural knee, and correspondingly shaped convex bearing surfaces in the meniscal plate. All other motions of the prosthetic knee take place at the interface between the meniscal plate and tibial implant.
- This interface is defined by a continuous, concave, spherically shaped surface in the upwardly facing plateau of the tibial implant and a corresponding, continuous, convex spherical surface of the meniscal plate.
- the components are biased into mutual engagement along the cooperating concave and convex surfaces by the natural ligaments which surround the prosthetic knee.
- the continuous biased engagement of the cooperating convex and concave surfaces of the prosthetic knee assure its stability.
- FIG. 1A shows a perspective view of a mobile bearing knee prosthesis according to an embodiment of the present invention
- FIG. 1B shows a top plan view of the mobile bearing knee prosthesis of FIG. 1A ;
- FIG. 1C shows a side view of the mobile bearing knee prosthesis of FIG. 1A ;
- FIG. 1D shows another top plan view of the mobile bearing knee prosthesis of FIG. 1A ;
- FIG. 1E shows a cross section taken along line A-A of FIG. 1D ;
- FIG. 2A shows a top plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention
- FIG. 2B shows a cross section taken along line H-H of FIG. 2A ;
- FIG. 2C shows a perspective view of the mobile bearing knee prosthesis of FIG. 2A ;
- FIG. 3 shows a perspective view of a mobile bearing knee prosthesis according to another embodiment of the present invention.
- FIG. 4A shows a plan view of a tibial tray component of a mobile bearing knee prosthesis according to another embodiment of the present invention
- FIG. 4B shows a side view of the tibial tray component of FIG. 4A ;
- FIG. 4C shows a plan view of a tibial insert component of a mobile bearing knee prosthesis according to another embodiment of the present invention.
- FIG. 4D shows a side view of the tibial insert component of FIG. 4C ;
- FIG. 5A shows a plan view of a tibial tray component of a mobile bearing knee prosthesis according to another embodiment of the present invention
- FIG. 5B shows a side view of the tibial tray component of FIG. 5A ;
- FIG. 6A shows a plan view of a tibial tray component of a mobile bearing knee prosthesis according to another embodiment of the present invention
- FIG. 6B shows a side view of the tibial tray component of FIG. 6A ;
- FIG. 7A shows a plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention.
- FIG. 7B shows a cross section of the mobile bearing knee prosthesis of FIG. 7A ;
- FIG. 7C shows a side view of the tibial tray of the mobile bearing knee prosthesis of FIG. 7A ;
- FIG. 8A shows a perspective view of a mobile bearing knee prosthesis according to another embodiment of the present invention.
- FIG. 8B shows a perspective view (partially cut-away) of the mobile bearing knee prosthesis of FIG. 8A ;
- FIG. 8C shows a perspective view (partially cut-away) of the mobile bearing knee prosthesis of FIG. 8A ;
- FIG. 9A shows a top plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention (wherein a tibial insert is shown rotated and locked in place on a tibial tray);
- FIG. 9B shows a cross section of the mobile bearing knee prosthesis of FIG. 9A ;
- FIG. 9C shows certain detail associated with the mobile bearing knee prosthesis of FIG. 9A ;
- FIG. 9D shows certain detail associated with the mobile bearing knee prosthesis of FIG. 9A ;
- FIG. 10A shows a plan view of a tibial tray according to another embodiment of the present invention.
- FIG. 10B shows a cross section of the tibial tray of FIG. 10A ;
- FIG. 10C shows a plan view of a tibial insert for use with the tibial tray of FIG. 10A ;
- FIG. 10D shows a plan view of the tibial tray and tibial insert of FIGS. 10A-10C ;
- FIG. 10E shows certain detail taken along line B-B of FIG. 10D ;
- FIG. 10F shows certain detail taken along line B-B of FIG. 10D ;
- FIG. 11 shows a side view of a mobile bearing knee prosthesis according to another embodiment of the present invention.
- FIG. 12A shows a plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention.
- FIG. 12B shows a side view of the mobile bearing knee prosthesis of FIG. 12A ;
- FIG. 13A shows an elevation view of a mobile bearing knee according to another embodiment of the present invention (in this view a tibial insert and a tibial tray are engaged and a uniform curvature between mating parts is seen);
- FIG. 13B shows an elevation view of a mobile bearing knee according to the embodiment of FIG. 13A (in this view a tibial insert and a tibial tray are partially engaged and a uniform curvature between mating parts is seen);
- FIG. 13C shows a side elevation view of a mobile bearing knee according to the embodiment of FIG. 13A (in this view a tibial insert and a tibial tray are engaged and a uniform curvature between mating parts is seen);
- FIG. 13D shows a side elevation view of a mobile bearing knee according to the embodiment of FIG. 13A (in this view a tibial insert and a tibial tray are partially engaged and a uniform curvature between mating parts is seen);
- FIG. 13E shows another elevation view of a mobile bearing knee according to the embodiment of FIG. 13A (in this view a tibial insert and a tibial tray are engaged, the tibial insert is rotated 100 relative to the tibial tray, and a uniform curvature between mating parts is seen);
- FIG. 13F shows a perspective view of a mobile bearing knee according to the embodiment of FIG. 13A (wherein a tibial insert and a tibial tray are engaged, and a uniform curvature between mating parts is seen);
- FIG. 14A shows another elevation view of a mobile bearing knee according to the embodiment of FIG. 13A (wherein the Fig. includes a cross-sectional line indicator through the center of the mobile bearing knee);
- FIG. 14B shows a cross-section along the cross-sectional line indicator of FIG. 14A (wherein the relationship of the “wave” geometry to an axial post on the tibial insert is seen);
- FIG. 14C shows another elevation view of a mobile bearing knee according to the embodiment of FIG. 13A (wherein the Fig. includes a cross-sectional line indicator through the center of the mobile bearing knee and the tibial insert is rotated 100 relative to the tibial tray);
- FIG. 14D shows a cross-section along the cross-sectional line indicator of FIG. 14C (wherein the relationship of the “wave” geometry to an axial post on the tibial insert is seen and the tibial insert is rotated 100 relative to the tibial tray);
- FIGS. 15A-15C show perspective views (at various angles) of the inferior surface of a tibial insert of a mobile bearing knee prosthesis according to an embodiment of the present invention
- FIGS. 16A and 16B show perspective views (at various angles) of the superior surface of a tibial tray of a mobile bearing knee prosthesis according to an embodiment of the present invention
- FIGS. 17A-17C show schematic cross-sectional views of a mobile bearing knee according to an embodiment of the present invention.
- FIGS. 18A and 18B show schematic cross-sectional views of a mobile bearing knee according to an embodiment of the present invention
- FIGS. 19A and 19B show schematic plan views of a centered pivoting feature ( FIG. 19A ) and an eccentered (or offset) pivoting feature ( FIG. 19B ) according to embodiments of the present invention
- FIGS. 20A-20E show schematic plan views of offset pivot mechanisms according to embodiments of the present invention.
- FIG. 21 shows an example of a surface having an infinite number of axes of revolution
- FIGS. 22A-22D show examples of surfaces which may be obtained by rotating any desired geometric form around a desired axis of revolution
- FIG. 23 shows an example of a conventional MBK associated with a flat second bearing in which the tibial tray post engages in a cylindrical cavity specially designed on the bottom surface of the tibial insert;
- FIG. 24 shows a “wave” shape according to an embodiment of the present invention that may be obtained by the revolution of a spherical tool around an axis which is essentially collinear to the neutral axis of a tibial tray hole designed to receive a central peg;
- FIG. 25 shows that by using a conventional tight gap between a central peg and a hole, excess friction can cause binding over time
- FIG. 26 shows that in comparison, for example, with the prosthesis of FIG. 25 , a prosthesis according to an embodiment of the present invention may provide a larger gap between a central peg and a hole to help avoid any tibial insert-tray binding;
- FIGS. 27A-27C show the location of the contact between the tibial components for a conventional MBK associated with a flat second bearing
- FIG. 28 shows that in various embodiments of the present invention the location of the contact between the tibial components occurs along the deepest line of the second bearing;
- FIGS. 29A and 29B show that (for a conventional MBK associated with a flat second bearing) the shear component of eccentric load is transmitted to the central peg ( FIG. 29A ), which creates high stress on the peg due to the low contact area between the central peg and the hole ( FIG. 29B ).
- FIG. 30 shows that in comparison, for example, with FIGS. 29A and 29B , until about 30° the shear component of the joint load (in one example of the present invention) is borne by the internal curvature of the wave;
- FIGS. 31 and 32 show a test specimen of a prosthesis according to an embodiment of the present invention after the completion (of about 5 million cycles) of a wear test;
- FIG. 33 shows that for a conventional MBK associated with a flat second bearing, the thickness of the tibial insert is typically thinnest at the site of the maximum load.
- FIG. 34 shows that in contrast (for example, with FIG. 33 ) the thickness of the tibial insert according to an embodiment of the present invention is essentially constant along the medio-lateral axis.
- a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert.
- a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert.
- a spherical radius may have an inherent tendency to self-align.
- the tibial insert may include a polyethylene articulating surface.
- the tibial tray may include a metal articulating surface (e.g., a highly polished metal articulating surface).
- one or both of the articulating surfaces may include diamond (e.g., to improve wear characteristics on one or more mating surfaces).
- the interface may have a pivoting location.
- the pivoting location may be defined by a female feature (e.g., cylinder, cone or combination) that mates with a male feature (e.g., a post).
- the pivoting location may be in the center of the interface or the pivoting location may be offset from the center of the interface in one or more of a medial, lateral, anterior and/or posterior directions.
- a locking feature may be provided to help prevent lift-off of the tibial insert.
- the locking feature may be provided by a male feature (e.g., a post) working in combination with a female feature (e.g., cylinder, cone or combination) to help prevent lift-off of an articulating surface (e.g., a polyethylene articulating surface).
- anterior/posterior translation and/or medial/lateral translation may be provided by utilizing a female feature (e.g., cylinder, cone or combination) which is enlarged to allow for additional movement in one or more desired planes.
- a female feature e.g., cylinder, cone or combination
- rotational constraint and/or control may be provided by medial and/or lateral rails that interfere and/or wedge with a tibial insert as the tibial insert rotates to a specific angular displacement (the interference and/or wedging may occur at one or both rails).
- a groove may be provided in one or both rails and a mating feature may be provided on the tibial insert.
- rotational constraint and/or control may be provided by using a male feature (e.g., a post) as a spring (e.g., a torsion spring) such that a constraining member (e.g., a cross-pin) can be inserted into a receiving member (e.g., a V-groove) in the male feature.
- a male feature e.g., a post
- a spring e.g., a torsion spring
- a constraining member e.g., a cross-pin
- a receiving member e.g., a V-groove
- rotational constraint and/or control may be provided by using an ellipsoid surface at the rotational interface.
- Mobile Bearing Knee Prosthesis 100 may include Tibial Tray 102 , Tibial Insert 104 and Femoral Component (not shown) which interfaces with Tibial Insert 104 .
- Mobile Bearing Knee Prosthesis 100 may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on the Tibial Tray 102 and a convex inferior surface on the Tibial Insert 104 (of note, such a spherical radius may have an inherent tendency to self-align).
- an interface e.g., a spherical radius interface
- a concave superior surface on the Tibial Tray 102 and a convex inferior surface on the Tibial Insert 104 (of note, such a spherical radius may have an inherent tendency to self-align).
- the Tibial Insert 104 may include a polyethylene articulating surface.
- the Tibial Insert 102 may include a metal articulating surface (e.g., a highly polished metal articulating surface).
- Mobile Bearing Knee Prosthesis 100 may have a pivoting location.
- the pivoting location may be defined by Cavity 106 that mates with Post 108 .
- Post 108 may stabilize Mobile Bearing Knee Prosthesis 100 against shear forces (e.g., medial/lateral forces in the transverse plane) as well as serve as a rotational axis.
- Mobile Bearing Knee Prosthesis 100 may include locking feature(s) to help prevent lift-off of the Tibial Insert 104 .
- the locking feature may be provided by Indentation 110 (disposed within Cavity 106 ) working in conjunction with Raised Portion 112 (disposed on Post 108 ) (see, for example, FIG. 1E ).
- Mobile Bearing Knee Prosthesis 100 may provide anterior/posterior translation and/or medial/lateral translation (e.g., by utilizing Cavity 106 which is enlarged to allow for additional movement in one or more desired planes).
- A/P translation may be about 4.5 mm.
- the pivoting location may be placed where desired.
- the pivoting location may be in the center (denoted by the dashed circle “A”), anterior (denoted by the dashed circle “B”), or posterior (denoted by the dashed circle “C”) of Mobile Bearing Knee Prosthesis 200 (which may include Tibial Tray 202 and Tibial Insert 204 ).
- FIGS. 2A-2C show a mobile bearing knee prosthesis similar to that shown in FIGS. 1A-1E but without the Indentation/Raised Portion lift-off prevention mechanism.
- rotational limits may be between about 50-53 degrees.
- Mobile Bearing Knee Prosthesis 300 may include Tibial Tray 302 , Tibial Insert 304 and Femoral Component (not shown) which interfaces with Tibial Insert 304 .
- Mobile Bearing Knee Prosthesis 300 may include one or more diamond bearing surfaces 310 on an articulating surface of Tibial Tray 302 , on an articulating surface of Tibial Insert 304 , in Cavity 306 and/or on Post 308 .
- Tibial Insert 304 e.g., the polyethylene surface
- isolation of the articulating surface of Tibial Insert 304 (e.g., the polyethylene surface) from the articulating surface of Tibial Tray 302 with the highly wear-resistant diamond bearing surface(s) 310 helps avoid the problem of backside wear typically inherent in conventional mobile bearing knee prostheses.
- a mobile bearing knee prosthesis may include Tibial Tray 402 , Tibial Insert 404 and Femoral Component (not shown) which interfaces with Tibial Insert 404 .
- the mobile bearing knee prosthesis may include diamond bearing surface(s) 410 on an articulating surface of Tibial Tray 402 , on an articulating surface of Tibial Insert 404 , in Cavity 406 and/or on Post 408 .
- 3-point contact associated with the diamond bearing surface(s) 410 may establish a plane.
- one or more of the diamond bearing surface(s) 410 may be spherical or hemi-spherical in shape (e.g., to avoid or attenuate edge loading).
- one or more of the diamond bearing surface(s) 410 may be press-fit.
- a rotary stop mechanism may be provided to help ensure that the diamond bearing surface(s) (e.g., the posterior, medial and lateral diamond bearing surface(s)) remain engaged at all times.
- this rotary stop mechanism may be diamond against diamond.
- FIGS. 5A and 5B where the most anterior diamond bearing of Tibial Tray 502 , for example, is elevated (to cause the medial and lateral diamond bearings on the underside of the Tibial Insert (not shown) to abut and constrain rotary motion).
- a Tibial Tray 602 for a mobile bearing knee prosthesis may include a large diameter surface, such as a spherical surface (a Tibial Insert (not shown) may have a mating large diameter surface, such as a spherical surface, on a backside thereof).
- the Tibial Tray 602 may include Plane Surface 602 a (which Plane Surface 602 a is essentially flat).
- Plane Surface 602 a may be a polyethylene component (e.g., a molded “puck”).
- the areas designated “A” in FIG. 6A may maintain a high contact area.
- Mobile Bearing Knee Prosthesis 700 may include Tibial Tray 702 , Tibial Insert 704 and Femoral Component (not shown) which interfaces with Tibial Insert 704 .
- Tibial Tray 702 may have a concave articulating surface and Tibial Insert 704 may have a convex articulating surface.
- the aforementioned articulating surfaces may comprise a large radius sphere (e.g., for backside articulation of a rotating/mobile prosthesis).
- FIGS. 8A-8C an embodiment adapted to aid in rotational constraint and/or control is shown.
- Mobile Bearing Knee Prosthesis 800 may include Tibial Tray 802 , Tibial Insert 804 and Femoral Component (not shown) which interfaces with Tibial Insert 804 .
- Mobile Bearing Knee Prosthesis 800 may have a pivoting location defined by Cavity 806 that mates with Post 808 .
- Cross-pin 806 A may mate with Groove 808 a such that during rotation of Tibial Insert 804 the Cross-pin 806 a acts as a rotational stop and Post 808 acts as a spring (i.e., a torsion spring to give resistance to rotation).
- the diameter of Cross-pin 806 a and/or the size of Groove 808 a may be varied to provide different levels of rotational constraint and/or control.
- the Cross-pin 806 a may be installed prior to implantation of Tibial Tray 802 (whereby Groove 808 a allows Tibial Insert 804 to be installed with Tibial Tray 802 in place in the body (e.g., cemented in place).
- FIGS. 9A-9D and 10 A- 10 E various additional embodiments adapted to aid in rotational constraint and/or control and/or to help prevent tibial insert lift-off are shown.
- Tibial Insert 904 when Tibial Insert 904 is rotated it contacts Rotation Limiting Tabs 902 a of Tibial Tray 902 (to thereby wedge Tibial Insert 904 in place and inhibit further rotation).
- each Rotation Limiting Tab 902 a may include Undercut 902 b to help prevent lift-off when extremes of rotation have been reached (In this regard, Tibial Insert 904 may include one or more Lips 904 a for engaging Rotational Limiting Tabs 902 a and/or Undercuts 902 b ).
- Tibial Insert 904 may include Post 908 which resides in Cavity 910 in Tibial Tray 902 , whereby Cavity 910 includes Indentation 912 for receiving Raised Portion 914 of Post 908 . Indentation 912 and Raised Portion 914 may thus cooperate to help prevent lift-off of Tibial Insert 904 .
- the running clearance between Post 908 and Cavity 910 may be between about 0.005 and 0.010 inches.
- FIGS. 10A and 10B show a distance “A” inside an outer wall section of Tibial Tray 1002 ;
- FIG. 10C shows distances B 1 , B 2 and C associated with Tibial Insert 1004 (wherein distance B 1 and B 2 are greater than distance A and distance C is less than distance A);
- FIG. 10D shows contact points between Tibial Tray 1002 and Tibial Insert 1004 when Tibial Insert 1004 is rotated (in the clockwise direction in this example).
- FIG. 10E shows detail of the interference between Tibial Tray 1002 and Tibial Insert 1004 at a contact point of FIG. 10D and FIG. 10F shows that there is no interference at the contact point of FIG. 10E when the Tibial Insert 1004 is not rotated past a certain point (e.g., at a “neutral position”).
- FIGS. 10E and 10F also show Recess 1002 a , which may be used for example for poly flow and/or to aid in preventing lift-off.
- Mobile Bearing Knee 1100 may include Tibial Tray 1102 and Tibial Insert 1104 , wherein the rotational axis A of Mobile Bearing Knee 1100 may be placed in-line with the natural axis A′ of the knee.
- Mobile Bearing Knee 1200 may include Tibial Tray 1202 and Tibial Insert 1204 .
- Tibial Tray 1202 and Tibial Insert 1204 .
- the design of these FIGS. 12A and 12B allows retention of the posterior cruciate ligament (PCL) via clearance for the PCL (which does not require posterior stabilization offered with the PS spine (e.g., as may be required on certain other embodiments)).
- PCL posterior cruciate ligament
- the tibial insert may be made of Ultra High Molecular Weight Polyethylene (“UHMWPE”).
- UHMWPE Ultra High Molecular Weight Polyethylene
- the UHMWPE may be molded UHMWPE (which, it is believed, wears at a lower rate than machined UHMWPE).
- a mobile bearing knee prosthesis may include a bi-concave interface.
- such a bi-concave interface may aid in providing an optimal anatomic configuration of the knee while at the same time providing a sufficiently thick (e.g., in terms of wear resistance) tibial insert articulation structure (e.g., polyethylene articulation structure).
- tibial insert articulation structure e.g., polyethylene articulation structure
- such articulation structure may be about 6.5 mm thick.
- the tibial insert articulation structure may have a homogeneous, or constant, thickness (i.e., thickness “X” in this FIG. 17A ) and referring in particular to FIG. 17B , it is seen that the tibial insert articulation structure may have a non-homogeneous, or non-constant, thickness (e.g., thicker by “Y” at the area marked “A” and “B” in this FIG. 17B ).
- Such a bi-concave interface may aid in coping with the potential shear stress provided by lift-off during movement by the patient (see FIG. 17C , showing an aspect of the invention directed to self-centering against lift-off and reduction or elimination of shear stress to the pivot feature (e.g., axial post)).
- the pivot feature e.g., axial post
- FIGS. 13A-13F , 14 A- 14 D, 15 A- 15 C, 16 A, 16 B and 17 A- 17 C may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above.
- a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on the tibial tray and a concave inferior surface on the tibial insert (of note, such a spherical radius may have an inherent tendency to self-align).
- an interface e.g., a spherical radius interface
- a convex superior surface on the tibial tray and a concave inferior surface on the tibial insert (of note, such a spherical radius may have an inherent tendency to self-align).
- the aforementioned configuration may help reduce wear at the interface between the tibial insert and the tibial tray by ejecting abrasive material (e.g., polyethylene particles created by relative movement at the interface) out from the interface (see FIG. 18A ).
- abrasive material e.g., polyethylene particles created by relative movement at the interface
- the thickness of the material forming the tibial insert may vary as required (e.g., for optimum wear resistance vs. ease of movement).
- the areas marked “A” and “B” may be thicker than the area marked “C”.
- FIGS. 18A and 18B may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above.
- a mobile bearing knee prosthesis may incorporate an eccentered (or offset) pivoting feature (e.g., axial post). More particularly, in one embodiment such an eccentered pivoting feature may serve (e.g., during movement by the patient) to decrease the anterior translation associated with the medial condolyte and increase the roll back (posterior translation) associated with the lateral condolyte.
- FIGS. 19A and 19B where FIG. 19A shows the large anterior translation associated with a central pivot (e.g., at 70 0 of external rotation of the femur in relation to the tibia) and where FIG.
- FIGS. 19A and 19B show the smaller anterior translation associated with a medially offset pivot (e.g., at 70 0 of external rotation of the femur in relation to the tibia). More particularly, these FIGS. 19A and 19B show that the offset pivot results in a relatively smaller anterior translation associated with the medial condolyte and a relatively larger posterior translation associated with the lateral condolyte.
- FIGS. 19A and 19B may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above.
- certain embodiments of the present invention relate to use of an offset pivot component (e.g., using an offset axial post) in association with other components which may otherwise be configured for use with a non-offset pivot component.
- an asymmetric component e.g., offset axial post
- a symmetric tibial tray and symmetric bearing e.g., polyethylene bearing
- FIG. 20A shows a plan view of a polyethylene bearing (under a no rotation condition) according to this embodiment
- FIG. 20B shows a plan view of a tibial tray (under a no rotation condition) according to this embodiment.
- FIG. 20C shows the eccentric center of rotation (at point A) associated with external rotation (right knee)
- FIG. 20D shows the eccentric center of rotation (at point B) associated with external rotation (left knee).
- FIG. 20E shows a plan view utilizing a “Beam” shape.
- FIGS. 20A-20E may include one or more internal stop mechanisms (e.g., for rotational constraint and/or control). Moreover, the embodiments of these FIGS. 20A-20E may be used in connection with a tibial insert and/or a tibial tray having an interface surface which includes flat, concave and/or convex portions.
- FIGS. 20A-20E may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above.
- the contact area between the tibial insert and the tibial tray may be higher for a “wave” design than for a flat design (e.g., ten percent higher contact area). Under certain circumstances, it may be desired to minimize this contact area.
- this contact area between the tibial insert and the tibial tray may be minimized by reducing the congruence factor of the second bearing. It is noted that this solution is not possible for a flat design, for which the congruence factor is always equal to one. It is further noted that an advantage of the congruence factor approach is when contact only occurs on the loaded area.
- wear due to contact between the post and the hole may be decreased because shear stress is absorbed by the tibial tray (e.g., by the medial part of the “wave”).
- a mobile bearing knee prosthesis comprising: a tibial tray for interfacing with a tibia of a patient; and a tibial insert disposed adjacent the tibial tray; wherein the tibial insert is capable of movement relative to the tibial tray and the movement of the tibial insert relative to the tibial tray includes at least pivotal movement; wherein the pivotal movement is around an axis of rotation defined by a post extending from a bottom surface of the tibial insert into a hole provided on an upper surface of the tibial tray; wherein the hole provided on the upper surface of the tibial tray is provided at a substantially circular raised location; wherein the substantially circular raised location curves downward away from the hole along both a medial-lateral axis of the tibial tray and an anterior-posterior axis of the tibial tray; wherein at least a portion of a medial edge of the tibial tray and at least a portion of
- an upper surface of the tibial insert may be configured to receive a femoral component which interfaces with a femur of the patient.
- a mechanism for providing at least one of rotational control and rotational constraint to movement of the tibial insert relative to the tibial tray may be provided.
- the mechanism for providing at least one of rotational control and rotational constraint to movement of the tibial insert relative to the tibial tray may comprise a cross-pin disposed within the hole and a groove disposed on the post, wherein the cross-pin is received within the groove.
- the mechanism for providing at least one of rotational control and rotational constraint to movement of the tibial insert relative to the tibial tray may comprise at least a first tab disposed along the medial edge of the tibial tray and at least a second tab disposed along the lateral edge of the tibial tray, wherein the first tab contacts the tibial insert to provide at least one of the rotational control and the rotational constraint during rotation in a first direction and the second tab contacts the tibial insert to provide at least one of the rotational control and the rotational constraint during rotation in a second direction.
- the first tab may include a first undercut for receiving a first edge of the tibial insert and the second tab may include a second undercut for receiving a second edge of the tibial insert.
- the mobile bearing knee prosthesis may further comprise a mechanism for substantially preventing lift-off of the tibial insert from the tibial tray.
- the mechanism for substantially preventing lift-off of the tibial insert from the tibial tray may comprise a raised portion on the post cooperating with an indentation in a portion of the tibial tray defining the hole therein.
- the mechanism for substantially preventing lift-off of the tibial insert from the tibial tray may comprise at least a first tab disposed along the medial edge of the tibial tray and at least a second tab disposed along the lateral edge of the tibial tray, wherein the first tab includes a first undercut for receiving a first edge of the tibial insert and the second tab includes a second undercut for receiving a second edge of the tibial insert.
- At least one of the hole and the post may be substantially circular.
- the hole and the raised location may be disposed at a substantially central location along the medial-lateral axis of the tibial tray.
- the hole and the raised location may be disposed at a substantially central location along the anterior-posterior axis of the tibial tray.
- the upper surface of the tibial tray may comprise metal and the lower surface of the tibial insert may comprise polyethelene.
- the tibial tray may be formed of metal and the tibial insert may be formed of polyethelene.
- a mobile bearing knee prosthesis comprising: a tibial tray for interfacing with a tibia of a patient; and a tibial insert disposed adjacent the tibial tray; wherein the tibial insert is capable of movement relative to the tibial tray and the movement of the tibial insert relative to the tibial tray includes at least pivotal movement; wherein the pivotal movement is around an axis of rotation defined by a first cooperating element associated with a bottom surface of the tibial insert and a second cooperating element associated with an upper surface of the tibial tray; wherein the second cooperating element is provided at a substantially circular raised location on the upper surface of the tibial tray; wherein the substantially circular raised location curves downward away from the second cooperating element along both a medial-lateral axis of the tibial tray and an anterior-posterior axis of the tibial tray; wherein at least a portion of a medial edge of the t
- an upper surface of the tibial insert may be configured to receive a femoral component which interfaces with a femur of the patient.
- a mobile bearing knee prosthesis comprising: a tibial tray for interfacing with a tibia of a patient; and a tibial insert disposed adjacent the tibial tray; wherein the tibial insert is capable of movement relative to the tibial tray and the movement of the tibial insert relative to the tibial tray includes at least pivotal movement; wherein the pivotal movement is around an axis of rotation provided by a first cooperating element associated with a bottom surface of the tibial insert and a second cooperating element associated with a top surface of the tibial tray; wherein the tibial tray includes at least a first diamond bearing surface; wherein the tibial insert includes at least a second diamond bearing surface; and wherein at least a portion of the first diamond bearing surface and at least a portion of the second diamond bearing surface bear against one another.
- an upper surface of the tibial insert may be configured to receive a femoral component which interfaces with a femur of the patient.
- the first diamond bearing surface may include a plurality of diamonds.
- the second diamond bearing surface may include a plurality of diamonds.
- the first diamond bearing surface may include a plurality of diamonds and the second diamond bearing surface may include a plurality of diamonds.
- At least one of the diamonds of the first diamond bearing surface may extend beyond the other diamonds of the first diamond bearing surface such that the raised diamond cooperates with at least a portion of the second diamond bearing surface to provide rotational constraint to movement of the tibial insert relative to the tibial tray.
- At least one of the diamonds of the second diamond bearing surface may extend beyond the other diamonds of the second diamond bearing surface such that the raised diamond cooperates with at least a portion of the first diamond bearing surface to provide rotational constraint to movement of the tibial insert relative to the tibial tray.
- AAR artificial axis of rotation
- the AAR may be used for tibial insert rotation relative to the tibial tray; may be substantially perpendicular to the bottom surface of the tibial tray; and may or may not be in a substantially central position of the tibial tray. Because the AAR of various embodiments is sufficient to guide the tibial insert in rotation relative to the tibial tray, a central peg may no longer be necessary.
- FIG. 22A-22D show various examples (which examples are intended to be illustrative and not restrictive), of how the AAR concept may be applied such that the bottom surface of the tibial insert and the upper surface of the tibial tray provide a unique axis, which is characterized as the axis of revolution (or neutral axis) for these surfaces (such a unique axis may be contrasted, for example, with the spherical surface (concave or convex) of FIG. 21 , which provides an infinite number of axes of revolution).
- various surfaces associated with an AAR may be obtained by rotating any desired geometric form around a desired axis of revolution.
- the upper surface of the tibial tray may be obtained by rotating a circle around an axis (the geometry of this Fig. is named “wave”), but the center of the circle+ does not belong to the axis (if the center of the circle belongs to the axis, the result is FIG. 21 ).
- the upper surface of the tibial tray may be obtained by rotating a concave form around an axis, but the center of the circle of the form of this example does not belong to the axis (if it did, there would be no unique AAR-like depicted in FIG. 21 ).
- the upper surface of the tibial tray may be obtained by rotating a free form around an axis.
- the upper surface of the tibial tray may be obtained by rotating different form around an axis.
- the unique axis of the examples of FIGS. 22A-22D represents the axis of revolution of the tibial insert relative to the tibial tray.
- a post and hole mechanism may be unnecessary (unlike the typical MBKs available on the market).
- the shape of the tibial tray upper surface provides a unique rotational axis.
- the bottom surface of the tibial insert is configured to be substantially complementary to the upper surface of the tibial tray, both components self-align.
- the AAR could be parallel to the axis of revolution of the post or hole.
- the AAR may or may not be collinear to the axis of revolution of the post or hole.
- a conventional MBK typically uses a flat second bearing.
- the constraint between the tibial insert and the tibial tray is typically provided by a rotational guide device.
- this device covers two functions. First of all, this device defines a fixed axis of rotation for the tibial insert relative to the tibial tray. In addition, it provides an anti-dislocation function in case of large subluxation or distraction.
- the “cone-in-cone” design is believed to be primarily a safety anti-dislocation system (due to its length), but because the second bearing is flat, essentially all the shear forces are absorbed by the central peg (which increases UHMWPE wear and fracture risk).
- the tibial tray post solution is believed to offer a safer environment for the UHMWPE wear (e.g., less risk of breakage), but results in a poor anti-dislocation device (due to the short length of the post).
- a unique constraint second bearing is provided (which differs significantly from the conventional flat second bearing). That is (as discussed above), the second bearing shape according to this embodiment of the present invention could be described as a wave formed by the revolution of a spherical tool around an axis, wherein the axis may be collinear to an axis of a tibial tray hole designed to receive a central peg of a UHMWPE tibial insert (as seen in FIG. 24 , a “wave” may be obtained by the revolution of the spherical tool around an axis which is collinear to the neutral axis of the tibial tray hole designed to receive the UHMWPE central peg).
- tibial insert rotates around the AAR provided by the wav shape and not around the neutral axis of the tibial tray hole.
- the UHMWPE central peg may be designed only to prevent dislocation in cases of severe subluxation or distraction (such that during common activities, essentially no shear stress is anticipated on the central peg, so the peg diameter may be smaller than in conventional “cone-in-cone” designs).
- the self-centering design of the second bearing may provide an artificial axis of rotation distinct from the UHMWPE central peg axis, which allows the tibial insert to rotate relative the tibial tray.
- the UHMWPE could absorb fluid over time. This absorption might increase the UHMWPE central peg diameter (in “cone-in-cone” designs) or decrease the cavity diameter (in tibial tray post designs). In this case, due to the tightened gap between the components, the friction between the tibial components will increase and could lead to tibial insert-tibial tray binding (see again, FIG. 25 ).
- a purpose of a MBK is to allow tibial insert mobility relative to the tibial tray during surgery and postoperatively. This may even be a critical feature of conventional MBKs, because these prostheses typically offer a highly congruent first bearing. As a result, when the tibial insert binds with the tibial tray, the torque is transmitted more readily to the implant-bone interface, increasing the potential for implant loosening.
- the tibial insert rotates around the artificial axis of revolution created by the wave surface.
- the UHMWPE central peg of the tibial insert (if such central peg is even used) may be essentially limited to the anti-dislocation function, so the gap between the tibial insert central peg and tibial tray hole may be slightly increased to help avoid risk of tibial insert-tibial tray binding over time (see FIG.
- the prosthesis according to an embodiment of the present invention may provide a larger gap between the central peg and the hole (to the extent they are used) to help avoid tibial insert-tibial tray binding.
- FIGS. 27A-27C showing the location of the contact between the tibial components for a conventional MBK associated with a flat second bearing—the contact could be medial (i.e. near the central peg) as in 27 A or be lateral as in 27 B;
- FIG. 27C is an illustration of a conventional MBK with a flat second bearing showing a very lateral contact between the tibial insert and the tibial tray.).
- a prosthesis showing medial contact will require significantly less torque to initiate rotation at the second bearing than one with lateral contact ( FIG. 27B ).
- the torque defined by ISO 14243-1 i.e. 6 N.m
- the resistance torque is inferior to the resistance torque.
- no rotation occurs at the second bearing during the kinematic test.
- the surface contact between the tibial insert and tray occurs along the deepest line of the wave (see FIG. 28 , showing that in this embodiment of the present invention the location of the contact between the tibial components occurs along the deepest line of the second bearing—because this location is predictable, the resisting torque is also predictable.).
- At least one advantage of this “controlled” surface contact location is predictable resistance torque (this has been well demonstrated by a wear test, as all three test specimens showed similar kinematics in response to tibial rotational torque—a similar observation resulted from an analysis of the tibial inserts according to an embodiment of the present invention after an in-vitro test; both tibial inserts showed essentially identical contact area on the second bearing).
- FIGS. 29A and 29B showing (in connection with a conventional MBK associated with a flat second bearing) that the shear component of eccentric load is transmitted to the central peg ( FIG. 29A ), which creates high stress on the peg due to the low contact area between the central peg and the hole ( FIG. 29B ).
- the applied contact force actions were:
- the contact between the tibial insert and the tibial tray occurred along the deepest line of the wave, as was expected.
- the shear stress created by the anterior-posterior force during the wear test was absorbed by the internal curvature of the posterior portion of the tibial tray (see FIG. 32 —the polished area is well defined within the expected region of the wave; the shear stress (due to the anterior-posterior force) was absorbed by the internal curvature of the wave (on the posterior portion) as shown in this Fig. by the stripped area).
- a conventional MBK typically has no out profile ring.
- the conventional MBK associated with a flat second bearing typically utilizes a thicker tibial tray. This increasing of thickness of the tibial tray is made at the detriment of the tibial insert thickness. In other words, for the same composite (i.e. tibial tray—tibial insert assembly) thickness, the conventional MBK tibial insert will be thinner than one associated with a conventional FBK.
- the thickness of the tibial insert is typically thinnest at the site of the maximum load (see FIG. 33 —showing that for the conventional MBK associated with a flat second bearing, the thickness of the tibial insert is typically thinnest at the site of the maximum load.).
- the thickness of the tibial insert is essentially constant along the medio-lateral axis (see FIG. 34 —showing that the thickness of the tibial insert of this example of the present invention is essentially constant along the medio-lateral axis (e.g., due at least in part to the wave shape) and that the thickness of the tibial insert of this example of the present invention is higher than typically found with a conventional MBK tibial insert, at the site of the maximum load).
- the tibial tray of this example of the present invention is thinner at the level of the deepest portion of the wave, and is thicker at the level of the internal and external curvatures of the wave.
- the thicker portion of the tibial tray provides an increasing of the mechanical strength, while the thinner portion allows an increasing of the thickness of the tibial insert.
- Table 1 by a comparison of the thickness distribution between one example of the present invention and a well-known conventional MBK currently available on the market (for a 10 mm composite assembly): TABLE 1 Example of the Thickness at the site of Conventional present the maximum load (in mm) MBK invention Tibial insert 5.2 6.5 (+25%) Tibial tray 4.8 3.5 Thickness of the composite 10
- the thickness of the tibial insert of this example of the present invention is 25% higher than in a conventional MBK, while there is essentially no sacrifice in tibial tray strength.
- one or more appropriate fasteners may be used to assemble the mobile bearing knee prosthesis of the present invention (e.g., a screw or bolt to hold the tibial insert in correct orientation relative to the tibial tray).
- the mobile bearing knee prosthesis of the present invention may provide a bearing which predicts position, self-aligns, and/or self-centers.
- the metal may be polished using any desired technique (e.g., a drill with polishing compound).
- the tibial insert may be smaller than the tibial tray (at least in certain dimensions) to prevent overhang during rotation (this may be accomplished, for example, by reducing the size of the medial/lateral aspect of the tibial insert).
- one or more of the mating articulating surfaces may be formed of poly, metal, diamond (distinct pieces and/or “coating”), ceramic, polyether ether ketone (“PEEK”) and/or any other desired low friction articular materials.
- the tibial tray, the tibial insert and/or the femoral component may utilize, for example, a molded-on-metal configuration (e.g., UHMWP molded-on-metal).
- the tibial tray, the tibial insert and/or the femoral component may comprise, for example, cobalt chrome and/or titanium.
- the femoral component may interface with (e.g., be attached to) the femur of the patient using any desired mechanism (e.g., cement, one or more undercuts and matching protrusions, mechanical fasteners (e.g., screws), etc.).
- the tibial tray may interface with (e.g., be attached to) the tibia of the patient using any desired mechanism (e.g., cement, one or more undercuts and matching protrusions, mechanical fasteners (e.g., screws), etc.).
- mobile bearing knee prosthesis may be used to “retrofit” existing prosthesis/components.
- mobile bearing knee prosthesis is, of course, intended to include (but not be limited to) “rotating platform” type mechanisms and “mensical bearing” type mechanisms.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
- This application is a continuation in part of U.S. application Ser. No. 10/894,146, filed Jul. 19, 2004, which claims the benefit of U.S. Provisional Application Ser. No. 60/487,907, filed Jul. 17, 2003 and U.S. Provisional Application Ser. No. 60/551,369, filed Mar. 9, 2004. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/653,872, filed Feb. 17, 2005. Each of the aforementioned applications is incorporated herein by reference in its entirely.
- In one embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert.
- In another embodiment of the present invention a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert.
- In another embodiment of the present invention a mobile bearing knee prosthesis may include a bi-concave interface (e.g., having a “wave” like surface geometry). This “wave” like surface geometry may be at the interface between a tibial insert and a tibial tray in the mobile bearing knee (as opposed to the interface between the tibial insert and a femoral component). Further, this “wave” like surface geometry may allow a “virtual” or “artificial” axis of rotation to be provided by the interface between the tibial insert and the tibial tray in the mobile bearing knee.
- In one example (which example is intended to be illustrative and not restrictive) the tibial insert may include a polyethylene articulating surface. In another example (which example is intended to be illustrative and not restrictive) the tibial tray may include a metal articulating surface (e.g., a highly polished metal articulating surface). In another example (which example is intended to be illustrative and not restrictive) one or both of the articulating surfaces may include diamond (e.g., to improve wear characteristics on one or more mating surfaces).
- For the purposes of describing and claiming the present invention the term “rotational constraint” is intended to refer to essentially stopping rotation of an object at a given point.
- Further, for the purposes of describing and claiming the present invention the term “rotational control” is intended to refer to exercising control over the amount of force required to rotate an object.
- Further still, for the purposes of describing and claiming the present invention the term “superior surface” is intended to be synonymous with the term “top surface”.
- Further still, for the purposes of describing and claiming the present invention the term “inferior surface” is intended to be synonymous with the term “bottom surface”.
- Further still, for the purposes of describing and claiming the present invention the term “first bearing” is intended to refer to the articulation between the bottom surface of the femoral component and the top surface of the tibial insert.
- Further still, for the purposes of describing and claiming the present invention the term “second bearing” is intended to refer to the articulation between the bottom surface of the tibial insert and the top surface of the tibial tray.
- U.S. Pat. No. 6,319,283 relates to a tibial knee component with a mobile bearing. More particularly, this patent relates to an orthopaedic knee component for implanting within a proximal tibia. The orthopaedic knee component includes a tibial tray with a proximal tibial plateau and a projection extending generally orthogonal to the tibial plateau. The tibial tray also includes a distally extending stem. A bearing is coupled with the tibial plateau and has an articular bearing surface for engagement with a femoral component. The bearing is rotationally movable between a first rotational limit and a second rotational limit about an axis extending generally orthogonal to the tibial plateau. The bearing has a backing surface engaging the tibial plateau which is sized and shaped such that the backing surface is substantially entirely supported by the tibial plateau at any position during rotational movement between the first rotation limit and the second rotational limit.
- U.S. Pat. No. 5,683,468 relates to a mobile bearing total joint replacement. More particularly, this patent relates to a prosthetic component provided for a condylar joint. The prosthetic component includes a platform having a bearing surface and a pair of side walls. The side walls include a pair of concave surfaces which face one another and define arcs of the same right circular cylinder. The prosthetic component also includes a plastic bearing having a bearing surface slidably engaged with the bearing surface of the platform. The bearing also includes thrust surfaces defining arcs of two right circular cylinders having radii less than the radius of the side wall surfaces of the platform. The thrust surfaces are spaced from one another to permit only limited sliding movement of the bearing in medial to lateral directions, but greater sliding movement in anterior to posterior directions.
- U.S. Pat. No. 5,556,432 relates to an artificial joint. More particularly, this patent relates to an endoprothesis for the human knee joint, consisting of at least two joint parts moving with respect to each other, a joint head and a joint base, with toroidal joint surfaces, that have function surfaces with differing circular intersection contours in mutually perpendicular planes—a longitudinal plane and a transverse plane—whereby the curve ratios of the function surfaces are defined in each of the planes as either convex—convex, convex-concave, or concave—concave, and the joint geometry of the function areas to each other in each of the two planes is determined by a link chain with two link axes (dimeric link chain), which proceed through the rotation centers of the function areas with the radii of the attendant intersection contours, respectively.
- U.S. Pat. No. 5,358,530 relates to a mobile bearing knee. More particularly, this patent relates to a prosthetic mobile bearing knee including a femoral implant having condyle sections attached to a femur and a tibial tray implant having a plateau attached to a tibia. The tibial tray implant has a pair of spaced apart, concavely curved plateau bearing surfaces for cooperation and sliding with convexly curved surfaces on a tibial bearing. The tibial tray plateau bearing surfaces are shaped to create a gradually increasing resistance to sliding and rotational movement of the tibial bearing. The tibial bearing that interfits between the femoral and tibial tray implants is constructed in one or two portions.
- U.S. Pat. No. 4,224,696 relates to a prosthetic knee. More particularly, this patent relates to a prosthetic knee having as its component parts a femoral implant, a tibial implant, and a meniscal plate disposed between the implants. Knee flexion and extension is permitted by compoundly curved condyle surfaces of the femoral implant, which resemble corresponding surfaces of a natural knee, and correspondingly shaped convex bearing surfaces in the meniscal plate. All other motions of the prosthetic knee take place at the interface between the meniscal plate and tibial implant. This interface is defined by a continuous, concave, spherically shaped surface in the upwardly facing plateau of the tibial implant and a corresponding, continuous, convex spherical surface of the meniscal plate. The components are biased into mutual engagement along the cooperating concave and convex surfaces by the natural ligaments which surround the prosthetic knee. The continuous biased engagement of the cooperating convex and concave surfaces of the prosthetic knee assure its stability.
-
FIG. 1A shows a perspective view of a mobile bearing knee prosthesis according to an embodiment of the present invention; -
FIG. 1B shows a top plan view of the mobile bearing knee prosthesis ofFIG. 1A ; -
FIG. 1C shows a side view of the mobile bearing knee prosthesis ofFIG. 1A ; -
FIG. 1D shows another top plan view of the mobile bearing knee prosthesis ofFIG. 1A ; -
FIG. 1E shows a cross section taken along line A-A ofFIG. 1D ; -
FIG. 2A shows a top plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 2B shows a cross section taken along line H-H ofFIG. 2A ; -
FIG. 2C shows a perspective view of the mobile bearing knee prosthesis ofFIG. 2A ; -
FIG. 3 shows a perspective view of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 4A shows a plan view of a tibial tray component of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 4B shows a side view of the tibial tray component ofFIG. 4A ; -
FIG. 4C shows a plan view of a tibial insert component of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 4D shows a side view of the tibial insert component ofFIG. 4C ; -
FIG. 5A shows a plan view of a tibial tray component of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 5B shows a side view of the tibial tray component ofFIG. 5A ; -
FIG. 6A shows a plan view of a tibial tray component of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 6B shows a side view of the tibial tray component ofFIG. 6A ; -
FIG. 7A shows a plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 7B shows a cross section of the mobile bearing knee prosthesis ofFIG. 7A ; -
FIG. 7C shows a side view of the tibial tray of the mobile bearing knee prosthesis ofFIG. 7A ; -
FIG. 8A shows a perspective view of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 8B shows a perspective view (partially cut-away) of the mobile bearing knee prosthesis ofFIG. 8A ; -
FIG. 8C shows a perspective view (partially cut-away) of the mobile bearing knee prosthesis ofFIG. 8A ; -
FIG. 9A shows a top plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention (wherein a tibial insert is shown rotated and locked in place on a tibial tray); -
FIG. 9B shows a cross section of the mobile bearing knee prosthesis ofFIG. 9A ; -
FIG. 9C shows certain detail associated with the mobile bearing knee prosthesis ofFIG. 9A ; -
FIG. 9D shows certain detail associated with the mobile bearing knee prosthesis ofFIG. 9A ; -
FIG. 10A shows a plan view of a tibial tray according to another embodiment of the present invention; -
FIG. 10B shows a cross section of the tibial tray ofFIG. 10A ; -
FIG. 10C shows a plan view of a tibial insert for use with the tibial tray ofFIG. 10A ; -
FIG. 10D shows a plan view of the tibial tray and tibial insert ofFIGS. 10A-10C ; -
FIG. 10E shows certain detail taken along line B-B ofFIG. 10D ; -
FIG. 10F shows certain detail taken along line B-B ofFIG. 10D ; -
FIG. 11 shows a side view of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 12A shows a plan view of a mobile bearing knee prosthesis according to another embodiment of the present invention; -
FIG. 12B shows a side view of the mobile bearing knee prosthesis ofFIG. 12A ; -
FIG. 13A shows an elevation view of a mobile bearing knee according to another embodiment of the present invention (in this view a tibial insert and a tibial tray are engaged and a uniform curvature between mating parts is seen); -
FIG. 13B shows an elevation view of a mobile bearing knee according to the embodiment ofFIG. 13A (in this view a tibial insert and a tibial tray are partially engaged and a uniform curvature between mating parts is seen); -
FIG. 13C shows a side elevation view of a mobile bearing knee according to the embodiment ofFIG. 13A (in this view a tibial insert and a tibial tray are engaged and a uniform curvature between mating parts is seen); -
FIG. 13D shows a side elevation view of a mobile bearing knee according to the embodiment ofFIG. 13A (in this view a tibial insert and a tibial tray are partially engaged and a uniform curvature between mating parts is seen); -
FIG. 13E shows another elevation view of a mobile bearing knee according to the embodiment ofFIG. 13A (in this view a tibial insert and a tibial tray are engaged, the tibial insert is rotated 100 relative to the tibial tray, and a uniform curvature between mating parts is seen); -
FIG. 13F shows a perspective view of a mobile bearing knee according to the embodiment ofFIG. 13A (wherein a tibial insert and a tibial tray are engaged, and a uniform curvature between mating parts is seen); -
FIG. 14A shows another elevation view of a mobile bearing knee according to the embodiment ofFIG. 13A (wherein the Fig. includes a cross-sectional line indicator through the center of the mobile bearing knee); -
FIG. 14B shows a cross-section along the cross-sectional line indicator ofFIG. 14A (wherein the relationship of the “wave” geometry to an axial post on the tibial insert is seen); -
FIG. 14C shows another elevation view of a mobile bearing knee according to the embodiment ofFIG. 13A (wherein the Fig. includes a cross-sectional line indicator through the center of the mobile bearing knee and the tibial insert is rotated 100 relative to the tibial tray); -
FIG. 14D shows a cross-section along the cross-sectional line indicator ofFIG. 14C (wherein the relationship of the “wave” geometry to an axial post on the tibial insert is seen and the tibial insert is rotated 100 relative to the tibial tray); -
FIGS. 15A-15C show perspective views (at various angles) of the inferior surface of a tibial insert of a mobile bearing knee prosthesis according to an embodiment of the present invention; -
FIGS. 16A and 16B show perspective views (at various angles) of the superior surface of a tibial tray of a mobile bearing knee prosthesis according to an embodiment of the present invention; -
FIGS. 17A-17C show schematic cross-sectional views of a mobile bearing knee according to an embodiment of the present invention; -
FIGS. 18A and 18B show schematic cross-sectional views of a mobile bearing knee according to an embodiment of the present invention; -
FIGS. 19A and 19B show schematic plan views of a centered pivoting feature (FIG. 19A ) and an eccentered (or offset) pivoting feature (FIG. 19B ) according to embodiments of the present invention; -
FIGS. 20A-20E show schematic plan views of offset pivot mechanisms according to embodiments of the present invention; -
FIG. 21 shows an example of a surface having an infinite number of axes of revolution; -
FIGS. 22A-22D show examples of surfaces which may be obtained by rotating any desired geometric form around a desired axis of revolution; -
FIG. 23 shows an example of a conventional MBK associated with a flat second bearing in which the tibial tray post engages in a cylindrical cavity specially designed on the bottom surface of the tibial insert; -
FIG. 24 , shows a “wave” shape according to an embodiment of the present invention that may be obtained by the revolution of a spherical tool around an axis which is essentially collinear to the neutral axis of a tibial tray hole designed to receive a central peg; -
FIG. 25 shows that by using a conventional tight gap between a central peg and a hole, excess friction can cause binding over time; -
FIG. 26 shows that in comparison, for example, with the prosthesis ofFIG. 25 , a prosthesis according to an embodiment of the present invention may provide a larger gap between a central peg and a hole to help avoid any tibial insert-tray binding; -
FIGS. 27A-27C show the location of the contact between the tibial components for a conventional MBK associated with a flat second bearing; -
FIG. 28 shows that in various embodiments of the present invention the location of the contact between the tibial components occurs along the deepest line of the second bearing; -
FIGS. 29A and 29B show that (for a conventional MBK associated with a flat second bearing) the shear component of eccentric load is transmitted to the central peg (FIG. 29A ), which creates high stress on the peg due to the low contact area between the central peg and the hole (FIG. 29B ). -
FIG. 30 shows that in comparison, for example, withFIGS. 29A and 29B , until about 30° the shear component of the joint load (in one example of the present invention) is borne by the internal curvature of the wave; -
FIGS. 31 and 32 show a test specimen of a prosthesis according to an embodiment of the present invention after the completion (of about 5 million cycles) of a wear test; -
FIG. 33 shows that for a conventional MBK associated with a flat second bearing, the thickness of the tibial insert is typically thinnest at the site of the maximum load; and -
FIG. 34 shows that in contrast (for example, withFIG. 33 ) the thickness of the tibial insert according to an embodiment of the present invention is essentially constant along the medio-lateral axis. - Among those benefits and improvements that have been disclosed, other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying figures. The figures constitute a part of this specification and include illustrative embodiments of the present invention and illustrate various objects and features thereof.
- Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the invention that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments of the invention are intended to be illustrative, and not restrictive. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
- In one embodiment a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on a tibial tray and a convex inferior surface on a tibial insert. In another embodiment a mobile bearing knee prosthesis may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on a tibial tray and a concave inferior surface on a tibial insert. Of note, such a spherical radius may have an inherent tendency to self-align.
- In one example (which example is intended to be illustrative and not restrictive) the tibial insert may include a polyethylene articulating surface. In another example (which example is intended to be illustrative and not restrictive) the tibial tray may include a metal articulating surface (e.g., a highly polished metal articulating surface). In another example (which example is intended to be illustrative and not restrictive) one or both of the articulating surfaces may include diamond (e.g., to improve wear characteristics on one or more mating surfaces).
- In another embodiment of a mobile bearing knee prosthesis the interface may have a pivoting location. In one example (which example is intended to be illustrative and not restrictive) the pivoting location may be defined by a female feature (e.g., cylinder, cone or combination) that mates with a male feature (e.g., a post). The pivoting location may be in the center of the interface or the pivoting location may be offset from the center of the interface in one or more of a medial, lateral, anterior and/or posterior directions.
- In another embodiment of a mobile bearing knee prosthesis a locking feature may be provided to help prevent lift-off of the tibial insert. In one example (which example is intended to be illustrative and not restrictive) the locking feature may be provided by a male feature (e.g., a post) working in combination with a female feature (e.g., cylinder, cone or combination) to help prevent lift-off of an articulating surface (e.g., a polyethylene articulating surface).
- In another embodiment of a mobile bearing knee prosthesis anterior/posterior translation and/or medial/lateral translation may be provided by utilizing a female feature (e.g., cylinder, cone or combination) which is enlarged to allow for additional movement in one or more desired planes.
- In another embodiment of a mobile bearing knee prosthesis rotational constraint and/or control may be provided by medial and/or lateral rails that interfere and/or wedge with a tibial insert as the tibial insert rotates to a specific angular displacement (the interference and/or wedging may occur at one or both rails). Further, to aid in containment of the tibial insert, a groove may be provided in one or both rails and a mating feature may be provided on the tibial insert.
- In another embodiment of a mobile bearing knee prosthesis rotational constraint and/or control may be provided by using a male feature (e.g., a post) as a spring (e.g., a torsion spring) such that a constraining member (e.g., a cross-pin) can be inserted into a receiving member (e.g., a V-groove) in the male feature.
- In another embodiment of a mobile bearing knee prosthesis rotational constraint and/or control may be provided by using an ellipsoid surface at the rotational interface.
- Referring now to
FIGS. 1A-1E , Mobile BearingKnee Prosthesis 100 may includeTibial Tray 102,Tibial Insert 104 and Femoral Component (not shown) which interfaces withTibial Insert 104. - In one example (which example is intended to be illustrative and not restrictive) Mobile
Bearing Knee Prosthesis 100 may include an interface (e.g., a spherical radius interface) comprised of a concave superior surface on theTibial Tray 102 and a convex inferior surface on the Tibial Insert 104 (of note, such a spherical radius may have an inherent tendency to self-align). - In another example (which example is intended to be illustrative and not restrictive) the
Tibial Insert 104 may include a polyethylene articulating surface. In another example (which example is intended to be illustrative and not restrictive) theTibial Insert 102 may include a metal articulating surface (e.g., a highly polished metal articulating surface). - Mobile
Bearing Knee Prosthesis 100 may have a pivoting location. In one example (which example is intended to be illustrative and not restrictive) the pivoting location may be defined byCavity 106 that mates withPost 108.Post 108 may stabilize MobileBearing Knee Prosthesis 100 against shear forces (e.g., medial/lateral forces in the transverse plane) as well as serve as a rotational axis. - Mobile
Bearing Knee Prosthesis 100 may include locking feature(s) to help prevent lift-off of theTibial Insert 104. In one example (which example is intended to be illustrative and not restrictive) the locking feature may be provided by Indentation 110 (disposed within Cavity 106) working in conjunction with Raised Portion 112 (disposed on Post 108) (see, for example,FIG. 1E ). - Further, Mobile Bearing
Knee Prosthesis 100 may provide anterior/posterior translation and/or medial/lateral translation (e.g., by utilizingCavity 106 which is enlarged to allow for additional movement in one or more desired planes). In one example (which example is intended to be illustrative and not restrictive) A/P translation may be about 4.5 mm. - Referring now to
FIGS. 2A-2C , it is seen that the pivoting location may be placed where desired. For example (which example is intended to be illustrative and not restrictive) the pivoting location may be in the center (denoted by the dashed circle “A”), anterior (denoted by the dashed circle “B”), or posterior (denoted by the dashed circle “C”) of Mobile Bearing Knee Prosthesis 200 (which may includeTibial Tray 202 and Tibial Insert 204). Of note,FIGS. 2A-2C show a mobile bearing knee prosthesis similar to that shown inFIGS. 1A-1E but without the Indentation/Raised Portion lift-off prevention mechanism. Of further note, it is believed that moving the pivoting location towards the posterior will tend to minimize moments onPost 208. In one example (which example is intended to be illustrative and not restrictive) rotational limits may be between about 50-53 degrees. - Referring now to
FIG. 3 , Mobile BearingKnee Prosthesis 300 may includeTibial Tray 302,Tibial Insert 304 and Femoral Component (not shown) which interfaces withTibial Insert 304. MobileBearing Knee Prosthesis 300 may include one or more diamond bearing surfaces 310 on an articulating surface ofTibial Tray 302, on an articulating surface ofTibial Insert 304, inCavity 306 and/or onPost 308. In this regard, isolation of the articulating surface of Tibial Insert 304 (e.g., the polyethylene surface) from the articulating surface ofTibial Tray 302 with the highly wear-resistant diamond bearing surface(s) 310 helps avoid the problem of backside wear typically inherent in conventional mobile bearing knee prostheses. - Referring now to
FIGS. 4A-4D , a mobile bearing knee prosthesis may includeTibial Tray 402,Tibial Insert 404 and Femoral Component (not shown) which interfaces withTibial Insert 404. The mobile bearing knee prosthesis may include diamond bearing surface(s) 410 on an articulating surface ofTibial Tray 402, on an articulating surface ofTibial Insert 404, inCavity 406 and/or onPost 408. In one example (which example is intended to be illustrative and not restrictive) 3-point contact associated with the diamond bearing surface(s) 410 may establish a plane. In another example (which example is intended to be illustrative and not restrictive) one or more of the diamond bearing surface(s) 410 (e.g., the diamond bearing surface(s) 410 on Tibial Insert 404) may be spherical or hemi-spherical in shape (e.g., to avoid or attenuate edge loading). In another example (which example is intended to be illustrative and not restrictive) one or more of the diamond bearing surface(s) 410 may be press-fit. - In another example a rotary stop mechanism may be provided to help ensure that the diamond bearing surface(s) (e.g., the posterior, medial and lateral diamond bearing surface(s)) remain engaged at all times. In another example (which example is intended to be illustrative and not restrictive) this rotary stop mechanism may be diamond against diamond. In this regard, see
FIGS. 5A and 5B , where the most anterior diamond bearing ofTibial Tray 502, for example, is elevated (to cause the medial and lateral diamond bearings on the underside of the Tibial Insert (not shown) to abut and constrain rotary motion). - Referring now to
FIGS. 6A and 6B , aTibial Tray 602 for a mobile bearing knee prosthesis may include a large diameter surface, such as a spherical surface (a Tibial Insert (not shown) may have a mating large diameter surface, such as a spherical surface, on a backside thereof). TheTibial Tray 602 may includePlane Surface 602 a (whichPlane Surface 602 a is essentially flat). In one example (which example is intended to be illustrative and not restrictive)Plane Surface 602 a may be a polyethylene component (e.g., a molded “puck”). In a further example (which example is intended to be illustrative and not restrictive) the areas designated “A” inFIG. 6A may maintain a high contact area. - Referring now to
FIGS. 7A-7C , Mobile BearingKnee Prosthesis 700 may includeTibial Tray 702,Tibial Insert 704 and Femoral Component (not shown) which interfaces withTibial Insert 704. In one example (which example is intended to be illustrative and not restrictive)Tibial Tray 702 may have a concave articulating surface andTibial Insert 704 may have a convex articulating surface. The aforementioned articulating surfaces may comprise a large radius sphere (e.g., for backside articulation of a rotating/mobile prosthesis). - In another example (which example is intended to be illustrative and not restrictive) there may be a tighter clearance at the area designated “A” in
FIG. 7B then there is at the area designated “B” inFIG. 7B . - Referring now to
FIGS. 8A-8C an embodiment adapted to aid in rotational constraint and/or control is shown. - More particularly, Mobile Bearing
Knee Prosthesis 800 may includeTibial Tray 802,Tibial Insert 804 and Femoral Component (not shown) which interfaces withTibial Insert 804. MobileBearing Knee Prosthesis 800 may have a pivoting location defined byCavity 806 that mates withPost 808. Further, Cross-pin 806A may mate withGroove 808 a such that during rotation ofTibial Insert 804 the Cross-pin 806 a acts as a rotational stop andPost 808 acts as a spring (i.e., a torsion spring to give resistance to rotation). - In one example (which example is intended to be illustrative and not restrictive) the diameter of Cross-pin 806 a and/or the size of
Groove 808 a may be varied to provide different levels of rotational constraint and/or control. - In another example (which example is intended to be illustrative and not restrictive) the Cross-pin 806 a may be installed prior to implantation of Tibial Tray 802 (whereby
Groove 808 a allowsTibial Insert 804 to be installed withTibial Tray 802 in place in the body (e.g., cemented in place). - Referring now to
FIGS. 9A-9D and 10A-10E various additional embodiments adapted to aid in rotational constraint and/or control and/or to help prevent tibial insert lift-off are shown. - More particularly, as seen in
FIGS. 9A-9C , whenTibial Insert 904 is rotated it contactsRotation Limiting Tabs 902 a of Tibial Tray 902 (to thereby wedgeTibial Insert 904 in place and inhibit further rotation). - Further, each
Rotation Limiting Tab 902 a may include Undercut 902 b to help prevent lift-off when extremes of rotation have been reached (In this regard,Tibial Insert 904 may include one ormore Lips 904 a for engagingRotational Limiting Tabs 902 a and/orUndercuts 902 b). - Further still,
Tibial Insert 904 may includePost 908 which resides inCavity 910 inTibial Tray 902, wherebyCavity 910 includesIndentation 912 for receiving RaisedPortion 914 ofPost 908.Indentation 912 and RaisedPortion 914 may thus cooperate to help prevent lift-off ofTibial Insert 904. In one example (which example is intended to be illustrative and not restrictive) the running clearance betweenPost 908 andCavity 910 may be between about 0.005 and 0.010 inches. - Further still,
FIGS. 10A and 10B show a distance “A” inside an outer wall section ofTibial Tray 1002;FIG. 10C shows distances B1, B2 and C associated with Tibial Insert 1004 (wherein distance B1 and B2 are greater than distance A and distance C is less than distance A); andFIG. 10D shows contact points betweenTibial Tray 1002 andTibial Insert 1004 whenTibial Insert 1004 is rotated (in the clockwise direction in this example). - Further still,
FIG. 10E shows detail of the interference betweenTibial Tray 1002 andTibial Insert 1004 at a contact point ofFIG. 10D andFIG. 10F shows that there is no interference at the contact point ofFIG. 10E when theTibial Insert 1004 is not rotated past a certain point (e.g., at a “neutral position”). Of note,FIGS. 10E and 10F also showRecess 1002 a, which may be used for example for poly flow and/or to aid in preventing lift-off. - Referring now to
FIG. 11 , it is seen thatMobile Bearing Knee 1100 according to an embodiment of the present invention may includeTibial Tray 1102 and Tibial Insert 1104, wherein the rotational axis A ofMobile Bearing Knee 1100 may be placed in-line with the natural axis A′ of the knee. - Referring now to
FIGS. 12A and 12B it is seen thatMobile Bearing Knee 1200 according to an embodiment of the present invention may includeTibial Tray 1202 andTibial Insert 1204. Of note, the design of theseFIGS. 12A and 12B allows retention of the posterior cruciate ligament (PCL) via clearance for the PCL (which does not require posterior stabilization offered with the PS spine (e.g., as may be required on certain other embodiments)). - In another embodiment the tibial insert may be made of Ultra High Molecular Weight Polyethylene (“UHMWPE”). In one example (which example is intended to be illustrative and not restrictive) the UHMWPE may be molded UHMWPE (which, it is believed, wears at a lower rate than machined UHMWPE).
- Referring now to
FIGS. 13A-13F , 14A-14D, 15A-15C, 16A, 16B and 17A-17C, it is noted that under these embodiments of the present invention a mobile bearing knee prosthesis may include a bi-concave interface. - In this regard, it is noted that such a bi-concave interface may aid in providing an optimal anatomic configuration of the knee while at the same time providing a sufficiently thick (e.g., in terms of wear resistance) tibial insert articulation structure (e.g., polyethylene articulation structure).
- In one example (which example is intended to be illustrative and not restrictive), such articulation structure may be about 6.5 mm thick.
- Further, referring in particular to
FIG. 17A , it is seen that the tibial insert articulation structure may have a homogeneous, or constant, thickness (i.e., thickness “X” in thisFIG. 17A ) and referring in particular toFIG. 17B , it is seen that the tibial insert articulation structure may have a non-homogeneous, or non-constant, thickness (e.g., thicker by “Y” at the area marked “A” and “B” in thisFIG. 17B ). - Further still, such a bi-concave interface may aid in coping with the potential shear stress provided by lift-off during movement by the patient (see
FIG. 17C , showing an aspect of the invention directed to self-centering against lift-off and reduction or elimination of shear stress to the pivot feature (e.g., axial post)). - Of still further note, the embodiments of these
FIGS. 13A-13F , 14A-14D, 15A-15C, 16A, 16B and 17A-17C may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above. - Referring now to
FIGS. 18A and 18B , a mobile bearing knee prosthesis according to an embodiment of the present invention may include an interface (e.g., a spherical radius interface) comprised of a convex superior surface on the tibial tray and a concave inferior surface on the tibial insert (of note, such a spherical radius may have an inherent tendency to self-align). - Of note, the aforementioned configuration may help reduce wear at the interface between the tibial insert and the tibial tray by ejecting abrasive material (e.g., polyethylene particles created by relative movement at the interface) out from the interface (see
FIG. 18A ). - Of further note, as seen in
FIG. 18B , the thickness of the material forming the tibial insert may vary as required (e.g., for optimum wear resistance vs. ease of movement). In one example (which example is intended to be illustrative and not restrictive), the areas marked “A” and “B” may be thicker than the area marked “C”. - Of still further note, the embodiments of these
FIGS. 18A and 18B may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above. - Referring now to
FIGS. 19A and 19B , it is again noted that a mobile bearing knee prosthesis according to the present invention may incorporate an eccentered (or offset) pivoting feature (e.g., axial post). More particularly, in one embodiment such an eccentered pivoting feature may serve (e.g., during movement by the patient) to decrease the anterior translation associated with the medial condolyte and increase the roll back (posterior translation) associated with the lateral condolyte. In this regard, see, for example,FIGS. 19A and 19B , whereFIG. 19A shows the large anterior translation associated with a central pivot (e.g., at 700 of external rotation of the femur in relation to the tibia) and whereFIG. 19B shows the smaller anterior translation associated with a medially offset pivot (e.g., at 700 of external rotation of the femur in relation to the tibia). More particularly, theseFIGS. 19A and 19B show that the offset pivot results in a relatively smaller anterior translation associated with the medial condolyte and a relatively larger posterior translation associated with the lateral condolyte. - Further, it is noted that the embodiments of these
FIGS. 19A and 19B may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above. - Referring now to
FIGS. 20A-20E , it is noted that certain embodiments of the present invention relate to use of an offset pivot component (e.g., using an offset axial post) in association with other components which may otherwise be configured for use with a non-offset pivot component. - For example (which example is intended to be illustrative and not restrictive), an asymmetric component (e.g., offset axial post) may be utilized in association with a symmetric tibial tray and symmetric bearing (e.g., polyethylene bearing) to operate on a “cam” concept.
FIG. 20A shows a plan view of a polyethylene bearing (under a no rotation condition) according to this embodiment andFIG. 20B shows a plan view of a tibial tray (under a no rotation condition) according to this embodiment. Further,FIG. 20C shows the eccentric center of rotation (at point A) associated with external rotation (right knee) andFIG. 20D shows the eccentric center of rotation (at point B) associated with external rotation (left knee). - Further,
FIG. 20E shows a plan view utilizing a “Beam” shape. - Further still, it is noted that the embodiments of these
FIGS. 20A-20E may include one or more internal stop mechanisms (e.g., for rotational constraint and/or control). Moreover, the embodiments of theseFIGS. 20A-20E may be used in connection with a tibial insert and/or a tibial tray having an interface surface which includes flat, concave and/or convex portions. - Further still, it is noted that the embodiments of these
FIGS. 20A-20E may, of course, include some or all of the various pivoting, translating, locking, rotational constraint and/or control features described above. - Of note, for the same size of knee prosthesis (e.g., size 3), the contact area between the tibial insert and the tibial tray may be higher for a “wave” design than for a flat design (e.g., ten percent higher contact area). Under certain circumstances, it may be desired to minimize this contact area.
- Thus, in one embodiment, this contact area between the tibial insert and the tibial tray may be minimized by reducing the congruence factor of the second bearing. It is noted that this solution is not possible for a flat design, for which the congruence factor is always equal to one. It is further noted that an advantage of the congruence factor approach is when contact only occurs on the loaded area.
- In another embodiment, wear due to contact between the post and the hole may be decreased because shear stress is absorbed by the tibial tray (e.g., by the medial part of the “wave”).
- In another embodiment, a mobile bearing knee prosthesis is provided, comprising: a tibial tray for interfacing with a tibia of a patient; and a tibial insert disposed adjacent the tibial tray; wherein the tibial insert is capable of movement relative to the tibial tray and the movement of the tibial insert relative to the tibial tray includes at least pivotal movement; wherein the pivotal movement is around an axis of rotation defined by a post extending from a bottom surface of the tibial insert into a hole provided on an upper surface of the tibial tray; wherein the hole provided on the upper surface of the tibial tray is provided at a substantially circular raised location; wherein the substantially circular raised location curves downward away from the hole along both a medial-lateral axis of the tibial tray and an anterior-posterior axis of the tibial tray; wherein at least a portion of a medial edge of the tibial tray and at least a portion of a lateral edge of the tibial tray curve upward as the medial edge and the lateral edge are approached; and wherein the bottom surface of the tibial insert is configured to be substantially complementary to the top surface of the tibial tray when the tibial insert and the tibial tray are aligned in both the medial-lateral axis and the anterior-posterior axis.
- In one example, an upper surface of the tibial insert may be configured to receive a femoral component which interfaces with a femur of the patient.
- In another example, a mechanism for providing at least one of rotational control and rotational constraint to movement of the tibial insert relative to the tibial tray may be provided.
- In another example, the mechanism for providing at least one of rotational control and rotational constraint to movement of the tibial insert relative to the tibial tray may comprise a cross-pin disposed within the hole and a groove disposed on the post, wherein the cross-pin is received within the groove.
- In another example, the mechanism for providing at least one of rotational control and rotational constraint to movement of the tibial insert relative to the tibial tray may comprise at least a first tab disposed along the medial edge of the tibial tray and at least a second tab disposed along the lateral edge of the tibial tray, wherein the first tab contacts the tibial insert to provide at least one of the rotational control and the rotational constraint during rotation in a first direction and the second tab contacts the tibial insert to provide at least one of the rotational control and the rotational constraint during rotation in a second direction.
- In another example, the first tab may include a first undercut for receiving a first edge of the tibial insert and the second tab may include a second undercut for receiving a second edge of the tibial insert.
- In another example, the mobile bearing knee prosthesis may further comprise a mechanism for substantially preventing lift-off of the tibial insert from the tibial tray.
- In another example, the mechanism for substantially preventing lift-off of the tibial insert from the tibial tray may comprise a raised portion on the post cooperating with an indentation in a portion of the tibial tray defining the hole therein.
- In another example, the mechanism for substantially preventing lift-off of the tibial insert from the tibial tray may comprise at least a first tab disposed along the medial edge of the tibial tray and at least a second tab disposed along the lateral edge of the tibial tray, wherein the first tab includes a first undercut for receiving a first edge of the tibial insert and the second tab includes a second undercut for receiving a second edge of the tibial insert.
- In another example, at least one of the hole and the post may be substantially circular.
- In another example, the hole and the raised location may be disposed at a substantially central location along the medial-lateral axis of the tibial tray.
- In another example, the hole and the raised location may be disposed at a substantially central location along the anterior-posterior axis of the tibial tray.
- In another example, the upper surface of the tibial tray may comprise metal and the lower surface of the tibial insert may comprise polyethelene.
- In another example, the tibial tray may be formed of metal and the tibial insert may be formed of polyethelene.
- In another embodiment, a mobile bearing knee prosthesis is provided, comprising: a tibial tray for interfacing with a tibia of a patient; and a tibial insert disposed adjacent the tibial tray; wherein the tibial insert is capable of movement relative to the tibial tray and the movement of the tibial insert relative to the tibial tray includes at least pivotal movement; wherein the pivotal movement is around an axis of rotation defined by a first cooperating element associated with a bottom surface of the tibial insert and a second cooperating element associated with an upper surface of the tibial tray; wherein the second cooperating element is provided at a substantially circular raised location on the upper surface of the tibial tray; wherein the substantially circular raised location curves downward away from the second cooperating element along both a medial-lateral axis of the tibial tray and an anterior-posterior axis of the tibial tray; wherein at least a portion of a medial edge of the tibial tray and at least a portion of a lateral edge of the tibial tray curve upward as the medial edge and the lateral edge are approached; and wherein the bottom surface of the tibial insert is configured to be substantially complementary to the top surface of the tibial tray when the tibial insert and the tibial tray are aligned in both the medial-lateral axis and the anterior-posterior axis.
- In one example, an upper surface of the tibial insert may be configured to receive a femoral component which interfaces with a femur of the patient.
- In another embodiment, a mobile bearing knee prosthesis is provided, comprising: a tibial tray for interfacing with a tibia of a patient; and a tibial insert disposed adjacent the tibial tray; wherein the tibial insert is capable of movement relative to the tibial tray and the movement of the tibial insert relative to the tibial tray includes at least pivotal movement; wherein the pivotal movement is around an axis of rotation provided by a first cooperating element associated with a bottom surface of the tibial insert and a second cooperating element associated with a top surface of the tibial tray; wherein the tibial tray includes at least a first diamond bearing surface; wherein the tibial insert includes at least a second diamond bearing surface; and wherein at least a portion of the first diamond bearing surface and at least a portion of the second diamond bearing surface bear against one another.
- In one example, an upper surface of the tibial insert may be configured to receive a femoral component which interfaces with a femur of the patient.
- In another example, the first diamond bearing surface may include a plurality of diamonds.
- In another example, the second diamond bearing surface may include a plurality of diamonds.
- In another example, the first diamond bearing surface may include a plurality of diamonds and the second diamond bearing surface may include a plurality of diamonds.
- In another example, at least one of the diamonds of the first diamond bearing surface may extend beyond the other diamonds of the first diamond bearing surface such that the raised diamond cooperates with at least a portion of the second diamond bearing surface to provide rotational constraint to movement of the tibial insert relative to the tibial tray.
- In another example, at least one of the diamonds of the second diamond bearing surface may extend beyond the other diamonds of the second diamond bearing surface such that the raised diamond cooperates with at least a portion of the first diamond bearing surface to provide rotational constraint to movement of the tibial insert relative to the tibial tray.
- Reference will now be made to an artificial axis of rotation (“AAR”) concept, under which the shape of the second bearing creates a desired axis of rotation (e.g., one and only one axis of rotation).
- More particularly, the following description applies to a mobile bearing knee prosthesis associated with one rotational degree of freedom between the tibial insert and tibial tray. The AAR may be used for tibial insert rotation relative to the tibial tray; may be substantially perpendicular to the bottom surface of the tibial tray; and may or may not be in a substantially central position of the tibial tray. Because the AAR of various embodiments is sufficient to guide the tibial insert in rotation relative to the tibial tray, a central peg may no longer be necessary.
FIGS. 22A-22D show various examples (which examples are intended to be illustrative and not restrictive), of how the AAR concept may be applied such that the bottom surface of the tibial insert and the upper surface of the tibial tray provide a unique axis, which is characterized as the axis of revolution (or neutral axis) for these surfaces (such a unique axis may be contrasted, for example, with the spherical surface (concave or convex) ofFIG. 21 , which provides an infinite number of axes of revolution). - In any case, as seen in
FIGS. 22A-22D , various surfaces associated with an AAR may be obtained by rotating any desired geometric form around a desired axis of revolution. - More particularly, as seen in
FIG. 22A , the upper surface of the tibial tray may be obtained by rotating a circle around an axis (the geometry of this Fig. is named “wave”), but the center of the circle+ does not belong to the axis (if the center of the circle belongs to the axis, the result isFIG. 21 ). - Further, as seen in
FIG. 22B , the upper surface of the tibial tray may be obtained by rotating a concave form around an axis, but the center of the circle of the form of this example does not belong to the axis (if it did, there would be no unique AAR-like depicted inFIG. 21 ). - Further still, as seen in
FIG. 22C , the upper surface of the tibial tray may be obtained by rotating a free form around an axis. - Further still, as seen in
FIG. 22D , the upper surface of the tibial tray may be obtained by rotating different form around an axis. - As mentioned above, the unique axis of the examples of
FIGS. 22A-22D represents the axis of revolution of the tibial insert relative to the tibial tray. In other words, a post and hole mechanism may be unnecessary (unlike the typical MBKs available on the market). This is because the shape of the tibial tray upper surface provides a unique rotational axis. Also, because the bottom surface of the tibial insert is configured to be substantially complementary to the upper surface of the tibial tray, both components self-align. - Of course, in another example, if a post and hole mechanism exists between the tibial insert and tibial tray (e.g., to prevent dislocation) the AAR could be parallel to the axis of revolution of the post or hole.
- Further, in another example, if a post and hole mechanism exists between the tibial insert and tibial tray (e.g., to prevent dislocation), the AAR may or may not be collinear to the axis of revolution of the post or hole.
- Reference will now be made to a discussion of various advantages of the AAR concept (e.g., as provided by a constraint shape second bearing). The examples used to illustrate some of these advantages are obtained by the revolution of a spherical part around an axis, which is co-linear with the axis of a central peg, to the extent used (of course, these examples are intended to be illustrative and not restrictive).
- The aforementioned advantages will be explained based on three points: (a) Self centered design; (b) Predictable kinematics; and (c) Low wear expectation.
- Referring first to self-centered design, it is noted that a conventional MBK typically uses a flat second bearing. As a consequence of this, the constraint between the tibial insert and the tibial tray is typically provided by a rotational guide device. The following are two conventional designs for this rotational guide device: (a) UHMWPE central peg inside a tibial tray hole (so-called “cone-in-cone” design), such as the LCS or ERP from DePuy; and (b) tibial tray post inside a cavity specially designed in the UHMWPE tibial insert, such as LPS mobile bearing knee from Zimmer, Rotaglide from Corin (
FIG. 23 shows an example of such a conventional tibial tray post that engages in a cylindrical cavity specially designed on the bottom surface of the UHMWPE tibial insert). - Typically, such a rotational guide device covers two functions. First of all, this device defines a fixed axis of rotation for the tibial insert relative to the tibial tray. In addition, it provides an anti-dislocation function in case of large subluxation or distraction.
- However, there is typically a tradeoff required in performing these two functions. That is, the “cone-in-cone” design is believed to be primarily a safety anti-dislocation system (due to its length), but because the second bearing is flat, essentially all the shear forces are absorbed by the central peg (which increases UHMWPE wear and fracture risk). On the other hand, the tibial tray post solution is believed to offer a safer environment for the UHMWPE wear (e.g., less risk of breakage), but results in a poor anti-dislocation device (due to the short length of the post).
- Thus, under various embodiments of the present invention, a unique constraint second bearing is provided (which differs significantly from the conventional flat second bearing). That is (as discussed above), the second bearing shape according to this embodiment of the present invention could be described as a wave formed by the revolution of a spherical tool around an axis, wherein the axis may be collinear to an axis of a tibial tray hole designed to receive a central peg of a UHMWPE tibial insert (as seen in
FIG. 24 , a “wave” may be obtained by the revolution of the spherical tool around an axis which is collinear to the neutral axis of the tibial tray hole designed to receive the UHMWPE central peg). - One benefit of this characteristic is that the tibial insert rotates around the AAR provided by the wav shape and not around the neutral axis of the tibial tray hole.
- Given this, the UHMWPE central peg may be designed only to prevent dislocation in cases of severe subluxation or distraction (such that during common activities, essentially no shear stress is anticipated on the central peg, so the peg diameter may be smaller than in conventional “cone-in-cone” designs). Further, the self-centering design of the second bearing may provide an artificial axis of rotation distinct from the UHMWPE central peg axis, which allows the tibial insert to rotate relative the tibial tray.
- Referring now to predictable kinematics (e.g., in the context of predictable rotation), it is noted (as stated previously) that conventional MBKs are typically associated with a flat second bearing. Because a flat second bearing provides essentially no constraint in the transverse plane, the gap of the rotational guide device (e.g., “cone-in cone” design or tibial tray post) is typically relatively tight in order to avoid any unwanted motion in the transverse plane, under the action of the shear forces (see
FIG. 25 , showing that by using a typically tight gap between the central peg and the hole, excess friction can cause binding over time). - In this regard, in-vivo, the UHMWPE could absorb fluid over time. This absorption might increase the UHMWPE central peg diameter (in “cone-in-cone” designs) or decrease the cavity diameter (in tibial tray post designs). In this case, due to the tightened gap between the components, the friction between the tibial components will increase and could lead to tibial insert-tibial tray binding (see again,
FIG. 25 ). - Of course, a purpose of a MBK is to allow tibial insert mobility relative to the tibial tray during surgery and postoperatively. This may even be a critical feature of conventional MBKs, because these prostheses typically offer a highly congruent first bearing. As a result, when the tibial insert binds with the tibial tray, the torque is transmitted more readily to the implant-bone interface, increasing the potential for implant loosening.
- Because of the self-centering design of the second bearing provided by various AAR embodiments of the present invention, the tibial insert rotates around the artificial axis of revolution created by the wave surface. One benefit to this design is that the UHMWPE central peg of the tibial insert (if such central peg is even used) may be essentially limited to the anti-dislocation function, so the gap between the tibial insert central peg and tibial tray hole may be slightly increased to help avoid risk of tibial insert-tibial tray binding over time (see
FIG. 26 , which shows that in comparison with typical conventional MBKs with flat second bearings, the prosthesis according to an embodiment of the present invention may provide a larger gap between the central peg and the hole (to the extent they are used) to help avoid tibial insert-tibial tray binding. - Referring now to predictable kinematics (e.g., in the context of predictable torque), it is noted that certain in-vivo fluoroscopic data suggested that the kinematics at the second bearing for a large subset (˜50%) of patients might not have had the intended motion. One potential reason is that the maximum resistance torque needed to initiate rotation at the second bearing in these patients is higher than the range of peak torques developed in a TKA patient.
- With conventional MBKs (e.g., associated with a flat second bearing), the resistance torque is typically substantially dependent on the surface contact between the tibial insert and the tibial tray. In these devices, it appears that the location of the surface contact seems essentially dependent on the flatness of the tibial surfaces in contact (see
FIGS. 27A-27C , showing the location of the contact between the tibial components for a conventional MBK associated with a flat second bearing—the contact could be medial (i.e. near the central peg) as in 27A or be lateral as in 27B;FIG. 27C is an illustration of a conventional MBK with a flat second bearing showing a very lateral contact between the tibial insert and the tibial tray.). - More particularly, a prosthesis showing medial contact (
FIG. 27A ) will require significantly less torque to initiate rotation at the second bearing than one with lateral contact (FIG. 27B ). When the test specimen shows significant lateral contact (FIG. 27C ), the torque defined by ISO 14243-1 (i.e. 6 N.m) is inferior to the resistance torque. As a result, no rotation occurs at the second bearing during the kinematic test. - Due, for example, to the wave shape and an appropriate congruency ratio between the tibial components according to the an embodiment of the present invention, the surface contact between the tibial insert and tray occurs along the deepest line of the wave (see
FIG. 28 , showing that in this embodiment of the present invention the location of the contact between the tibial components occurs along the deepest line of the second bearing—because this location is predictable, the resisting torque is also predictable.). - Thus, at least one advantage of this “controlled” surface contact location is predictable resistance torque (this has been well demonstrated by a wear test, as all three test specimens showed similar kinematics in response to tibial rotational torque—a similar observation resulted from an analysis of the tibial inserts according to an embodiment of the present invention after an in-vitro test; both tibial inserts showed essentially identical contact area on the second bearing).
- Referring now to low wear expectation, it is noted that with the conventional MBK, associated with a flat second bearing, the shear component of the eccentric joint loading has a considerable effect on the wear. In fact, because the second bearing is flat, the shear component of the load is totally transmitted to the central peg causing high peg stresses, and potential source of wear (see
FIGS. 29A and 29B , showing (in connection with a conventional MBK associated with a flat second bearing) that the shear component of eccentric load is transmitted to the central peg (FIG. 29A ), which creates high stress on the peg due to the low contact area between the central peg and the hole (FIG. 29B ). - In contrast, because of the wave shape of various embodiments of the present invention, which wave shape absorbs the shear component of the joint load (e.g., until about 30° of valgus-varus angle) on its internal curvature, essentially no shear stress is transmitted to a central peg (to the extent that such central peg is even used). In this regard, see
FIG. 30 , showing that in this example (which example is intended to be illustrative and not restrictive), until about 30°, the shear component of the joint load is borne by the internal curvature of the wave. There are at least two advantages to this—a potential source of wear is essentially eliminated, and the central peg diameter may be significantly reduced (to the extent that a central peg is even used), because essentially no load is anticipated on the peg. A smaller UHMWPE central peg means that the cavity in the tibia for the stem is also smaller, which may help preserve the cancellous bone stock. - In fact, this advantage has been shown by a wear test performed by Endolab (DE) according to the standard ISO14243-1. For this, the total knee joint prosthesis according to an embodiment of the present invention was mounted in an apparatus, which applied a cyclic variation of flexion/extension angle and contact force to the interface between tibial and femoral components, simulating normal human walking. The tibia component was free to move relative to the femoral component under the influence of the applied contact forces, this motion having all degrees of freedom except for the flexion/extension angle, which follows a specified cyclic variation.
- The applied contact force actions were:
-
- Axial force
- Anterior-posterior force
- Tibial rotation torque
- Line of action of the axial force was offset by 0.07*W in the medial direction from the tibial axis, where W was the overall width of the tibial component.
- Analysis of the test specimens after the completion (of about 5 million cycles) of the wear test confirmed the initial hypothesis: no evidence of wear showed on a central peg (see
FIG. 31 ), this is in contrast to a conventional MBK associated with a flat second bearing (seeFIG. 29B ). - According to another aspect of the wear test specimens analyzed, it was interesting to verify that the contact between the tibial insert and the tibial tray occurred along the deepest line of the wave, as was expected. The shear stress created by the anterior-posterior force during the wear test was absorbed by the internal curvature of the posterior portion of the tibial tray (see
FIG. 32 —the polished area is well defined within the expected region of the wave; the shear stress (due to the anterior-posterior force) was absorbed by the internal curvature of the wave (on the posterior portion) as shown in this Fig. by the stripped area). - Of course, it is well established that the contact stress decreases with the thickness of the tibial insert: thicker is the tibial insert, lower is the contact stress. In comparison with a conventional FBK, a conventional MBK typically has no out profile ring. In order to compensate this, the conventional MBK associated with a flat second bearing typically utilizes a thicker tibial tray. This increasing of thickness of the tibial tray is made at the detriment of the tibial insert thickness. In other words, for the same composite (i.e. tibial tray—tibial insert assembly) thickness, the conventional MBK tibial insert will be thinner than one associated with a conventional FBK.
- Another drawback of the flat second bearing is the thickness of the tibial insert is typically thinnest at the site of the maximum load (see
FIG. 33 —showing that for the conventional MBK associated with a flat second bearing, the thickness of the tibial insert is typically thinnest at the site of the maximum load.). - In contrast, due at least in part to the wave shape of various embodiments of the present invention, the thickness of the tibial insert is essentially constant along the medio-lateral axis (see
FIG. 34 —showing that the thickness of the tibial insert of this example of the present invention is essentially constant along the medio-lateral axis (e.g., due at least in part to the wave shape) and that the thickness of the tibial insert of this example of the present invention is higher than typically found with a conventional MBK tibial insert, at the site of the maximum load). - In comparison with the typical conventional tibial trays associated with a flat second bearing, the tibial tray of this example of the present invention is thinner at the level of the deepest portion of the wave, and is thicker at the level of the internal and external curvatures of the wave.
- Advantageously, the thicker portion of the tibial tray provides an increasing of the mechanical strength, while the thinner portion allows an increasing of the thickness of the tibial insert. This is well demonstrated in Table 1 by a comparison of the thickness distribution between one example of the present invention and a well-known conventional MBK currently available on the market (for a 10 mm composite assembly):
TABLE 1 Example of the Thickness at the site of Conventional present the maximum load (in mm) MBK invention Tibial insert 5.2 6.5 (+25%) Tibial tray 4.8 3.5 Thickness of the composite 10 - Thus, as seen above, due at least in part to the wave shape, the thickness of the tibial insert of this example of the present invention is 25% higher than in a conventional MBK, while there is essentially no sacrifice in tibial tray strength.
- While a number of embodiments of the present invention have been described, it is understood that these embodiments are illustrative only, and not restrictive, and that many modifications may become apparent to those of ordinary skill in the art. For example, one or more appropriate fasteners may be used to assemble the mobile bearing knee prosthesis of the present invention (e.g., a screw or bolt to hold the tibial insert in correct orientation relative to the tibial tray). Further, the mobile bearing knee prosthesis of the present invention may provide a bearing which predicts position, self-aligns, and/or self-centers. Further still, the metal may be polished using any desired technique (e.g., a drill with polishing compound). Further still, the tibial insert may be smaller than the tibial tray (at least in certain dimensions) to prevent overhang during rotation (this may be accomplished, for example, by reducing the size of the medial/lateral aspect of the tibial insert). Further still, one or more of the mating articulating surfaces may be formed of poly, metal, diamond (distinct pieces and/or “coating”), ceramic, polyether ether ketone (“PEEK”) and/or any other desired low friction articular materials. Further still, the tibial tray, the tibial insert and/or the femoral component may utilize, for example, a molded-on-metal configuration (e.g., UHMWP molded-on-metal). Further still, the tibial tray, the tibial insert and/or the femoral component may comprise, for example, cobalt chrome and/or titanium. Further still, the femoral component may interface with (e.g., be attached to) the femur of the patient using any desired mechanism (e.g., cement, one or more undercuts and matching protrusions, mechanical fasteners (e.g., screws), etc.). Further still, the tibial tray may interface with (e.g., be attached to) the tibia of the patient using any desired mechanism (e.g., cement, one or more undercuts and matching protrusions, mechanical fasteners (e.g., screws), etc.). Further still, one or more parts of the mobile bearing knee prosthesis according to the present invention may be used to “retrofit” existing prosthesis/components. Further still, the term “mobile bearing knee prosthesis” is, of course, intended to include (but not be limited to) “rotating platform” type mechanisms and “mensical bearing” type mechanisms.
Claims (50)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/356,802 US7708782B2 (en) | 2003-07-17 | 2006-02-17 | Mobile bearing knee prosthesis |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48790703P | 2003-07-17 | 2003-07-17 | |
US55136904P | 2004-03-09 | 2004-03-09 | |
US10/894,146 US7422605B2 (en) | 2003-07-17 | 2004-07-19 | Mobile bearing knee prosthesis |
US65387205P | 2005-02-17 | 2005-02-17 | |
US11/356,802 US7708782B2 (en) | 2003-07-17 | 2006-02-17 | Mobile bearing knee prosthesis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/894,146 Continuation-In-Part US7422605B2 (en) | 2003-07-17 | 2004-07-19 | Mobile bearing knee prosthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060195195A1 true US20060195195A1 (en) | 2006-08-31 |
US7708782B2 US7708782B2 (en) | 2010-05-04 |
Family
ID=36932858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/356,802 Expired - Fee Related US7708782B2 (en) | 2003-07-17 | 2006-02-17 | Mobile bearing knee prosthesis |
Country Status (1)
Country | Link |
---|---|
US (1) | US7708782B2 (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070203582A1 (en) * | 2006-02-28 | 2007-08-30 | Howmedica Osteonics Corp. | Modular tibial implant |
EP1974696A1 (en) * | 2007-03-30 | 2008-10-01 | Depuy Products, Inc. | Mobile bearing assembly having a non-planar interface |
WO2009121450A1 (en) * | 2008-04-05 | 2009-10-08 | Aesculap Ag | Knee endoprosthesis |
US20090319048A1 (en) * | 2008-02-18 | 2009-12-24 | Maxx Orthopedics, Inc. | Total Knee Replacement Prosthesis |
US20100063594A1 (en) * | 2007-09-28 | 2010-03-11 | Hazebrouck Stephen A | Fixed-bearing knee prosthesis having interchangeable components |
US20110004316A1 (en) * | 2009-07-01 | 2011-01-06 | David Murray | Method of Implanting a Unicondylar Knee Prosthesis |
US20110035017A1 (en) * | 2007-09-25 | 2011-02-10 | Depuy Products, Inc. | Prosthesis with cut-off pegs and surgical method |
US20120035736A1 (en) * | 2001-12-14 | 2012-02-09 | Btg International Limited | Tibial component |
US8147558B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing assembly having multiple articulation interfaces |
US8147557B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing insert having offset dwell point |
US8187335B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US8328874B2 (en) | 2007-03-30 | 2012-12-11 | Depuy Products, Inc. | Mobile bearing assembly |
US20130018477A1 (en) * | 2011-07-13 | 2013-01-17 | The General Hospital Corporation D/B/A Massachusetts General Hospital | Methods and Devices for Knee Joint Replacement with Anterior Cruciate Ligament Substitution |
US20130184829A1 (en) * | 2007-09-28 | 2013-07-18 | Joseph G. Wyss | Fixed-bearing knee prosthesis having interchangeable components |
US20130184830A1 (en) * | 2007-09-25 | 2013-07-18 | Stephen A. Hazebrouck | Fixed-bearing knee prosthesis having interchangeable components |
WO2013115849A1 (en) * | 2012-01-30 | 2013-08-08 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US8568486B2 (en) | 2010-07-24 | 2013-10-29 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US8591594B2 (en) | 2010-09-10 | 2013-11-26 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US8628580B2 (en) | 2010-07-24 | 2014-01-14 | Zimmer, Inc. | Tibial prosthesis |
US8715359B2 (en) | 2009-10-30 | 2014-05-06 | Depuy (Ireland) | Prosthesis for cemented fixation and method for making the prosthesis |
US8758444B2 (en) | 2011-11-21 | 2014-06-24 | Zimmer, Inc. | Tibial baseplate with asymmetric placement of fixation structures |
US8764841B2 (en) | 2007-03-30 | 2014-07-01 | DePuy Synthes Products, LLC | Mobile bearing assembly having a closed track |
US8828086B2 (en) | 2008-06-30 | 2014-09-09 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8900316B2 (en) | 2010-01-29 | 2014-12-02 | Smith & Nephew, Inc. | Cruciate-retaining knee prosthesis |
CN104490493A (en) * | 2014-12-29 | 2015-04-08 | 北京市春立正达医疗器械股份有限公司 | Knee-joint rotating platform prosthesis |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US20160278930A1 (en) * | 2014-05-30 | 2016-09-29 | Stryker Corporation | Stepped tibial baseplate |
US9492280B2 (en) | 2000-11-28 | 2016-11-15 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US9642711B2 (en) | 2003-10-17 | 2017-05-09 | Smith & Nephew, Inc. | High flexion articular insert |
US10188530B2 (en) | 2010-12-17 | 2019-01-29 | Zimmer, Inc. | Provisional tibial prosthesis system |
US10278827B2 (en) | 2015-09-21 | 2019-05-07 | Zimmer, Inc. | Prosthesis system including tibial bearing component |
US10675153B2 (en) | 2017-03-10 | 2020-06-09 | Zimmer, Inc. | Tibial prosthesis with tibial bearing component securing feature |
CN111920551A (en) * | 2020-07-28 | 2020-11-13 | 北京市春立正达医疗器械股份有限公司 | Primary total ankle joint prosthesis |
US10835380B2 (en) | 2018-04-30 | 2020-11-17 | Zimmer, Inc. | Posterior stabilized prosthesis system |
US10898337B2 (en) | 2011-11-18 | 2021-01-26 | Zimmer, Inc. | Tibial bearing component for a knee prosthesis with improved articular characteristics |
US10898338B1 (en) * | 2018-01-17 | 2021-01-26 | Matthew Budge | Reverse shoulder prosthesis |
US20220000627A1 (en) * | 2018-11-09 | 2022-01-06 | Signature Orthopaedics Europe Ltd | A revision knee system |
US11278416B2 (en) | 2019-11-14 | 2022-03-22 | Howmedica Osteonics Corp. | Concentric keel TKA |
US11324598B2 (en) | 2013-08-30 | 2022-05-10 | Zimmer, Inc. | Method for optimizing implant designs |
US11324599B2 (en) | 2017-05-12 | 2022-05-10 | Zimmer, Inc. | Femoral prostheses with upsizing and downsizing capabilities |
US11426282B2 (en) | 2017-11-16 | 2022-08-30 | Zimmer, Inc. | Implants for adding joint inclination to a knee arthroplasty |
US12121450B2 (en) | 2021-01-20 | 2024-10-22 | Knollwood Orthopedic Innovations Llc | Reverse shoulder prosthesis |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US9271840B2 (en) | 2010-03-10 | 2016-03-01 | John Keggi | Low stress all poly tibial component |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
CN106913366B (en) | 2011-06-27 | 2021-02-26 | 内布拉斯加大学评议会 | On-tool tracking system and computer-assisted surgery method |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10548735B2 (en) | 2015-08-06 | 2020-02-04 | Howmedica Osteonics Corp. | Modular hinge knee prosthesis and improvements of same |
US10722372B2 (en) | 2016-07-05 | 2020-07-28 | Howmedica Osteonics Corp. | Hinge knee preparation instrumentation and associated methods |
US10231840B2 (en) | 2016-07-27 | 2019-03-19 | Howmedica Osteonics Corp. | Low profile tibial baseplate with fixation members |
US11596519B2 (en) | 2019-07-16 | 2023-03-07 | Howmedica Osteonics Corp. | Hinge knee assembly guide |
Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE29757E (en) * | 1971-04-21 | 1978-09-12 | Replacements for bicondylar joints in human limbs | |
US4205400A (en) * | 1978-12-04 | 1980-06-03 | Zimmer Usa, Inc. | Metallo-polymeric prosthesis with cavitied interconnection |
US4215439A (en) * | 1978-10-16 | 1980-08-05 | Zimmer, USA | Semi-restraining knee prosthesis |
US4224696A (en) * | 1978-09-08 | 1980-09-30 | Hexcel Corporation | Prosthetic knee |
US4268920A (en) * | 1977-10-05 | 1981-05-26 | GMT Gesellschaft fur med. Technik mbH | Endoprosthesis for a knee joint |
US4538305A (en) * | 1981-05-19 | 1985-09-03 | Gmt Gesellschaft Fur Medizinische Technik Mbh | Articulated prosthesis |
US4538306A (en) * | 1982-06-26 | 1985-09-03 | Feldmuhle Aktiengesellschaft | Implantable elbow joint |
US4759767A (en) * | 1987-08-10 | 1988-07-26 | Dow Corning Wright Corporation | Prosthesis for tibial component of knee joint |
US4795468A (en) * | 1987-12-23 | 1989-01-03 | Zimmer, Inc. | Mechanism and method for locking a bearing insert to the base of a prosthetic implant |
US4822365A (en) * | 1986-05-30 | 1989-04-18 | Walker Peter S | Method of design of human joint prosthesis |
US4822366A (en) * | 1986-10-16 | 1989-04-18 | Boehringer Mannheim Corporation | Modular knee prosthesis |
US4936853A (en) * | 1989-01-11 | 1990-06-26 | Kirschner Medical Corporation | Modular knee prosthesis |
US4950298A (en) * | 1988-04-08 | 1990-08-21 | Gustilo Ramon B | Modular knee joint prosthesis |
US4950297A (en) * | 1984-12-20 | 1990-08-21 | Chas F Thackray Limited | Knee prosthesis |
US4959071A (en) * | 1988-02-03 | 1990-09-25 | Biomet, Inc. | Partially stabilized knee prosthesis |
US4985037A (en) * | 1989-05-22 | 1991-01-15 | Petersen Thomas D | Universal modular prosthesis stem extension |
US5064437A (en) * | 1990-02-16 | 1991-11-12 | Friedrichsfeld Ag Keramik- Und Kunststoffwerke | Knee joint endoprosthesis |
US5071438A (en) * | 1990-11-07 | 1991-12-10 | Intermedics Orthopedics, Inc. | Tibial prothesis with pivoting articulating surface |
US5116376A (en) * | 1988-10-18 | 1992-05-26 | University College London | Knee prosthesis |
US5123928A (en) * | 1989-07-07 | 1992-06-23 | Eska Medical Luebeck Medizintechnik Gmbh | Knee joint endoprosthesis |
US5137536A (en) * | 1990-03-16 | 1992-08-11 | Nariko Koshino | Tibial component for artificial knee joint |
US5152796A (en) * | 1988-12-27 | 1992-10-06 | Johnson & Johnson Orthopaedics, Inc. | Modular knee prosthesis |
US5194066A (en) * | 1988-01-11 | 1993-03-16 | Boehringer Mannheim Corporation | Modular joint prosthesis |
US5226915A (en) * | 1992-04-03 | 1993-07-13 | Bertin Kim C | Femoral prosthesis component system for knee replacement surgery |
US5271737A (en) * | 1992-09-04 | 1993-12-21 | U.S. Medical Products, Inc. | Tibial prosthetic implant with offset stem |
US5290313A (en) * | 1992-11-23 | 1994-03-01 | Zimmer, Inc. | Offset prosthetic stem extension |
US5330534A (en) * | 1992-02-10 | 1994-07-19 | Biomet, Inc. | Knee joint prosthesis with interchangeable components |
US5358530A (en) * | 1993-03-29 | 1994-10-25 | Zimmer, Inc. | Mobile bearing knee |
US5556432A (en) * | 1991-12-11 | 1996-09-17 | Joachim Theusner | Artificial joint |
US5556433A (en) * | 1994-12-01 | 1996-09-17 | Johnson & Johnson Professional, Inc. | Modular knee prosthesis |
US5593449A (en) * | 1994-03-04 | 1997-01-14 | Smith & Nephew Richards Inc. | Dual taper stem extension for knee prosthesis |
US5683472A (en) * | 1995-12-29 | 1997-11-04 | Johnson & Johnson Professional, Inc. | Femoral stem attachment for a modular knee prosthesis |
US5683468A (en) * | 1995-03-13 | 1997-11-04 | Pappas; Michael J. | Mobile bearing total joint replacement |
US5776200A (en) * | 1995-02-15 | 1998-07-07 | Smith & Nephew, Inc. | Tibial trial prosthesis and bone preparation system |
US5782921A (en) * | 1996-07-23 | 1998-07-21 | Johnson & Johnson Professional, Inc. | Modular knee prosthesis |
US5782920A (en) * | 1996-11-14 | 1998-07-21 | Johnson & Johnson Professional, Inc. | Offset coupling for joint prosthesis |
US6039764A (en) * | 1997-08-18 | 2000-03-21 | Arch Development Corporation | Prosthetic knee with adjusted center of internal/external rotation |
US6056779A (en) * | 1997-07-10 | 2000-05-02 | Societe Ortho-Id | Prosthesis for the knee articulation |
US6238434B1 (en) * | 1998-08-05 | 2001-05-29 | Biomedical Engineering Trust I | Knee joint prosthesis with spinout prevention |
US20010014827A1 (en) * | 1997-09-23 | 2001-08-16 | Tornier S.A. | Knee prosthesis with a rotational plate |
US6290726B1 (en) * | 2000-01-30 | 2001-09-18 | Diamicron, Inc. | Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces |
US6319283B1 (en) * | 1999-07-02 | 2001-11-20 | Bristol-Myers Squibb Company | Tibial knee component with a mobile bearing |
US6645251B2 (en) * | 2001-01-22 | 2003-11-11 | Smith & Nephew, Inc. | Surfaces and processes for wear reducing in orthopaedic implants |
US7422605B2 (en) * | 2003-07-17 | 2008-09-09 | Exactech, Inc. | Mobile bearing knee prosthesis |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224697A (en) | 1978-09-08 | 1980-09-30 | Hexcel Corporation | Constrained prosthetic knee |
EP0189253A2 (en) | 1985-01-18 | 1986-07-30 | Pfizer Hospital Products Group, Inc. | Press fit knee prosthesis and instrumentation |
FR2663839B1 (en) | 1990-06-29 | 1997-09-19 | Omci | KNEE PROSTHESIS. |
GB9102348D0 (en) | 1991-02-04 | 1991-03-20 | Inst Of Orthopaedics The | Prosthesis for knee replacement |
DE4128171C1 (en) | 1991-08-24 | 1993-04-01 | Aesculap Ag, 7200 Tuttlingen, De | |
FR2726174B1 (en) | 1994-10-26 | 1997-04-04 | Cornic Michel | KNEE JOINT PROSTHESIS |
US5871543A (en) | 1996-02-23 | 1999-02-16 | Hofmann; Aaron A. | Tibial prosthesis with mobile bearing member |
US6620198B2 (en) | 1999-10-07 | 2003-09-16 | Exactech, Inc. | Composite bearing inserts for total knee joints |
US6989032B2 (en) | 2001-07-16 | 2006-01-24 | Spinecore, Inc. | Artificial intervertebral disc |
AU785375B2 (en) | 2001-06-30 | 2007-03-01 | Depuy Products, Inc | Joint replacement prosthesis component with non linear insert |
US6652586B2 (en) | 2001-07-18 | 2003-11-25 | Smith & Nephew, Inc. | Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene |
FR2839256B1 (en) | 2002-05-02 | 2005-03-11 | Science Medecine Sa | TOTAL KNEE PROSTHESIS WITH FAVORED INTERNAL ROTATION |
-
2006
- 2006-02-17 US US11/356,802 patent/US7708782B2/en not_active Expired - Fee Related
Patent Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE29757E (en) * | 1971-04-21 | 1978-09-12 | Replacements for bicondylar joints in human limbs | |
US4268920A (en) * | 1977-10-05 | 1981-05-26 | GMT Gesellschaft fur med. Technik mbH | Endoprosthesis for a knee joint |
US4224696A (en) * | 1978-09-08 | 1980-09-30 | Hexcel Corporation | Prosthetic knee |
US4215439A (en) * | 1978-10-16 | 1980-08-05 | Zimmer, USA | Semi-restraining knee prosthesis |
US4205400A (en) * | 1978-12-04 | 1980-06-03 | Zimmer Usa, Inc. | Metallo-polymeric prosthesis with cavitied interconnection |
US4538305A (en) * | 1981-05-19 | 1985-09-03 | Gmt Gesellschaft Fur Medizinische Technik Mbh | Articulated prosthesis |
US4538306A (en) * | 1982-06-26 | 1985-09-03 | Feldmuhle Aktiengesellschaft | Implantable elbow joint |
US4950297A (en) * | 1984-12-20 | 1990-08-21 | Chas F Thackray Limited | Knee prosthesis |
US4822365A (en) * | 1986-05-30 | 1989-04-18 | Walker Peter S | Method of design of human joint prosthesis |
US4822366A (en) * | 1986-10-16 | 1989-04-18 | Boehringer Mannheim Corporation | Modular knee prosthesis |
US4759767A (en) * | 1987-08-10 | 1988-07-26 | Dow Corning Wright Corporation | Prosthesis for tibial component of knee joint |
US4795468A (en) * | 1987-12-23 | 1989-01-03 | Zimmer, Inc. | Mechanism and method for locking a bearing insert to the base of a prosthetic implant |
US5194066A (en) * | 1988-01-11 | 1993-03-16 | Boehringer Mannheim Corporation | Modular joint prosthesis |
US4959071A (en) * | 1988-02-03 | 1990-09-25 | Biomet, Inc. | Partially stabilized knee prosthesis |
US4950298A (en) * | 1988-04-08 | 1990-08-21 | Gustilo Ramon B | Modular knee joint prosthesis |
US5116376A (en) * | 1988-10-18 | 1992-05-26 | University College London | Knee prosthesis |
US5152796A (en) * | 1988-12-27 | 1992-10-06 | Johnson & Johnson Orthopaedics, Inc. | Modular knee prosthesis |
US4936853A (en) * | 1989-01-11 | 1990-06-26 | Kirschner Medical Corporation | Modular knee prosthesis |
US4985037A (en) * | 1989-05-22 | 1991-01-15 | Petersen Thomas D | Universal modular prosthesis stem extension |
US5123928A (en) * | 1989-07-07 | 1992-06-23 | Eska Medical Luebeck Medizintechnik Gmbh | Knee joint endoprosthesis |
US5064437A (en) * | 1990-02-16 | 1991-11-12 | Friedrichsfeld Ag Keramik- Und Kunststoffwerke | Knee joint endoprosthesis |
US5137536A (en) * | 1990-03-16 | 1992-08-11 | Nariko Koshino | Tibial component for artificial knee joint |
US5071438A (en) * | 1990-11-07 | 1991-12-10 | Intermedics Orthopedics, Inc. | Tibial prothesis with pivoting articulating surface |
US5556432A (en) * | 1991-12-11 | 1996-09-17 | Joachim Theusner | Artificial joint |
US5330534A (en) * | 1992-02-10 | 1994-07-19 | Biomet, Inc. | Knee joint prosthesis with interchangeable components |
US5226915A (en) * | 1992-04-03 | 1993-07-13 | Bertin Kim C | Femoral prosthesis component system for knee replacement surgery |
US5271737A (en) * | 1992-09-04 | 1993-12-21 | U.S. Medical Products, Inc. | Tibial prosthetic implant with offset stem |
USRE37277E1 (en) * | 1992-09-04 | 2001-07-10 | Hayes Medical, Inc. | Tibial prosthetic implant with offset stem |
US5290313A (en) * | 1992-11-23 | 1994-03-01 | Zimmer, Inc. | Offset prosthetic stem extension |
US5358530A (en) * | 1993-03-29 | 1994-10-25 | Zimmer, Inc. | Mobile bearing knee |
US5593449A (en) * | 1994-03-04 | 1997-01-14 | Smith & Nephew Richards Inc. | Dual taper stem extension for knee prosthesis |
US5556433A (en) * | 1994-12-01 | 1996-09-17 | Johnson & Johnson Professional, Inc. | Modular knee prosthesis |
US5776200A (en) * | 1995-02-15 | 1998-07-07 | Smith & Nephew, Inc. | Tibial trial prosthesis and bone preparation system |
US5683468A (en) * | 1995-03-13 | 1997-11-04 | Pappas; Michael J. | Mobile bearing total joint replacement |
US5683472A (en) * | 1995-12-29 | 1997-11-04 | Johnson & Johnson Professional, Inc. | Femoral stem attachment for a modular knee prosthesis |
US5782921A (en) * | 1996-07-23 | 1998-07-21 | Johnson & Johnson Professional, Inc. | Modular knee prosthesis |
US5782920A (en) * | 1996-11-14 | 1998-07-21 | Johnson & Johnson Professional, Inc. | Offset coupling for joint prosthesis |
US6056779A (en) * | 1997-07-10 | 2000-05-02 | Societe Ortho-Id | Prosthesis for the knee articulation |
US6039764A (en) * | 1997-08-18 | 2000-03-21 | Arch Development Corporation | Prosthetic knee with adjusted center of internal/external rotation |
US20010014827A1 (en) * | 1997-09-23 | 2001-08-16 | Tornier S.A. | Knee prosthesis with a rotational plate |
US6238434B1 (en) * | 1998-08-05 | 2001-05-29 | Biomedical Engineering Trust I | Knee joint prosthesis with spinout prevention |
US6319283B1 (en) * | 1999-07-02 | 2001-11-20 | Bristol-Myers Squibb Company | Tibial knee component with a mobile bearing |
US6290726B1 (en) * | 2000-01-30 | 2001-09-18 | Diamicron, Inc. | Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces |
US6645251B2 (en) * | 2001-01-22 | 2003-11-11 | Smith & Nephew, Inc. | Surfaces and processes for wear reducing in orthopaedic implants |
US7422605B2 (en) * | 2003-07-17 | 2008-09-09 | Exactech, Inc. | Mobile bearing knee prosthesis |
Cited By (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9492280B2 (en) | 2000-11-28 | 2016-11-15 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US10188521B2 (en) | 2000-11-28 | 2019-01-29 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US20120035736A1 (en) * | 2001-12-14 | 2012-02-09 | Btg International Limited | Tibial component |
US9642711B2 (en) | 2003-10-17 | 2017-05-09 | Smith & Nephew, Inc. | High flexion articular insert |
US20070203582A1 (en) * | 2006-02-28 | 2007-08-30 | Howmedica Osteonics Corp. | Modular tibial implant |
US7771484B2 (en) * | 2006-02-28 | 2010-08-10 | Howmedica Osteonics Corp. | Modular tibial implant |
US8147558B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing assembly having multiple articulation interfaces |
EP1974696A1 (en) * | 2007-03-30 | 2008-10-01 | Depuy Products, Inc. | Mobile bearing assembly having a non-planar interface |
US8764841B2 (en) | 2007-03-30 | 2014-07-01 | DePuy Synthes Products, LLC | Mobile bearing assembly having a closed track |
US8328874B2 (en) | 2007-03-30 | 2012-12-11 | Depuy Products, Inc. | Mobile bearing assembly |
US8147557B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing insert having offset dwell point |
US8142510B2 (en) | 2007-03-30 | 2012-03-27 | Depuy Products, Inc. | Mobile bearing assembly having a non-planar interface |
US9398956B2 (en) * | 2007-09-25 | 2016-07-26 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US20110035017A1 (en) * | 2007-09-25 | 2011-02-10 | Depuy Products, Inc. | Prosthesis with cut-off pegs and surgical method |
US8632600B2 (en) | 2007-09-25 | 2014-01-21 | Depuy (Ireland) | Prosthesis with modular extensions |
US9278003B2 (en) | 2007-09-25 | 2016-03-08 | Depuy (Ireland) | Prosthesis for cementless fixation |
US20130184830A1 (en) * | 2007-09-25 | 2013-07-18 | Stephen A. Hazebrouck | Fixed-bearing knee prosthesis having interchangeable components |
US20100063594A1 (en) * | 2007-09-28 | 2010-03-11 | Hazebrouck Stephen A | Fixed-bearing knee prosthesis having interchangeable components |
US8128703B2 (en) * | 2007-09-28 | 2012-03-06 | Depuy Products, Inc. | Fixed-bearing knee prosthesis having interchangeable components |
US20130184829A1 (en) * | 2007-09-28 | 2013-07-18 | Joseph G. Wyss | Fixed-bearing knee prosthesis having interchangeable components |
US9204967B2 (en) * | 2007-09-28 | 2015-12-08 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US8337564B2 (en) * | 2008-02-18 | 2012-12-25 | Maxx Orthopedics, Inc. | Total knee replacement prosthesis |
US20090319048A1 (en) * | 2008-02-18 | 2009-12-24 | Maxx Orthopedics, Inc. | Total Knee Replacement Prosthesis |
US8246688B2 (en) | 2008-04-05 | 2012-08-21 | Aesculap Ag | Knee endoprosthesis |
WO2009121450A1 (en) * | 2008-04-05 | 2009-10-08 | Aesculap Ag | Knee endoprosthesis |
US20110071644A1 (en) * | 2008-04-05 | 2011-03-24 | Aesculap Ag | Knee endoprosthesis |
US10849760B2 (en) | 2008-06-30 | 2020-12-01 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US10265180B2 (en) | 2008-06-30 | 2019-04-23 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9539099B2 (en) | 2008-06-30 | 2017-01-10 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US11369478B2 (en) | 2008-06-30 | 2022-06-28 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US11730602B2 (en) | 2008-06-30 | 2023-08-22 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9452053B2 (en) | 2008-06-30 | 2016-09-27 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8734522B2 (en) | 2008-06-30 | 2014-05-27 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis |
US10729551B2 (en) | 2008-06-30 | 2020-08-04 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US10543098B2 (en) | 2008-06-30 | 2020-01-28 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US12059356B2 (en) | 2008-06-30 | 2024-08-13 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US8784496B2 (en) | 2008-06-30 | 2014-07-22 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8795380B2 (en) | 2008-06-30 | 2014-08-05 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8828086B2 (en) | 2008-06-30 | 2014-09-09 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8834575B2 (en) | 2008-06-30 | 2014-09-16 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US8187335B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9326864B2 (en) | 2008-06-30 | 2016-05-03 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US12109119B2 (en) | 2008-06-30 | 2024-10-08 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US11337823B2 (en) | 2008-06-30 | 2022-05-24 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US9931216B2 (en) | 2008-06-30 | 2018-04-03 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9937049B2 (en) | 2008-06-30 | 2018-04-10 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US9204968B2 (en) | 2008-06-30 | 2015-12-08 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US9220601B2 (en) | 2008-06-30 | 2015-12-29 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US10179051B2 (en) | 2008-06-30 | 2019-01-15 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US10076419B2 (en) | 2009-07-01 | 2018-09-18 | Biomet Uk Limited | Method of implanting a unicondylar knee prosthesis |
US9173743B2 (en) * | 2009-07-01 | 2015-11-03 | Biomet Uk Limited | Method of implanting a unicondylar knee prosthesis |
US20110004316A1 (en) * | 2009-07-01 | 2011-01-06 | David Murray | Method of Implanting a Unicondylar Knee Prosthesis |
US8715359B2 (en) | 2009-10-30 | 2014-05-06 | Depuy (Ireland) | Prosthesis for cemented fixation and method for making the prosthesis |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
US20150088265A1 (en) * | 2010-01-29 | 2015-03-26 | Smith & Nephew, Inc. | Cruciate-retaining knee prosthesis |
US8900316B2 (en) | 2010-01-29 | 2014-12-02 | Smith & Nephew, Inc. | Cruciate-retaining knee prosthesis |
US10952862B2 (en) | 2010-01-29 | 2021-03-23 | Smith & Nephew, Inc. | Cruciate-retaining knee prosthesis |
US10470889B2 (en) | 2010-07-24 | 2019-11-12 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US8568486B2 (en) | 2010-07-24 | 2013-10-29 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US9381090B2 (en) | 2010-07-24 | 2016-07-05 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US11224519B2 (en) | 2010-07-24 | 2022-01-18 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US8628580B2 (en) | 2010-07-24 | 2014-01-14 | Zimmer, Inc. | Tibial prosthesis |
US9763796B2 (en) | 2010-07-24 | 2017-09-19 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US8574304B2 (en) | 2010-07-24 | 2013-11-05 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US9763794B2 (en) | 2010-07-24 | 2017-09-19 | Zimmer, Inc. | Tibial prosthesis |
US9861490B2 (en) | 2010-07-24 | 2018-01-09 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US9918844B2 (en) | 2010-07-24 | 2018-03-20 | Zimmer, Inc. | Tibial prosthesis with a fixed bearing component |
US10543099B2 (en) | 2010-07-24 | 2020-01-28 | Zimmer, Inc. | Tibial prosthesis |
US8764840B2 (en) | 2010-07-24 | 2014-07-01 | Zimmer, Inc. | Tibial prosthesis |
US9295557B2 (en) | 2010-07-24 | 2016-03-29 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US9283082B2 (en) | 2010-07-24 | 2016-03-15 | Zimmer, Inc. | Methods related to seating of bearing component on tibial tray |
US9192480B2 (en) | 2010-07-24 | 2015-11-24 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US8613775B2 (en) | 2010-07-24 | 2013-12-24 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US10195041B2 (en) | 2010-07-24 | 2019-02-05 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US9763795B2 (en) | 2010-09-10 | 2017-09-19 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US10413415B2 (en) | 2010-09-10 | 2019-09-17 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US8591594B2 (en) | 2010-09-10 | 2013-11-26 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US9314343B2 (en) | 2010-09-10 | 2016-04-19 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US11471288B2 (en) | 2010-09-10 | 2022-10-18 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US10188530B2 (en) | 2010-12-17 | 2019-01-29 | Zimmer, Inc. | Provisional tibial prosthesis system |
US9707085B2 (en) | 2011-07-13 | 2017-07-18 | The General Hospital Corporation | Methods and devices for knee joint replacement with anterior cruciate ligament substitution |
US9005299B2 (en) * | 2011-07-13 | 2015-04-14 | The General Hospital Corporation | Methods and devices for knee joint replacement with anterior cruciate ligament substitution |
US20130018477A1 (en) * | 2011-07-13 | 2013-01-17 | The General Hospital Corporation D/B/A Massachusetts General Hospital | Methods and Devices for Knee Joint Replacement with Anterior Cruciate Ligament Substitution |
US10898337B2 (en) | 2011-11-18 | 2021-01-26 | Zimmer, Inc. | Tibial bearing component for a knee prosthesis with improved articular characteristics |
US8758444B2 (en) | 2011-11-21 | 2014-06-24 | Zimmer, Inc. | Tibial baseplate with asymmetric placement of fixation structures |
US9308096B2 (en) | 2011-11-21 | 2016-04-12 | Zimmer, Inc. | Tibial baseplate with asymmetric placement of fixation structures |
US9707089B2 (en) | 2011-11-21 | 2017-07-18 | Zimmer, Inc. | Tibial baseplate with asymmetric placement of fixation structures |
US10265181B2 (en) | 2011-11-21 | 2019-04-23 | Zimmer, Inc. | Tibial baseplate with asymmetric placement of fixation structures |
WO2013115849A1 (en) * | 2012-01-30 | 2013-08-08 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US11324598B2 (en) | 2013-08-30 | 2022-05-10 | Zimmer, Inc. | Method for optimizing implant designs |
US10245151B2 (en) * | 2014-05-30 | 2019-04-02 | Stryker Corporation | Stepped tibial baseplate |
US20160278930A1 (en) * | 2014-05-30 | 2016-09-29 | Stryker Corporation | Stepped tibial baseplate |
CN104490493A (en) * | 2014-12-29 | 2015-04-08 | 北京市春立正达医疗器械股份有限公司 | Knee-joint rotating platform prosthesis |
US11160659B2 (en) | 2015-09-21 | 2021-11-02 | Zimmer, Inc. | Prosthesis system including tibial bearing component |
US10278827B2 (en) | 2015-09-21 | 2019-05-07 | Zimmer, Inc. | Prosthesis system including tibial bearing component |
US11547571B2 (en) | 2017-03-10 | 2023-01-10 | Zimmer, Inc. | Tibial prosthesis with tibial bearing component securing feature |
US10675153B2 (en) | 2017-03-10 | 2020-06-09 | Zimmer, Inc. | Tibial prosthesis with tibial bearing component securing feature |
US11324599B2 (en) | 2017-05-12 | 2022-05-10 | Zimmer, Inc. | Femoral prostheses with upsizing and downsizing capabilities |
US11426282B2 (en) | 2017-11-16 | 2022-08-30 | Zimmer, Inc. | Implants for adding joint inclination to a knee arthroplasty |
US10898338B1 (en) * | 2018-01-17 | 2021-01-26 | Matthew Budge | Reverse shoulder prosthesis |
US10835380B2 (en) | 2018-04-30 | 2020-11-17 | Zimmer, Inc. | Posterior stabilized prosthesis system |
US11911279B2 (en) | 2018-04-30 | 2024-02-27 | Zimmer, Inc. | Posterior stabilized prosthesis system |
US11903838B2 (en) * | 2018-11-09 | 2024-02-20 | Signature Orthopaedics Europe Ltd | Revision knee system |
US20220000627A1 (en) * | 2018-11-09 | 2022-01-06 | Signature Orthopaedics Europe Ltd | A revision knee system |
US11278416B2 (en) | 2019-11-14 | 2022-03-22 | Howmedica Osteonics Corp. | Concentric keel TKA |
CN111920551A (en) * | 2020-07-28 | 2020-11-13 | 北京市春立正达医疗器械股份有限公司 | Primary total ankle joint prosthesis |
US12121450B2 (en) | 2021-01-20 | 2024-10-22 | Knollwood Orthopedic Innovations Llc | Reverse shoulder prosthesis |
Also Published As
Publication number | Publication date |
---|---|
US7708782B2 (en) | 2010-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7708782B2 (en) | Mobile bearing knee prosthesis | |
CA2532877C (en) | Mobile bearing knee prosthesis | |
US8715358B2 (en) | PCL retaining ACL substituting TKA apparatus and method | |
US5723016A (en) | Implantable prosthetic patellar components | |
US8480751B2 (en) | Knee joint prosthesis system and method for implantation | |
US7105027B2 (en) | Self-aligning knee prosthesis | |
US6413279B1 (en) | Floating bearing knee joint prosthesis with a fixed tibial post | |
US5116376A (en) | Knee prosthesis | |
US12115080B2 (en) | Total knee implant prosthesis assembly and method | |
US9855147B2 (en) | Modular prosthesis | |
EP2165681B1 (en) | Fixed bearing joint endoprosthesis with combined congruent - incongruent prosthetic articulations | |
US6143034A (en) | Implantable hinged knee prosthesis having tibial baseplate | |
WO1979000739A1 (en) | Improved joint endoprosthesis | |
JPH0245456B2 (en) | ||
NZ280654A (en) | Hinged knee prosthesis with a condylar bearing | |
AU2020247288A1 (en) | Bone joint implants | |
Rader et al. | Results of total knee arthroplasty with a metal-backed patellar component: a 6-year follow-up study | |
WO2019145965A1 (en) | Distal femur total knee prosthesis with self limiting small angle tibial-femoral rotation | |
GB2277034A (en) | Implantable prosthetic patellar component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EXACTECH, INC.,FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURSTEIN, PHD, ALBERT;GLADDISH, JR., BENNIE W.;HOYT, JAMES EDWARD;AND OTHERS;SIGNING DATES FROM 20060404 TO 20060405;REEL/FRAME:017607/0018 Owner name: EXACTECH, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURSTEIN, PHD, ALBERT;GLADDISH, JR., BENNIE W.;HOYT, JAMES EDWARD;AND OTHERS;REEL/FRAME:017607/0018;SIGNING DATES FROM 20060404 TO 20060405 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SUNTRUST BANK, GEORGIA Free format text: SECURITY AGREEMENT;ASSIGNORS:EXACTECH, INC.;ALTIVA, LLC;BRIGHTON PARTNERS, LLC;AND OTHERS;REEL/FRAME:027779/0053 Effective date: 20120224 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:EXACTECH, INC.;ALTIVA, LLC;BRIGHTON PARTNERS, LLC;AND OTHERS;REEL/FRAME:037358/0571 Effective date: 20151217 Owner name: EXACTECH, INC., FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:037358/0511 Effective date: 20151217 Owner name: BRIGHTON PARTNERS, LLC, FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:037358/0511 Effective date: 20151217 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNORS:EXACTECH, INC.;ALTIVA, LLC;BRIGHTON PARTNERS, LLC;AND OTHERS;REEL/FRAME:037358/0571 Effective date: 20151217 Owner name: EXACTECH INTERNATIONAL, LLC, FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:037358/0511 Effective date: 20151217 Owner name: ALTIVA, LLC, FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SUNTRUST BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:037358/0511 Effective date: 20151217 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:EXACTECH, INC.;REEL/FRAME:044943/0816 Effective date: 20180214 Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y Free format text: SECURITY INTEREST;ASSIGNOR:EXACTECH, INC.;REEL/FRAME:044943/0816 Effective date: 20180214 Owner name: BRIGHTON PARTNERS, LLC, FLORIDA Free format text: SECURITY RELEASE REEL/FRAME 037358/0571;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:045345/0933 Effective date: 20180214 Owner name: ALTIVA, LLC, FLORIDA Free format text: SECURITY RELEASE REEL/FRAME 037358/0571;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:045345/0933 Effective date: 20180214 Owner name: EXACTECH INTERNATIONAL, LLC, FLORIDA Free format text: SECURITY RELEASE REEL/FRAME 037358/0571;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:045345/0933 Effective date: 20180214 Owner name: EXACTECH, INC, FLORIDA Free format text: SECURITY RELEASE REEL/FRAME 037358/0571;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:045345/0933 Effective date: 20180214 Owner name: EXACTECH U.S., INC., FLORIDA Free format text: SECURITY RELEASE REEL/FRAME 037358/0571;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:045345/0933 Effective date: 20180214 |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220504 |
|
AS | Assignment |
Owner name: TPG VII OSTEON HOLDINGS, LP, AS COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:EXACTECH, INC.;XPANDORTHO, INC.;REEL/FRAME:065285/0605 Effective date: 20231019 |