US20060191653A1 - Method for the treatment of paper surfaces - Google Patents
Method for the treatment of paper surfaces Download PDFInfo
- Publication number
- US20060191653A1 US20060191653A1 US10/553,075 US55307505A US2006191653A1 US 20060191653 A1 US20060191653 A1 US 20060191653A1 US 55307505 A US55307505 A US 55307505A US 2006191653 A1 US2006191653 A1 US 2006191653A1
- Authority
- US
- United States
- Prior art keywords
- paper
- aqueous
- oxide
- dispersion
- finely divided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 239000006185 dispersion Substances 0.000 claims description 59
- 239000000178 monomer Substances 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 54
- 239000002245 particle Substances 0.000 claims description 52
- 229910003480 inorganic solid Inorganic materials 0.000 claims description 51
- 239000007787 solid Substances 0.000 claims description 45
- 239000011246 composite particle Substances 0.000 claims description 41
- 239000002270 dispersing agent Substances 0.000 claims description 41
- 229920000642 polymer Polymers 0.000 claims description 37
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 238000000576 coating method Methods 0.000 claims description 21
- 125000000129 anionic group Chemical group 0.000 claims description 20
- 125000002091 cationic group Chemical group 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 18
- 239000004815 dispersion polymer Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 150000003254 radicals Chemical class 0.000 claims description 15
- 238000002360 preparation method Methods 0.000 claims description 14
- 238000007639 printing Methods 0.000 claims description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 8
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000012736 aqueous medium Substances 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 5
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 5
- 239000007870 radical polymerization initiator Substances 0.000 claims description 5
- 239000004408 titanium dioxide Substances 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 5
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims description 4
- 239000005083 Zinc sulfide Substances 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- UCNNJGDEJXIUCC-UHFFFAOYSA-L hydroxy(oxo)iron;iron Chemical compound [Fe].O[Fe]=O.O[Fe]=O UCNNJGDEJXIUCC-UHFFFAOYSA-L 0.000 claims description 4
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 4
- 239000001095 magnesium carbonate Substances 0.000 claims description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 4
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 claims description 4
- 239000001103 potassium chloride Substances 0.000 claims description 4
- 235000011164 potassium chloride Nutrition 0.000 claims description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 4
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 4
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 4
- 238000007646 gravure printing Methods 0.000 claims description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 3
- 239000002609 medium Substances 0.000 claims description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 3
- 238000010556 emulsion polymerization method Methods 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims 2
- 239000000123 paper Substances 0.000 description 70
- -1 newsprint Substances 0.000 description 39
- 150000001875 compounds Chemical class 0.000 description 20
- 238000012360 testing method Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229910052783 alkali metal Inorganic materials 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000000084 colloidal system Substances 0.000 description 12
- 238000007720 emulsion polymerization reaction Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 10
- 239000012431 aqueous reaction media Substances 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 239000003995 emulsifying agent Substances 0.000 description 10
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 238000007046 ethoxylation reaction Methods 0.000 description 9
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 9
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 229910052700 potassium Inorganic materials 0.000 description 8
- 239000011591 potassium Substances 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 6
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000007962 solid dispersion Substances 0.000 description 5
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 4
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 4
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000001530 fumaric acid Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 235000010215 titanium dioxide Nutrition 0.000 description 4
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 3
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 3
- MLMGJTAJUDSUKA-UHFFFAOYSA-N 2-ethenyl-1h-imidazole Chemical compound C=CC1=NC=CN1 MLMGJTAJUDSUKA-UHFFFAOYSA-N 0.000 description 3
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 3
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004435 Oxo alcohol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000003368 amide group Chemical group 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 150000002763 monocarboxylic acids Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- BEWCNXNIQCLWHP-UHFFFAOYSA-N 2-(tert-butylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(C)(C)C BEWCNXNIQCLWHP-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- BFLXFRNPNMTTAA-UHFFFAOYSA-N 3-Methyl-2-butanethiol Chemical compound CC(C)C(C)S BFLXFRNPNMTTAA-UHFFFAOYSA-N 0.000 description 2
- AJWVDGABWLKIGT-UHFFFAOYSA-N 3-methylpentane-3-thiol Chemical compound CCC(C)(S)CC AJWVDGABWLKIGT-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- 101100096653 Arabidopsis thaliana SRO1 gene Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical class C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- ROPDWRCJTIRLTR-UHFFFAOYSA-L calcium metaphosphate Chemical compound [Ca+2].[O-]P(=O)=O.[O-]P(=O)=O ROPDWRCJTIRLTR-UHFFFAOYSA-L 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 2
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 2
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical class [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 229940094522 laponite Drugs 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 2
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 2
- GNMQOUGYKPVJRR-UHFFFAOYSA-N nickel(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ni+3].[Ni+3] GNMQOUGYKPVJRR-UHFFFAOYSA-N 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- KJRCEJOSASVSRA-UHFFFAOYSA-N propane-2-thiol Chemical compound CC(C)S KJRCEJOSASVSRA-UHFFFAOYSA-N 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical compound [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical compound [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- OZOLRGZAVBQRBG-UHFFFAOYSA-N (2-methyl-3-nitrophenyl)boronic acid Chemical compound CC1=C(B(O)O)C=CC=C1[N+]([O-])=O OZOLRGZAVBQRBG-UHFFFAOYSA-N 0.000 description 1
- 239000001930 (2R)-3-methylbutane-2-thiol Substances 0.000 description 1
- MSBGPEACXKBQSX-UHFFFAOYSA-N (4-fluorophenyl) carbonochloridate Chemical compound FC1=CC=C(OC(Cl)=O)C=C1 MSBGPEACXKBQSX-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- BZCOSCNPHJNQBP-UPHRSURJSA-N (z)-2,3-dihydroxybut-2-enedioic acid Chemical compound OC(=O)C(\O)=C(\O)C(O)=O BZCOSCNPHJNQBP-UPHRSURJSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 description 1
- HMYBDZFSXBJDGL-UHFFFAOYSA-N 1,3-bis(ethenyl)imidazolidin-2-one Chemical compound C=CN1CCN(C=C)C1=O HMYBDZFSXBJDGL-UHFFFAOYSA-N 0.000 description 1
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 1
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- LFYSWCFSJAZQJJ-UHFFFAOYSA-L 1-dodecylpyridin-1-ium;sulfate Chemical compound [O-]S([O-])(=O)=O.CCCCCCCCCCCC[N+]1=CC=CC=C1.CCCCCCCCCCCC[N+]1=CC=CC=C1 LFYSWCFSJAZQJJ-UHFFFAOYSA-L 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- OBMRSUNAEQGDLK-UHFFFAOYSA-N 2-(dipropylamino)ethyl 2-methylprop-2-enoate Chemical compound CCCN(CCC)CCOC(=O)C(C)=C OBMRSUNAEQGDLK-UHFFFAOYSA-N 0.000 description 1
- HPGIOSOCXHTQGW-UHFFFAOYSA-N 2-(dipropylamino)ethyl prop-2-enoate Chemical compound CCCN(CCC)CCOC(=O)C=C HPGIOSOCXHTQGW-UHFFFAOYSA-N 0.000 description 1
- KZUIKPMQAIEBOE-UHFFFAOYSA-N 2-(ethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCNCCOC(=O)C(C)=C KZUIKPMQAIEBOE-UHFFFAOYSA-N 0.000 description 1
- BDKSYBXVYUGXIG-UHFFFAOYSA-N 2-(ethylamino)ethyl prop-2-enoate Chemical compound CCNCCOC(=O)C=C BDKSYBXVYUGXIG-UHFFFAOYSA-N 0.000 description 1
- DEGZUQBZHACZKW-UHFFFAOYSA-N 2-(methylamino)ethyl 2-methylprop-2-enoate Chemical compound CNCCOC(=O)C(C)=C DEGZUQBZHACZKW-UHFFFAOYSA-N 0.000 description 1
- ULEVTQHCVWIDPC-UHFFFAOYSA-N 2-(methylamino)ethyl prop-2-enoate Chemical compound CNCCOC(=O)C=C ULEVTQHCVWIDPC-UHFFFAOYSA-N 0.000 description 1
- LSZFFPVDPBVFRO-UHFFFAOYSA-N 2-(propan-2-ylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(C)NCCOC(=O)C(C)=C LSZFFPVDPBVFRO-UHFFFAOYSA-N 0.000 description 1
- WRJXGJVVKVFPBH-UHFFFAOYSA-N 2-(propan-2-ylamino)ethyl prop-2-enoate Chemical compound CC(C)NCCOC(=O)C=C WRJXGJVVKVFPBH-UHFFFAOYSA-N 0.000 description 1
- LGQNUEMUALHDFN-UHFFFAOYSA-N 2-(propylamino)ethyl 2-methylprop-2-enoate Chemical compound CCCNCCOC(=O)C(C)=C LGQNUEMUALHDFN-UHFFFAOYSA-N 0.000 description 1
- BWKTWZBHXAMSQP-UHFFFAOYSA-N 2-(propylamino)ethyl prop-2-enoate Chemical compound CCCNCCOC(=O)C=C BWKTWZBHXAMSQP-UHFFFAOYSA-N 0.000 description 1
- KDAKDBASXBEFFK-UHFFFAOYSA-N 2-(tert-butylamino)ethyl prop-2-enoate Chemical compound CC(C)(C)NCCOC(=O)C=C KDAKDBASXBEFFK-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical class C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- QUSTYFNPKBDELJ-UHFFFAOYSA-N 2-Pentanethiol Chemical compound CCCC(C)S QUSTYFNPKBDELJ-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- GEZAUFNYMZVOFV-UHFFFAOYSA-J 2-[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetan-2-yl)oxy]-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetane 2-oxide Chemical compound [Sn+2].[Sn+2].[O-]P([O-])(=O)OP([O-])([O-])=O GEZAUFNYMZVOFV-UHFFFAOYSA-J 0.000 description 1
- SVYHMICYJHWXIN-UHFFFAOYSA-N 2-[di(propan-2-yl)amino]ethyl 2-methylprop-2-enoate Chemical compound CC(C)N(C(C)C)CCOC(=O)C(C)=C SVYHMICYJHWXIN-UHFFFAOYSA-N 0.000 description 1
- QPFCILNVGJNTOX-UHFFFAOYSA-N 2-[di(propan-2-yl)amino]ethyl prop-2-enoate Chemical compound CC(C)N(C(C)C)CCOC(=O)C=C QPFCILNVGJNTOX-UHFFFAOYSA-N 0.000 description 1
- QLIBJPGWWSHWBF-UHFFFAOYSA-N 2-aminoethyl methacrylate Chemical compound CC(=C)C(=O)OCCN QLIBJPGWWSHWBF-UHFFFAOYSA-N 0.000 description 1
- UGIJCMNGQCUTPI-UHFFFAOYSA-N 2-aminoethyl prop-2-enoate Chemical compound NCCOC(=O)C=C UGIJCMNGQCUTPI-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- ZEOYAIVOCJZXIC-UHFFFAOYSA-N 2-ethylbutane-1-thiol Chemical compound CCC(CC)CS ZEOYAIVOCJZXIC-UHFFFAOYSA-N 0.000 description 1
- PFKAKHILNWLJRT-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;iron(2+) Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PFKAKHILNWLJRT-UHFFFAOYSA-H 0.000 description 1
- VAASJZAOHDHRSY-UHFFFAOYSA-N 2-methyl-n,n-di(propan-2-yl)prop-2-enamide Chemical compound CC(C)N(C(C)C)C(=O)C(C)=C VAASJZAOHDHRSY-UHFFFAOYSA-N 0.000 description 1
- AAYSXEMBWUMDIZ-UHFFFAOYSA-N 2-methyl-n,n-dipropylprop-2-enamide Chemical compound CCCN(CCC)C(=O)C(C)=C AAYSXEMBWUMDIZ-UHFFFAOYSA-N 0.000 description 1
- YQIGLEFUZMIVHU-UHFFFAOYSA-N 2-methyl-n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C(C)=C YQIGLEFUZMIVHU-UHFFFAOYSA-N 0.000 description 1
- CCIDRBFZPRURMU-UHFFFAOYSA-N 2-methyl-n-propylprop-2-enamide Chemical compound CCCNC(=O)C(C)=C CCIDRBFZPRURMU-UHFFFAOYSA-N 0.000 description 1
- IQIBYAHJXQVQGB-UHFFFAOYSA-N 2-methylbutane-2-thiol Chemical compound CCC(C)(C)S IQIBYAHJXQVQGB-UHFFFAOYSA-N 0.000 description 1
- ISUXQQTXICTKOV-UHFFFAOYSA-N 2-methylpentane-2-thiol Chemical compound CCCC(C)(C)S ISUXQQTXICTKOV-UHFFFAOYSA-N 0.000 description 1
- NTRKGRUMBHBCAM-UHFFFAOYSA-N 2-methylpentane-3-thiol Chemical compound CCC(S)C(C)C NTRKGRUMBHBCAM-UHFFFAOYSA-N 0.000 description 1
- YHSYGCXKWUUKIK-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C=C YHSYGCXKWUUKIK-UHFFFAOYSA-N 0.000 description 1
- VFZKVQVQOMDJEG-UHFFFAOYSA-N 2-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(=O)C=C VFZKVQVQOMDJEG-UHFFFAOYSA-N 0.000 description 1
- RDCTZTAAYLXPDJ-UHFFFAOYSA-N 2-trimethoxysilylethyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCOC(=O)C(C)=C RDCTZTAAYLXPDJ-UHFFFAOYSA-N 0.000 description 1
- BUJVPKZRXOTBGA-UHFFFAOYSA-N 2-trimethoxysilylethyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCOC(=O)C=C BUJVPKZRXOTBGA-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- HTWRFCRQSLVESJ-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCOC(=O)C(C)=C HTWRFCRQSLVESJ-UHFFFAOYSA-N 0.000 description 1
- PCUPXNDEQDWEMM-UHFFFAOYSA-N 3-(diethylamino)propyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCCOC(=O)C(C)=C PCUPXNDEQDWEMM-UHFFFAOYSA-N 0.000 description 1
- XUYDVDHTTIQNMB-UHFFFAOYSA-N 3-(diethylamino)propyl prop-2-enoate Chemical compound CCN(CC)CCCOC(=O)C=C XUYDVDHTTIQNMB-UHFFFAOYSA-N 0.000 description 1
- WWJCRUKUIQRCGP-UHFFFAOYSA-N 3-(dimethylamino)propyl 2-methylprop-2-enoate Chemical compound CN(C)CCCOC(=O)C(C)=C WWJCRUKUIQRCGP-UHFFFAOYSA-N 0.000 description 1
- UFQHFMGRRVQFNA-UHFFFAOYSA-N 3-(dimethylamino)propyl prop-2-enoate Chemical compound CN(C)CCCOC(=O)C=C UFQHFMGRRVQFNA-UHFFFAOYSA-N 0.000 description 1
- AJMOEHRPNRRKQZ-UHFFFAOYSA-N 3-(dipropylamino)propyl 2-methylprop-2-enoate Chemical compound CCCN(CCC)CCCOC(=O)C(C)=C AJMOEHRPNRRKQZ-UHFFFAOYSA-N 0.000 description 1
- CPQWVOLUENESHH-UHFFFAOYSA-N 3-(dipropylamino)propyl prop-2-enoate Chemical compound CCCN(CCC)CCCOC(=O)C=C CPQWVOLUENESHH-UHFFFAOYSA-N 0.000 description 1
- SALYTGCQNQCYIV-UHFFFAOYSA-N 3-(ethylamino)propyl 2-methylprop-2-enoate Chemical compound CCNCCCOC(=O)C(C)=C SALYTGCQNQCYIV-UHFFFAOYSA-N 0.000 description 1
- XEVJUECHFCQBPK-UHFFFAOYSA-N 3-(ethylamino)propyl prop-2-enoate Chemical compound CCNCCCOC(=O)C=C XEVJUECHFCQBPK-UHFFFAOYSA-N 0.000 description 1
- YGDLXMLIHURAJL-UHFFFAOYSA-N 3-(methylamino)propyl 2-methylprop-2-enoate Chemical compound CNCCCOC(=O)C(C)=C YGDLXMLIHURAJL-UHFFFAOYSA-N 0.000 description 1
- JSQODGWTXGANKP-UHFFFAOYSA-N 3-(methylamino)propyl prop-2-enoate Chemical compound CNCCCOC(=O)C=C JSQODGWTXGANKP-UHFFFAOYSA-N 0.000 description 1
- SPERRYSGYALDBR-UHFFFAOYSA-N 3-(propan-2-ylamino)propyl 2-methylprop-2-enoate Chemical compound CC(C)NCCCOC(=O)C(C)=C SPERRYSGYALDBR-UHFFFAOYSA-N 0.000 description 1
- YSYPVGKUJQPERK-UHFFFAOYSA-N 3-(propan-2-ylamino)propyl prop-2-enoate Chemical compound CC(C)NCCCOC(=O)C=C YSYPVGKUJQPERK-UHFFFAOYSA-N 0.000 description 1
- SGNDHUWRZNNPEA-UHFFFAOYSA-N 3-(propylamino)propyl 2-methylprop-2-enoate Chemical compound CCCNCCCOC(=O)C(C)=C SGNDHUWRZNNPEA-UHFFFAOYSA-N 0.000 description 1
- YKNIURJYAOAYDC-UHFFFAOYSA-N 3-(propylamino)propyl prop-2-enoate Chemical compound CCCNCCCOC(=O)C=C YKNIURJYAOAYDC-UHFFFAOYSA-N 0.000 description 1
- LLTAGRBKLBDOIZ-UHFFFAOYSA-N 3-(tert-butylamino)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCNC(C)(C)C LLTAGRBKLBDOIZ-UHFFFAOYSA-N 0.000 description 1
- FLBUPMRFQUKGBK-UHFFFAOYSA-N 3-(tert-butylamino)propyl prop-2-enoate Chemical compound CC(C)(C)NCCCOC(=O)C=C FLBUPMRFQUKGBK-UHFFFAOYSA-N 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- XXLTUKDRVLRJIT-UHFFFAOYSA-N 3-[di(propan-2-yl)amino]propyl 2-methylprop-2-enoate Chemical compound CC(C)N(C(C)C)CCCOC(=O)C(C)=C XXLTUKDRVLRJIT-UHFFFAOYSA-N 0.000 description 1
- BUTDKUYGRCNGJS-UHFFFAOYSA-N 3-[di(propan-2-yl)amino]propyl prop-2-enoate Chemical compound CC(C)N(C(C)C)CCCOC(=O)C=C BUTDKUYGRCNGJS-UHFFFAOYSA-N 0.000 description 1
- SNCMCDMEYCLVBO-UHFFFAOYSA-N 3-aminopropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCN SNCMCDMEYCLVBO-UHFFFAOYSA-N 0.000 description 1
- OTKLRHWBZHQJOP-UHFFFAOYSA-N 3-aminopropyl prop-2-enoate Chemical compound NCCCOC(=O)C=C OTKLRHWBZHQJOP-UHFFFAOYSA-N 0.000 description 1
- KKRNXWOGSCUFIT-UHFFFAOYSA-N 3-methylpentane-2-thiol Chemical compound CCC(C)C(C)S KKRNXWOGSCUFIT-UHFFFAOYSA-N 0.000 description 1
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 1
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- AOIUPKVEPBMRDZ-UHFFFAOYSA-N 4-aminobutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCN AOIUPKVEPBMRDZ-UHFFFAOYSA-N 0.000 description 1
- IEOMKERTJQIKKF-UHFFFAOYSA-N 4-aminobutyl prop-2-enoate Chemical compound NCCCCOC(=O)C=C IEOMKERTJQIKKF-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- JBCIMWBQDMBMMP-UHFFFAOYSA-N 4-methylpentane-2-thiol Chemical compound CC(C)CC(C)S JBCIMWBQDMBMMP-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical class C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- FIWRUIQDDCPCOQ-UHFFFAOYSA-N C=CC(=O)OC1C=CC=C1 Chemical compound C=CC(=O)OC1C=CC=C1 FIWRUIQDDCPCOQ-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- ROZZMLUWBPPEMU-GRVYQHKQSA-L Calcium linoleate Chemical compound [Ca+2].CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O.CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O ROZZMLUWBPPEMU-GRVYQHKQSA-L 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004277 Ferrous carbonate Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- VPIAKHNXCOTPAY-UHFFFAOYSA-N Heptane-1-thiol Chemical compound CCCCCCCS VPIAKHNXCOTPAY-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical class C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical class CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- IEWZKAFRPCGVJX-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Sn+3] Chemical compound P(=O)([O-])([O-])[O-].[Sn+3] IEWZKAFRPCGVJX-UHFFFAOYSA-K 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000707 Poly(2-dimethylamino)ethyl methacrylate) methyl chloride Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical class N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229920005736 STYRONAL® Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- XUGISPSHIFXEHZ-GPJXBBLFSA-N [(3r,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] acetate Chemical compound C1C=C2C[C@H](OC(C)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 XUGISPSHIFXEHZ-GPJXBBLFSA-N 0.000 description 1
- VGZBPCOBCBVYMH-UHFFFAOYSA-N [Co+]=S Chemical compound [Co+]=S VGZBPCOBCBVYMH-UHFFFAOYSA-N 0.000 description 1
- HDINNFUMGMXDRY-UHFFFAOYSA-N [Si]([O-])([O-])([O-])[O-].[Zr+3].[Si]([O-])([O-])([O-])[O-].[Si]([O-])([O-])([O-])[O-].[Zr+3].[Zr+3].[Zr+3] Chemical compound [Si]([O-])([O-])([O-])[O-].[Zr+3].[Si]([O-])([O-])([O-])[O-].[Si]([O-])([O-])([O-])[O-].[Zr+3].[Zr+3].[Zr+3] HDINNFUMGMXDRY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- FTWHFXMUJQRNBK-UHFFFAOYSA-N alpha-Methylen-gamma-aminobuttersaeure Natural products NCCC(=C)C(O)=O FTWHFXMUJQRNBK-UHFFFAOYSA-N 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DHAHRLDIUIPTCJ-UHFFFAOYSA-K aluminium metaphosphate Chemical compound [Al+3].[O-]P(=O)=O.[O-]P(=O)=O.[O-]P(=O)=O DHAHRLDIUIPTCJ-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940024548 aluminum oxide Drugs 0.000 description 1
- DNEHKUCSURWDGO-UHFFFAOYSA-N aluminum sodium Chemical compound [Na].[Al] DNEHKUCSURWDGO-UHFFFAOYSA-N 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- GQSZLMMXKNYCTP-UHFFFAOYSA-K aluminum;2-carboxyphenolate Chemical compound [Al+3].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O GQSZLMMXKNYCTP-UHFFFAOYSA-K 0.000 description 1
- JJCSYJVFIRBCRI-UHFFFAOYSA-K aluminum;hexadecanoate Chemical compound [Al].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O JJCSYJVFIRBCRI-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013103 analytical ultracentrifugation Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000003934 aromatic aldehydes Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- ZVCNBVJYXBEKTC-UHFFFAOYSA-L azanium;zinc;phosphate Chemical compound [NH4+].[Zn+2].[O-]P([O-])([O-])=O ZVCNBVJYXBEKTC-UHFFFAOYSA-L 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- DUPIXUINLCPYLU-UHFFFAOYSA-N barium lead Chemical compound [Ba].[Pb] DUPIXUINLCPYLU-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- ZGCZDEVLEULNLJ-UHFFFAOYSA-M benzyl-dimethyl-(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C=CC(=O)OCC[N+](C)(C)CC1=CC=CC=C1 ZGCZDEVLEULNLJ-UHFFFAOYSA-M 0.000 description 1
- CRGOPMLUWCMMCK-UHFFFAOYSA-M benzyl-dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)CC1=CC=CC=C1 CRGOPMLUWCMMCK-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- ZCLVNIZJEKLGFA-UHFFFAOYSA-H bis(4,5-dioxo-1,3,2-dioxalumolan-2-yl) oxalate Chemical compound [Al+3].[Al+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZCLVNIZJEKLGFA-UHFFFAOYSA-H 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- XNNQFQFUQLJSQT-UHFFFAOYSA-N bromo(trichloro)methane Chemical compound ClC(Cl)(Cl)Br XNNQFQFUQLJSQT-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- LOCHFZBWPCLPAN-UHFFFAOYSA-N butane-2-thiol Chemical compound CCC(C)S LOCHFZBWPCLPAN-UHFFFAOYSA-N 0.000 description 1
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 1
- 229940043256 calcium pyrophosphate Drugs 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- GUPPESBEIQALOS-UHFFFAOYSA-L calcium tartrate Chemical compound [Ca+2].[O-]C(=O)C(O)C(O)C([O-])=O GUPPESBEIQALOS-UHFFFAOYSA-L 0.000 description 1
- 239000001427 calcium tartrate Substances 0.000 description 1
- 235000011035 calcium tartrate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- HIAAVKYLDRCDFQ-UHFFFAOYSA-L calcium;dodecanoate Chemical compound [Ca+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O HIAAVKYLDRCDFQ-UHFFFAOYSA-L 0.000 description 1
- HRBZRZSCMANEHQ-UHFFFAOYSA-L calcium;hexadecanoate Chemical compound [Ca+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O HRBZRZSCMANEHQ-UHFFFAOYSA-L 0.000 description 1
- ZCZLQYAECBEUBH-UHFFFAOYSA-L calcium;octadec-9-enoate Chemical compound [Ca+2].CCCCCCCCC=CCCCCCCCC([O-])=O.CCCCCCCCC=CCCCCCCCC([O-])=O ZCZLQYAECBEUBH-UHFFFAOYSA-L 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- DBULDCSVZCUQIR-UHFFFAOYSA-N chromium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Cr+3].[Cr+3] DBULDCSVZCUQIR-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- IUYLTEAJCNAMJK-UHFFFAOYSA-N cobalt(2+);oxygen(2-) Chemical compound [O-2].[Co+2] IUYLTEAJCNAMJK-UHFFFAOYSA-N 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical compound OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- OJOSABWCUVCSTQ-UHFFFAOYSA-N cyclohepta-2,4,6-trienylium Chemical class C1=CC=C[CH+]=C[CH]1 OJOSABWCUVCSTQ-UHFFFAOYSA-N 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical group CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- IHUREIPXVFKEDT-UHFFFAOYSA-N dibromo(dichloro)methane Chemical compound ClC(Cl)(Br)Br IHUREIPXVFKEDT-UHFFFAOYSA-N 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 1
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 229940120503 dihydroxyacetone Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- FODLPBMIZWWYLG-UHFFFAOYSA-N dioxido(oxo)silane;iron(2+) Chemical compound [Fe+2].[O-][Si]([O-])=O FODLPBMIZWWYLG-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- FDENMIUNZYEPDD-UHFFFAOYSA-L disodium [2-[4-(10-methylundecyl)-2-sulfonatooxyphenoxy]phenyl] sulfate Chemical compound [Na+].[Na+].CC(C)CCCCCCCCCc1ccc(Oc2ccccc2OS([O-])(=O)=O)c(OS([O-])(=O)=O)c1 FDENMIUNZYEPDD-UHFFFAOYSA-L 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 1
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- HBRNMIYLJIXXEE-UHFFFAOYSA-N dodecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCN HBRNMIYLJIXXEE-UHFFFAOYSA-N 0.000 description 1
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002338 electrophoretic light scattering Methods 0.000 description 1
- 150000002083 enediols Chemical class 0.000 description 1
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical compound C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000011706 ferric diphosphate Substances 0.000 description 1
- 235000007144 ferric diphosphate Nutrition 0.000 description 1
- MSNWSDPPULHLDL-UHFFFAOYSA-K ferric hydroxide Chemical compound [OH-].[OH-].[OH-].[Fe+3] MSNWSDPPULHLDL-UHFFFAOYSA-K 0.000 description 1
- CADNYOZXMIKYPR-UHFFFAOYSA-B ferric pyrophosphate Chemical compound [Fe+3].[Fe+3].[Fe+3].[Fe+3].[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O CADNYOZXMIKYPR-UHFFFAOYSA-B 0.000 description 1
- MQLVWQSVRZVNIP-UHFFFAOYSA-L ferrous ammonium sulfate hexahydrate Chemical compound [NH4+].[NH4+].O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O MQLVWQSVRZVNIP-UHFFFAOYSA-L 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 235000019268 ferrous carbonate Nutrition 0.000 description 1
- 239000011640 ferrous citrate Substances 0.000 description 1
- 235000019850 ferrous citrate Nutrition 0.000 description 1
- QJQZEJFUIOWFMS-UHFFFAOYSA-N formaldehyde;sulfanediol Chemical class O=C.OSO QJQZEJFUIOWFMS-UHFFFAOYSA-N 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- ABNPJVOPTXYSQW-UHFFFAOYSA-N hexane-2-thiol Chemical compound CCCCC(C)S ABNPJVOPTXYSQW-UHFFFAOYSA-N 0.000 description 1
- VOIGMFQJDZTEKW-UHFFFAOYSA-N hexane-3-thiol Chemical compound CCCC(S)CC VOIGMFQJDZTEKW-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- DTVKDCLRVWKMKA-CVBJKYQLSA-L iron(2+);(z)-octadec-9-enoate Chemical compound [Fe+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O DTVKDCLRVWKMKA-CVBJKYQLSA-L 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- AQBLLJNPHDIAPN-LNTINUHCSA-K iron(3+);(z)-4-oxopent-2-en-2-olate Chemical compound [Fe+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AQBLLJNPHDIAPN-LNTINUHCSA-K 0.000 description 1
- LDHBWEYLDHLIBQ-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide;hydrate Chemical compound O.[OH-].[O-2].[Fe+3] LDHBWEYLDHLIBQ-UHFFFAOYSA-M 0.000 description 1
- YPJCVYYCWSFGRM-UHFFFAOYSA-H iron(3+);tricarbonate Chemical compound [Fe+3].[Fe+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O YPJCVYYCWSFGRM-UHFFFAOYSA-H 0.000 description 1
- FPEWSONARTUTEB-UHFFFAOYSA-N iron(3+);trisilicate Chemical compound [Fe+3].[Fe+3].[Fe+3].[Fe+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] FPEWSONARTUTEB-UHFFFAOYSA-N 0.000 description 1
- 229910000015 iron(II) carbonate Inorganic materials 0.000 description 1
- 229910021506 iron(II) hydroxide Inorganic materials 0.000 description 1
- 229910000155 iron(II) phosphate Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical class C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- MRVHOJHOBHYHQL-UHFFFAOYSA-M lithium metaphosphate Chemical compound [Li+].[O-]P(=O)=O MRVHOJHOBHYHQL-UHFFFAOYSA-M 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- NEMFQSKAPLGFIP-UHFFFAOYSA-N magnesiosodium Chemical compound [Na].[Mg] NEMFQSKAPLGFIP-UHFFFAOYSA-N 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- UHNWOJJPXCYKCG-UHFFFAOYSA-L magnesium oxalate Chemical compound [Mg+2].[O-]C(=O)C([O-])=O UHNWOJJPXCYKCG-UHFFFAOYSA-L 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229940063002 magnesium palmitate Drugs 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- ABSWXCXMXIZDSN-UHFFFAOYSA-L magnesium;hexadecanoate Chemical compound [Mg+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O ABSWXCXMXIZDSN-UHFFFAOYSA-L 0.000 description 1
- LOCZQLKNTOXJDV-UHFFFAOYSA-N magnesium;oxido(oxo)borane Chemical compound [Mg+2].[O-]B=O.[O-]B=O LOCZQLKNTOXJDV-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- RHJYKEDKMHDZBL-UHFFFAOYSA-L metaphosphoric acid (hpo3), magnesium salt Chemical compound [Mg+2].[O-]P(=O)=O.[O-]P(=O)=O RHJYKEDKMHDZBL-UHFFFAOYSA-L 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 description 1
- QRWZCJXEAOZAAW-UHFFFAOYSA-N n,n,2-trimethylprop-2-enamide Chemical compound CN(C)C(=O)C(C)=C QRWZCJXEAOZAAW-UHFFFAOYSA-N 0.000 description 1
- YHOSNAAUPKDRMI-UHFFFAOYSA-N n,n-di(propan-2-yl)prop-2-enamide Chemical compound CC(C)N(C(C)C)C(=O)C=C YHOSNAAUPKDRMI-UHFFFAOYSA-N 0.000 description 1
- LZMQMUZCPILQGI-UHFFFAOYSA-N n,n-dibutyl-2-methylprop-2-enamide Chemical compound CCCCN(C(=O)C(C)=C)CCCC LZMQMUZCPILQGI-UHFFFAOYSA-N 0.000 description 1
- DLJMSHXCPBXOKX-UHFFFAOYSA-N n,n-dibutylprop-2-enamide Chemical compound CCCCN(C(=O)C=C)CCCC DLJMSHXCPBXOKX-UHFFFAOYSA-N 0.000 description 1
- JMCVCHBBHPFWBF-UHFFFAOYSA-N n,n-diethyl-2-methylprop-2-enamide Chemical compound CCN(CC)C(=O)C(C)=C JMCVCHBBHPFWBF-UHFFFAOYSA-N 0.000 description 1
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- RKSYJNCKPUDQET-UHFFFAOYSA-N n,n-dipropylprop-2-enamide Chemical compound CCCN(CCC)C(=O)C=C RKSYJNCKPUDQET-UHFFFAOYSA-N 0.000 description 1
- SHXRPEYRCYQSFS-UHFFFAOYSA-N n-benzhydrylprop-2-enamide Chemical compound C=1C=CC=CC=1C(NC(=O)C=C)C1=CC=CC=C1 SHXRPEYRCYQSFS-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PMJFVKWBSWWAKT-UHFFFAOYSA-N n-cyclohexylprop-2-enamide Chemical compound C=CC(=O)NC1CCCCC1 PMJFVKWBSWWAKT-UHFFFAOYSA-N 0.000 description 1
- ZIWDVJPPVMGJGR-UHFFFAOYSA-N n-ethyl-2-methylprop-2-enamide Chemical compound CCNC(=O)C(C)=C ZIWDVJPPVMGJGR-UHFFFAOYSA-N 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- WDFKEEALECCKTJ-UHFFFAOYSA-N n-propylprop-2-enamide Chemical compound CCCNC(=O)C=C WDFKEEALECCKTJ-UHFFFAOYSA-N 0.000 description 1
- QQZXAODFGRZKJT-UHFFFAOYSA-N n-tert-butyl-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NC(C)(C)C QQZXAODFGRZKJT-UHFFFAOYSA-N 0.000 description 1
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 description 1
- 229910052605 nesosilicate Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- ZVEZMVFBMOOHAT-UHFFFAOYSA-N nonane-1-thiol Chemical compound CCCCCCCCCS ZVEZMVFBMOOHAT-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- XCOHAFVJQZPUKF-UHFFFAOYSA-M octyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCC[N+](C)(C)C XCOHAFVJQZPUKF-UHFFFAOYSA-M 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000004762 orthosilicates Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- DAWBXZHBYOYVLB-UHFFFAOYSA-J oxalate;zirconium(4+) Chemical compound [Zr+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O DAWBXZHBYOYVLB-UHFFFAOYSA-J 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- WICKAMSPKJXSGN-UHFFFAOYSA-N pentane-3-thiol Chemical compound CCC(S)CC WICKAMSPKJXSGN-UHFFFAOYSA-N 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical class OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003864 primary ammonium salts Chemical class 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical class C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 150000003865 secondary ammonium salts Chemical class 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229910052567 struvite Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- BWQPTLUPLKVCEI-UHFFFAOYSA-N sulfane;titanium Chemical compound S.[Ti] BWQPTLUPLKVCEI-UHFFFAOYSA-N 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- IHBMMJGTJFPEQY-UHFFFAOYSA-N sulfanylidene(sulfanylidenestibanylsulfanyl)stibane Chemical compound S=[Sb]S[Sb]=S IHBMMJGTJFPEQY-UHFFFAOYSA-N 0.000 description 1
- RBWFXUOHBJGAMO-UHFFFAOYSA-N sulfanylidenebismuth Chemical compound [Bi]=S RBWFXUOHBJGAMO-UHFFFAOYSA-N 0.000 description 1
- VRRFSFYSLSPWQY-UHFFFAOYSA-N sulfanylidenecobalt Chemical compound [Co]=S VRRFSFYSLSPWQY-UHFFFAOYSA-N 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- 150000003866 tertiary ammonium salts Chemical class 0.000 description 1
- IJAAJNPGRSCJKT-UHFFFAOYSA-N tetraaluminum;trisilicate Chemical compound [Al+3].[Al+3].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IJAAJNPGRSCJKT-UHFFFAOYSA-N 0.000 description 1
- YTZVWGRNMGHDJE-UHFFFAOYSA-N tetralithium;silicate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-][Si]([O-])([O-])[O-] YTZVWGRNMGHDJE-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- ALRFTTOJSPMYSY-UHFFFAOYSA-N tin disulfide Chemical compound S=[Sn]=S ALRFTTOJSPMYSY-UHFFFAOYSA-N 0.000 description 1
- FBGKGORFGWHADY-UHFFFAOYSA-L tin(2+);dihydroxide Chemical compound O[Sn]O FBGKGORFGWHADY-UHFFFAOYSA-L 0.000 description 1
- 229910021509 tin(II) hydroxide Inorganic materials 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- JMCREPCAQYAZSN-UHFFFAOYSA-N titanium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Ti+3].[Ti+3] JMCREPCAQYAZSN-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- IPBROXKVGHZHJV-UHFFFAOYSA-N tridecane-1-thiol Chemical compound CCCCCCCCCCCCCS IPBROXKVGHZHJV-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- WGIWBXUNRXCYRA-UHFFFAOYSA-H trizinc;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WGIWBXUNRXCYRA-UHFFFAOYSA-H 0.000 description 1
- CCIDWXHLGNEQSL-UHFFFAOYSA-N undecane-1-thiol Chemical compound CCCCCCCCCCCS CCIDWXHLGNEQSL-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011746 zinc citrate Substances 0.000 description 1
- 235000006076 zinc citrate Nutrition 0.000 description 1
- 229940068475 zinc citrate Drugs 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- OMSYGYSPFZQFFP-UHFFFAOYSA-J zinc pyrophosphate Chemical compound [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O OMSYGYSPFZQFFP-UHFFFAOYSA-J 0.000 description 1
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- LPEBYPDZMWMCLZ-CVBJKYQLSA-L zinc;(z)-octadec-9-enoate Chemical compound [Zn+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LPEBYPDZMWMCLZ-CVBJKYQLSA-L 0.000 description 1
- ZPEJZWGMHAKWNL-UHFFFAOYSA-L zinc;oxalate Chemical compound [Zn+2].[O-]C(=O)C([O-])=O ZPEJZWGMHAKWNL-UHFFFAOYSA-L 0.000 description 1
- XJUNLJFOHNHSAR-UHFFFAOYSA-J zirconium(4+);dicarbonate Chemical compound [Zr+4].[O-]C([O-])=O.[O-]C([O-])=O XJUNLJFOHNHSAR-UHFFFAOYSA-J 0.000 description 1
- XWPGCGMKBKONAU-UHFFFAOYSA-N zirconium(4+);disulfide Chemical compound [S-2].[S-2].[Zr+4] XWPGCGMKBKONAU-UHFFFAOYSA-N 0.000 description 1
- 229910000328 zirconium(IV) silicate Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/38—Coatings with pigments characterised by the pigments
- D21H19/42—Coatings with pigments characterised by the pigments at least partly organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q39/00—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
- B23Q39/02—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
- B23Q39/021—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
- B23Q39/025—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder
- B23Q39/026—Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder simultaneous working of toolheads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/0052—Gripping heads and other end effectors multiple gripper units or multiple end effectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/44—Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
- D21H19/56—Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/50—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
- D21H21/52—Additives of definite length or shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
Definitions
- the present invention relates to a process for the treatment of paper surfaces, wherein the surface of the paper is coated with particles (composite particles) which are composed of polymer and finely divided inorganic solid, the weight average particle size of the finely divided inorganic solid being ⁇ 100 nm.
- the present invention also relates to a process for the treatment of paper surfaces, wherein the surface of the paper is treated with an aqueous dispersion which is obtainable by mixing an aqueous polymer dispersion with at least one dispersed, finely divided inorganic solid which has a weight average particle diameter of ⁇ 100 nm.
- Papers have a wide range of uses. Depending on their intended use, the papers must be capable of being readily written on or printed on (for example writing paper, newsprint, paper for journals, catalogs, books, etc.), must be absorbable (for example tissues, napkins, kitchen crepe paper and papers in the hygiene sector) or must be very strong, as, for example, in the case of banknote paper, Bible paper, kraft paper, capacitor paper or photographic paper.
- the paper surfaces are frequently subjected to additional treatment steps for achieving the required properties.
- the paper surfaces are coated with paper coating slips or treated with paper sizes.
- Paper coating slips substantially comprise a polymeric binder, one or more pigments and various further assistants. Through coating with paper coating slips, base papers acquire a strong, smooth white surface having improved printability.
- the binders used in the paper coating slips are usually acrylate or styrene/butadiene copolymers.
- Corresponding paper coating slips are described, for example, in WO 97/00776, EP-A 1101425 or EP-A 1132521.
- the paper sizes are as a rule nonpigmented binders, for example starches, proteins, rosin sizes and aqueous polymer dispersions and in particular starch-containing aqueous polymer dispersions, which are described, for example, in EP-A 307816, EP-A 735065, DE-A 3627494 and DE-A 10039388.
- binders for example starches, proteins, rosin sizes and aqueous polymer dispersions and in particular starch-containing aqueous polymer dispersions, which are described, for example, in EP-A 307816, EP-A 735065, DE-A 3627494 and DE-A 10039388.
- the fiber structure is consolidated and hence the water resistance and the writability and printability are improved.
- the pigment and fillers are better fixed.
- paper is to be understood as meaning a material which, according to DIN 6730 (August 1985), is sheet-like and substantially comprises fibers of predominantly vegetable origin and which is formed by draining a fiber suspension containing various assistants on a wire, the fiber felt thus obtained then being compacted and dried.
- Assistants used are, for example, fillers, dyes, pigments, binders, optical brighteners, retention aids, wetting agents, antifoams, preservatives, slime control agents, plasticizers, antiblocking agents, antistatic agents, water repellents, etc. known to a person skilled in the art.
- base paper (basis weight ⁇ 225 g/m 2 ) or raw board (basis weight>225 g/m 2 ) is also used.
- Another customary term is cardboard, which, with a basis weight of from about 150 to 600 g/m 2 , comprises both base paper grades and raw board grades.
- base paper below includes base paper, raw board and cardboard.
- the base paper is also treated by coating or is converted into the ready-to-use form.
- Coating of paper is understood as meaning the one-sided or two-sided coating of the paper with an aqueous coating slip substantially comprising pigments and binders.
- aqueous coating slip substantially comprising pigments and binders.
- various coating methods are used for this purpose, for example the roll coating, knife coating, air brush or cast coating methods known to a person skilled in the art, which are followed in each case by a drying step.
- the papers thus treated are referred to as coated papers.
- a further process for the treatment of papers comprises the treatment of the paper surfaces with sizes.
- the papers thus treated are referred to as sized papers.
- the essential feature is that the novel processes are suitable both for base papers and for coated and sized papers.
- the composite particles are applied in the form of an aqueous composite particle dispersion to the paper surface (process 1).
- Aqueous dispersions of composite particles are generally known. They are fluid systems which contain, as disperse phase present in disperse distribution and in aqueous dispersing medium, particles composed of a plurality of polymer balls consisting of entangled polymer chains, i.e. the polymer matrix, and finely divided inorganic solid. The diameter of the composite particles is frequently from 30 to 5000 nm.
- Composite particles and processes for their preparation in the form of aqueous composite particle dispersions are known to a person skilled in the art and are disclosed, for example, in U.S. Pat. No. 3,544,500, U.S. Pat. No. 4,421,660, U.S. Pat. No. 4,608,401, U.S. Pat. No.
- EP-A 104 498 EP-A 505 230, EP-A 572 128, GB-A 2 227 739, WO 0118081, WO 0129106 and in Long et al., Tianjin Daxue Xuebao 4 (1991),10 to 14, Bourgeat-Lami et al., Die Angewandte Makromolekulare Chemie 242 (1996), 105 to 122, Paulke et al., Synthesis Studies of Paramagnetic Polystyrene Latex Particles in Scientific and Clinical Applications of Magnetic Carriers, pages 69 to 76, Plenum Press, New York, 1997, Armes et al., Advanced Materials 11 No. 5 (1999), 408 to 410.
- aqueous composite particle dispersions which were prepared according to the procedure disclosed in WO 03000760 are also suitable according to the invention.
- This process comprises dispersing at least one ethylenically unsaturated monomer in an aqueous medium and polymerizing by means of at least one free radical polymerization initiator in the presence of at least one dispersed, finely divided inorganic solid and at least one anionic, cationic and nonionic dispersant by the aqueous free radical emulsion polymerization method,
- Suitable for this process are all those finely divided inorganic solids which form stable aqueous dispersions which, with an initial solids concentration of ⁇ 1% by weight, based on the aqueous dispersion of the at least one inorganic solid, still contain more than 90% by weight of the originally dispersed solid in dispersed form one hour after their preparation without stirring or shaking and whose dispersed solid particles have a diameter of ⁇ 100 nm and moreover have an electrophoretic mobility differing from zero at a pH which corresponds to the pH of the aqueous reaction medium before the beginning of the addition of the dispersants.
- the quantitative determination of the initial solids concentration and of the solids concentration after one hour and the determination of the particle diameter are effected by the analytical ultracentrifuge method (in this context, cf. S. E. Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Machtle, pages 147 to 175).
- the values stated in the case of the particle diameters correspond to the d 50 values.
- the method for the determination of the electrophoretic mobility is known to a person skilled in the art (cf. for example R. J. Hunter, Introduction to Modem Colloid Science, Section 8.4, pages 241 to 248, Oxford University Press, Oxford, 1993, and K. Oka and K. Furusawa, in Electrical Phenomena at Interfaces, Surfactant Science Series, Vol. 76, Section 8, pages 151 to 232, Marcel Dekker, New York, 1998).
- the electrophoretic mobility of the solid particles dispersed in aqueous reaction medium is determined by means of a commercial electrophoresis apparatus, for example the Zetasizer 3000 from Malvern Instruments Ltd., at 20° C. and 1 bar (absolute).
- the aqueous solid particle dispersion is diluted with a pH-neutral 10 millimolar (mM) aqueous potassium chloride solution (standard potassium chloride solution) until the solid particle concentration is from about 50 to 100 mg/l.
- mM millimolar
- the adjustment of the test sample to the pH which the aqueous reaction medium has before the beginning of the addition of the dispersants is effected by means of the conventional inorganic acids, for example dilute hydrochloric acid or nitric acid, or bases, for example dilute sodium hydroxide solution or potassium hydroxide solution.
- the migration of the dispersed solid particles in the electric field is detected by means of the electrophoretic light scattering (cf. for example B. R. Ware and W. H. Flygare, Chem.
- the sign of the electrophoretic mobility is defined by the direction of migration of the dispersed solid particles, i.e. the electrophoretic mobility of the dispersed solid particles is positive if they migrate to the cathode and, on the other hand, is negative if they migrate to the anode.
- a suitable parameter for influencing or adjusting the electrophoretic mobility of dispersed solid particles in a certain environment is the pH of the aqueous reaction medium.
- the electrophoretic mobility is changed in the positive direction in the acidic pH range (pH ⁇ 7) and in the negative direction in the alkaline range (pH>7).
- the pH range suitable for the process disclosed in WO 03000760 is that within which a free radical aqueous emulsion polymerization can be carried out. This pH range is as a rule from pH 1 to 12, frequently from pH 1.5 to 11, often from pH 2 to 10.
- the pH of the aqueous reaction medium can be adjusted by means of commercial acids, for example dilute hydrochloric, nitric or sulfuric acid, or bases, for example dilute sodium hydroxide solution or potassium hydroxide solution. It is frequently advantageous if a portion or the total amount of the amount of acid or base used for the pH adjustment is added to the aqueous reaction medium before the at least one finely divided inorganic solid.
- the ratio of the number of equivalents of anionic dispersant to that of cationic dispersant is understood as meaning the ratio of the number of moles of the anionic dispersant, multiplied by the number of anionic groups contained per mole of the anionic dispersant, divided by the number of moles of the cationic dispersant used, multiplied by the number of cationic groups contained per mole of the cationic dispersant.
- the total amount of the at least one anionic, cationic and nonionic dispersant used according to WO 03000760 can be initially taken in the aqueous solid dispersion. However, it is also possible initially to take only a portion of said dispersants in the aqueous solid dispersion and to add the remaining amounts continuously or batchwise during the free radical emulsion polymerization. However, it is essential to the process that the abovementioned ratio of the number of equivalents of anionic dispersant to that of cationic dispersant is maintained before or during the free radical emulsion polymerization, depending on the electrophoretic sign of the finely divided solid.
- the ratio of the number of equivalents of anionic dispersant to that of cationic dispersant must therefore be greater than 1 during the entire emulsion polymerization.
- the ratio of the number of equivalents of cationic dispersant to that of anionic dispersant must be greater than 1 during the entire emulsion polymerization. It is advantageous if the ratios of the numbers of equivalents are ⁇ 2, ⁇ 3, ⁇ 4, 24 5, ⁇ 6, ⁇ 7 or ⁇ 10, the ratios of the numbers of equivalents particularly advantageously being from 2to 5.
- a further process for the treatment of paper surfaces comprises treating the surface of the paper with an aqueous dispersion which by mixing an aqueous polymer dispersion with at least one dispersed, finely divided organic solid which has a weight average particle diameter of ⁇ 100 nm (process 2).
- Aqueous polymer dispersions are generally known. They are fluid systems which contain, present as the disperse phase dispersed in an aqueous dispersing medium, polymer balls consisting of a plurality of entangled polymer chains, i.e. the polymer matrix or polymer particle. The diameter of the polymer particles is frequently from 10 to 5000 nm.
- aqueous polymer dispersion is effected, for example, by means of free radical aqueous emulsion polymerization.
- the procedure for a free radical aqueous emulsion polymerization of ethylenically unsaturated monomers has been widely described and is therefore sufficiently well known to a person skilled in the art [cf. for example Encyclopedia of Polymer Science and Engineering, Vol. 8, pages 659 to 677, John Wiley & Sons, Inc., 1987; D. C. Blackley, Emulsion Polymerisation, pages 155 to 465, Applied Science Publishers, Ltd., Essex, 1975; D. C. Blackley, Polymer Latices, 2 nd Edition, Vol.
- Metals, metal compounds, such as metal oxides and metal salts, but also semimetal and nonmetal compounds, are suitable finely divided inorganic solids which can be used for both novel processes.
- Noble metal colloids for example palladium, silver, ruthenium, platinum, gold and rhodium, and alloys containing them can be used as finely divided metal powders.
- finely divided metal oxides are titanium dioxide (for example commercially available as Hombitec® grades from Sachtleben Chemie GmbH), zirconium(IV) oxide, tin(II) oxide, tin(IV) oxide (for example commercially available as Nyacol® SN grades from Akzo-Nobel), alumina (for example commercially available as Nyacol® AL grades from Akzo-Nobel), barium oxide, magnesium oxide, various iron oxides, such as iron(II) oxide (wuestite), iron(II) oxide (hematite) and iron(II/III) oxide (magnetite), chromium(III) oxide, antimony(III) oxide, bismuth(III) oxide, zinc oxide (for example commercially available as Sachtotece grades from Sachtleben Chemie GmbH), nickel(II) oxide, nickel(III) oxide, cobalt(II) oxide, cobalt(III) oxide, copper(II) oxide, yttrium(III) oxide (for example commercially available as
- amorphous metal salts and metal salts present in their different crystal structures can in principle be used in the novel process: sulfides, such as iron(II) sulfide, iron(II) sulfide, iron(II) disulfide (pyrite), tin(II) sulfide, tin(IV) sulfide, mercury(II) sulfide, cadmium(II) sulfide, zinc sulfide, copper(II) sulfide, silver sulfide, nickel(II) sulfide, cobalt(II) sulfide, cobalt(III) sulfide, manganese(II) sulfide, chromium(III) sulfide, titanium(II) sulfide, titanium(III) sulfide, titanium(IV) sulfide, zirconium(IV) sulfide, anti
- silica and/or silica present in different crystal structures may be mentioned as important semimetal compounds which may be used according to the invention.
- Silica suitable according to the invention is commercially available and can be obtained, for example, as Aerosil® (grade from Degussa AG), Levasil® (grade from Bayer AG), Ludox® (grade from DuPont), Nyacole and Bindzil® (grades from Akzo-Nobel) and Snowtex® (grade from Nissan Chemical Industries, Ltd.).
- Nonmetal compounds suitable according to the invention are, for example, colloidal graphite or diamond.
- Particularly suitable finely divided inorganic solids are those whose solubility in water at 20° C. and 1 bar (absolute) is ⁇ 1, preferably ⁇ 0.1, in particular ⁇ 0.01, g/l.
- Silica sols which have an electrophoretic mobility with a negative sign are particularly preferred.
- the commercially available compounds of the Aerosil®, Levasil®, Ludox®, Nyacol® and Bindzil® grades (silica), Disperal® grades (hydrated aluminum oxide), Nyacol® AL grades (alumina), Hombitec® grades (titanium dioxide), Nyacol® SN grades (tin(IV) oxide), Nyacol® YTTRIA grades (yttrium(III) oxide), Nyacol® CEO2 grades (cerium(IV) oxide) and Sachtotec® grades (zinc oxide) can also advantageously be used in the novel processes.
- the finely divided inorganic solids which can be used in the novel processes are such that the solid particles dispersed in the aqueous reaction medium have a particle diameter of ⁇ 100 nm.
- Those finely divided inorganic solids whose disperse particles have a particle diameter of >0 nm but ⁇ 90 nm, ⁇ 80 nm, ⁇ 70 nm, ⁇ 60 nm, ⁇ 50 nm, ⁇ 40 nm, ⁇ 30 nm, ⁇ 20 nm or ⁇ 10 nm and all values in between are successfully used.
- Finely divided inorganic solids which have a particle diameter of ⁇ 50 nm are advantageously used. The particle diameters are determined using the analytical ultracentrifuge method.
- the finely divided solids are obtainable by a procedure known in principle to a person skilled in the art and are obtained, for example, by precipitation reactions or chemical reactions in the gas phase (in this context, cf. E. Matijevic, Chem. Mater. 5 (1993), 412 to 426; Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 23, pages 583 to 660, Verlag Chemie, Weinheim, 1992; D. F. Evans, H. Wennerström in The Colloidal Domain, pages 363 to 405, Verlag Chemie, Weinheim, 1994, and R. J. Hunter in Foundations of Colloid Science, Vol. 1, pages 10 to 17, Clarendon Press, Oxford, 1991).
- the stable solid dispersion is frequently prepared directly during the synthesis of the finely divided inorganic solids in an aqueous medium or alternatively by dispersing the finely divided inorganic solid in the aqueous medium.
- this is effected either directly, for example in the case of precipitated or pyrogenic silica, alumina, etc., or with the aid of suitable auxiliary units, for example dispersers or ultrasonic sonotrodes.
- initial solids concentrations of ⁇ 55, ⁇ 50, ⁇ 45, ⁇ 40, ⁇ 35, ⁇ 30, ⁇ 25, ⁇ 20, ⁇ 15 or ⁇ 10% byweight and ⁇ 2, ⁇ 3, ⁇ 4 or ⁇ 5% by weight and all values in between, based in each case on the aqueous dispersion of finely divided inorganic solid can also be used.
- the at least one finely divided inorganic solid are used per 100 parts by weight of the at least one ethylenically unsaturated monomer in the preparation of aqueous composite particle dispersions (process 1) or 100 parts by weight of dispersion polymer (process 2).
- dispersants are present which keep both the finely divided inorganic solid particles and the monomer droplets, and the composite particles formed or the mixture of the polymer particles and of the finely divided inorganic solid, dispersed in the aqueous phase and thus ensure the stability of the aqueous dispersions produced.
- dispersions are both the protective colloids usually used for carrying out free radical aqueous emulsion polymerization and emulsifiers.
- Suitable neutral protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, cellulose derivatives, starch derivatives and gelatin derivatives.
- Suitable anionic protective colloids are, for example, polyacrylic acids and polymethacrylic acids and the alkali metal salts thereof, copolymers containing acrylic acid, methacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, 4-styrenesulfonic acid and/or maleic anhydride, and the alkali metal salts thereof, and alkali metal salts of sulfonic acids of high molecular weight compounds, for example polystyrene.
- Suitable cationic protective colloids are, for example, the homo and copolymers containing those derivatives of N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amino-carrying acrylates, methacrylates, acrylamides and/or methacrylamides which are protonated and/or alkylated on the nitrogen.
- mixtures of emulsifiers and/or protective colloids may also be used.
- exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1500 are used as dispersants.
- the individual components must be compatible with one another, which can be checked by means of a few preliminary experiments in case of doubt.
- An overview of suitable emulsifiers appears in Houben-Weyl, Methoden der organischen Chemie, Volume XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, pages 192 to 208.
- Customary nonionic emulsifiers are, for example, ethoxylated mono-, di- and trialkyphenols (degree of ethoxylation: from 3 to 50, alkyl radical: C 4 to C 12 ) and ethoxylated fatty alcohols (degree of ethoxylation: from 3 to 80; alkyl radical: C 8 to C 36 ).
- Lutensol® A grades C 12 C 14 -fatty alcohol ethoxylates, degree of ethoxylation: from 3 to 8
- Lutensol® AO grades C 13 C 15 -oxo alcohol ethoxylates, degree of ethoxylation: from 3 to 30
- Lutensol® AT grades C 16 C 18 -fatty alcohol ethoxylates, degree of ethoxylation: from 11 to 80
- Lutensol® ON grades C 10 -oxo alcohol ethoxylates, degree of ethoxylation: from 3 to 11
- the Lutensole® TO grades C 13 -oxo alcohol ethoxylates, degree of ethoxylation: from 3 to 20 from BASF AG.
- anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C 8 to C 12 ), of sulfuric monoesters of ethoxylated alkanols (degree of ethoxylation: from 4 to 30, alkyl radical: C 12 to C 18 ) and ethoxylated alkylphenols (degree of ethoxylation: from 3 to 50, alkyl radical: C 4 to C 12 ), of alkanesulfonic acids (alkyl radical: C 12 to C, 8 ) and of alkylarylsulfonic acids (alkyl radical: C 9 to C 18 ).
- alkyl sulfates alkyl radical: C 8 to C 12
- sulfuric monoesters of ethoxylated alkanols degree of ethoxylation: from 4 to 30, alkyl radical: C 12 to C 18
- ethoxylated alkylphenols degree of ethoxylation
- R 1 and R 2 are H or C 4 - to C 24 -alkyl and are not simultaneously H, and A and B may be alkali metal ions and/or ammonium ions, have also proven to be further anionic emulsifiers.
- R 1 and R 2 are preferably linear or branched alkyl of 6 to 18, in particular 6, 12 or 16, carbon atoms or —H, R 1 and R 2 not both simultaneously being H.
- a and B are preferably sodium, potassium or ammonium, sodium being particularly preferred.
- Compounds I in which A and B are sodium, R 1 is branched alkyl having 12 carbon atoms and R 2 is H or R 1 are particularly advantageous.
- Suitable cationic emulsifiers are as a rule primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts having a C 6 - to C 18 -alkyl, C 6 - to C 18 -aralkyl or a heterocyclic radical.
- Examples are dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2-(N,N,N-trimethylammonium)ethylparaffinic acid esters, N-cetylpyridinium chloride, N-laurylpyridinium sulfate and N-cetyl-N,N,N-trimethylammonium bromide, N-dodecyl-N,N,N-trimethylammonium bromide, N-octyl-N,N,N-trimethylammonium bromide, N,N-distearyl-N,N-dimethylammonium chloride and the Gemini surfactant N,N′-(lauryldimethyl)ethylenediamine dibromide.
- aqueous dispersions which can be used according to the invention in processes 1 and 2 contain, as a rule, from 0.1 to 10, often from 0.5 to 7.0, frequently from 1.0 to 5.0,% by weight, based in each case on the aqueous dispersion, of dispersant.
- Emulsifiers are preferably used.
- Suitable ethylenically unsaturated monomers for the preparation of the composite particles which can be used according to the invention (process 1) and the dispersion polymer used according to the invention (process 2) are, inter alia, in particular monomers which can be subjected to free radical polymerization in a simple manner, such as ethylene, vinylaromatic monomers, such as styrene, ⁇ -methylstyrene, o-chlorostyrene or vinyltoluenes, esters of vinyl alcohol and monocarboxylic acids of 1 to 18 carbon atoms, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl stearate, esters of ⁇ , ⁇ monoethylenically unsaturated mono- and dicarboxylic acids preferably of 3 to 6 carbon atoms, in particular acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, with alkanols of in general 1 to 12, preferably
- Said monomers are, as a rule, the main monomers, which together usually account for an amount of ⁇ 50, ⁇ 80 or ⁇ 90% by weight, based on the total amount of the monomers to be polymerized by the novel process.
- these monomers have only moderate to low solubility in water under standard conditions [20° C., 1 bar (absolute)].
- Monomers which usually increase the internal strength of the films of the polymer matrix generally have at least one epoxy, hydroxyl, N-methylol or carbonyl group, or at least two nonconjugated ethylenically unsaturated double bonds.
- these are monomers having two vinyl radicals, monomers having two vinylidene radicals and monomers having two alkenyl radicals.
- Particularly advantageous are the diesters of dihydric alcohols with ⁇ , ⁇ -monoethylenically unsaturated monocarboxylic acids, among which acrylic and methacrylic acid are preferred.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylates and ethylene glycol dimethacrylate, 1,2-propylene glycol dimethacrylate, 1,3-propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate or 1,4-butylene glycol dimethacrylate, and divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, methylenebisacrylamide, cyclopentadienyl acrylate, triallyl cyanurate or triallyl isocyanurate.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol di
- the C 1 -C 8 -hydroxyalkyl methacrylates and acrylates such as n-hydroxyethyl, n-hydroxypropyl or n-hydroxybutyl acrylate and methacrylate, and compounds such as diacetoneacrylamide and acetylacetoxyethyl acrylate or methacrylate.
- the abovementioned monomers are incorporated in the form of polymerized units in amounts of up to 5% by weight, based on the total amount of the monomers to be polymerized.
- Monomers containing siloxane groups such as the vinyltrialkoxysilanes, for example vinyltrimethoxysilane, alkylvinyidialkoxysilanes, acryloyloxyalkyltrialkoxysilanes or methacryloyloxyalkyltrialkoxysilanes, for example acryloyloxyethyltrimethoxysilane, methacryloyloxyethyltrimethoxysilane, acryloyloxypropyltrimethoxysilane or methacryloyloxypropyltrimethoxysilane, can optionally also be used. These monomers are used in amounts of up to 2, frequently from 0.01 to 1, often from 0.05 to 0.5,% by weight, based in each case on the total amount of monomers.
- ethylenically unsaturated monomers A which contain at least one acid group and/or the corresponding anion thereof or those ethylenically unsaturated monomers B which contain at least one amino, amido, ureido or N-heterocyclic group and/or the ammonium derivatives thereof which are protonated or alkylated on the nitrogen may additionally be used as monomers.
- the amount of monomers A or monomers B is up to 10, often from 0.1 to 7, frequently from 0.2 to 5,% by weight, based on the total amount of monomers.
- Ethylenically unsaturated monomers having at least one acid group are used as monomers A.
- the acid group may be, for example, a carboxyl, sulfo, sulfuric acid, phosphoric acid and/or phosphonic acid group.
- monomers A are acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloyloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid and phosphoric monoesters of n-hydroxyalkyl acrylates and n-hydroxyalkyl methacrylates, for example phosphoric monoesters of hydroxyethyl acrylate, n-hydroxypropyl acrylate, n-hydroxybutyl acrylate and hydroxyethyl methacrylate, n-hydroxypropyl methacrylate and n-hydroxybutyl methacrylate.
- ammonium and alkali metal salts of the abovementioned ethylenically unsaturated monomers having at least one acid group it is also possible to use the ammonium and alkali metal salts of the abovementioned ethylenically unsaturated monomers having at least one acid group.
- Sodium and potassium are particularly preferred as the alkali metal.
- Examples here are the ammonium, sodium and potassium salts of acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloyloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid and the mono- and diammonium, mono- and disodium and mono- and dipotassium salts of the phosphoric monoesters of hydroxyethyl acrylate, n-hydroxypropyl acrylate, n-hydroxybutyl acrylate and hydroxyethyl methacrlate, n-hydroxypropyl methacrylate or n-hydroxybutyl methacrylate.
- Acrylic acid methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloyloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid are preferably used.
- Ethylenically unsaturated monomers which contain at least one amino, amido, ureido or N-heterocyclic group and/or the ammonium derivatives thereof which are protonated or alkylated on the nitrogen are used as monomers B.
- Examples of monomers B which contain at least one amino group are 2-aminoethyl acrylate, 2-aminoethyl methacrylate, 3-aminopropyl acrylate, 3-aminopropyl methacrylate, 4-amino-n-butyl acrylate, 4-amino-n-butyl methacrylate, 2-(N-methylamino)ethyl acrylate, 2-(N-methylamino)ethyl methacrylate, 2-(N-ethylamino)ethyl acrylate, 2-(N-ethylamino)ethyl methacrylate, 2-(N-n-propylamino)ethyl acrylate, 2-(N-n-propylamino)ethyl methacrylate, 2-(N-isopropylamino)ethyl methacrylate, 2-(N-tert-buty
- Examples of monomers B which contain at least one amido group are acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-ethylmethacrylamide, N-n-propylacrylamide, N-n-propylmethacrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide, N-tert-butylacrylamide, N-tert-butylmethacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide, N,N-di-n-propylacrylamide, N,N-di-n-propylmethacrylamide, N,N-diisopropylacrylamide, N,N-diisopropylmethacrylamide, N,N-di-n-butylacrylamide, N, N-di
- Examples of monomers B which contain at least one ureido group are N,N′-divinylethyleneurea and 2-(1-imidazolin-2-onyl)ethyl methacrylate (for example commercially available as Norsocryl® 100 from Elf Atochem).
- Examples of monomers B which contain at least one N-heterocyclic group are 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, 2-vinylimidazole and N-vinylcarbazole.
- the following compounds are preferably used: 2-vinylpyridine, 4-vinylpyridine, 2-vinylimidazole, 2-(N,N-dimethylamino)ethyl acrylate, 2-(N,N-dimethylamino)ethyl methacrylate, 2-(N,N-diethylamino)ethyl acrylate, 2-(N,N-diethylamino)ethyl methacrylate, 2-(N-tert-butylamino)ethyl methacrylate, N-(3-N′,N′-dimethylaminopropyl)methacrylamide and 2-(1-imidazolin-2-onyl)ethyl methacrylate.
- a part or the total amount of the abovementioned nitrogen-containing monomers B may be present in the quaternary ammonium form protonated on the nitrogen.
- Examples of monomers B which have a quaternary alkylammonium structure on the nitrogen are 2-(N,N,N-trimethylammonium)ethyl acrylate chloride (for example commercially available as Norsocryl® ADAMQUAT MC 80 from Elf Atochem), 2-(N,N,N-trimethylammonium)ethyl methacrylate chloride (for example commercially available as Norsocryle MADQUAT MC 75 from Elf Atochem), 2-(N-methyl-N,N-diethylammonium)ethyl acrylate chloride, 2-(N-methyl-N,N-diethylammonium)ethyl methacrylate chloride, 2-(N-methyl-N,N-dipropylammonium)ethyl acrylate chloride, 2-(N-methyl-N,N-dipropylammonium)ethyl methacrylate, 2-(N-benzyl-N,N-dimethyl
- 2-(N,N,N-Trimethylammonium)ethyl acrylate chloride, 2-(N,N,N-trimethylammonium)ethyl methacrylate chloride, 2-(N-benzyl-N,N-dimethylammonium)ethyl acrylate chloride and 2-(N-benzyl-N,N-dimethylammonium)ethyl methacrylate chloride are preferably used.
- free radical polymerization initiators which are capable of initiating a free radical aqueous emulsion polymerization are suitable for the preparation of the aqueous composite particle dispersion and of the aqueous polymer dispersion by free radical polymerization.
- these may be both peroxides and azo compounds.
- Redox initiator systems are of course also suitable.
- Peroxides which may be used in principle are inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxodisulfuric acid, for example the mono- and disodium or mono- and dipotassium or ammonium salts, or organic peroxides, such as alkyl hydroperoxides, for example tert-butyl, p-menthyl or cumyl hydroperoxide, and dialkyl or diaryl peroxides, such as di-tert-butyl or dicumyl peroxide.
- inorganic peroxides such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxodisulfuric acid, for example the mono- and disodium or mono- and dipotassium or ammonium salts
- organic peroxides such as alkyl hydroper
- Azo compounds used are substantially 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile) and 2,2′-azobis(amidinopropyl) dihydrochloride (AIBA, corresponds to V-50 from Wako Chemicals).
- Suitable oxidizing agents for redox initiator systems are substantially the abovementioned peroxides.
- Sulfur compounds having a low oxidation state such as alkali metal sulfites, for example potassium and/or sodium sulfite, alkali metal hydrogen sulfites, for example potassium and/or sodium hydrogen sulfide, alkali metal bisulfites, for example potassium and/or sodium metabisulfite, formaldehyde sulfoxylates, for example potassium and/or sodium formaldehyde sulfoxylate, alkali metal salts, especially potassium and/or sodium salts of aliphatic sulfinic acids and alkali metal hydrogen sulfides, for example potassium and/or sodium hydrogen sulfide, salts of polyvalent metals, such as iron(II) sulfate, iron(II) ammonium sulfate or iron(II) phosphate, enediols, such as dihydroxymaleic acid, benzoin and/or ascorbic acid, and reducing saccharides, such as sorbose, glucose
- the entire range from 0 to 170° C. is suitable as the reaction temperature for the free radical aqueous polymerization reaction in the presence or absence of the finely divided inorganic solid.
- temperatures of from 50 to 120° C., frequently from 60 to 110° C., often from ⁇ 70 to 100° C., are used.
- the free radical aqueous emulsion polymerization can be carried out at a pressure less than, equal to or greater than 1 bar (absolute), it being possible for the polymerization temperature to exceed 100° C. and to be up to 170° C.
- Readily volatile monomers, such as ethylene, butadiene or vinyl chloride, are preferably-polymerized under-superatmospheric pressure.
- the pressure may be 1.2, 1.5, 2, 5, 10 or 15 bar or may also assume higher values. If emulsion polymerizations are carried out under reduced pressure, pressures of 950, frequently 900, often 850, mbar (absolute) are established.
- the free radical aqueous emulsion polymerization is advantageously carried out at 1 bar (absolute) under an inert gas atmosphere, for example under nitrogen or argon.
- the aqueous reaction medium can in principle also comprise water-soluble organic solvents, such as methanol, ethanol, isopropanol, butanols, pentanols, acetone, etc.
- water-soluble organic solvents such as methanol, ethanol, isopropanol, butanols, pentanols, acetone, etc.
- the polymerization reaction is preferably effected in the absence of said solvents.
- free radical chain transfer compounds may optionally also be used in the processes for the preparation of the aqueous composite particle dispersion or the aqueous polymer dispersion, in order to reduce or control the molecular weight of the polymers obtainable by the polymerization.
- Substantially aliphatic and/or araliphatic halogen compounds for example n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene chloride, chloroform, bromoform, bromotrichloromethane, dibromodichloromethane, carbon tetrachloride, carbon tetrabromide, benzyl chloride or benzyl bromide, organic thio compounds, such as primary, secondary or tertiary aliphatic thiols, for example ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-butanethiol, 2-methyl-2-propanethiol, n-pentanethiol, 2-pentanethiol, 3-pentanethiol, 2-methyl-2-butanethiol, 3-methyl-2-butan
- aqueous composite particle dispersions used according to the invention and the aqueous dispersions comprising aqueous polymer dispersion and finely divided inorganic solid usually have a total solids content of from 1 to 70, frequently from 5 to 65, often from 10 to 60,% by weight.
- the composite particles or dispersion polymers used according to the invention have, as a rule, particle diameters of >0 and ⁇ 1000 nm, frequently ⁇ 500 nm, often ⁇ 250 nm.
- the determination of these particle diameters, too, is effected by the analytical ultracentrifuge method.
- the stated values correspond to the d 50 values.
- the composite particles which can be used according to the invention may have different structures.
- the composite particle may contain one or more of the finely divided solid particles.
- the finely divided solid particles may be completely surrounded by the polymer matrix.
- the aqueous composite particle dispersions can be dried in a simple manner to give redispersible composite particle powders (for. example by freeze-drying or spray-drying).
- the glass transition temperature of the polymer matrix of the composite particles obtainable according to the invention is ⁇ 50° C., preferably ⁇ 60° C., particularly preferably ⁇ 70° C., very particularly preferably ⁇ 80° C., especially preferably ⁇ 90° C. or ⁇ 100° C.
- the composite particle powders are also suitable for the novel treatment of paper surfaces.
- the mixtures of aqueous polymer dispersion and finely divided inorganic solid are obtained, for example, by stirring the corresponding amount of the finely divided inorganic solid, either in the form of powder or in the form of an aqueous solid dispersion, into an aqueous polymer dispersion stirred at from 20 to 25° C. (room temperature) and mixing homogeneously.
- the composite particles or the mixture of dispersion polymer and finely divided inorganic solid is or are applied to the paper surface in an amount of from 0.1 to 100, often from 0.2 to 20, frequently from 0.5 to 10, g/m 2 of paper. Larger amounts are also conceivable but as a rule are not economically expedient. If the composite particles or the mixture of dispersion polymer and finely divided inorganic solid is or are applied to the paper surface in the form of aqueous polymer dispersions, the abovementioned amounts are based on those amounts of composite particles or of mixture of dispersion polymer and finely divided inorganic solid which are contained in the aqueous dispersions. After the application of the aqueous dispersions, a drying step familiar to a person skilled in the art is as a rule carried out.
- those composite particles or dispersion polymers whose polymers can be formed into films and whose minimum film formation temperature is ⁇ 150° C., preferably ⁇ 100° C., particularly preferably ⁇ 50° C., are used for the novel process. Since the minimum film formation temperature is no longer measurable below 0° C., the lower limit of the minimum film formation temperature can be specified only by the glass transition temperature. The glass transition temperatures should not fall below ⁇ 60° C., preferably ⁇ 30° C.
- the determination of the minimum film formation temperature is effected according to DIN 53 787 or ISO 2115 and the determination of the glass transition temperature according to DIN 53 765 (differential scanning calorimetry, 20 K/min, midpoint measurement).
- the paper coated with composite particles is subjected, after the coating process, to pressures and/or temperatures such that the polymer contained in the composite particles (process 1) forms a film.
- the paper surfaces are coated according to process 2 with an aqueous dispersion of a mixture of polymer and finely divided inorganic solid.
- coated papers obtainable by the novel processes have a wide range of uses, for example as writing paper, newsprint, paper for journals, catalogs or books, as banknote paper, Bible paper, kraft paper, capacitor paper or photographic paper.
- novel papers can be written on and, for example, printed on by means of offset, flexographic and gravure printing processes.
- the printed novel papers obtainable by the offset printing process have advantages with regard to their dry strength, wet picking resistance and ink absorption resistance and their good mottle properties.
- CTAB N-cetyl-N,N,N-trimethylammonium bromide
- a monomer mixture consisting of 117.5 g of methyl methacrylate, 130 g of n-butyl acrylate and 0.5 g of methacryloyloxypropyltrimethoxysilane was prepared as feed 1 and an initiator solution consisting of 2.5 g of sodium peroxodisulfate, 11.5 g of a 10% strength by weight solution of sodium hydroxide and 100 g of demineralized water was prepared as feed 2.
- reaction mixture was stirred for a further hour at reaction temperature and then cooled to room temperature.
- the aqueous composite particle dispersion thus obtained had a solids content of 40.1% by weight, based on the total weight of the aqueous composite particle dispersion.
- the solids content of the aqueous composite particle dispersion was brought to 10% by weight at room temperature with stirring.
- wood-free base paper (basis weight 70 g/m 2 ) from Scheufelen,-Germany, was coated with 10 g/m 2 of a coating slip (calculated as solid), consisting of
- Test strips measuring 35 cm ⁇ 20 cm were cut from the paper webs and were uniformly coated with the dilute aqueous composite particle dispersion. The amount of said dispersion was such that the amount of composite particles was 1.0 g/m 2 of paper surface.
- the test strips were then stored for 15 hours at 23° C. and a relative humidity of 50% (DIN 50014-23/50-2).
- the test strips were then calendered by means of the table laboratory calender K8/2 from Kleinewefers Anlagen GmbH, Germany, at room temperature.
- the nip pressure between the rolls was 200 kN/cm paper width and the speed was 10 m/min. The process was carried out four times altogether.
- the comparative example was carried out according to the abovementioned example, with the exception that the surface was not treated with the aqueous composite particle dispersion.
- test strips were printed at increasing speed in a printing unit (IGT printability tester AC2/AIC2) using a standard ink (printing ink 3808 from Lorilleux-Lefranc).
- the maximum printing speed was 200 cm/s.
- the ink was applied at a nip pressure of 350 N/cm.
- test strips were produced and prepared as in the case of the testing of the dry picking resistance.
- the printing unit (IGT printability tester AC2/AIC2) was set up in such a way that the test strips were moistened with water before the printing process.
- the printing was carried out at a constant speed of 0.6 cm/s.
- test strips [cf. testing of the dry picking resistance] was carried out at a constant speed of 1 m/s and at a nip pressure of 200 N/cm.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paper (AREA)
- Polymerisation Methods In General (AREA)
- Paints Or Removers (AREA)
Abstract
A method for the treatment of paper surfaces is described.
Description
- The present invention relates to a process for the treatment of paper surfaces, wherein the surface of the paper is coated with particles (composite particles) which are composed of polymer and finely divided inorganic solid, the weight average particle size of the finely divided inorganic solid being ≦100 nm.
- The present invention also relates to a process for the treatment of paper surfaces, wherein the surface of the paper is treated with an aqueous dispersion which is obtainable by mixing an aqueous polymer dispersion with at least one dispersed, finely divided inorganic solid which has a weight average particle diameter of ≦100 nm.
- Papers have a wide range of uses. Depending on their intended use, the papers must be capable of being readily written on or printed on (for example writing paper, newsprint, paper for journals, catalogs, books, etc.), must be absorbable (for example tissues, napkins, kitchen crepe paper and papers in the hygiene sector) or must be very strong, as, for example, in the case of banknote paper, Bible paper, kraft paper, capacitor paper or photographic paper.
- Particularly in the case of the papers which can be written on and printed on and in the case of the very strong papers, the paper surfaces are frequently subjected to additional treatment steps for achieving the required properties. In particular, the paper surfaces are coated with paper coating slips or treated with paper sizes.
- Paper coating slips substantially comprise a polymeric binder, one or more pigments and various further assistants. Through coating with paper coating slips, base papers acquire a strong, smooth white surface having improved printability.
- The binders used in the paper coating slips are usually acrylate or styrene/butadiene copolymers. Corresponding paper coating slips are described, for example, in WO 97/00776, EP-A 1101425 or EP-A 1132521.
- The paper sizes are as a rule nonpigmented binders, for example starches, proteins, rosin sizes and aqueous polymer dispersions and in particular starch-containing aqueous polymer dispersions, which are described, for example, in EP-A 307816, EP-A 735065, DE-A 3627494 and DE-A 10039388. As a result of the sizing, in particular the fiber structure is consolidated and hence the water resistance and the writability and printability are improved. Furthermore, the pigment and fillers are better fixed.
- It is an object of the present invention to provide a novel process for the surface modification of paper.
- We have found that this object is achieved by the processes defined at the outset.
- In the context of this document, paper is to be understood as meaning a material which, according to DIN 6730 (August 1985), is sheet-like and substantially comprises fibers of predominantly vegetable origin and which is formed by draining a fiber suspension containing various assistants on a wire, the fiber felt thus obtained then being compacted and dried. Assistants used are, for example, fillers, dyes, pigments, binders, optical brighteners, retention aids, wetting agents, antifoams, preservatives, slime control agents, plasticizers, antiblocking agents, antistatic agents, water repellents, etc. known to a person skilled in the art. Depending on the basis weight achieved for the sheet-like material obtained, the term base paper (basis weight≦225 g/m2) or raw board (basis weight>225 g/m2) is also used. Another customary term is cardboard, which, with a basis weight of from about 150 to 600 g/m2, comprises both base paper grades and raw board grades. For reasons of simplicity, the term base paper below includes base paper, raw board and cardboard.
- Frequently, the base paper is also treated by coating or is converted into the ready-to-use form. Coating of paper is understood as meaning the one-sided or two-sided coating of the paper with an aqueous coating slip substantially comprising pigments and binders. Depending on the type of coating slip, the coat thickness to be achieved or the paper grade to be produced, various coating methods are used for this purpose, for example the roll coating, knife coating, air brush or cast coating methods known to a person skilled in the art, which are followed in each case by a drying step. The papers thus treated are referred to as coated papers.
- A further process for the treatment of papers comprises the treatment of the paper surfaces with sizes. The papers thus treated are referred to as sized papers.
- The essential feature is that the novel processes are suitable both for base papers and for coated and sized papers.
- In one embodiment, the composite particles are applied in the form of an aqueous composite particle dispersion to the paper surface (process 1).
- Aqueous dispersions of composite particles are generally known. They are fluid systems which contain, as disperse phase present in disperse distribution and in aqueous dispersing medium, particles composed of a plurality of polymer balls consisting of entangled polymer chains, i.e. the polymer matrix, and finely divided inorganic solid. The diameter of the composite particles is frequently from 30 to 5000 nm.
- Composite particles and processes for their preparation in the form of aqueous composite particle dispersions are known to a person skilled in the art and are disclosed, for example, in U.S. Pat. No. 3,544,500, U.S. Pat. No. 4,421,660, U.S. Pat. No. 4,608,401, U.S. Pat. No. 4,981,882, EP-A 104 498, EP-A 505 230, EP-A 572 128, GB-A 2 227 739, WO 0118081, WO 0129106 and in Long et al., Tianjin Daxue Xuebao 4 (1991),10 to 14, Bourgeat-Lami et al., Die Angewandte Makromolekulare Chemie 242 (1996), 105 to 122, Paulke et al., Synthesis Studies of Paramagnetic Polystyrene Latex Particles in Scientific and Clinical Applications of Magnetic Carriers, pages 69 to 76, Plenum Press, New York, 1997, Armes et al., Advanced Materials 11 No. 5 (1999), 408 to 410.
- For example, aqueous composite particle dispersions which were prepared according to the procedure disclosed in WO 03000760 are also suitable according to the invention. This process comprises dispersing at least one ethylenically unsaturated monomer in an aqueous medium and polymerizing by means of at least one free radical polymerization initiator in the presence of at least one dispersed, finely divided inorganic solid and at least one anionic, cationic and nonionic dispersant by the aqueous free radical emulsion polymerization method,
-
- a) a stable aqueous dispersion of the at least one inorganic solid being used, which dispersion, with an initial solids concentration of ≧1% by weight, based on the aqueous dispersion of the at least one inorganic solid, still contains more than 90% by weight of the originally dispersed solid in dispersed form one hour after its preparation and whose dispersed solid particles have a diameter of ≦100 nm,
- b) the disperse solid particles of the at least one inorganic solid having an electrophoretic mobility which differs from zero in an aqueous standard potassium chloride solution at a pH which corresponds to the pH of the aqueous reaction medium before the beginning of the addition of the dispersants,
- c) at least one anionic, cationic and nonionic dispersant being added to the aqueous solid particle dispersion before the beginning of the addition of the at least one ethylenically unsaturated monomer,
- d) thereafter from 0.01 to 30% by weight of the total amount of the at least one monomer being added to the aqueous solid particle dispersion and being polymerized to a conversion of at least 90% and
- e) the remaining amount of the at least one monomer then being added continuously under polymerization conditions at the rate at which it is consumed.
- Suitable for this process are all those finely divided inorganic solids which form stable aqueous dispersions which, with an initial solids concentration of ≧1% by weight, based on the aqueous dispersion of the at least one inorganic solid, still contain more than 90% by weight of the originally dispersed solid in dispersed form one hour after their preparation without stirring or shaking and whose dispersed solid particles have a diameter of ≦100 nm and moreover have an electrophoretic mobility differing from zero at a pH which corresponds to the pH of the aqueous reaction medium before the beginning of the addition of the dispersants.
- The quantitative determination of the initial solids concentration and of the solids concentration after one hour and the determination of the particle diameter are effected by the analytical ultracentrifuge method (in this context, cf. S. E. Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Machtle, pages 147 to 175). The values stated in the case of the particle diameters correspond to the d50 values.
- The method for the determination of the electrophoretic mobility is known to a person skilled in the art (cf. for example R. J. Hunter, Introduction to Modem Colloid Science, Section 8.4, pages 241 to 248, Oxford University Press, Oxford, 1993, and K. Oka and K. Furusawa, in Electrical Phenomena at Interfaces, Surfactant Science Series, Vol. 76, Section 8, pages 151 to 232, Marcel Dekker, New York, 1998). The electrophoretic mobility of the solid particles dispersed in aqueous reaction medium is determined by means of a commercial electrophoresis apparatus, for example the Zetasizer 3000 from Malvern Instruments Ltd., at 20° C. and 1 bar (absolute). For this purpose, the aqueous solid particle dispersion is diluted with a pH-neutral 10 millimolar (mM) aqueous potassium chloride solution (standard potassium chloride solution) until the solid particle concentration is from about 50 to 100 mg/l. The adjustment of the test sample to the pH which the aqueous reaction medium has before the beginning of the addition of the dispersants is effected by means of the conventional inorganic acids, for example dilute hydrochloric acid or nitric acid, or bases, for example dilute sodium hydroxide solution or potassium hydroxide solution. The migration of the dispersed solid particles in the electric field is detected by means of the electrophoretic light scattering (cf. for example B. R. Ware and W. H. Flygare, Chem. Phys. Lett. 12 (1971), 81 to 85). The sign of the electrophoretic mobility is defined by the direction of migration of the dispersed solid particles, i.e. the electrophoretic mobility of the dispersed solid particles is positive if they migrate to the cathode and, on the other hand, is negative if they migrate to the anode.
- A suitable parameter for influencing or adjusting the electrophoretic mobility of dispersed solid particles in a certain environment is the pH of the aqueous reaction medium. By protonation or deprotonation of the dispersed solid particles, the electrophoretic mobility is changed in the positive direction in the acidic pH range (pH<7) and in the negative direction in the alkaline range (pH>7). The pH range suitable for the process disclosed in WO 03000760 is that within which a free radical aqueous emulsion polymerization can be carried out. This pH range is as a rule from pH 1 to 12, frequently from pH 1.5 to 11, often from pH 2 to 10.
- The pH of the aqueous reaction medium can be adjusted by means of commercial acids, for example dilute hydrochloric, nitric or sulfuric acid, or bases, for example dilute sodium hydroxide solution or potassium hydroxide solution. It is frequently advantageous if a portion or the total amount of the amount of acid or base used for the pH adjustment is added to the aqueous reaction medium before the at least one finely divided inorganic solid.
- What is important for the process disclosed according to WO 033000760 is that, when, under the abovementioned pH conditions, the dispersed solid particles
-
- have an electrophoretic mobility with a negative sign, from 0.01 to 10, preferably from 0.05 to 5, particularly preferably from 0.1 to 3, parts by weight of at least one cationic dispersant, from 0.01 to 100, preferably from 0.05 to 50, particularly preferably from 0.1 to 20, parts by weight of at least one nonionic dispersant and at least one anionic dispersant are used per 100 parts by weight of the at least one ethylenically unsaturated monomer, the amount of which anionic dispersant being such that the ratio of the number of equivalents of anionic dispersant to that of cationic dispersant is greater than 1, or
- have an electrophoretic mobility with a positive sign, from 0.01 to 10, preferably from 0.05 to 5, particularly preferably from 0.1 to 3, parts by weight of at least one anionic dispersant, from 0.01 to 100, preferably from 0.05 to 50, particularly preferably from 0.01 to 20, parts by weight of at least one nonionic dispersant and at least one cationic dispersant are used per 100 parts by weight of the at least one ethylenically unsaturated monomer, the amount of which cationic dispersant being such that the ratio of the number of equivalents of cationic dispersant to that of anionic dispersant is greater than 1.
- The ratio of the number of equivalents of anionic dispersant to that of cationic dispersant is understood as meaning the ratio of the number of moles of the anionic dispersant, multiplied by the number of anionic groups contained per mole of the anionic dispersant, divided by the number of moles of the cationic dispersant used, multiplied by the number of cationic groups contained per mole of the cationic dispersant. The same applies to the ratio of the number of equivalents of cationic dispersant to that of anionic dispersant.
- The total amount of the at least one anionic, cationic and nonionic dispersant used according to WO 03000760 can be initially taken in the aqueous solid dispersion. However, it is also possible initially to take only a portion of said dispersants in the aqueous solid dispersion and to add the remaining amounts continuously or batchwise during the free radical emulsion polymerization. However, it is essential to the process that the abovementioned ratio of the number of equivalents of anionic dispersant to that of cationic dispersant is maintained before or during the free radical emulsion polymerization, depending on the electrophoretic sign of the finely divided solid. If inorganic solid particles which have an electrophoretic mobility with a negative sign under the abovementioned pH conditions are used, the ratio of the number of equivalents of anionic dispersant to that of cationic dispersant must therefore be greater than 1 during the entire emulsion polymerization. In a corresponding manner, in the case of inorganic solids particles having an electrophoretic mobility with a positive sign, the ratio of the number of equivalents of cationic dispersant to that of anionic dispersant must be greater than 1 during the entire emulsion polymerization. It is advantageous if the ratios of the numbers of equivalents are ≧2, ≧3, ≧4, 24 5, ≧6, ≧7 or ≧10, the ratios of the numbers of equivalents particularly advantageously being from 2to 5.
- A further process for the treatment of paper surfaces comprises treating the surface of the paper with an aqueous dispersion which by mixing an aqueous polymer dispersion with at least one dispersed, finely divided organic solid which has a weight average particle diameter of <100 nm (process 2).
- Aqueous polymer dispersions are generally known. They are fluid systems which contain, present as the disperse phase dispersed in an aqueous dispersing medium, polymer balls consisting of a plurality of entangled polymer chains, i.e. the polymer matrix or polymer particle. The diameter of the polymer particles is frequently from 10 to 5000 nm.
- The preparation of an aqueous polymer dispersion is effected, for example, by means of free radical aqueous emulsion polymerization. The procedure for a free radical aqueous emulsion polymerization of ethylenically unsaturated monomers has been widely described and is therefore sufficiently well known to a person skilled in the art [cf. for example Encyclopedia of Polymer Science and Engineering, Vol. 8, pages 659 to 677, John Wiley & Sons, Inc., 1987; D. C. Blackley, Emulsion Polymerisation, pages 155 to 465, Applied Science Publishers, Ltd., Essex, 1975; D. C. Blackley, Polymer Latices, 2nd Edition, Vol. 1, pages 33 to 415, Chapman & Hall, 1997; H. Warson, The Applications of Synthetic Resin Emulsions, pages 49 to 244, Ernest Benn, Ltd., London, 1972; D. Diederich, Chemie in unserer Zeit 24 (1990), 135 to 142, Verlag Chemie, Weinheim; J. Piirma, Emulsion Polymerisation, pages 1 to 287, Academic Press, 1982; F. Hölscher, Dispersionen synthetischer Hochpolymerer, pages 1 to 160, Springer-Verlag, Berlin, 1969 and DE-A 40 03 422]. It is usually carried out by dispersing the ethylenically unsaturated monomers in the presence of dispersants in an aqueous medium and polymerizing them by means of at least one free radical polymerization initiator. The process disclosed in WO 03000760 differs from this procedure only in an additional presence of at least one finely divided inorganic solid which has an electrophoretic mobility differing from zero and in the use of a special dispersant combination during the polymerization.
- Metals, metal compounds, such as metal oxides and metal salts, but also semimetal and nonmetal compounds, are suitable finely divided inorganic solids which can be used for both novel processes. Noble metal colloids, for example palladium, silver, ruthenium, platinum, gold and rhodium, and alloys containing them can be used as finely divided metal powders. Examples of finely divided metal oxides are titanium dioxide (for example commercially available as Hombitec® grades from Sachtleben Chemie GmbH), zirconium(IV) oxide, tin(II) oxide, tin(IV) oxide (for example commercially available as Nyacol® SN grades from Akzo-Nobel), alumina (for example commercially available as Nyacol® AL grades from Akzo-Nobel), barium oxide, magnesium oxide, various iron oxides, such as iron(II) oxide (wuestite), iron(II) oxide (hematite) and iron(II/III) oxide (magnetite), chromium(III) oxide, antimony(III) oxide, bismuth(III) oxide, zinc oxide (for example commercially available as Sachtotece grades from Sachtleben Chemie GmbH), nickel(II) oxide, nickel(III) oxide, cobalt(II) oxide, cobalt(III) oxide, copper(II) oxide, yttrium(III) oxide (for example commercially available as Nyacol® YTTRIA grades from Akzo-Nobel), cerium(IV) oxide (for example commercially available as Nyacol® CEO2 grades from Akzo-Nobel), in amorphous form and/or in their various crystal modifications, and the hydrated oxides thereof, for example hydrated titanium(IV) oxide, hydrated zirconium(IV) oxide, hydrated aluminum oxide (for example commercially available as Disperal® grades from Condea-Chemie GmbH) and hydrated iron(III) oxide, in amorphous form and/or in their different crystal modifications. The following amorphous metal salts and metal salts present in their different crystal structures can in principle be used in the novel process: sulfides, such as iron(II) sulfide, iron(II) sulfide, iron(II) disulfide (pyrite), tin(II) sulfide, tin(IV) sulfide, mercury(II) sulfide, cadmium(II) sulfide, zinc sulfide, copper(II) sulfide, silver sulfide, nickel(II) sulfide, cobalt(II) sulfide, cobalt(III) sulfide, manganese(II) sulfide, chromium(III) sulfide, titanium(II) sulfide, titanium(III) sulfide, titanium(IV) sulfide, zirconium(IV) sulfide, antimony(III) sulfide and bismuth(II) sulfide, hydroxides, such as tin(II) hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, iron(II) hydroxide and iron(III) hydroxide, sulfates, such as calcium sulfate, strontium sulfate, barium sulfate and lead(IV) sulfate, carbonates, such as lithium carbonate, magnesium carbonate, calcium carbonate, zinc carbonate, zirconium(IV) carbonate, iron(II)-carbonate, and iron(III)-carbonate, orthophosphates, such as lithium orthophosphate, calcium orthophosphate, zinc orthophosphate, magnesium orthophosphate, aluminum orthophosphate, tin(III) orthophosphate, iron(II) orthophosphate and iron(III) orthophosphate, metaphosphates, such as lithium metaphosphate, calcium metaphosphate and aluminum metaphosphate, pyrophosphates, such as magnesium pyrophosphate, calcium pyrophosphate, zinc pyrophosphate, iron(III) pyrophosphate and tin(II) pyrophosphate, ammonium phosphates, such as magnesium ammonium phosphate and zinc ammonium phosphate, hydroxyapatite [Ca5{(PO4)3OH}], orthosilicates, such as lithium orthosilicate, calcium/magnesium orthosilicate, aluminum orthosilicate, iron(II) orthosilicate, iron(III) orthosilicate, magnesium orthosilicate, zinc orthosilicate, zirconium(III) orthosilicate and zirconium(IV) orthosilicate, metasilicates, such as lithium metasilicate, calcium/magnesium metasilicate, calcium metasilicate, magnesium metasilicate and zinc metasilicate, sheet silicates, such as sodium aluminum silicate and sodium magnesium silicate, in particular in spontaneously delaminating form, for example Optigel® SH (grade from Sudchemie AG), Saponit® SKS-20 and Hektorit® SKS 21 (grades from Hoechst AG) and Laponite® RD and Laponite® GS (grades from Laporte Industries Ltd.), aluminates, such as lithium aluminate, calcium aluminate and zinc aluminate, borates, such as magnesium metaborate and magnesium orthoborate, oxalates, such as calcium oxalate, zirconium(IV) oxalate, magnesium oxalate, zinc oxalate and aluminum oxalate, tartrates, such as calcium tartrate, acetylacetonates, such as aluminum acetylacetonate and iron(III) acetylacetonate, salicylates, such as aluminum salicylate, citrates, such as calcium citrate, iron(II) citrate and zinc citrate, palmitates, such as aluminum palmitate, calcium palmitate and magnesium palmitate, stearates, such as aluminum stearate, calcium stearate, magnesium stearate and zinc stearate, laurates, such as calcium laurate, linoleates, such as calcium linoleate, oleates, such as calcium oleate, iron(II) oleate or zinc oleate.
- Amorphous silica and/or silica present in different crystal structures may be mentioned as important semimetal compounds which may be used according to the invention. Silica suitable according to the invention is commercially available and can be obtained, for example, as Aerosil® (grade from Degussa AG), Levasil® (grade from Bayer AG), Ludox® (grade from DuPont), Nyacole and Bindzil® (grades from Akzo-Nobel) and Snowtex® (grade from Nissan Chemical Industries, Ltd.). Nonmetal compounds suitable according to the invention are, for example, colloidal graphite or diamond.
- Particularly suitable finely divided inorganic solids are those whose solubility in water at 20° C. and 1 bar (absolute) is ≦1, preferably ≦0.1, in particular ≦0.01, g/l. Compounds selected from the group consisting of silica, alumina, tin(IV) oxide, yttrium(III) oxide, cerium(IV) oxide, hydrated aluminumoxide, calcium carbonate, magnesium carbonate, calcium orthophosphate, magnesium orthophosphate, calcium metaphosphate, magnesium metaphosphate, calcium pyrophophate, magnesium pyrophosphate, iron(II) oxide, iron(III) oxide, iron(II/III) oxide, titanium dioxide, hydroxylapatite, zinc oxide and zinc sulfide are particularly preferred. Silica sols which have an electrophoretic mobility with a negative sign are particularly preferred.
- The commercially available compounds of the Aerosil®, Levasil®, Ludox®, Nyacol® and Bindzil® grades (silica), Disperal® grades (hydrated aluminum oxide), Nyacol® AL grades (alumina), Hombitec® grades (titanium dioxide), Nyacol® SN grades (tin(IV) oxide), Nyacol® YTTRIA grades (yttrium(III) oxide), Nyacol® CEO2 grades (cerium(IV) oxide) and Sachtotec® grades (zinc oxide) can also advantageously be used in the novel processes.
- The finely divided inorganic solids which can be used in the novel processes are such that the solid particles dispersed in the aqueous reaction medium have a particle diameter of ≦100 nm. Those finely divided inorganic solids whose disperse particles have a particle diameter of >0 nm but ≦90 nm, ≦80 nm, ≦70 nm, ≦60 nm, ≦50 nm, ≦40 nm, ≦30 nm, ≦20 nm or ≦10 nm and all values in between are successfully used. Finely divided inorganic solids which have a particle diameter of ≦50 nm are advantageously used. The particle diameters are determined using the analytical ultracentrifuge method.
- The finely divided solids are obtainable by a procedure known in principle to a person skilled in the art and are obtained, for example, by precipitation reactions or chemical reactions in the gas phase (in this context, cf. E. Matijevic, Chem. Mater. 5 (1993), 412 to 426; Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 23, pages 583 to 660, Verlag Chemie, Weinheim, 1992; D. F. Evans, H. Wennerström in The Colloidal Domain, pages 363 to 405, Verlag Chemie, Weinheim, 1994, and R. J. Hunter in Foundations of Colloid Science, Vol. 1, pages 10 to 17, Clarendon Press, Oxford, 1991).
- The stable solid dispersion is frequently prepared directly during the synthesis of the finely divided inorganic solids in an aqueous medium or alternatively by dispersing the finely divided inorganic solid in the aqueous medium. Depending on the method of preparation of the finely divided inorganic solids, this is effected either directly, for example in the case of precipitated or pyrogenic silica, alumina, etc., or with the aid of suitable auxiliary units, for example dispersers or ultrasonic sonotrodes.
- However, only those finely divided inorganic solids whose aqueous solid dispersion, with an initial solids concentration of ≧1% by weight, based on the aqueous dispersion of the finely divided inorganic solid, still contains more than 90% by weight of the originally dispersed solid in dispersed form one hour after their preparation or as a result of stirring up or shaking up the sedimented solids, without further stirring or shaking, and whose dispersed solid particles have a diameter of ≦100 nm are suitable according to the invention. Initial solids concentrations of ≦60% by weight are usual. Advantageously, however, initial solids concentrations of ≦55, ≦50, ≦45, ≦40, ≦35, ≦30, ≦25, ≦20, ≦15 or ≦10% byweight and ≧2, ≧3, ≧4 or ≧5% by weight and all values in between, based in each case on the aqueous dispersion of finely divided inorganic solid, can also be used. According to the invention, from 1 to 1000, as a rule from 5 to 300, frequently from 10 to 200, parts by weight of the at least one finely divided inorganic solid are used per 100 parts by weight of the at least one ethylenically unsaturated monomer in the preparation of aqueous composite particle dispersions (process 1) or 100 parts by weight of dispersion polymer (process 2).
- Both in the preparation of the aqueous composite particle dispersion and in the preparation of the aqueous polymer dispersion and in the mixing thereof with the finely divided inorganic solid, dispersants are present which keep both the finely divided inorganic solid particles and the monomer droplets, and the composite particles formed or the mixture of the polymer particles and of the finely divided inorganic solid, dispersed in the aqueous phase and thus ensure the stability of the aqueous dispersions produced. Considerable dispersions are both the protective colloids usually used for carrying out free radical aqueous emulsion polymerization and emulsifiers.
- A detailed description of suitable protective colloids appears in Houben-Weyl, Methoden der organischen Chemie, Volume XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, pages 411 to 420.
- Suitable neutral protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, cellulose derivatives, starch derivatives and gelatin derivatives.
- Suitable anionic protective colloids, i.e. protective colloids whose component having a dispersing effect has at least one negative electrical charge, are, for example, polyacrylic acids and polymethacrylic acids and the alkali metal salts thereof, copolymers containing acrylic acid, methacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, 4-styrenesulfonic acid and/or maleic anhydride, and the alkali metal salts thereof, and alkali metal salts of sulfonic acids of high molecular weight compounds, for example polystyrene.
- Suitable cationic protective colloids, i.e. protective colloids whose component having a dispersing effect has at least one positive electrical charge, are, for example, the homo and copolymers containing those derivatives of N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amino-carrying acrylates, methacrylates, acrylamides and/or methacrylamides which are protonated and/or alkylated on the nitrogen.
- Of course, mixtures of emulsifiers and/or protective colloids may also be used. Frequently, exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1500 are used as dispersants. Of course, where mixtures of surface-active substances are used, the individual components must be compatible with one another, which can be checked by means of a few preliminary experiments in case of doubt. An overview of suitable emulsifiers appears in Houben-Weyl, Methoden der organischen Chemie, Volume XIV/1, Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, pages 192 to 208.
- Customary nonionic emulsifiers are, for example, ethoxylated mono-, di- and trialkyphenols (degree of ethoxylation: from 3 to 50, alkyl radical: C4 to C12) and ethoxylated fatty alcohols (degree of ethoxylation: from 3 to 80; alkyl radical: C8 to C36). Examples of these are Lutensol® A grades (C12C14-fatty alcohol ethoxylates, degree of ethoxylation: from 3 to 8), Lutensol® AO grades (C13C15-oxo alcohol ethoxylates, degree of ethoxylation: from 3 to 30), Lutensol® AT grades (C16C18-fatty alcohol ethoxylates, degree of ethoxylation: from 11 to 80), Lutensol® ON grades (C10-oxo alcohol ethoxylates, degree of ethoxylation: from 3 to 11) and the Lutensole® TO grades (C13-oxo alcohol ethoxylates, degree of ethoxylation: from 3 to 20) from BASF AG.
- Conventional anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C8 to C12), of sulfuric monoesters of ethoxylated alkanols (degree of ethoxylation: from 4 to 30, alkyl radical: C12 to C18) and ethoxylated alkylphenols (degree of ethoxylation: from 3 to 50, alkyl radical: C4 to C12), of alkanesulfonic acids (alkyl radical: C12 to C,8) and of alkylarylsulfonic acids (alkyl radical: C9 to C18).
- Compounds of the formula I
where R1 and R2 are H or C4- to C24-alkyl and are not simultaneously H, and A and B may be alkali metal ions and/or ammonium ions, have also proven to be further anionic emulsifiers. In formula I, R1 and R2 are preferably linear or branched alkyl of 6 to 18, in particular 6, 12 or 16, carbon atoms or —H, R1 and R2 not both simultaneously being H. A and B are preferably sodium, potassium or ammonium, sodium being particularly preferred. Compounds I in which A and B are sodium, R1 is branched alkyl having 12 carbon atoms and R2 is H or R1 are particularly advantageous. Industrial mixtures which contain from 50 to 90% by weight of the monoalkylated products, for example Dowfax 2A1 (brand of Dow Chemical Company), are frequently used. The compounds I are generally known, for example from U.S. Pat. No. 4,269,749, and are commercially available. - Suitable cationic emulsifiers are as a rule primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts having a C6- to C18-alkyl, C6- to C18-aralkyl or a heterocyclic radical. Examples are dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2-(N,N,N-trimethylammonium)ethylparaffinic acid esters, N-cetylpyridinium chloride, N-laurylpyridinium sulfate and N-cetyl-N,N,N-trimethylammonium bromide, N-dodecyl-N,N,N-trimethylammonium bromide, N-octyl-N,N,N-trimethylammonium bromide, N,N-distearyl-N,N-dimethylammonium chloride and the Gemini surfactant N,N′-(lauryldimethyl)ethylenediamine dibromide. Numerous further examples appear in H. Stache, Tensid-Taschenbuch, Carl-Hanser-Verlag, Munich, Vienna, 1981 and in McCutcheon's, Emulsifiers & Detergents, MC Publishing Company, Glen Rock, 1989.
- The aqueous dispersions which can be used according to the invention in processes 1 and 2 contain, as a rule, from 0.1 to 10, often from 0.5 to 7.0, frequently from 1.0 to 5.0,% by weight, based in each case on the aqueous dispersion, of dispersant. Emulsifiers are preferably used.
- Suitable ethylenically unsaturated monomers for the preparation of the composite particles which can be used according to the invention (process 1) and the dispersion polymer used according to the invention (process 2) are, inter alia, in particular monomers which can be subjected to free radical polymerization in a simple manner, such as ethylene, vinylaromatic monomers, such as styrene, α-methylstyrene, o-chlorostyrene or vinyltoluenes, esters of vinyl alcohol and monocarboxylic acids of 1 to 18 carbon atoms, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl stearate, esters of α,βmonoethylenically unsaturated mono- and dicarboxylic acids preferably of 3 to 6 carbon atoms, in particular acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, with alkanols of in general 1 to 12, preferably 1 to 8, in particular 1 to 4, carbon atoms, in particular methyl, ethyl, n-butyl, isobutyl and 2-ethylhexyl acrylate and methacrylate, dimethyl maleate or di-n-butyl maleate, nitriles of α,β-monoethylenically unsaturated carboxylic acids, such as acrylonitrile, and conjugated C4-8-dienes, such as 1,3-butadiene and isoprene. Said monomers are, as a rule, the main monomers, which together usually account for an amount of ≧50, ≧80 or ≧90% by weight, based on the total amount of the monomers to be polymerized by the novel process. As a rule, these monomers have only moderate to low solubility in water under standard conditions [20° C., 1 bar (absolute)].
- Monomers which usually increase the internal strength of the films of the polymer matrix generally have at least one epoxy, hydroxyl, N-methylol or carbonyl group, or at least two nonconjugated ethylenically unsaturated double bonds. Examples of these are monomers having two vinyl radicals, monomers having two vinylidene radicals and monomers having two alkenyl radicals. Particularly advantageous are the diesters of dihydric alcohols with α,β-monoethylenically unsaturated monocarboxylic acids, among which acrylic and methacrylic acid are preferred. Examples of such monomers having two nonconjugated ethylenically unsaturated double bonds are alkylene glycol diacrylates and dimethacrylates, such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylates and ethylene glycol dimethacrylate, 1,2-propylene glycol dimethacrylate, 1,3-propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate or 1,4-butylene glycol dimethacrylate, and divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, methylenebisacrylamide, cyclopentadienyl acrylate, triallyl cyanurate or triallyl isocyanurate. Also of particular importance in this context are the C1-C8-hydroxyalkyl methacrylates and acrylates, such as n-hydroxyethyl, n-hydroxypropyl or n-hydroxybutyl acrylate and methacrylate, and compounds such as diacetoneacrylamide and acetylacetoxyethyl acrylate or methacrylate. According to the invention, the abovementioned monomers are incorporated in the form of polymerized units in amounts of up to 5% by weight, based on the total amount of the monomers to be polymerized.
- Monomers containing siloxane groups, such as the vinyltrialkoxysilanes, for example vinyltrimethoxysilane, alkylvinyidialkoxysilanes, acryloyloxyalkyltrialkoxysilanes or methacryloyloxyalkyltrialkoxysilanes, for example acryloyloxyethyltrimethoxysilane, methacryloyloxyethyltrimethoxysilane, acryloyloxypropyltrimethoxysilane or methacryloyloxypropyltrimethoxysilane, can optionally also be used. These monomers are used in amounts of up to 2, frequently from 0.01 to 1, often from 0.05 to 0.5,% by weight, based in each case on the total amount of monomers.
- Those ethylenically unsaturated monomers A which contain at least one acid group and/or the corresponding anion thereof or those ethylenically unsaturated monomers B which contain at least one amino, amido, ureido or N-heterocyclic group and/or the ammonium derivatives thereof which are protonated or alkylated on the nitrogen may additionally be used as monomers. The amount of monomers A or monomers B is up to 10, often from 0.1 to 7, frequently from 0.2 to 5,% by weight, based on the total amount of monomers.
- Ethylenically unsaturated monomers having at least one acid group are used as monomers A. The acid group may be, for example, a carboxyl, sulfo, sulfuric acid, phosphoric acid and/or phosphonic acid group. Examples of monomers A are acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloyloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid and phosphoric monoesters of n-hydroxyalkyl acrylates and n-hydroxyalkyl methacrylates, for example phosphoric monoesters of hydroxyethyl acrylate, n-hydroxypropyl acrylate, n-hydroxybutyl acrylate and hydroxyethyl methacrylate, n-hydroxypropyl methacrylate and n-hydroxybutyl methacrylate. According to the invention, however, it is also possible to use the ammonium and alkali metal salts of the abovementioned ethylenically unsaturated monomers having at least one acid group. Sodium and potassium are particularly preferred as the alkali metal. Examples here are the ammonium, sodium and potassium salts of acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloyloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid and the mono- and diammonium, mono- and disodium and mono- and dipotassium salts of the phosphoric monoesters of hydroxyethyl acrylate, n-hydroxypropyl acrylate, n-hydroxybutyl acrylate and hydroxyethyl methacrlate, n-hydroxypropyl methacrylate or n-hydroxybutyl methacrylate.
- Acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloyloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid are preferably used.
- Ethylenically unsaturated monomers which contain at least one amino, amido, ureido or N-heterocyclic group and/or the ammonium derivatives thereof which are protonated or alkylated on the nitrogen are used as monomers B.
- Examples of monomers B which contain at least one amino group are 2-aminoethyl acrylate, 2-aminoethyl methacrylate, 3-aminopropyl acrylate, 3-aminopropyl methacrylate, 4-amino-n-butyl acrylate, 4-amino-n-butyl methacrylate, 2-(N-methylamino)ethyl acrylate, 2-(N-methylamino)ethyl methacrylate, 2-(N-ethylamino)ethyl acrylate, 2-(N-ethylamino)ethyl methacrylate, 2-(N-n-propylamino)ethyl acrylate, 2-(N-n-propylamino)ethyl methacrylate, 2-(N-isopropylamino)ethyl acrylate, 2-(N-isopropylamino)ethyl methacrylate, 2-(N-tert-butylamino)ethyl acrylate, 2-(N-tert-butylamino)ethyl methacrylate (for example commercially available as Norsocryl® TBAEMA from Elf Atochem), 2-(N,N-dimethylamino)ethyl acrylate (for example commercially available as Norsocryl® ADAME from Elf Atochem), 2-(N,N-dimethylamino)ethyl methacrylate (for example commercially available as Norsocryl® MADAME from Elf Atochem), 2-(N,N-diethylamino)ethyl acrylate, 2-(N,N-diethylamino)ethyl methacrylate, 2-(N,N-di-n-propylamino)ethyl acrylate, 2-(N,N-di-n-propylamino)ethyl methacrylate, 2-(N,N-diisopropylamino)ethyl acrylate, 2-(N,N-diisopropylamino)ethyl methacrylate, 3-(N-methylamino)propyl acrylate, 3-(N-methylamino)propyl methacrylate, 3-(N-ethylamino)propyl acrylate, 3-(N-ethylamino)propyl methacrylate, 3-(N-n-propylamino)propyl acrylate, 3-(N-n-propylamino)propyl methacrylate, 3-(N-isopropylamino)propyl acrylate, 3-(N-isopropylamino)propyl methacrylate, 3-(N-tert-butylamino)propyl acrylate, 3-(N-tert-butylamino)propyl methacrylate, 3-(N,N-dimethylamino)propyl acrylate, 3-(N,N-dimethylamino)propyl methacrylate, 3-(N,N-diethylamino)propyl acrylate, 3-(N,N-diethylamino)propyl methacrylate, 3-(N,N-di-n-propylamino)propyl acrylate, 3-(N,N-di-n-propylamino)propyl methacrylate, 3-(N,N-diisopropylamino)propyl acrylate and 3-(N,N-diisopropylamino)propyl methacrylate.
- Examples of monomers B which contain at least one amido group are acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-ethylmethacrylamide, N-n-propylacrylamide, N-n-propylmethacrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide, N-tert-butylacrylamide, N-tert-butylmethacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide, N,N-di-n-propylacrylamide, N,N-di-n-propylmethacrylamide, N,N-diisopropylacrylamide, N,N-diisopropylmethacrylamide, N,N-di-n-butylacrylamide, N, N-di-n-butylmethacrylamide, N-(3-N′, N′-dimethylaminopropyl)methacrylamide, diacetoneacrylamide, N,N′-methylenebisacrylamide, N-(diphenylmethyl)acrylamide, N-cyclohexylacrylamide, but also N-vinylpyrrolidone and N-vinylcaprolactam.
- Examples of monomers B which contain at least one ureido group are N,N′-divinylethyleneurea and 2-(1-imidazolin-2-onyl)ethyl methacrylate (for example commercially available as Norsocryl® 100 from Elf Atochem).
- Examples of monomers B which contain at least one N-heterocyclic group are 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, 2-vinylimidazole and N-vinylcarbazole.
- The following compounds are preferably used: 2-vinylpyridine, 4-vinylpyridine, 2-vinylimidazole, 2-(N,N-dimethylamino)ethyl acrylate, 2-(N,N-dimethylamino)ethyl methacrylate, 2-(N,N-diethylamino)ethyl acrylate, 2-(N,N-diethylamino)ethyl methacrylate, 2-(N-tert-butylamino)ethyl methacrylate, N-(3-N′,N′-dimethylaminopropyl)methacrylamide and 2-(1-imidazolin-2-onyl)ethyl methacrylate.
- Depending on the pH of the aqueous reaction medium, a part or the total amount of the abovementioned nitrogen-containing monomers B may be present in the quaternary ammonium form protonated on the nitrogen.
- Examples of monomers B which have a quaternary alkylammonium structure on the nitrogen are 2-(N,N,N-trimethylammonium)ethyl acrylate chloride (for example commercially available as Norsocryl® ADAMQUAT MC 80 from Elf Atochem), 2-(N,N,N-trimethylammonium)ethyl methacrylate chloride (for example commercially available as Norsocryle MADQUAT MC 75 from Elf Atochem), 2-(N-methyl-N,N-diethylammonium)ethyl acrylate chloride, 2-(N-methyl-N,N-diethylammonium)ethyl methacrylate chloride, 2-(N-methyl-N,N-dipropylammonium)ethyl acrylate chloride, 2-(N-methyl-N,N-dipropylammonium)ethyl methacrylate, 2-(N-benzyl-N,N-dimethylammonium)ethyl acrylate chloride (for example commercially available as Norsocry® ADAMQUAT BZ 80 from Elf Atochem), 2-(N-benzyl-N,N-dimethylammonium)ethyl methacrylate chloride (for example commercially available as Norsocryl® MADQUAT BZ 75 from Elf Atochem), 2-(N-benzyl-N,N-diethylammonium)ethyl acrylate chloride, 2-(N-benzyl-N,N-diethylammonium)ethyl methacrylate chloride, 2-( N-benzyl-N,N-dipropylammonium)ethyl acrylate chloride, 2-(N-benzyl-N,N-dipropylammonium)ethyl methacrylate chloride, 3-(N,N,N-trimethylammonium)propyl acrylate chloride, 3-(N,N,N-trimethylammonium)propyl methacrylate chloride, 3-(N-methyl-N,N-diethylammonium)propyl acrylate chloride, 3-(N-methyl-N,N-diethylammonium)propyl methacrylate chloride, 3-(N-methyl-N,N-dipropylammonium)propyl acrylate chloride, 3-(N-methyl-N,N-dipropylammonium)propyl methacrylate chloride, 3-(N-benzyl-N,N-dimethylammonium)propyl acrylate chloride, 3-(N-benzyl-N,N-dimethylammonium)propyl methacrylate chloride, 3-(N-benzyl-N,N-diethylammonium)propyl acrylate chloride, 3-(N-benzyl-N,N-diethylammonium)propyl methacrylate chloride, 3-(N-benzyl-N,N-dipropylammonium)propyl acrylate chloride and 3-(N-benzyl-N,N-dipropylammonium)propyl methacrylate chloride. Of course, the corresponding bromides and sulfates can also be used instead of said chlorides.
- 2-(N,N,N-Trimethylammonium)ethyl acrylate chloride, 2-(N,N,N-trimethylammonium)ethyl methacrylate chloride, 2-(N-benzyl-N,N-dimethylammonium)ethyl acrylate chloride and 2-(N-benzyl-N,N-dimethylammonium)ethyl methacrylate chloride are preferably used.
- Mixtures of the abovementioned ethylenically unsaturated monomers can of course also be used.
- All those free radical polymerization initiators which are capable of initiating a free radical aqueous emulsion polymerization are suitable for the preparation of the aqueous composite particle dispersion and of the aqueous polymer dispersion by free radical polymerization. In principle, these may be both peroxides and azo compounds. Redox initiator systems are of course also suitable. Peroxides which may be used in principle are inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxodisulfuric acid, for example the mono- and disodium or mono- and dipotassium or ammonium salts, or organic peroxides, such as alkyl hydroperoxides, for example tert-butyl, p-menthyl or cumyl hydroperoxide, and dialkyl or diaryl peroxides, such as di-tert-butyl or dicumyl peroxide. Azo compounds used are substantially 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile) and 2,2′-azobis(amidinopropyl) dihydrochloride (AIBA, corresponds to V-50 from Wako Chemicals). Suitable oxidizing agents for redox initiator systems are substantially the abovementioned peroxides. Sulfur compounds having a low oxidation state, such as alkali metal sulfites, for example potassium and/or sodium sulfite, alkali metal hydrogen sulfites, for example potassium and/or sodium hydrogen sulfide, alkali metal bisulfites, for example potassium and/or sodium metabisulfite, formaldehyde sulfoxylates, for example potassium and/or sodium formaldehyde sulfoxylate, alkali metal salts, especially potassium and/or sodium salts of aliphatic sulfinic acids and alkali metal hydrogen sulfides, for example potassium and/or sodium hydrogen sulfide, salts of polyvalent metals, such as iron(II) sulfate, iron(II) ammonium sulfate or iron(II) phosphate, enediols, such as dihydroxymaleic acid, benzoin and/or ascorbic acid, and reducing saccharides, such as sorbose, glucose, fructose and/or dihydroxyacetone, may be used as corresponding reducing agents. As a rule, the amount of the free radical polymerization initiator used is from 0.1 to 5% by weight, based on the total amount of the monomer mixture.
- The entire range from 0 to 170° C. is suitable as the reaction temperature for the free radical aqueous polymerization reaction in the presence or absence of the finely divided inorganic solid. As a rule, temperatures of from 50 to 120° C., frequently from 60 to 110° C., often from ≧70 to 100° C., are used. The free radical aqueous emulsion polymerization can be carried out at a pressure less than, equal to or greater than 1 bar (absolute), it being possible for the polymerization temperature to exceed 100° C. and to be up to 170° C. Readily volatile monomers, such as ethylene, butadiene or vinyl chloride, are preferably-polymerized under-superatmospheric pressure. The pressure may be 1.2, 1.5, 2, 5, 10 or 15 bar or may also assume higher values. If emulsion polymerizations are carried out under reduced pressure, pressures of 950, frequently 900, often 850, mbar (absolute) are established. The free radical aqueous emulsion polymerization is advantageously carried out at 1 bar (absolute) under an inert gas atmosphere, for example under nitrogen or argon.
- The aqueous reaction medium can in principle also comprise water-soluble organic solvents, such as methanol, ethanol, isopropanol, butanols, pentanols, acetone, etc. However, the polymerization reaction is preferably effected in the absence of said solvents.
- In addition to the abovementioned components, free radical chain transfer compounds may optionally also be used in the processes for the preparation of the aqueous composite particle dispersion or the aqueous polymer dispersion, in order to reduce or control the molecular weight of the polymers obtainable by the polymerization. Substantially aliphatic and/or araliphatic halogen compounds, for example n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene chloride, chloroform, bromoform, bromotrichloromethane, dibromodichloromethane, carbon tetrachloride, carbon tetrabromide, benzyl chloride or benzyl bromide, organic thio compounds, such as primary, secondary or tertiary aliphatic thiols, for example ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-butanethiol, 2-methyl-2-propanethiol, n-pentanethiol, 2-pentanethiol, 3-pentanethiol, 2-methyl-2-butanethiol, 3-methyl-2-butanethiol, n-hexanethiol, 2-hexanethiol, 3-hexanethiol, 2-methyl-2-pentanethiol, 3-methyl-2-pentanethiol, 4-methyl-2-pentanethiol, 2-methyl-3-pentanethiol, 3-methyl-3-pentanethiol, 2-ethylbutanethiol, 2-ethyl-2-butanethiol, n-heptanethiol and its isomeric compounds, n-octanethiol and its isomeric compounds, n-nonanethiol and its isomeric compounds, n-decanethiol and its isomeric compounds, n-undecanethiol and its isomeric compounds, n-dodecanethiol and its isomeric compounds, n-tridecanethiol and its isomeric compounds, substituted thiols, for example 2-hydroxyethanethiol, aromatic thiols, such as benzenethiol, ortho-, meta- or para-methylbenzenethiol, and all further sulfur compounds described in Polymerhandbook 3rd edition, 1989, J. Brandrup and E. H. Immergut, John Wiley & Sons, Section II, pages 133 to 141, but also aliphatic and/or aromatic aldehydes, such as acetaldehyde, propionaldehyde and/or benzaldehyde, unsaturated fatty acids, such as oleic acid, dienes having nonconjugated double bonds, such as divinylmethane or vinylcyclohexane, or hydrocarbons having readily abstractable hydrogen atoms, for example toluene, are used. However, it is also possible to use mixtures of the abovementioned free radical chain transfer compounds which do not interfere. The optionally used total amount of the free radical chain transfer compounds is as a rule ≦5, often ≦3, frequently ≦1,% by weight, based on the total amount of the monomers to be polymerized.
- The aqueous composite particle dispersions used according to the invention and the aqueous dispersions comprising aqueous polymer dispersion and finely divided inorganic solid usually have a total solids content of from 1 to 70, frequently from 5 to 65, often from 10 to 60,% by weight.
- The composite particles or dispersion polymers used according to the invention have, as a rule, particle diameters of >0 and ≦1000 nm, frequently ≦500 nm, often ≦250 nm. The determination of these particle diameters, too, is effected by the analytical ultracentrifuge method. The stated values correspond to the d50 values.
- The composite particles which can be used according to the invention may have different structures. The composite particle may contain one or more of the finely divided solid particles. The finely divided solid particles may be completely surrounded by the polymer matrix. However, it is also possible for a part of the finely divided solid particles to be surrounded by the polymer matrix while another part is arranged on the surface of the polymer matrix. Of course, it is also possible for a major part of the finely divided solid particles to be bound on the surface of the polymer matrix.
- It should also be stated that the aqueous composite particle dispersions can be dried in a simple manner to give redispersible composite particle powders (for. example by freeze-drying or spray-drying). This is true in particular when the glass transition temperature of the polymer matrix of the composite particles obtainable according to the invention is ≧50° C., preferably ≧60° C., particularly preferably ≧70° C., very particularly preferably ≧80° C., especially preferably ≧90° C. or ≧100° C. The composite particle powders are also suitable for the novel treatment of paper surfaces.
- The mixtures of aqueous polymer dispersion and finely divided inorganic solid are obtained, for example, by stirring the corresponding amount of the finely divided inorganic solid, either in the form of powder or in the form of an aqueous solid dispersion, into an aqueous polymer dispersion stirred at from 20 to 25° C. (room temperature) and mixing homogeneously.
- In the novel treatment of the paper surface, the composite particles or the mixture of dispersion polymer and finely divided inorganic solid is or are applied to the paper surface in an amount of from 0.1 to 100, often from 0.2 to 20, frequently from 0.5 to 10, g/m2 of paper. Larger amounts are also conceivable but as a rule are not economically expedient. If the composite particles or the mixture of dispersion polymer and finely divided inorganic solid is or are applied to the paper surface in the form of aqueous polymer dispersions, the abovementioned amounts are based on those amounts of composite particles or of mixture of dispersion polymer and finely divided inorganic solid which are contained in the aqueous dispersions. After the application of the aqueous dispersions, a drying step familiar to a person skilled in the art is as a rule carried out.
- In particular, those composite particles or dispersion polymers whose polymers can be formed into films and whose minimum film formation temperature is ≦150° C., preferably ≦100° C., particularly preferably ≦50° C., are used for the novel process. Since the minimum film formation temperature is no longer measurable below 0° C., the lower limit of the minimum film formation temperature can be specified only by the glass transition temperature. The glass transition temperatures should not fall below −60° C., preferably −30° C. The determination of the minimum film formation temperature is effected according to DIN 53 787 or ISO 2115 and the determination of the glass transition temperature according to DIN 53 765 (differential scanning calorimetry, 20 K/min, midpoint measurement).
- It may be advantageous if the paper coated with composite particles, particularly when coating is effected in the form of their aqueous dispersions, is subjected, after the coating process, to pressures and/or temperatures such that the polymer contained in the composite particles (process 1) forms a film. The same also applies if the paper surfaces are coated according to process 2 with an aqueous dispersion of a mixture of polymer and finely divided inorganic solid. Whether the drying conditions (temperature/pressure) are chosen so that the polymer forms a film, for example with the use of aqueous dispersions, or whether the film formation is effected in a downstream separate step is of no importance. When the corresponding aqueous dispersions are used, the film formation step frequently takes place during the drying.
- The coated papers obtainable by the novel processes have a wide range of uses, for example as writing paper, newsprint, paper for journals, catalogs or books, as banknote paper, Bible paper, kraft paper, capacitor paper or photographic paper.
- Advantageously, the novel papers can be written on and, for example, printed on by means of offset, flexographic and gravure printing processes. In particular the printed novel papers obtainable by the offset printing process have advantages with regard to their dry strength, wet picking resistance and ink absorption resistance and their good mottle properties.
- I. Preparation of an Aqueous Composite Particle Dispersion
- 416.6 g of Nyacol® 2040 and then a mixture of 2.5 g of methacrylic acid and 12 g of a 10% strength by weight aqueous solution of sodium hydroxide were introduced in the course of 5 minutes into a 2 I four-necked flask equipped with a reflux condenser, a thermometer, a mechanical stirrer and a metering apparatus, at from 20 to 25° C. (room temperature) and 1 bar (absolute) under a nitrogen atmosphere and with stirring (200 revolutions per minute). A mixture of 10.4 g of a 20% strength by weight aqueous solution of the nonionic surfactant Lutensol® AT 18 (trade name of BASF AG, C16C18-fatty alcohol ethoxylate having on average 18 ethylene oxide units) and 61.4 g of demineralized water was then added to the stirred reaction mixture in the course of 15 minutes. 0.83 9 of N-cetyl-N,N,N-trimethylammonium bromide (CTAB), dissolved in 200 g of demineralized water, was then metered into the reaction mixture in the course of 60 minutes. The reaction mixture was then heated to a reaction temperature of 80° C.
- At the same time, a monomer mixture consisting of 117.5 g of methyl methacrylate, 130 g of n-butyl acrylate and 0.5 g of methacryloyloxypropyltrimethoxysilane was prepared as feed 1 and an initiator solution consisting of 2.5 g of sodium peroxodisulfate, 11.5 g of a 10% strength by weight solution of sodium hydroxide and 100 g of demineralized water was prepared as feed 2.
- 21.1 9 of feed 1 and 57.1 9 of feed 2 was then added via two separate feed lines in the course of 5 minutes to the reaction mixture stirred at the reaction temperature. The reaction mixture was then stirred for one hour at the reaction temperature. 0.92 g of a 45% strength by weight aqueous solution of Dowfax® 2A1 was then added to the reaction mixture. In the course of 2 hours, beginning at the same time, the remainders of feed 1 and feed 2 were then metered continuously into the reaction mixture.
- Thereafter, the reaction mixture was stirred for a further hour at reaction temperature and then cooled to room temperature.
- The aqueous composite particle dispersion thus obtained had a solids content of 40.1% by weight, based on the total weight of the aqueous composite particle dispersion.
- By dilution with demineralized water, the solids content of the aqueous composite particle dispersion was brought to 10% by weight at room temperature with stirring.
- II. Testing of Performance Characteristics
- For the investigation, wood-free base paper (basis weight 70 g/m2) from Scheufelen,-Germany, was coated with 10 g/m2 of a coating slip (calculated as solid), consisting of
-
- 70 parts by weight of Hydrocarb® 90 (calcium carbonate from Omya AG, Switzerland),
- 30 parts by weight of Amazon Plus® (kaolin from CADAM S.A, Brazil),
- 0.15 part by weight of Polysalz® (45% strength by weight aqueous solution of a polyacrylic acid sodium salt from BASF AG, Germany),
- 10 parts by weight of Styronal® PR 8736 (50% strength by weight aqueous styrene/butadiene dispersion from BASF AG, Germany),
- 0.3 part by weight of Sterocoll® FD (25% strength by weight aqueous ethyl acrylate/acrylic acid/methacrylic acid dispersion from BASF AG, Germany) and
- 34 parts by weight of demineralized water,
by means of a DT Laboratory Coater from DT Paper Science Oy Ab, Finland at 30° C. and atmospheric pressure (stiff blade having a thickness of 0.3 mm). The paper web was dried by means of an IR drying unit and air drying (8 IR lamps of 650 watt each, throughput speed 30 m/min).
- Test strips measuring 35 cm×20 cm were cut from the paper webs and were uniformly coated with the dilute aqueous composite particle dispersion. The amount of said dispersion was such that the amount of composite particles was 1.0 g/m2 of paper surface. The test strips were then stored for 15 hours at 23° C. and a relative humidity of 50% (DIN 50014-23/50-2). The test strips were then calendered by means of the table laboratory calender K8/2 from Kleinewefers Anlagen GmbH, Germany, at room temperature. The nip pressure between the rolls was 200 kN/cm paper width and the speed was 10 m/min. The process was carried out four times altogether.
- The comparative example was carried out according to the abovementioned example, with the exception that the surface was not treated with the aqueous composite particle dispersion.
- Determination of the Dry Picking Resistance Using the IGT Proof Printer (IGT Dry)
- The test strips were printed at increasing speed in a printing unit (IGT printability tester AC2/AIC2) using a standard ink (printing ink 3808 from Lorilleux-Lefranc). The maximum printing speed was 200 cm/s. The ink was applied at a nip pressure of 350 N/cm.
- The speed, in cm/sec, at which there were 10 picks from the paper coating slip (pick points) after the beginning of printing is stated as a measure of the dry picking resistance. The higher this printing speed at the tenth pick point, the better is the result rated.
- Wet Picking Resistance
- The test strips were produced and prepared as in the case of the testing of the dry picking resistance.
- The printing unit (IGT printability tester AC2/AIC2) was set up in such a way that the test strips were moistened with water before the printing process.
- The printing was carried out at a constant speed of 0.6 cm/s.
- Picks from the paper are visible as unprinted areas. For the determination of the wet picking resistance, the ink density in comparison with a solid hue is therefore determined in % using a color densitometer. The higher the stated ink density, the better the wet picking resistance.
- Picking Resistance in the Case of Multiple Printing (Offset Test)
- The printing of the test strips [cf. testing of the dry picking resistance] was carried out at a constant speed of 1 m/s and at a nip pressure of 200 N/cm.
- The printing process was repeated after 30 seconds. The number of passes until picking occurred is stated as the picking resistance. The larger the number of print processes until the first picking occurs, the better is the result rated.
TABLE 1 List of results Dry picking Wet picking Offset test resistance in cm/s resistance % Number Example 71 57 6 Comparative example 63 51 4
Claims (24)
1. A process for the treatment of paper surfaces, wherein the surface of the paper is coated with particles (composite particles) which are composed of polymer and finely divided inorganic solid, the weight average particle size of the finely divided inorganic solid being ≦100 nm.
2. The process as claimed in claim 1 , wherein the composite particles are applied in the form of an aqueous composite particle dispersion to the paper.
3. The process as claimed in claim 2 , wherein the aqueous composite particle dispersion was prepared by a process in which at least one ethylenically unsaturated monomer is dispersed in an aqueous medium and polymerized by means of at least one free radical polymerization initiator in the presence of at least one dispersed, finely divided inorganic solid and at least one dispersant by the aqueous free radical emulsion polymerization method,
a) a stable aqueous dispersion of the at least one inorganic solid being used, which dispersion, with an initial solids concentration of ≧1% by weight, based on the aqueous dispersion of the at least one inorganic solid, still contains more than 90% by weight of the originally dispersed solid in dispersed form one hour after its preparation and whose dispersed solid particles have a weight average diameter of ≦100 nm,
b) the disperse solid particles of the at least one inorganic solid having an electrophoretic mobility which differs from zero in an aqueous standard potassium chloride solution at a pH which corresponds to the pH of the aqueous dispersing medium before the beginning of the addition of the dispersants,
c) at least one anionic, cationic and nonionic dispersant being added to the aqueous solid particle dispersion before the beginning of the addition of the at least one ethylenically unsaturated monomer,
d) thereafter from 0.01 to 30% by weight of the total amount of the at least one monomer being added to the aqueous solid particle dispersion and being polymerized to a conversion of at least 90%
and
e) the remaining amount of the at least one monomer then being added continuously under polymerization conditions at the rate at which it is consumed.
4. A process for the treatment of paper surfaces, wherein the surface of the paper is treated with an aqueous dispersion which is obtained by mixing an aqueous polymer dispersion with at least one dispersed, finely divided inorganic solid which has a weight average particle diameter of ≦100 nm.
5. The process as claimed in claim 1 , wherein the amount of composite particles or of a mixture of dispersion polymer and finely divided inorganic solid is from 0.1 to 100 g/m2 of paper.
6. The process as claimed in claim 1 , wherein the polymer can be formed into a film.
7. The process as claimed in claim 1 , wherein the paper used is a base paper.
8. The process as claimed in claim 1 , wherein the paper used is a coated or sized paper.
9. The process as claimed in claim 1 , wherein the finely divided inorganic solid is at least one selected from the group consisting of silica, alumina, hydrated aluminum oxide, calcium carbonate, magnesium carbonate, calcium orthophosphate, magnesium orthophosphate, iron(II) oxide, iron(III) oxide, iron(II/III) oxide, tin oxide, cerium dioxide, yttrium(III) oxide, titanium dioxide, hydroxyapatite, zinc oxide and zinc sulfide.
10. The process as claimed in claim 1 , wherein the treated paper is subjected to pressures and/or temperatures such that the polymer forms a film.
11. A paper obtained by the process as claimed in claim 1 .
12. A method of printing paper in the offset, flexographic and gravure printing process comprising utilizing the paper as claimed in claim 11 .
13. A printed paper obtained by the method as claimed in claim 12 .
14. A method of coating paper comprising utilizing an aqueous dispersion of particles which are composed of polymer and finely divided inorganic solid, the weight average particle size of the finely divided inorganic solid being ≦100 nm.
15. A method of coating paper comprising utilizing an aqueous dispersion which is obtained by mixing an aqueous polymer dispersion with at least one dispersed, finely divided inorganic solid which has a weight average particle diameter of ≦100 nm for the coating of paper.
16. The process as claimed in claim 4 , wherein the amount of composite particles or of a mixture of dispersion polymer and finely divided inorganic solid is from 0.1 to 100 g/m2 of paper.
17. The process as claimed in claim 4 , wherein the polymer can be formed into a film.
18. The process as claimed in claim 4 , wherein the paper used is a base paper.
19. The process as claimed in claim 4 , wherein the paper used is a coated or sized paper.
20. The process as claimed in claim 4 , wherein the finely divided inorganic solid is at least one selected from the group consisting of silica, alumina, hydrated aluminum oxide, calcium carbonate, magnesium carbonate, calcium orthophosphate, magnesium orthophosphate, iron(II) oxide, iron(III) oxide, iron(II/III) oxide, tin oxide, cerium dioxide, yttrium(III) oxide, titanium dioxide, hydroxyapatite, zinc oxide and zinc sulfide.
21. The process as claimed in claim 4 , wherein the treated paper is subjected to pressures and/or temperatures such that the polymer forms a film.
22. A paper obtained by a process as claimed in claim 4 .
23. A method of printing paper in the offset, flexographic and gravure printing process comprising utilizing the paper as claimed in claim 22 .
24. A printed paper obtained by the method as claimed in claim 23.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE203-06-257.4 | 2003-04-17 | ||
DE10318066A DE10318066A1 (en) | 2003-04-17 | 2003-04-17 | Process for treating paper surfaces |
PCT/EP2004/003956 WO2004092481A2 (en) | 2003-04-17 | 2004-04-14 | Method for the treatment of paper surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060191653A1 true US20060191653A1 (en) | 2006-08-31 |
Family
ID=33154309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/553,075 Abandoned US20060191653A1 (en) | 2003-04-17 | 2004-04-14 | Method for the treatment of paper surfaces |
Country Status (9)
Country | Link |
---|---|
US (1) | US20060191653A1 (en) |
EP (1) | EP1618254A2 (en) |
JP (1) | JP2006523783A (en) |
CN (1) | CN1791722A (en) |
AU (1) | AU2004231028B2 (en) |
BR (1) | BRPI0409416A (en) |
CA (1) | CA2522620A1 (en) |
DE (1) | DE10318066A1 (en) |
WO (1) | WO2004092481A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060225854A1 (en) * | 2003-07-07 | 2006-10-12 | Hiroshi Ono | Newsprint paper treated with cationic surface sizing agent |
US20100203318A1 (en) * | 2009-02-10 | 2010-08-12 | Bunge Fertilizantes S.A. | Use of Aluminum Phosphate, Polyphosphate and Metaphosphate Particles in Paper Coating Applications |
US20110048661A1 (en) * | 2009-09-01 | 2011-03-03 | Armstrong World Industries, Inc. | Cellulosic product forming process and wet formed cellulosic product |
US8399579B2 (en) | 2009-04-15 | 2013-03-19 | Basf Se | Process for preparing an aqueous composite-particle dispersion |
US20130095333A1 (en) * | 2011-10-14 | 2013-04-18 | Lokendra Pal | Surface Treated Medium |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006050873A1 (en) * | 2004-11-12 | 2006-05-18 | Basf Aktiengesellschaft | Paper coating slip based on pigment-polymer hybrids |
WO2011093896A1 (en) * | 2010-01-31 | 2011-08-04 | Hewlett-Packard Development Company, L.P. | Paper with surface treatment |
DE102010035436A1 (en) * | 2010-08-26 | 2012-03-01 | Interprint Gmbh | Process for the production of decorative paper, and paper scaffolding for the production of decorative paper |
CN109235123B (en) * | 2018-08-22 | 2021-04-06 | 安徽文峰特种纸业有限公司 | Preparation method of high-printing-performance high-gloss photographic paper |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4198471A (en) * | 1976-12-27 | 1980-04-15 | Weyerhaeuser Company | Controlled gloss pigment system for coating printing papers at paper machine calendering conditions |
US4908240A (en) * | 1987-09-15 | 1990-03-13 | Basf Aktiengesellschaft | Printability of paper |
US6346370B1 (en) * | 1999-05-06 | 2002-02-12 | Eastman Kodak Company | Antistatic layer for a photographic element |
US6447926B2 (en) * | 2000-02-23 | 2002-09-10 | Basf Aktiengesellschaft | Paper coating slips based on low-crosslink binders |
US20040171728A1 (en) * | 2001-06-21 | 2004-09-02 | Zhijian Xue | Method for producing an aqueous dispersion of particles composed of a polymer and a fine-particle inorganic solid |
US6835767B2 (en) * | 2000-08-11 | 2004-12-28 | Basf Aktiengesellschaft | Polymer dispersions containing starch |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9930177D0 (en) * | 1999-12-22 | 2000-02-09 | Clariant Int Ltd | Improvements in or relating to organic compounds |
-
2003
- 2003-04-17 DE DE10318066A patent/DE10318066A1/en not_active Withdrawn
-
2004
- 2004-04-14 CA CA002522620A patent/CA2522620A1/en not_active Abandoned
- 2004-04-14 AU AU2004231028A patent/AU2004231028B2/en not_active Ceased
- 2004-04-14 BR BRPI0409416-6A patent/BRPI0409416A/en not_active IP Right Cessation
- 2004-04-14 JP JP2006505126A patent/JP2006523783A/en not_active Withdrawn
- 2004-04-14 CN CNA2004800135126A patent/CN1791722A/en active Pending
- 2004-04-14 WO PCT/EP2004/003956 patent/WO2004092481A2/en active Search and Examination
- 2004-04-14 EP EP04727277A patent/EP1618254A2/en not_active Withdrawn
- 2004-04-14 US US10/553,075 patent/US20060191653A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4198471A (en) * | 1976-12-27 | 1980-04-15 | Weyerhaeuser Company | Controlled gloss pigment system for coating printing papers at paper machine calendering conditions |
US4908240A (en) * | 1987-09-15 | 1990-03-13 | Basf Aktiengesellschaft | Printability of paper |
US6346370B1 (en) * | 1999-05-06 | 2002-02-12 | Eastman Kodak Company | Antistatic layer for a photographic element |
US6447926B2 (en) * | 2000-02-23 | 2002-09-10 | Basf Aktiengesellschaft | Paper coating slips based on low-crosslink binders |
US6835767B2 (en) * | 2000-08-11 | 2004-12-28 | Basf Aktiengesellschaft | Polymer dispersions containing starch |
US20040171728A1 (en) * | 2001-06-21 | 2004-09-02 | Zhijian Xue | Method for producing an aqueous dispersion of particles composed of a polymer and a fine-particle inorganic solid |
US7094830B2 (en) * | 2001-06-21 | 2006-08-22 | Basf Aktiengesellschaft | Method for producing an aqueous dispersion of particles composed of a polymer and a fine-particle inorganic solid |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060225854A1 (en) * | 2003-07-07 | 2006-10-12 | Hiroshi Ono | Newsprint paper treated with cationic surface sizing agent |
US7691231B2 (en) * | 2003-07-07 | 2010-04-06 | Nippon Paper Industries Co., Ltd. | Newsprint paper treated with cationic surface sizing agent |
US20100203318A1 (en) * | 2009-02-10 | 2010-08-12 | Bunge Fertilizantes S.A. | Use of Aluminum Phosphate, Polyphosphate and Metaphosphate Particles in Paper Coating Applications |
US8399579B2 (en) | 2009-04-15 | 2013-03-19 | Basf Se | Process for preparing an aqueous composite-particle dispersion |
US20110048661A1 (en) * | 2009-09-01 | 2011-03-03 | Armstrong World Industries, Inc. | Cellulosic product forming process and wet formed cellulosic product |
US8741105B2 (en) * | 2009-09-01 | 2014-06-03 | Awi Licensing Company | Cellulosic product forming process and wet formed cellulosic product |
US9365977B2 (en) | 2009-09-01 | 2016-06-14 | Awi Licensing Llc | Cellulosic product forming process and wet formed cellulosic product |
US20130095333A1 (en) * | 2011-10-14 | 2013-04-18 | Lokendra Pal | Surface Treated Medium |
Also Published As
Publication number | Publication date |
---|---|
DE10318066A1 (en) | 2004-11-11 |
CN1791722A (en) | 2006-06-21 |
WO2004092481A2 (en) | 2004-10-28 |
EP1618254A2 (en) | 2006-01-25 |
JP2006523783A (en) | 2006-10-19 |
AU2004231028A1 (en) | 2004-10-28 |
BRPI0409416A (en) | 2006-04-25 |
CA2522620A1 (en) | 2004-10-28 |
AU2004231028B2 (en) | 2009-06-04 |
WO2004092481A3 (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU776547B2 (en) | Method for producing an aqueous dispersion of particles that are made up of polymers and inorganic solid matter which consists of fine particles | |
US7094830B2 (en) | Method for producing an aqueous dispersion of particles composed of a polymer and a fine-particle inorganic solid | |
AU2007276253B2 (en) | Use of aqueous composite particle dispersions as binding agents in coatings for timber | |
AU778549B2 (en) | Method for producing an aqueous dispersion of particles made up of polymerisate and fine inorganic solid material | |
AU2005217083B2 (en) | Method for improving the storage stability of composite particle dispersions | |
JP4571796B2 (en) | Mineral primer | |
US8399579B2 (en) | Process for preparing an aqueous composite-particle dispersion | |
US8268912B2 (en) | Process for preparing an aqueous composite-particle dispersion | |
AU2009239988A1 (en) | Method for improving the storage stability of aqueous composite particle dispersions | |
AU2004231028B2 (en) | Method for the treatment of paper surfaces | |
US20110207851A1 (en) | Use of aqueous composite-particle dispersions as binders in elastic coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WIESE, HARM;KROENER, HUBERTUS;REEL/FRAME:017550/0247 Effective date: 20040613 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |