US20060150874A1 - Furnace wall structure - Google Patents

Furnace wall structure Download PDF

Info

Publication number
US20060150874A1
US20060150874A1 US10/523,033 US52303305A US2006150874A1 US 20060150874 A1 US20060150874 A1 US 20060150874A1 US 52303305 A US52303305 A US 52303305A US 2006150874 A1 US2006150874 A1 US 2006150874A1
Authority
US
United States
Prior art keywords
tubes
furnace wall
nose
furnace
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/523,033
Other versions
US7073451B1 (en
Inventor
Toshihiko Okamoto
Junichiro Matsuda
Atsushi Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Assigned to BABCOCK-HITACHI KABUSHIKI KAISHA reassignment BABCOCK-HITACHI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FURUKAWA, ATSUSHI, MATSUDA, JUNICHIRO, OKAMOTO, TOSHIHIKO
Application granted granted Critical
Publication of US7073451B1 publication Critical patent/US7073451B1/en
Publication of US20060150874A1 publication Critical patent/US20060150874A1/en
Assigned to MITSUBISHI HITACHI POWER SYSTEMS, LTD. reassignment MITSUBISHI HITACHI POWER SYSTEMS, LTD. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: BABCOCK-HITACHI K.K.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/065Construction of tube walls involving upper vertically disposed water tubes and lower horizontally- or helically disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B19/00Water-tube boilers of combined horizontally-inclined type and vertical type, i.e. water-tube boilers of horizontally-inclined type having auxiliary water-tube sets in vertical or substantially vertical arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/62Component parts or details of steam boilers specially adapted for steam boilers of forced-flow type
    • F22B37/64Mounting of, or supporting arrangements for, tube units
    • F22B37/645Mounting of, or supporting arrangements for, tube units involving upper vertically-disposed water tubes and lower horizontally- or helically disposed water tubes

Definitions

  • the present invention relates to a furnace structure composed of a combustion chamber which is the steam generator of a boiler for thermal power generation, and more specifically, to the furnace wall structure of the furnace rear wall.
  • FIG. 6 shows a simplified side view of the wall tubes forming the wall face of the furnace which composes the combustion chamber of a conventional boiler for thermal power generation.
  • the combustion chamber of the boiler for thermal power generation is composed of a furnace wall 1 formed by arraying furnace wall tubes 2 a for conveying water, steam, or a fluid mixture of them at regular intervals, and welding these furnace wall tubes 2 a via membrane bars 3 disposed therebetween (See FIG. 2 ).
  • the furnace wall 1 is provided with a furnace wall bottom part A composed of the furnace wall tubes 2 a having upward-spiraled fluid passages; a nose part C which has nose wall tubes 5 a disposed in a middle part of a furnace rear wall B adjoining the furnace wall bottom part A with a side view resembling a sidewise V ( ⁇ ); and a screen part D having screen tubes 7 .
  • burners 4 provided for supplying fuel from outside for combustion, which are arrayed in each of the plural stages provided in the vertical direction at corresponding positions on the lower side of the front wall and rear wall of the gas flow of the furnace wall 1 . These burners 4 heat the fluid inside the furnace wall tubes 2 a and make it move upwards from the furnace wall bottom part A inside the inclined furnace wall tubes 2 a.
  • the fluid heated by the burners 4 receives a different amount of heat depending on the arrayed position of the furnace wall tube 2 a provided for conveying the fluid, and on the positional relationship between the furnace wall tube 2 a and the burners 4 . Therefore, in order to make the amount of heat received by the fluid uniform, regardless of the arrayed position of the furnace wall tube 2 a and the positional relationship between the furnace wall tube 2 a and the burners 4 , the furnace wall tubes 2 a in the furnace wall bottom part A are upward-spiraled.
  • Such a structure of the upward-spiraled furnace wall tubes 2 a of the conventional boilers for thermal power generation is disclosed in Japanese Published Unexamined Patent Application No. 2000-130701, paragraph [0027].
  • FIG. 7 and FIG. 8 (as viewed from the direction of the lines II-II of FIG. 7 ) show a detailed structure of the connection part (hereinafter also referred to as the-transition part) between the spiral furnace wall tubes 2 a in the furnace rear wall, and the nose wall tubes 5 a and the screen tubes 7 .
  • the connection part hereinafter also referred to as the-transition part
  • the combustion gas G in the furnace rises from the furnace wall bottom part A; turns at the nose part C to the left side on the drawing; passes through the furnace ceiling part; and then flows towards an unillustrated furnace rear heat transfer part.
  • the combustion gas G rises while making a detour in the upper part of the furnace wall 1 .
  • the combustion gas G generated at the burners 4 region at the furnace wall bottom part A flows towards the right side on FIG. 6 ; passes through the furnace ceiling part; and flows towards the unillustrated furnace rear heat transfer part.
  • the combustion gas G flows the shortest route in the furnace wall 1 in this manner, which shortens the retention time of the combustion gas G in the furnace, thereby making the combustion of the fuel insufficient.
  • the shortened retention time of the combustion gas G in the furnace also makes the heat storing insufficient in the furnace wall tubes 2 a and the other heat transfer tube regions in the furnace, thereby causing high-temperature combustion gas G to flow to the furnace rear heat transfer part side.
  • the high-temperature combustion gas G causes the heat transfer tubes arranged on the furnace rear heat transfer part to have clinkers or slag, which are difficult to remove after being hardened.
  • the terminal parts of the spiral furnace wall tubes 2 a are positioned in the intermediate part of the nose part C composed of the nose wall tubes 5 a and others. Consequently, the header 6 for adjusting the number of tubes and mixing the inner fluid, which is required in the connection part (transition part) between the spirally inclined furnace wall tubes 2 a and the screen tubes 7 because of the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a, is conventionally disposed inside the nose part C as shown in FIG. 7 .
  • furnace wall tubes 2 b which extend upright from the inclined terminal parts of the furnace wall tubes 2 a whose fluid passages are upward-spiraled, are connected with the header 6 . Then the header makes the fluid flow towards the nose wall tubes 5 a. Between the header 6 and the nose wall tube 5 a are provided fluid passages 5 f for conveying the inner fluid downwards. The fluid passages 5 f are arranged in parallel with the vertical furnace wall tubes 2 b.
  • the inclined terminal parts of the furnace wall tubes 2 a are directly connected with the screen tubes 7 , which are composed of thick tubes with higher rigidity than the furnace wall tubes 2 a so as to support the weight of the furnace wall bottom part A by a small number.
  • the screen tubes 7 which are composed of thick tubes with higher rigidity than the furnace wall tubes 2 a so as to support the weight of the furnace wall bottom part A by a small number.
  • the header 6 is provided to compensate for the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a and to mix the inner fluid.
  • the header 6 is installed inside the nose part C, and the inner fluid coming out of the header 6 flows through fluid passages 5 f into the nose wall tubes 5 a whose side views resembles a sidewise V ( ⁇ ).
  • the reinforcing supports 8 must be installed in the screen tubes 7 that are directly connected with the spirally inclined furnace wall tubes 2 a, and such a complicated structure leads to a cost increase.
  • the object of the present invention is to provide a furnace wall structure which can drain the water inside the nose wall tubes while the operation of the boiler is suspended, and also to provide a furnace wall structure which can dispense with the reinforcing supports for supporting the weight of the furnace wall bottom part.
  • the present invention is a furnace wall structure having a furnace wall 1 installed in a furnace which is the combustion chamber of a boiler for thermal power generation, the furnace wall 1 comprising: a furnace wall bottom part A composed of furnace wall tubes 2 a having upward-spiraled fluid passages; a nose part C which has nose wall tubes 5 a disposed in a middle part of a furnace rear wall B adjoining the furnace wall bottom part A; and a screen part D having screen tubes 7 , wherein the terminal parts of the furnace wall tubes 2 a are located lower than the nose part C.
  • the drain generated in the nose wall tubes 5 a while the operation of the boiler is suspended can naturally fall inside the furnace wall tubes 2 a located lower than the nose part C.
  • the terminal parts of the furnace wall tubes 2 a are located lower than the nose part C, which makes the drain generated in the nose wall tubes 5 a naturally fall inside the header 6 .
  • the header 6 can be installed lower than the nose part C and also outside the furnace wall 1 .
  • the header 6 installed outside the furnace wall 1 facilitates draining operations from the header 6 and maintenance operations.
  • furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ) which extend upright from the terminal parts of the furnace wall tubes 2 a are provided so as to connect parts 2 b 1 of the furnace wall tubes 2 b directly with the header 6 , to connect the header 6 with the nose wall tubes 5 a via vertical tubes 5 e 1 and 5 e 2 ; and to connect other parts 2 b 2 of the furnace wall tubes 2 b directly with the screen tubes 7 , thereby integrating the vertical furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ), the vertical tubes 5 e 1 and 5 e 2 , and the screen tubes 7 by being welded via membrane bars 3 .
  • the terminal parts of the furnace wall tubes 2 a having the spirally inclined fluid passages are located lower than the nose part C, which makes it possible to provide the furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ) extending upright between the terminal parts of the furnace wall tubes 2 a and the nose wall tubes 5 a.
  • the parts 2 b 1 of the vertical furnace wall tubes 2 b are bent downwards to be connected with the header 6 ;
  • horizontal tubes 5 b 1 and 5 b 2 are provided in such a manner as to be divided from the header 6 into opposite sides in the horizontal direction;
  • the horizontal tubes 5 b 1 and 5 b 2 are connected with the vertical tubes 5 e 1 and 5 e 2 which partly extend upright adjacent to the vertical furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ) via the vertical tubes 5 c 1 and 5 c 2 and the horizontal tubes 5 d 1 and 5 d 2 ;
  • the vertical tubes 5 e 1 and 5 e 2 are connected with the nose wall tubes 5 a, respectively.
  • connection tube group ( 5 b 1 , 5 b 2 to 5 e 1 , 5 e 2 ) consisting of the horizontal tubes 5 b 1 , 5 b 2 , 5 d 1 , and 5 d 2 , the vertical tubes 5 c 1 and 5 c 2 , and the vertical tubes 5 e 1 and 5 e 2 .
  • the connection tube group ( 5 b 1 , 5 b 2 to 5 e 1 , 5 e 2 ) never causes drain retention, thereby making the drain from the nose wall tubes 5 a naturally fall into the header 6 quickly.
  • the furnace wall 1 is suspended from the ceiling joist supported by a steel column, and the header 6 , which is also a heavy material, is also suspended from an adjacent ceiling joist via a spring arm.
  • the furnace wall 1 moves downwards by several to several tens of centimeters by heat extension, and the spring arm can follow the heat extension of the header 6 in the vertical direction, but not the heat extension of the furnace wall 1 in the horizontal direction.
  • connection tube group ( 5 b 1 , 5 b 2 to 5 e 1 , 5 e 2 ), particularly the portions having a side view of an inverted L formed by the vertical tubes 5 c 1 and 5 c 2 and the horizontal tubes 5 d 1 and 5 d 2 can absorb the heat extension of the furnace wall 1 in the horizontal direction.
  • drain tubes 5 d at the bottom of the header 6 and to provide an open/close valve 10 at the drain tubes 5 d facilitate the draining from the header 6 .
  • FIG. 1 shows a side view of the furnace wall structure of the embodiment of the present invention
  • FIG. 2 is a perspective view of a part of the furnace wall structure of FIG. 1 ;
  • FIG. 3 is a detailed side view of the furnace wall structure of FIG. 1 ;
  • FIG. 4 is a view seen from the direction indicated by the arrows I, I of FIG. 3 ;
  • FIG. 5 is an enlarged view of a part of FIG. 4 ;
  • FIG. 6 is a side view of the conventional furnace wall structure
  • FIG. 7 is a detailed side view of the conventional furnace wall structure.
  • FIG. 8 is a perspective view taken along the line II-II of FIG. 7 .
  • FIG. 1 to FIG. 5 An embodiment of the present invention will be described as follows with the drawings.
  • the boiler furnace wall structure of the present embodiment is shown in FIG. 1 to FIG. 5 .
  • FIG. 1 shows its simplified side view
  • FIG. 2 shows a perspective view of a partly cut portion of the furnace wall structure
  • FIG. 3 shows an enlarged side view of the transition part of the furnace wall tubes from the furnace wall tubes to the nose part
  • FIG. 4 shows a view seen from the direction indicated by the arrows I and I of FIG. 3
  • FIG. 5 is an enlarged view of a part of FIG. 4 .
  • the furnace wall 1 shown in FIG. 1 is provided with a furnace wall bottom part A composed of furnace wall tubes 2 a having upward-spiraled fluid passages; a nose part C having nose wall tubes 5 a which is disposed in a middle part of a furnace rear wall B adjoining the furnace wall bottom part A; and an upper screen part D having screen tubes 7 .
  • the terminal parts of the upward-spiraled furnace wall tubes 2 a are located lower than the nose part C having the nose wall tubes 5 a. Furthermore, the present embodiment employs a boiler structure where the header 6 for adjusting the number of tubes and mixing the inner fluid that is required because of the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a is installed lower than the nose part C and also outside the furnace wall 1 .
  • the terminal parts of the upward-spiraled furnace wall tubes 2 a are located lower than the nose part C; between the terminal parts of the furnace wall tubes 2 a and the nose part C are provided vertical furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ) extending higher than the terminal parts of the furnace wall tubes 2 a; and the header 6 for adjusting the number of tubes and mixing the inner fluid that is required because of the difference in number between the furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ) and the nose wall tubes 5 a is installed lower than the nose part C and also outside the furnace wall 1 .
  • the parts 2 b 1 of the furnace wall tubes 2 b are bent downwards to be connected with the header 6 .
  • horizontal tubes 5 b 1 and 5 b 2 which are divided from the header 6 into opposite sides in the horizontal direction, and which are connected with the vertical tubes 5 c 1 and 5 c 2 partly extending upright adjacent to the inclined furnace wall tubes 2 a.
  • the vertical tubes 5 c 1 and 5 c 2 are connected, via the horizontal tubes 5 d 1 and 5 d 2 , with vertical tubes 5 e 1 and 5 e 2 , respectively which partly extend upright adjacent to the furnace wall tubes 2 b ( 2 b 1 , 2 b 2 ).
  • the vertical tubes 5 e 1 and 5 e 2 are connected with the nose wall tubes 5 a whose side views look like a sidewise V ( ⁇ ).
  • drain tubes 5 d at the bottom of the header 6 and the provision of an open/close valve 10 at the drain tubes 5 d facilitate the draining from the header 6 through the drain tubes 5 d.
  • the screen tubes 7 are connected with the parts 2 b 2 Of the vertical furnace wall tubes 2 b adjoining the spiral furnace wall tubes 2 a, and are composed of comparatively thick tubes so as to support the weight of the furnace wall bottom part A.
  • the terminal parts of the upward-spiraled furnace wall tubes 2 a are located lower than the nose part C, so that the header 6 that is required in the transition part because of the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a can be installed lower than the nose part C and also outside the furnace wall 1 .
  • This structure has the following effects.
  • the present invention there is no accumulation of water which is the inner fluid inside the nose wall tubes 5 a while the operation of the boiler is suspended, which facilitates maintenance as compared with the conventional case. Furthermore, the reinforcing supports conventionally installed to support the weight of the furnace wall bottom part A become unnecessary, thereby relatively reducing the cost of equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Paper (AREA)

Abstract

A furnace wall comprises: a furnace wall bottom part composed of furnace wall tubes having upward-spiraled fluid passages; a nose part which has nose wall tubes disposed in a middle part of a furnace rear wall adjoining the furnace wall bottom part; and a screen part having screen tubes, wherein the terminal parts of the furnace wall tubes are located lower than the nose part. Consequently, the drain generated in the nose wall tubes while the operation of the boiler is suspended can naturally fall inside the furnace wall tubes located lower than the nose part, and in a case where the header is connected with the terminal parts of the furnace wall tubes, the drain generated in the nose wall tubes can naturally fall inside the header. In addition, the furnace wall tubes which extend upright from the terminal parts of the furnace wall tubes can be provided to connect parts of the furnace wall tubes directly with the header, to connect the header with the nose wall tubes via vertical tubes and; and to connect other parts of the furnace wall tubes directly with the screen tubes, thereby integrating the vertical furnace wall tubes, the vertical tubes, and the screen tubes by being welded via membrane bars. This results in the furnace wall structure not requiring reinforcing supports for supporting the weight of the furnace wall bottom part.

Description

    TECHNICAL FIELD
  • The present invention relates to a furnace structure composed of a combustion chamber which is the steam generator of a boiler for thermal power generation, and more specifically, to the furnace wall structure of the furnace rear wall.
  • BACKGROUND ART
  • FIG. 6 shows a simplified side view of the wall tubes forming the wall face of the furnace which composes the combustion chamber of a conventional boiler for thermal power generation.
  • The combustion chamber of the boiler for thermal power generation is composed of a furnace wall 1 formed by arraying furnace wall tubes 2 a for conveying water, steam, or a fluid mixture of them at regular intervals, and welding these furnace wall tubes 2 a via membrane bars 3 disposed therebetween (See FIG. 2).
  • The furnace wall 1 is provided with a furnace wall bottom part A composed of the furnace wall tubes 2 a having upward-spiraled fluid passages; a nose part C which has nose wall tubes 5 a disposed in a middle part of a furnace rear wall B adjoining the furnace wall bottom part A with a side view resembling a sidewise V (<); and a screen part D having screen tubes 7.
  • There are also plural burners 4 provided for supplying fuel from outside for combustion, which are arrayed in each of the plural stages provided in the vertical direction at corresponding positions on the lower side of the front wall and rear wall of the gas flow of the furnace wall 1. These burners 4 heat the fluid inside the furnace wall tubes 2 a and make it move upwards from the furnace wall bottom part A inside the inclined furnace wall tubes 2 a.
  • The fluid heated by the burners 4 receives a different amount of heat depending on the arrayed position of the furnace wall tube 2 a provided for conveying the fluid, and on the positional relationship between the furnace wall tube 2 a and the burners 4. Therefore, in order to make the amount of heat received by the fluid uniform, regardless of the arrayed position of the furnace wall tube 2 a and the positional relationship between the furnace wall tube 2 a and the burners 4, the furnace wall tubes 2 a in the furnace wall bottom part A are upward-spiraled. Such a structure of the upward-spiraled furnace wall tubes 2 a of the conventional boilers for thermal power generation is disclosed in Japanese Published Unexamined Patent Application No. 2000-130701, paragraph [0027].
  • FIG. 7 and FIG. 8 (as viewed from the direction of the lines II-II of FIG. 7) show a detailed structure of the connection part (hereinafter also referred to as the-transition part) between the spiral furnace wall tubes 2 a in the furnace rear wall, and the nose wall tubes 5 a and the screen tubes 7.
  • The combustion gas G in the furnace, as shown in FIG. 6, rises from the furnace wall bottom part A; turns at the nose part C to the left side on the drawing; passes through the furnace ceiling part; and then flows towards an unillustrated furnace rear heat transfer part. Thus, the combustion gas Grises while making a detour in the upper part of the furnace wall 1. In contrast, if the nose part C is absent, the combustion gas G generated at the burners 4 region at the furnace wall bottom part A flows towards the right side on FIG. 6; passes through the furnace ceiling part; and flows towards the unillustrated furnace rear heat transfer part. Without the nose part C, the combustion gas G flows the shortest route in the furnace wall 1 in this manner, which shortens the retention time of the combustion gas G in the furnace, thereby making the combustion of the fuel insufficient. The shortened retention time of the combustion gas G in the furnace also makes the heat storing insufficient in the furnace wall tubes 2 a and the other heat transfer tube regions in the furnace, thereby causing high-temperature combustion gas G to flow to the furnace rear heat transfer part side. The high-temperature combustion gas G causes the heat transfer tubes arranged on the furnace rear heat transfer part to have clinkers or slag, which are difficult to remove after being hardened.
  • This makes it necessary to provide the nose part C which must have a complicated tubing structure. The terminal parts of the spiral furnace wall tubes 2 a are positioned in the intermediate part of the nose part C composed of the nose wall tubes 5 a and others. Consequently, the header 6 for adjusting the number of tubes and mixing the inner fluid, which is required in the connection part (transition part) between the spirally inclined furnace wall tubes 2 a and the screen tubes 7 because of the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a, is conventionally disposed inside the nose part C as shown in FIG. 7.
  • Other furnace wall tubes 2 b, which extend upright from the inclined terminal parts of the furnace wall tubes 2 a whose fluid passages are upward-spiraled, are connected with the header 6. Then the header makes the fluid flow towards the nose wall tubes 5 a. Between the header 6 and the nose wall tube 5 a are provided fluid passages 5 f for conveying the inner fluid downwards. The fluid passages 5 f are arranged in parallel with the vertical furnace wall tubes 2 b.
  • In the transition part, the inclined terminal parts of the furnace wall tubes 2 a are directly connected with the screen tubes 7, which are composed of thick tubes with higher rigidity than the furnace wall tubes 2 a so as to support the weight of the furnace wall bottom part A by a small number. However, it is impossible to transfer the weight of the furnace wall bottom part A to the screen tubes 7 only by the furnace wall tubes 2 a with insufficient rigidity. Therefore, there are reinforcing supports 8 provided between the furnace wall tubes 2 a and the screen tubes 7 in order to compensate for the rigidity of the furnace wall tubes 2 a and to transfer the weight of the furnace wall bottom part A to the screen tubes 7.
  • According to the aforementioned prior art, since the terminal parts of the spirally inclined furnace wall tubes 2 a are located in the intermediate part of the nose part C, the header 6 is provided to compensate for the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a and to mix the inner fluid. The header 6 is installed inside the nose part C, and the inner fluid coming out of the header 6 flows through fluid passages 5 f into the nose wall tubes 5 a whose side views resembles a sidewise V (<).
  • Thus in the conventional furnace wall structure, the water inside the fluid passages 5 f located lower than the header 6 cannot be drained while the operation of the boiler is suspended.
  • Furthermore, according to the prior art, the reinforcing supports 8 must be installed in the screen tubes 7 that are directly connected with the spirally inclined furnace wall tubes 2 a, and such a complicated structure leads to a cost increase.
  • The object of the present invention is to provide a furnace wall structure which can drain the water inside the nose wall tubes while the operation of the boiler is suspended, and also to provide a furnace wall structure which can dispense with the reinforcing supports for supporting the weight of the furnace wall bottom part.
  • DISCLOSURE OF THE INVENTION
  • The present invention is a furnace wall structure having a furnace wall 1 installed in a furnace which is the combustion chamber of a boiler for thermal power generation, the furnace wall 1 comprising: a furnace wall bottom part A composed of furnace wall tubes 2 a having upward-spiraled fluid passages; a nose part C which has nose wall tubes 5 a disposed in a middle part of a furnace rear wall B adjoining the furnace wall bottom part A; and a screen part D having screen tubes 7, wherein the terminal parts of the furnace wall tubes 2 a are located lower than the nose part C.
  • Since the terminal parts of the furnace wall tubes 2 a are located lower than the nose part C, the drain generated in the nose wall tubes 5 a while the operation of the boiler is suspended can naturally fall inside the furnace wall tubes 2 a located lower than the nose part C.
  • Also, in a case where the header 6 is connected with the terminal parts of the furnace wall tubes 2 a, the terminal parts of the furnace wall tubes 2 a are located lower than the nose part C, which makes the drain generated in the nose wall tubes 5 a naturally fall inside the header 6.
  • Furthermore, the header 6 can be installed lower than the nose part C and also outside the furnace wall 1. In this case, the header 6 installed outside the furnace wall 1 facilitates draining operations from the header 6 and maintenance operations.
  • It is also possible that furnace wall tubes 2 b (2 b 1, 2 b 2) which extend upright from the terminal parts of the furnace wall tubes 2 a are provided so as to connect parts 2 b 1 of the furnace wall tubes 2 b directly with the header 6, to connect the header 6 with the nose wall tubes 5 a via vertical tubes 5 e 1 and 5 e 2; and to connect other parts 2 b 2 of the furnace wall tubes 2 b directly with the screen tubes 7, thereby integrating the vertical furnace wall tubes 2 b (2 b 1, 2 b 2), the vertical tubes 5 e 1 and 5 e 2, and the screen tubes 7 by being welded via membrane bars 3.
  • Thus, in the present invention, the terminal parts of the furnace wall tubes 2 a having the spirally inclined fluid passages are located lower than the nose part C, which makes it possible to provide the furnace wall tubes 2 b (2 b 1, 2 b 2) extending upright between the terminal parts of the furnace wall tubes 2 a and the nose wall tubes 5 a. This enables the parts 2 b 2 of the furnace wall tubes 2 b to be directly connected with the screen tubes 7 so as to integrate the vertical furnace wall tubes 2 b (2 b 1, 2 b 2), the vertical tubes 5 e 1 and 5 e 2, and the screen tubes 7 by being welded via the membrane bars 3, thereby supporting the weight of the furnace wall bottom part A without using reinforcing members.
  • It is also possible that the parts 2 b 1 of the vertical furnace wall tubes 2 b are bent downwards to be connected with the header 6; horizontal tubes 5 b 1 and 5 b 2 are provided in such a manner as to be divided from the header 6 into opposite sides in the horizontal direction; the horizontal tubes 5 b 1 and 5 b 2 are connected with the vertical tubes 5 e 1 and 5 e 2 which partly extend upright adjacent to the vertical furnace wall tubes 2 b (2 b 1, 2 b 2) via the vertical tubes 5 c 1 and 5 c 2 and the horizontal tubes 5 d 1 and 5 d 2; and the vertical tubes 5 e 1 and 5 e 2 are connected with the nose wall tubes 5 a, respectively.
  • Thus, the header 6 and the nose wall tubes 5 a are connected with each other via a connection tube group (5 b 1, 5 b 2 to 5 e 1, 5 e 2) consisting of the horizontal tubes 5 b 1, 5 b 2, 5 d 1, and 5 d 2, the vertical tubes 5 c 1 and 5 c 2, and the vertical tubes 5 e 1 and 5 e 2. The connection tube group (5 b 1, 5 b 2to 5 e 1, 5 e 2) never causes drain retention, thereby making the drain from the nose wall tubes 5 a naturally fall into the header 6 quickly.
  • Although it is not illustrated, the furnace wall 1 is suspended from the ceiling joist supported by a steel column, and the header 6, which is also a heavy material, is also suspended from an adjacent ceiling joist via a spring arm. The furnace wall 1 moves downwards by several to several tens of centimeters by heat extension, and the spring arm can follow the heat extension of the header 6 in the vertical direction, but not the heat extension of the furnace wall 1 in the horizontal direction. However, the connection tube group (5 b 1, 5 b 2 to 5 e 1, 5 e 2), particularly the portions having a side view of an inverted L formed by the vertical tubes 5 c 1 and 5 c 2 and the horizontal tubes 5 d 1 and 5 d 2 can absorb the heat extension of the furnace wall 1 in the horizontal direction.
  • To provide drain tubes 5 d at the bottom of the header 6 and to provide an open/close valve 10 at the drain tubes 5 d facilitate the draining from the header 6.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a side view of the furnace wall structure of the embodiment of the present invention;
  • FIG. 2 is a perspective view of a part of the furnace wall structure of FIG. 1;
  • FIG. 3 is a detailed side view of the furnace wall structure of FIG. 1;
  • FIG. 4 is a view seen from the direction indicated by the arrows I, I of FIG. 3;
  • FIG. 5 is an enlarged view of a part of FIG. 4;
  • FIG. 6 is a side view of the conventional furnace wall structure;
  • FIG. 7 is a detailed side view of the conventional furnace wall structure; and
  • FIG. 8 is a perspective view taken along the line II-II of FIG. 7.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • An embodiment of the present invention will be described as follows with the drawings. The boiler furnace wall structure of the present embodiment is shown in FIG. 1 to FIG. 5.
  • Concerning the boiler furnace wall structure of the present embodiment, FIG. 1 shows its simplified side view; FIG. 2 shows a perspective view of a partly cut portion of the furnace wall structure; FIG. 3 shows an enlarged side view of the transition part of the furnace wall tubes from the furnace wall tubes to the nose part; and FIG. 4 shows a view seen from the direction indicated by the arrows I and I of FIG. 3. FIG. 5 is an enlarged view of a part of FIG. 4.
  • The furnace wall 1 shown in FIG. 1 is provided with a furnace wall bottom part A composed of furnace wall tubes 2 a having upward-spiraled fluid passages; a nose part C having nose wall tubes 5 a which is disposed in a middle part of a furnace rear wall B adjoining the furnace wall bottom part A; and an upper screen part D having screen tubes 7.
  • In the furnace wall 1 of the present embodiment, the terminal parts of the upward-spiraled furnace wall tubes 2 a are located lower than the nose part C having the nose wall tubes 5 a. Furthermore, the present embodiment employs a boiler structure where the header 6 for adjusting the number of tubes and mixing the inner fluid that is required because of the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a is installed lower than the nose part C and also outside the furnace wall 1.
  • As shown in FIG. 3 to FIG. 5, the terminal parts of the upward-spiraled furnace wall tubes 2 a are located lower than the nose part C; between the terminal parts of the furnace wall tubes 2 a and the nose part C are provided vertical furnace wall tubes 2 b (2 b 1, 2 b 2) extending higher than the terminal parts of the furnace wall tubes 2 a; and the header 6 for adjusting the number of tubes and mixing the inner fluid that is required because of the difference in number between the furnace wall tubes 2 b (2 b 1, 2 b 2) and the nose wall tubes 5 a is installed lower than the nose part C and also outside the furnace wall 1. The parts 2 b 1 of the furnace wall tubes 2 b are bent downwards to be connected with the header 6. Furthermore, there are horizontal tubes 5 b 1 and 5 b 2 which are divided from the header 6 into opposite sides in the horizontal direction, and which are connected with the vertical tubes 5 c 1 and 5 c 2 partly extending upright adjacent to the inclined furnace wall tubes 2 a. The vertical tubes 5 c 1 and 5 c 2 are connected, via the horizontal tubes 5 d 1 and 5 d 2, with vertical tubes 5 e 1 and 5 e 2, respectively which partly extend upright adjacent to the furnace wall tubes 2 b (2 b 1, 2 b 2). The vertical tubes 5 e 1 and 5 e 2 are connected with the nose wall tubes 5 a whose side views look like a sidewise V (<).
  • The provision of drain tubes 5 d at the bottom of the header 6 and the provision of an open/close valve 10 at the drain tubes 5 d facilitate the draining from the header 6 through the drain tubes 5 d.
  • The screen tubes 7 are connected with the parts 2 b 2 Of the vertical furnace wall tubes 2 b adjoining the spiral furnace wall tubes 2 a, and are composed of comparatively thick tubes so as to support the weight of the furnace wall bottom part A.
  • In the furnace wall structure of the present embodiment, the terminal parts of the upward-spiraled furnace wall tubes 2 a are located lower than the nose part C, so that the header 6 that is required in the transition part because of the difference in number between the furnace wall tubes 2 a and the nose wall tubes 5 a can be installed lower than the nose part C and also outside the furnace wall 1. This structure has the following effects.
  • (1) It becomes possible to provide, in the connection part between the header 6 and the nose wall tubes 5 a, wall tubes (the vertical tubes 5 c 1 and 5 c 2 and the vertical tubes 5 e 1 and 5 e 2) extending upright to make the inner fluid flow upwards, so that the water inside the nose wall tubes 5 a can naturally fall to the header 6 while the operation of the boiler is suspended.
  • (2) Locating the terminal parts of the upward-spiraled furnace wall tubes 2 a lower than the nose part C enables upright extended at the connection part between the spiral furnace wall tubes 2 a and the screen tubes 7, the furnace wall tubes 2 b 1 are connected with the header 6, and the header 6 is connected with the nose wall tubes 5 a via the vertical tubes 5 e 1 and 5 e 2 so as to integrate the vertical tubes 5 e 1 and 5 e 2, the screen tubes 7, and the vertical furnace wall tubes 2 b 1 and 2 b 2 by being welded via the membrane bars 3, thereby supporting the weight of the furnace wall bottom part A.
  • (3) The provision of the drain tubes 5 d at the bottom of the header 6 and the provision of the open/close valve 10 at the drain tubes 5 d facilitate the draining from the header 6 by operating the open/close valve 10 installed outside the furnace wall 1, and also facilitates the maintenance operation of the header 6 and the adjacent tube group from outside the furnace wall 1.
  • INDUSTRIAL APPLICABILITY
  • According to the present invention, there is no accumulation of water which is the inner fluid inside the nose wall tubes 5 a while the operation of the boiler is suspended, which facilitates maintenance as compared with the conventional case. Furthermore, the reinforcing supports conventionally installed to support the weight of the furnace wall bottom part A become unnecessary, thereby relatively reducing the cost of equipment.

Claims (5)

1. A furnace wall structure having a furnace wall installed in a furnace which is the combustion chamber of a boiler for thermal power generation, said furnace wall comprising:
a furnace wall bottom part composed of furnace wall tubes having upward-spiraled fluid passages; a nose part which has nose wall tubes disposed in a middle part of a furnace rear wall adjoining the furnace wall bottom part; and a screen part having screen tubes, wherein
the terminal parts of said furnace wall tubes are located lower than the nose part,
a header is provided at the connection part between the terminal parts of said furnace wall tubes and said nose wall tubes, and is installed lower than said nose Dart and outside the furnace wall,
furnace wall tubes which extend upright from the terminal parts of said furnace wall tubes are provided so as to connect parts of the furnace wall tubes directly with the header, to connect the header with the nose wall tubes via vertical tubes; and to connect other Darts of said furnace wall tubes directly with the screen tubes, thereby integrating the vertical furnace wall tubes, the vertical tubes, and the screen tubes by being welded via membrane bars.
2. (canceled)
3. (canceled)
4. The furnace wall structure according to claim 1, wherein the parts of said vertical furnace wall tubes are bent downwards to be connected with the header; horizontal tubes are provided in such a manner as to be divided from the header into opposite sides in the horizontal direction; the horizontal tubes are connected with the vertical tubes which partly extend upright adjacent to the vertical furnace wall tubes via the vertical tubes and the horizontal tubes; and the vertical tubes are connected with the nose wall tubes, respectively.
5. The furnace wall structure according to claim 1, further comprising: drain tubes provided at the bottom of the header; and an open/close valve provided at the drain tubes.
US10/523,033 2002-09-09 2003-09-08 Furnace wall structure Expired - Lifetime US7073451B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-263449 2002-09-09
JP2002263449 2002-09-09
PCT/JP2003/011425 WO2004023037A1 (en) 2002-09-09 2003-09-08 Furnace wall structure

Publications (2)

Publication Number Publication Date
US7073451B1 US7073451B1 (en) 2006-07-11
US20060150874A1 true US20060150874A1 (en) 2006-07-13

Family

ID=31973186

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/523,033 Expired - Lifetime US7073451B1 (en) 2002-09-09 2003-09-08 Furnace wall structure

Country Status (9)

Country Link
US (1) US7073451B1 (en)
EP (1) EP1544540B1 (en)
JP (1) JP3934139B2 (en)
KR (1) KR100687389B1 (en)
CN (1) CN1277067C (en)
AU (1) AU2003261991B2 (en)
CA (1) CA2498262C (en)
DE (1) DE60325393D1 (en)
WO (1) WO2004023037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087805A1 (en) * 2006-03-14 2009-04-02 Babcock-Hitachi Kabushiki Kaisha In-Furnace Gas Injection Port

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005208A1 (en) * 2006-02-02 2007-08-16 Hitachi Power Europe Gmbh Hanging steam generator
EP2213936A1 (en) 2008-11-10 2010-08-04 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102010038885B4 (en) * 2010-08-04 2017-01-19 Siemens Aktiengesellschaft Once-through steam generator
CN103620332B (en) * 2012-03-28 2015-09-02 新日铁住金株式会社 The protecting wall structure of molten metal container and the furnace wall construction method of molten metal container
JP6958373B2 (en) * 2018-01-17 2021-11-02 栗田工業株式会社 Boiler chemical cleaning method
CN108534118B (en) * 2018-03-30 2023-10-31 东方电气集团东方锅炉股份有限公司 Water-cooled wall structure of supercritical or ultra-supercritical once-through boiler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US864973A (en) * 1904-09-26 1907-09-03 Dubuque Harness And Saddlery Company Manufacture of harness-pads.
US2719210A (en) * 1953-06-10 1955-09-27 Combustion Eng Method of welding thin walled tubes from a single side
US3434460A (en) * 1966-11-30 1969-03-25 Combustion Eng Multicircuit recirculation system for vapor generating power plant
US3927646A (en) * 1965-04-13 1975-12-23 Babcock & Wilcox Co Vapor generator
US4075979A (en) * 1975-12-19 1978-02-28 Kraftwerk Union Aktiengesellschaft Assembly of a combustion chamber nose in a continuous-flow boiler having a two-section construction with gas-tightly welded walls
US4864973A (en) * 1985-01-04 1989-09-12 The Babcock & Wilcox Company Spiral to vertical furnace tube transition
US5950574A (en) * 1996-12-17 1999-09-14 Babcock-Hitachi Kabushiki Kaisha Boiler
US6651596B1 (en) * 1997-05-09 2003-11-25 Siemens Aktiengesellschaft Continous flow steam generator having a double-flue construction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123004U (en) * 1984-07-12 1986-02-10 川崎重工業株式会社 boiler header
JPS6123004A (en) 1984-07-12 1986-01-31 Fuji Facom Corp Automatic warehouse system
JP3916784B2 (en) 1998-10-26 2007-05-23 バブコック日立株式会社 Boiler structure
JP2000186801A (en) * 1998-12-21 2000-07-04 Ishikawajima Harima Heavy Ind Co Ltd Piping structure for scissors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US864973A (en) * 1904-09-26 1907-09-03 Dubuque Harness And Saddlery Company Manufacture of harness-pads.
US2719210A (en) * 1953-06-10 1955-09-27 Combustion Eng Method of welding thin walled tubes from a single side
US3927646A (en) * 1965-04-13 1975-12-23 Babcock & Wilcox Co Vapor generator
US3434460A (en) * 1966-11-30 1969-03-25 Combustion Eng Multicircuit recirculation system for vapor generating power plant
US4075979A (en) * 1975-12-19 1978-02-28 Kraftwerk Union Aktiengesellschaft Assembly of a combustion chamber nose in a continuous-flow boiler having a two-section construction with gas-tightly welded walls
US4864973A (en) * 1985-01-04 1989-09-12 The Babcock & Wilcox Company Spiral to vertical furnace tube transition
US5950574A (en) * 1996-12-17 1999-09-14 Babcock-Hitachi Kabushiki Kaisha Boiler
US6651596B1 (en) * 1997-05-09 2003-11-25 Siemens Aktiengesellschaft Continous flow steam generator having a double-flue construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087805A1 (en) * 2006-03-14 2009-04-02 Babcock-Hitachi Kabushiki Kaisha In-Furnace Gas Injection Port

Also Published As

Publication number Publication date
EP1544540B1 (en) 2008-12-17
KR20050057273A (en) 2005-06-16
EP1544540A1 (en) 2005-06-22
AU2003261991B2 (en) 2006-05-18
US7073451B1 (en) 2006-07-11
JPWO2004023037A1 (en) 2005-12-22
EP1544540A4 (en) 2005-11-16
WO2004023037A1 (en) 2004-03-18
CA2498262C (en) 2008-03-18
CN1682077A (en) 2005-10-12
KR100687389B1 (en) 2007-02-26
CN1277067C (en) 2006-09-27
AU2003261991A1 (en) 2004-03-29
DE60325393D1 (en) 2009-01-29
CA2498262A1 (en) 2004-03-18
JP3934139B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
CN100554860C (en) Tube spacer, its manufacture method and use the heat exchanger of this separator
US7073451B1 (en) Furnace wall structure
US4075979A (en) Assembly of a combustion chamber nose in a continuous-flow boiler having a two-section construction with gas-tightly welded walls
US4638857A (en) Vertical tube heat exchanger panel for waste-recovery boilers such as black liquid boilers or household waste incinerator furnaces, and methods of manufacture
RU2067722C1 (en) Water-tube boiler
KR100444497B1 (en) Continuous steam generator
JP5119720B2 (en) boiler
RU2317484C2 (en) Parallel current flow steam generator and method of manufacture of parallel current flow steam generator
RU2193729C2 (en) Boiler
KR840001100B1 (en) Steam generator arrangement
KR102408191B1 (en) Boiler
JP2008267687A (en) Auxiliary boiler
EP0052939A1 (en) Water-tube boiler
JPH11241802A (en) Connecting structure for furnace wall tube and rising tube
JPH05141608A (en) Soda recovery boiler
US425941A (en) Boiler with vertical sections
US5730087A (en) Tube enclosure and floor support routing for once through steam generators
JP2002081608A (en) Boiler structure
JP2001056104A (en) Oxygen combustion once-through boiler
JPH08312904A (en) Boiler
JPH10122503A (en) Structure of rear wall part of furnace for boiler
SU1255835A1 (en) Cooled element of oven walls
KR100566967B1 (en) Boiler
JPH09318042A (en) Boiler device
EA032077B1 (en) Water-heating boiler

Legal Events

Date Code Title Description
AS Assignment

Owner name: BABCOCK-HITACHI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKAMOTO, TOSHIHIKO;MATSUDA, JUNICHIRO;FURUKAWA, ATSUSHI;REEL/FRAME:016894/0814

Effective date: 20050112

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MITSUBISHI HITACHI POWER SYSTEMS, LTD., JAPAN

Free format text: MERGER;ASSIGNOR:BABCOCK-HITACHI K.K.;REEL/FRAME:035003/0333

Effective date: 20141001

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12