US20060128743A1 - Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs - Google Patents
Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs Download PDFInfo
- Publication number
- US20060128743A1 US20060128743A1 US11/341,524 US34152406A US2006128743A1 US 20060128743 A1 US20060128743 A1 US 20060128743A1 US 34152406 A US34152406 A US 34152406A US 2006128743 A1 US2006128743 A1 US 2006128743A1
- Authority
- US
- United States
- Prior art keywords
- bcrp
- pharmaceutically active
- active compound
- inhibitor
- derivatives
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000003814 drug Substances 0.000 title claims description 82
- 229940079593 drug Drugs 0.000 title claims description 81
- 239000008194 pharmaceutical composition Substances 0.000 title claims description 12
- 238000012216 screening Methods 0.000 title claims description 9
- 239000003623 enhancer Substances 0.000 title description 2
- 101000823298 Homo sapiens Broad substrate specificity ATP-binding cassette transporter ABCG2 Proteins 0.000 claims abstract description 116
- 102100022595 Broad substrate specificity ATP-binding cassette transporter ABCG2 Human genes 0.000 claims abstract description 114
- 150000001875 compounds Chemical class 0.000 claims abstract description 76
- 239000003112 inhibitor Substances 0.000 claims abstract description 61
- 210000004027 cell Anatomy 0.000 claims abstract description 52
- 230000001965 increasing effect Effects 0.000 claims abstract description 19
- 230000009885 systemic effect Effects 0.000 claims abstract description 12
- 210000004881 tumor cell Anatomy 0.000 claims abstract description 11
- 230000001404 mediated effect Effects 0.000 claims description 21
- 108090000623 proteins and genes Proteins 0.000 claims description 17
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims description 17
- 229960000303 topotecan Drugs 0.000 claims description 17
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 16
- 241001465754 Metazoa Species 0.000 claims description 15
- 102000004169 proteins and genes Human genes 0.000 claims description 14
- DBEYVIGIPJSTOR-UHFFFAOYSA-N 12alpha-fumitremorgin C Natural products O=C1C2CCCN2C(=O)C2CC(C3=CC=C(C=C3N3)OC)=C3C(C=C(C)C)N21 DBEYVIGIPJSTOR-UHFFFAOYSA-N 0.000 claims description 12
- DBEYVIGIPJSTOR-FHWLQOOXSA-N fumitremorgin C Chemical compound O=C1[C@@H]2CCCN2C(=O)[C@@H]2CC(C3=CC=C(C=C3N3)OC)=C3[C@H](C=C(C)C)N21 DBEYVIGIPJSTOR-FHWLQOOXSA-N 0.000 claims description 12
- 230000005764 inhibitory process Effects 0.000 claims description 11
- 108010078791 Carrier Proteins Proteins 0.000 claims description 8
- 102000014914 Carrier Proteins Human genes 0.000 claims description 7
- 229960001156 mitoxantrone Drugs 0.000 claims description 7
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 claims description 7
- -1 DX8951f Chemical compound 0.000 claims description 6
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical class C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 6
- POADTFBBIXOWFJ-VWLOTQADSA-N cositecan Chemical compound C1=CC=C2C(CC[Si](C)(C)C)=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 POADTFBBIXOWFJ-VWLOTQADSA-N 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 claims description 6
- 231100000678 Mycotoxin Toxicity 0.000 claims description 5
- UIDLXSVZDHSRQU-UHFFFAOYSA-N indolizino[1,2-h]quinoline Chemical class C1=CC=CN2C=C3C4=NC=CC=C4C=CC3=C21 UIDLXSVZDHSRQU-UHFFFAOYSA-N 0.000 claims description 5
- 239000002636 mycotoxin Substances 0.000 claims description 5
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Chemical class CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 claims description 4
- 150000004056 anthraquinones Chemical class 0.000 claims description 4
- 150000003246 quinazolines Chemical class 0.000 claims description 4
- RTIZZWMBGKGLFO-YWQXDYITSA-N 3-[(z)-[(5z)-5-benzylidene-4-methyl-3,6-dioxopiperazin-2-ylidene]methyl]-n-[4-[2-(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)ethyl]phenyl]benzamide Chemical group C1C=2C=C(OC)C(OC)=CC=2CCN1CCC(C=C1)=CC=C1NC(=O)C(C=1)=CC=CC=1\C=C(C(N1C)=O)/NC(=O)\C1=C\C1=CC=CC=C1 RTIZZWMBGKGLFO-YWQXDYITSA-N 0.000 claims description 3
- LGGHDPFKSSRQNS-UHFFFAOYSA-N Tariquidar Chemical compound C1=CC=CC2=CC(C(=O)NC3=CC(OC)=C(OC)C=C3C(=O)NC3=CC=C(C=C3)CCN3CCC=4C=C(C(=CC=4C3)OC)OC)=CN=C21 LGGHDPFKSSRQNS-UHFFFAOYSA-N 0.000 claims description 3
- 150000003248 quinolines Chemical class 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 claims description 2
- 229940027998 antiseptic and disinfectant acridine derivative Drugs 0.000 claims description 2
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 claims description 2
- 150000002537 isoquinolines Chemical class 0.000 claims description 2
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 claims description 2
- 229960001289 prazosin Drugs 0.000 claims description 2
- 239000002207 metabolite Substances 0.000 claims 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims 1
- FUXVKZWTXQUGMW-FQEVSTJZSA-N 9-Aminocamptothecin Chemical compound C1=CC(N)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 FUXVKZWTXQUGMW-FQEVSTJZSA-N 0.000 claims 1
- 229940124639 Selective inhibitor Drugs 0.000 claims 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 claims 1
- 230000006491 negative regulation of transport Effects 0.000 claims 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 claims 1
- 229950009213 rubitecan Drugs 0.000 claims 1
- 230000032258 transport Effects 0.000 description 55
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 45
- 101001017818 Homo sapiens ATP-dependent translocase ABCB1 Proteins 0.000 description 41
- 230000036457 multidrug resistance Effects 0.000 description 26
- OSFCMRGOZNQUSW-UHFFFAOYSA-N n-[4-[2-(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10h-acridine-4-carboxamide Chemical compound N1C2=C(OC)C=CC=C2C(=O)C2=C1C(C(=O)NC1=CC=C(C=C1)CCN1CCC=3C=C(C(=CC=3C1)OC)OC)=CC=C2 OSFCMRGOZNQUSW-UHFFFAOYSA-N 0.000 description 26
- 230000000694 effects Effects 0.000 description 21
- 230000007246 mechanism Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 241000699670 Mus sp. Species 0.000 description 14
- 206010028980 Neoplasm Diseases 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 11
- 102000004855 Multi drug resistance-associated proteins Human genes 0.000 description 10
- 108090001099 Multi drug resistance-associated proteins Proteins 0.000 description 10
- 229930012538 Paclitaxel Natural products 0.000 description 10
- 229960001592 paclitaxel Drugs 0.000 description 10
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 8
- 238000003556 assay Methods 0.000 description 7
- 210000001842 enterocyte Anatomy 0.000 description 7
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 6
- 229930105110 Cyclosporin A Natural products 0.000 description 6
- 108010036949 Cyclosporine Proteins 0.000 description 6
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- 229960001265 ciclosporin Drugs 0.000 description 6
- 210000002381 plasma Anatomy 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 102000004328 Cytochrome P-450 CYP3A Human genes 0.000 description 5
- 108010081668 Cytochrome P-450 CYP3A Proteins 0.000 description 5
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 229930182912 cyclosporin Natural products 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 108090000743 multidrug resistance protein 3 Proteins 0.000 description 5
- 102000004233 multidrug resistance protein 3 Human genes 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000003053 toxin Substances 0.000 description 5
- 231100000765 toxin Toxicity 0.000 description 5
- 108700012359 toxins Proteins 0.000 description 5
- 101150069931 Abcg2 gene Proteins 0.000 description 4
- 206010059866 Drug resistance Diseases 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011813 knockout mouse model Methods 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000007723 transport mechanism Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 3
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 3
- 102000003915 DNA Topoisomerases Human genes 0.000 description 3
- 108090000323 DNA Topoisomerases Proteins 0.000 description 3
- 101710094960 Major vault protein Proteins 0.000 description 3
- 102100038884 Major vault protein Human genes 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 238000011260 co-administration Methods 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 239000000824 cytostatic agent Substances 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 229960004679 doxorubicin Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical class Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 3
- 210000004882 non-tumor cell Anatomy 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 229940122803 Vinca alkaloid Drugs 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001251 acridines Chemical class 0.000 description 2
- 230000009056 active transport Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000001949 anaesthesia Methods 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940045799 anthracyclines and related substance Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000036983 biotransformation Effects 0.000 description 2
- 201000008275 breast carcinoma Diseases 0.000 description 2
- 229940127093 camptothecin Drugs 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 229960004125 ketoconazole Drugs 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- RFKMCNOHBTXSMU-UHFFFAOYSA-N methoxyflurane Chemical compound COC(F)(F)C(Cl)Cl RFKMCNOHBTXSMU-UHFFFAOYSA-N 0.000 description 2
- 229960002455 methoxyflurane Drugs 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229960001722 verapamil Drugs 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 102000021527 ATP binding proteins Human genes 0.000 description 1
- 108091011108 ATP binding proteins Proteins 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- YJDYDFNKCBANTM-QCWCSKBGSA-N SDZ PSC 833 Chemical compound C\C=C\C[C@@H](C)C(=O)[C@@H]1N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C(=O)[C@H](C(C)C)NC1=O YJDYDFNKCBANTM-QCWCSKBGSA-N 0.000 description 1
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 1
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 150000005022 aminoacridines Chemical class 0.000 description 1
- 229940058934 aminoquinoline antimalarials Drugs 0.000 description 1
- 150000005010 aminoquinolines Chemical class 0.000 description 1
- 229940051881 anilide analgesics and antipyretics Drugs 0.000 description 1
- 150000003931 anilides Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 150000008038 benzoazepines Chemical class 0.000 description 1
- 229940049706 benzodiazepine Drugs 0.000 description 1
- 150000001557 benzodiazepines Chemical class 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 238000002701 cell growth assay Methods 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 125000001271 cephalosporin group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001907 coumarones Chemical class 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 description 1
- 229960004166 diltiazem Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009513 drug distribution Methods 0.000 description 1
- 238000003255 drug test Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 229930003944 flavone Natural products 0.000 description 1
- 150000002213 flavones Chemical class 0.000 description 1
- 235000011949 flavones Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 230000010224 hepatic metabolism Effects 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000013038 irreversible inhibitor Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000009057 passive transport Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical class OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 229940080360 rauwolfia alkaloid Drugs 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 description 1
- 229960002324 trifluoperazine Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 108010082372 valspodar Proteins 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4738—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4745—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the subject invention is directed at a method of improving bioavailability of orally administered drugs.
- the invention further covers a method of screening for enhancers of bioavailability of orally administered drugs.
- the invention also covers application of the bioenhancer in pharmaceutical compositions for oral delivery of drugs, thereby providing novel and improved pharmaceutical compositions.
- bioavailability is interchangeably used with the term “systemic exposure”, i.e. the bioavailability of a drug is expressed as the systemic exposure of a cell to drugs.
- the enterocyte membrane contains numerous transport proteins that carry nutrients from the lumen of the gut into the enterocytes. Active or passive transport through the membrane is responsible for the passage of many molecules through the membrane into the cytoplasm. The nutrients, and also drugs, subsequently pass through the enterocytes into the capillary net and proceed to the circulation system and the liver.
- P-glycoprotein back transport activity in the gut of a mammal can be inhibited with a view to increasing drug bioavailability by virtue of the fact that the net transport of drugs through the enterocyte layer will be enhanced.
- P-glycoprotein is located inter alia in the small intestine and colon on the luminal side of epithelial cells and transports dietary toxins back into the lumen and thus helps prevent the toxins being absorbed into the portal circulation.
- the P-gp is known from its association with multi drug resistance development of tumor cells.
- a number of other transport proteins have also been associated with multi drug resistance (MDR) such as the MRP (multidrug resistance associated protein) and possibly the MVP (major vault protein).
- MDR multi drug resistance
- An alternative system also leading to MDR is the interference of some drugs in the ability of the cell to enter apoptosis for example cells genetically deficient in p53 or cells overexpressing bc1xL.
- MRP and P-gp belong to the group of proteins classified as ABC proteins. ABC proteins function by way of their being ATP binding proteins.
- the phenomenon of multi drug resistance consists of tumor cells exhibiting resistance to a large number of structurally unrelated antineoplastic agents.
- These agents include anthracyclines, vinca alkaloids, taxol and epipodophyllotoxins.
- ATP hydrolysis on the cytoplasmic face of P-gp is required for transport of hydrophobic compounds from a tumor cell.
- verapamil, diltiazem, quinine, trifluoperazine or cyclosporin seems to potentially reverse P-gp asssociated MDR.
- BCRP Breast Cancer Resistance Protein
- MXR Breast Cancer Resistance Protein
- ABCP ABCP
- the amino acid sequence of BCRP has been determined and the gene has been isolated and sequenced (Doyle et al. Proc. Natl. Acad. Sci USA 1998; Vol 95; 15665-15670 and WO 99/40110). It has been determined to be an ABC transport protein.
- the P-gp protein is also an ABC protein, but differs significantly from the BCRP. This is clearly illustrated by the sequence data and also by the fact that the presence of verapamil (an inhibitor of P-gp) did not prevent drug resistance for doxorubicin in cells overexpressing BCRP. The doxorubicin resistance was subsequently attributed to the overexpression of this protein. Thus cells exhibiting doxorubicin resistance can possess either P-gp and/or BCRP transport mechanisms.
- P-gp overexpressing cells exhibit resistance to paclitaxel and vincristine. No resistance to these compounds is however present when the P-gp mechanism is inactive and the BCRP mechanism is active. Thus there are clearly two different systems of drug resistance with different proteins that show different specificities to drugs.
- Rabindran et al. (Proc. Am. Assoc. Cancer Res.; 40: abstract 2093 and Cancer. res. 1998; 58: 5850-5858) disclose that the mycotoxin fumitremorgin C (FTC) reverses in vitro non-P-gp, non-MRP-mediated MDR in mitoxantrone-selected cells derived from a human colon carcinoma cell line. It was found that FTC did not reverse MDR in cells overexpressing P-gp or MRP. It was therefore suggested that this reversal of non-P-gp, non-MRP-mediated MDR involved a transport protein, possibly BCRP, having substrate specificities substantially different from those of P-gp and MRP.
- FTC mycotoxin fumitremorgin C
- Hazlehurst et al. (Cancer. Res. 1999; 59: 1021-1027) disclose that at low levels of MDR FTC reverses in vitro MDR in mitoxantrone-selected cells derived from the P-pg negative human myeloma cell line 8226. This reversal was attributed to BCRP. However, at higher levels of MDR several other drug-resistant mechanisms can be involved including non-transport phenomena as evidenced by reduced topoisomerase II levels and activity. It remains therefore uncertain whether the reversal can in fact be attributed specifically to BCRP and certainly is uncertain in the case of higher levels of MDR then were tested.
- WO 99/40110 discloses BCRP that is overexpressed in breast carcinoma cell lines, inhibitors of BCRP such as immunoglobulins (e.g. antibodies) and non-immuno-globulins (e.g. organic compounds such as FTC).
- Example 14 shows the beneficial effect of FTC on the intercellular concentration of BBR 3390 in MCF-7 cells (a human breast carcinoma cell line).
- MCF-7 cells a human breast carcinoma cell line.
- FIG. 1 is a graph of the topotecan levels over time in plasma as determined by HPLC
- FIG. 2 is a graph of the topotecan levels over time in plasma as determined by HPLC both with and without GF120918;
- FIG. 3 is a graph of the area under the curve (AUC) showing increased systemic exposure to oral topotecan with the coadministration of oral GF120918.
- BCRP monoclonal antibody
- BXP-34 against BCRP
- BRCP protein is expressed in endothelium of virtually every vein and capillary.
- high levels of BCRP protein were observed in placenta, mainly in the synchytiotrophoblast.
- BCRP was also found to be present in liver, small intestine and colon. These results were highly indicative that BCRP is involved in the regulation of uptake of BCRP substrates from the gastrointestinal tract and may have a function for the fetus.
- BRCP was further found to be expressed in the blood-brain barrier and the protective role of BCRP is therefore believed to encompass the brain as well.
- Bioavailability is defined as the total amount of drug systemically available over time. The test compares the amount of drug systemically available when administered in the presence and in the absence of a BCRP inhibitor. Naturally all variables should be kept identical as much as possible e.g. amount of drug dosed and the form in which it is dosed.
- the measurement of the systemic amount can occur in any known manner for bodily fluid e.g. blood, serum, plasma or tissue bathed by systemic fluid e.g. skin. Urine can also be used for non metabolised drug testing.
- the invention therefore relates to a method for increasing the systemic exposure of cells selected from tumor cells and normal cells to an orally administered pharmaceutically active compound, wherein a bioenhancer comprising an inhibitor of BCRP mediated and/or related drug transport is orally administered concomitantly with said orally administered pharmaceutically active compound.
- a bioenhancer comprising an inhibitor of BCRP mediated and/or related drug transport is orally administered concomitantly with said orally administered pharmaceutically active compound.
- the inhibitor is administered simultaneously with the pharmaceutical compound.
- the compounds to be assayed for bioavailability were selected from a range of well-known cytostatic drugs.
- Examples of compounds tested are topotecan, GG211, DX8951f, BNP1350, 9-aminocamphotecin, 9-nitrocamphotecin and irinotecan.
- These are thus examples of indolizino-quinoline (in particular camptothecin) derivatives, quinazoline derivatives e.g. prazosin and anthraquinone derivatives e.g. mitoxantrone.
- a broad spectrum of compounds with varying lipophilicity, solubility and hydrophobicity has thus been tested. The group can be considered representative for a large number of naturally occurring toxins.
- MCF-7/AdrVp breast tumors
- S1, HT29 colon carcinoma
- EPG85-257 gastric carcinoma's
- EPF86-079 fibrosarcoma
- myeloma 8226 origin
- This compound is known to also inhibit P-gp related transport in tumor cells exhibiting P-gp overexpression in vitro.
- Other compounds that were tested are XR9051 and XR 9576 from Xenova.
- Another BCRP inhibitor is fumitremorgin C (FTC), which is a mycotoxin.
- FTC fumitremorgin C
- FTC is an example of a compound that has no effect on P-gp related transport.
- a further example known to exhibit inhibition of BCRP is BIB-F.
- a compound of further interest is cyclosporin A.
- BCRP inhibitors of varying specificity: acridine derivatives, quinoline derivatives in particular isoquinoline derivatives and combinations thereof.
- An alternative suitable source of inhibitor could for example be provided by monoclonal antibodies raised specifically against BCRP.
- Recombinant BCRP producing clones could be used as a source of protein against which monoclonal antibodies could be raised in a manner known per se for raising monoclonal antibodies against recombinant protein and in a manner known per se for producing recombinant protein.
- the genetic information encoding BCRP is available and thus the methodology for expression of the protein is clear to the skilled person.
- Monoclonal antibodies would be a very specific inhibitor of BCRP and as such form a preferred embodiment of the group of inhibitors to be used.
- a less specific inhibitor could be an ATP-ase, preferably a BCRP-ATP-ase specific inhibitor. Such a compound would inhibit the ATP related activity of the protein and thus prevent transport.
- the BCRP inhibitor is in particular destined to inhibit drug back flux from the blood or epithelial lumen.
- the return of drugs absorbed into the cytoplasm of enterocytes back to the lumen of the gut is inhibited.
- the BCRP transport for these other locations may also be affected.
- the effect will be highest in the intestine due to the oral dosage of the inhibitor.
- the bioenhancer i.e. the inhibitor of BCRP, will bind BCRP quickly and inhibit while the drug is passing through the enterocyte.
- the inhibitor can be reversible or irreversible. If it is reversible, the bioenhancer will pass through the liver and be removed.
- the bioenhancer can act as a competitive, non-competitive, mixed or an irreversible inhibitor. It can be transportable or non-transportable. It can bind to or interact with the BCRP on cytoplasmic accessible surface, any membrane-spanning domain, and any ATP binding site. By interacting with BCRP it is possible to prevent binding of ATP.
- a bioenhancer can be selected from substances that are related to known substrates for BCRP. Suitable bioenhancers could be derivatives of acridine, quinoline, isoquinoline, indolizino-quinoline, camptothecin, anthraquinone, quinazoline, bisanthrene and rhodamine.
- a bioenhancer can be selected from vinca alkaloids, fatty acids, triazoles, taxol and derivatives thereof, pyrrolidones, piperazines, piperidines, pyridines, pyridones, pyrrolidines, retinoids, salicylates, sorbitans, phenothiazines, polyethylene glycols, colchicine, cephalosporines, cannabioids, cyclic peptides, flavones, flavenoids, opioids, phenylalkylamines, aminoacridines, aminoquinolines, anilides, anthracyclines, antibiotics, antiestrogens, imidazoles, (iso)quinolines, benzofurans, benzodiazepines, benzhydryl compounds, benzazepines, dibenzazepines, epipodophyllotoxins, macrolides, rauwolfia alkaloids, and steroids.
- a P-gp binding bioenhancer also exhibiting specificity for BCRP sufficient to increase bioavailability of a drug not susceptible to transport via the P-gp mechanism is applied in combination with such a drug or in a cell type free of a P-gp system.
- the amount to be dosed will depend on the drug it is to be combined with, the type of disease to be combated, the pharmacological acceptability of the dosage, the size gender and age of the patient etc. All factors commonly known to be of pharmacological interest and a matter of routine for the skilled person to determine on a case by case basis. Numerous assays are available to determine best dosage regimes. Suitably, the maximal increase in bioavailability needs to be achieved. Thus, such a combination of drug and inhibitor is preferably selected. Once it has been ascertained a particular drug can undergo increased bioavailability, it then becomes possible to reduce the dosage required to be orally administered to achieve the desired medicinal effect. Thus the amount of drug to be administered can be reduced. It thus becomes possible to administer lower dosage forms of known drugs.
- bioavailability is increased by at least 10%.
- an even higher amount e.g. more than 20% even more than 30% is achieved.
- BCRP mediated and/or related transport it now becomes possible to selectively enhance BCRP mediated and/or related transport. This can be achieved by selecting an inhibitor with a higher affinity for BCRP than any other drug transport related protein present in the gastrointestinal tract or cells associated with the oral trajectory of drugs that affect bioavailability, preferably, an inhibitor having a higher affinity for BCRP than for P-gp mediated and/or related transport.
- an inhibitor having a higher affinity for BCRP than for P-gp mediated and/or related transport Specifically, one can think of a bioenhancer that inhibits BCRP mediated or related transport better than other multi drug resistance related drug transport. Such a bioenhancer is suitably better at inhibiting BCRP related or mediated transport than P-gp mediated or related transport.
- specificity being better for BCRP than for MRP and/or MVP. Suitably one or more combinations can also be envisaged.
- the IC50(BCRP)/IC50(other transport protein) is at least less than 1, preferably less than 0.7, more preferably less than 0.3 and most preferably less than 0.1.
- BCRP mediated and/or related transport is to be understood as the demonstrated transport of a drug in a BCRP negative cell in which BCRP cDNA is expressed through transfection.
- the selected inhibitor will depend also on the selection of drug to be administered. It is known that some drugs are only transported by one mechanism, some by more than one, and some by a multitude of systems. Obviously, where more than one system is involved either numerous specific inhibitors or a generally applicable inhibitor will be preferred to achieve maximal effect.
- the relative ability of compounds to act as bioenhancers can be assessed using in vitro and/or in vivo drug transport measurements. Numerous systems are available that can be used as such or need some adaptation to be BCRP specific when so desired. Such adaptations can, however, be envisaged by the person skilled in the art.
- the activity of BCRP related or mediated transport can be measured as amount of ATP dependent transport in a system comprising BCRP and optionally being free of one or more other active ATP dependent transport systems. It can also be measured as drug dependent ATP hydrolysis.
- the activity can be measured using electrodes or dye, either chemically sensitive or voltage sensitive.
- numerous in vivo tests can be envisaged, analogous to those carried out for the MDR system assessment vis a vis resistance and sensitivity.
- the use of a knock out test animal in which the BCRP gene has been inactivated is envisaged. Such a knock out animal is also subject of the invention.
- mice assessed the bioavailability of the drug in mdr1a/1b double knock out mice in the presence and the absence of a BCRP inhibitor.
- the bioavailability tests can also be carried out with either MRP and/or P-gp knock out mice thus enabling assessment of whether any effect found due to the presence of the bioinhibitor is due solely to BCRP, not due to P-gp and/or MRP.
- MRP and/or P-gp knock out mice thus enabling assessment of whether any effect found due to the presence of the bioinhibitor is due solely to BCRP, not due to P-gp and/or MRP.
- the drug to be transported can be provided with a detectable marker to assess where it is located and to be able to quantitate it. Some drugs can be detected and quantitated in plasma without use of a detectable marker.
- the methodology employed is analogous to that disclosed in the Lancet article discussed above and is also described in Br. J. Cancer 1997, 76: 1181-1183. The methodology is thus considered
- the level of MDR is dependent from the level at which BCRP is expressed. High expression levels of BCRP give rise to high levels of MDR. In the absence of a proper definition, a high level of MDR is here defined as the degree of resistance to mitoxantrone in the human 8226/MR20 myeloma cell line of more than 10 (cf. Hazlehurst et al., Cancer Res., 1999; 59: 1021-1027 cell line).
- the invention relates to tumor cells and non-tumor cells, i.e. that the invention not only provides a method for enhancing the bioavailability of an orally administered drug in tumor cells, but in particular in non-tumor tissue, e.g. normal or healthy tissue.
- novel pharmaceutical compounds are also covered by the invention. It is noted that in this description pharmaceutical compounds and pharmaceutical compositions are sometimes used as alternative definitions. However, it will be apparent to the person skilled in the art that where pharmaceutical compounds are mentioned, these compounds may obviously be comprised by a pharmaceutical composition.
- the invention covers pharmaceutical compositions in an embodiment for oral administration, said composition comprising a pharmaceutically active compound and a bioenhancer, said bioenhancer being an inhibitor of BCRP mediated or related transport.
- the pharmaceutical composition according to the invention may comprise the pharmaceutically active compound in lower dosages than normally administered when the pharmaceutically active compound is administered on its own, i.e. without the BCRP inhibitor.
- the two components do not necessarily have to be administered concomitantly but they must be present in the subject to be treated at overlapping periods of time. Preferably, they are present in the gut concomitantly. Any of the combinations disclosed above for the embodiments of the bioenhancer and the pharmaceutically active compound, i.e.
- the drug to be delivered in a combination in a pharmaceutical composition is covered by the invention.
- Use of such a combination in a preparation of a medicament for improved oral delivery of the pharmaceutically active compound by means of inhibition of BCRP mediated or related transport system is also covered. It is preferable to present a combination in order to ensure maximum presence of the bioenhancer with the pharmaceutically active compound to be delivered. It is preferred that the composition be formulated such that the bioenhancer is released in the gut together with the pharmaceutically active compound or a little before the pharmaceutically active compound is released.
- the pharmaceutical composition may further comprise a pharmaceutically acceptable carrier.
- the composition is preferably sterile. Furthermore, it is preferably organoleptically acceptable.
- compositions inadvertently already disclosed that comprise the combination of a BCRP inhibitor and a pharmaceutically active component for treating or preventing a disease or pathological condition are not intended to be covered by the pharmaceutical composition claimed according to the invention.
- the pharmaceutically active compound can be a cytostatic drug or any non cytostatic drug. Any known drug requiring improved oral bioavailability can be incorporated.
- a combination of either a BCRP specific inhibitor with one or more transport inhibitors and a pharmaceutically active compound or a BCRP specific pharmaceutical compound, i.e. not using the P-gp transport system, in combination with a BCRP inhibitor also falls within the preferred embodiments.
- the invention also covers a method of screening for pharmaceutically active compounds that are transported via the BCRP transport system.
- the invention also covers a method for screening for inhibitors of BCRP mediated or related drug transport.
- the methods of screening occur in an analogous manner to the process described for P-gp related inhibitor screening and P-gp mediated or related transport drugs as disclosed in the cited articles that are incorporated by reference elsewhere in the description.
- Such a method of screening covers use of cells overexpressing BCRP to test for binding of inhibitor and/or to test whether a pharmaceutically active compound is present in a lower amount in such a cell than a corresponding cell with an inactive BCRP transport system. If this is the case then active transport using BCRP is occurring. Subsequently, testing with other systems can eliminate or reveal participation of other drug transport mechanisms for the particular drug to be tested.
- an additional means for sorting out various specificities for various drug transport mechanisms is provided.
- the invention also covers animals in which the BCRP gene has been inactivated, such that no BCRP related or mediated transport that is measurable can be discerned.
- This can occur in mice for example as a test model for in vivo testing of the results of inactivated BCRP transport and also to test whether drug transport of the pharmaceutically active compound does or does not occur.
- the results in wild type animals i.e. corresponding to the knock out animal with the exception of the inactivated BCRP transport system, can be compared with the results in the knock out animal to ascertain whether a BCRP related or mediated compound has been tested. Further details can be obtained by carrying out the test with other animals in which one or more MDR related transport systems have been eliminated.
- mice can be used in analysis of pharmacological effects in comparison to wild type mice.
- the knock out animals can be used as test models for assessing feasibility, efficacy and safety of BCRP related or mediated transport inhibition.
- Cells were plated in 96-wells plates, 1500 cells/well. Cells were cultured for 48 h at 37° C. and 5% CO 2 in the absence of drugs. Then, in a serial dilution from approximately 1 ⁇ M to approximately 0.05 nM drugs were added, and cells were cultured for another 5 days at 37° C. and 5% CO 2 . Next cells are fixated in the plate, washed, and coloured with SRB. After 20 min unbound SRB is washed away using 0.1 M acetic acid. SRB that is bound to the cells is dissolved in 10 mM Tris-HCl buffer. Using a 96-well plate reader the absorbance at 540 nm is measured. For each drug the IC50 value was determined. Results are the mean of at least 3 experiments. The results are depicted in the following table.
- the resistance factor (Rf) i.e. the IC50 for T8 devided by the IC50 value for IGROV1, varies from 11 for BNP1350 to 231 for SN-38.
- the IC50 values for the T8 resistent cell line exhibit a strong decrease.
- the cells become more sensitive towards the drugs by a factor of 1.4 to 24.4. It is important to notice that GF120918 has no or very little effect on the sensitivity of the parental cell line IGROV1, hence the effect for T8 can be ascribed to inhibition of BCRP by GF120918.
- the Rf values in the presence of GF120918 are on average a factor 5 lower compared to the values in the absence of GF120918.
- the resistance of T8 for topoisomerase I drugs is for the greater part reversed.
- mice were used in this experiment. First, mice were given orally GF120918 (50 mg/kg) or control substance at 15 min. prior to Topotecan administration. Subsequently, Topotecan was administered orally at a dose of 1 mg/kg. Finally, blood was collected at indicated time points. All time points represent three mice.
- mice were housed and handled according to institutional guidelines complying with Dutch legislation.
- the animals that were used in all experiments were mdr1a/1b ( ⁇ / ⁇ ) or wild-type mice of a 99% FVB genetic background, between 9-14 wk of age. All animals had free access to standard chow (AM-II, Hope Farms; Woerden, The Netherlands) and acidified water at a 12 h/12 h light/dark cycle and constant room temperature of 22° C.
- GF120918 was suspended in a hydroxypropylmethylcellulose (10 g/l):Tween 80 (2% v/v):H 2 O (0.5:1:98.5 v/v/v) formulation for oral administration, at 5 mg.ml-1. Animals were treated with 50 mg.kg-1 GF120918 or a corresponding amount of vehicle by gavage in a volume of 10 ⁇ l drug solution per gram body weight under a light Metofane (Mallinckrodt Veterinary, Mundelein, Ill., USA) anaesthesia. Topotecan (freshly prepared, in 5% D-glucose) was administered orally such that 5 ⁇ l of the appropriate solution was administered per gram body weight.
- Topotecan freshly prepared, in 5% D-glucose
- Dosage was 1.0 mg.kg-1 body weight. Animals were sacrificed at indicated time points by cardiac puncture or axillary bleeding after anaesthesia with metofane and at the same time blood was collected. Heparinized plasma was mixed with 3 volumes of cold methanol ( ⁇ 20° C.). Topotecan levels in plasma were determined by HPLC analysis as described by Rosing et al., 1995, J. Chromatography, 668: 107-115, and are depicted in FIG. 1 .
- Example 1 the first results of a clinical trial are shown. Three patients received topotecan orally at a dosis of 1.0 mg.m ⁇ 2. Topotecan was administered with or without GF120918 (1000 mg). For illustrative purposes, the plasma concentration vs. time is shown for one patient in FIG. 2 . In FIG. 3 the average including the standard deviation is shown for all three patients. These results confirm the results obtained in vitro according to Example 1.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
A method for increasing the systemic exposure of cells selected from tumor cells and normal cells to an orally administered pharmaceutically active compound, wherein a bioenhancer comprising an inhibitor of BCRP is orally administered concomitantly with said orally administered pharmaceutically active compound, and in which method the inhibitor is administered simultaneously with the pharmaceutical compound.
Description
- This application is a Continuation of co-pending application Ser. No. 09/988,285 filed on Nov. 19, 2001 and for which priority is claimed under 35 U.S.C. § 120. application Ser. No. 09/988,285 is a Continuation-in-Part of PCT International Application No. PCT/NL00/00331 filed on May 17, 2000. The entire contents of each of the above-identified applications are hereby incorporated by reference.
- The subject invention is directed at a method of improving bioavailability of orally administered drugs. The invention further covers a method of screening for enhancers of bioavailability of orally administered drugs. The invention also covers application of the bioenhancer in pharmaceutical compositions for oral delivery of drugs, thereby providing novel and improved pharmaceutical compositions. In this patent application, “bioavailability” is interchangeably used with the term “systemic exposure”, i.e. the bioavailability of a drug is expressed as the systemic exposure of a cell to drugs.
- The bioavailability of drugs is a complex issue. For a long time efforts were focussed on the processes occurring in the liver when addressing the issue of bioavailability of drugs. All blood from the gastrointestinal tract passes the liver before going anywhere else in the body. Thus, first pass effect of the liver was thought to be of great influence on bioavailability. Certainly it was thought to be of more influence than any mechanism exerted by the gut. This was thought to be the case for example due to the much lower presence of cytochrome P450 in the gut as compared to the liver. It was known for a fact that cytochrome P450 catalyses phase I biotransformation, i.e. the process involved in removal of drugs from the body. In phase II, the subsequent step of the removal process, a hydrophilic group is added in order to increase solubility and thus subsequently speed up elimination through bile or kidneys.
- Traditionally, efforts have thus been focussed on increasing solubility and membrane permeability when addressing the problem of bioavailability of drugs. Most particularly, metabolism-associated approaches have been focussed on the liver biotransformation process. The problem with these approaches has, however, been the broad effects on liver metabolism in general and thus broad non-specific and often thus undesirable systemic effects.
- Recently however, it has been suggested that the absorption across intestinal epithelia also affect bioavailability of drugs. The enterocyte membrane contains numerous transport proteins that carry nutrients from the lumen of the gut into the enterocytes. Active or passive transport through the membrane is responsible for the passage of many molecules through the membrane into the cytoplasm. The nutrients, and also drugs, subsequently pass through the enterocytes into the capillary net and proceed to the circulation system and the liver.
- However, the intestine can also remove compounds from the cytoplasm of enterocytes and transport these compounds back to the lumen. Presumably this is a mechanism that has evolved to protect against potentially damaging compounds that enter the body via the oral route. Following this line of reasoning, U.S. Pat. No. 5,567,592 (equivalent to WO 95/20980) suggests that two gut related mechanisms could be inhibited in order to increase the net flux of drug from the gut. On the one hand an inhibitor of cytochrome P450, in particular inhibitors of the cytochrome P 450 3A (CYP3A) is suggested and on the other hand use of an inhibitor of P-glycoprotein (P-gp) or a combination of the two categories of inhibitors is suggested. It is worth noting that inhibitors of P-gp and CYP3A are extensively disclosed in the prior art. Moreover, inhibitors of CYP3A are generally hydrophobic compounds that can pass cell membranes without the need of transport proteins.
- P-glycoprotein back transport activity in the gut of a mammal can be inhibited with a view to increasing drug bioavailability by virtue of the fact that the net transport of drugs through the enterocyte layer will be enhanced. P-glycoprotein is located inter alia in the small intestine and colon on the luminal side of epithelial cells and transports dietary toxins back into the lumen and thus helps prevent the toxins being absorbed into the portal circulation.
- U.S. Pat. No. 5,567,592 does, however, not illustrate or give a specific example of a P-gp inhibitor. Nor does it provide any information on success of the chosen method. The document merely shows an increase in cyclosporin bioavailability caused by co-administration of ketoconazole. Ketoconazole is a cytochrome P450 3A inhibitor.
- A later document (The Lancet, Vol. 352, Jul. 25, 1998) describes how coadministration of cyclosporin enables oral therapy with paclitaxel in patients. Normally, orally introduced paclitaxel is poorly bioavailable due to the exceedingly high affinity thereof for the multidrug transporter P-glycoprotein which is abundantly present in the gastrointestinal tract (Trends Genet. 1997; 13:217-22, Cell 1994; 77: 491-502). Studies in mdr1a (−/−) knock out mice lacking P-gp revealed an increased uptake of paclitaxel (Proc. Natl. Acad. Sci. U.S.A. 1997; 4:2031-35) Subsequently, it was thus described (British Journal of Cancer 1997; 76: 1181-1183) in how paclitaxel was orally introduced into wild type mice together with the P-gp blocker SDZ PSC 833 or the P-gp blocker cyclosporin (Clinical Cancer Research 1998; 4: 2293-2297) resulting in a tenfold increased systemic exposure to paclitaxel. Proof of concept tests were subsequently carried out on patients (The Lancet, Vol. 352, Jul. 25, 1998) and confirmed the results. Co-administration of paclitaxel with cyclosporin increased the absorption of oral paclitaxel to therapeutic plasma concentrations.
- The P-gp is known from its association with multi drug resistance development of tumor cells. A number of other transport proteins have also been associated with multi drug resistance (MDR) such as the MRP (multidrug resistance associated protein) and possibly the MVP (major vault protein). An alternative system also leading to MDR is the interference of some drugs in the ability of the cell to enter apoptosis for example cells genetically deficient in p53 or cells overexpressing bc1xL. Both MRP and P-gp belong to the group of proteins classified as ABC proteins. ABC proteins function by way of their being ATP binding proteins. The phenomenon of multi drug resistance consists of tumor cells exhibiting resistance to a large number of structurally unrelated antineoplastic agents. These agents include anthracyclines, vinca alkaloids, taxol and epipodophyllotoxins. ATP hydrolysis on the cytoplasmic face of P-gp is required for transport of hydrophobic compounds from a tumor cell. The addition of verapamil, diltiazem, quinine, trifluoperazine or cyclosporin seems to potentially reverse P-gp asssociated MDR.
- It should be noted that in spite of extensive knowledge of these MDR mechanisms in in vitro systems in many tumors, it is still unclear what mechanisms contribute most to the multi drug resistance in the clinical setting. It is quite possible that other unidentified or poorly understood MDR mechanisms will turn out to be at least as important as the MDR mechanisms defined above.
- In this respect we point to a new protein that has been found. The protein is called Breast Cancer Resistance Protein or BCRP. It is also known as MXR or ABCP. A number of recent publications have illustrated that this protein is also a drug resistance related protein. A number of such disclosures are provided in the Proceedings of the American Association for Cancer Research volume 40, March 1999. e.g. Rocchi et al. Abstract 2090, Zhan et al. Abstract 2091, Ross et al. Abstract 2092, Rabindran et al. Abstract 2093, Litman et al. Abstract 4413, Schlegel et al. Abstract 4415, Rohde et al. Abstract 4417 and Rabindran et al., Cancer Research 1998; 58: 5850-5858.
- The amino acid sequence of BCRP has been determined and the gene has been isolated and sequenced (Doyle et al. Proc. Natl. Acad. Sci USA 1998; Vol 95; 15665-15670 and WO 99/40110). It has been determined to be an ABC transport protein. The P-gp protein is also an ABC protein, but differs significantly from the BCRP. This is clearly illustrated by the sequence data and also by the fact that the presence of verapamil (an inhibitor of P-gp) did not prevent drug resistance for doxorubicin in cells overexpressing BCRP. The doxorubicin resistance was subsequently attributed to the overexpression of this protein. Thus cells exhibiting doxorubicin resistance can possess either P-gp and/or BCRP transport mechanisms. Also on the other hand P-gp overexpressing cells exhibit resistance to paclitaxel and vincristine. No resistance to these compounds is however present when the P-gp mechanism is inactive and the BCRP mechanism is active. Thus there are clearly two different systems of drug resistance with different proteins that show different specificities to drugs.
- Rabindran et al. (Proc. Am. Assoc. Cancer Res.; 40: abstract 2093 and Cancer. res. 1998; 58: 5850-5858) disclose that the mycotoxin fumitremorgin C (FTC) reverses in vitro non-P-gp, non-MRP-mediated MDR in mitoxantrone-selected cells derived from a human colon carcinoma cell line. It was found that FTC did not reverse MDR in cells overexpressing P-gp or MRP. It was therefore suggested that this reversal of non-P-gp, non-MRP-mediated MDR involved a transport protein, possibly BCRP, having substrate specificities substantially different from those of P-gp and MRP. Such a suggestion can merely be considered speculative in view of the complexity of the issues as is illustrated on page 5857 of this article, second paragraph where it is stated that “the mechanism by which FTC reverses drug resistance is unknown”. This article is further silent regarding any link between BCRP and non-tumor cells. In addition, in vivo data are not provided.
- Hazlehurst et al. (Cancer. Res. 1999; 59: 1021-1027) disclose that at low levels of MDR FTC reverses in vitro MDR in mitoxantrone-selected cells derived from the P-pg negative human myeloma cell line 8226. This reversal was attributed to BCRP. However, at higher levels of MDR several other drug-resistant mechanisms can be involved including non-transport phenomena as evidenced by reduced topoisomerase II levels and activity. It remains therefore uncertain whether the reversal can in fact be attributed specifically to BCRP and certainly is uncertain in the case of higher levels of MDR then were tested. Regarding this issue it is worth noting that increasing the degree of resistance to mitoxantrone in the human 8226/MR20 myeloma cell line from 10 to 37 times did not further reduce the intracellular drug concentration. Additionally, there is no suggestion or teaching of BCRP in relation to non-tumor cells. Furthermore, in vivo data are not provided.
- Consequently, the prior art only relates to MDR in tumor cells and is silent about drug transport in normal cells. Additionally, much speculation exists about the mechanisms involved in MDR. Furthermore, the studies are limited to in vitro systems. Forms of administration of drugs, in particular oral administration of drugs, in relation to drug transport in normal cells, is not addressed.
- WO 99/40110 (
priority date 5 Feb. 1998, published 12 Aug. 1999; WO 99/40110 is a non-prepublished patent application and therefore only relevant for novelty) discloses BCRP that is overexpressed in breast carcinoma cell lines, inhibitors of BCRP such as immunoglobulins (e.g. antibodies) and non-immuno-globulins (e.g. organic compounds such as FTC). Example 14 shows the beneficial effect of FTC on the intercellular concentration of BBR 3390 in MCF-7 cells (a human breast carcinoma cell line). There is no disclosure of the oral administration of BCRP inhibitors together with pharmaceutical compounds to enhance the bioavailability of the latter. There is no link mentioned between normal tissue, i.e. healthy tissue, and BCRP. Additionally, only in vitro data are provided for the effect of FTC on the inter- and intracellular BBR 3390 concentrations in MCF-7 cells. - Notwithstanding the lack of data concerning the BCRP and the mechanism of transport, it was decided to investigate whether it could be a useful target to approach with a view to increasing oral bioavailability of drugs. An analogous line of reasoning to that employed for P-gp was followed, however, without any detailed knowledge of the mechanism to be inhibited and the potential consequences thereof for the cell or more importantly the patient. Furthermore, there was no knowledge on whether the effect would be high enough to show any effect on the drug distribution. Neither was there any knowledge whether inhibition of such a transport system would result in activation of another system. Nor was there any indication whether the inhibition would be more harmful than beneficial. Due to the large differences between P-gp and BCRP and lack of knowledge concerning the transport mechanism, there was no reasonable expectation of success that the BCRP system might function analogously to that of P-gp and thus that inhibition thereof could increase oral drug delivery without potentially seriously disrupting the normal cellular processes and thus potentially being detrimental to the patient.
-
FIG. 1 is a graph of the topotecan levels over time in plasma as determined by HPLC; -
FIG. 2 is a graph of the topotecan levels over time in plasma as determined by HPLC both with and without GF120918; and -
FIG. 3 is a graph of the area under the curve (AUC) showing increased systemic exposure to oral topotecan with the coadministration of oral GF120918. - Using the recently developed monoclonal antibody BXP-34 against BCRP (Scheffer et al., “BCRP is localized at the plasma membrane in mitoxantrone and topotecan resistant cell lines”; Cancer Res., in press), it was shown that BRCP protein is expressed in endothelium of virtually every vein and capillary. Furthermore, high levels of BCRP protein were observed in placenta, mainly in the synchytiotrophoblast. BCRP was also found to be present in liver, small intestine and colon. These results were highly indicative that BCRP is involved in the regulation of uptake of BCRP substrates from the gastrointestinal tract and may have a function for the fetus. BRCP was further found to be expressed in the blood-brain barrier and the protective role of BCRP is therefore believed to encompass the brain as well.
- In vitro studies revealed that cells overexpressing BCRP are resistant to a large and varied number of compounds. Camptothecin and derivatives thereof in particular topotecan, SN38 (an active metabolite of CPT 11, also known as irinotecan), GG211 (GF147211, also known as NX211), DX8951f, BNP1350, 9-aminocamphotecin, 9-nitrocamphotecin and mitoxantrone are examples thereof.
- We subsequently tested a number of compounds selected therefrom that also exhibit low bioavailability to see if we could enhance their bioavailability after oral dosage. In order to assess this we combined their oral dosage in mdr1a/1b P-gp negative mice with BCRP inhibitors. Bioavailability is defined as the total amount of drug systemically available over time. The test compares the amount of drug systemically available when administered in the presence and in the absence of a BCRP inhibitor. Naturally all variables should be kept identical as much as possible e.g. amount of drug dosed and the form in which it is dosed. The measurement of the systemic amount can occur in any known manner for bodily fluid e.g. blood, serum, plasma or tissue bathed by systemic fluid e.g. skin. Urine can also be used for non metabolised drug testing.
- The invention therefore relates to a method for increasing the systemic exposure of cells selected from tumor cells and normal cells to an orally administered pharmaceutically active compound, wherein a bioenhancer comprising an inhibitor of BCRP mediated and/or related drug transport is orally administered concomitantly with said orally administered pharmaceutically active compound. Preferably, the inhibitor is administered simultaneously with the pharmaceutical compound.
- The compounds to be assayed for bioavailability were selected from a range of well-known cytostatic drugs. Examples of compounds tested are topotecan, GG211, DX8951f, BNP1350, 9-aminocamphotecin, 9-nitrocamphotecin and irinotecan. These are thus examples of indolizino-quinoline (in particular camptothecin) derivatives, quinazoline derivatives e.g. prazosin and anthraquinone derivatives e.g. mitoxantrone. A broad spectrum of compounds with varying lipophilicity, solubility and hydrophobicity has thus been tested. The group can be considered representative for a large number of naturally occurring toxins. However not only naturally occurring toxins are envisaged as compounds whose bioavailability after oral dosage can be increased according to the subject invention. Basically the bioavailability after oral dosage of any compound that is subject to BCRP transport can be improved. It is relatively easy for the skilled person to assess whether a compound is subject to BCRP related and/or mediated transport. The skilled person can assess in a model system whether uptake of a specific compound to be tested is low when said model system consists of a cell or organism overexpressing BCRP. Numerous tumor types like that are commonly known e.g. breast tumors (MCF-7/AdrVp), colon carcinoma (S1, HT29), gastric carcinoma's (EPG85-257), fibrosarcoma (EPF86-079) and myeloma (8226) origin (Proceedings of the American Association for Cancer Research, vol. 40, March 1999, e.g. Miyake et al. Abstract 2089 and Ross et al. Abstract 2092) as well as from tumor cell derived cell-lines such as T8 and MX3 derived from the human ovary-cancer cell-line IGROV-1 such as described by Maliepaard et al., Proceedings for the American Association for Cancer Research vol. 40, March 1999, Abstract 4416, and Cancer Res. 1999; 59: to be published). One can additionally test the drug in a system known to exhibit one or more other types of drug transporters in order to assess whether the compound is subject to only BCRP related transport or multiple forms of transport. In the latter case it will be preferable to either use an inhibitor capable of blocking not only BCRP related transport but also the relevant other system and/or dosing a number of inhibitors specific for each relevant transport system. Alternatively one can also merely assess whether the compound to be tested exhibits binding to the BCRP protein as being indicative for involvement of BCRP in the transport thereof.
- There are a number of inhibitors of BCRP known to be available. These compounds have varying specificity toward BCRP and also towards other proteins such as P-gp The compound 9,10-dihydro-5-methoxy-9-oxo-N-[4-[2-(1,2,3,4-tetrahydro-6,7 dimethoxy-2-isoquilonyl)ethyl-4-phenyl]-4-acridinecarboxamide (compound I; also known as GF120918 and GG918) was tested. The molecular structure of this compound is shown below.
- This compound is known to also inhibit P-gp related transport in tumor cells exhibiting P-gp overexpression in vitro. Other compounds that were tested are XR9051 and XR 9576 from Xenova. Another BCRP inhibitor is fumitremorgin C (FTC), which is a mycotoxin. Other mycotoxins can also be used as bioenhancer. FTC is an example of a compound that has no effect on P-gp related transport. A further example known to exhibit inhibition of BCRP is BIB-F. A compound of further interest is cyclosporin A. These compounds are available to the skilled person and are disclosed in a number of publications that are incorporated by reference. The references are Schlegel et al. Abstract 4415, Proc. Am. Ass. Cancer Res. Vol. 40; March 1999: 669 and Rabindran et al. Abstract 2093 ibid., pag 315. Clearly the following categories of compounds can thus be considered to provide BCRP inhibitors of varying specificity: acridine derivatives, quinoline derivatives in particular isoquinoline derivatives and combinations thereof.
- Alternative inhibitors can be found quite readily by the skilled person. An alternative suitable source of inhibitor could for example be provided by monoclonal antibodies raised specifically against BCRP. Recombinant BCRP producing clones could be used as a source of protein against which monoclonal antibodies could be raised in a manner known per se for raising monoclonal antibodies against recombinant protein and in a manner known per se for producing recombinant protein. As stated elsewhere the genetic information encoding BCRP is available and thus the methodology for expression of the protein is clear to the skilled person.
- Monoclonal antibodies would be a very specific inhibitor of BCRP and as such form a preferred embodiment of the group of inhibitors to be used. A less specific inhibitor could be an ATP-ase, preferably a BCRP-ATP-ase specific inhibitor. Such a compound would inhibit the ATP related activity of the protein and thus prevent transport.
- The BCRP inhibitor is in particular destined to inhibit drug back flux from the blood or epithelial lumen. Thus the return of drugs absorbed into the cytoplasm of enterocytes back to the lumen of the gut is inhibited. Due to the fact that the BCRP is not only present in the intestine but also located elsewhere, the BCRP transport for these other locations may also be affected. However the effect will be highest in the intestine due to the oral dosage of the inhibitor. Preferably the bioenhancer, i.e. the inhibitor of BCRP, will bind BCRP quickly and inhibit while the drug is passing through the enterocyte. The inhibitor can be reversible or irreversible. If it is reversible, the bioenhancer will pass through the liver and be removed. In addition, the natural protective activity of the BCRP system against dietary toxins will be returned sometime after the oral dosage has occurred. The bioenhancer can act as a competitive, non-competitive, mixed or an irreversible inhibitor. It can be transportable or non-transportable. It can bind to or interact with the BCRP on cytoplasmic accessible surface, any membrane-spanning domain, and any ATP binding site. By interacting with BCRP it is possible to prevent binding of ATP.
- Suitably, a bioenhancer can be selected from substances that are related to known substrates for BCRP. Suitable bioenhancers could be derivatives of acridine, quinoline, isoquinoline, indolizino-quinoline, camptothecin, anthraquinone, quinazoline, bisanthrene and rhodamine. Alternatively, a bioenhancer can be selected from vinca alkaloids, fatty acids, triazoles, taxol and derivatives thereof, pyrrolidones, piperazines, piperidines, pyridines, pyridones, pyrrolidines, retinoids, salicylates, sorbitans, phenothiazines, polyethylene glycols, colchicine, cephalosporines, cannabioids, cyclic peptides, flavones, flavenoids, opioids, phenylalkylamines, aminoacridines, aminoquinolines, anilides, anthracyclines, antibiotics, antiestrogens, imidazoles, (iso)quinolines, benzofurans, benzodiazepines, benzhydryl compounds, benzazepines, dibenzazepines, epipodophyllotoxins, macrolides, rauwolfia alkaloids, and steroids. Preferably, compounds that do not exhibit sufficient affinity for P-gp to exert increased bioavailability due to an effect on the P-gp transport system are applied. Suitably, a P-gp binding bioenhancer also exhibiting specificity for BCRP sufficient to increase bioavailability of a drug not susceptible to transport via the P-gp mechanism is applied in combination with such a drug or in a cell type free of a P-gp system.
- The amount to be dosed will depend on the drug it is to be combined with, the type of disease to be combated, the pharmacological acceptability of the dosage, the size gender and age of the patient etc. All factors commonly known to be of pharmacological interest and a matter of routine for the skilled person to determine on a case by case basis. Numerous assays are available to determine best dosage regimes. Suitably, the maximal increase in bioavailability needs to be achieved. Thus, such a combination of drug and inhibitor is preferably selected. Once it has been ascertained a particular drug can undergo increased bioavailability, it then becomes possible to reduce the dosage required to be orally administered to achieve the desired medicinal effect. Thus the amount of drug to be administered can be reduced. It thus becomes possible to administer lower dosage forms of known drugs. It also becomes possible to orally administer drugs that previously were not orally administered due to extreme side effects or toxicity at the high levels required to achieve reasonable or effective serum concentrations. Also it is most likely that an increase in bioavailability will result in a lowered variability of the availability of orally administered compounds, thereby enabling the use of otherwise unreliable medication. Suitably, the bioavailability is increased by at least 10%. Preferably an even higher amount e.g. more than 20% even more than 30% is achieved. Naturally as high an increase as possible is the objective.
- It now becomes possible to selectively enhance BCRP mediated and/or related transport. This can be achieved by selecting an inhibitor with a higher affinity for BCRP than any other drug transport related protein present in the gastrointestinal tract or cells associated with the oral trajectory of drugs that affect bioavailability, preferably, an inhibitor having a higher affinity for BCRP than for P-gp mediated and/or related transport. Specifically, one can think of a bioenhancer that inhibits BCRP mediated or related transport better than other multi drug resistance related drug transport. Such a bioenhancer is suitably better at inhibiting BCRP related or mediated transport than P-gp mediated or related transport. Also one can envisage the specificity being better for BCRP than for MRP and/or MVP. Suitably one or more combinations can also be envisaged. Also a bioenhancer can be envisaged inhibiting only BCRP mediated and/or related drug transport and not affecting any of the other systems. According to the invention, the IC50(BCRP)/IC50(other transport protein) is at least less than 1, preferably less than 0.7, more preferably less than 0.3 and most preferably less than 0.1.
- BCRP mediated and/or related transport is to be understood as the demonstrated transport of a drug in a BCRP negative cell in which BCRP cDNA is expressed through transfection.
- The selected inhibitor will depend also on the selection of drug to be administered. It is known that some drugs are only transported by one mechanism, some by more than one, and some by a multitude of systems. Obviously, where more than one system is involved either numerous specific inhibitors or a generally applicable inhibitor will be preferred to achieve maximal effect.
- The best way to assess the desired combination is on the basis of assays. It is difficult to predict on the basis of molecular structure what combination to use. It is also difficult to assess by molecular structure alone whether a drug or bioenhancer will be BCRP specific or have a broader spectrum of activity. However, molecular designing will be able to assist in selecting suitable inhibitors.
- Suitable bioassays to search for inhibitors are described in U.S. Pat. No. 5,567,592, references cited therein and in the references cited in the subject patent description. The tests to be used will be readily apparent to the skilled person. Everted gut assays, selection of inhibitor using cell growth assays, brush border membrane assays, drug uptake assays using fluorescence ATP-ase assays.
- The relative ability of compounds to act as bioenhancers can be assessed using in vitro and/or in vivo drug transport measurements. Numerous systems are available that can be used as such or need some adaptation to be BCRP specific when so desired. Such adaptations can, however, be envisaged by the person skilled in the art. The activity of BCRP related or mediated transport can be measured as amount of ATP dependent transport in a system comprising BCRP and optionally being free of one or more other active ATP dependent transport systems. It can also be measured as drug dependent ATP hydrolysis. The activity can be measured using electrodes or dye, either chemically sensitive or voltage sensitive. Also numerous in vivo tests can be envisaged, analogous to those carried out for the MDR system assessment vis a vis resistance and sensitivity. The use of a knock out test animal in which the BCRP gene has been inactivated is envisaged. Such a knock out animal is also subject of the invention.
- The tests with mice assessed the bioavailability of the drug in mdr1a/1b double knock out mice in the presence and the absence of a BCRP inhibitor. The bioavailability tests can also be carried out with either MRP and/or P-gp knock out mice thus enabling assessment of whether any effect found due to the presence of the bioinhibitor is due solely to BCRP, not due to P-gp and/or MRP. Thus it can be determined whether the particular drug transported is transported using one or more transport systems. The drug to be transported can be provided with a detectable marker to assess where it is located and to be able to quantitate it. Some drugs can be detected and quantitated in plasma without use of a detectable marker. The methodology employed is analogous to that disclosed in the Lancet article discussed above and is also described in Br. J. Cancer 1997, 76: 1181-1183. The methodology is thus considered to be incorporated by reference and is considered enabled to a person skilled in the art.
- We found a sixfold increase in the systemic bioavailability of the tested drug when dosed together with an inhibitor of BCRP in P-gp negative mice whereas in wild type mice a ninefold increase was found (Jonker et al., submitted for publication in Nature Med.). We further found similar effects with the murine analogue of BCRP, i.e. Bcrp1, when Bcrp1 was orally co-administered with the Bcrp1 inhibitor GF120918 (Allen et al., Cancer Res. 1999; 59: 4237-4241; De Bruin et al., Cancer Res. 1999; 59: 4559-4563; Jonker et al., submitted for publication in Nature Med.) and Bcrp1 to P-gp negative mice showed a sixfold increase.
- It will be understood by the person skilled in the art that the invention in particular relates to the inhibition of BCRP. The level of MDR is dependent from the level at which BCRP is expressed. High expression levels of BCRP give rise to high levels of MDR. In the absence of a proper definition, a high level of MDR is here defined as the degree of resistance to mitoxantrone in the human 8226/MR20 myeloma cell line of more than 10 (cf. Hazlehurst et al., Cancer Res., 1999; 59: 1021-1027 cell line).
- Furthermore, it will be understood by the person skilled the art that the invention relates to tumor cells and non-tumor cells, i.e. that the invention not only provides a method for enhancing the bioavailability of an orally administered drug in tumor cells, but in particular in non-tumor tissue, e.g. normal or healthy tissue.
- In addition to the actual use of the combination of bioenhancer and pharmaceutically active treatment for increasing the bioavailability of the pharmaceutical compound, novel pharmaceutical compounds are also covered by the invention. It is noted that in this description pharmaceutical compounds and pharmaceutical compositions are sometimes used as alternative definitions. However, it will be apparent to the person skilled in the art that where pharmaceutical compounds are mentioned, these compounds may obviously be comprised by a pharmaceutical composition.
- The invention covers pharmaceutical compositions in an embodiment for oral administration, said composition comprising a pharmaceutically active compound and a bioenhancer, said bioenhancer being an inhibitor of BCRP mediated or related transport. The pharmaceutical composition according to the invention may comprise the pharmaceutically active compound in lower dosages than normally administered when the pharmaceutically active compound is administered on its own, i.e. without the BCRP inhibitor. For the use in increasing bioavailability the two components do not necessarily have to be administered concomitantly but they must be present in the subject to be treated at overlapping periods of time. Preferably, they are present in the gut concomitantly. Any of the combinations disclosed above for the embodiments of the bioenhancer and the pharmaceutically active compound, i.e. the drug to be delivered in a combination in a pharmaceutical composition, is covered by the invention. Use of such a combination in a preparation of a medicament for improved oral delivery of the pharmaceutically active compound by means of inhibition of BCRP mediated or related transport system is also covered. It is preferable to present a combination in order to ensure maximum presence of the bioenhancer with the pharmaceutically active compound to be delivered. It is preferred that the composition be formulated such that the bioenhancer is released in the gut together with the pharmaceutically active compound or a little before the pharmaceutically active compound is released. The pharmaceutical composition may further comprise a pharmaceutically acceptable carrier. The composition is preferably sterile. Furthermore, it is preferably organoleptically acceptable. Existing pharmaceutical compositions inadvertently already disclosed that comprise the combination of a BCRP inhibitor and a pharmaceutically active component for treating or preventing a disease or pathological condition are not intended to be covered by the pharmaceutical composition claimed according to the invention. The pharmaceutically active compound can be a cytostatic drug or any non cytostatic drug. Any known drug requiring improved oral bioavailability can be incorporated. A combination of either a BCRP specific inhibitor with one or more transport inhibitors and a pharmaceutically active compound or a BCRP specific pharmaceutical compound, i.e. not using the P-gp transport system, in combination with a BCRP inhibitor also falls within the preferred embodiments.
- Besides the above, the invention also covers a method of screening for pharmaceutically active compounds that are transported via the BCRP transport system. The invention also covers a method for screening for inhibitors of BCRP mediated or related drug transport. The methods of screening occur in an analogous manner to the process described for P-gp related inhibitor screening and P-gp mediated or related transport drugs as disclosed in the cited articles that are incorporated by reference elsewhere in the description. Such a method of screening covers use of cells overexpressing BCRP to test for binding of inhibitor and/or to test whether a pharmaceutically active compound is present in a lower amount in such a cell than a corresponding cell with an inactive BCRP transport system. If this is the case then active transport using BCRP is occurring. Subsequently, testing with other systems can eliminate or reveal participation of other drug transport mechanisms for the particular drug to be tested. Thus an additional means for sorting out various specificities for various drug transport mechanisms is provided.
- The invention also covers animals in which the BCRP gene has been inactivated, such that no BCRP related or mediated transport that is measurable can be discerned. This can occur in mice for example as a test model for in vivo testing of the results of inactivated BCRP transport and also to test whether drug transport of the pharmaceutically active compound does or does not occur. The results in wild type animals, i.e. corresponding to the knock out animal with the exception of the inactivated BCRP transport system, can be compared with the results in the knock out animal to ascertain whether a BCRP related or mediated compound has been tested. Further details can be obtained by carrying out the test with other animals in which one or more MDR related transport systems have been eliminated. It is also possible to use systems in which one or more of the other MDR transport systems are solely active in order to ascertain information on specificity for the various transport systems. The person skilled in the art will recognise which systems from the prior art are suitable. Also on the basis of the data provided in the prior art a knock out system, e.g. using genetic modification, can be achieved. The gene information for murine BCRP is for example available and thus the route to a knock out BCRP mouse is derivable. Use of such a knock out mouse in screening is a particularly useful embodiment of the invention. To circumvent possible lethality problems the cre1oxP system can for example be used. This allows tissue specific or inducible inactivation of the target gene.
- The resulting mice can be used in analysis of pharmacological effects in comparison to wild type mice. The knock out animals can be used as test models for assessing feasibility, efficacy and safety of BCRP related or mediated transport inhibition.
- Cytotoxicity Assay
- Cytotoxicity was Determined Using the Sulphorhodamine (Srb) Assay.
- Cells were plated in 96-wells plates, 1500 cells/well. Cells were cultured for 48 h at 37° C. and 5% CO2 in the absence of drugs. Then, in a serial dilution from approximately 1 μM to approximately 0.05 nM drugs were added, and cells were cultured for another 5 days at 37° C. and 5% CO2. Next cells are fixated in the plate, washed, and coloured with SRB. After 20 min unbound SRB is washed away using 0.1 M acetic acid. SRB that is bound to the cells is dissolved in 10 mM Tris-HCl buffer. Using a 96-well plate reader the absorbance at 540 nm is measured. For each drug the IC50 value was determined. Results are the mean of at least 3 experiments. The results are depicted in the following table.
- From these results it is clear that under normal conditions the T8 cell-line has a lower sensitivity for topoisomerase I drugs, the IC50 values for T8 are higher than for IGROV1. The resistance factor (Rf), i.e. the IC50 for T8 devided by the IC50 value for IGROV1, varies from 11 for BNP1350 to 231 for SN-38.
- If the cytotoxicity is determined in the presence of 2 μM of the BCRP inhibitor GF120918, the IC50 values for the T8 resistent cell line exhibit a strong decrease. The cells become more sensitive towards the drugs by a factor of 1.4 to 24.4. It is important to notice that GF120918 has no or very little effect on the sensitivity of the parental cell line IGROV1, hence the effect for T8 can be ascribed to inhibition of BCRP by GF120918.
- The Rf values in the presence of GF120918 are on average a
factor 5 lower compared to the values in the absence of GF120918. By the addition of GF120918 the resistance of T8 for topoisomerase I drugs is for the greater part reversed.TABLE Cytotoxicity topoisomerase I drugs in IGROV1 parental and T8 resistant cells +/− 2 μM GF120918 IGROV1 IGROV1 + GF120918 ratio −/+ {overscore (IC50 (nM))} IC50 (nM) GF120918 topotecan 8.93 9.23 0.97 CPT11 543.77 651.02 0.84 SN-38 1.82 1.10 1.66 GG211 0.64 0.87 0.74 DX8951f 0.10 0.17 0.60 BNP1350 0.44 0.84 0.53 T8 T8 + GF120918 ratio −/+ {overscore (IC50 (nM))} Rf IC50 (nM) Rf GF120918 topotecan 978.52 110 40.16 4.3 24.4 CPT11 33958.77 62 3037.67 4.7 11.2 SN-38 419.21 231 6.54 6.0 64.1 GG211 22.44 35 4.57 5.3 4.9 DX8951f 2.88 29 0.39 2.3 7.4 BNP1350 4.94 11 3.45 4.1 1.4 - Determination of the Effect of GF120918 (GF120918) on the Oral Bioavailability of Topotecan.
- Setup
- To exclude effects of P-glycoprotein inhibition by GF120918, mdr1a/1b (−/−) mice were used in this experiment. First, mice were given orally GF120918 (50 mg/kg) or control substance at 15 min. prior to Topotecan administration. Subsequently, Topotecan was administered orally at a dose of 1 mg/kg. Finally, blood was collected at indicated time points. All time points represent three mice.
- Animals
- Animals were housed and handled according to institutional guidelines complying with Dutch legislation. The animals that were used in all experiments were mdr1a/1b (−/−) or wild-type mice of a 99% FVB genetic background, between 9-14 wk of age. All animals had free access to standard chow (AM-II, Hope Farms; Woerden, The Netherlands) and acidified water at a 12 h/12 h light/dark cycle and constant room temperature of 22° C.
- Drug Preparation, Administration and Analysis
- GF120918 was suspended in a hydroxypropylmethylcellulose (10 g/l):Tween 80 (2% v/v):H2O (0.5:1:98.5 v/v/v) formulation for oral administration, at 5 mg.ml-1. Animals were treated with 50 mg.kg-1 GF120918 or a corresponding amount of vehicle by gavage in a volume of 10 μl drug solution per gram body weight under a light Metofane (Mallinckrodt Veterinary, Mundelein, Ill., USA) anaesthesia. Topotecan (freshly prepared, in 5% D-glucose) was administered orally such that 5 μl of the appropriate solution was administered per gram body weight. Dosage was 1.0 mg.kg-1 body weight. Animals were sacrificed at indicated time points by cardiac puncture or axillary bleeding after anaesthesia with metofane and at the same time blood was collected. Heparinized plasma was mixed with 3 volumes of cold methanol (−20° C.). Topotecan levels in plasma were determined by HPLC analysis as described by Rosing et al., 1995, J. Chromatography, 668: 107-115, and are depicted in
FIG. 1 . - Conclusion
- Co-administration of a single oral dose of
GF 120918 results in a profoundly increased systemic exposure to oral topotecan. The increase in the area under the curve (AUC) is approximately 6 fold (see figure). - In this example the first results of a clinical trial are shown. Three patients received topotecan orally at a dosis of 1.0 mg.m−2. Topotecan was administered with or without GF120918 (1000 mg). For illustrative purposes, the plasma concentration vs. time is shown for one patient in
FIG. 2 . InFIG. 3 the average including the standard deviation is shown for all three patients. These results confirm the results obtained in vitro according to Example 1. - Initial studies are performed with the novel substances XR9051 and XR9576 (from Xenova) in mice cell lines which are resistant against mitoxantrone as a result of the overexpression of BCRP. These substances are considered alternatives of the already disclosed compound GF120918.
Claims (24)
1. A method for increasing the systemic exposure of cells selected from tumor cells and normal cells to an orally administered pharmaceutically active compound, comprising:
orally administering a bioenhancer comprising an inhibitor of BCRP and said pharmaceutically active compound, wherein said inhibitor and said pharmaceutically active compound are concomitantly exposed to said cells.
2. Method according to claim 1 , wherein the inhibitor is administered simultaneously with the pharmaceutical compound.
3. Method according to claim 1 , wherein the cells are normal cells.
4. Method according to claim 1 , wherein the inhibitor is a selective inhibitor of BCRP.
5. Method according to claim 1 , wherein the inhibitor is selected from acridine derivatives, quinoline derivatives, isoquinoline derivatives and combinations thereof.
6. Method according to claim 1 , wherein the inhibitor is XR 9051 or XR 9576.
7. Method according to claim 1 , wherein the bioenhancer is a mycotoxin.
8. Method according to claim 7 , wherein the mycotoxin is fumitremorgin C.
9. Method according to claim 1 , wherein the bioenhancer has a higher affinity for BCRP than for P-gp.
10. Method according to claim 1 , wherein the bioenhancer has a higher affinity for BCRP than for MRP.
11. Method according to claim 1 , wherein the bioenhancer inhibits binding of ATP to a BCRP mediated and/or related drug transport protein.
12. Method according to claim 11 , wherein the protein is BCRP.
13. Method according to claim 1 , wherein the pharmaceutically active compound is selected from the group consisting of indolizino-quinoline derivatives, camptothecin derivatives, anthraquinone derivatives and quinazoline derivatives.
14. Method according to claim 13 , wherein the pharmaceutically active compound is an indolizino-quinoline derivative.
15. Method according to claim 13 , wherein the pharmaceutically active compound is a camptothecin derivative.
16. Method according to claim 15 , wherein the pharmaceutically active compound is selected from the group consisting of topotecan, GG211, DX8951f, BNP1350, 9-aminocamptothecin, 9-nitrocamptothecin, CPT11 and any metabolites thereof.
17. Method according to claim 16 , wherein the metabolite is SN38.
18. Method according to claim 13 , wherein the pharmaceutically active compound is an anthraquinone derivative.
19. Method according to claim 18 , wherein the pharmaceutically active compound is mitoxantrone.
20. Method according to claim 13 , wherein the pharmaceutically active compound is a quinazoline derivative.
21. Method according to claim 20 , wherein the pharmaceutically active compound is prazosin.
22. Pharmaceutical composition comprising a bioenhancer and a pharmaceutically active compound, said bioenhancer comprising an inhibitor of BCRP and said pharmaceutically active compound being selected from the group consisting of indolizino-quinoline derivatives, camptothecin derivatives, anthraquinone derivatives and quinazoline derivatives.
23. Animal having inactive BCRP and/or being free of BCRP.
24. A method of screening for a compound useful for increasing bioavailability of an orally administered drug in a mammal, said drug being transported via the BCRP related or mediated drug transport system by assaying a candidate compound for inhibition of transport by BCRP and selecting a compound exhibiting such inhibition, in particular exhibiting such inhibition in the gut or gastrointestinal tract.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/341,524 US20060128743A1 (en) | 1999-05-17 | 2006-01-30 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1012066 | 1999-05-17 | ||
NL1012066 | 1999-05-17 | ||
NL1012481 | 1999-06-30 | ||
NL1012481 | 1999-06-30 | ||
PCT/NL2000/000331 WO2000069390A2 (en) | 1999-05-17 | 2000-05-17 | Compositions for improving bioavailability of orally administered drugs |
US09/988,285 US7030132B2 (en) | 1999-05-17 | 2001-11-19 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
US11/341,524 US20060128743A1 (en) | 1999-05-17 | 2006-01-30 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/988,285 Continuation US7030132B2 (en) | 1999-05-17 | 2001-11-19 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060128743A1 true US20060128743A1 (en) | 2006-06-15 |
Family
ID=26642978
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/988,285 Expired - Fee Related US7030132B2 (en) | 1999-05-17 | 2001-11-19 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
US11/341,524 Abandoned US20060128743A1 (en) | 1999-05-17 | 2006-01-30 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/988,285 Expired - Fee Related US7030132B2 (en) | 1999-05-17 | 2001-11-19 | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
Country Status (10)
Country | Link |
---|---|
US (2) | US7030132B2 (en) |
EP (2) | EP1189637B1 (en) |
AT (2) | ATE337016T1 (en) |
AU (1) | AU4955200A (en) |
CY (1) | CY1105795T1 (en) |
DE (2) | DE60045114D1 (en) |
DK (1) | DK1189637T3 (en) |
ES (1) | ES2270834T3 (en) |
PT (1) | PT1189637E (en) |
WO (1) | WO2000069390A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100074843A1 (en) * | 2008-04-30 | 2010-03-25 | Siemens Medical Solutions Usa, Inc. | Novel Substrate Based PET Imaging Agents |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9718903D0 (en) * | 1997-09-05 | 1997-11-12 | Glaxo Group Ltd | Method,compositions and kits for increasing the oral bioavailability of pharmaceutical agents |
WO2000069390A2 (en) * | 1999-05-17 | 2000-11-23 | Cancer Research Ventures Limited | Compositions for improving bioavailability of orally administered drugs |
HU0100947D0 (en) * | 2001-03-02 | 2001-05-28 | Solvo Kft | Screening system based on expression of abcg2 half transporter protein in an expression system free of other abc-transporters, abcg2 homodimers |
US7169763B2 (en) * | 2002-02-22 | 2007-01-30 | Oliver Yoa-Pu Hu | Cytochrome P450 3A inhibitors and enhancers |
CA2569479A1 (en) * | 2004-07-01 | 2006-02-09 | The Netherlands Cancer Institute | Combination comprising a bcrp inhibitor and 4-(4-methylpiperazin-1-ylmethyl)-n-[4-methyl-3-(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]-benzamide |
US8518022B2 (en) | 2004-08-27 | 2013-08-27 | Medimetrics Personalized Drug Delivery, Inc. | Electronically and remotely controlled pill and system for delivering at least one medicament |
WO2006056944A1 (en) * | 2004-11-29 | 2006-06-01 | Koninklijke Philips Electronics N.V. | Electronically controlled pill |
WO2006065125A1 (en) * | 2004-12-16 | 2006-06-22 | Het Nederlands Kanter Instituut | Means and methods for determining and/or influencing transportation |
WO2009083042A1 (en) * | 2007-12-31 | 2009-07-09 | Olaf Van Tellingen | Methods and means for the treatment of cancer |
EP2254464B1 (en) * | 2008-02-18 | 2017-01-04 | Medimetrics Personalized Drug Delivery B.V. | Administration of drugs to a patient |
WO2009122323A1 (en) * | 2008-03-31 | 2009-10-08 | Koninklijke Philips Electronics N.V. | Method of preparing a swallowable capsule comprising a sensor |
JP5500600B2 (en) * | 2008-06-19 | 2014-05-21 | コーニンクレッカ フィリップス エヌ ヴェ | Device for the delivery of powdered drugs in moist environments |
JP5670326B2 (en) * | 2008-06-25 | 2015-02-18 | メディメトリクス ペルソナリズド ドルグ デリヴェリー ベー ヴェ | Electronic pill with multiple drug reservoirs |
JP5497176B2 (en) | 2009-08-12 | 2014-05-21 | コーニンクレッカ フィリップス エヌ ヴェ | Chemical delivery device with compressible chemical reservoir |
CN106432490B (en) | 2016-09-14 | 2020-01-07 | 北京大学 | ABCG2 monoclonal antibody and application thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567592A (en) * | 1994-02-02 | 1996-10-22 | Regents Of The University Of California | Screening method for the identification of bioenhancers through the inhibition of P-glycoprotein transport in the gut of a mammal |
US5604237A (en) * | 1991-01-11 | 1997-02-18 | Laboratoires Glaxo Sa | Acridine derivatives |
US5663179A (en) * | 1992-07-10 | 1997-09-02 | Laboratoires Glaxo Sa | Certain isoquinoline derivatives having anti-tumor properties |
US5786344A (en) * | 1994-07-05 | 1998-07-28 | Arch Development Corporation | Camptothecin drug combinations and methods with reduced side effects |
US5958937A (en) * | 1995-06-05 | 1999-09-28 | Bionumerik Pharmaceuticals, Inc. | Pharmaceutical formulations of poorly water soluble camptothecin analogues and NMP |
US6248891B1 (en) * | 1997-05-23 | 2001-06-19 | Glaxo Wellcome, Inc. | Synthesis of acridine derivative multidrug-resistant inhibitors |
US6469022B1 (en) * | 1997-09-05 | 2002-10-22 | Smith Kline Beecham, Corporation | Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents |
US6521635B1 (en) * | 2000-01-20 | 2003-02-18 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibition of MXR transport by acridine derivatives |
US7030132B2 (en) * | 1999-05-17 | 2006-04-18 | Cancer Research Ventures Limited | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ201084A (en) | 1982-06-25 | 1985-10-11 | New Zealand Dev Finance | 4-carboxamidoacridine derivatives and pharmaceutical compositions containing such |
JPH10507177A (en) | 1994-10-05 | 1998-07-14 | グラクソ、ウェルカム、インコーポレーテッド | Parenteral pharmaceutical composition comprising GF120918A |
US6245805B1 (en) | 1995-10-26 | 2001-06-12 | Baker Norton Pharmaceuticals, Inc. | Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents |
HUP0003546A3 (en) | 1997-05-27 | 2002-12-28 | Baker Norton Pharma | Compositions for administering taxanes orally to human patients |
EP1054894B2 (en) * | 1998-02-05 | 2016-11-09 | University of Maryland Baltimore | Breast cancer resistance protein (bcrp) and the dna which encodes it |
WO1999065493A1 (en) | 1998-06-18 | 1999-12-23 | The George Washington University | Methods of administering camptothecin compounds for the treatment of cancer with reduced side effects |
EP1102594B1 (en) | 1998-08-05 | 2002-05-15 | Aventis Pharma S.A. | Use of sodium chloride to reduce the gastrointestinal toxicity of camptothecin derivatives |
-
2000
- 2000-05-17 WO PCT/NL2000/000331 patent/WO2000069390A2/en active IP Right Grant
- 2000-05-17 AU AU49552/00A patent/AU4955200A/en not_active Abandoned
- 2000-05-17 DK DK00931720T patent/DK1189637T3/en active
- 2000-05-17 EP EP00931720A patent/EP1189637B1/en not_active Expired - Lifetime
- 2000-05-17 ES ES00931720T patent/ES2270834T3/en not_active Expired - Lifetime
- 2000-05-17 DE DE60045114T patent/DE60045114D1/en not_active Expired - Lifetime
- 2000-05-17 DE DE60030283T patent/DE60030283T2/en not_active Expired - Lifetime
- 2000-05-17 AT AT00931720T patent/ATE337016T1/en active
- 2000-05-17 PT PT00931720T patent/PT1189637E/en unknown
- 2000-05-17 EP EP06117838A patent/EP1749540B1/en not_active Expired - Lifetime
- 2000-05-17 AT AT06117838T patent/ATE484295T1/en not_active IP Right Cessation
-
2001
- 2001-11-19 US US09/988,285 patent/US7030132B2/en not_active Expired - Fee Related
-
2006
- 2006-01-30 US US11/341,524 patent/US20060128743A1/en not_active Abandoned
- 2006-11-16 CY CY20061101680T patent/CY1105795T1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5604237A (en) * | 1991-01-11 | 1997-02-18 | Laboratoires Glaxo Sa | Acridine derivatives |
US5663179A (en) * | 1992-07-10 | 1997-09-02 | Laboratoires Glaxo Sa | Certain isoquinoline derivatives having anti-tumor properties |
US5567592A (en) * | 1994-02-02 | 1996-10-22 | Regents Of The University Of California | Screening method for the identification of bioenhancers through the inhibition of P-glycoprotein transport in the gut of a mammal |
US6004927A (en) * | 1994-02-02 | 1999-12-21 | Regents Of The University Of California | Method for increasing bioavailability of orally administered pharmaceutical compounds |
US6028054A (en) * | 1994-02-02 | 2000-02-22 | The Regents Of The University Of California | Method for increasing bioavailability of oral pharmaceutical compositions |
US5786344A (en) * | 1994-07-05 | 1998-07-28 | Arch Development Corporation | Camptothecin drug combinations and methods with reduced side effects |
US5958937A (en) * | 1995-06-05 | 1999-09-28 | Bionumerik Pharmaceuticals, Inc. | Pharmaceutical formulations of poorly water soluble camptothecin analogues and NMP |
US6248891B1 (en) * | 1997-05-23 | 2001-06-19 | Glaxo Wellcome, Inc. | Synthesis of acridine derivative multidrug-resistant inhibitors |
US6469022B1 (en) * | 1997-09-05 | 2002-10-22 | Smith Kline Beecham, Corporation | Method, compositions and kits for increasing the oral bioavailability of pharmaceutical agents |
US7030132B2 (en) * | 1999-05-17 | 2006-04-18 | Cancer Research Ventures Limited | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs |
US6521635B1 (en) * | 2000-01-20 | 2003-02-18 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibition of MXR transport by acridine derivatives |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100074843A1 (en) * | 2008-04-30 | 2010-03-25 | Siemens Medical Solutions Usa, Inc. | Novel Substrate Based PET Imaging Agents |
US9005577B2 (en) | 2008-04-30 | 2015-04-14 | Siemens Medical Solutions Usa, Inc. | Substrate based PET imaging agents |
US10821196B2 (en) | 2008-04-30 | 2020-11-03 | Siemens Medical Solutions Usa, Inc. | Substrate based PET imaging agents |
Also Published As
Publication number | Publication date |
---|---|
EP1749540A2 (en) | 2007-02-07 |
PT1189637E (en) | 2007-01-31 |
ES2270834T3 (en) | 2007-04-16 |
EP1189637B1 (en) | 2006-08-23 |
US7030132B2 (en) | 2006-04-18 |
DE60030283T2 (en) | 2007-09-20 |
WO2000069390A3 (en) | 2001-12-13 |
DK1189637T3 (en) | 2006-12-11 |
WO2000069390A2 (en) | 2000-11-23 |
EP1749540B1 (en) | 2010-10-13 |
US20020128282A1 (en) | 2002-09-12 |
ATE337016T1 (en) | 2006-09-15 |
EP1189637A2 (en) | 2002-03-27 |
DE60045114D1 (en) | 2010-11-25 |
EP1749540A3 (en) | 2007-05-30 |
DE60030283D1 (en) | 2006-10-05 |
ATE484295T1 (en) | 2010-10-15 |
CY1105795T1 (en) | 2011-02-02 |
AU4955200A (en) | 2000-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060128743A1 (en) | Method of improving bioavailability of orally administered drugs, a method of screening for enhancers of such bioavailability and novel pharmaceutical compositions for oral delivery of drugs | |
US11844795B2 (en) | Combination therapy for cancer treatment | |
Joshi et al. | Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer | |
Mistry et al. | In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576 | |
Aszalos | Drug–drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1): II. Clinical aspects | |
KR101195366B1 (en) | Antifolate agent combinations in the treatment of cancer | |
JP2003519178A (en) | Use of steroid alkaloids to convert multidrug resistance | |
JP2006328087A (en) | Combination and preparation of camptothecin drug with reduced side effect | |
KR20160065776A (en) | Use of dianhydrogalactitol and analogs and derivatives thereof to treat recurrent malignant glioma or progressive secondary brian tumor | |
JP2020183445A (en) | Pharmaceutical compositions | |
Qi et al. | Pyronaridine, a novel modulator of P-glycoprotein-mediated multidrug resistance in tumor cells in vitro and in vivo | |
Schöffski et al. | Clinical phase II study and pharmacological evaluation of rubitecan in non-pretreated patients with metastatic colorectal cancer—significant effect of food intake on the bioavailability of the oral camptothecin analogue | |
US20220241294A1 (en) | Bisfluoroalkyl-1,4-benzodiazepinone compounds for treating notch-activated breast cancer | |
Wang et al. | Effect of hesperidin on the pharmacokinetics of CPT‐11 and its active metabolite SN‐38 by regulating hepatic Mrp2 in rats | |
US20060160756A1 (en) | Treatment and prevention of multi-drug resistance | |
ES2655115T3 (en) | Procedures for administration of an EGFR inhibitor | |
Rochani et al. | Heat-shock protein 90–targeted nano anticancer therapy | |
Itoh et al. | Pharmacokinetic modulation of irinotecan metabolites by sulphobromophthalein in rats | |
US20220071982A1 (en) | Methods and uses for treating cancer | |
US20240342138A1 (en) | Microtubule targeting agents | |
CA3239657A1 (en) | Combination therapy for cancer treatment | |
Slattum et al. | Clinical pharmacokinetics in the elderly | |
Faison et al. | Relative Bioavailability of Dordaviprone (ONC201) is Not Affected by Co‐Administration of the Proton‐Pump Inhibitor Rabeprazole | |
Lee | Development and characterization of P-glycoprotein specific multidrug resistance modulators | |
Kerklaan et al. | SQ109 showed activity against both drug susceptible and multi-drug-resistant tuberculosis bacteria, including extensively drug-resistant tuberculosis strains Menu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |