US20060124892A1 - Phase change material (PCM) compositions for thermal management - Google Patents
Phase change material (PCM) compositions for thermal management Download PDFInfo
- Publication number
- US20060124892A1 US20060124892A1 US11/258,779 US25877905A US2006124892A1 US 20060124892 A1 US20060124892 A1 US 20060124892A1 US 25877905 A US25877905 A US 25877905A US 2006124892 A1 US2006124892 A1 US 2006124892A1
- Authority
- US
- United States
- Prior art keywords
- pcm
- composition according
- aluminum
- polymers
- pcm composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/06—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/08—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/16—Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
- C08L91/06—Waxes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/51—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/582—Tearability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/726—Permeability to liquids, absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2437/00—Clothing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/80—Medical packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2471/00—Floor coverings
- B32B2471/02—Carpets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2601/00—Upholstery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/064—VLDPE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/04—Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
Definitions
- the present invention relates to Phase Change Material (PCM) compositions for the thermal management in different applications like for example in building, automotive, packaging, garments and footwear.
- PCM Phase Change Material
- the present invention also relates to sheets and molded parts comprising the above PCM composition.
- PCM materials are highly-productive thermal storage media which are capable of absorbing and releasing high amounts of latent heat during melting and crystallization, respectively. During such phase changes, the temperature of the PCM materials remains nearly constant and so does the space surrounding the PCMs, the heat flowing through the PCM being “entrapped” within the PCM itself. Paraffin waxes are known to be particularly efficient as PCMs.
- FIG. 1 shows a temperature profile simulation of the inside surface of three building wall structures (wood timber frames) during a typical summer day (latitude 45°; azimuth 180°; air T min 15° C.; air T max 35° C.).
- Such three wall structures comprise an external layer (wood siding, thickness 20 mm), a stone wool layer (thickness 250 mm) adjacent to such external layer and an internal gypsum board (thickness 10 mm).
- the first wall structure (W 1 ) does not include PCM
- the second and third wall structures (W 2 ,W 3 ) further comprise a PCM composition layer positioned between the stone wool layer and the gypsum board layer, the PCM composition layers consisting of 7.15 wt % of PCM and 92.85 wt % of an hypothetical polymer and 45 wt % of PCM and 55 wt % of an hypothetical polymer, respectively.
- the PCM considered for this simulation is commercially available from Rubitherm under the trade name Rubitherm® RT20 (melting point 22° C.).
- FIG. 1 shows that the variation of the inside wall temperature during the day is reduced with increasing PCM amount in the wall structure or, in other words, that the heat management performance of the wall structure increases with increasing amount of PCM included therein.
- WO 2004/044345 discloses a wall covering assembly comprising phase change materials like crystalline alkyl hydrocarbons as a thermal storage mean.
- the assembly comprises 1) a cover layer of fabric or paper covered by a vinyl coating; 2) an intermediate layer made of an acrylic coating compound which contains finely divided PCM and a rear layer made of a liquid ceramic compound facing the wall during use.
- the capacity of the acrylic coating to incorporate PCM is limited due to the polarity and the elevated crystallinity degree of the acrylic material itself, so that the heat storage capacity of the overall assembly is limited to a certain extent.
- U.S. Pat. No. 5,053,446 discloses a composite useful in thermal energy storage, said composite being a polyolefin matrix having a PCM (for example a crystalline alkyl hydrocarbon) incorporated therein.
- the polyolefin matrix is crystalline and must be thermally form stable up to temperatures of 150-180° C. This is due to the fact that the PCM imbibition of the matrix must take place at temperatures up to the above values in order to enable the PCM material itself to penetrate into the narrow spaces of the crystalline matrix.
- the thermal stability is usually achieved by reticulating the polyolefin prior to the imbibition process. This is an additional step for the preparation of the composite material, which additional step renders the overall manufacturing process more complicated and expensive.
- proper retention of the PCM, particularly at temperatures below the PCM melting point is very difficult, thus leading to a strong decrease in the heat management performance of the overall composite.
- the problem at the root of the present invention is therefore to provide a PCM composition for the thermal management in different applications like for example in building, automotive, garments and footwear, which PCM composition can overcome the problems mentioned above.
- PCM composition comprising:
- FIG. 1 is a temperature profile simulation of the inside surface of three building wall structures (wood timber frames) during a typical summer day (latitude 45°; azimuth 180°; air T min 15° C.; air T max 35° C.).
- the polymers used in the present invention have low polarity and crystallinity.
- the low polarity degree of the polymer is important to enable compatibility between the polymer itself and a PCM of non-polar nature.
- the polymer matrices used in the present invention have sufficient absorption capacity to incorporate and retain high amounts of PCM, even at temperatures which are above or below the melting point of the PCM itself.
- the capacity of the above polymers to efficiently retain the PCM within their own matrix confers to the composition of the present invention an excellent heat management performance over long periods of time.
- the one or more polymers can be chosen among all types of SEBSs and SBSs copolymers which are well known to be amorphous and which typically have densities varying between 0.900 and 1.1 g/cm 3 . It is also possible to use EPR copolymers having densities equal or lower than 0.900 g/cm 3 as well as VLDPEs having densities equal or lower than 0.910 g/cm 3 , preferably between 0.800 and 0.910, all densities being measured according to ASTM 792.
- the PCM composition includes EPRs which are chosen among Ethylene Propylene Diene Methylene (EPDM), Ethylene Propylene Methylene (EPM) and mixtures thereof.
- EPRs which are chosen among Ethylene Propylene Diene Methylene (EPDM), Ethylene Propylene Methylene (EPM) and mixtures thereof.
- the sole polymer used in the PCM composition of the present invention is VLDPE having a density equal or lower than 0.910 g/cm 3 .
- the PCM composition of the present invention comprises from 30 to 50 wt % and still more preferably about 40 wt % of the one or more polymers, the weight percentages being based on the total weight of the PCM composition.
- the PCM is chosen among one or more alkyl hydrocarbons (paraffin waxes).
- Paraffin waxes are saturated hydrocarbon mixtures and generally consist of a mixture of mostly straight-chain n-alkanes with the chemical formula CH 3 —(CH 2 ) n —CH 3 .
- the crystallization of the —(CH 2 ) n — chain releases a large amount of the latent heat. Both the melting point and the heat of fusion increase with increasing chain length. Therefore, it is possible to select the paraffin waxes, which are products of petroleum refining, in such a way that the phase change temperature range matches with the temperature of the operation system to which the PCM is applied.
- the PCM composition of the present invention includes from 50 to 70 wt % of PCM, preferably 60 wt %, the weight percentages being based on the total weight of the PCM composition.
- the PCM composition of the present invention further comprises from 10 to 40 wt % of an inert powder having an absorption capacity of at least 50 wt % and preferably of at least 120 wt %, the weight percentages being based on the dried mass of the inert powder itself.
- the use of the inert powder further improves retention of the PCM within the polymeric matrix.
- the inert powder used in the PCM composition of the present invention is silicate, one or more flame retardant fillers and mixtures thereof.
- the one or more flame retardant fillers are advantageously chosen among aluminum trihydrate, magnesium hydroxide, melamine pyrophosphate, melamine cyanurate, one or more brominated fillers and mixtures thereof.
- the one or more polymers of the PCM composition are grafted with 0.2 to 3 wt % of a carboxylic acid or carboxylic acid anhydride functionality, the weight percentages being based on the total weight of the one or more polymers. While this small quantity of carboxylic acid or carboxylic acid anhydride does not affect the overall polarity of the polymer matrix, it is desirable to have such functionality in such amount if the PCM composition is used in combination with, for example, aluminum foils since the carboxylic acid or carboxylic acid anhydride functionality strongly improves adhesion of the PCM composition to metal surfaces.
- the polymer matrix of the PCM composition according to the present invention may be cross-linked after the PCM has been incorporated into it by means of any conventional method known in the art like for example by using cross-linking agents based on silane and/or peroxide groups. During this process, it is important to avoid that cross-linking of the PCM takes place. This is possible, for example, by grafting silane groups onto the polymer molecules prior to incorporating the PCM. Such grafting can occur by means of conventional techniques, such as by extruding the polymer at temperatures above 150° C. after adding 0.2 to 2 wt-% of vinyl-tri-methoxy-silane or vinyl-tri-ethoxy-silane together with 0.05 to 0.5 wt-% peroxide.
- the PCM can then be incorporated into the silane grafted polymer and the resulting blend can be cross-linked, in presence of water or water moisture, by using catalysts like di-butyl-tin-laureate.
- catalysts like di-butyl-tin-laureate.
- the PCM composition of the invention may further comprise conventional additives such as antioxidants and UV filters. These additives may be present in the composition in amounts and in forms well known in the art.
- the PCM composition according to the present invention can be produced by soaking the different components all together at temperatures which are slightly above the melting point of the PCM but below the melting point of the one or more polymers. Soaking is a natural absorption of the molten PCM by the polymer matrix.
- the components are mixed together in a tumble blender during a certain period of time which can vary in function of the rotational speed of the tumble blender itself. Typical periods of time are around eight (8) hours.
- PCM composition of the present invention is by melt blend extrusion whereby the components are blended at temperatures above the melting point of both the one or more polymers and the PCM, the thus obtained mixture being subsequently extruded into granules or directly into sheets or any other suitable form.
- Sheets made with the PCM composition described above are also an object of the present invention.
- Preferably such sheets have a thickness varying between 0.5 and 10 mm and can be manufactured either directly by melt blend extrusion as described above, or alternatively by preparing the PCM composition which is subsequently processed by means of any conventional technology such as extrusion, calendering and hot lamination.
- Another object of the present invention is a multilayer structure comprising at least one sheet (A) of the above PCM composition, which is adjacent to at least one layer (B).
- sheet (A) is positioned between two layers (B 1 ,B 2 ).
- One of the functions of the at least one layer (B), or preferably of two layers (B 1 ,B 2 ) is to help keep the PCM material of the sheet (A) within the polymer matrix, thus enabling to maintain the heat management performance of the PCM sheet (A) at a high level over a long period of time.
- undesired grease stains on the surfaces adjacent to the PCM composition are hereby avoided.
- the multilayer structure comprises in the following sequence:
- the multilayer structure further comprises one or more additional layers (C) positioned adjacent and externally to one or more of the layers (B 1 , B 2 ).
- the at least one layer (B) and the one or more additional layers (C) can also have the function of conferring to the overall multilayer structure improved fire retardancy and heat conductivity so that heat is easily conveyed through such at least one layer to the PCM composition and vice versa.
- the at least one layer (B) and the one or more additional layers (C) can be made of aluminum. It is also possible to use polyester vacuum coated on one side with aluminum, the aluminated side facing the PCM sheet (A), in order to achieve optimum adhesion. The use of aluminated polyester also confers to the overall PCM multilayer structure an excellent mechanical strength as well as an excellent elasticity.
- the at least one layer (B) and the one or more additional layers (C) can be made of other materials instead of (or in addition to) the above mentioned aluminum and/or polyester vacuum coated material, according to the specific use and application.
- Such materials can be independently chosen from one or more of flame retardant polymer compositions (polymers filled with flame retardant inorganic fillers like aluminum trihydrate, magnesium hydroxide, calcium carbonate, brominated fillers and melamine pyrophosphate), plaster (plaster boards and panels, gypsum boards), rock-wool insulation, glass-wool insulation, foamed polystyrene and other materials conventionally used in the construction industry.
- the at least one layer (B) and the one or more additional layers (C) may have a thickness varying from 5 ⁇ m up to 20 cm in accordance with the materials used.
- Aluminum layers for example, will have thicknesses typically varying from 5 to 500 ⁇ m, preferably from 20 to 80 ⁇ m and, still more preferably, of about 50 ⁇ m.
- the multilayer structure of the present invention can be manufactured by conventional methods. This includes extrusion coating the PCM material onto the at least one layer (B), extrusion laminating the PCM material between two of such layers (B 1 , B 2 ), and co-extruding the PCM material with the at least one layer (B) if the material of such at least one layer (B) makes it possible (for example if the at least one layer is made of a flame retardant composition).
- An additional aspect of the present invention relates to a molded part made of a PCM composition as described above.
- Such molded part can be manufactured by any process suitable for transforming thermoplastic materials including injection molding, blow molding, thermoforming and rotomolding.
- the PCM composition of the present invention can be used in several applications where thermal management is needed. While temperature management inside buildings is one of the most relevant applications, the PCM composition of the present invention may also be used in automotive applications (for example in the ceiling, seats and tires of vehicles); air filters in air ducts; transportation applications; food packaging (to keep food chilled or warm); medical packaging; woven and nonwoven fabrics for garments and sport wear; footwear; tree wraps, hand grips (in tools, sporting goods and vehicles); bedding; carpets; wood composites; electric cables and plastic tubes for hot media including water.
- automotive applications for example in the ceiling, seats and tires of vehicles
- air filters in air ducts transportation applications
- food packaging to keep food chilled or warm
- medical packaging to woven and nonwoven fabrics for garments and sport wear
- footwear tree wraps, hand grips (in tools, sporting goods and vehicles)
- bedding carpets
- wood composites electric cables and plastic tubes for hot media including water.
- PCM paraffinic wax
- Rubitherm® RT20 melting point 22° C.
- VLDPE density 0.863 g/cm 3
- Fusabond® 493 D 0.5 wt % of maleic anhydride
- the granules soaked with the paraffinic wax were taken out of the blender and filtered in order to remove rests of liquid paraffin wax from their external surface. The difference in the granules weight before and after soaking was measured, thus allowing to calculate the weight percentage of wax absorbed by the polymer matrix.
- Slabs were compression molded using the PCM composition obtained above.
- the granules were placed in a frame (thickness of 2 mm) between 2 steel slabs and the whole system was subsequently pressed at a jaw temperature of 100° C. and at a pressure of 1 bar during the first minute and of 80 bars during the subsequent 2 minutes.
- the jaws were then cooled down to 25° C. during a period of 4 minutes always under a pressure of 80 bars. The pressure was eventually released and the produced polymer slabs removed from the frame.
- Example 1 was repeated using granules of ethylene methyl acrylate, comprising 25 wt % of methyl acrylate, commercially available from E. I. du Pont de Nemours and Company under the trade name Elvaloy® AC 1125. No slabs were made with the PCM composition obtained under this Example 2.
- Example 1 was repeated using granules of VLDPE (density 0.863 g/cm 3 ), commercially available from Dow Chemicals under the trade name Engage® 8180. No slabs were made with the PCM composition obtained under this Example 3.
- VLDPE density 0.863 g/cm 3
- Example 1 was repeated using granules of HDPE (density 0.965 g/cm 3 ), commercially available from E. I. du Pont de Nemours and Company under the name DuPontTM 6611. No slabs were made with the PCM composition obtained under this Example 4.
- HDPE density 0.965 g/cm 3
- Example 1 was repeated using granules of HDPE (density 0.965 g/cm 3 ), commercially available from E. I. du Pont de Nemours and Company under the name DuPontTM 6611. Blending was carried out during eight (8) hours at 180° C.
- HDPE density 0.965 g/cm 3
- Example 2 Example 3
- Example 4 Example 5 Soaking Temp. (° C.) 25 25 25 25 25 180 Weight % 1 100 23 100 13 100 Flexibility of the very very very very molded slabs flexible flexible brittle Tensile strength (Mpa) >4.6 2 2.1 Elongation at break (%) >2293 2 5.9 1 Weight percentage of paraffin wax absorbed by the polymer matrix after eight (8) hours soaking. 100% means total absorption, that is 55 g of paraffin wax absorbed into 45 g of polymer. 2 2293% (4.6 Mpa) is the maximal value measurable with the testing equipment.
- Table 2 shows that the polymer matrices according to the present invention (Examples 1 and 3) can absorb the whole amount of PCM (55 g PCM per 45 g polymer) at 25° C. while polymers having high degrees of polarity (Example 2) or high degrees of crystallinity (Example 4) can absorb PCM only to a limited extent.
- PCM polymer having high degrees of polarity
- Example 4 polymers having high degrees of crystallinity
- Slabs obtained by molding the PCM compositions according to the present invention are very flexible and show excellent mechanical properties.
- Example 5 shows that slabs prepared with PCM compositions based on crystalline polymers (HDPE) are very brittle. Therefore, from a mechanical point of view, such compositions are not suitable in the thermal management applications described above even if their PCM content is quite high.
- HDPE crystalline polymers
- VLDPE density 0.863 g/cm 3
- Engage® 8180 a mix of vinyl-tri-methoxy-silane and peroxide catalyst
- PCM paraffinic wax
- Rubitherm® RT20 melting point 22° C.
- di-butyl-tin-laureate 0.03 g of di-butyl-tin-laureate and 45 g of the VLDPE based blend obtained above, were simultaneously introduced into an one liter tumble blender. Blending was carried out during eight (8) hours at 25° C. in order to enable sufficient time for maximal incorporation of the liquid paraffinic wax and di-butyl-tin-laureate into the polymer matrix (soaking). The granules soaked with the paraffinic wax and di-butyl-tin-laureate were taken out of the blender.
- PCM paraffinic wax
- Slabs were compression molded using the PCM composition obtained in this Example 6 as well as the one obtained in Example 3.
- the granules were placed in a frame (thickness of 2 mm) between 2 steel plates and the whole system was subsequently pressed at a jaw temperature of 150° C. and at a pressure of 1 bar during the first minute and of 80 bars during the subsequent 2 minutes.
- the jaws were then cooled down to 25° C. during a period of 4 minutes always under a pressure of 80 bars.
- the pressure was eventually released and the produced polymer slabs removed from the frame.
- the slabs were then immerged in water during 4 hours and dumble bar samples were cut out from these slabs, according to method DIN 53504 S2.
- Example 3 Example 6 Temperature at which sample 40 80 broke (° C.) Table 3 shows that the cross-linked composition obtained in Example 6 has a significantly improved resistance to heat deformation if compared to the same uncross-linked composition (Example 3).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- The present invention relates to Phase Change Material (PCM) compositions for the thermal management in different applications like for example in building, automotive, packaging, garments and footwear. The present invention also relates to sheets and molded parts comprising the above PCM composition.
- There is a general desire in all technical fields to be energy efficient. In the building industry, for example, there is a permanent need to decrease the energy costs related to heating and cooling indoor rooms. The same applies also in the textile industry, for instance for life and personal protection clothing, where the heat excess produced by the wearer must be removed and managed away from his body in order to increase the overall wear comfort.
- PCM materials are highly-productive thermal storage media which are capable of absorbing and releasing high amounts of latent heat during melting and crystallization, respectively. During such phase changes, the temperature of the PCM materials remains nearly constant and so does the space surrounding the PCMs, the heat flowing through the PCM being “entrapped” within the PCM itself. Paraffin waxes are known to be particularly efficient as PCMs.
-
FIG. 1 shows a temperature profile simulation of the inside surface of three building wall structures (wood timber frames) during a typical summer day (latitude 45°; azimuth 180°; air Tmin 15° C.; air Tmax 35° C.). Such three wall structures comprise an external layer (wood siding,thickness 20 mm), a stone wool layer (thickness 250 mm) adjacent to such external layer and an internal gypsum board (thickness 10 mm). The first wall structure (W1) does not include PCM, while the second and third wall structures (W2,W3) further comprise a PCM composition layer positioned between the stone wool layer and the gypsum board layer, the PCM composition layers consisting of 7.15 wt % of PCM and 92.85 wt % of an hypothetical polymer and 45 wt % of PCM and 55 wt % of an hypothetical polymer, respectively. The PCM considered for this simulation is commercially available from Rubitherm under the trade name Rubitherm® RT20 (melting point 22° C.). -
FIG. 1 shows that the variation of the inside wall temperature during the day is reduced with increasing PCM amount in the wall structure or, in other words, that the heat management performance of the wall structure increases with increasing amount of PCM included therein. - WO 2004/044345 discloses a wall covering assembly comprising phase change materials like crystalline alkyl hydrocarbons as a thermal storage mean. The assembly comprises 1) a cover layer of fabric or paper covered by a vinyl coating; 2) an intermediate layer made of an acrylic coating compound which contains finely divided PCM and a rear layer made of a liquid ceramic compound facing the wall during use. However, the capacity of the acrylic coating to incorporate PCM is limited due to the polarity and the elevated crystallinity degree of the acrylic material itself, so that the heat storage capacity of the overall assembly is limited to a certain extent.
- U.S. Pat. No. 5,053,446 discloses a composite useful in thermal energy storage, said composite being a polyolefin matrix having a PCM (for example a crystalline alkyl hydrocarbon) incorporated therein. The polyolefin matrix is crystalline and must be thermally form stable up to temperatures of 150-180° C. This is due to the fact that the PCM imbibition of the matrix must take place at temperatures up to the above values in order to enable the PCM material itself to penetrate into the narrow spaces of the crystalline matrix. The thermal stability is usually achieved by reticulating the polyolefin prior to the imbibition process. This is an additional step for the preparation of the composite material, which additional step renders the overall manufacturing process more complicated and expensive. Furthermore, because of the limited space available within the matrix itself, proper retention of the PCM, particularly at temperatures below the PCM melting point, is very difficult, thus leading to a strong decrease in the heat management performance of the overall composite.
- The problem at the root of the present invention is therefore to provide a PCM composition for the thermal management in different applications like for example in building, automotive, garments and footwear, which PCM composition can overcome the problems mentioned above.
- Now, it has been surprisingly found that the above-mentioned problems can be overcome by a PCM composition comprising:
- a) from 20 to 80 wt % of a PCM; and
- b) from 20 to 80 wt % of one or more polymers chosen from the group consisting of:
-
- b1) Very Low Density Polyethylene (VLDPE) having a density equal or lower than 0.910 g/cm3 measured according to ASTM 792;
- b2) Ethylene Propylene Rubber (EPR) having a density equal or lower than 0.900 g/cm3 measured according to ASTM 792;
- b3) Styrene Ethylene Butadiene Styrene (SEBS) copolymers; and
- b4) Styrene Butadiene Styrene (SBS) copolymers;
the weight percentages being based on the total weight of the composition.
- It is another aspect of the present invention to provide a sheet made with the PCM composition described above, as well as a multilayer structure including said sheet.
- It is a further aspect of the present invention to provide a molded part made of the PCM composition described above.
-
FIG. 1 is a temperature profile simulation of the inside surface of three building wall structures (wood timber frames) during a typical summer day (latitude 45°; azimuth 180°; air Tmin 15° C.; air Tmax 35° C.). - The polymers used in the present invention have low polarity and crystallinity. The low polarity degree of the polymer is important to enable compatibility between the polymer itself and a PCM of non-polar nature. Moreover, due to their amorphousness, the polymer matrices used in the present invention have sufficient absorption capacity to incorporate and retain high amounts of PCM, even at temperatures which are above or below the melting point of the PCM itself. The capacity of the above polymers to efficiently retain the PCM within their own matrix confers to the composition of the present invention an excellent heat management performance over long periods of time.
- The density of polymers is directly correlated to the percentage of crystallinity by the following equation (D. Campbell and J. R. White, Polymer Characterization, Chapman and Hall, 1989, page 328):
% crystallinity=ρs−ρa/ρc−ρa
where ρs is the density of a given polymer, ρa is the density of the same polymer having an amorphous structure and ρc is the density of the same polymer having 100% crystalline structure. - For the purpose of the present invention, the one or more polymers can be chosen among all types of SEBSs and SBSs copolymers which are well known to be amorphous and which typically have densities varying between 0.900 and 1.1 g/cm3. It is also possible to use EPR copolymers having densities equal or lower than 0.900 g/cm3 as well as VLDPEs having densities equal or lower than 0.910 g/cm3, preferably between 0.800 and 0.910, all densities being measured according to ASTM 792.
- According to a preferred embodiment of the present invention, the PCM composition includes EPRs which are chosen among Ethylene Propylene Diene Methylene (EPDM), Ethylene Propylene Methylene (EPM) and mixtures thereof. Alternatively, the sole polymer used in the PCM composition of the present invention is VLDPE having a density equal or lower than 0.910 g/cm3.
- Advantageously, the PCM composition of the present invention comprises from 30 to 50 wt % and still more preferably about 40 wt % of the one or more polymers, the weight percentages being based on the total weight of the PCM composition.
- In accordance with a preferred embodiment of the invention, the PCM is chosen among one or more alkyl hydrocarbons (paraffin waxes). Paraffin waxes are saturated hydrocarbon mixtures and generally consist of a mixture of mostly straight-chain n-alkanes with the chemical formula CH3—(CH2)n—CH3. The crystallization of the —(CH2)n— chain releases a large amount of the latent heat. Both the melting point and the heat of fusion increase with increasing chain length. Therefore, it is possible to select the paraffin waxes, which are products of petroleum refining, in such a way that the phase change temperature range matches with the temperature of the operation system to which the PCM is applied.
- The thermal properties of three different paraffin waxes are given in Table 1.
TABLE 1 Melt. Heat of Spec. Heat No. Point Fusion CpkJ/ State Alkane of C ° C. KJ/kg kg° C. at RT Tetradecane 14 5.8 227 2.18 liquid Pentadecane 15 9.9 206 liquid Hexadecane 16 18.1 236 2.22 solid - Preferably, the PCM composition of the present invention includes from 50 to 70 wt % of PCM, preferably 60 wt %, the weight percentages being based on the total weight of the PCM composition.
- According to another embodiment, the PCM composition of the present invention further comprises from 10 to 40 wt % of an inert powder having an absorption capacity of at least 50 wt % and preferably of at least 120 wt %, the weight percentages being based on the dried mass of the inert powder itself. The use of the inert powder further improves retention of the PCM within the polymeric matrix. Advantageously, the inert powder used in the PCM composition of the present invention is silicate, one or more flame retardant fillers and mixtures thereof. The one or more flame retardant fillers are advantageously chosen among aluminum trihydrate, magnesium hydroxide, melamine pyrophosphate, melamine cyanurate, one or more brominated fillers and mixtures thereof.
- In another aspect of the present invention, the one or more polymers of the PCM composition are grafted with 0.2 to 3 wt % of a carboxylic acid or carboxylic acid anhydride functionality, the weight percentages being based on the total weight of the one or more polymers. While this small quantity of carboxylic acid or carboxylic acid anhydride does not affect the overall polarity of the polymer matrix, it is desirable to have such functionality in such amount if the PCM composition is used in combination with, for example, aluminum foils since the carboxylic acid or carboxylic acid anhydride functionality strongly improves adhesion of the PCM composition to metal surfaces.
- The polymer matrix of the PCM composition according to the present invention may be cross-linked after the PCM has been incorporated into it by means of any conventional method known in the art like for example by using cross-linking agents based on silane and/or peroxide groups. During this process, it is important to avoid that cross-linking of the PCM takes place. This is possible, for example, by grafting silane groups onto the polymer molecules prior to incorporating the PCM. Such grafting can occur by means of conventional techniques, such as by extruding the polymer at temperatures above 150° C. after adding 0.2 to 2 wt-% of vinyl-tri-methoxy-silane or vinyl-tri-ethoxy-silane together with 0.05 to 0.5 wt-% peroxide. The PCM can then be incorporated into the silane grafted polymer and the resulting blend can be cross-linked, in presence of water or water moisture, by using catalysts like di-butyl-tin-laureate. Such cross-linking of the polymer matrix enables to increase the mechanical and thermal properties of the composition itself when used in the different applications listed below.
- The PCM composition of the invention may further comprise conventional additives such as antioxidants and UV filters. These additives may be present in the composition in amounts and in forms well known in the art.
- The PCM composition according to the present invention can be produced by soaking the different components all together at temperatures which are slightly above the melting point of the PCM but below the melting point of the one or more polymers. Soaking is a natural absorption of the molten PCM by the polymer matrix. Usually the components are mixed together in a tumble blender during a certain period of time which can vary in function of the rotational speed of the tumble blender itself. Typical periods of time are around eight (8) hours.
- Another possibility for obtaining the PCM composition of the present invention is by melt blend extrusion whereby the components are blended at temperatures above the melting point of both the one or more polymers and the PCM, the thus obtained mixture being subsequently extruded into granules or directly into sheets or any other suitable form.
- Sheets made with the PCM composition described above are also an object of the present invention. Preferably such sheets have a thickness varying between 0.5 and 10 mm and can be manufactured either directly by melt blend extrusion as described above, or alternatively by preparing the PCM composition which is subsequently processed by means of any conventional technology such as extrusion, calendering and hot lamination.
- Another object of the present invention is a multilayer structure comprising at least one sheet (A) of the above PCM composition, which is adjacent to at least one layer (B). Preferably, such sheet (A) is positioned between two layers (B1,B2). One of the functions of the at least one layer (B), or preferably of two layers (B1,B2) is to help keep the PCM material of the sheet (A) within the polymer matrix, thus enabling to maintain the heat management performance of the PCM sheet (A) at a high level over a long period of time. Furthermore, undesired grease stains on the surfaces adjacent to the PCM composition are hereby avoided.
- According to one embodiment of the present invention, the multilayer structure comprises in the following sequence:
- a) at least one sheet (A);
- b) at least one layer (B) positioned adjacent to the at least one sheet (A);
- c) one or more additional layers (C) positioned adjacent to the at least one layer (B).
- According to another embodiment of the present invention, the multilayer structure further comprises one or more additional layers (C) positioned adjacent and externally to one or more of the layers (B1, B2).
- The at least one layer (B) and the one or more additional layers (C) can also have the function of conferring to the overall multilayer structure improved fire retardancy and heat conductivity so that heat is easily conveyed through such at least one layer to the PCM composition and vice versa.
- The at least one layer (B) and the one or more additional layers (C) can be made of aluminum. It is also possible to use polyester vacuum coated on one side with aluminum, the aluminated side facing the PCM sheet (A), in order to achieve optimum adhesion. The use of aluminated polyester also confers to the overall PCM multilayer structure an excellent mechanical strength as well as an excellent elasticity.
- The at least one layer (B) and the one or more additional layers (C) can be made of other materials instead of (or in addition to) the above mentioned aluminum and/or polyester vacuum coated material, according to the specific use and application. Such materials can be independently chosen from one or more of flame retardant polymer compositions (polymers filled with flame retardant inorganic fillers like aluminum trihydrate, magnesium hydroxide, calcium carbonate, brominated fillers and melamine pyrophosphate), plaster (plaster boards and panels, gypsum boards), rock-wool insulation, glass-wool insulation, foamed polystyrene and other materials conventionally used in the construction industry.
- The at least one layer (B) and the one or more additional layers (C) may have a thickness varying from 5 μm up to 20 cm in accordance with the materials used. Aluminum layers, for example, will have thicknesses typically varying from 5 to 500 μm, preferably from 20 to 80 μm and, still more preferably, of about 50 μm.
- The multilayer structure of the present invention can be manufactured by conventional methods. This includes extrusion coating the PCM material onto the at least one layer (B), extrusion laminating the PCM material between two of such layers (B1, B2), and co-extruding the PCM material with the at least one layer (B) if the material of such at least one layer (B) makes it possible (for example if the at least one layer is made of a flame retardant composition).
- An additional aspect of the present invention relates to a molded part made of a PCM composition as described above. Such molded part can be manufactured by any process suitable for transforming thermoplastic materials including injection molding, blow molding, thermoforming and rotomolding.
- The PCM composition of the present invention can be used in several applications where thermal management is needed. While temperature management inside buildings is one of the most relevant applications, the PCM composition of the present invention may also be used in automotive applications (for example in the ceiling, seats and tires of vehicles); air filters in air ducts; transportation applications; food packaging (to keep food chilled or warm); medical packaging; woven and nonwoven fabrics for garments and sport wear; footwear; tree wraps, hand grips (in tools, sporting goods and vehicles); bedding; carpets; wood composites; electric cables and plastic tubes for hot media including water.
- The invention will be further described in the following Examples.
- 55 g of paraffinic wax (PCM) commercially available from Rubitherm under the trade name Rubitherm® RT20 (
melting point 22° C.) and 45 g of granules of VLDPE (density 0.863 g/cm3) grafted with 0.5 wt % of maleic anhydride, commercially available from E. I. du Pont de Nemours and Company under the trade name Fusabond® 493 D, were simultaneously introduced into an one liter tumble blender. Blending was carried out during eight (8) hours at 25° C. in order to enable sufficient time for maximal incorporation of the liquid paraffinic wax into the polymer matrix (soaking). The granules soaked with the paraffinic wax were taken out of the blender and filtered in order to remove rests of liquid paraffin wax from their external surface. The difference in the granules weight before and after soaking was measured, thus allowing to calculate the weight percentage of wax absorbed by the polymer matrix. - Slabs were compression molded using the PCM composition obtained above. The granules were placed in a frame (thickness of 2 mm) between 2 steel slabs and the whole system was subsequently pressed at a jaw temperature of 100° C. and at a pressure of 1 bar during the first minute and of 80 bars during the subsequent 2 minutes. The jaws were then cooled down to 25° C. during a period of 4 minutes always under a pressure of 80 bars. The pressure was eventually released and the produced polymer slabs removed from the frame.
- The flexibility of the molded slabs was tested. Tensile strength and elongation at break were also measured on dumble bar samples cut out from two of these slabs, according to method DIN 53504 S2.
- The results are shown in Table 2.
- Example 1 was repeated using granules of ethylene methyl acrylate, comprising 25 wt % of methyl acrylate, commercially available from E. I. du Pont de Nemours and Company under the trade name Elvaloy® AC 1125. No slabs were made with the PCM composition obtained under this Example 2.
- The results are shown in Table 2.
- Example 1 was repeated using granules of VLDPE (density 0.863 g/cm3), commercially available from Dow Chemicals under the trade name Engage® 8180. No slabs were made with the PCM composition obtained under this Example 3.
- The results are shown in Table 2.
- Example 1 was repeated using granules of HDPE (density 0.965 g/cm3), commercially available from E. I. du Pont de Nemours and Company under the name DuPont™ 6611. No slabs were made with the PCM composition obtained under this Example 4.
- The results are shown in Table 2.
- Example 1 was repeated using granules of HDPE (density 0.965 g/cm3), commercially available from E. I. du Pont de Nemours and Company under the name DuPont™ 6611. Blending was carried out during eight (8) hours at 180° C.
- The results are shown in Table 2.
TABLE 2 Example 1 Example 2 Example 3 Example 4 Example 5 Soaking Temp. (° C.) 25 25 25 25 180 Weight %1 100 23 100 13 100 Flexibility of the very very very molded slabs flexible flexible brittle Tensile strength (Mpa) >4.62 2.1 Elongation at break (%) >22932 5.9
1Weight percentage of paraffin wax absorbed by the polymer matrix after eight (8) hours soaking. 100% means total absorption, that is 55 g of paraffin wax absorbed into 45 g of polymer.
22293% (4.6 Mpa) is the maximal value measurable with the testing equipment.
Table 2 shows that the polymer matrices according to the present invention (Examples 1 and 3) can absorb the whole amount of PCM (55 g PCM per 45 g polymer) at 25° C. while polymers having high degrees of polarity (Example 2) or high degrees of crystallinity (Example 4) can absorb PCM only to a limited extent. In order to achieve full absorption of the PCM with high crystallinity HDPE matrices, it is necessary to increase the soaking temperature up to 180° C. (Example 5). Slabs obtained by molding the PCM compositions according to the present invention are very flexible and show excellent mechanical properties. On the other hand, Example 5 shows that slabs prepared with PCM compositions based on crystalline polymers (HDPE) are very brittle. Therefore, from a mechanical point of view, such compositions are not suitable in the thermal management applications described above even if their PCM content is quite high. - 44.6 g of granules of VLDPE (density 0.863 g/cm3), commercially available from Dow Chemical under the trade name Engage® 8180, were extruded, at a temperature of 220° C., with 0.4 g of a mix of vinyl-tri-methoxy-silane and peroxide catalyst (XL-Pearl® 23 commercially available from General Electric, Osi Specialities) so to obtain a blend. 55 g of paraffinic wax (PCM) commercially available from Rubitherm under the trade name Rubitherm® RT20 (
melting point 22° C.), 0.03 g of di-butyl-tin-laureate and 45 g of the VLDPE based blend obtained above, were simultaneously introduced into an one liter tumble blender. Blending was carried out during eight (8) hours at 25° C. in order to enable sufficient time for maximal incorporation of the liquid paraffinic wax and di-butyl-tin-laureate into the polymer matrix (soaking). The granules soaked with the paraffinic wax and di-butyl-tin-laureate were taken out of the blender. - Slabs were compression molded using the PCM composition obtained in this Example 6 as well as the one obtained in Example 3. The granules were placed in a frame (thickness of 2 mm) between 2 steel plates and the whole system was subsequently pressed at a jaw temperature of 150° C. and at a pressure of 1 bar during the first minute and of 80 bars during the subsequent 2 minutes. The jaws were then cooled down to 25° C. during a period of 4 minutes always under a pressure of 80 bars. The pressure was eventually released and the produced polymer slabs removed from the frame. The slabs were then immerged in water during 4 hours and dumble bar samples were cut out from these slabs, according to method DIN 53504 S2.
- A weight of 52 g was hanged to each of the dumble bars which were fixed inside an oven. Tests were performed at different temperatures and during a period of 15 minutes. The temperature at which each sample broke was recorded. The results are shown in Table 3.
TABLE 3 Example 3 Example 6 Temperature at which sample 40 80 broke (° C.)
Table 3 shows that the cross-linked composition obtained in Example 6 has a significantly improved resistance to heat deformation if compared to the same uncross-linked composition (Example 3).
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/258,779 US20060124892A1 (en) | 2004-12-09 | 2005-10-26 | Phase change material (PCM) compositions for thermal management |
US13/164,239 US8333903B2 (en) | 2004-12-09 | 2011-06-20 | Phase change material (PCM) compositions for thermal management |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63459204P | 2004-12-09 | 2004-12-09 | |
US11/258,779 US20060124892A1 (en) | 2004-12-09 | 2005-10-26 | Phase change material (PCM) compositions for thermal management |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/164,239 Continuation US8333903B2 (en) | 2004-12-09 | 2011-06-20 | Phase change material (PCM) compositions for thermal management |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060124892A1 true US20060124892A1 (en) | 2006-06-15 |
Family
ID=36293656
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/258,779 Abandoned US20060124892A1 (en) | 2004-12-09 | 2005-10-26 | Phase change material (PCM) compositions for thermal management |
US13/164,239 Expired - Fee Related US8333903B2 (en) | 2004-12-09 | 2011-06-20 | Phase change material (PCM) compositions for thermal management |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/164,239 Expired - Fee Related US8333903B2 (en) | 2004-12-09 | 2011-06-20 | Phase change material (PCM) compositions for thermal management |
Country Status (8)
Country | Link |
---|---|
US (2) | US20060124892A1 (en) |
EP (2) | EP2261297A2 (en) |
JP (1) | JP5204491B2 (en) |
CN (1) | CN101115817B (en) |
AT (1) | ATE541022T1 (en) |
CA (1) | CA2588304C (en) |
ES (1) | ES2379637T3 (en) |
WO (1) | WO2006062610A2 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050034330A1 (en) * | 1996-11-12 | 2005-02-17 | Baychar | Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics |
US20070066164A1 (en) * | 1996-11-12 | 2007-03-22 | Solid Water Holdings | Waterproof/breathable moisture transfer liner and composite for snowboards, alpine boots, hiking boots and the like |
US20070193066A1 (en) * | 1996-11-12 | 2007-08-23 | Solid Water Holdings. | Softboots and waterproof / breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like |
US20070294920A1 (en) * | 2005-10-28 | 2007-12-27 | Soft shell boots and waterproof /breathable moisture transfer composites and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like | |
US20080081710A1 (en) * | 2006-10-03 | 2008-04-03 | John Chu Chen | Phase transition golf ball and method of use |
US20080131648A1 (en) * | 2003-06-23 | 2008-06-05 | Solid Water Holdings | Waterproof/breathable, moisture transfer, soft shell alpine boots and snowboard boots, insert liners and footbeds |
US20080229484A1 (en) * | 2005-10-28 | 2008-09-25 | Lightweight, breathable, waterproof, soft shell composite apparel and technical alpine apparel | |
WO2009118344A1 (en) | 2008-03-26 | 2009-10-01 | Rubitherm Technologies Gmbh | Method for producing a phase-change material composition |
US20090250189A1 (en) * | 2008-02-22 | 2009-10-08 | Dow Global Technologies Inc. | Heat storage devices |
ES2336741A2 (en) * | 2008-02-05 | 2010-04-15 | David Cano Anton | Manufactured pneumatic, among other materials, with pcm materials (Machine-translation by Google Translate, not legally binding) |
US20100269241A1 (en) * | 2004-04-05 | 2010-10-28 | Solid Water Holdings | Waterproof/breathable technical apparel |
US20110024433A1 (en) * | 2009-07-30 | 2011-02-03 | E.I. Du Pont De Nemours And Company | Thermal insulation unit |
US20110108758A1 (en) * | 2009-01-20 | 2011-05-12 | Driscoll Joseph A | Method for Making Phase Change Aggregates From a Microencapsulated Phase Change Material Liquid Emulsion |
US20110121246A1 (en) * | 2007-11-07 | 2011-05-26 | Ian Stuart Biggin | Heat storage compositions and their manufacture |
WO2011143278A1 (en) | 2010-05-13 | 2011-11-17 | E. I. Du Pont De Nemours And Company | Phase change material compositions |
US20120049402A1 (en) * | 2010-09-01 | 2012-03-01 | Syntroleum Corporation | Low cost process for manufacture of form-stable phase change material |
US20130062130A1 (en) * | 2011-09-14 | 2013-03-14 | Hutchinson | Electric or Hybrid Motor Vehicle Bodywork Structure, This Vehicle, and Method for Controlling/Modifying the Temperature of the Passenger Compartment Thereof |
CN103113852A (en) * | 2013-01-30 | 2013-05-22 | 成都新柯力化工科技有限公司 | Building phase change energy storage insulating powder and preparation method thereof |
US20130125486A1 (en) * | 2011-11-23 | 2013-05-23 | Kingspan Holdings (Irl) Limited | Energy efficient access floor panels and systems |
US8569190B2 (en) | 1996-11-12 | 2013-10-29 | Solid Water Holdings | Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like |
EP2690137A1 (en) * | 2012-07-25 | 2014-01-29 | Hutchinson | Rubber composition containing at least one EPDM and a phase-change material, pipe including same and method for preparing said composition |
US20140087105A1 (en) * | 2012-09-25 | 2014-03-27 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, and thermal exchange implement comprising the gel |
WO2014151947A1 (en) * | 2013-03-15 | 2014-09-25 | Entropy Solutions Inc. | Methods for organic nucleating agents |
US20140290285A1 (en) * | 2012-09-25 | 2014-10-02 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US20150203734A1 (en) * | 2012-08-10 | 2015-07-23 | Jsr Corporation | Heat storage material composition |
WO2015168096A1 (en) | 2014-05-01 | 2015-11-05 | E. I. Du Pont De Nemours And Company | Cables made of phase change material |
US9279075B2 (en) | 2009-01-20 | 2016-03-08 | Smart Pcm Patent Holdco, Llc | Phase change material-containing composition and related products and methods |
US9315710B2 (en) | 2010-09-01 | 2016-04-19 | Reg Synthetic Fuels, Llc | Plastic phase change material and articles made therefrom |
WO2017079018A1 (en) | 2015-11-03 | 2017-05-11 | E. I. Du Pont De Nemours And Company | Cables made of phase change material |
CN107254297A (en) * | 2017-06-13 | 2017-10-17 | 中国科学技术大学 | A kind of flexible phase-change material for electronic equipment thermal control |
WO2017214398A1 (en) | 2016-06-09 | 2017-12-14 | E. I. Du Pont De Nemours And Company | Heat storage cable including closing system |
CN107936928A (en) * | 2017-11-29 | 2018-04-20 | 杭州鲁尔新材料科技有限公司 | A kind of low-temperature phase-change material for medicine cold chain transportation |
DE102016013415A1 (en) | 2016-11-10 | 2018-05-17 | Rainer Busch | Method for producing a dimensionally stable, leak-proof phase Change Material System (PCM-S) |
WO2018150000A1 (en) * | 2017-02-17 | 2018-08-23 | Smartpolymer Gmbh | Electric winding body with optimised performance characteristics and improved protection against overheating |
RU2670894C2 (en) * | 2014-05-19 | 2018-10-25 | Смартполимер Гмбх | Flexible pcm sheet materials |
WO2018204298A2 (en) | 2017-05-01 | 2018-11-08 | E. I. Du Pont De Nemours And Company | Composition and methods for coaxial devices including a phase change material |
US20190330508A1 (en) * | 2018-04-30 | 2019-10-31 | E I Du Pont De Nemours And Company | Composition and methods for coaxial devices including a phase change material |
US10569493B2 (en) | 2014-11-24 | 2020-02-25 | Sabic Global Technologies B.V. | Enclosure with a condensation-resistant interior surface |
US20200231857A1 (en) * | 2017-10-02 | 2020-07-23 | Croda International Plc | Gel composition comprising a phase change material |
US20210101371A1 (en) * | 2019-10-07 | 2021-04-08 | David Ross | Microwave heatable compositions and articles made therefrom |
WO2022017592A1 (en) | 2020-07-21 | 2022-01-27 | Smart Advanced Systems Gmbh | Free-flowing mixture, use thereof and process for production thereof |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006033350A1 (en) * | 2006-07-19 | 2008-01-24 | Continental Aktiengesellschaft | rubber compound |
ES2306624B1 (en) | 2008-05-12 | 2009-10-14 | Acciona Infraestructura S.A. | PROCEDURE FOR THE MICROENCAPSULATE OF PHASE CHANGE MATERIALS BY DRYING BY SPRAYING. |
EP2526160A1 (en) | 2010-01-19 | 2012-11-28 | Huntsman International LLC | Materials comprising a matrix and process for preparing them |
ITMI20120461A1 (en) * | 2012-03-23 | 2013-09-24 | Eco Tql S R L | METHOD FOR THE PRODUCTION OF A MATTRESS OR SIMILAR OF THE FOAM TYPE, AND MATTRESS OR SIMILAR THUS OBTAINED |
US8937384B2 (en) | 2012-04-25 | 2015-01-20 | Qualcomm Incorporated | Thermal management of integrated circuits using phase change material and heat spreaders |
US9890313B2 (en) * | 2012-10-26 | 2018-02-13 | Samit JAIN | Treated fiber reinforced form stable phase change |
DE102012110330B4 (en) * | 2012-10-29 | 2014-07-24 | STS Textiles GmbH & Co. KG | Textile fabric with a latent heat storage |
WO2014144072A2 (en) | 2013-03-15 | 2014-09-18 | Warmilu, Llc | Phase change heat packs |
KR101512563B1 (en) * | 2013-09-11 | 2015-04-15 | 연세대학교 원주산학협력단 | Composition for preparing packaging film comprising phase change material and packaging film prepared therefrom |
KR101367853B1 (en) * | 2013-10-11 | 2014-02-25 | 김정근 | Fiber contaning phase change material using foaming printing method |
CN104746164A (en) * | 2013-12-31 | 2015-07-01 | 上海水星家用纺织品股份有限公司 | Preparation and application of near-infrared sunlight heat accumulation fibers |
WO2015125094A1 (en) * | 2014-02-18 | 2015-08-27 | Sabic Global Technologies B.V. | Materials with enhanced thermal capability under transient heat load |
SG11201607806VA (en) | 2014-03-26 | 2016-10-28 | Cold Chain Technologies Inc | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel |
CN104262753B (en) * | 2014-10-15 | 2016-11-30 | 北京化工大学 | One moulds wood composite board and preparation method thereof |
US20160223269A1 (en) * | 2015-02-04 | 2016-08-04 | Outlast Technologies, LLC | Thermal management films containing phase change materials |
CN104845589A (en) * | 2015-03-25 | 2015-08-19 | 上海世酷新材料科技有限公司 | Shaped composite phase-change cold-hot compress material |
FR3034771B1 (en) | 2015-04-13 | 2019-04-19 | Hutchinson | THERMAL AND / OR ELECTRICALLY CONDUCTIVE MATERIALS AND METHOD FOR THE PREPARATION THEREOF |
FR3034775B1 (en) | 2015-04-13 | 2018-09-28 | Hutchinson | MATERIAL FOR THERMAL STORAGE |
TW201704008A (en) * | 2015-05-29 | 2017-02-01 | 漢高智慧財產控股公司 | Systems for thermal management and methods for the use thereof |
ITUB20160267A1 (en) * | 2016-01-26 | 2017-07-26 | Iveco Magirus | FLOOR HEATING SYSTEM FOR CAB OF AN INDUSTRIAL VEHICLE |
KR102416920B1 (en) | 2016-03-15 | 2022-07-06 | 나이키 이노베이트 씨.브이. | Foam compositions and uses thereof |
DE102016209098A1 (en) | 2016-05-25 | 2017-11-30 | Leibniz-Institut Für Polymerforschung Dresden E.V. | RUBBER OR ELASTOMER COMPOSITIONS AND METHOD FOR THE PRODUCTION THEREOF |
CN106800786B (en) * | 2017-01-22 | 2019-06-25 | 深圳市净相科技有限公司 | A kind of high thermal conductivity, insulation, the hot rectifying material of flame retardant type and preparation method thereof |
GB2578987B (en) | 2017-09-01 | 2023-02-08 | Rogers Corp | Fusible phase-change powders for thermal management, methods of manufacture thereof, and articles containing the powders |
CN112533506B (en) | 2018-06-04 | 2023-03-28 | 耐克创新有限合伙公司 | Two-part sole structure and use thereof |
DE102018004984A1 (en) * | 2018-06-20 | 2019-12-24 | Rainer Busch | Process for the production of a phase change material - composite material molded body (PCM -V) suitable for use with vacuum insulation boards |
WO2020117829A1 (en) | 2018-12-03 | 2020-06-11 | Nike Innovate C.V. | High energy return foam compositions having improved abrasion resistance and uses thereof |
CN111655817B (en) * | 2018-12-17 | 2022-06-28 | 卡迈尔烯烃有限公司 | Composition of shape-stable thermoplastic polymers for storing thermal energy |
KR102211569B1 (en) | 2018-12-21 | 2021-02-02 | 한국화학연구원 | Composition comprising phase change material and method for producing thereof |
WO2021240072A1 (en) | 2020-05-29 | 2021-12-02 | Aalto University Foundation Sr | Phase change polysaccharide-based bio-complexes with tunable thermophysical properties and preparation method thereof |
CN111793473B (en) * | 2020-07-22 | 2022-04-08 | 三峡大学 | Preparation method of shape-stable phase-change material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4528329A (en) * | 1982-05-17 | 1985-07-09 | Toa Nenryo Kogyo Kabushiki Kaisha | Production of polyolefin copolymer |
US4825939A (en) * | 1984-08-31 | 1989-05-02 | The University Of Dayton | Polymeric compositions incorporating polyethylene glycol as a phase change material |
US4908166A (en) * | 1985-11-22 | 1990-03-13 | University Of Dayton | Method for preparing polyolefin composites containing a phase change material |
US5053446A (en) * | 1985-11-22 | 1991-10-01 | University Of Dayton | Polyolefin composites containing a phase change material |
USRE34880E (en) * | 1984-08-31 | 1995-03-21 | The University Of Dayton | Phase change compositions |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611816B2 (en) * | 1986-03-14 | 1994-02-16 | 三菱電線工業株式会社 | Flame-retardant resin composition |
CA1285084C (en) * | 1986-03-18 | 1991-06-18 | Chisso Corporation | Molding elastomeric resin composition for soft bumpers |
JPH01278647A (en) | 1988-04-28 | 1989-11-09 | Ohbayashi Corp | Partition |
US5414044A (en) * | 1989-07-19 | 1995-05-09 | Mitsui Petrochemical Industries, Ltd. | Polyolefin resin composition and crosslinked molded article and process for the production thereof |
CA2022683C (en) * | 1989-08-04 | 2000-10-10 | Chiaki Momose | Latent thermal energy storage material |
US5718835A (en) * | 1989-08-04 | 1998-02-17 | Mitsubishi Cable Industries | Heat storage composition |
JP2826764B2 (en) * | 1990-07-12 | 1998-11-18 | 三菱電線工業株式会社 | Heat storage material |
JP2528728B2 (en) * | 1990-07-27 | 1996-08-28 | 三菱電線工業株式会社 | Heat storage material |
JPH0578653A (en) * | 1991-09-25 | 1993-03-30 | Matsushita Electric Works Ltd | Latent heat reserving material |
DE69933381T2 (en) * | 1998-08-19 | 2007-08-23 | Exxonmobil Chemical Patents Inc., Baytown | MIXTURES OF PARTIAL CRYSTALLINE POLYMERS |
DE19929861A1 (en) | 1999-06-30 | 2001-01-04 | Zae Bayern | Laminate system useful for hot and cold storage systems, contains a phase change material absorbed in a porous carrier material, e.g. mechanically stable granulate, easily incorporated into building material and encapsulated in an envelope |
WO2004044345A2 (en) | 2002-11-05 | 2004-05-27 | Barbara Pause | Wall covering assembly with thermo-regulating properties |
CN1258577C (en) * | 2004-07-09 | 2006-06-07 | 清华大学 | High heat conductive fixed phase change heat storage material suitable for large scale industrial production |
WO2008078700A1 (en) * | 2006-12-22 | 2008-07-03 | Bando Chemical Industries, Ltd. | Rubber composition for transmission belt and transmission belt |
-
2005
- 2005-10-26 EP EP10184154A patent/EP2261297A2/en not_active Withdrawn
- 2005-10-26 WO PCT/US2005/038747 patent/WO2006062610A2/en active Application Filing
- 2005-10-26 AT AT05812787T patent/ATE541022T1/en active
- 2005-10-26 CN CN2005800479903A patent/CN101115817B/en not_active Expired - Fee Related
- 2005-10-26 US US11/258,779 patent/US20060124892A1/en not_active Abandoned
- 2005-10-26 JP JP2007545461A patent/JP5204491B2/en not_active Expired - Fee Related
- 2005-10-26 CA CA2588304A patent/CA2588304C/en not_active Expired - Fee Related
- 2005-10-26 ES ES05812787T patent/ES2379637T3/en active Active
- 2005-10-26 EP EP05812787A patent/EP1838802B1/en not_active Not-in-force
-
2011
- 2011-06-20 US US13/164,239 patent/US8333903B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4528329A (en) * | 1982-05-17 | 1985-07-09 | Toa Nenryo Kogyo Kabushiki Kaisha | Production of polyolefin copolymer |
US4825939A (en) * | 1984-08-31 | 1989-05-02 | The University Of Dayton | Polymeric compositions incorporating polyethylene glycol as a phase change material |
USRE34880E (en) * | 1984-08-31 | 1995-03-21 | The University Of Dayton | Phase change compositions |
US4908166A (en) * | 1985-11-22 | 1990-03-13 | University Of Dayton | Method for preparing polyolefin composites containing a phase change material |
US5053446A (en) * | 1985-11-22 | 1991-10-01 | University Of Dayton | Polyolefin composites containing a phase change material |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090286442A1 (en) * | 1996-11-12 | 2009-11-19 | Solid Water Holdings | Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like |
US20080096454A1 (en) * | 1996-11-12 | 2008-04-24 | Waterproof/breathable moisture transfer liner for snowboards, alpine boots, hiking boots and the like | |
US20070066164A1 (en) * | 1996-11-12 | 2007-03-22 | Solid Water Holdings | Waterproof/breathable moisture transfer liner and composite for snowboards, alpine boots, hiking boots and the like |
US20070193066A1 (en) * | 1996-11-12 | 2007-08-23 | Solid Water Holdings. | Softboots and waterproof / breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like |
US20110225848A1 (en) * | 1996-11-12 | 2011-09-22 | Solid Water Holdings | Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics |
US8569190B2 (en) | 1996-11-12 | 2013-10-29 | Solid Water Holdings | Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like |
US20110047823A1 (en) * | 1996-11-12 | 2011-03-03 | Solid Water Holdings | Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like |
US20070077844A1 (en) * | 1996-11-12 | 2007-04-05 | Solid Water Holdings | Waterproof/breathable moisture transfer liner and composite for snowboards, alpine boots, hiking boots and the like |
US20050034330A1 (en) * | 1996-11-12 | 2005-02-17 | Baychar | Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics |
US20100107452A1 (en) * | 1996-11-12 | 2010-05-06 | Solid Water Holdings | Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics |
US20090162634A1 (en) * | 1996-11-12 | 2009-06-25 | Waterproof/breathable moisture transfer liner and composite for snowboards, alpine boots, hiking boots and the like | |
US20100120316A1 (en) * | 1996-11-12 | 2010-05-13 | Solid Water Holdings | Waterproof/breathable moisture transfer liner and composite for snowboard boots, alpine boots, hiking boots and the like |
US9943135B2 (en) | 2002-06-21 | 2018-04-17 | Solid Water Holdings | Perfomance action sports product having a breathable, mechanically bonded, needlepunch nonwoven material combining shaped fibers and thermal and cooling fibers |
US20100009112A1 (en) * | 2002-06-21 | 2010-01-14 | Solid Water Holdings | Waterproof/breathable moisture transfer liner for snowboards, alpine boots, hiking boots and the like |
US20080131648A1 (en) * | 2003-06-23 | 2008-06-05 | Solid Water Holdings | Waterproof/breathable, moisture transfer, soft shell alpine boots and snowboard boots, insert liners and footbeds |
US20100269241A1 (en) * | 2004-04-05 | 2010-10-28 | Solid Water Holdings | Waterproof/breathable technical apparel |
US20070294920A1 (en) * | 2005-10-28 | 2007-12-27 | Soft shell boots and waterproof /breathable moisture transfer composites and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like | |
US20080229484A1 (en) * | 2005-10-28 | 2008-09-25 | Lightweight, breathable, waterproof, soft shell composite apparel and technical alpine apparel | |
US20100068964A1 (en) * | 2005-10-28 | 2010-03-18 | Baychar | Lightweight, breathable, waterproof, soft shell composite apparel and technical alpine apparel |
US8088026B2 (en) | 2006-10-03 | 2012-01-03 | E. I. Du Pont De Nemours And Company | Phase transition golf ball and method of use |
WO2008042416A1 (en) | 2006-10-03 | 2008-04-10 | E. I. Du Pont De Nemours And Company | Phase transition golf ball and method of use |
US20080081710A1 (en) * | 2006-10-03 | 2008-04-03 | John Chu Chen | Phase transition golf ball and method of use |
US20110121246A1 (en) * | 2007-11-07 | 2011-05-26 | Ian Stuart Biggin | Heat storage compositions and their manufacture |
ES2336741A2 (en) * | 2008-02-05 | 2010-04-15 | David Cano Anton | Manufactured pneumatic, among other materials, with pcm materials (Machine-translation by Google Translate, not legally binding) |
US20090250189A1 (en) * | 2008-02-22 | 2009-10-08 | Dow Global Technologies Inc. | Heat storage devices |
US8201615B2 (en) | 2008-02-22 | 2012-06-19 | Dow Global Technologies Llc | Heat storage devices |
US8590598B2 (en) | 2008-02-22 | 2013-11-26 | Dow Global Technologies Llc | Devices for storing and discharging heat and methods thereof |
WO2009118344A1 (en) | 2008-03-26 | 2009-10-01 | Rubitherm Technologies Gmbh | Method for producing a phase-change material composition |
US20110193008A1 (en) * | 2008-03-26 | 2011-08-11 | Klaus Fieback | Method for producing a phase-change material composition |
US8262925B2 (en) | 2008-03-26 | 2012-09-11 | Rubitherm Technologies Gmbh | Method for producing a phase-change material composition |
DE102008015782A1 (en) | 2008-03-26 | 2009-10-01 | Rubitherm Technologies Gmbh | Method of making a phase change material composition |
US20110108758A1 (en) * | 2009-01-20 | 2011-05-12 | Driscoll Joseph A | Method for Making Phase Change Aggregates From a Microencapsulated Phase Change Material Liquid Emulsion |
US20110108241A1 (en) * | 2009-01-20 | 2011-05-12 | Driscoll Joseph A | Method for making phase change products from an encapsulated phase change material |
US9279075B2 (en) | 2009-01-20 | 2016-03-08 | Smart Pcm Patent Holdco, Llc | Phase change material-containing composition and related products and methods |
US20110024433A1 (en) * | 2009-07-30 | 2011-02-03 | E.I. Du Pont De Nemours And Company | Thermal insulation unit |
WO2011014636A1 (en) | 2009-07-30 | 2011-02-03 | E. I. Du Pont De Nemours And Company | Thermal insulation unit |
WO2011143278A1 (en) | 2010-05-13 | 2011-11-17 | E. I. Du Pont De Nemours And Company | Phase change material compositions |
US8308861B2 (en) | 2010-05-13 | 2012-11-13 | E I Du Pont De Nemours And Company | Phase change material compositions |
US10047263B2 (en) | 2010-09-01 | 2018-08-14 | Reg Synthetic Fuels, Llc | Plastic phase change material and articles made therefrom |
US9315710B2 (en) | 2010-09-01 | 2016-04-19 | Reg Synthetic Fuels, Llc | Plastic phase change material and articles made therefrom |
US20120049402A1 (en) * | 2010-09-01 | 2012-03-01 | Syntroleum Corporation | Low cost process for manufacture of form-stable phase change material |
US9102080B2 (en) * | 2010-09-01 | 2015-08-11 | Reg Synthetic Fuels, Llc | Low cost process for manufacture of form-stable phase change material |
US9346930B2 (en) | 2010-09-01 | 2016-05-24 | Reg Synthetic Fuels, Llc | Low cost process for manufacture of form-stable phase change material |
US10086675B2 (en) * | 2011-09-14 | 2018-10-02 | Hutchinson | Electric or hybrid motor vehicle bodywork structure, this vehicle, and method for controlling/modifying the temperature of the passenger compartment thereof |
US20130062130A1 (en) * | 2011-09-14 | 2013-03-14 | Hutchinson | Electric or Hybrid Motor Vehicle Bodywork Structure, This Vehicle, and Method for Controlling/Modifying the Temperature of the Passenger Compartment Thereof |
US20130125486A1 (en) * | 2011-11-23 | 2013-05-23 | Kingspan Holdings (Irl) Limited | Energy efficient access floor panels and systems |
FR2993890A1 (en) * | 2012-07-25 | 2014-01-31 | Hutchinson | RUBBER COMPOSITION BASED ON AT LEAST ONE EPDM AND A PHASE CHANGE MATERIAL, THE INCORPORATING PIPE AND PROCESS FOR PREPARING THE SAME. |
US8895124B2 (en) | 2012-07-25 | 2014-11-25 | Hutchinson | Rubber composition based on at least one EPDM and a phase-change material, pipe incorporating same and process for preparing this composition |
EP2690137A1 (en) * | 2012-07-25 | 2014-01-29 | Hutchinson | Rubber composition containing at least one EPDM and a phase-change material, pipe including same and method for preparing said composition |
US20150203734A1 (en) * | 2012-08-10 | 2015-07-23 | Jsr Corporation | Heat storage material composition |
US20140087105A1 (en) * | 2012-09-25 | 2014-03-27 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, and thermal exchange implement comprising the gel |
US11739244B2 (en) * | 2012-09-25 | 2023-08-29 | Cold Chain Technologies, Llc | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US10077389B2 (en) * | 2012-09-25 | 2018-09-18 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US9556373B2 (en) * | 2012-09-25 | 2017-01-31 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, and thermal exchange implement comprising the gel |
US9598622B2 (en) * | 2012-09-25 | 2017-03-21 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US20210292630A1 (en) * | 2012-09-25 | 2021-09-23 | Cold Chain Technologies, Llc | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US20170247593A1 (en) * | 2012-09-25 | 2017-08-31 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US10829675B2 (en) * | 2012-09-25 | 2020-11-10 | Cold Chain Technologies, Llc | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US20190085226A1 (en) * | 2012-09-25 | 2019-03-21 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
US20140290285A1 (en) * | 2012-09-25 | 2014-10-02 | Cold Chain Technologies, Inc. | Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement |
CN103113852A (en) * | 2013-01-30 | 2013-05-22 | 成都新柯力化工科技有限公司 | Building phase change energy storage insulating powder and preparation method thereof |
CN103113852B (en) * | 2013-01-30 | 2015-03-11 | 成都新柯力化工科技有限公司 | Building phase change energy storage insulating powder and preparation method thereof |
WO2014151947A1 (en) * | 2013-03-15 | 2014-09-25 | Entropy Solutions Inc. | Methods for organic nucleating agents |
US10435606B2 (en) | 2014-05-01 | 2019-10-08 | Performance Materials Na, Inc. | Cables made of phase change material |
WO2015168096A1 (en) | 2014-05-01 | 2015-11-05 | E. I. Du Pont De Nemours And Company | Cables made of phase change material |
RU2670894C2 (en) * | 2014-05-19 | 2018-10-25 | Смартполимер Гмбх | Flexible pcm sheet materials |
RU2670894C9 (en) * | 2014-05-19 | 2018-12-17 | Смартполимер Гмбх | Flexible pcm sheet materials |
US10569493B2 (en) | 2014-11-24 | 2020-02-25 | Sabic Global Technologies B.V. | Enclosure with a condensation-resistant interior surface |
WO2017079018A1 (en) | 2015-11-03 | 2017-05-11 | E. I. Du Pont De Nemours And Company | Cables made of phase change material |
WO2017214398A1 (en) | 2016-06-09 | 2017-12-14 | E. I. Du Pont De Nemours And Company | Heat storage cable including closing system |
EP3878922A1 (en) | 2016-06-09 | 2021-09-15 | E. I. du Pont de Nemours and Company | Heat storage cable including closing system |
DE102016013415A1 (en) | 2016-11-10 | 2018-05-17 | Rainer Busch | Method for producing a dimensionally stable, leak-proof phase Change Material System (PCM-S) |
WO2018150000A1 (en) * | 2017-02-17 | 2018-08-23 | Smartpolymer Gmbh | Electric winding body with optimised performance characteristics and improved protection against overheating |
US11508504B2 (en) | 2017-02-17 | 2022-11-22 | Smartpolymer Gmbh | Electric winding body with optimised performance characteristics and improved protection against overheating |
WO2018204298A2 (en) | 2017-05-01 | 2018-11-08 | E. I. Du Pont De Nemours And Company | Composition and methods for coaxial devices including a phase change material |
CN107254297A (en) * | 2017-06-13 | 2017-10-17 | 中国科学技术大学 | A kind of flexible phase-change material for electronic equipment thermal control |
US20200231857A1 (en) * | 2017-10-02 | 2020-07-23 | Croda International Plc | Gel composition comprising a phase change material |
US11655408B2 (en) * | 2017-10-02 | 2023-05-23 | Croda International Plc | Gel composition comprising a phase change material |
CN107936928A (en) * | 2017-11-29 | 2018-04-20 | 杭州鲁尔新材料科技有限公司 | A kind of low-temperature phase-change material for medicine cold chain transportation |
US20190330508A1 (en) * | 2018-04-30 | 2019-10-31 | E I Du Pont De Nemours And Company | Composition and methods for coaxial devices including a phase change material |
US20210101371A1 (en) * | 2019-10-07 | 2021-04-08 | David Ross | Microwave heatable compositions and articles made therefrom |
US11731400B2 (en) * | 2019-10-07 | 2023-08-22 | David Samuel Ross | Microwave heatable compositions and articles made therefrom |
WO2022017592A1 (en) | 2020-07-21 | 2022-01-27 | Smart Advanced Systems Gmbh | Free-flowing mixture, use thereof and process for production thereof |
US11827756B2 (en) | 2020-07-21 | 2023-11-28 | Smart Advanced Systems Gmbh | Free-flowing mixture, its use, and method for its production |
Also Published As
Publication number | Publication date |
---|---|
US8333903B2 (en) | 2012-12-18 |
EP1838802A2 (en) | 2007-10-03 |
CN101115817B (en) | 2013-09-18 |
CA2588304A1 (en) | 2006-06-15 |
JP2008523204A (en) | 2008-07-03 |
WO2006062610A2 (en) | 2006-06-15 |
ATE541022T1 (en) | 2012-01-15 |
EP1838802B1 (en) | 2012-01-11 |
CN101115817A (en) | 2008-01-30 |
WO2006062610A3 (en) | 2007-02-08 |
ES2379637T3 (en) | 2012-04-30 |
CA2588304C (en) | 2012-12-18 |
JP5204491B2 (en) | 2013-06-05 |
US20110248208A1 (en) | 2011-10-13 |
EP2261297A2 (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8333903B2 (en) | Phase change material (PCM) compositions for thermal management | |
EP2569389B1 (en) | Phase change material compositions | |
US5718835A (en) | Heat storage composition | |
US7829197B2 (en) | Variable vapor barrier for humidity control | |
US8852749B2 (en) | Compositions and structures having tailored water vapor transmission | |
JP2008523204A5 (en) | ||
US8048519B2 (en) | Highly flame retardant panels | |
US20090269565A1 (en) | Polymeric laminates including nanoclay | |
CA2712555A1 (en) | Thermoplastic halogen-free flame retardant formulations | |
CA3068724C (en) | Flame retardant vapor retarding membranes | |
EP2751187A1 (en) | Olefin-based polymer compositions and articles prepared therefrom | |
US10435550B2 (en) | Variable vapor barrier for humidity control | |
JP6739862B2 (en) | Flame-retardant resin composition | |
JPH0485387A (en) | Heat storage material | |
US20100120953A1 (en) | Highly Filled, Propylene-Ethylene Copolymer Compositions | |
WO2016000869A1 (en) | Polyvinyl chloride-free decorative surface coverings | |
JP7558912B2 (en) | Thermally expandable fire-resistant composition, thermally expandable fire-resistant sheet and laminate | |
ITTO20070664A1 (en) | EXPANDED POLYOLEPHIN EXPANDED PRODUCT IN PARTICULAR FOR THERMAL AND ACOUSTIC INSULATION. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DUPONT DE NEMOURS (LUXEMBOURG) SARL, LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REISDORF, RAYMOND JOSEPH;REEL/FRAME:017289/0667 Effective date: 20051208 Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROLLAND, LOIC PIERRE;REEL/FRAME:017289/0663 Effective date: 20060116 Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DUPONT DE NEMOURS (LUXEMBOURG) S.A.R.L.;REEL/FRAME:017289/0665 Effective date: 20051209 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |