US20060122112A1 - Method for preventing or treating osteosarcoma - Google Patents

Method for preventing or treating osteosarcoma Download PDF

Info

Publication number
US20060122112A1
US20060122112A1 US11/201,147 US20114705A US2006122112A1 US 20060122112 A1 US20060122112 A1 US 20060122112A1 US 20114705 A US20114705 A US 20114705A US 2006122112 A1 US2006122112 A1 US 2006122112A1
Authority
US
United States
Prior art keywords
pedf
human
factor
pigment epithelium
osteosarcoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/201,147
Inventor
Sho-ichi Yamagishi
Tsutomu Imaizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurume University
Original Assignee
Kurume University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004355711A external-priority patent/JP2005298473A/en
Application filed by Kurume University filed Critical Kurume University
Assigned to KURUME UNIVERSITY reassignment KURUME UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMAIZUMI, TSUTOMU, YAMAGISHI, SHO-ICHI
Publication of US20060122112A1 publication Critical patent/US20060122112A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • A61K38/57Protease inhibitors from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag

Definitions

  • the invention relates to a method for preventing or treating osteosarcoma.
  • angiogenic switch an alteration in the balance of pro-angiogenic and anti-angiogenic molecules that leads to tumor neovascularization (1).
  • Many tumors not only overexpress multiple angiogenic factors such as human vascular endothelial growth factor (VEGF), basic fibroblast growth factor and interleukin-8, but also underexpress angiogenic inhibitors such as thrombospondin-1, thus favoring angiogenesis (11, 12).
  • VEGF vascular endothelial growth factor
  • basic fibroblast growth factor and interleukin-8
  • angiogenic inhibitors such as thrombospondin-1
  • Angiogenesis a process by which new vascular networks are formed from pre-existing capillaries, is required for tumors to grow, invade and metastasize (1, 2). Tumors are unable to grow beyond a volume of 1-2 mm 3 without establishing a vascular supply because cells must be within 100-200 ⁇ m of a blood vessel to survive (1, 2). Tumor vessels are genetically stable, and less likely to accumulate mutations that allow them to develop drug resistance in a rapid manner (3). Therefore, targeting vasculatures that support tumor growth, rather than cancer cells, is considered one of the most promising approaches to cancer therapy.
  • PEDF Pigment epithelium-derived factor
  • PEDF is also known to effectively suppress retinal and choroidal neovascularization caused by ischemia and age-related macular degeneration, respectively (6, 13).
  • WO9324529 there is merely disclosed that PEDF may be useful to treat retinoblastoma, but any concrete pharmacological data to prove such activity were not taught.
  • Doll et al reported that PEDF-deficient mice likely suffer from pancreas cancers (14). However, a functional role of PEDF in osteosarcoma remains to be elucidated.
  • An object of the present invention is to provide a novel method for preventing or treating osteosarcoma.
  • the present inventors have investigated in vitro growth characteristics of the human osteosarcoma cell line MG63 treated with human PEDF, and found that human PEDF exhibited a potent inhibitory effect on proliferation of osteosarcoma. Furthermore, human PEDF inhibited the expression of VEGF in human osteosarcoma cells.
  • the present invention relates to a method for preventing or treating osteosarcoma (including the recurrence), which comprises administering an effective amount of at least one selected from the group consisting of:
  • the mammalian subject may be a human subject.
  • FIG. 1 is a graph showing the dose-dependent effect of PEDF protein on growth of human MG63 osteosarcoma cells.
  • Ab means anti-PEDF antibody. *, P ⁇ 0.05 compared with control cells without the addition of PEDF.
  • FIG. 2 is a graph showing the inhibition of the expression of VEGF in human MG63 osteosarcoma cells by PEDF.
  • PEDF pigment epithelium-derived factor
  • the amino acid sequence and the nucleic acid sequence of PEDF are described in Proc. Natl. Acad. Sci. U.S.A. 90 (4), 1526-1530 (1993) (this reference is incorporated herein by reference), and are registered under Genbank Accession No. M76979.
  • the amino acid sequence and the nucleic acid sequence of PEDF are shown in SEQ ID Nos.: 1 and 2, respectively.
  • PEDF includes all kinds of PEDF derived from mammals such as human, dog, cat, cow, horse and monkey. When the subject to be treated by the invention is human, they should have the functionally equivalent property to human PEDF and PEDF derived from human is preferred.
  • an expression plasmid is constructed by inserting a DNA of the present invention into an appropriate expression vector (e.g., pBK-CMV). Subsequently, the expression plasmid is introduced into appropriate host cells to obtain transformants. Examples of host cells include those cells of prokaryotes such as Escherichia coli , unicellular eukaryotes such as yeast, and multicellular eukaryotes such as insects or animals.
  • Transfer of expression plasmid into host cells may be achieved by conventional methods such as calcium phosphate method, electric pulse method, Lipofection method, or the like. Desired proteins are produced by culturing the transformants in appropriate medium according to conventional methods. The protein thus obtained may be isolated and purified according to standard biochemical procedures.
  • variant of PEDF that has the functionally equivalent property to the PEDF includes all kinds of PEDF variants as long as the variants have the functionally equivalent property to the PEDF.
  • the variants of PEDF are described in, for example, U.S. Pat. No. 6,319,687, WO03/059248 and WO93/24529 (those references are incorporated herein by reference).
  • PEDF variants include variants of PEDF that comprise an amino acid sequence that contains alteration of one or more, or several amino acid residues in the amino acid sequence of human PEDF wherein the alteration is substitution, deletion and/or addition, and have the functionally equivalent property to human PEDF.
  • the functionally equivalent property to human PEDF means the property to inhibit cell proliferation and/or VEGF expression in human osteosarcoma cells.
  • variants according to the invention may also be prepared by recombinant technology as shown above.
  • PEDF or a variant thereof can be administered, if necessary, in a form of a pharmaceutical composition with a conventional carrier.
  • the patient may be any mammal such as human, dog, cat, cow, horse or monkey and preferably, human patient.
  • a PEDF or a variant thereof may be administered in such a manner that they contact with osteosarcoma, for example, intradermally, hypodermically, or by intravenous injection.
  • a PEDF or a variant thereof is administered by injection to the site where the osteosarcoma exist directly, or by use of an antibody directed to the osteosarcoma. Any conventional method may be used to target osteosarcoma.
  • the amount of the protein to be administered may vary depending on the severity of the condition to be treated, the age and the weight of the patient, and the like. For an adult male patient (body weight about 60 kg), it is typical to administer 0.0001 mg-1000 mg, preferably 0.001 mg-100 mg, more preferably 0.01 mg-10 mg of a PEDF or a variant thereof every several days to every several months.
  • the present invention also provides a method for preventing or treating osteosarcoma which comprising administering a vector that comprises a nucleic acid that encodes a PEDF, or a variant thereof that comprises an amino acid sequence that contains alteration of one or several amino acid residues in the amino acid sequence of the PEDF wherein the alteration is substitution, deletion and/or addition, and has the functionally equivalent property to the PEDF.
  • nucleic acid includes a DNA and an RNA, which may be single-stranded or double-stranded. Nucleic acid can be easily prepared according to typical DNA synthesis or genetic engineering method, for example, according to the description of a standard text such as “Molecular Cloning”, 2nd ed., Cold Spring Harbor Laboratory Press (1989).
  • the vector should be designed so that the nucleic acid encoding a PEDF or a variant thereof incorporated in the vector can be highly expressed in the osteosarcoma cells.
  • Such vectors mean those useful for gene therapy as used conventionally.
  • the vectors include viral vectors wherein the nucleic acid as shown above is incorporated into DNA or RNA viruses such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, or Sindbis virus, and introduced into cells.
  • retrovirus adenovirus
  • adeno-associated virus herpes virus
  • vaccinia virus poxvirus
  • poliovirus poliovirus
  • Sindbis virus Sindbis virus
  • the vectors include pAd/CMV/V5-DEST Gateway Vector (Invitrogen).
  • a pharmaceutical composition comprising such a vector of the present invention as an active ingredient and, if necessary, conventional carriers may be used.
  • the vector may be administered, for example, intradermally, hypodermically, or by intravenous injection.
  • the vector is administered by injections to the site where the osteosarcoma masses exist directly, or by use of antibodies directed to the osteosarcoma. Any conventional method may be used to target osteosarcoma.
  • the amount of the vector to be administered may vary depending on the severity of the condition to be treated, the age and the weight of the patient and the like, it is typical to administer 0.0001 mg-100 mg, preferably 0.001 mg-10 mg, of a nucleic acid every several days to every several months.
  • PEDF cDNA was originally cloned from a human placenta cDNA library (Clontech, Palo Alto, Calif.), and inserted into the mammalian expression vector pBK-CMV (Stratagene, La Jolla, Calif.) as described in Reference 8.
  • PEDF coding protein
  • step 1 Condition of PCR (Parkin Elmer 2400) (step 1 ⁇ 1) 95° C. 5 min. (step 2 ⁇ 30) 95° C. 0.5 min. 60° C. 0.5 min. 72° C. 1.5 min. (step 3 ⁇ 1) 72° C. 10 min. 4° C. ⁇ min.
  • the PCR product was ligated to the SmaI site of pBluescript II KS.
  • the construction was confirmed by digestion with restriction enzymes and sequencing, and also checked to contain the Xba I site at the 5′ side.
  • the PEDF PCR product that had been cut with Xba I and Hind III (bulnted) was cloned into pBK-CMV (STRATAGENE) between Nhe I (blunted) and Xba I sites, to give a PEDF expression vector, plasmid pBK-CMV-PEDF.
  • OligoDNAs for His-Tag, 5′-AATTCCATCATCATCATCATTAAT-3′ (SEQ ID NO: 6) and 5′-CTAGATTAATGATGATGATGATGATGG-3′ (SEQ ID NO: 7) were synthesized, and annealed each other.
  • an oligoDNA was synthesized by PCR using 5′-CGGAATTCGGGGCCCCTGGGGTCC-3′ (SEQ ID NO: 8) and the Fw primer (SEQ ID NO: 4) described above, and using pBK-CMV-PEDF as template.
  • the amplified product was cut with Bgl II and Eco RU, and the cut product was ligated to the annealed oligoDNA for His Tag as described above.
  • the ligated product was inserted into the purified pBK-CMV-PEDF which had been cut with Bgl II and Xba I. The construction was confirmed by digestion with restriction enzymes and sequencing.
  • the enhancer segment which was isolated from pcDNA4-HisMax (Invitrogen) using Sac I and Xba I was ligated to the same restriction enzyme sites of pBluescript II KS. After isolation of the clone, the vector was cut at the Nco I site (blunted) and Bam HI site to give the vector backbone.
  • an oligoDNA was synthesized using 5′-GCATGCAGGCCCTGGTGCTACTCC-3′ (SEQ ID NO: 9) (Sph I site was inserted to the PEDF 5′ end) and 5′-TTAGGTACCATGGATGTCTGGGCT-3′ (SEQ ID NO: 10), and using pBK-CMV-PEDF as template, and the synthesized product was inserted into pGEM-T easy (Promega). The clone was isolated, and then cut at Sph I site (blunted) and Bam HI site. The resulting fragment was inserted into the vector backbone described above.
  • the translational enhancer-PEDF 5′ portion was removed from the resulting vector by cutting its Sac I site (blunted) and Bam HI site.
  • the fragment containing the translational enhancer-PEDF 5′ portion was ligated to pBK-CMV-PEDF having 3′ His-Tag which had been cut at the Nhe I site (blunted) and Bam HI site to give an expression vector for purification of PEDF.
  • the resulting vector was confirmed by digestion with restriction enzyme and sequencing.
  • 293T cells (ATCC No. CRL-11268, ATCC, Rockville, Md.) were transfected with an expression vector for purification of PEDF as prepared above using the FuGENE 6 transfection reagent (Roche Diagnostics, Mannheim, Germany) according to the manufacturer's instructions. Then, PEDF proteins were purified from conditioned media by a Ni-NTA spin kit (Qiagen GmbH, Hilden, Germany) according to the manufacture's instructions. SDS-PAGE analysis of purified PEDF proteins revealed a single band with a molecular weight of about 50 kDa, which showed reactivity with the previously described Ab against human PEDF (8).
  • Polyclonal Ab against 44-mer PEDF polypeptides (VLLSPLSVATALSALSLGAEQRTESIIHRALYYDLISSFDIHGT: SEQ ID NO: 3) was prepared as previously described (8). The present inventors confirmed that the polyclonal Ab actually bound to purified PEDF protein.
  • MG63 human osteosarcoma cells which were available from Riken Cell Bank, were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% of fetal bovine serum (FBS) (ICN Biomedicals Inc., Aurora, Ohio, USA) and 100 units/ml penicillin/streptomycin.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • PEDF fetal bovine serum
  • PEDF dose-dependently decreased the viable cell numbers.
  • PEDF at the concentration of 100 nM decreased the cell numbers to less than 50% of that in the control. This effect is almost equivalent to that of 0.3 nM of methotrexate. This effect of PEDF was disappeared by adding anti-PEDF antibody prepared as above. Those results demonstrate that PEDF directly affects osteosarcoma cells and inhibits the cell proliferation.
  • VEGF is one of the most important growth factors involved in angiogenic switch in human tumors. PEDF acted against MG63 osteosarcoma cells, and inhibited the expression of VEGF which plays the most important role for the induction of the angiogenesis in tumor cells.
  • RNAs were isolated from MG63 cells treated with or without the indicated concentrations of PEDF for 4 hours, and then the amount of human VEGF mRNA was analyzed by RT-PCR.
  • the primer for the detection of human VEGF mRNA was described, for example, by S. Yamagishi et al., Journal of Biological Chemistry, 2002, 277(23), 20309-20315 (this reference is incorporated herein by reference).
  • RT-PCR method was reported by M. Nomura et al., Journal of Biological Chemistry, 1995, 270(47), 28316-28324 (this reference is incorporated herein by reference). As summarized in FIG.
  • the results of the measurement shows that the 100 nM PEDF treatment group decreased to almost 50% level of the expression of human VEGF mRNA as compared the non-treatment group. This result indicates that PEDF inhibits secretion of VEGF from osteosarcoma cells, leading to inhibition of tumor angiogenesis.

Abstract

Provided is a novel method for preventing or treating osteosarcoma, which comprises administering an effective amount of at least one selected from the group consisting of: (a) a pigment epithelium-derived factor; (b) a variant of the pigment epithelium-derived factor (a) that has the functionally equivalent property to the factor (a), and (c) a vector that comprises the nucleic acid molecule encoding at least one selected from the group consisting of the factor (a) and the variant (b) to a mammalian subject, especially to a human subject, in need thereof.

Description

    TECHNICAL FIELD
  • The invention relates to a method for preventing or treating osteosarcoma.
  • CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefits of Japanese patent application number 2004-355711, filed in Japan on Dec. 18, 2004, the subject matter of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • A major event in tumor growth and expansion is the “angiogenic switch”, an alteration in the balance of pro-angiogenic and anti-angiogenic molecules that leads to tumor neovascularization (1). Many tumors not only overexpress multiple angiogenic factors such as human vascular endothelial growth factor (VEGF), basic fibroblast growth factor and interleukin-8, but also underexpress angiogenic inhibitors such as thrombospondin-1, thus favoring angiogenesis (11, 12).
  • Angiogenesis, a process by which new vascular networks are formed from pre-existing capillaries, is required for tumors to grow, invade and metastasize (1, 2). Tumors are unable to grow beyond a volume of 1-2 mm3 without establishing a vascular supply because cells must be within 100-200 μm of a blood vessel to survive (1, 2). Tumor vessels are genetically stable, and less likely to accumulate mutations that allow them to develop drug resistance in a rapid manner (3). Therefore, targeting vasculatures that support tumor growth, rather than cancer cells, is considered one of the most promising approaches to cancer therapy.
  • Pigment epithelium-derived factor (PEDF), a glycoprotein that belongs to the superfamily of serine protease inhibitors, was first purified from human retinal pigment epithelial cell conditioned media as a factor with potent human retinoblastoma cell neuronal differentiating activity (4). Recently, PEDF has been shown to be a potent inhibitor of angiogenesis in both cell culture and animal models. Indeed, PEDF is reported to inhibit retinal endothelial cell growth, migration and suppress ischemia induced retinal neovascularization (5, 6). Furthermore, loss of PEDF was associated with angiogenic activity in proliferative diabetic retinopathy (7). PEDF is also known to effectively suppress retinal and choroidal neovascularization caused by ischemia and age-related macular degeneration, respectively (6, 13). In WO9324529, there is merely disclosed that PEDF may be useful to treat retinoblastoma, but any concrete pharmacological data to prove such activity were not taught. Very recently, Doll et al reported that PEDF-deficient mice likely suffer from pancreas cancers (14). However, a functional role of PEDF in osteosarcoma remains to be elucidated.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a novel method for preventing or treating osteosarcoma.
  • The present inventors have investigated in vitro growth characteristics of the human osteosarcoma cell line MG63 treated with human PEDF, and found that human PEDF exhibited a potent inhibitory effect on proliferation of osteosarcoma. Furthermore, human PEDF inhibited the expression of VEGF in human osteosarcoma cells.
  • The present invention relates to a method for preventing or treating osteosarcoma (including the recurrence), which comprises administering an effective amount of at least one selected from the group consisting of:
  • (a) a pigment epithelium-derived factor;
  • (b) a variant of the pigment epithelium-derived factor (a) that has the functionally equivalent property to the factor (a), and
  • (c) a vector that comprises the nucleic acid molecule encoding at least one selected from the group consisting of the factor (a) and the variant (b)
  • to a mammalian subject in need thereof. The mammalian subject may be a human subject.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing the dose-dependent effect of PEDF protein on growth of human MG63 osteosarcoma cells. In the figure, Ab means anti-PEDF antibody. *, P<0.05 compared with control cells without the addition of PEDF.
  • FIG. 2 is a graph showing the inhibition of the expression of VEGF in human MG63 osteosarcoma cells by PEDF.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • 1. Proteins
  • In the present invention, “pigment epithelium derived factor” or “PEDF” means pigment epithelium-derived factor (PEDF) protein. The amino acid sequence and the nucleic acid sequence of PEDF are described in Proc. Natl. Acad. Sci. U.S.A. 90 (4), 1526-1530 (1993) (this reference is incorporated herein by reference), and are registered under Genbank Accession No. M76979. For reference, the amino acid sequence and the nucleic acid sequence of PEDF are shown in SEQ ID Nos.: 1 and 2, respectively. According to the invention, PEDF includes all kinds of PEDF derived from mammals such as human, dog, cat, cow, horse and monkey. When the subject to be treated by the invention is human, they should have the functionally equivalent property to human PEDF and PEDF derived from human is preferred.
  • Production of PEDF by expressing the DNA encoding the protein may be achieved in accordance with many publications and references such as “Molecular Cloning”, 2nd ed., Cold Spring Harbor Laboratory Press (1989). Particularly, an expression plasmid is constructed by inserting a DNA of the present invention into an appropriate expression vector (e.g., pBK-CMV). Subsequently, the expression plasmid is introduced into appropriate host cells to obtain transformants. Examples of host cells include those cells of prokaryotes such as Escherichia coli, unicellular eukaryotes such as yeast, and multicellular eukaryotes such as insects or animals.
  • Transfer of expression plasmid into host cells may be achieved by conventional methods such as calcium phosphate method, electric pulse method, Lipofection method, or the like. Desired proteins are produced by culturing the transformants in appropriate medium according to conventional methods. The protein thus obtained may be isolated and purified according to standard biochemical procedures.
  • As used herein, “variant of PEDF that has the functionally equivalent property to the PEDF” includes all kinds of PEDF variants as long as the variants have the functionally equivalent property to the PEDF. For example, the variants of PEDF are described in, for example, U.S. Pat. No. 6,319,687, WO03/059248 and WO93/24529 (those references are incorporated herein by reference).
  • Preferable examples of the PEDF variants include variants of PEDF that comprise an amino acid sequence that contains alteration of one or more, or several amino acid residues in the amino acid sequence of human PEDF wherein the alteration is substitution, deletion and/or addition, and have the functionally equivalent property to human PEDF.
  • “The functionally equivalent property to human PEDF” means the property to inhibit cell proliferation and/or VEGF expression in human osteosarcoma cells.
  • The variants according to the invention may also be prepared by recombinant technology as shown above.
  • It can be demonstrated whether or not a variant prepared as shown above has the functionally equivalent property according to the examples hereinafter.
  • According to the method of the present invention, PEDF or a variant thereof can be administered, if necessary, in a form of a pharmaceutical composition with a conventional carrier.
  • According to the method of the present invention, the patient may be any mammal such as human, dog, cat, cow, horse or monkey and preferably, human patient.
  • According to the present invention, a PEDF or a variant thereof may be administered in such a manner that they contact with osteosarcoma, for example, intradermally, hypodermically, or by intravenous injection. Preferably, a PEDF or a variant thereof is administered by injection to the site where the osteosarcoma exist directly, or by use of an antibody directed to the osteosarcoma. Any conventional method may be used to target osteosarcoma. The amount of the protein to be administered may vary depending on the severity of the condition to be treated, the age and the weight of the patient, and the like. For an adult male patient (body weight about 60 kg), it is typical to administer 0.0001 mg-1000 mg, preferably 0.001 mg-100 mg, more preferably 0.01 mg-10 mg of a PEDF or a variant thereof every several days to every several months.
  • 2. Nucleic Acids and Vectors
  • The present invention also provides a method for preventing or treating osteosarcoma which comprising administering a vector that comprises a nucleic acid that encodes a PEDF, or a variant thereof that comprises an amino acid sequence that contains alteration of one or several amino acid residues in the amino acid sequence of the PEDF wherein the alteration is substitution, deletion and/or addition, and has the functionally equivalent property to the PEDF.
  • As used herein, “nucleic acid” includes a DNA and an RNA, which may be single-stranded or double-stranded. Nucleic acid can be easily prepared according to typical DNA synthesis or genetic engineering method, for example, according to the description of a standard text such as “Molecular Cloning”, 2nd ed., Cold Spring Harbor Laboratory Press (1989).
  • According to the present invention, the vector should be designed so that the nucleic acid encoding a PEDF or a variant thereof incorporated in the vector can be highly expressed in the osteosarcoma cells.
  • Such vectors mean those useful for gene therapy as used conventionally. Examples of the vectors include viral vectors wherein the nucleic acid as shown above is incorporated into DNA or RNA viruses such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, or Sindbis virus, and introduced into cells. Among these methods, those using retrovirus, adenovirus, adeno-associated virus, or vaccinia virus are especially preferred. Specific examples of the vectors include pAd/CMV/V5-DEST Gateway Vector (Invitrogen).
  • According to the present invention, a pharmaceutical composition comprising such a vector of the present invention as an active ingredient and, if necessary, conventional carriers may be used.
  • According to the present invention, the vector may be administered, for example, intradermally, hypodermically, or by intravenous injection. Preferably, the vector is administered by injections to the site where the osteosarcoma masses exist directly, or by use of antibodies directed to the osteosarcoma. Any conventional method may be used to target osteosarcoma. Although the amount of the vector to be administered may vary depending on the severity of the condition to be treated, the age and the weight of the patient and the like, it is typical to administer 0.0001 mg-100 mg, preferably 0.001 mg-10 mg, of a nucleic acid every several days to every several months.
  • EXAMPLES
  • The present invention is further illustrated by the following examples, but is not limited by these examples in any respect.
  • All values were represented as means±S. E. M. (standard error of the mean). Statistical significance was evaluated using the Student's t test for paired comparison; p<0.05 was considered significant.
  • 1. Preparation of PEDF-Expression Vectors
  • PEDF cDNA was originally cloned from a human placenta cDNA library (Clontech, Palo Alto, Calif.), and inserted into the mammalian expression vector pBK-CMV (Stratagene, La Jolla, Calif.) as described in Reference 8.
  • In brief, the gene encoding PEDF was isolated from the cDNA library by PCR according to the following conditions:
  • PCR Primer
    Fw:  5′-CTCAGTGTGCAGGCTTAGAG-3′(SEQ ID NO: 4)
    Rev: 5′-CCTTCGTGTCCTGTGGAATC-3′(SEQ ID NO: 5)
  • ×10 pfu buffer 4 μl
    dNTP (2 mM each) 4 μl
    primer (Fw) (10 μM) 4 μl
    primer (Rev) (10 μM) 4 μl
    templates (200 mg)
    pfu polymerase (STRATAGENE) 0.5 μl
    distilled H2O /total 40 μl
  • Condition of PCR (Parkin Elmer 2400)
    (step 1 × 1)
    95° C.   5 min.
    (step 2 × 30)
    95° C. 0.5 min.
    60° C. 0.5 min.
    72° C. 1.5 min.
    (step 3 × 1)
    72° C.  10 min.
     4° C.  ∞ min.
  • After confirmation of the amplification, the PCR product was ligated to the SmaI site of pBluescript II KS. The construction was confirmed by digestion with restriction enzymes and sequencing, and also checked to contain the Xba I site at the 5′ side.
  • The PEDF PCR product that had been cut with Xba I and Hind III (bulnted) was cloned into pBK-CMV (STRATAGENE) between Nhe I (blunted) and Xba I sites, to give a PEDF expression vector, plasmid pBK-CMV-PEDF.
  • Then, an expression vector for purification of PEDF was constructed according to the following procedure.
  • OligoDNAs for His-Tag, 5′-AATTCCATCATCATCATCATCATTAAT-3′ (SEQ ID NO: 6) and 5′-CTAGATTAATGATGATGATGATGATGG-3′ (SEQ ID NO: 7) were synthesized, and annealed each other. To eliminate the stop codon of PEDF and insert an Eco RI site at the 3′ end, an oligoDNA was synthesized by PCR using 5′-CGGAATTCGGGGCCCCTGGGGTCC-3′ (SEQ ID NO: 8) and the Fw primer (SEQ ID NO: 4) described above, and using pBK-CMV-PEDF as template. The amplified product was cut with Bgl II and Eco RU, and the cut product was ligated to the annealed oligoDNA for His Tag as described above. The ligated product was inserted into the purified pBK-CMV-PEDF which had been cut with Bgl II and Xba I. The construction was confirmed by digestion with restriction enzymes and sequencing.
  • To insert a translational enhancer, the enhancer segment which was isolated from pcDNA4-HisMax (Invitrogen) using Sac I and Xba I, was ligated to the same restriction enzyme sites of pBluescript II KS. After isolation of the clone, the vector was cut at the Nco I site (blunted) and Bam HI site to give the vector backbone.
  • To modify the 5′ end of PEDF, an oligoDNA was synthesized using 5′-GCATGCAGGCCCTGGTGCTACTCC-3′ (SEQ ID NO: 9) (Sph I site was inserted to the PEDF 5′ end) and 5′-TTAGGTACCATGGATGTCTGGGCT-3′ (SEQ ID NO: 10), and using pBK-CMV-PEDF as template, and the synthesized product was inserted into pGEM-T easy (Promega). The clone was isolated, and then cut at Sph I site (blunted) and Bam HI site. The resulting fragment was inserted into the vector backbone described above.
  • The translational enhancer-PEDF 5′ portion was removed from the resulting vector by cutting its Sac I site (blunted) and Bam HI site. The fragment containing the translational enhancer-PEDF 5′ portion was ligated to pBK-CMV-PEDF having 3′ His-Tag which had been cut at the Nhe I site (blunted) and Bam HI site to give an expression vector for purification of PEDF. The resulting vector was confirmed by digestion with restriction enzyme and sequencing.
  • 2. Preparation of PEDF Proteins
  • 293T cells (ATCC No. CRL-11268, ATCC, Rockville, Md.) were transfected with an expression vector for purification of PEDF as prepared above using the FuGENE 6 transfection reagent (Roche Diagnostics, Mannheim, Germany) according to the manufacturer's instructions. Then, PEDF proteins were purified from conditioned media by a Ni-NTA spin kit (Qiagen GmbH, Hilden, Germany) according to the manufacture's instructions. SDS-PAGE analysis of purified PEDF proteins revealed a single band with a molecular weight of about 50 kDa, which showed reactivity with the previously described Ab against human PEDF (8).
  • 3. Preparation of Polyclonal Antibodies (Ab) Against Human PEDF
  • Polyclonal Ab against 44-mer PEDF polypeptides (VLLSPLSVATALSALSLGAEQRTESIIHRALYYDLISSFDIHGT: SEQ ID NO: 3) was prepared as previously described (8). The present inventors confirmed that the polyclonal Ab actually bound to purified PEDF protein.
  • 4. Effects on Osteosarcoma Cells
  • 4.1 Inhibition of Cell Proliferation
  • MG63 human osteosarcoma cells, which were available from Riken Cell Bank, were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% of fetal bovine serum (FBS) (ICN Biomedicals Inc., Aurora, Ohio, USA) and 100 units/ml penicillin/streptomycin. To the medium, 1 nM, 10 nM or 100 nM of PEDF, which had been prepared as above, was added, and cultured for 2 days, and the viable cell numbers were countered according to the method described by S. Yamagishi, et al., Journal of Biological Chemistry, 1997, 272 (13), 8723-8730 (this reference is incorporated herein by reference).
  • For the comparison, the similar experiments were conducted either by adding the known anti-tumor agent, methotrexate, in place of PEDF or without adding PEDF.
  • As shown in FIG. 1, PEDF dose-dependently decreased the viable cell numbers. PEDF at the concentration of 100 nM decreased the cell numbers to less than 50% of that in the control. This effect is almost equivalent to that of 0.3 nM of methotrexate. This effect of PEDF was disappeared by adding anti-PEDF antibody prepared as above. Those results demonstrate that PEDF directly affects osteosarcoma cells and inhibits the cell proliferation.
  • 4.2 Decreased Expression of VEGF mRNA
  • VEGF is one of the most important growth factors involved in angiogenic switch in human tumors. PEDF acted against MG63 osteosarcoma cells, and inhibited the expression of VEGF which plays the most important role for the induction of the angiogenesis in tumor cells.
  • Namely, Poly(A)+RNAs were isolated from MG63 cells treated with or without the indicated concentrations of PEDF for 4 hours, and then the amount of human VEGF mRNA was analyzed by RT-PCR. The primer for the detection of human VEGF mRNA was described, for example, by S. Yamagishi et al., Journal of Biological Chemistry, 2002, 277(23), 20309-20315 (this reference is incorporated herein by reference). RT-PCR method was reported by M. Nomura et al., Journal of Biological Chemistry, 1995, 270(47), 28316-28324 (this reference is incorporated herein by reference). As summarized in FIG. 2, the results of the measurement shows that the 100 nM PEDF treatment group decreased to almost 50% level of the expression of human VEGF mRNA as compared the non-treatment group. This result indicates that PEDF inhibits secretion of VEGF from osteosarcoma cells, leading to inhibition of tumor angiogenesis.
  • REFERENCES
  • The contents of the references cited in the specification and below are herein incorporated by reference.
    • 1. Holmgren, L., O'Reilly, M. S., and Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1:149-53. 1995.
    • 2. Carmeliet, P., and Jain, R. K. Angiogenesis in cancer and other diseases. Nature. 407:249-257. 2000.
    • 3. Scappaticci, F. A. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol. 20:3906-3927. 2002.
    • 4. Tombran-Tink, J., Chader, C. G., and Johnson, L. V. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity Exp Eye Res. 53:411-414. 1991.
    • 5. Dawson, D. W., Volpert, O. V., Gillis, P., Crawford, S. E., Xu, H. J., Benedict, W., and Bouck, N. P. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 285:245-248. 1999.
    • 6. Duh, E. J., Yang, H. S., Suzuma, I., Miyagi, M., Youngman, E., Mori, K., Katai, M., Yan, L., Suzuma, K., West, K., Davarya, S., Tong, P., Gehlbach, P., Pearlman, J., Crabb, J. W., Aiello, L. P., Campochiaro, P. A., and Zack, D. J. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci. 43:821-829, 2002.
    • 7. Spranger, J., Osterhoff, M., Reimann, M., Mohlig, M., Ristow, M., Francis, M. K., Cristofalo, V., Hammes, H. P., Smith, G., Boulton, M., and Pfeiffer, A. F. Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes. 50:2641-26415. 2001.
    • 8. Yamagishi, S., Inagaki, Y., Amano, S., Okamoto, T., Takeuchi, M., and Makita, Z. Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties. Biochem Biophys Res Commun. 296:877-882. 2002.
    • 9. Rofstad, E. K., and Halsoer, E. F. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 60:4932-4938. 2000.
    • 10. Reiher, F. K., Volpert, O. V., Jimenez, B., Crawford, S. E., Dinney, C. P., Henkin, J., Haviv, F., Bouck, N. P., and Campbell, S. C. Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimetics. Int J Cancer. 98:682-689. 2002.
    • 11. Holekamp, N. M., Bouck, N., and Volpert, O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol. 134:220227. 2002.
    • 12. Doll, J. A., Stellmach, V. M., Bouck, N. P., Bergh, A. R., Lee, C., Abramson, L. P., Cornwell, M. L., Pins, M. R., Borensztajn, J., and Crawford, S. E. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med. 9:774-80. 2003.
    • 13. Holekamp, N. M., Bouck, N., and Volpert, O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol. 134:220227. 2002.
    • 14. Doll, J. A., Stellmach, V. M., Bouck, N. P., Bergh, A. R., Lee, C., Abramson, L. P., Cornwell, M. L., Pins, M. R., Borensztajn, J., and Crawford, S. E. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med. 9:774-80. 2003.
    • 15. Abe R, Shimizu T, Yamagishi S, Shibaki A, Amano S, Inagaki Y, Watanabe H, Sugawara H, Nakamura H, Takeuchi M, Imaizumi T, Shimizu H. Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol. 2004 April;164(4):1225-32.
    • 16. Takenaka K, Yamagishi S I, Jinnouchi Y, Nakamura K, Matsui T, Imaizumi T. Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci. 2005 Jun. 25; [Epub ahead of print].

Claims (3)

1. A method for preventing or treating osteosarcoma, which comprises administering an effective amount of at least one selected from the group consisting of:
(a) a pigment epithelium-derived factor;
(b) a variant of the pigment epithelium-derived factor (a) that has the functionally equivalent property to the factor (a), and
(c) a vector that comprises the nucleic acid molecule encoding at least one selected from the group consisting of the factor (a) and the variant (b) to a mammalian subject in need thereof.
2. The method of claim 1, wherein the mammalian subject is a human subject.
3. The method of claim 2, wherein the pigment epithelium-derived factor is that derived from human.
US11/201,147 2004-12-08 2005-08-11 Method for preventing or treating osteosarcoma Abandoned US20060122112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004355711A JP2005298473A (en) 2004-03-19 2004-12-08 New therapeutic application of pigment epithelium-derived factor
JP2004-355711 2004-12-08

Publications (1)

Publication Number Publication Date
US20060122112A1 true US20060122112A1 (en) 2006-06-08

Family

ID=36575102

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/201,147 Abandoned US20060122112A1 (en) 2004-12-08 2005-08-11 Method for preventing or treating osteosarcoma

Country Status (1)

Country Link
US (1) US20060122112A1 (en)

Similar Documents

Publication Publication Date Title
JP5231214B2 (en) Erythropoietin mutant
US20110256119A1 (en) Novel uses of grs proteins or fragments thereof
JP2022116040A (en) Genetic construct
US20100216710A1 (en) Methods for stimulating nervous system regeneration and repair by regulating arginase i and polyamine synthesis
JP6467070B2 (en) Mutant DKK2 protein, nucleic acid encoding the same, method for producing the same, and use thereof
US8329654B2 (en) Use of IL-6/IL-6 chimera in Huntington&#39;s disease
US20020187936A1 (en) Methods of treating liver disease and liver damage with growth hormone and foxM1B
WO2019183246A1 (en) Compositions and methods of fas inhibition
EP3050570A1 (en) Pharmaceutical composition consisting of a combination of G-CSF with GM-CSF
WO2006055947A2 (en) Methods of regulating angiogenesis through stabilization of pedf
MADAR-SHAPIRO et al. Importance of splicing for prosaposin sorting
US20050222031A1 (en) Method for preventing or treating malignant melanoma
US20060122112A1 (en) Method for preventing or treating osteosarcoma
Randrianarison et al. BRCA1 carries tumor suppressor activity distinct from that of p53 and p21
KR20230079267A (en) AIMP2-DX2 and optionally a target sequence for miR-142 and a method for treating neurological diseases using the composition thereof
AU2001291849A1 (en) Use of IL-6R/IL-6 chimera in Huntington&#39;s disease
US20050271628A1 (en) Negative-sense RNA virus vector for nerve cell
JP2009532369A (en) Stimulation of nerve regeneration by secretory leukocyte protease inhibitor
US20020031493A1 (en) Recombinant adenoviruses coding for glial-derived cell neurotrophic factor (gdnf)
US11891429B2 (en) Methods for regulating endogenous production of lactoferrin and sub-peptides thereof
CN117959442A (en) Agent for preventing or treating pulmonary fibrosis and application thereof
KR20230095460A (en) Mesenchymal stem cells overexpressing sFlt-1 having treating malignant melanoma and use thereof
KR20230133454A (en) Modified mitochondria comprising prodrug converting enzyme and use thereof
WO2023094581A1 (en) Compositions for the treatment of glioblastoma
KR20230080710A (en) Corneal endothelial cell culture method using agent for increasing miR-30c-1 expression level and composition for treating corneal endothelial cell disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: KURUME UNIVERSITY, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAGISHI, SHO-ICHI;IMAIZUMI, TSUTOMU;REEL/FRAME:016893/0036

Effective date: 20050808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION