US20060117698A1 - Brick system with horizontal and vertical connective king-slots, for complete construction works and decoration - Google Patents

Brick system with horizontal and vertical connective king-slots, for complete construction works and decoration Download PDF

Info

Publication number
US20060117698A1
US20060117698A1 US10/543,805 US54380505A US2006117698A1 US 20060117698 A1 US20060117698 A1 US 20060117698A1 US 54380505 A US54380505 A US 54380505A US 2006117698 A1 US2006117698 A1 US 2006117698A1
Authority
US
United States
Prior art keywords
bricks
slots
recess
roof
prominences
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/543,805
Inventor
Papachatzis Dimitrios
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20060117698A1 publication Critical patent/US20060117698A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/04Walls having neither cavities between, nor in, the solid elements
    • E04B2/06Walls having neither cavities between, nor in, the solid elements using elements having specially-designed means for stabilising the position
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0206Non-undercut connections, e.g. tongue and groove connections of rectangular shape

Definitions

  • This invention refers to a schematic series of connected construction bricks, with horizontal and vertical, female and male slots, which create complete building constructions with the addition of glue or other substance for joint connection.
  • the bricks of the present invention have the following categories:
  • the flat as well as the vertical construction bricks have the following categories:
  • the oblong bricks are made of three parallel rectangular parallelepipeds, FIGS. 5 and 6 , in their large side and adjacent two by two between them, with the middle one in parallel lifted against the others in a distance equal, smaller or greater than their smaller side thus creating a female king-recess in its lower part and a male king-prominence in its upper part.
  • FIGS. 20 and 20 A 2.-Oblong bricks closed on one end and with a male king-prominence on the other end.
  • FIGS. 1, 2 , 3 , 4 3.-Oblong bricks with a female king-recess on one end and with a male king-prominence on the other end.
  • FIGS. 1, 2 , 3 , 4 3.-Oblong bricks with a female king-recess on one end and with a male king-prominence on the other end.
  • FIGS. 43, 44 4.-Oblong bricks with a female king-recess on both ends.
  • FIGS. 21 and 21 A 5.-Oblong bricks with a male king-prominence on both ends.
  • the recesses, prominences and levels on oblong bricks form a uniform and solid whole.
  • the recesses, prominences, knots and the levels in the corner bricks form a uniform and solid whole.
  • A′ side 2a + x
  • B′ side a + x
  • A′ side a + x
  • B′ side 2a + x
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • FIGS. 7, 8 , 9 and 10 are created by incorporating in a knot, equal to the knot of the corner brick, with a T-shaped female recess and male prominence, of three oblong bricks aligned to the extension of its recesses and prominences.
  • the recesses, prominences, knots and the levels in T-shaped bricks form a uniform and solid whole.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • Corner bricks FIGS. 11 and 12 are created by inserting in a knot equal to the one of the corner brick, with a female recess and a male prominence of a cross shape, four oblong bricks aligned with the extension of the recesses and prominences.
  • the recesses, prominences, knots and the levels in T-shaped bricks form a uniform and solid whole.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • FIGS. 22, 23 , 24 , 25 and 26 are similar to the oblong bricks; their difference is regarding their parallelogramic parts, their male prominences and female recesses are made of concave levels.
  • the concave bricks are distinguished in concave bricks for vertical construction and bricks for arches.
  • FIGS. 22 and 23 for vertical construction have recesses and prominences similar to the oblong bricks.
  • the recesses and prominences have recesses and prominences in their sections and they are limited within those.
  • Concave bricks in their concave side are parts of the levels of two concentric circles divided symmetrically by its aces and their dimensions vary.
  • the concave surfaces of the arches are quarters of slab formed by the creation of a circle into a square FIG. 28 . These are placed above the arches and are tied on the side and top notches of the oblong bricks.
  • the extensions are small parallelepipeds whose width is equal approximately to one third of x width 2x and of height x which is incorporated to the female king-recesses of the bricks turning them to male.
  • Double oblong bricks FIGS. 42 and 42 A are made of 2 single oblong bricks in between which inflated polystyrene or any other insulation material is added. These bricks are suitable for heat insulation.
  • Double corner bricks are made of two single corner bricks in between which inflated polystyrene or any other insulation material is added. These bricks are suitable for heat insulation.
  • FIG. 84 These bricks are square with cross-shaped recesses at their lower part and prominences at their upper part, placed one top of each other formatting pillars for construction and fencing. On their upper finish a brick with a cross-shaped female prominence in its lower part, is placed and a parallelepiped top on top of it which is the finish or a support of another geometrical solid body.
  • FIG. 84
  • Bricks A1, A2, A3m A4, A5, A6, A7, A8, A9 and A10 can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future. Furthermore, these bricks can be enforced vertically and horizontally with grill of iron bar FIG. 33 , for structural stronger constructions.
  • FIGS. 13, 14 and 15 have the same shape as the oblong bricks of single masonry with:
  • FIG. 14A A first figure. 14A
  • Suggested values a and x correspond to the adopted values of the oblong bricks. They are reinforced with iron bars of stainless steel profile pipes in the direction of their width internally.
  • FIGS. 86 and 87 B2.-Door and window bricks.
  • Door and window bricks are uniform door profiles FIG. 87 and windows FIG. 87 for the creation of doors and windows with arches. On their sides and at their lower part they have king-recesses or prominences for their incorporation in the structural direction of bricks. For this reason, their length as well as their width equals to a number multiple of the enacted factor a.
  • Bricks B1 and B2 can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future.
  • C.-Bricks for floor and roof support have the following categories:
  • FIGS. 48, 49 , 56 and 57 are made of one oblong brick and by another two of the same length and height parallelepipeds, adjusted longitudinal in its recesses and prominences. All their parts form a uniform solid whole.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • FIGS. 50, 58 and 59 are made of one corner brick and two parallelepipeds adjusted in parallel of the external angle of its recesses and prominences. All of their parts form a uniform and solid whole.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • FIGS. 52, 53 , 60 and 61 are made of one T-shaped brick and three parallelepipeds, two parallelepipeds adjusted in parallel and below the recesses and prominences of its height, and one in parallel of its horizontal recesses and prominences. All of their parts form a uniform and solid whole.
  • Length 2a+x
  • x width of the base of the oblong brick and the width of the base of each support.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • FIGS. 54, 55 , 62 and 63 are made of one cross-shaped type brick and of four parallelepipeds, the parallelepipeds complete the four sides of the cross, thus creating a new parallelepiped. All of their parts form a uniform and solid whole.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • FIGS. 66, 67 , 68 and 69 Double internal bricks for straight support, FIGS. 66, 67 , 68 and 69 , are made of one brick of straight support type with an adjusted parallelepiped in parallel with one trunking of its prominence, thus creating a new parallelepiped. All their parts form a uniform solid whole.
  • Double internal bricks for corner type support are made of one double angle type brick with an adjusted parallelepiped in the internal part of the angle, thus creating a new parallelepiped. All of their parts form a uniform and solid whole.
  • Bricks C1, C2, C3, C4, C5 and C6, can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future.
  • D.-Final roof bricks have the following categories:
  • FIGS. 70 and 71 have a ramp shape with a lateral external blade and with two female recesses vertical to its lower part, a closed one in its small side width and an open expanded one in its big side width. With these slots it is connected with the double oblong bricks. The roof surface is placed vertically in the internal part of the expanded recess.
  • the surface of the inclined roof is placed in the inclined slot of the ramp.
  • the vertical parts of the brick may be connected with a female or male slot respectively.
  • Corner roof bricks FIGS. 74 and 75 have a ramp shape with a lateral external blade and with two female recesses vertical to its upper part, a closed one internally and an open expanded one externally. With these slots it is connected with the double corner bricks, while the roof surface is placed vertically in the internal part of the expanded recess.
  • the surface of the inclined roof is placed in the internal upper part of the inclined slot of the ramp.
  • the vertical parts of the brick may be connected with a female or male slot respectively.
  • FIGS. 76 and 77 have a ramp shape with a lateral external blade and with two female recesses vertical to its upper part, a closed one internally and an open expanded one externally. With these slots it is connected with the double oblong bricks. The roof surface is placed vertically in the internal part of the expanded recess.
  • the surface of the inclined roof is placed in the internal part of the inclined slot of the ramp.
  • the vertical parts of the brick may be connected with a female or male slot respectively.
  • FIG. 85 are oblong bricks of type shape 3, with a slot in the middle of its length for the insertion of wooden or other support rafters.
  • FIGS. 29, 30 and 31 In the event there is a pre-assembled roof, is made of two articulate T-shaped type pieces connected in the upper finish. When these are glued with one another they form the finish of the connection with the roof.
  • the upper part of these pieces is cut according to the height of each level.
  • Bricks D1, D2, D3, D43 and D5 can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future.
  • the king-piles will be placed double in the event of double masonry.
  • the bricks must be placed in their first row, according to their shape, the straight ones for the current metres, the angles on the corners etc.
  • the bricks From the second row onwards the bricks must be placed in such a way in order to be crossed between them. This process will continue until the height of the base of the first floor minus one row of bricks. In the next row the bricks for the floor support will be placed. Then, the building is completed until the height of the roof.
  • the placement of the roof is made with roof bricks; the wood for the attic is placed on top or that of the upper ceiling and the wooden roof slab, slab or any other material.
  • FIGS. 72, 73 , 78 , 79 and 80 The base and the height of the corner and scalariformed roof bricks can set the inclination of the roof angle.
  • a top angle of 143 and 8′ degrees if formed. According to length 2a a top angle of 126 and 52′ degrees is formed and even 90 degrees.
  • the height is equal to a+x.
  • the height is equal to 2a+x.
  • FIGS. 78, 79 and 80 45 degrees and 0′, FIGS. 78, 79 and 80 .
  • the construction requires besides the lower king-pile, also vertical ones on the sides of the pillars as well as on the roof FIG. 45 . These king-piles must be evened and co-planar.
  • the building method is the same. The only difference may be in the case where the opening between the pillars or the walls does not have the same distance according to the sum of the length of the bricks. In this case, simple oblong pieces of supplements of different sizes can be used. In the finish of the roof the segmented brick can be used, which can be adjusted in the dimensions of the height of the construction with the method of cutting tiles.
  • Bricks with horizontal and vertical connective king-slots can be solid or have in their parallelepipeds, holes in different shapes with a section of known geometrical shapes; for example, circle, square, parallelepiped, rhomb, polygon etc.
  • FIGS. 81, 82 and 83 are examples of known geometrical shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Finishing Walls (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Floor Finish (AREA)

Abstract

The brick system with horizontal and vertical connective king-slots for complete building construction and decoration consists of parallelepiped, corner, T- or crossshaped bricks, curved and formed, which through horizontal and vertical female recesses and male prominences and with the help of king-rails at their base or optional on the sides and on the roof of the building, they are connected unbreakably together for the creation of an aseismic masonry construction and for the support of the building levels and the roof. The advantages of this invention are many in relation to already existing building systems, because: It offers new building possibilities, for easy and quick construction. It offers a uniform and absolute construction coherence, which makes the building aseismic. Due to the perfect connection of the bricks with bonding materials, the contractor is saved from plaster since they are replaced by stucco. The construction work is clean. The time required to complete the work is very little. It contributes to the economy of the labour and the material and as a result the total cost of the construction is much smaller.

Description

  • This invention refers to a schematic series of connected construction bricks, with horizontal and vertical, female and male slots, which create complete building constructions with the addition of glue or other substance for joint connection.
  • Bricks of similar type with rudimentary female and male slots in their vertical lines are well known. But this bricks do not work as structural breaks, but as rudimentary supplementary breaks or dependant by other materials.
  • Other known types of bricks are connected with female and male cylindrical slots, with slots suitable for iron bars, concrete etc.
  • Bricks with horizontal and vertical connection king-slots are fitted completely articulately with one another, but with the floor base and the roof, creating a uniform whole in the sense of a puzzle.
  • The advantages of this invention are many in comparison to the existing building systems. The use of the bricks system, with horizontal and vertical connective king-slots has many advantages as far as the following:
  • 1.-It offers new building possibilities, for easy and quick construction.
  • 2.-It offers a uniform and absolute construction coherence which makes the building aseismic.
  • 3.-Due to the perfect connection of the bricks with bonding materials, the contractor is saved from plaster and only stucco is needed.
  • 4.-The construction work is more dean.
  • 5.-The time required to complete the work is very little.
  • 6.-It contributes to the economy of the labour and the material and as a result the total cost of the construction is much smaller.
  • The bricks of the present invention have the following categories:
  • A.-Bricks for vertical construction, flat and concave.
  • B.-Roof, window and door bricks and window and door bricks.
  • C.-Bricks for floor and roof support.
  • D.-Final roof bricks.
  • The flat as well as the vertical construction bricks have the following categories:
  • A1.-Oblong bricks
  • FIGS. 1, 2, 3, 4, 5, 6, 20, 20A, 21, 21A, 21B, 21C, 32, 33, 38, 39, 40, 41, 43 and 44.
  • The oblong bricks are made of three parallel rectangular parallelepipeds, FIGS. 5 and 6, in their large side and adjacent two by two between them, with the middle one in parallel lifted against the others in a distance equal, smaller or greater than their smaller side thus creating a female king-recess in its lower part and a male king-prominence in its upper part.
  • The upper middle, parallel lifted parallelepiped with its horizontal position and its length gives the following brick types:
  • 1.-Oblong bricks closed on both ends. FIGS. 32 and 38
  • 2.-Oblong bricks closed on one end and with a male king-prominence on the other end. FIGS. 20 and 20A
  • 3.-Oblong bricks with a female king-recess on one end and with a male king-prominence on the other end. FIGS. 1, 2, 3, 4.
  • 4.-Oblong bricks with a female king-recess on both ends. FIGS. 43, 44
  • 5.-Oblong bricks with a male king-prominence on both ends. FIGS. 21 and 21A.
  • The recesses, prominences and levels on oblong bricks form a uniform and solid whole.
  • The dimensions of the above oblong bricks without the addition of any prominences or the extraction of recesses are:
    Length = a Height = a Width = x
    or Length = 2a Height = a Width = x
  • Variables a and x can have an metric value, indicative suggested values could be: a=20 or 10 centimetres x=12 or 10 centimetres.
  • A2.-Corner bricks.
  • Corner bricks FIGS. 15, 16, 17 and 18, are made by incorporating in a parallelepiped knot, of length=x, width=x, height=a, with a female recess at the lower level of a right angle type and a male prominence of a right angle type at its lower level, two oblong bricks aligned with the extension of its recesses and prominences.
  • The recesses, prominences, knots and the levels in the corner bricks form a uniform and solid whole.
  • The dimensions of the corner oblong bricks without the addition of any prominences or the extraction of recesses are:
    A′ side = 2a + x, B′ side = a + x
    A′ side = a + x, B′ side = 2a + x
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • A3. T-shaped bricks
  • T-shaped bricks FIGS. 7, 8, 9 and 10, are created by incorporating in a knot, equal to the knot of the corner brick, with a T-shaped female recess and male prominence, of three oblong bricks aligned to the extension of its recesses and prominences.
  • The recesses, prominences, knots and the levels in T-shaped bricks form a uniform and solid whole.
  • The dimensions of the prementioned T-shaped bricks without the addition of any prominences or the extraction of recesses are:
    1. - Total vertical length = 2a + x, Horizontal side = a + x
    2. - Total vertical length = a + x, Horizontal side = 4a + x
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • A4.-Cross-shaped bricks, FIGS. 11 and 12
  • Corner bricks FIGS. 11 and 12, are created by inserting in a knot equal to the one of the corner brick, with a female recess and a male prominence of a cross shape, four oblong bricks aligned with the extension of the recesses and prominences.
  • The recesses, prominences, knots and the levels in T-shaped bricks form a uniform and solid whole.
  • The dimensions of the prementioned cross-shaped bricks without the addition of any prominences or the extraction of recesses are:
  • 1.-Total vertical length=4a+x, Total Horizontal width=a+x FIG. 11
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • A5.-Concave bricks, FIGS. 11 and 12
  • Concave brick FIGS. 22, 23, 24, 25 and 26 are similar to the oblong bricks; their difference is regarding their parallelogramic parts, their male prominences and female recesses are made of concave levels.
  • The concave bricks are distinguished in concave bricks for vertical construction and bricks for arches.
  • Concave bricks FIGS. 22 and 23, for vertical construction have recesses and prominences similar to the oblong bricks.
  • In the bricks for arches FIGS. 25 and 26, the recesses and prominences have recesses and prominences in their sections and they are limited within those.
  • Concave bricks in their concave side are parts of the levels of two concentric circles divided symmetrically by its aces and their dimensions vary.
  • A6.-Concave surfaces of arches.
  • The concave surfaces of the arches are quarters of slab formed by the creation of a circle into a square FIG. 28. These are placed above the arches and are tied on the side and top notches of the oblong bricks.
  • A7.-Extensions. FIGS. 21B and 21C
  • The extensions are small parallelepipeds whose width is equal approximately to one third of x width 2x and of height x which is incorporated to the female king-recesses of the bricks turning them to male.
  • A8.-Double oblong bricks
  • Double oblong bricks FIGS. 42 and 42A are made of 2 single oblong bricks in between which inflated polystyrene or any other insulation material is added. These bricks are suitable for heat insulation.
  • A9.-Double corner bricks
  • Double corner bricks are made of two single corner bricks in between which inflated polystyrene or any other insulation material is added. These bricks are suitable for heat insulation.
  • A10.-Bricks for pillars
  • These bricks are square with cross-shaped recesses at their lower part and prominences at their upper part, placed one top of each other formatting pillars for construction and fencing. On their upper finish a brick with a cross-shaped female prominence in its lower part, is placed and a parallelepiped top on top of it which is the finish or a support of another geometrical solid body. FIG. 84
  • Bricks A1, A2, A3m A4, A5, A6, A7, A8, A9 and A10, can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future. Furthermore, these bricks can be enforced vertically and horizontally with grill of iron bar FIG. 33, for structural stronger constructions.
  • B.-Roof, window and door bricks and window and door bricks.
  • B1.-Roof, window and door bricks
  • Roof and window and door bricks FIGS. 13, 14 and 15, have the same shape as the oblong bricks of single masonry with:
  • length from 4a up to 15a, height=a and width=x. FIGS. 13 and 14
  • And double masonry with:
  • length from 4a up to 15a, height=a and width=2x+the width of the insulating material. FIG. 14A
  • Suggested values a and x correspond to the adopted values of the oblong bricks. They are reinforced with iron bars of stainless steel profile pipes in the direction of their width internally.
  • In a distance equal to a under their length they are connected with the upper left and right finishes of the windows or entrances.
  • B2.-Door and window bricks. FIGS. 86 and 87.
  • Door and window bricks are uniform door profiles FIG. 87 and windows FIG. 87 for the creation of doors and windows with arches. On their sides and at their lower part they have king-recesses or prominences for their incorporation in the structural direction of bricks. For this reason, their length as well as their width equals to a number multiple of the enacted factor a.
  • These forms belong in two categories as far as their width, single and double respective to the width and the construction of the roof and the door and window bricks.
  • In the direction of their length, width and height, internally, they are reinforced with a grill of iron bars or with stainless steel profile pipes.
  • Bricks B1 and B2, can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future.
  • C.-Bricks for floor and roof support have the following categories:
  • C1.-Single internal bricks for straight support.
  • Single internal bricks for straight support, FIGS. 48, 49, 56 and 57, are made of one oblong brick and by another two of the same length and height parallelepipeds, adjusted longitudinal in its recesses and prominences. All their parts form a uniform solid whole.
  • The dimensions of the prementioned bricks without the addition of any prominences or the extraction of recesses are:
  • Length=a or 2a, Height=a Width=3x where x=width of the base of the oblong brick and the width of the base of each support.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • C2.-Single internal bricks for corner type support.
  • Single internal bricks for corner type support, FIGS. 50, 58 and 59, are made of one corner brick and two parallelepipeds adjusted in parallel of the external angle of its recesses and prominences. All of their parts form a uniform and solid whole.
  • The dimensions of the prementioned bricks without the addition of any prominences or the extraction of recesses are:
  • Length=a+2x, Height=a Width=2a+2x where x=width of the base of the oblong brick and the width of the base of each support.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • C3.-T-shaped type single internal bricks for corners.
  • T-shaped type single internal bricks for corners, FIGS. 52, 53, 60 and 61, are made of one T-shaped brick and three parallelepipeds, two parallelepipeds adjusted in parallel and below the recesses and prominences of its height, and one in parallel of its horizontal recesses and prominences. All of their parts form a uniform and solid whole.
  • The dimensions of the prementioned bricks without the addition of any prominences or the extraction of recesses are:
  • Length=4a+x, Height=a Width=2a+2x
  • or Length=2a+x, Height=a Width=3a+2x where x=width of the base of the oblong brick and the width of the base of each support.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • C4.-Cross-shaped type single internal bricks.
  • Cross-shaped type single internal bricks, FIGS. 54, 55, 62 and 63, are made of one cross-shaped type brick and of four parallelepipeds, the parallelepipeds complete the four sides of the cross, thus creating a new parallelepiped. All of their parts form a uniform and solid whole.
  • The dimensions of the prementioned bricks without the addition of any prominences or the extraction of recesses are:
  • Length=4a+x, Height=a Width=2a+2x where x=width of the base of the oblong brick and the width of the base of each support.
  • Suggested values a and x correspond to the adopted values of the oblong bricks that form them.
  • C5.-Double internal bricks for straight support.
  • Double internal bricks for straight support, FIGS. 66, 67, 68 and 69, are made of one brick of straight support type with an adjusted parallelepiped in parallel with one trunking of its prominence, thus creating a new parallelepiped. All their parts form a uniform solid whole.
  • C6.-Double internal bricks for corner type support.
  • Double internal bricks for corner type support, FIGS. 64, 65, 68 and 69, are made of one double angle type brick with an adjusted parallelepiped in the internal part of the angle, thus creating a new parallelepiped. All of their parts form a uniform and solid whole.
  • Bricks C1, C2, C3, C4, C5 and C6, can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future.
  • D.-Final roof bricks have the following categories:
  • D1.-Straight roof brick.
  • Straight roof bricks FIGS. 70 and 71, have a ramp shape with a lateral external blade and with two female recesses vertical to its lower part, a closed one in its small side width and an open expanded one in its big side width. With these slots it is connected with the double oblong bricks. The roof surface is placed vertically in the internal part of the expanded recess.
  • The surface of the inclined roof is placed in the inclined slot of the ramp.
  • The vertical parts of the brick may be connected with a female or male slot respectively.
  • D2.-Corner roof brick.
  • Corner roof bricks FIGS. 74 and 75, have a ramp shape with a lateral external blade and with two female recesses vertical to its upper part, a closed one internally and an open expanded one externally. With these slots it is connected with the double corner bricks, while the roof surface is placed vertically in the internal part of the expanded recess.
  • The surface of the inclined roof is placed in the internal upper part of the inclined slot of the ramp.
  • The vertical parts of the brick may be connected with a female or male slot respectively.
  • There are two types for these bricks, left-sided and right-sided.
  • D3.-Scalariformed roof brick.
  • Scalariformed roof bricks FIGS. 76 and 77, have a ramp shape with a lateral external blade and with two female recesses vertical to its upper part, a closed one internally and an open expanded one externally. With these slots it is connected with the double oblong bricks. The roof surface is placed vertically in the internal part of the expanded recess.
  • The surface of the inclined roof is placed in the internal part of the inclined slot of the ramp.
  • The vertical parts of the brick may be connected with a female or male slot respectively.
  • There are two types for these bricks, left-sided and right-sided.
  • D4.-Rafter support brick
  • Rafter support bricks FIG. 85 are oblong bricks of type shape 3, with a slot in the middle of its length for the insertion of wooden or other support rafters.
  • D5.-Vertical structure finish.
  • Vertical structure finishes FIGS. 29, 30 and 31, in the event there is a pre-assembled roof, is made of two articulate T-shaped type pieces connected in the upper finish. When these are glued with one another they form the finish of the connection with the roof.
  • The upper part of these pieces is cut according to the height of each level.
  • Bricks D1, D2, D3, D43 and D5, can be made of argil, concrete, wood, glass, as well from material or combination of materials which are known or will be made known in the future.
  • CONSTRUCTION OF THE MASONRY
  • A.-Construction only with bricks
  • After the construction of the uniform base where the building will be supported, wooden, metal or concrete king-piles are placed on this, according to the architectural plan of the building, on top of which the bricks will be glued with strong glue on their lower feminine side.
  • The king-piles will be placed double in the event of double masonry.
  • The bricks must be placed in their first row, according to their shape, the straight ones for the current metres, the angles on the corners etc.
  • From the second row onwards the bricks must be placed in such a way in order to be crossed between them. This process will continue until the height of the base of the first floor minus one row of bricks. In the next row the bricks for the floor support will be placed. Then, the building is completed until the height of the roof.
  • The placement of the roof is made with roof bricks; the wood for the attic is placed on top or that of the upper ceiling and the wooden roof slab, slab or any other material. FIGS. 72, 73, 78, 79 and 80. The base and the height of the corner and scalariformed roof bricks can set the inclination of the roof angle.
  • Therefore, according to the length 3a a top angle of 143 and 8′ degrees if formed. According to length 2a a top angle of 126 and 52′ degrees is formed and even 90 degrees.
  • In the first and second case the height is equal to a+x.
  • In the third case of the 90 degrees the height is equal to 2a+x.
  • Based on these three cases the inclination of the straight roof bricks is set respectively as follows:
      • 18 degrees 26′
      • 26 degrees 34′
  • and 45 degrees and 0′, FIGS. 78, 79 and 80.
  • For the creation of windows we place the roof bricks for doors and windows and we continue they assembly onwards.
  • In a similar manner to the above we place the cylindrical walls as well as the arches.
  • B.-Construction on a concrete frame.
  • The construction requires besides the lower king-pile, also vertical ones on the sides of the pillars as well as on the roof FIG. 45. These king-piles must be evened and co-planar. The building method is the same. The only difference may be in the case where the opening between the pillars or the walls does not have the same distance according to the sum of the length of the bricks. In this case, simple oblong pieces of supplements of different sizes can be used. In the finish of the roof the segmented brick can be used, which can be adjusted in the dimensions of the height of the construction with the method of cutting tiles.
  • Decorative Bricks
  • In the event the bricks' external surface are embossed FIG. 41, they can give the impression of a stone masonry or other decoration.
  • Bricks with horizontal and vertical connective king-slots can be solid or have in their parallelepipeds, holes in different shapes with a section of known geometrical shapes; for example, circle, square, parallelepiped, rhomb, polygon etc. FIGS. 81, 82 and 83.
  • Combined bricks with horizontal and vertical king-slots can be used:
  • 1.-As a complete set of construction materials for buildings, offices, factories, gardens and fencing etc.
  • 2.-As a material of internal and external masonry.
  • 3.-As a material for decorative works.
  • 4.-As a material for constructions of any nature.

Claims (30)

1. A system of bricks with horizontal and vertical connective king-slots consisting of parallelepipeds tangential in parallel with each other or curved surfaces tangential in parallel with each other or other geometrical shapes tangential in parallel with each other, all consisting of undivided or not parts—bricks and through horizontal and vertical female recesses and male prominences and with the help of a metal king-rail at their base or similar optional on the side or the roof of the building, are connected unbreakably together for the creation of an aseismic masonry construction and for the support of the building levels and the roof.
2. According to claim 1 the bricks with horizontal and vertical connective slots, are characterized by the horizontal and vertical recesses and prominences that may be used as deep connections.
3. Based on claim 1 the bricks have the form of three tangential parallelepipeds from which the middle one is fairly elevated against the other two creating a recess slot on its lower part and a prominence slot on its upper part.
4. According to claim 1 the bricks that have the form of three tangential parallelepipeds from which the middle one is fairly elevated against the other two and pushed inside them creating slots for recesses and prominences on their sides as well as a recess slot on its lower part and a prominence slot on its upper part, all of them rectangular of equal width and height.
5. According to claims 1, 2, 3, and 4 the bricks have a length=a or 2a or 3a or 4a width=a or 2a or 3a or x and height=a or 2a or x, (a and x are any number) smaller or greater, to achieve the structural behaviour between them.
6. According to claims 1, 2, 3, and 4 the bricks (FIGS. 15, 16, 17, 18) are connected between them in an angular form, with the respective recess and prominence slots in the upper and low part of them giving bricks that form angles.
7. According to claims 1, 2, 3, and 4 the bricks (FIGS. 7, 8, 9, 10) are connected between them in a T-shape, with the respective recess and prominence slots in the upper and low part of them giving bricks that form a T-shape.
8. According to claims 1, 2, 3, and 4 the bricks (FIGS. 11, 12) are connected between them in a cross-shape, with the respective recess and prominence slots in the upper and low part of them giving bricks that form a cross shape.
9. According to claims 1, 2, 3, 4 and 5 the bricks (FIGS. 13, 14, 14 a) have various lengths with internal or not reinforcement of iron bars in their recess, creating structural bricks, binders for doors and windows and solid openings for doors and windows.
10. Forms of arch-shaped windows or doors that they bring permetrically female recesses or male prominences can replace the corresponding horizontal binders with internal support or not, iron bar in their recess. (FIGS. 86 and 87)
11. According to claims 1 and 2 the bricks have the form of three tangential curved surfaces, which are parallel on their sides, from which the middle one is elevated against the other two and pushed inside them creating of equal width and height slots for recesses and prominences on their sides as well a recess slot on its lower part and a prominence slot on its upper part, all of equal width and height.
12. According to claim 1 and 2 the bricks that have the form of three tangential curved surfaces from which the middle one is elevated against the other two and pushed inside them creating slots for recesses on its side limited in both sides creating a hidden recess and its corresponding prominences, as well as a recess slot on its lower part and a prominence slot on its upper part.
13. According to claims 1 and 2 the bricks have forms of a divided H-shape, of parallelepipeds divided on its lower level on the base. For the finishing of the structure with prestructured framework.
14. According to claims 1 to 12 the bricks have an incorporated inflated polystyrene or other insulation material.
15. According to claims 1, 2, 3, 4, 5, 11, 12 and 14 the bricks form an inclined surface on their upper part.
16. Based on claims 1 to 8 the bricks have additional incorporated surfaces parallel to their outside sides and slots creating support bases for floors and levels.
17. According to claims 1 and two the brick for the support of the final roof consists of two scalariformed curved non co-planar surfaces of which the successor is lower, supported in a parallelepiped on their bases inside which there is a recess-slot with reverse direction to their curved surface towards the middle, and at its edge it is parallel to the recess-slot another open recess.
18. According to claims 1 and 2 and 17 the brick for the support of the final roof consists of a curved surface with two scalariformed non co-planar parallel surfaces of which the successor is lower, supported in a parallelepiped on their bases inside which there is a central recess-slot with direction towards their curved surface.
19. According to claims 1 and 2 and 17 the brick for the support of the final roof consists of a curved surface with two scalariformed non co-planar parallel surfaces of which the successor is lower, supported in a parallelepiped on their bases inside which there are two recess-slots with direction towards their curved surface.
20. According to claims 1 and 2 and 19 the brick for the support of the final roof has half from its lower curved surface and the rest is co-planar with that of the upper one.
21. According to claims 1 to 20 the bricks have internal cells of known geometrical shapes.
22. According to claims 1 to 20 the bricks are solid
23. According to claims 1 to 22 they are made of argil.
24. According to claims 1 to 22 they are made of concrete
25. According to claims 1 to 22 they are made of wood as well as of plates from welded chipping or sawdust, hardboard, MDF etc or form a sandwich with or without intermediary insulating material.
26. According to claims 1 to 22 they are made of glass
27. According to claims 1 to 22 they are made of any material
28. For the support of the roof the bricks according to claims 1 to 27 at their length have open or closed horizontal or side slots in order to accept the binders of the ceiling and roof (FIGS. 70A, 70B, 71, 72, 73, 74A, 74B, 75, 76, 77 and 85).
29. The bricks according to claims 1 to 28 are invested in the factory in their obvious aspects, at both sides, with plates from timber, metal, cement, ceramic, plaster board or with other materials, so that after their layout they do not need plaster. (FIGS. 38 and 41)
30. For strengthened structures, the bricks according to claims 1 to 29 can consist of more than three parallel lines of levels, creating parallel pairs of exchanging recesses or male prominences (FIGS. 41, 42, 42A, 46, 47, 72 and 73). Moreover, the bricks can be structured in two lines with the interjection or not insulating material. (FIGS. 42 and 4A, 46 and 47)
US10/543,805 2003-02-07 2003-03-28 Brick system with horizontal and vertical connective king-slots, for complete construction works and decoration Abandoned US20060117698A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CY0300011 2003-02-07
CYCY03/00011 2003-02-07
PCT/CY2003/000001 WO2004070127A1 (en) 2003-02-07 2003-03-28 Brick system with horizontal and vertical connective king-slots, for complete construction works and decoration

Publications (1)

Publication Number Publication Date
US20060117698A1 true US20060117698A1 (en) 2006-06-08

Family

ID=32831771

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/543,805 Abandoned US20060117698A1 (en) 2003-02-07 2003-03-28 Brick system with horizontal and vertical connective king-slots, for complete construction works and decoration

Country Status (8)

Country Link
US (1) US20060117698A1 (en)
EP (1) EP1592851B8 (en)
CN (1) CN100350108C (en)
AU (1) AU2003222714A1 (en)
CA (1) CA2515137A1 (en)
CY (1) CY1116573T1 (en)
RU (1) RU2005127860A (en)
WO (1) WO2004070127A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123583A1 (en) * 2011-06-16 2014-05-08 Ana ARRIOLA SERRANO Block for construction and method of construction with said block
CN106013588A (en) * 2016-07-22 2016-10-12 杜建国 Water-free and plastering-free dry-masonry self-locking wall brick and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041816B (en) * 2009-10-11 2012-09-26 台州市黄岩炜大塑料机械有限公司 Compound electric power inspection well
CN104294993A (en) * 2014-09-26 2015-01-21 黄烈元 Building brick and wall built by brick
CN105317148A (en) * 2015-12-07 2016-02-10 广西辰宇建材科技有限公司 Building block
CN111094673B (en) * 2018-05-30 2023-05-26 株式会社饭田产业 Building and building construction method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1898380A (en) * 1930-05-28 1933-02-21 Frederick H Meier Sectional block clay tile
US5507127A (en) * 1994-11-01 1996-04-16 Gates; Raymond H. Ecologicial building block including shredded, baled tires
US5855102A (en) * 1998-02-18 1999-01-05 Chang; Houn-I Molded brick module
US5901520A (en) * 1995-07-11 1999-05-11 Abdul-Baki; Assad Interlocking building blocks
US5946872A (en) * 1998-01-22 1999-09-07 Pardo; Jorge Method and apparatus for constructing suspended concrete floors and roofs
US6244009B1 (en) * 1997-09-08 2001-06-12 Dominic Cerrato Flexible interlocking wall system
US6799405B2 (en) * 2003-01-06 2004-10-05 Del R. Gilbert Masonry unit and masonry system, and method of use

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1157682A (en) 1965-07-02 1969-07-09 Contemporary Walls Ltd Foamed Plastics Based Buildings Blocks
GB2152968B (en) 1984-01-10 1988-06-08 Donald Wood Interlocking building blocks
GB8713652D0 (en) 1987-06-11 1987-07-15 Boyton System Buildings Uk Ltd Building panel construction
GB9420543D0 (en) 1994-10-12 1994-11-30 Hodgkinson James S A building block and associated building framework
DE19542354A1 (en) * 1995-11-14 1997-05-15 Radziwinski Edmund Brick with one or more tenons and one or more mortices
EP1070796A1 (en) * 1999-07-23 2001-01-24 Helmut Roitmair Hollow building block
WO2002014617A1 (en) * 2000-08-16 2002-02-21 Cetko Kapor Building with kć elements without a mortar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1898380A (en) * 1930-05-28 1933-02-21 Frederick H Meier Sectional block clay tile
US5507127A (en) * 1994-11-01 1996-04-16 Gates; Raymond H. Ecologicial building block including shredded, baled tires
US5901520A (en) * 1995-07-11 1999-05-11 Abdul-Baki; Assad Interlocking building blocks
US6244009B1 (en) * 1997-09-08 2001-06-12 Dominic Cerrato Flexible interlocking wall system
US5946872A (en) * 1998-01-22 1999-09-07 Pardo; Jorge Method and apparatus for constructing suspended concrete floors and roofs
US5855102A (en) * 1998-02-18 1999-01-05 Chang; Houn-I Molded brick module
US6799405B2 (en) * 2003-01-06 2004-10-05 Del R. Gilbert Masonry unit and masonry system, and method of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123583A1 (en) * 2011-06-16 2014-05-08 Ana ARRIOLA SERRANO Block for construction and method of construction with said block
CN106013588A (en) * 2016-07-22 2016-10-12 杜建国 Water-free and plastering-free dry-masonry self-locking wall brick and manufacturing method thereof

Also Published As

Publication number Publication date
EP1592851B8 (en) 2015-06-24
CY1116573T1 (en) 2017-03-15
CN100350108C (en) 2007-11-21
EP1592851A1 (en) 2005-11-09
CN1751161A (en) 2006-03-22
RU2005127860A (en) 2006-06-10
WO2004070127A1 (en) 2004-08-19
EP1592851B1 (en) 2015-05-06
AU2003222714A1 (en) 2004-08-30
CA2515137A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US7028440B2 (en) Modular homes
US4823528A (en) Log wall and corner joint for log building structures
US5901521A (en) Apparatus for dimensionally uniform building construction using interlocking connectors
US7823360B1 (en) Open core building blocks system
US3343328A (en) Wood blocks with nail securing elements
US20110225909A1 (en) Self-locking block and complementary blocks for the construction of pillars, free-standing walls, rooms, and buildings
US6705057B2 (en) Modular block system and method of construction
US7856776B2 (en) Construction system for constructing plane structures
US4282690A (en) Precast building construction
US20060117698A1 (en) Brick system with horizontal and vertical connective king-slots, for complete construction works and decoration
US4794749A (en) Building system
Öztank An investigation of traditional Turkish wooden houses
EP0939174A3 (en) Wooden frame building construction
EP3482013A1 (en) Structural element
GB2140053A (en) Building system
AU692868B2 (en) Improved wall forming method
ZA200609957B (en) Construction system for constructing plane structures
DE19708689A1 (en) Modular construction house
KR200256938Y1 (en) An edifice structure body by using yellow soil board
EP0185805A1 (en) Building system
CA1273217A (en) Building system
KR100436414B1 (en) An edifice structure body by using yellow soil board
Derron Systems and Standards in American Building: Research and Design
GB2179686A (en) Building systems
AU2011224122A1 (en) Construction System for Constructing Plane Structures

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION