US20060084235A1 - Low rc product transistors in soi semiconductor process - Google Patents

Low rc product transistors in soi semiconductor process Download PDF

Info

Publication number
US20060084235A1
US20060084235A1 US10/965,964 US96596404A US2006084235A1 US 20060084235 A1 US20060084235 A1 US 20060084235A1 US 96596404 A US96596404 A US 96596404A US 2006084235 A1 US2006084235 A1 US 2006084235A1
Authority
US
United States
Prior art keywords
source
drain
forming
silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/965,964
Other versions
US7037795B1 (en
Inventor
Alexander Barr
Olubunmi Adetutu
Bich-Yen Nguyen
Marius Orlowski
Mariam Sadaka
Voon-Yew Thean
Ted White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xinguodu Tech Co Ltd
NXP BV
North Star Innovations Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Priority to US10/965,964 priority Critical patent/US7037795B1/en
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADETUTU, OLUBUNMI O., NGUYEN, BICH-YEN, SADAKA, MARIAM G., THEAN, VOON-YEW, WHITE, TED R., BARR, ALEXANDER L., ORLOWSKI, MARIUS K.
Publication of US20060084235A1 publication Critical patent/US20060084235A1/en
Application granted granted Critical
Publication of US7037795B1 publication Critical patent/US7037795B1/en
Assigned to CITIBANK, N.A. AS COLLATERAL AGENT reassignment CITIBANK, N.A. AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: FREESCALE ACQUISITION CORPORATION, FREESCALE ACQUISITION HOLDINGS CORP., FREESCALE HOLDINGS (BERMUDA) III, LTD., FREESCALE SEMICONDUCTOR, INC.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to CITIBANK, N.A., AS NOTES COLLATERAL AGENT reassignment CITIBANK, N.A., AS NOTES COLLATERAL AGENT SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to CITIBANK, N.A., AS NOTES COLLATERAL AGENT reassignment CITIBANK, N.A., AS NOTES COLLATERAL AGENT SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. PATENT RELEASE Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. PATENT RELEASE Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. PATENT RELEASE Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS Assignors: CITIBANK, N.A.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS Assignors: CITIBANK, N.A.
Assigned to NORTH STAR INNOVATIONS INC. reassignment NORTH STAR INNOVATIONS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SECURITY AGREEMENT SUPPLEMENT Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12092129 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to NXP B.V. reassignment NXP B.V. PATENT RELEASE Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC. reassignment NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP B.V. reassignment NXP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENTS 8108266 AND 8062324 AND REPLACE THEM WITH 6108266 AND 8060324 PREVIOUSLY RECORDED ON REEL 037518 FRAME 0292. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS. Assignors: CITIBANK, N.A.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to SHENZHEN XINGUODU TECHNOLOGY CO., LTD. reassignment SHENZHEN XINGUODU TECHNOLOGY CO., LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE TO CORRECT THE APPLICATION NO. FROM 13,883,290 TO 13,833,290 PREVIOUSLY RECORDED ON REEL 041703 FRAME 0536. ASSIGNOR(S) HEREBY CONFIRMS THE THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS.. Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP B.V. reassignment NXP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 042762 FRAME 0145. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 042985 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 037486 FRAME 0517. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS. Assignors: CITIBANK, N.A.
Assigned to NXP B.V. reassignment NXP B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST. Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC. reassignment NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST. Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Abstract

A semiconductor fabrication process includes forming a transistor gate overlying an SOI wafer having a semiconductor top layer over a buried oxide layer (BOX) over a semiconductor substrate. Source/drain trenches, disposed on either side of the gate, are etched into the BOX layer. Source/drain structures are formed within the trenches. A depth of the source/drain structures is greater than the thickness of the top silicon layer and an upper surface of the source/drain structures coincides approximately with the transistor channel whereby vertical overlap between the source/drain structures and the gate is negligible. The trenches preferably extend through the BOX layer to expose a portion of the silicon substrate. The source/drain structures are preferably formed epitaxially and possibly in two stages including an oxygen rich stage and an oxygen free stage. A thermally anneal between the two epitaxial stages will form an isolation dielectric between the source/drain structure and the substrate.

Description

    FIELD OF THE INVENTION
  • The present invention is in the field of semiconductor fabrication processes and more particularly semiconductor fabrication processes employing silicon-on-insulator (SOI) technology.
  • RELATED ART
  • Historically, transistors in conventional CMOS semiconductor fabrication processes were fabricated as “bulk” transistors, meaning that the source/drain regions and the active channel region were formed in an upper portion of the semiconductor bulk substrate. Bulk transistors suffer from large junction capacitance, which slows devices. SOI technology was developed, at least in part, to address this problem. In an SOI process, the starting material includes a thin semiconductor top layer overlying a buried dielectric layer, sometimes referred to herein as a buried oxide (BOX) layer overlying a semiconductor substrate or bulk. The active devices such as transistors are formed in the thin top layer.
  • SOI processes improved the junction capacitance problem, but encountered other undesirable effects as the top layer becomes thinner. Specifically, conventional SOI transistors exhibited increased resistance, sometimes denoted as a transistor's external resistance (Rext) due to very thin source/drain regions. Elevated source/drain regions were then proposed and developed to reduce Rext, but the elevated source/drain structure introduced increased capacitive coupling between the source/drain regions and the transistor gate. It would be desirable to implement a SOI technology that includes transistors having low junction capacitance, low external resistance, and low capacitive coupling between source/drain and gate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is illustrated by way of example and not limited by the accompanying figures, in which like references indicate similar elements, and in which:
  • FIG. 1 is a partial cross sectional view of an SOI wafer;
  • FIG. 2 illustrates subsequent processing of the wafer of FIG. 1 in which a transistor gate structure is formed overlying an active region of the wafer;
  • FIG. 3 illustrates processing subsequent to FIG. 2 in which portions of the wafer top layer are removed;
  • FIG. 4 illustrates processing subsequent to FIG. 3 in which source/drain trenches are formed in the buried oxide layer;
  • FIG. 5 illustrates processing subsequent to FIG. 4 in which exposed portions of the transistor channel are insulated;
  • FIG. 6 illustrates processing subsequent to FIG. 5 in which a first epitaxial growth is performed to grow an epitaxial structure in the source/drain trenches;
  • FIG. 7 illustrates processing subsequent to FIG. 6 in which an anneal is performed to isolate the first epitaxial structure from the wafer substrate;
  • FIG. 8 illustrates processing subsequent to FIG. 7 in which oxide is removed to expose the first epitaxial structure and the active channel region;
  • FIG. 9 illustrates processing subsequent to FIG. 8 in which a second epitaxial process is performed to form the transistor source/drain regions;
  • FIG. 10 illustrates alternative processing subsequent to FIG. 3 in which vertical sidewall source/drain trenches are formed in the buried oxide layer;
  • FIG. 11 illustrates alternative processing subsequent to FIG. 10 in which the active channel is protected by depositing an oxide spacer;
  • FIG. 12 illustrates alternative processing subsequent to FIG. 11 in which a first epitaxial structure is formed in the source/drain trenches;
  • FIG. 13 illustrates alternative processing subsequent to FIG. 12 in which the protective oxide spacer is removed and a second epitaxial structure is formed to create the transistor source/drain regions.
  • Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve the understanding of the embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Generally speaking, the present invention is concerned with forming transistors in SOI wafer technologies in a manner that reduces junction capacitance and short channel effects while minimizing increases in external resistance and parasitic capacitive coupling. The invention includes the use of source/drain regions that are recessed within the BOX layer to minimize capacitance between source/drain and gate. These regions will be referred to as recessed source/drain regions for simplicity although they may include the extension regions as well. The recessed source/drain regions may include tapered sidewalls to reduce junction capacitance. The source/drain regions are formed epitaxially using the wafer substrate as the epitaxial seed or template. One sequence may include a two-stage or two-step epitaxial process in which an oxygen rich epitaxial layer is formed at the base of the recessed source/drain region (i.e., overlying the substrate) followed by the formation of a “normal” or substantially oxygen-free epitaxial layer. The oxygen in the oxygen rich epitaxial layer facilitates the formation of an oxide between the substrate and the recessed source/drain thereby isolating the source/drain from the substrate.
  • Turning now to the drawings, FIGS. 1 through 9 illustrate selected stages in a first embodiment of a wafer processing sequence according to the present invention. In FIG. 1, a wafer 101 suitable for use with the present invention is depicted. As depicted in FIG. 1, wafer 101 is an SOI wafer having a semiconductor top layer or active layer 106 overlying a buried oxide (BOX) layer 104 overlying a semiconductor bulk or substrate 102. Active layer 106 and substrate 102 are likely to be single crystal silicon or silicon germanium while BOX layer 104 is likely to be a silicon oxide compound such as thermally formed silicon dioxide.
  • Turning now to FIG. 2, a transistor gate structure 110 has been formed overlying active layer 106 of wafer 101. In the depicted implementation, gate structure 110 includes a gate dielectric layer 112, a gate electrode 114, dielectric sidewalls 116, and a dielectric capping layer 117. Gate dielectric 112, in one embodiment, is a thermally formed silicon dioxide. In other embodiments, gate dielectric 112 is a high-K dielectric (a dielectric material having a dielectric constant in excess of approximately 4.0) most likely comprised of a metal-oxide compound such as HfO2. Gate electrode 114 is a conductive structure preferably comprised of doped polysilicon, a metal or metal alloy (e.g., TaSi, Ti, TiW, etc.), or a combination thereof. Dielectric spacers 116 and capping layer 117 are preferably comprised of silicon nitride or another dielectric that has good etch selectivity characteristics relative to silicon.
  • Referring now to FIG. 3, exposed portions of active layer 106 are removed (e.g., etched) thereby resulting in the formation of a transistor channel structure 107 (comprised of the portion of active layer 106 that is not removed). Beneficially, channel structure 107 formed in this manner is self-aligned to gate structure 110. The sidewalls 116 and capping layer 117 surrounding gate electrode 114 protect electrode 114 during the removal of active layer 106. The removal of the exposed portions of active layer 106 exposes the underlying portions of BOX layer 104. In an embodiment in which active layer 106 is epitaxial silicon (doped or undoped), the removal step may include a dry etch process using, for example, SF6 and Cl2 to achieve adequate selectively with respect to capping layer 117 as well as the underlying BOX layer 104. In one embodiment, the removal of exposed portions of active layer 106 is integrated into the gate etch step (i.e., the etch process that defines gate electrode 114). In this embodiment, the gate etch is maintained until the exposed portions of active layer 106 are removed thereby saving an etch step.
  • Referring now to FIG. 4, source/drain trenches 120 are formed in BOX layer 104. A patterned photoresist layer 118 is first formed overlying box layer 104 using conventional photolithography and photoresist techniques. In the depicted embodiment, patterned photoresist layer 118 defines a boundary or edge 124 of each source/drain trench 120 that is distal from channel structure 107 while a boundary or edge 125 of each trench 120 proximal to channel structure 107 is defined by and self-aligned to gate structure 110. Thus, source/drain trenches 120, like channel structure 107, are self-aligned to gate structure 110.
  • In one embodiment the trenches 120 are at a 90 degree angle with the respect to the substrate surface 102. In the embodiment depicted in FIG. 4, the etch of source/drain trenches 120 is controlled to produce sloped sidewalls 122. In this embodiment, sloped sidewalls 122 preferably exhibit an angle between 40 to 80 degrees an upper surface of substrate 102. When the source/drain structure that ultimately occupies source/drain trenches 120 conforms to sloped sidewalls 122, capacitive coupling to the underlying substrate is reduced due to the reduced area of the source/drain structure at the interface with substrate 102. Moreover, the sloped sidewall 122 beneficially produces reduces source to drain coupling.
  • Referring now to FIG. 5, following formation of the source/drain trenches 120, an oxide forming process is performed to isolate the channel region 107 from a subsequent epitaxial process. In one embodiment, the isolation of channel structure 107 is achieved by performing a thermal oxidation or reoxidation step to produce protective oxide structures 126 at the exposed edges of channel structure 107. The reoxidation step is preferably followed by a short plasma etch to remove oxide formed on the upper surface of the exposed portions of substrate 102 during the reoxidation thereby exposing the upper surface of substrate 102.
  • Referring now to FIG. 6, the process of constructing recessed source/drain structures 130 is initiated. Using the exposed portions of substrate 102 as a seed, an epitaxial growth or deposition process is performed to grow or deposit a first epitaxial layer 132. First epitaxial layer 132 is preferably doped or undoped silicon or silicon germanium. In the depicted embodiment, first epitaxial layer 132 only partially fills the source/drain trench 120 and thereby leaves room within source/drain 120 for formation of a second epitaxial layer. The formation of distinct first and second epitaxial layers in this embodiment, beneficially facilitates a process sequence in which first epitaxial layer 132 is electrically isolated from substrate 102 following the first epitaxial process. More specifically, one implementation of the invention includes depositing or growing first epitaxial layer 132 as an oxygen rich epitaxial layer (e.g., an epitaxial layer having an oxygen content not in excess of approximately 5%).
  • Referring to FIG. 7, wafer 101 is annealed in an oxygen bearing ambient. The anneal of an oxygen rich first epitaxial layers causes the formation of an oxide layer 136 between epitaxial layer 132 and substrate 102 and a dielectric layer 133 overlying epitaxial layer 132. The presence of oxide layer 136 between epitaxial layer 132 and substrate 102 provides excellent electrical isolation between the two and further reduces the junction capacitance by increasing the effective distance between epitaxial layer 132 and substrate 102.
  • Referring now to FIG. 8, an oxide removal process such as an HF dip is performed to remove the oxide layer 133 overlying epitaxial layer 132 and to remove protective oxide structures 126 thereby exposing the exterior edges of channel region 107. The oxide removal process is preferably a relatively short process, being just sufficient to remove oxide layer 133 and protective oxide structures 126, to minimize the amount of BOX layer 104 removed. In addition, the strip process is preferably selective to sidewall spacers 116 to protect the integrity of gate dielectric 112. In the preferred implementation, sidewalls spacers 116 are thicker than protective oxide structures 126 thereby ensuring protection against unintended etching of gate dielectric 112.
  • Referring now to FIG. 9, formation of recessed source/drain structures 130 is completed by forming a second epitaxial layer 134 overlying first epitaxial layer 132. Recessed source/drain structures 130 are so named because one may think of these regions as comprised of conventional elevated source/drain structures that are then “recessed” into the BOX layer 104. As such, recessed source/drain structures 130 exhibit the electrical resistivity characteristics of conventional elevated source/drain structures without exhibiting the parasitic capacitance characteristic of elevated source/drain transistors. Because the upper surface of recessed source/drain structures 130 is approximately coincident or planar with the upper surface of channel region 107, overlap and the resulting capacitive coupling between source/drains structures 130 and gate electrode 114 is beneficially minimized. In an embodiment where first epitaxial layer 132 is formed during an oxygen rich epitaxial process, second epitaxial layer 132 is preferably substantially free of oxygen. Like first epitaxial layer 132, second epitaxial layer 134 is preferably doped or undoped silicon or silicon germanium.
  • The process depicted in FIG. 6 through FIG. 9 includes two distinct epitaxial processes and additional processing between the two epitaxial steps. In another implementation, recessed source/drain structures 130 are formed with a single continuous epitaxial step. In this embodiment, protective oxide structures 126 are removed prior to the epitaxial step. If the single epitaxial step in this embodiment does not include an oxygen rich phase, electrical isolation between the recessed source/drain 130 and the underlying substrate 102 is achieved by appropriate doping of the two structures so that the resulting junction is reversed biased under normal operating conditions. This process may include implanting an impurity species into substrate 102 prior to performing the epitaxial growth.
  • Completion of recessed source/drain structures 130 results in the formation of a transistor 100 as depicted in FIG. 9. The depicted embodiment of transistor 100 includes a channel region 107 formed from a top layer of an SOI wafer and recessed, epitaxially formed (i.e., crystalline) source/drain structures 130 that extend through the SOI wafer buried oxide layer 104 to the underlying substrate 102 or to an oxide layer 136 overlying the substrate. Recessed source/drain structures 130 may include an oxygen rich portion and an oxygen free portion. Moreover, recessed source/drain structures 130 as shown in FIG. 9 feature sloped sidewalls 122 (FIG. 4) to reduce the junction capacitance with substrate 102. The recessed source/drain structures 130 have a thickness (vertical dimension) that is greater than the thickness of channel 107 thereby alleviating external resistance problems. Because, however, source/drain regions are recessed within BOX layer 104, an upper surface of source/drain structures 130 coincides approximately with an upper surface of channel 107. Thus, there is approximately no vertical overlap between source/drain structures 130 and transistor gate structure 110 the resulting overlap capacitance is negligible. While negligible overlap capacitance is generally desirable, there may be embodiments that do not substantially suffer from some degree of overlap. In some of these embodiments, the recessed source/drain structure described herein may be supplemented with an elevated source/drain structure if the resulting increase in parasitic capacitance is countered by an increase in overall device performance.
  • Referring now to FIGS. 10 through 13, an alternative processing sequence subsequent to that shown in FIG. 3 is presented. This second embodiment uses substantially vertically sidewalled and recessed source/drain regions and includes an alternative to the reoxidation step described above with respect to FIG. 5.
  • Referring to FIG. 10, source/drain trenches 120 are formed in BOX layer 104 using a patterned photoresist layer 118 and gate structure 110 as a mask. Source/drain trenches 120 as depicted in FIG. 10 have sidewalls that are substantially vertical or perpendicular to the upper surface of substrate 102. While the vertically sidewalled source/drain trenches 120 of FIG. 10 may result in higher junction capacitance between the source/drain regions and substrate 102 than the sloped sidewall source/drain structures of FIG. 9, the etch process to produce vertical sidewall trenches may be more repeatable or otherwise manufacturable than the sloped sidewall etch process. The junction capacitance of the vertically sidewalled, recessed source/drain structure that will be formed in trenches 120 is still reduced relative to the junction capacitance of bulk transistors, in which the source/drain regions are entirely enclosed by the surrounding substrate or well.
  • Referring to FIG. 11, an oxide spacer formation sequence is performed to form thin (preferably less than 8 nm) oxide spacer structures 127 on sidewalls of gate structure 110 and source/drain trenches 120 and thereby temporarily insulate channel structure 107 from subsequent processing steps. Spacer structures 127 are formed in a conventional spacer formation manner by depositing a dielectric such as a conformal oxide layer over wafer 101 and then etching the deposited layer with an anisotropic etch in a manner that will be familiar to those skilled in semiconductor processing. The spacer etch process clears the deposited oxide from the upper surface of substrate 102 in preparation for a subsequent epitaxial formation of the source/drain structures.
  • Referring to FIG. 12, a first epitaxial layer 132 is formed by epitaxial growth or deposition overlying substrate 102. Like first epitaxial layer 132 of FIG. 6, first epitaxial layer 132 of FIG. 12 preferably fills only a portion of source/drain trench 120 and first epitaxial layer 132 is preferably an oxygen rich layer from which an isolation dielectric layer can be formed between the source/drain structure and the underlying substrate 102.
  • Referring to FIG. 13, completion of the transistor is then achieved by first performing an anneal to form dielectric layer 136, removing the remaining and exposed portions of oxide spacers 127 (and any oxide layer overlying epitaxial layer 132 formed during the anneal step). The recessed source/drain structures 130 are then completed by a performing a second epitaxial process to grow a second epitaxial layer 134 overlying first epitaxial layer 132 and in contact with channel structure 107.
  • In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. For example, the reoxidation process shown in conjunction with the sloped sidewall embodiment of source/drain structures 130 may be used in the vertically sidewalled embodiment. Conversely, the oxide spacer sequence shown in conjunction with the vertical sidewall embodiment of source/drain structures 130 may be used in the sloped sidewall embodiment. Also, the use of a single epitaxial step may be substituted for the sequence of performing an oxygen rich epitaxial step followed by an oxygen free epitaxial step. The single epitaxy embodiment may include a first phase in which an oxygen rich film is grown and a second phase in which an oxygen free film is grown. Alternatively, the single epitaxy step may omit the oxygen rich phase and, instead, isolate the source/drain structures from the substrates by appropriate doping. In addition, whereas specific material and compounds are referred to in the depicted implementations, alternative materials may be used when appropriate. Silicon nitride spacers 116 could, for example, be silicon oxynitride spacers.
  • Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.
  • Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims (20)

1. (canceled)
2. A semiconductor fabrication process, comprising:
forming a transistor gate structure overlaying a silicon-on-insulator (SOI) wafer, the SOI wafer including an active semiconductor top layer overlying a buried dielectric layer overlying a semiconductor substrate, the transistor sage structure including a gate electrode overlying a gate dielectric overlying a channel region comprised of a portion of the semiconductor ton layer;
forming source/drain trenches in the buried dielectric layer disposed on either side of the gate structure, wherein the source/drain trenches extend through the buried dielectric layer exposing portions of the underlying semiconductor substrate; and
forming source/drain structures within, the source/drain trenches by epitaxial growth using the exposed portions of the semiconductor substrate as a seed, wherein an upper surface of the source/drain structure coincides approximately with an upper surface of the channel region;
where forming the source/drain structures includes forming a first portion of the source/drain structures as an oxygen-rich epitaxial film and forming a second portion of the source/drain structures as a substantially oxygen free epitaxial film.
3. The method of claim 2, further comprising, intermediate between forming the first portion of the source/drain structures and forming the second portion of the source/drain structures, performing a thermal anneal in an oxygen bearing ambient, wherein the thermal anneal results in formation of a dielectric layer disposed between the source/drain structures and the semiconductor substrate.
4. The method of claim 3, further comprising, performing an oxide removal to expose sidewalls of the channel region.
5. The method of claim 2, further comprising, prior to forming the first portion of the source/drain structures, forming spacers on sidewalls of the transistor gate structure and sidewalls of the source/drain trenches.
6. The method of claim 5, further comprising, between forming the first portion of the source/drain structures and the second portion of the source/drain structures, removing exposed portions the sidewall spacers to expose sidewalls of the channel region.
7. The method of claim 2, wherein forming the source/drain trenches includes forming source/drain trenches having substantially vertical sidewalls.
8. The method of claim 2, wherein forming the source/drain trenches includes forming source/drain trenches having sloped sidewalls, the sloped sidewalls forming an angle with an upper surface of the buried dielectric layer in the range of approximately 40 to 80.
9. The method of claim 2, wherein forming the source/drain structures includes forming source/drain structures comprised of a material selected from the group consisting of doped silicon, undoped silicon, doped silicon germanium, and undoped silicon germanium.
10. A semiconductor fabrication process for forming transistors in a silicon-on-insulator wafer having a semiconductor top layer overlying a buried oxide layer overlying a semiconductor substrate, the process comprising:
forming an active region and transistor gate structure overlying the wafer, the gate structure having a semiconductor portion overlying a gate dielectric;
forming source/drain trenches, self-aligned to the transistor gate structure, in the top silicon layer, the source/drain trenches including sloped sidewalls and extending through the buried oxide layer thereby exposing a portion of the underlying semiconductor substrate;
growing from the exposed portion of the semiconductor substrate, an oxygen rich portion of a source/drain structure in the source/drain trenches using a first epitaxial process; and
growing a substantially oxygen free portion of the source/drain structure in the source/drain trenches using a second epitaxial process, wherein an upper surface of the source/drain structure coincides substantially with the first portion of the semiconductor substrate.
11. The method of claim 10, further comprising performing a thermal anneal between the first and second epitaxial processes to form an isolation dielectric at the interface between the source/drain structures and the underlying silicon substrate.
12. The method of claim 11, further comprising performing an oxide removal step between the thermal anneal and the second epitaxial process.
13. The method of claim 10, wherein the source/drain structures comprise a material selected from the group consisting of doped silicon, undoped silicon, doped silicon germanium, and undoped silicon germanium.
14. (canceled)
15. The method of claim 18, wherein etching the source/drain trenches is performed using the transistor gate structure as a mask wherein the trenches are self-aligned to the gate structure.
16. The method of claim 18, wherein the source/drain trenches extend through the buried oxide layer and expose a portion of the silicon substrate.
17. (canceled)
18. A semiconductor fabrication process, comprising:
forming a transistor gate structure overlying a silicon on insulator wafer, the wafer including a silicon ton layer overlying a buried oxide layer overlying a silicon substrate;
etching source/drain trenches, disposed on either side of the transistor gate structure, into the buried oxide layer; and
forming conductive source/drain structures within the trenches, wherein a depth of the source/drain structures is greater than the thickness of the top silicon layer and wherein an upper surface of the source/drain structures coincides with an upper surface of the silicon top layer underlying the transistor gate structure;
wherein forming the conductive source/drain structures comprises forming the source/drain structures epitaxially; and
wherein Conning the source/drain structures epitaxially includes performing a first epitaxial process using an oxygen rich ambient to produce an oxygen rich silicon epitaxial layer in a lower portion of the source/drain structures.
19. The method of claim 18, wherein forming the source/drain structures further includes thermally annealing the wafer to form an oxide between the lower portion of the source/drain structures and the underlying silicon followed by performing an oxide removal process to expose an upper surface of the silicon epitaxial layer and a portion of the silicon top layer underlying the transistor gate structure.
20. The method of claim 19, wherein forming the source/drain structures further includes performing a second epitaxial process using a substantially oxygen free ambient, wherein the second epitaxial layer connects with the portion of the silicon top layer underlying the transistor gate structure.
US10/965,964 2004-10-15 2004-10-15 Low RC product transistors in SOI semiconductor process Active US7037795B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/965,964 US7037795B1 (en) 2004-10-15 2004-10-15 Low RC product transistors in SOI semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/965,964 US7037795B1 (en) 2004-10-15 2004-10-15 Low RC product transistors in SOI semiconductor process

Publications (2)

Publication Number Publication Date
US20060084235A1 true US20060084235A1 (en) 2006-04-20
US7037795B1 US7037795B1 (en) 2006-05-02

Family

ID=36181305

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/965,964 Active US7037795B1 (en) 2004-10-15 2004-10-15 Low RC product transistors in SOI semiconductor process

Country Status (1)

Country Link
US (1) US7037795B1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070166973A1 (en) * 2006-01-13 2007-07-19 Shahid Rauf Method for removing metal foot during high-k dielectric/metal gate etching
US20070210301A1 (en) * 2006-03-09 2007-09-13 Jin-Ping Han Semiconductor devices and methods of manufacturing thereof
US20070278591A1 (en) * 2006-06-01 2007-12-06 International Business Machines Corporation Method and structure to form self-aligned selective-soi
US20080050866A1 (en) * 2005-08-25 2008-02-28 International Business Machines Corporation Semiconductor structures integrating damascene-body finfet's and planar devices on a common substrate and methods for forming such semiconductor structures
US20080145982A1 (en) * 2004-10-20 2008-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Isolation spacer for thin soi devices
US20090267152A1 (en) * 2005-09-21 2009-10-29 Advanced Micro Devices, Inc. Semiconductor device and method of manufacturing a semiconductor device
US20120104498A1 (en) * 2010-10-27 2012-05-03 International Business Machines Corporation Semiconductor device having localized extremely thin silicon on insulator channel region
US20120126296A1 (en) * 2010-11-18 2012-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and fabrication methods thereof
CN102487033A (en) * 2010-12-03 2012-06-06 中芯国际集成电路制造(北京)有限公司 Method for forming standard SOI (Silicon On Insulator) structure
US20120153402A1 (en) * 2010-12-21 2012-06-21 Global Foundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors by applying a uniform oxide layer prior to cavity etching
CN102856197A (en) * 2011-06-27 2013-01-02 中国科学院微电子研究所 Semiconductor structure and preparation method thereof
US20130146965A1 (en) * 2010-05-13 2013-06-13 International Business Machines Corporation Methodology for fabricating isotropically recessed drain regions of cmos transistors
US20130161746A1 (en) * 2011-12-27 2013-06-27 Commissariat A L'energie Atomique Et Aux Ene Alt Transistor and method of fabrication
WO2014029149A1 (en) * 2012-08-23 2014-02-27 中国科学院微电子研究所 Semiconductor device and manufacturing method therefor
CN103681355A (en) * 2013-12-18 2014-03-26 北京大学 Method for preparing quasi-SOI source-drain field effect transistor device
US8716798B2 (en) 2010-05-13 2014-05-06 International Business Machines Corporation Methodology for fabricating isotropically recessed source and drain regions of CMOS transistors
US8853039B2 (en) 2013-01-17 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction for formation of epitaxial layer in source and drain regions
US8877592B2 (en) 2013-03-14 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of doped film for source and drain regions
US8900958B2 (en) 2012-12-19 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US9012310B2 (en) 2012-06-11 2015-04-21 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation of source and drain regions
US9029226B2 (en) 2013-03-13 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for doping lightly-doped-drain (LDD) regions of finFET devices
US20150145046A1 (en) * 2012-04-28 2015-05-28 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor structure and method for manufacturing the same
US9093468B2 (en) 2013-03-13 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetric cyclic depositon and etch process for epitaxial formation mechanisms of source and drain regions
US9252008B2 (en) 2013-01-11 2016-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US9293534B2 (en) 2014-03-21 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US9299587B2 (en) 2014-04-10 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Microwave anneal (MWA) for defect recovery
CN106206300A (en) * 2015-04-29 2016-12-07 北大方正集团有限公司 Vertical double diffused metal-oxide semiconductor field effect transistor and processing method
US9537004B2 (en) 2011-05-24 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain formation and structure
US20170069764A1 (en) * 2015-08-24 2017-03-09 Stmicroelectronics (Crolles 2) Sas Mos transistor and method of manufacturing the same
US20170141228A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor and manufacturing method thereof
US9685535B1 (en) * 2016-09-09 2017-06-20 International Business Machines Corporation Conductive contacts in semiconductor on insulator substrate
US20170179304A1 (en) * 2015-07-30 2017-06-22 International Business Machines Corporation Leakage-free implantation-free etsoi transistors
US20170250263A1 (en) * 2015-02-19 2017-08-31 International Business Machines Corporation Non-uniform gate dielectric for u-shape mosfet
KR20200001538A (en) * 2018-06-27 2020-01-06 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Bulk semiconductor substrate configured to exhibit semiconductor-on-insulator behavior

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306997B2 (en) * 2004-11-10 2007-12-11 Advanced Micro Devices, Inc. Strained fully depleted silicon on insulator semiconductor device and manufacturing method therefor
US7470972B2 (en) * 2005-03-11 2008-12-30 Intel Corporation Complementary metal oxide semiconductor integrated circuit using uniaxial compressive stress and biaxial compressive stress
JP4664760B2 (en) * 2005-07-12 2011-04-06 株式会社東芝 Semiconductor device and manufacturing method thereof
KR100806143B1 (en) * 2006-02-28 2008-02-22 주식회사 하이닉스반도체 Method for manufacturing of semiconductor device
US7897493B2 (en) * 2006-12-08 2011-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Inducement of strain in a semiconductor layer
US9070768B2 (en) 2010-02-15 2015-06-30 X-Fab Semiconductor Foundries Ag DMOS transistor having an increased breakdown voltage and method for production
US8631371B2 (en) 2011-06-29 2014-01-14 International Business Machines Corporation Method, system and program storage device for modeling the capacitance associated with a diffusion region of a silicon-on-insulator device
US8575698B2 (en) * 2011-10-27 2013-11-05 International Business Machines Corporation MOSFET with thin semiconductor channel and embedded stressor with enhanced junction isolation
US8895379B2 (en) 2012-01-06 2014-11-25 International Business Machines Corporation Integrated circuit having raised source drains devices with reduced silicide contact resistance and methods to fabricate same
US9059248B2 (en) 2012-02-09 2015-06-16 International Business Machines Corporation Junction butting on SOI by raised epitaxial structure and method
US9484463B2 (en) 2014-03-05 2016-11-01 International Business Machines Corporation Fabrication process for mitigating external resistance of a multigate device
US9136357B1 (en) 2014-03-05 2015-09-15 International Business Machines Corporation Fabrication process for mitigating external resistance and interface state density in a multigate device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335214B1 (en) * 2000-09-20 2002-01-01 International Business Machines Corporation SOI circuit with dual-gate transistors
US20020034841A1 (en) * 2000-06-28 2002-03-21 Lee Jong Wook Method for fabricating a part depletion type SOI device preventing a floating body effect
US6369438B1 (en) * 1998-12-24 2002-04-09 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6380088B1 (en) * 2001-01-19 2002-04-30 Chartered Semiconductor Manufacturing, Inc. Method to form a recessed source drain on a trench side wall with a replacement gate technique
US6420218B1 (en) * 2000-04-24 2002-07-16 Advanced Micro Devices, Inc. Ultra-thin-body SOI MOS transistors having recessed source and drain regions
US6437404B1 (en) * 2000-08-10 2002-08-20 Advanced Micro Devices, Inc. Semiconductor-on-insulator transistor with recessed source and drain
US6472258B1 (en) * 2000-11-13 2002-10-29 International Business Machines Corporation Double gate trench transistor
US6531347B1 (en) * 2000-02-08 2003-03-11 Advanced Micro Devices, Inc. Method of making recessed source drains to reduce fringing capacitance
US6565782B1 (en) * 1996-12-12 2003-05-20 Pall Corporation Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821483B1 (en) 2001-02-28 2004-07-09 St Microelectronics Sa METHOD FOR MANUFACTURING A TRANSISTOR WITH INSULATED GRID AND ARCHITECTURE OF THE SUBSTRATE TYPE ON INSULATION, AND CORRESPONDING TRANSISTOR

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565782B1 (en) * 1996-12-12 2003-05-20 Pall Corporation Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters
US6369438B1 (en) * 1998-12-24 2002-04-09 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6531347B1 (en) * 2000-02-08 2003-03-11 Advanced Micro Devices, Inc. Method of making recessed source drains to reduce fringing capacitance
US6420218B1 (en) * 2000-04-24 2002-07-16 Advanced Micro Devices, Inc. Ultra-thin-body SOI MOS transistors having recessed source and drain regions
US20020034841A1 (en) * 2000-06-28 2002-03-21 Lee Jong Wook Method for fabricating a part depletion type SOI device preventing a floating body effect
US6437404B1 (en) * 2000-08-10 2002-08-20 Advanced Micro Devices, Inc. Semiconductor-on-insulator transistor with recessed source and drain
US6335214B1 (en) * 2000-09-20 2002-01-01 International Business Machines Corporation SOI circuit with dual-gate transistors
US6472258B1 (en) * 2000-11-13 2002-10-29 International Business Machines Corporation Double gate trench transistor
US6380088B1 (en) * 2001-01-19 2002-04-30 Chartered Semiconductor Manufacturing, Inc. Method to form a recessed source drain on a trench side wall with a replacement gate technique

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084305B2 (en) * 2004-10-20 2011-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Isolation spacer for thin SOI devices
US20080145982A1 (en) * 2004-10-20 2008-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Isolation spacer for thin soi devices
US7879660B2 (en) * 2005-08-25 2011-02-01 International Business Machines Corporation Semiconductor structures integrating damascene-body FinFET's and planar devices on a common substrate and methods for forming such semiconductor structures
US20080050866A1 (en) * 2005-08-25 2008-02-28 International Business Machines Corporation Semiconductor structures integrating damascene-body finfet's and planar devices on a common substrate and methods for forming such semiconductor structures
US20090267152A1 (en) * 2005-09-21 2009-10-29 Advanced Micro Devices, Inc. Semiconductor device and method of manufacturing a semiconductor device
US7910996B2 (en) * 2005-09-21 2011-03-22 Globalfoundries Inc. Semiconductor device and method of manufacturing a semiconductor device
US7579282B2 (en) * 2006-01-13 2009-08-25 Freescale Semiconductor, Inc. Method for removing metal foot during high-k dielectric/metal gate etching
US20070166973A1 (en) * 2006-01-13 2007-07-19 Shahid Rauf Method for removing metal foot during high-k dielectric/metal gate etching
US20070210301A1 (en) * 2006-03-09 2007-09-13 Jin-Ping Han Semiconductor devices and methods of manufacturing thereof
US7696019B2 (en) * 2006-03-09 2010-04-13 Infineon Technologies Ag Semiconductor devices and methods of manufacturing thereof
US8647929B2 (en) * 2006-03-09 2014-02-11 Infineon Technologies Ag Semiconductor devices and methods of manufacturing thereof
US20100136761A1 (en) * 2006-03-09 2010-06-03 Jin-Ping Han Semiconductor Devices and Methods of Manufacturing Thereof
US7482656B2 (en) * 2006-06-01 2009-01-27 International Business Machines Corporation Method and structure to form self-aligned selective-SOI
US20070278591A1 (en) * 2006-06-01 2007-12-06 International Business Machines Corporation Method and structure to form self-aligned selective-soi
US20130146965A1 (en) * 2010-05-13 2013-06-13 International Business Machines Corporation Methodology for fabricating isotropically recessed drain regions of cmos transistors
US9006108B2 (en) 2010-05-13 2015-04-14 International Business Machines Corporation Methodology for fabricating isotropically recessed source and drain regions of CMOS transistors
US8716798B2 (en) 2010-05-13 2014-05-06 International Business Machines Corporation Methodology for fabricating isotropically recessed source and drain regions of CMOS transistors
US8685847B2 (en) * 2010-10-27 2014-04-01 International Business Machines Corporation Semiconductor device having localized extremely thin silicon on insulator channel region
US20120104498A1 (en) * 2010-10-27 2012-05-03 International Business Machines Corporation Semiconductor device having localized extremely thin silicon on insulator channel region
US10734517B2 (en) 2010-11-18 2020-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits having source/drain structure
US11373867B2 (en) 2010-11-18 2022-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits having source/drain structure and method of making
US9786780B2 (en) 2010-11-18 2017-10-10 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits having source/drain structure
US20120126296A1 (en) * 2010-11-18 2012-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and fabrication methods thereof
US11923200B2 (en) 2010-11-18 2024-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits having source/drain structure and method of making
US8778767B2 (en) * 2010-11-18 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and fabrication methods thereof
CN102487033A (en) * 2010-12-03 2012-06-06 中芯国际集成电路制造(北京)有限公司 Method for forming standard SOI (Silicon On Insulator) structure
US20120153402A1 (en) * 2010-12-21 2012-06-21 Global Foundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors by applying a uniform oxide layer prior to cavity etching
US8728896B2 (en) * 2010-12-21 2014-05-20 Globalfoundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors by applying a uniform oxide layer prior to cavity etching
US9537004B2 (en) 2011-05-24 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain formation and structure
CN102856197A (en) * 2011-06-27 2013-01-02 中国科学院微电子研究所 Semiconductor structure and preparation method thereof
US20130161746A1 (en) * 2011-12-27 2013-06-27 Commissariat A L'energie Atomique Et Aux Ene Alt Transistor and method of fabrication
US9337350B2 (en) * 2011-12-27 2016-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Transistor with reduced parasitic capacitance and access resistance of the source and drain, and method of fabrication of the same
US9548317B2 (en) * 2012-04-28 2017-01-17 Institute of Microelectronics, Chinese Academy of Sciences FDSOI semiconductor structure and method for manufacturing the same
US20150145046A1 (en) * 2012-04-28 2015-05-28 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor structure and method for manufacturing the same
US9012310B2 (en) 2012-06-11 2015-04-21 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation of source and drain regions
US9443847B2 (en) 2012-06-11 2016-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation of source and drain regions
CN103632973A (en) * 2012-08-23 2014-03-12 中国科学院微电子研究所 Semiconductor device and manufacture method thereof
US9306016B2 (en) 2012-08-23 2016-04-05 Institute of Microelectronics Chinese Academy of Sciences Semiconductor device and method for manufacturing the same
WO2014029149A1 (en) * 2012-08-23 2014-02-27 中国科学院微电子研究所 Semiconductor device and manufacturing method therefor
US8900958B2 (en) 2012-12-19 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US9502404B2 (en) 2012-12-19 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US9252008B2 (en) 2013-01-11 2016-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US9076734B2 (en) 2013-01-17 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction for formation of epitaxial layer in source and drain regions
US8853039B2 (en) 2013-01-17 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction for formation of epitaxial layer in source and drain regions
US9093468B2 (en) 2013-03-13 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetric cyclic depositon and etch process for epitaxial formation mechanisms of source and drain regions
US9502298B2 (en) 2013-03-13 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetric cyclic deposition and etch process for epitaxial formation mechanisms of source and drain regions
US9029226B2 (en) 2013-03-13 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for doping lightly-doped-drain (LDD) regions of finFET devices
US8877592B2 (en) 2013-03-14 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of doped film for source and drain regions
US9362175B2 (en) 2013-03-14 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of doped film for source and drain regions
US9583393B2 (en) 2013-03-14 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of doped film for source and drain regions
US9349588B2 (en) 2013-12-18 2016-05-24 Peking University Method for fabricating quasi-SOI source/drain field effect transistor device
WO2015089951A1 (en) * 2013-12-18 2015-06-25 北京大学 Method for preparing quasi soi source/drain field effect transistor device
CN103681355A (en) * 2013-12-18 2014-03-26 北京大学 Method for preparing quasi-SOI source-drain field effect transistor device
US10153344B2 (en) 2014-03-21 2018-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US10741642B2 (en) 2014-03-21 2020-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of finFET devices
US11211455B2 (en) 2014-03-21 2021-12-28 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US9293534B2 (en) 2014-03-21 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US9768256B2 (en) 2014-03-21 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US9299587B2 (en) 2014-04-10 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Microwave anneal (MWA) for defect recovery
US20170250263A1 (en) * 2015-02-19 2017-08-31 International Business Machines Corporation Non-uniform gate dielectric for u-shape mosfet
US10256319B2 (en) * 2015-02-19 2019-04-09 International Business Machines Corporation Non-uniform gate dielectric for U-shape MOSFET
US20190198640A1 (en) * 2015-02-19 2019-06-27 International Business Machines Corporation Non-uniform gate dielectric for u-shape mosfet
US10957780B2 (en) * 2015-02-19 2021-03-23 International Business Machines Corporation Non-uniform gate dielectric for U-shape MOSFET
CN106206300A (en) * 2015-04-29 2016-12-07 北大方正集团有限公司 Vertical double diffused metal-oxide semiconductor field effect transistor and processing method
US20170179304A1 (en) * 2015-07-30 2017-06-22 International Business Machines Corporation Leakage-free implantation-free etsoi transistors
US10651273B2 (en) 2015-07-30 2020-05-12 International Business Machines Corporation Leakage-free implantation-free ETSOI transistors
US10937864B2 (en) * 2015-07-30 2021-03-02 International Business Machines Corporation Leakage-free implantation-free ETSOI transistors
US9941416B2 (en) * 2015-08-24 2018-04-10 Stmicroelectronics (Crolles 2) Sas MOS transistor and method of manufacturing the same
US20170069764A1 (en) * 2015-08-24 2017-03-09 Stmicroelectronics (Crolles 2) Sas Mos transistor and method of manufacturing the same
US20170141228A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor and manufacturing method thereof
US10734410B2 (en) 2016-09-09 2020-08-04 Elpis Technologies Inc. Conductive contacts in semiconductor on insulator substrate
US11177285B2 (en) 2016-09-09 2021-11-16 Elpis Technologies Inc. Conductive contacts in semiconductor on insulator substrate
US9685535B1 (en) * 2016-09-09 2017-06-20 International Business Machines Corporation Conductive contacts in semiconductor on insulator substrate
KR20200001538A (en) * 2018-06-27 2020-01-06 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Bulk semiconductor substrate configured to exhibit semiconductor-on-insulator behavior
KR102303959B1 (en) 2018-06-27 2021-09-27 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Bulk semiconductor substrate configured to exhibit semiconductor-on-insulator behavior
US11211283B2 (en) 2018-06-27 2021-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a bulk semiconductor substrate configured to exhibit soi behavior

Also Published As

Publication number Publication date
US7037795B1 (en) 2006-05-02

Similar Documents

Publication Publication Date Title
US7037795B1 (en) Low RC product transistors in SOI semiconductor process
US7226820B2 (en) Transistor fabrication using double etch/refill process
US7723196B2 (en) Damascene gate field effect transistor with an internal spacer structure
US6939751B2 (en) Method and manufacture of thin silicon on insulator (SOI) with recessed channel
US7772048B2 (en) Forming semiconductor fins using a sacrificial fin
US7625806B2 (en) Method of fabricating a non-floating body device with enhanced performance
US7045432B2 (en) Method for forming a semiconductor device with local semiconductor-on-insulator (SOI)
US7701010B2 (en) Method of fabricating transistor including buried insulating layer and transistor fabricated using the same
US8828832B2 (en) Strained structure of semiconductor device
US20040113171A1 (en) Method of fabricating a mosfet device with metal containing gate structures
US20080142841A1 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
JP2000277745A (en) Double-gate integrated circuit and manufacture of the same
WO2006073624A1 (en) Semiconductor fabrication process including recessed source/drain regions in an soi wafer
US9666679B2 (en) Transistor with a low-k sidewall spacer and method of making same
US8264017B2 (en) Junction field effect transistor having a double gate structure
US7622368B2 (en) Forming of a single-crystal semiconductor layer portion separated from a substrate
US7732288B2 (en) Method for fabricating a semiconductor structure
JP4434832B2 (en) Semiconductor device and manufacturing method thereof
KR20080033130A (en) Pre-silicide spacer removal
US10892181B2 (en) Semiconductor device with mitigated local layout effects
JPH05218061A (en) Semiconductor device
JPH10209261A (en) Method for isolating element of semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARR, ALEXANDER L.;ADETUTU, OLUBUNMI O.;NGUYEN, BICH-YEN;AND OTHERS;REEL/FRAME:015903/0638;SIGNING DATES FROM 20041008 TO 20041012

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: CITIBANK, N.A. AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:FREESCALE SEMICONDUCTOR, INC.;FREESCALE ACQUISITION CORPORATION;FREESCALE ACQUISITION HOLDINGS CORP.;AND OTHERS;REEL/FRAME:018855/0129

Effective date: 20061201

Owner name: CITIBANK, N.A. AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:FREESCALE SEMICONDUCTOR, INC.;FREESCALE ACQUISITION CORPORATION;FREESCALE ACQUISITION HOLDINGS CORP.;AND OTHERS;REEL/FRAME:018855/0129

Effective date: 20061201

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:024397/0001

Effective date: 20100413

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:024397/0001

Effective date: 20100413

AS Assignment

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR

Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:030633/0424

Effective date: 20130521

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR

Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:031591/0266

Effective date: 20131101

AS Assignment

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037356/0553

Effective date: 20151207

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037354/0225

Effective date: 20151207

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037356/0143

Effective date: 20151207

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037486/0517

Effective date: 20151207

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037518/0292

Effective date: 20151207

AS Assignment

Owner name: NORTH STAR INNOVATIONS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:037694/0264

Effective date: 20151002

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:038017/0058

Effective date: 20160218

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12092129 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:039361/0212

Effective date: 20160218

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: PATENT RELEASE;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:039707/0471

Effective date: 20160805

AS Assignment

Owner name: NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040925/0001

Effective date: 20160912

Owner name: NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC., NE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040925/0001

Effective date: 20160912

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040928/0001

Effective date: 20160622

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENTS 8108266 AND 8062324 AND REPLACE THEM WITH 6108266 AND 8060324 PREVIOUSLY RECORDED ON REEL 037518 FRAME 0292. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:041703/0536

Effective date: 20151207

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:042762/0145

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:042985/0001

Effective date: 20160218

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: SHENZHEN XINGUODU TECHNOLOGY CO., LTD., CHINA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TO CORRECT THE APPLICATION NO. FROM 13,883,290 TO 13,833,290 PREVIOUSLY RECORDED ON REEL 041703 FRAME 0536. ASSIGNOR(S) HEREBY CONFIRMS THE THE ASSIGNMENT AND ASSUMPTION OF SECURITYINTEREST IN PATENTS.;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:048734/0001

Effective date: 20190217

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:050745/0001

Effective date: 20190903

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 042985 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051029/0001

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 042762 FRAME 0145. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051145/0184

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051029/0387

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION12298143 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051029/0387

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051030/0001

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION12298143 PREVIOUSLY RECORDED ON REEL 042985 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051029/0001

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION12298143 PREVIOUSLY RECORDED ON REEL 042762 FRAME 0145. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:051145/0184

Effective date: 20160218

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 037486 FRAME 0517. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITYINTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:053547/0421

Effective date: 20151207

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVEAPPLICATION 11759915 AND REPLACE IT WITH APPLICATION11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITYINTEREST;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:052915/0001

Effective date: 20160622

AS Assignment

Owner name: NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVEAPPLICATION 11759915 AND REPLACE IT WITH APPLICATION11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITYINTEREST;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:052917/0001

Effective date: 20160912