US20060069019A1 - Crystal structure of the complex of hepatocyte growth factor beta chain with Met receptor and methods of use - Google Patents

Crystal structure of the complex of hepatocyte growth factor beta chain with Met receptor and methods of use Download PDF

Info

Publication number
US20060069019A1
US20060069019A1 US11/124,607 US12460705A US2006069019A1 US 20060069019 A1 US20060069019 A1 US 20060069019A1 US 12460705 A US12460705 A US 12460705A US 2006069019 A1 US2006069019 A1 US 2006069019A1
Authority
US
United States
Prior art keywords
atom
met
hgf
amino acid
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/124,607
Inventor
Christian Wiesmann
Jennifer Stamos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Priority to US11/124,607 priority Critical patent/US20060069019A1/en
Assigned to GENENTECH, INC. reassignment GENENTECH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STAMOS, JENNIFER, WIESMANN, CHRISTIAN
Publication of US20060069019A1 publication Critical patent/US20060069019A1/en
Priority to US12/015,993 priority patent/US7754458B2/en
Priority to US12/784,419 priority patent/US20110012894A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/4753Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2299/00Coordinates from 3D structures of peptides, e.g. proteins or enzymes

Definitions

  • HGF hepatocyte growth factor
  • This activation can arise from a variety of sources, but in each case the Met receptor activates signaling cascades that normally function to organize groups of cells into branching, tubular structures that are present in a variety of organs (Montesano et al., 1992; Sonnenberg et al., 1993; Rosen et al., 1994; Trusolino and Comoglio, 2002; Zhang and Vande Woude, 2003).
  • the Met receptor plays a unique role during development as a master switch, which can stimulate proliferation and motility necessary for the full program of growth and scattering of cells. Its role in the invasiveness of many cancers makes it an attractive target for therapeutics (Ma et al., 2003). However, many questions remain about how the ligand, HGF, binds to Met and induces its tyrosine kinase cascade and thus leads to a biological response.
  • the Met receptor is part of a larger family of growth factor receptors with identical domain architecture that includes the Ron and Sea receptors (Monsin et al., 1992, Huff et al., 1993).
  • the extracellular portions of Met family members are composed of three domain types.
  • the N-terminal 500 residues fold into a Sema domain, which shares sequence homology with domains found in the Semaphorin and plexin families of neural development proteins (Winburg et al., 1998).
  • Sema domains form a 7-bladed ⁇ -propeller structure (Antipenkov et al., 2003, Love et al., 2003).
  • Met undergoes proteolytic cleavage within the Sema domain during normal processing, although the role for this remains unclear since cells that are unable to cleave Met show normal levels of Met activation upon ligand binding ( Komada et al., 1993).
  • a PSI domain a small domain spanning about 50 residues and containing 4 disulfide bonds, follows the Sema domain.
  • PSI domains are also found in the plexins, Semaphorins and integrins, hence its name (Bork et al., 1999).
  • the PSI domain is connected via 4 IPT domains to the transmembrane helix and the kinase domain in the intracellular portion of the receptor. IPT domains are related to immunoglobulin-like domains and are named after their presence in plexins and transcription factors (Takagi et al., 1995).
  • HGF is a large growth factor of 728 residues that is produced as an inactive single-chain precursor which is proteolytically processed to form the biologically active disulfide-linked ⁇ / ⁇ -heterodimer (Nakamura et al., 1989; Hartmann et al., 1992; Kataoka et al., 2003).
  • the ⁇ -chain folds into an N-terminal domain (N-domain) followed by 4 Kringle domains.
  • the ⁇ -chain starts with residue Val495 and is homologous to the protease domain of chymotrypsin like serine proteases, which, like HGF, are activated by a proteolytic cleavage event (Perona and Craig, 1995; Hedstrom 2002).
  • HGF ⁇ -chain complexed with Met receptor there is no detailed structural information about HGF ⁇ -chain complexed with Met receptor.
  • a completely solved crystal structure of the HGF ⁇ -chain complexed with Met receptor is needed, for example, for assays for Met-ligand (e.g., HGF ⁇ -chain) interaction and function, modeling the structure-function relationship of Met and other molecules, diagnostic assays for mutation-induced pathologies, and rational design of agents useful in modulating Met or HGF activity or activation.
  • Met-ligand e.g., HGF ⁇ -chain
  • the present disclosure provides a crystalline form of hepatocyte growth factor beta chain (HGF ⁇ ) complexed with Met receptor, and the structural coordinates of the crystal. Coordinates of a crystal structure solved by molecular replacement are listed in Table 2.
  • HGF ⁇ comprises an amino acid sequence of SEQ ID NO: 1 or conservative substitutions thereof and the Met receptor comprises an amino acid sequence of SEQ ID NO:3 or conservative substitutions thereof.
  • the disclosure provides a crystal structure of HGF ⁇ complexed with Met receptor, as well as use of the crystal structure to model Met receptor activity when complexed with HGF ⁇ .
  • This use of the structure includes: modeling the interaction of ligands with the Met receptor; activation and inhibition of Met receptor; and the rational design of modulators of Met receptor activity.
  • these modulators include ligands that interact with Met receptor and modulate Met receptor activities, such as cell migration, HGF ⁇ binding to Met, and Met phosphorylation and signaling.
  • amino acid residues that form the binding site for the Met receptor on HGF ⁇ are identified and are useful, for example, in methods to model the structure of HGF binding site and to identify agents that can bind or fit into the binding site.
  • amino acid positions that form the binding site for HGF ⁇ on Met have been identified and are useful, for example, in methods to model the structure of the Met ligand binding site and to identify other agents that can bind or fit into the binding site.
  • FIG. 1A shows a superposition representation of HGF ⁇ -chain (grey) and plasmin.
  • the plasmin ⁇ chain is shown as a thin dark line.
  • Selected side-chains of HGF ⁇ and plasmin are shown as sticks. They include the residues of the catalytic triad in serine proteases (His[c57], Asp[c102], and Ser[c195]) and the respective residues in the catalytically inactive HGF ⁇ -chain (Gln534, Asp578 and Tyr673), the N-terminal Val495 (V495; Val16 in plasmin) and Asp672 (D672; Asp194 in plasmin).
  • the N-terminus of Val495 of HGF is inserted into the core of the protein.
  • the N-terminal amine forms a salt bridge with the side-chain of Asp672 and thus rearranges the loops that carry the catalytic triad.
  • the numbering system with a lower case c is that of the chymotyrpsinogen numbering system.
  • FIG. 1B shows the same superposition of FIG. 1A rotated 180° around the y-axis.
  • the surface of HGF ⁇ -chain is grey. Cysteines 561 (C561) and 604 (C604) in HGF ⁇ -chain and the Asp598 (D598) are shown.
  • the ⁇ -chain of plasmin follows a groove that is also present on the HGF surface. The distance requirements for the formation of the disulfide bond between the ⁇ - and the ⁇ -chain analogous to plasmin and MSP are not satisfied.
  • the two cysteines on the plasmin ⁇ -chain are shown as stick stubs.
  • FIG. 1C shows the sequence alignment of selected regions of HGF, MSP, and plasmin.
  • SEQ ID NOs:7-9 The alignment shows the Cys residues that are present in the a and ⁇ chain of HGF.
  • the Cys at position 487 in the ⁇ chain of HGF is conserved when compared with MSP and plasmin.
  • the Cys residues in the ⁇ chain of HGF are not at conserved positions, but are found at positions 561 and 604.
  • a disulfide bond between amino acid residues at 487 in the ⁇ chain and the cysteine residue at 604 in the ⁇ chain may be formed.
  • cysteine 561 in the three-dimensional structure, this residue could also form a disulfide bond with amino acid residue 487 in the ⁇ chain.
  • Asterisks indicate amino acid residues that are conserved when the three sequences are compared and dots indicate amino acids that are conservative substitutions.
  • FIGS. 2 A-C show representations of the complex of Met and HGF ⁇ -chain.
  • FIGS. 2A and 2B show ribbon representations with HGF ⁇ -chain.
  • FIG. 2A provides a view onto the ‘top’ side of the propeller.
  • the numbers in the center refer to the blades.
  • the ⁇ -strands in blade 1 are labeled A, B, C, and D.
  • Disordered residues in the represented model are indicated with dotted lines and the dotted line associated numbers refer to the last and first amino acid residues present in the model.
  • FIG. 2B provides a side view of the same complex of FIG. 2A . Note that the loops on the top face of the propeller are longer than the ones on the bottom face. All figures were made using Pymol (DeLano, 2002).
  • FIG. 2C provides a surface representation of the Met Sema domain and an associated HGF ⁇ -chain represented as a gray ribbon.
  • the left panel of FIG. 2C captures the complex in the same view as FIG. 2A and shows approximate molecular dimensions.
  • the right panel of FIG. 2C is a view towards the bottom of the propeller and indicates a proteolysis site.
  • FIG. 3 shows sequence alignment of the Sema domains of human Met receptor (Met_h) (SEQ ID NO:10), human Sema4D (hSema4d) (SEQ ID NO:11), and mouse Sema3A (mSema3a) (SEQ ID NO:12).
  • the secondary structure elements depicted refer to the Met structure.
  • the structural elements identified as A1, B1, C1, etc. refer to ⁇ sheets that form the blades 1-7 of the propeller of the human Met receptor.
  • A1, B1, C1 and D1 identify the amino acids that form propellor blade 1 of the Met Sema domain.
  • the amino acids forming other blades of the propeller are also identified.
  • the boxes indicate structural equivalent positions between Met and Sema4D.
  • FIG. 4A shows a superposition representation of Met and Sema4D. Note the structural similarities within the ⁇ -propellers and the differences in the insertions. The topology of the PSI domains in both structures is identical, but the relative orientation in comparison to the Sema domains is rather different.
  • FIGS. 4B and 4C shows two different views of a model of a potential Met-dimer based on the dimer of Sema4D and the superposition shown in FIG. 4A .
  • the interface between the two molecules forming the Sema4D dimer is large and buries approximately 2,500 ⁇ 2 . If this dimerization interface were present on Met, the respective interface in Met would be much smaller due to the different conformation of the loops that correspond to the loops forming the dimer interface in Sema4D.
  • two HGF ⁇ molecules Residues shown as spheres represent Cys604 (C604) and Cys561 (C561), which are potential disulfide partners of Cys487 in the ⁇ -chain of HGF.
  • FIG. 5A shows an open-book surface representation view of the Met-HGF complex interface.
  • Atoms of an amino acid residues of HGF ⁇ (shown on the left) that are closer than about 4.7 ⁇ to an atom of an amino acid of Met include Y513, K516, R533, Q534, P537, Y673, E670, Y619, D578, R647, P693, C669, V692, C697, E656, G694, G696, R695, I699, K649, and R702.
  • Atoms of an amino acid residues of Met closer than about 4.7 ⁇ to an atom of an amino acid residues of HGF ⁇ include R218, K220, E221, T222, L229, T230, E167, D190, R191, F192, K223, Y126, D127, D128, H148, S286, and Y125.
  • Contact residues are labeled.
  • HGF is on the left side and Met is on the right side.
  • the three underlined amino acid residue numbers indicate the residues that form the catalytic triad in serine proteases.
  • FIG. 5B shows differences in binding mode between a HGF:Met complex (left) and a trypsin:BPTI (pdb 2PTC) complex (right). Orientations of HGF and trypsin are similar to the view in FIG. 1 . Contact residues of Met are shown as sticks. The numbers refer to Met residues. Contact residues of BPTI are also shown as sticks and the “P” number labels refer to BPTI residues.
  • FIG. 6 shows a view of the ‘S 1-pocket’ of HGF ⁇ . Selected numbered residues that form the ‘S1 pocket’ of HGF are shown as sticks with gray carbons. Glu221 (E221) of Met is shown. The dotted lines indicate potential hydrogen bonds between HGF ⁇ and Met amino acid residues.
  • FIGS. 7A and 7B show two different views of two crystallographically related HGF ⁇ -chain:Met complexes that may represent a portion of the active signaling complex. Residues 495:499 of both HGF ⁇ -chains are shown in stick representation to indicate the position of the HGF ⁇ -chain N-termini. Two cysteines (C604 and C561) shown as spheres, are candidates for the formation of the disulfide bond with Cys487 in the HGF ⁇ -chain.
  • FIG. 8 shows a schematic diagram for Met signaling.
  • FIG. 8A shows the domain structure of Met.
  • FIG. 8B shows a complex of Met with HGF in its uncleaved, immature form. High affinity binding of HGF to Met is established via the N and the K1 domains.
  • FIGS. 8C and 8D show examples of maturation of HGF where the ⁇ - and ⁇ -chains remain connected via a single disulfide bond (—S—S—) between two cysteines (shown as —C ⁇ C—). Maturation of HGF further leads to rearrangements in its activation domain and to an increased affinity of the HGF ⁇ -chain to the Sema domain of Met.
  • FIG. 8A shows the domain structure of Met.
  • FIG. 8B shows a complex of Met with HGF in its uncleaved, immature form. High affinity binding of HGF to Met is established via the N and the K1 domains.
  • FIGS. 8C and 8D show examples of maturation of HGF where
  • FIG. 8C shows a 2:1 model where the ⁇ - and ⁇ -chains of HGF bind to different Met receptor molecules.
  • FIG. 8D shows a 2:2 model where the ⁇ - and ⁇ -chains of HGF bind to the same Met receptor molecule to form stable 1:1 complexes. Maturation of HGF creates a new binding interface in the ⁇ -chain and allows the formation of a weak 2:2 Met:HGF complex. Such complexes may be stabilized via heparin or other co-receptors.
  • hepatocyte growth factor refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) HGF polypeptide that is capable of binding to Met and/or activating the HGF/Met signaling pathway under conditions that permit such process to occur, for example, conditions that allow for the formation of the two chain form.
  • wild type HGF sequence generally refers to an amino acid sequence found in a naturally occurring HGF and includes naturally occurring truncated or secreted forms, variant forms (e.g. alternatively spliced forms) and naturally occurring allelic variants.
  • HGF ⁇ or “HGF ⁇ -chain”, “HGF-beta” or variations thereof, refers to any HGF ⁇ chain having the conformation that is adopted by wild type HGF ⁇ chain upon conversion of wild type HGF protein from a single chain form to a 2 chain form (i.e., ⁇ and ⁇ chain). In some embodiments, the conversion results at least in part from cleavage between residue 494 and residue 495 of the wild type HGF protein. In some embodiments, the conformation refers specifically to the conformation of the activation domain of the protease-like domain in the ⁇ chain. In some embodiments, the conformation refers even more specifically to the conformation of the active site of the protease-like domain in the HGF ⁇ chain.
  • HGF ⁇ includes variants of wild type HGF ⁇ , for example, a variant comprising an amino acid sequence of SEQ ID NO:1.
  • the HGF ⁇ chain may be isolated from a variety of sources such as human tissue or prepared by recombinant or synthetic methods.
  • One embodiment of HGF ⁇ chain comprises an amino acid sequence of SEQ ID NO:1 in Table 4.
  • Another embodiment of HGF ⁇ chain comprises an amino acid sequence of SEQ ID NO:14 in Table 8.
  • HGF ⁇ variant refers to polypeptide that has a different sequence than a reference polypeptide.
  • the reference polypeptide is a HGF ⁇ polypeptide comprising SEQ ID NO:1 in Table 4.
  • a variant has at least 80% amino acid sequence identity with the HGF ⁇ amino acid sequence of Table 4 (SEQ ID NO:1) or Table 8 (SEQ ID NO:14).
  • the variants include those polypeptides that have substitutions, additions or deletions.
  • the variants also include those polypeptides that have at least one conservative amino acid substitutions, preferably all of the substitutions are conservative.
  • the HGF ⁇ variant has about 1-25 conservative amino amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions.
  • the variants have the biological activity of binding to the Met receptor and/or activating it. In other embodiments, the variant can bind to the Met receptor but not activate it.
  • a HGF ⁇ variant polypeptide will have at least 80% sequence identity, more preferably will have at least 81% sequence identity, more preferably will have at least 82% sequence identity, more preferably will have at least 83% sequence identity, more preferably will have at least 84% sequence identity; more preferably will have at least 85% sequence identity, more preferably will have at least 86% sequence identity, more preferably will have at least 87% sequence identity, more preferably will have at least 88% sequence identity, more preferably will have at least 89% sequence identity, more preferably will have at least 90% sequence identity, more preferably will have at least 91% sequence identity, more preferably will have at least 92% sequence identity, more preferably will have at least 93% sequence identity, more preferably will have at least 94% sequence identity, more preferably will have at least 95% sequence identity, more preferably will have at least 96% sequence identity, more preferably will have at least 96% sequence identity, more preferably will have at least 97% sequence identity, more preferably will have at least 98% sequence identity, more preferably will have
  • Metal receptor refers to any native or variant (whether native or synthetic) Met polypeptide that is capable of binding to and/or being activated by HGF.
  • wild-type Met receptor generally refers to a polypeptide comprising an amino acid sequence found in a naturally occurring Met receptor and includes naturally occurring truncated or secreted forms, variant forms (e.g. alternatively spliced forms) and naturally occurring allelic variants.
  • the “Met Sema domain” comprises the N terminal 500 amino acid residues of a wild type Met receptor.
  • a PSI domain follows the Sema domain and comprises 50 amino acid residues and has 4 disulfide bonds. Following the PSI domain are four IPT domains.
  • IPT domains are related to immunoglobulin like domains.
  • An embodiment of the Met receptor comprises an amino acid sequence of SEQ ID NO:2 as shown in Table 5.
  • An embodiment of the extracellular fragment including the Sema domain of the Met receptor comprises an amino acid sequence of SEQ ID NO:3 as shown in Table 6 or comprises an amino acid sequence of SEQ ID NO:10 as shown in FIG. 3 .
  • Metal receptor variant refers to a polypeptide that has a different sequence than a reference polypeptide, whereine the reference polypeptide is the Met receptor that comprises an amino acid sequence of SEQ ID NO:2 or the extracellular fragment of the Met receptor that comprises an amino acid sequence of SEQ ID NO:3. Another embodiment of an extracellular fragment of the Met receptor comprises an amino acid sequence of SEQ ID NO:10 as shown in FIG. 3 .
  • An extracellular fragment of Met receptor comprising a sequence of SEQ ID NO:3 has amino acid substitutions at positions 304-308 of wild type sequence to insert a thrombin cleavage site.
  • Variants include those polypeptides that have substitutions, deletions, and/or deletions.
  • Variants also include those polypeptides that have at least one conservative amino acid substitution, preferably, all of the substitutions are conservative.
  • the Met receptor variant has about 1-25 conservative amino amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions.
  • the variant has the biological activity of binding to HGF, but not becoming activated.
  • Met receptor variant will have at least 80% sequence identity to a polypeptide having SEQ ID NO:3
  • Met receptor polypeptide variants have at least 80% sequence identity, more preferably 81% sequence identity, more preferably 82% sequence identity, more preferably 83% sequence identity, more preferably 84% sequence identity, more preferably 85% sequence identity, more preferably 86% sequence identity, more preferably 87% sequence identity, more preferably 88% sequence identity, more preferably 89% sequence identity, more preferably 90% sequence identity, more preferably 91% sequence identity, more preferably 92% sequence identity, more preferably 93% sequence identity, more preferably 94% sequence identity, more preferably 95% sequence identity, more preferably 96% sequence identity, more preferably 97% sequence identity, more preferably 98% sequence identity, more preferably 99% sequence identity or greater, to a polypeptide having a sequence of SEQ ID NO:2 or SEQ ID NO:3.
  • binding site refers to a region of a molecule or molecular complex that, as a result of its shape, distribution of electrostatic charge and/or distribution of nonpolar regions, favorably associates with a ligand.
  • a binding site may include or consist of features such as cavities, surfaces, or interfaces between domains.
  • Ligands that may associate with a binding site include, but are not limited to, cofactors, substrates, receptors, agonists, and antagonists.
  • binding site includes a functional binding site and/or a structural binding site.
  • a structural binding site includes “in contact” amino acid residues as determined from examination of a three-dimensional structure.
  • Contact can be determined using Van der Waals radii of atoms or by proximity sufficient to exclude solvent, typically water, from the space between the ligand and the molecule or molecular complex. Some of the “in contact” amino acid residues may not cause any change in a biochemical assay, a cell-based assay, or an in vivo assay used to define a functional binding site but may contribute to the formation of a three dimensional structure.
  • a functional binding site includes amino acid residues that are identified as binding site residues based upon loss or gain of function, for example, loss of binding to ligand upon mutation of the residue. In some embodiments, the amino acid residues of a functional binding site are a subset of the amino acid residues of the structural binding site.
  • HGF ⁇ structural binding site includes all or a portion of a molecule or molecular complex whose shape is sufficiently similar to at least a portion of a binding site on HGF ⁇ for Met as to be expected to bind Met or related structural analogs of Met.
  • a structurally equivalent ligand binding site is defined by a root mean square deviation from the structure coordinates of the backbone atoms of the amino acids that make up binding sites in HGF ⁇ for Met of at most about 0.70 ⁇ , preferably about 0.5 ⁇ .
  • a structural binding site for the Met receptor on HGF ⁇ comprises, consists essentially of, or consists of at least one amino acid residue corresponding to a residue 513, 516, 533, 534, 536, 537, 539, 578, 619, 647, 649, 656, 668 to 670, 673, 692 to 697, 699, 702, 705 or 707 or mixtures thereof. Numbering of amino acids is that of the native receptor.
  • Metal structural binding site includes all, or a portion of, a molecule whose shape is sufficiently similar to the binding site on Met for HGF ⁇ to be expected to bind HGF ⁇ or structural analogs of HGF ⁇ .
  • a structurally equivalent “Met binding site” is defined by root mean square deviation from the structure coordinates of the amino acids that make up the binding sites in Met of at most about 0.70 ⁇ , preferably about 0.5 ⁇ .
  • a structural binding site for HGF ⁇ on the Met receptor comprises, consists essentially of, or consists of at least one amino acid residue corresponding to a residue 124-128, 148, 167, 190-192, 218, 220 to 224, 227, 229 to 230, 286 or 414 or mixtures thereof. Numbering of amino acids is that of the native receptor.
  • a blade of a propeller refers to a structural feature of the Met receptor.
  • a blade is formed by four antiparallel strands with strand A in the center of the blade followed by strands B and C, and with strand D forming the outermost strand of the blade.
  • the 7 blades are arranged in a circular fashion, with the N terminal strand forming strand D of the last blade.
  • the AB and CD loops of each blade of the Met Sema domain form the flat bottom face of the propeller and the BC and DA loops form the top face of the propeller.
  • each of the blades of the propeller of the human Met receptor comprise the amino acid sequence as identified in FIG. 3 .
  • Crystal refers to one form of a solid state of matter in which atoms are arranged in a pattern that repeats periodically in three-dimensions, typically forming a lattice.
  • “Complementary or complement” as used herein, means the fit or relationship between two molecules that permits interaction, including for example, space, charge, three-dimensional configuration, and the like.
  • corresponding refers to an amino acid residue or amino acid sequence that is found at the same positions or positions in a sequence when the amino acid position or sequences are aligned with a reference sequence.
  • the reference sequence is the extracellular fragment of the Met receptor comprising a sequence of SEQ D NO:3. It will be appreciated that when the amino acid position or sequence is aligned with the reference sequence the numbering of the amino acids may differ from that of the reference sequence or a different numbering system may be utilized.
  • Heavy atom derivative means a derivative produced by chemically modifying a crystal with a heavy atom such as Hg, Au, or a halogen.
  • “Structural homolog” of Met receptor refers to a protein that contains one or more amino acid substitutions, deletions, additions, or rearrangements with respect to the amino acid sequence of Met receptor, but that, when folded into its native conformation, exhibits or is reasonably expected to exhibit at least a portion of the tertiary (three-dimensional) structure of the Met receptor.
  • a portion of the three dimensional structure refers to structural domains of the Met receptor including the Sema domain, PSI domain, IPT domains, transmembrane domain and/or intracellular domain, and combinations thereof.
  • structurally homologous molecules of Met receptor include Met receptor variants, preferably variants with one or more conservative amino acid substitutions.
  • a Met receptor variant has only conservative amino acid substitutions.
  • Homolog tertiary structure can be probed, measured, or confirmed by known analytic or diagnostic methods, for example, X-ray, NMR, circular dichroism, a panel of monoclonal antibodies that recognize native Met receptor, and like techniques.
  • structurally homologous molecules can have substitutions, deletions or additions of one or more contiguous or noncontiguous amino acids, such as a loop or a domain.
  • Structurally homologous molecules also include “modified” Met receptor molecules that have been chemically or enzymatically derivatized at one or more constituent amino acid, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors, and like modifications.
  • Ligand refers to an agent and/or compound that associates with a binding site on a molecule, for example, Met and/or HGF ⁇ binding sites, and may be an antagonist or agonist of Met or HGF ⁇ activity.
  • Ligands include molecules that mimic HGF ⁇ binding to Met and in some embodiments, are not capable of activating HGF ⁇ /Met signalling pathway.
  • “Compound” refers to molecule that associates with the Met or the HGF ⁇ or a pharmaceutically acceptable salt, ester, amide, prodrug, isomer, or metabolite, thereof.
  • “Pharmaceutically acceptable salt” refers to a formulation of a compound that does not compromise the biological activity and properties of the compound. Pharmaceutical salts can be obtained by reacting a binding-active compound of the disclosure with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • Prodrug refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug.
  • An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the “prodrug”) to facilitate transport across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water solubility is beneficial.
  • a further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group wherein the peptide is metabolized to yield the active moiety.
  • Molecular complex refers to a combination of bound substrate or ligand with polypeptide, such as HGF ⁇ bound to Met, or a ligand bound to HGF ⁇ or Met.
  • Machine-readable data storage medium means a data storage material encoded with machine-readable data, wherein a machine programmed with instructions for using such data and is capable of displaying data in the desired format, for example, a graphical three-dimensional representation of molecules or molecular complexes.
  • Scalable means the increasing or decreasing of distances between coordinates (configuration of points) by a scalar factor while keeping the angles essentially the same.
  • Space group symmetry means the whole symmetry of the crystal that combines the translational symmetry of a crystalline lattice with the point group symmetry.
  • a space group is designated by a capital letter identifying the lattice type (P, A, F, etc.) followed by the point group symbol in which the rotation and reflection elements are extended to include screw axes and glide planes. Note that the point group symmetry for a given space group can be determined by removing the cell centering symbol of the space group and replacing all screw axes by similar rotation axes and replacing all glide planes with mirror planes. The point group symmetry for a space group describes the true symmetry of its reciprocal lattice.
  • Unit cell means the atoms in a crystal that are arranged in a regular repeating pattern, in which the smallest repeating unit is called the unit cell.
  • the entire structure can be reconstructed from knowledge of the unit cell, which is characterized by three lengths (a, b and c) and three angles ( ⁇ , ⁇ and ⁇ ).
  • the quantities a and b are the lengths of the sides of the base of the cell and ⁇ is the angle between these two sides.
  • the quantity c is the height of the unit cell.
  • the angles ⁇ and ⁇ describe the angles between the base and the vertical sides of the unit cell.
  • X-ray diffraction pattern means the pattern obtained from X-ray scattering of the periodic assembly of molecules or atoms in a crystal.
  • X-ray crystallography is a technique that exploits the fact that X-rays are diffracted by crystals. X-rays have the proper wavelength (in the Angstrom ( ⁇ ) range, approximately 10-8 cm) to be scattered by the electron cloud of an atom of comparable size.
  • the electron density can be reconstructed. Additional phase information can be extracted either from the diffraction data or from supplementing diffraction experiments to complete the reconstruction (the phase problem in crystallography). A model is then progressively built into the experimental electron density, refined against the data to produce an accurate molecular structure.
  • X-ray structure coordinates define a unique configuration of points in space.
  • a set of structure coordinates for a protein or a protein/ligand complex, or a portion thereof define a relative set of points that, in turn, define a configuration in three dimensions.
  • a similar or identical configuration can be defined by an entirely different set of coordinates, provided the distances and angles between coordinates remain essentially the same.
  • a configuration of points can be defined by increasing or decreasing the distances between coordinates by a scalar factor, while keeping the angles essentially the same.
  • Crystal structure generally refers to the three-dimensional or lattice spacing arrangement of repeating atomic or molecular units in a crystalline material.
  • the crystal structure of a crystalline material can be determined by X-ray crystallographic methods, see for example, “Principles of Protein X-Ray Crystallography,” by Jan Drenth, Springer Advanced Texts in Chemistry, Springer Verlag; 2nd ed., February 1999, ISBN: 0387985875, and “Introduction to Macromolecular Crystallography,” by Alexander McPherson, Wiley-Liss, Oct. 18, 2002, ISBN: 0471251224.
  • the present disclosure thus includes a crystalline form and a crystal structure of hepatocyte growth factor beta-chain (HGF ⁇ ) complexed with Met receptor (HGF ⁇ :Met) and methods of using the HGF ⁇ :Met crystal structure and structural coordinates to identify homologous proteins and to design or identify agents that can modulate the function of HGF, Met, and/or HGF ⁇ :Met complex.
  • the crystalline form of HGF ⁇ complexed with Met receptor diffracts X-rays for a determination of atomic coordinates to a resolution of 5 ⁇ or better.
  • the present disclosure also includes the three-dimensional configuration of points derived from the structure coordinates of at least a portion of an extracellular fragment of a Met receptor molecule or molecular complex, as well as structurally equivalent configurations, as described below.
  • the three-dimensional configuration includes points derived from structure coordinates representing the locations of a plurality of the amino acids defining the Met binding site for HGF ⁇ , the blades of the propeller, and the PSI domain.
  • the three-dimensional configuration includes points derived from structure coordinates representing the locations of the backbone atoms of a plurality of amino acids defining the Met or HGF ⁇ :Met complex binding site.
  • the three-dimensional configuration includes points derived from structure coordinates representing the locations of the side chain and the backbone atoms (other than hydrogens) of a plurality of the amino acids defining the Met or HGF ⁇ :Met complex binding site including the Met binding site for HGF ⁇ and the HGF ⁇ binding site for Met.
  • the disclosure also includes the three-dimensional configuration of points identifying other structural features of an extracellular fragment of the Met receptor. Those other structural features include the blades of the propeller structure and PSI domain. A plurality of amino acid residues have been identified as contributing to these structural features of Met receptor. In some embodiments, the amino acid residues comprise those identified as corresponding to structural features as shown in FIG. 3 .
  • the disclosure also includes the scalable three-dimensional configuration of points derived from structure coordinates of molecules or molecular complexes that are structurally homologous to HGF ⁇ :Met complex or extracellular fragment of the Met receptor including the Sema domain, as well as structurally equivalent configurations.
  • Structurally homologous molecules or molecular complexes are defined below.
  • structurally homologous molecules can be identified using the structure coordinates of the HGF ⁇ :Met complex or extracellular fragment of the Met receptor according to a method of the disclosure.
  • the configurations of points in space derived from structure coordinates according to the disclosure can be visualized as, for example, a holographic image, a stereodiagram, a model, or a computer-displayed image, and the disclosure thus includes such images, diagrams or models.
  • the crystal structure and structural coordinates can be used in methods, for example, for obtaining structural information of a related molecule, and for identifying and designing agents that modulate Met or HGF ⁇ :Met complex activity.
  • the present disclosure includes a description of HGF ⁇ and an extracellular fragment of Met including the Sema domain of the Met receptor.
  • Hepatocyte growth factor comprises a 69 kDa alpha chain and 34 kDa beta chain.
  • HGF is secreted as a single chain precursor form (scHGF).
  • the 69 kDa alpha chain comprise a N terminal finger domain and four kringle domains (K1-K4).
  • a representative amino acid sequence of human HGF ⁇ chain is shown in Table 4 (SEQ ID NO: 1).
  • the sequence of Table 4 has one amino acid change from wild type shown in Table 8; the cysteine at amino acid position 604 is changed to a serine. It would be expected that a wild type HGF ⁇ would have an equivalent crystal structure.
  • the amino acid numbering of the HGF ⁇ chain is based on the numbering of the single chain precursor form. Numbers in brackets or preceeded by a lower case c represent a numbering system based on reference to chymotrypsinogen.
  • the Met receptor is a tyrosine kinase and is part of a larger family of growth factor receptors with domain architecture similar to the Ron and Sea receptors.
  • the extracellular portion of the Met receptor comprises N-terminal 500 amino acids that fold into a Sema domain.
  • a PSI domain follows the Sema domain and comprises about 50 amino acids and has 4 disulfide bonds.
  • the PSI domain is connected to the transmembrane domain and extracellular kinase domain by 4 IPT domains.
  • IPT domains are immunoglobulin-like domains and are located C terminal to the PSI domain.
  • Met becomes activated upon binding of a ligand, such as HGF ⁇ , the receptor is phosphorylated and cells expressing activated Met are stimulated to migrate, proliferate and/or differentiate. Crosslinking of Met receptors to form dimers also activates the Met receptor.
  • a ligand such as HGF ⁇
  • HGF ⁇ a ligand that stimulates Met to migrate, proliferate and/or differentiate.
  • Crosslinking of Met receptors to form dimers also activates the Met receptor.
  • a representative example of an amino acid sequence of a Met receptor is shown in Table 5 and comprises an amino acid sequence of SEQ ID NO:2.
  • a representative example of a sequence of an extracellular portion of the Met receptor including the Sema domain and the PSI domain is shown in Table 6 and comprises an amino acid sequence of SEQ ID NO:3.
  • the extracellular fragment of the Met receptor having a sequence of SEQ ID NO:3 differs from wild type in that amino acids at positions 304 to 308 have been substituted to include a thrombin cleavage site.
  • Another embodiment of an extracellular fragment of Met is provided in FIG. 3 and comprises an amino acid sequence of SEQ ID NO:10.
  • the numbering system of Met receptor is that of the Swiss Prot database as shown in Table 6.
  • Native or wild-type HGF, HGF ⁇ HGF ⁇ , or Met receptor polypeptides are those polypeptides that have a sequence of a polypeptide obtained from nature. Native or wild-type polypeptides include naturally occurring variants, secreted or truncated forms. Some domains of HGF and/or the Met receptor are known. Several isoforms of HGF are known such as isoform 1, isoform 2, isoform 3, isoform 4, and isoform 5. Representative sequences can be found at GenBank Accession Numbers NM — 000601, NM — 001010931, NM — 001010932, NM — 001010933, NM — 001010934, and NP — 000592.
  • the present disclosure also includes a polypeptide comprising, consisting essentially of, or consisting of a portion or fragment of the Met receptor.
  • the polypeptide fragment includes amino acid residues from any of amino acid 1 to 25 residues to amino acid position 567 or residues corresponding to those positions.
  • the polypeptide portion has the ability to bind to ligand HGF.
  • the polypeptide portion may also be fused to heterologous polypeptide, such as a peptide tag.
  • the fusion polypeptide retains the ability to bind a ligand, such as HGF.
  • the disclosure also provides a polypeptide comprising, consisting essentially of, or consisting of a portion or fragment of the Met receptor starting at amino acid residue 124 and ending at any one of amino acid residues 230 to 286 or residues corresponding to these residues.
  • This polypeptide includes the amino acid residues that contact the HGF ⁇ ligand and preferably, the polypeptide has the ability to bind to a ligand such as HGF ⁇ .
  • the polypeptide portion or fragment may be fused to a heterologous polypeptide.
  • the fusion protein can bind to a ligand, such as HGF ⁇ .
  • the present disclosure also includes variants of the Met receptor.
  • Variants include those polypeptides that have amino acid substitutions, deletions, and additions. Amino acid substitutions can be made for example to replace cysteines and eliminate formation of disulfide bonds. Amino acid substitutions can also be made to change proteolytic cleavage sites.
  • the variants also include those polypeptides that have at least one conservative amino acid substitution. In some embodiments a variant only has conservative amino acid substitutions. In some embodiments, the Met receptor variant has about 1-25 conservative amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitutions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions.
  • a Met receptor variant has at least 90% sequence identity to an extracellular domain fragment of the Met receptor, such as SEQ ID NO:3, and has changes at amino acids other than those associated with the binding site for HGF ⁇ on Met, preferably the amino acid changes are only conservative substitutions.
  • Other variants can be made at the Met binding site for HGF ⁇ .
  • the variants of the Met receptor bind HGF ⁇ bind with the same or higher affinity than the wild type Met receptor.
  • a Met receptor, variant or structural homolog or portions thereof, may be fused to a heterologous polypeptide or compound.
  • the heterologous polypeptide is a polypeptide that has a different function than that of the Met receptor.
  • heterologous polypeptide include polypeptides that may act as carriers, may extend half life, may act as epitope tags, may provide ways to detect or purify the fusion protein.
  • Heterologous polypeptides include KLH, albumin, salvage receptor binding epitopes, immunoglobulin constant regions, and peptide tags.
  • Peptide tags useful for detection or purification include FLAG, gD protein, polyhistidine tags, hemagluthinin from influenza virus, T7 tag, S tag, Strep tag, chloramiphenicol acetyl transferase, biotin, glutathione-S transferase, green fluorescent protein and maltose binding protein.
  • Compounds that can be combined with the Met receptor, variants or structural homolog or portions thereof, include radioactive labels, protecting groups, and carbohydrate or lipid moieties.
  • Variants of a Met receptor or extracellular fragment thereof can be prepared by introducing appropriate nucleotide changes into DNA encoding Met or the extracellular fragment, or by synthesis of the desired polypeptide variants.
  • HGF ⁇ chain variants can be prepared by introducing appropriate nucleotide changes into DNA encoding HGF ⁇ or by synthesis of the desired polypeptide variants. Variants can be made using standard methods.
  • Amino acid substitutions include one or more conservative amino acid substitutions.
  • conservative amino acid substitution refers to an amino acid substitution which substitutes a functionally equivalent amino acid.
  • Conservative amino acid changes result in silent changes in the amino acid sequence of the resulting polypeptide.
  • one or more amino acids of a similar polarity act as functional equivalents and result in a silent alteration within the amino acid sequence of the peptide.
  • substitutions within a group can be considered conservative with respect to structure and function.
  • the skilled artisan will recognize that the role of a particular residue is determined by its context within the three-dimensional structure of the molecule in which it occurs.
  • Cys residues may occur in the oxidized (disulfide) form, which is less polar than the reduced (thiol) form.
  • the long aliphatic portion of the Arg side chain can constitute a feature of its structural or functional role, and this may be best conserved by substitution of a nonpolar, rather than another basic residue.
  • side chains containing aromatic groups Trp, Tyr, and Phe
  • substitution of one of these side chains with a member of the acidic or uncharged polar group may be conservative with respect to structure and function.
  • Residues such as Pro, Gly, and Cys (disulfide form) can have direct effects on the main chain conformation, and often may not be substituted without structural distortions.
  • Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Examples of conservative substitutions are shown in Table 9. The variation allowed can be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the native sequence.
  • Polynucleotide sequences encoding the polypeptides described herein can be obtained using standard recombinant techniques. Desired polynucleotide sequences may be isolated and sequenced from appropriate source cells. Alternatively, polynucleotides can be synthesized using nucleotide synthesizer or PCR techniques. Once obtained, sequences encoding the polypeptides or variant polypeptides are inserted into a recombinant vector capable of replicating and expressing heterologous polynucleotides in a host cell. Many vectors that are available and known in the art can be used for the purpose of the present invention.
  • Selection of an appropriate vector will depend mainly on the size of the nucleic acids to be inserted into the vector and the particular host cell to be transformed with the vector.
  • Each vector contains various components, depending on its function (amplification or expression of heterologous polynucleotide, or both) and its compatibility with the particular host cell in which it resides.
  • the vector components generally include, but are not limited to: an origin of replication (in particular when the vector is inserted into a prokaryotic cell), a selection marker gene, a promoter, a ribosome binding site (RBS), a signal sequence, the heterologous nucleic acid insert and a transcription termination sequence.
  • plasmid vectors containing replicon and control sequences which are derived from a species compatible with the host cell are used in connection with these hosts.
  • the vector ordinarily carries a replication site, as well as marking sequences, which are capable of providing phenotypic selection in transformed cells.
  • E. coli is typically transformed using pBR322, a plasmid derived from an E. coli species.
  • pBR322 contains genes encoding ampicillin (Amp) and tetracycline (Tet) resistance and thus provides easy means for identifying transformed cells.
  • pBR322 its derivatives, or other microbial plasmids or bacteriophage may also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of endogenous proteins.
  • phage vectors containing replicon and control sequences that are compatible with the host microorganism can be used as transforming vectors in connection with these hosts.
  • bacteriophage such as ⁇ GEMTM-11 may be utilized in making a recombinant vector which can be used to transform susceptible host cells such as E. coli LE392.
  • Either constitutive or inducible promoters can be used in the present invention, in accordance with the needs of a particular situation, which can be ascertained by one skilled in the art.
  • a large number of promoters recognized by a variety of potential host cells are well known.
  • the selected promoter can be operably linked to cistron DNA encoding a polypeptide described herein by removing the promoter from the source DNA via restriction enzyme digestion and inserting the isolated promoter sequence into the vector of choice.
  • Both the native promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the target genes. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of expressed target gene as compared to the native target polypeptide promoter.
  • Promoters suitable for use with prokaryotic hosts include the PhoA promoter, the ⁇ -galactamase and lactose promoter systems, a tryptophan (trp) promoter system and hybrid promoters such as the tac or the trc promoter.
  • trp tryptophan
  • other promoters that are functional in bacteria such as other known bacterial or phage promoters
  • Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to cistrons encoding the polypeptides or variant polypeptides (Siebenlist et al. (1980) Cell 20: 269) using linkers or adaptors to supply any required restriction sites.
  • each cistron within a recombinant vector comprises a secretion signal sequence component that directs translocation of the expressed polypeptides across a membrane.
  • the signal sequence may be a component of the vector, or it may be a part of the polypeptide encoding DNA that is inserted into the vector.
  • the signal sequence selected for the purpose of this invention should be one that is recognized and processed (i.e. cleaved by a signal peptidase) by the host cell.
  • the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II (STII) leaders, LamB, PhoE, PelB, OmpA and MBP.
  • a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II (STII) leaders, LamB, PhoE, PelB, OmpA and MBP.
  • STII heat-stable enterotoxin II
  • Prokaryotic host cells suitable for expressing polypeptides include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms.
  • useful bacteria include Escherichia (e.g., E. coli ), Bacilli (e.g., B. subtilis ), Enterobacteria, Pseudomonas species (e.g., P. aeruginosa ), Salmonella typhimurium, Serratia marcescans, Klebsiella, Proteus, Shigella , Rhizobia, Vitreoscilla , or Paracoccus .
  • gram-negative cells are used.
  • the host cell should secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture.
  • eukaryotic host cell systems are also well established in the art.
  • invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plants and plant cells.
  • useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CVI line transformed by SV40 (COS-7, ATCC CRL 1651); Chinese hamster ovary cells/-DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); and mouse mammary tumor (MMT 060562, ATCC CCL51).
  • COS-7 monkey kidney CVI line transformed by SV40
  • COS-7 Chinese hamster ovary cells/-DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216
  • Host cells are transformed or transfected with the above-described expression vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO 4 precipitation and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
  • Transformation means introducing DNA into the prokaryotic host so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant.
  • transformation is done using standard techniques appropriate to such cells.
  • the calcium treatment employing calcium chloride is generally used for bacterial cells that contain substantial cell-wall barriers.
  • Another method for transformation employs polyethylene glycol/DMSO.
  • Yet another technique used is electroporation.
  • Prokaryotic cells used to produce the polypeptides of the invention are grown in media known in the art and suitable for culture of the selected host cells.
  • suitable media include luria broth (LB) plus necessary nutrient supplements.
  • the media also contains a selection agent, chosen based on the construction of the expression vector, to selectively permit growth of prokaryotic cells containing the expression vector. For example, ampicillin is added to media for growth of cells expressing ampicillin resistant gene.
  • any necessary supplements besides carbon, nitrogen, and inorganic phosphate sources may also be included at appropriate concentrations introduced alone or as a mixture with another supplement or medium such as a complex nitrogen source.
  • the culture medium may contain one or more reducing agents selected from the group consisting of glutathione, cysteine, cystamine, thioglycollate, dithioerythritol and dithiothreitol.
  • the prokaryotic host cells are cultured at suitable temperatures.
  • the preferred temperature ranges from about 20° C. to about 39° C., more preferably from about 25° C. to about 37° C., even more preferably at about 30° C.
  • the pH of the medium may be any pH ranging from about 5 to about 9, depending mainly on the host organism.
  • the pH is preferably from about 6.8 to about 7.4, and more preferably about 7.0.
  • an inducible promoter is used in the expression vector, protein expression is induced under conditions suitable for the activation of the promoter.
  • a PhoA promoter is used for controlling transcription
  • the transformed host cells may be cultured in a phosphate-limiting medium for induction.
  • inducers may be used, according to the vector construct employed, as is known in the art.
  • Eukaryotic host cells are cultured under conditions suitable for expression of the HGF and/or Met receptor polypeptides.
  • the host cells used to produce the polypeptides may be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPESTM), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCINTM), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source.
  • growth factors such as insulin, transferrin, or epidermal growth factor
  • salts such as sodium chloride, calcium, magnesium, and phosphate
  • buffers such as HEPESTM
  • nucleotides such as adenosine and thymidine
  • antibiotics such as GENTAMYCINTM
  • trace elements defined as inorganic compounds usually present at final concentrations in the micromolar range
  • glucose or an equivalent energy source glucose or an equivalent energy source.
  • Other supplements may also be included at
  • Polypeptides described herein expressed in a host cell may be secreted into and/or recovered from the periplasm of the host cells. Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and isolated there from. Cells may be removed from the culture and the culture supernatant being filtered and concentrated for further purification of the proteins produced.
  • Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and isolated there from. Cells may be removed from the culture and the
  • the expressed polypeptides can be further isolated and identified using commonly known methods such as fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; hydrophobic affinity resins, ligand affinity using a suitable antigen immobilized on a matrix and Western blot assay.
  • Polypeptides that are produced may be purified to obtain preparations that are substantially homogeneous for further assays and uses.
  • Standard protein purification methods known in the art can be employed. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, chromatography on silica or on a cation-exchange resin such as DEAE, chromatofocusing, SDS-PAGE, ammonium sulfate precipitation, and gel filtration using, for example, Sephadex G-75.
  • the present disclosure provides crystals of and a crystal structure of HGF ⁇ chain cocrystalized with a fragment of the Met receptor.
  • the Met receptor fragment includes the Sema and PSI domain.
  • the crystals were formed by contacting a mixture of purified HGF ⁇ chain and the Met receptor extracellular fragment with a precipitant in a buffer.
  • the crystal of a HGF ⁇ and a Met receptor can be diffracted by X-rays to determine atomic coordinates to a resolution of 5 ⁇ or better.
  • the precipitant was 12-15% polyethylene glycol 10,000.
  • the crystals are formed from a HGF ⁇ comprising SEQ ID NO:1 and a Met receptor fragment comprising SEQ ID NO:3.
  • the resulting crystals diffracted to 3.2 ⁇ resolution (Table 1) and have one (1) full complex containing one Met fragment and a single HGF ⁇ -chain in the asymmetric unit.
  • the structure was refined to an R-value of 20.9% (Rfree 27.0%) with good geometry.
  • Rfree 27.0% the degree of non-glycine and non-proline residues
  • 97.6% have their main-chain torsion angles in the ‘most-favored’ or the ‘additionally allowed’ regions of the Ramachandran plot (Laskowski et al., 1993).
  • the refined model includes residues 495 to 722 of HGF and residues 40 to 301, 311 to 377, 382 to 400, and 414 to 564 of Met.
  • a number of glycosylation sites displayed electron density, none of the sugars were modeled into the structure.
  • HGF ⁇ complexed with a Met receptor extracellular fragment was solved by molecular replacement with the program AMORE (NAVAZC 1994) using the crystal structure of HGF ⁇ chain alone as search model (coordinates for HGF ⁇ can be found in the RCSB Protein Data Bank under accession code: PDB1UX3).
  • HGF ⁇ :Met Each of the constituent amino acids in HGF ⁇ :Met is defined by a set of structural coordinates as set forth in Table 2.
  • the coordinates and structure factors of the present disclosure have been deposited by the RCSB Protein Data Bank under Accession Code: PDB 1SHY.
  • structure coordinates refers to Cartesian coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a Met receptor or Met: HGF ⁇ in crystal form.
  • the diffraction data are used to calculate an electron density map of the repeating unit of the crystal.
  • the electron density maps are then used to establish the positions of the individual atoms of the Met receptor or protein/ligand complex.
  • Slight variations in structure coordinates can be generated by mathematically manipulating the Met receptor or Met: HGF ⁇ complex structure coordinates.
  • the structure coordinates as set forth in Table 2 could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates, or any combination of the above.
  • modifications in the crystal structure due to mutations, additions, substitutions, deletions, and combinations thereof, of amino acids, or other changes in any of the components that make up the crystal could also yield variations in structure coordinates.
  • Such slight variations in the individual coordinates will have little effect on overall shape. If such variations are within an acceptable standard error as compared to the original coordinates, the resulting three-dimensional shape is considered to be structurally equivalent. Structural equivalence is described in more detail below.
  • the phrase “associating with” refers to a condition of proximity between a ligand, or portions thereof, and a HGF ⁇ or Met molecule or portions thereof.
  • the association may be non-covalent, wherein the juxtaposition is energetically favored by hydrogen bonding, van der Waals forces, and/or electrostatic interactions, or it may be covalent.
  • HGF The ⁇ -chain of HGF shares close to 40% sequence identity with the protease domain of plasmin, a trypsin-like serine protease. Structurally, these enzymes can be described as globular proteins composed of two antiparallel ⁇ -barrel domains ( FIG. 1A ). Both of the ⁇ -barrels share the same general topology and are formed by six antiparallel ⁇ -strands, with the N-terminal four strands folding into a Greek key motif, followed by two strands that form a hairpin. HGF, like serine proteases, is expressed as a zymogen-like precursor.
  • the ‘activated’ form of the HGF ⁇ -chain is similar to the mature form of serine proteases: superposition with plasmin (pdb-code IBML) yields an rmsd of about 1.3 ⁇ for 212 C ⁇ , pairs. Superposition between HGF ⁇ -chain and plasminogen (pdb-code 1QRZ) reveal differences in their ‘activation domain’ (Freer et al., 1970) and only 198 C ⁇ pairs can be aligned well.
  • HGF ⁇ Asp[c 194] in plasmin
  • activation domain i.e., the loops that undergo conformational changes in serine proteases (Freer et al., 1970; Huber and Bode, 1978), form part of the binding surface with Met.
  • the ⁇ - and ⁇ -chains of HGF remain connected via a disulfide bond.
  • MSP macrophage stimulating protein
  • the two cysteine residues responsible for the formation of this disulfide bond were identified as Cys487 on the ⁇ -chain of HGF and Cys604 on the ⁇ -chain (Donate et al., 1994).
  • the crystal structure raises the possibility of an alternative cysteine residue as the anchor for the HGF ⁇ -chain.
  • the HGF ⁇ -chain has two (2) cysteine residues that do not have partners for the formation of disulfide bridges within the ⁇ -chain.
  • FIG. 1C shows that the ⁇ -chain cysteine forming the disulfide bond in plasmin and MSP is 13 and 15 residues away from the cleavage site in those proteins respectively, but there are only 7 residues in HGF to span the distance from Cys487 to the cleavage site. Therefore, due to distance requirements, the C-terminus of the HGF ⁇ -chain cannot follow the same path on the surface of the ⁇ -chain as it does in plasmin or MSP. Regardless of the position of the disulfide bond between the alpha and beta chain, the overall structure or the structural model of the Met receptor or Met: HGF ⁇ complex is not impacted.
  • each of the blades is formed by 4 antiparallel ⁇ -strands with strand A in the center of the propeller followed by strands B and C, and with strand D forming the outermost strand of the blade.
  • the blades are arranged in a circular fashion, with the N-terminal strand forming strand D of the last blade, thus closing the propeller and stabilizing the overall structure ( FIG. 2A ).
  • the AB and CD loops of each blade of the Met Sema domain form the relatively flat ‘bottom’ face, and the generally longer BC and DA loops form the ‘top’ face of the propeller ( FIG. 2B ).
  • the position of the 6th and the 7th blade are off-center, with blade 7 being closer to the center of the barrel and blade 6 more distant. This gives the domain an overall oval shape.
  • the ⁇ -propeller of the Met Sema domain is structurally most closely related to the recently reported crystal structures of Sema4D (Love et al., 2003) and Sema3A (Antipenkov et al., 2003). With the exception of the D-strands in blades 3 and 5, the core of Sema4D and the Met Sema domain align well ( FIGS. 3 and 4 ) and the superposition of residues 40 to 519 with the Sema domain of Sema4D results in an rmsd of 1.6 ⁇ for 303 atom pairs ( FIG. 4 ).
  • the residues that form strand D5 in Sema4A are hydrogen bonded to strand D4 in Met, thus the 4th blade of Met contains an extra strand while blade 5 is missing its strand D. While the core of both proteins align well, the loops contain a number of insertions or deletions and generally adopt very different conformations.
  • the Sema domains of Met and of Sema4D both have an insert of about 20 residues following strand D1. In Met, these residues form a short antiparallel two-stranded ⁇ -sheet, while Sema4D has an ⁇ -helix ( FIGS. 3 and 4 ).
  • the loop containing the cleavage site between the ⁇ - and ⁇ -chain of Met connects strand D4 to A5; it is disordered in the electron density.
  • the ⁇ -chain which forms the N-terminal 4 blades of the Sema domain, and the ⁇ -chain remain connected via at least 2 disulfide bonds.
  • One disulfide bond is formed between residues Cys298 on strand D4 and Cys363 on C5, and the second is formed between Cys282 (D3) and Cys409. This last cysteine is positioned in a disordered region of the insert after blade 4.
  • the domain is stabilized by 5 additional disulfide bridges formed between Cys95-Cys101, Cys98-Cys159, Cys133-Cys141, Cys172-Cys175, and Cys385-Cys397 ( FIG. 3 ).
  • the surface of the Met Sema domain appears to be mostly negatively charged, especially in the center of the bottom face of the Sema domain ( FIG. 2C ).
  • This surface which is formed by a 20 residue insertion after strand D in the first blade and includes the rather irregular area of strand D in the third blade, shows clusters of acidic residues.
  • Monomeric, full length Met was shown to bind to heparin (Gherardi et al., 2003).
  • two arginines are located in the vicinity of the disordered furin-cleavage site. Together with the 6 positively charged residues that reside in this loop, these arginines could constitute a potential heparin binding site.
  • the last strand of the Sema domain (C7) is followed immediately by the PSI domain.
  • This domain with dimensions of about 20 ⁇ 15 ⁇ , contains four (4) disulfide bridges and is not an integral part of the Sema domain but rather an independent structural module.
  • the small core of the domain is formed by a helix and a short two-stranded antiparallel ⁇ -sheet that are connected via a disulfide bond and sandwich the side-chain of Trp540.
  • Superposition of this domain with the PSI domain of Sema4D results in an rmsd of 1.6 ⁇ for 41 C ⁇ pairs.
  • the relative orientation between the Sema and the PSI domains in the Met and the Sema4D structures is different and requires a rotation of about 40° for superposition.
  • the HGF ⁇ -chain binds to the Sema domain of Met at the bottom face of the propeller, and forms contacts with residues that protrude from blades 2 and 3 ( FIGS. 2 and 3 ). This is unlike other ⁇ -propeller containing receptors, such as the integrins, which bind their ligands utilizing the top face of the propeller (Xiong et al., 2002).
  • Other Sema domain containing proteins, such as Sema3A and Sema4D are also postulated to bind ligands using the top face (Antipenko et al., 2003; Love et al., 2003).
  • the volume of the cavity of the pocket that is blocked by Met on the surface of HGF ⁇ is about 380 cubic angstroms as determined by placing a number of atoms at the entrance of the pocket to close the pocket and using the program GRASP (available from Columbia University at ihonigts@columbia/edu) to calculate the volume of the resulting cavity.
  • the positively charged amino acids include K516, R533, R647, R695, K649, and R702.
  • the negatively charged amino acids include E656, E670, and D578.
  • the aromatic amino acids include Y513, Y673, and Y619. (See Table 3).
  • the positively charged amino acid residues include H148, R191, R218, and K223.
  • the negatively charged amino acids include D127, D128, E168, E221, and D224.
  • the aromatic amino acids include Y125, Y126, and F192.
  • the combined buried surface of the hydrophobic residues Ala, Val, Leu, Ile, Met and Phe amounts to a mere 145 ⁇ 2 , while the charged residues Asp, Glu, Lys, Arg, and His are responsible for more than 1,000 ⁇ 2 of buried surface.
  • HGF beta or Met receptor may be designed to preserve and/or strengthen these charge charge interactions.
  • small molecules may be designed to mimic the charge-charge interaction of either the HGF ⁇ binding site for Met or the Met binding site for HGF ⁇ . (See Table 3).
  • HGF On HGF, the residues analogous to those responsible for substrate binding and catalysis in the related serine proteases form most of the interactions with Met. Serine proteases bind linear peptides to their recognition site and form hydrogen bonds to main chain atoms to position a specific peptide bond for proteolytic cleavage.
  • the HGF ⁇ -chain binds to a series of protruding polar side chains from Met that comprise amino acid residues from 3 separate loops ( FIG. 5B ).
  • the first of these loops includes residues 124-128 of Met and connects strands A2 and B2 of Met. This loop contains two tyrosines that are in the core of the binding interface and pack against Arg695 of HGF ⁇ .
  • the second loop of Met that contacts HGF ⁇ -chain includes residues Asp190, Arg191, and Phe192 and connects A3 and B3.
  • Asp190 of Met forms charged interactions with Arg533 of HGF.
  • the side chain of Arg191 of Met packs against Val692 and Pro693 of HGF with its hydrophobic portion and in the presently disclosed model is in hydrogen bonding distance to the side chains of Glu656 and Asp578 with its guanidinium group.
  • This Asp578 corresponds to aspartic acid [c102] in the catalytic triad of the related serine proteases.
  • the backbone of this loop forms hydrophilic interactions with Gln534, the residue homologous to the histidine [c57] of the protease catalytic triad.
  • the third segment contributing to the interface also includes strand D in the third blade of the propeller, an area that deviates from the classical ‘propeller fold’.
  • Strand D is interrupted and has a short helical insert within its strand. This unusual conformation presents a number of residues towards the surface of the HGF ⁇ -chain.
  • the most prominent interaction formed by this loop involves Glu221 which extends its side chain towards what would be the S1 binding site in serine proteases ( FIGS. 5 and 6 ).
  • the carboxylate of Glu221 forms an extensive network of polar interactions with the side chain of Tyr673 (corresponding to the serine [c 195] of the catalytic triad in proteases), as well as the backbone amides of Gly694 and Gly696 ( FIG.
  • the side chains of the basic residues Arg647 and Lys649 are not well defined in the electron density but project towards the Met binding interface and, in presently disclosed model, participate in the formation of the complex.
  • Arg695 also undergoes a change in conformation upon Met binding. This residue, located in the center of the receptor binding interface, packs against Tyr125 of Met, and its backbone forms part of the S1 pocket. In the structure of unliganded HGF ⁇ , the conformation of the backbone in this area is different, and the side chain of Arg695 projects toward the disordered region of the structure. It is conceivable that the binding event alters the position of Arg695, which in turn allows residues 645 to 651 to adopt a more stable conformation.
  • the tunnel or void identified in the crystal structure of HGF ⁇ is also seen in the cocrystal.
  • Various computational analyses can be used to determine whether a molecule or portions of the molecule defining structure features are “structurally equivalent,” defined in terms of its three-dimensional structure, to all or part of a Met receptor or HGF ⁇ :Met complex or its ligand binding sites.
  • Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif.), Version 4.1, and as described in the accompanying User's Guide.
  • the Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure.
  • a procedure used in Molecular Similarity to compare structures comprises: 1) loading the structures to be compared; 2) defining the atom equivalences in these structures; 3) performing a fitting operation; and 4) analyzing the results.
  • One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this disclosure equivalent atoms are defined as protein backbone atoms (N, C ⁇ , C, and O) for all conserved residues between the two structures being compared. A conserved residue is defined as a residue that is structurally or functionally equivalent. Only rigid fitting operations are considered.
  • the working structure is translated and rotated to obtain an optimum fit with the target structure.
  • the fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in Angstroms, is reported by QUANTA.
  • Structurally equivalent crystal structures have portions of the two molecules that are substantially identical, within an acceptable margin of error.
  • the margin of error can be calculated by methods known to those of skill in the art.
  • structurally equivalent molecules or molecular complexes are those that are defined by the entire set of structure coordinates listed in Table 2 ⁇ a root mean square deviation from the conserved backbone atoms of those amino acids of not more than 0.70 ⁇ , preferably 0.5 ⁇ .
  • root mean square deviation means the square root of the arithmetic mean of the squares of the deviations. It is a way to express the deviation or variation from a trend or object.
  • the “root mean square deviation” defines the variation in the backbone of a protein from the backbone of HGF ⁇ :Met complex (as defined by the structure coordinates of the complex as described herein) or a defining structural feature thereof.
  • Structure coordinates can be used to aid in obtaining structural information about another crystallized molecule or molecular complex.
  • the method of the disclosure allows determination of at least a portion of the three-dimensional structure of molecules or molecular complexes that contain one or more structural features that are similar to structural features of at least a portion of Met receptor or HGF ⁇ :Met complex. These molecules are referred to herein as “structurally homologous” to Met receptor or HGF ⁇ :Met. Similar structural features can include, for example, regions of amino acid identity, conserved active site or binding site motifs, and similarly arranged secondary structural elements (e.g. binding sites for HGF ⁇ , PSI domain, IPT domain, and propellor blades of the Sema domain).
  • structural homology is determined by aligning the residues of the two amino acid sequences to optimize the number of identical amino acids along the lengths of their sequences; gaps in either or both sequences are permitted in making the alignment in order to optimize the number of identical amino acids, although the amino acids in each sequence must nonetheless remain in their proper order.
  • Two amino acid sequences are compared using the BLAST program, version 2.0.9, of the BLAST 2 search algorithm, as described by Tatusova et al. (56), and available at http:www.ncbi.nlm.nih.gov/BLAST/.
  • identity In the comparison of two amino acid sequences using the BLAST search algorithm, structural similarity is referred to as “identity.”
  • a structurally homologous molecule is a protein that has an amino acid sequence sharing at least 80% identity with a native or recombinant amino acid sequence of Met, preferably an extracellular fragment of the Met receptor comprising a sequence of SEQ ID NO:3 or SEQ ID NO:10.
  • An extracellular fragment of Met receptor comprising a sequence of SEQ ID NO:3 has amino acid substitutions at positions 304-308 to insert a thrombin cleavage site.
  • a Met receptor has a sequence of SEQ ID NO:3 and the structurally homologous molecule is a variant that has a % sequence identity to SEQ ID NO: 3 of at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater.
  • the Met receptor variant or structurally homologous molecule has one or more conservative amino acid substitutions, preferably only conservative amino acid substitutions and retains the structure of the binding site for HGF ⁇ .
  • the Met receptor variant has about 1-25 conservative amino amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions.
  • the variant retains at least one or more domains such as the binding site for HGF ⁇ .
  • a protein that is structurally homologous to Met includes at least one contiguous stretch of at least 50 amino acids that shares at least 80% amino acid sequence identity with the analogous portion of the native or recombinant Met. Methods for generating structural information about the structurally homologous molecule or molecular complex are well known and include, for example, molecular replacement techniques.
  • this disclosure provides a method of utilizing molecular replacement to obtain structural information about a molecule or molecular complex whose structure is unknown comprising:
  • all or part of the structure coordinates of the Met receptor and/or HGF ⁇ :Met complex as provided by this disclosure can be used to determine the unsolved structure of a crystallized molecule or molecular complex more quickly and efficiently than attempting to determine such information ab initio.
  • Coordinates of structural features of the Met receptor can be utilized including the Sema domain, PSI domain and the binding site for HGF ⁇ .
  • Molecular replacement can provide an accurate estimation of the phases for an unknown or incompletely known structure. Phases are one factor in equations that are used to solve crystal structures, and this factor cannot be determined directly. Obtaining accurate values for the phases, by methods other than molecular replacement, can be a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a structurally homologous portion has been solved, molecular replacement using the known structure provide a useful estimate of the phases for the unknown or incompletely known structure.
  • this method involves generating a preliminary model of a molecule or molecular complex whose structure coordinates are unknown, by orienting and positioning the relevant portion of the Met receptor and/or HGF ⁇ :Met complex within the unit cell of the crystal of the unknown molecule or molecular complex. This orientation or positioning is conducted so as best to account for the observed X-ray diffraction pattern of the crystal of the molecule or molecular complex whose structure is unknown. Phases can then be calculated from this model and combined with the observed X-ray diffraction pattern amplitudes to generate an electron density map of the structure.
  • This map in turn, can be subjected to established and well-known model building and structure refinement techniques to provide a final, accurate structure of the unknown crystallized molecule or molecular complex (see for example, Lattman, 1985 . Methods in Enzymology 115:55-77).
  • Structural information about a portion of any crystallized molecule or molecular complex that is sufficiently structurally homologous to a portion of the Met receptor and/or HGF ⁇ :Met can be resolved by this method.
  • a molecule that shares one or more structural features with the Met receptor, such as the Sema domain, and/or HGF ⁇ :Met as described above a molecule that has similar bioactivity, such as the same catalytic activity, substrate specificity or ligand binding activity as the Met receptor and/or HGF ⁇ :Met, may also be sufficiently structurally homologous to a portion of the Met receptor and/or HGF ⁇ :Met to permit use of the structure coordinates of HGF ⁇ :Met to solve its crystal structure or identify structural features that are similar to those identified in the Met receptor described herein. It will be appreciated that amino acid residues in the structurally homologous molecule identified as corresponding to the Met receptor structural feature may have different amino acid numbering.
  • the method of molecular replacement is utilized to obtain structural information about a molecule or molecular complex, wherein the molecule or molecular complex includes at least one HGF ⁇ :Met or Met receptor subunit or homolog.
  • a “structural homolog” of the Met receptor or HGF ⁇ :Met is a protein that contains one or more amino acid substitutions, deletions, additions, or rearrangements with respect to the amino acid sequence of HGF ⁇ :Met complex or Met receptor, but that, when folded into its native conformation, exhibits or is reasonably expected to exhibit at least a portion of the tertiary (three-dimensional) structure of at least a portion of the Met receptor and/or HGF ⁇ :Met complex.
  • a portion of the Met receptor includes the Sema domain, PSI domain, IPT domains, and binding site for HGF ⁇ and combinations thereof.
  • structurally homologous molecules can contain deletions or additions of one or more contiguous or noncontiguous amino acids, such as a loop or a domain.
  • Structurally homologous molecules also include “modified” extracellular fragment of the Met receptor and/or HGF ⁇ :Met molecules that have been chemically or enzymatically derivatized at one or more constituent amino acid, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors, and like modifications.
  • amino acid residues in the structurally homologous molecule identified as corresponding to extracellular fragment of the Met receptor or other structural feature of the Sema domain of the Met receptor may have different amino acid numbering.
  • a heavy atom derivative of HGF ⁇ :Met is also included as a HGF ⁇ :Met homolog.
  • the term “heavy atom derivative” refers to derivatives of HGF ⁇ :Met produced by chemically modifying a crystal of HGF ⁇ or Met or both.
  • a crystal is soaked in a solution containing heavy metal atom salts, or organometallic compounds, e.g., lead chloride, gold thiomalate, thiomersal or uranyl acetate, which can diffuse through the crystal and bind to the surface of the protein.
  • the location(s) of the bound heavy metal atom(s) can be determined by X-ray diffraction analysis of the soaked crystal. This information, in turn, is used to generate the phase information used to construct three-dimensional structure of the protein (Blundell, et al., 1976 , Protein Crystallography , Academic Press, San Diego, Calif.).
  • variants may be prepared, for example, by expression of Met cDNA previously altered in its coding sequence by oligonucleotide-directed mutagenesis as described herein. Variants may also be generated by site-specific incorporation of unnatural amino acids into Met proteins using known biosynthetic methods (Noren, et al., 1989 , Science 244:182-88). In this method, the codon encoding the amino acid of interest in wild-type Met is replaced by a “blank” nonsense codon, TAG, using oligonucleotide-directed mutagenesis.
  • a suppressor tRNA directed against this codon is then chemically aminoacylated in vitro with the desired unnatural amino acid.
  • the aminoacylated tRNA is then added to an in vitro translation system to yield a mutant Met with the site-specific incorporated unnatural amino acid.
  • HGF ⁇ is an inhibitor of full length HGF and can be used to identify or design other like inhibitors. This approach enables the determination of the optimal sites for interaction between ligand entities, including candidate HGF ⁇ or Met ligands. Potential sites for modification within the various binding sites of the molecule can also be identified. This information provides an additional tool for determining more efficient binding interactions, for example, increased hydrophobic or polar interactions, between Met and a ligand.
  • homology modeling can be conducted using the structural coordinates of HGF ⁇ and/or the Met receptor and a program designed to generate models of structures, such as Protein Explorer, Swiss Model, or RASMOL.
  • the programs can provide a structural model of a homolog or variant of HGF ⁇ and/or Met by providing the structural coordinates such as provided in Table 2 and an alignment of the sequences.
  • All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 1.5-3.5 ⁇ resolution X-ray data to an R-factor of about 0.30 or less using computer software, such as X-PLOR (Yale University, distributed by Molecular Simulations, Inc.)(see for example, Blundell, et al. 1976 . Protein Crystallography , Academic Press, San Diego, Calif., and Methods in Enzymology , Vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)). This information may thus be used to optimize known Met modulators, and more importantly, to design new Met modulators.
  • the disclosure also includes the unique three-dimensional configuration defined by a set of points defined by the structure coordinates for a molecule or molecular complex structurally homologous to an extracellular fragment of the Met receptor or HGF ⁇ :Met complex as determined using the method of the present disclosure, structurally equivalent configurations, and magnetic storage media including such set of structure coordinates.
  • a computer model of a HGF ⁇ :Met complex or Met receptor homolog can be built or refined without crystallizing the homolog.
  • a preliminary model of the homolog is created by sequence alignment with HGF ⁇ :Met or an extracellular fragment of Met, secondary structure prediction, the screening of structural libraries, or any combination of those techniques.
  • Computational software may be used to carry out the sequence alignments and the secondary structure predictions.
  • Programs available for such an analysis include Protein Explorer (eg available at molvissdsc.edu.protexpl.frontdoor.htm), Swiss Model (eg available at swissmodel.expasy.org) and RASMOL.Structural incoherences, e.g., structural fragments around insertions and deletions, can be modeled by screening a structural library for peptides of the desired length and with a suitable conformation. For prediction of the side chain conformation, a side chain rotamer library may be employed. If the homolog has been crystallized, the final homology model can be used to solve the crystal structure of the homolog by molecular replacement, as described above.
  • Protein Explorer eg available at molvissdsc.edu.protexpl.frontdoor.htm
  • Swiss Model eg available at swissmodel.expasy.org
  • RASMOL.Structural incoherences e.g., structural
  • the preliminary model is subjected to energy minimization to yield an energy-minimized model.
  • the energy-minimized model may contain regions where stereochemistry restraints are violated, in which case such regions are remodeled to obtain a final homology model.
  • the homology model is positioned according to the results of molecular replacement, and subjected to further refinement including molecular dynamics calculations.
  • Potent and selective ligands that modulate activity are identified using the three-dimensional model of the Met binding site for HGF ⁇ and/or other structural features produced using the coordinates of a cocrystal of HGF ⁇ with Met or a fragment thereof, such as provided in Table 2.
  • ligands that interact with the Met binding site for HGF ⁇ are identified, and the result of the interactions is modeled.
  • agents identified as candidate molecules for modulating the activity of HGF, Met and/or HGF ⁇ :Met can be screened against known bioassays.
  • the ability of an agent to inhibit the anti-apoptotic effects of Met can be measured using assays known in the art, or for example, the assays disclosed in the Examples. Using the modeling information and the assays described, one can identify agents that possess HGF, Met and/or HGF ⁇ :Met-modulating properties.
  • the methods of the disclosure also include methods of identifying molecules that mimic HGF ⁇ binding to a ligand (such as the Met receptor) or Met receptor binding to HGF ⁇ or both, but do not activate the HGF/Met signaling pathway.
  • HGF ⁇ is an inhibitor of full length HGF and can be used to identify or design other like inhibitors. These molecules can be identified using the three-dimensional model of HGF ⁇ :Met complex using the coordinates of Tables 7 and 2.
  • a candidate modulator in another embodiment, can be identified using a biological assay such as binding to HGF and/or HGF ⁇ , modulating Met phosporylation or modulating HGF induced cell migration.
  • the candidate modulator can then serve as a model to design similar agents and/or to modify the candidate modulator for example, to improve characteristics such as binding to HGF ⁇ or Met receptor.
  • Design or modification of candidate modulators can be accomplished using the crystal structure coordinates and available software.
  • Binding sites are of significant utility in fields such as drug discovery.
  • the association of natural ligands or substrates with the binding sites of their corresponding receptors or enzymes is the basis of many biological mechanisms of action.
  • many drugs exert their biological effects through association with the binding sites of receptors and enzymes.
  • Such associations may occur with all or any part of the binding site.
  • An understanding of such associations helps lead to the design of drugs having more favorable associations with their target, and thus improved biological effects. Therefore, this information is valuable in designing potential modulators of HGF, Met and/or HGF ⁇ :Met binding sites, as discussed in more detail below.
  • the amino acid constituents of a Met or HGF ⁇ :Met binding site as defined herein are positioned in three dimensions.
  • the structure coordinates defining a binding site of Met or HGF ⁇ :Met include structure coordinates of all atoms in the constituent amino acids; in another aspect, the structure coordinates of a binding site include structure coordinates of just the backbone atoms of the constituent atoms.
  • the HGF ⁇ structural binding site for Met includes the amino acids highlighted in FIG. 5A as well as those identified in Table 3.
  • the amino acid residues identified in the HGF ⁇ binding site for Met comprise, consist essentially of, or consist of at least one or more or all amino acid residue corresponding to residues 513, 516, 533, 534, 537, 578, 619, 647, 649, 656, 669, 670, 673, 692, 693, 694, 695, 696, 697, 699 or 702 or mixtures thereof.
  • the amino acid residues identified in the HGF ⁇ binding site for Met comprise, consist essentially of, or consist of at least one or more or all amino acid residue corresponding to residues Y513, K516, R533, Q 534, P537, D 578, Y619, R647, K 649, E656, C669, E670, Y673, V692, P693, G694, R695, G 696, C697, 1699 or R702 or mixtures thereof, or conservative amino acid substitutions thereof.
  • the cocrystalization studies indicate that amino acids residues 645 to 651 are better ordered in the HGF ⁇ :Met complex and further indicate that K649 contacts the Met receptor.
  • the amino acid residues identified in the HGF ⁇ binding site for Met comprise, consist essentially of, or consist of at least one or more or all amino acid residue corresponding to residues Y513, K516, R533, Q534, F536, P537, S538, R539, D578, Y619, R647, K649, E656, P668, C669, E670, Y673, V692, P693, G694, R695, C696, C697, 1699, R702 or mixtures thereof or conservative amino acid substitutions thereof.
  • residues may participate in polar or nonpolar interactions with charged residues on Met.
  • Metal structural binding site includes all or a portion of a molecule or molecular complex whose shape is sufficiently similar to at least a portion of a binding site of Met for HGF ⁇ as to be expected to bind HGF ⁇ or related structural analogs.
  • a structurally equivalent ligand binding site is defined by a root mean square deviation from the structure coordinates of the backbone atoms of the amino acids that make up binding sites in Met of at most about 0.70 ⁇ , preferably about 0.5 ⁇ .
  • the Met structural binding site for HGF ⁇ includes the amino acids highlighted in FIG. 5B as well as those identified in Table 3.
  • a structural binding site for HGF ⁇ on the Met receptor comprises, consists essentially of, or consists of at least one or more or all amino acid residues corresponding to residues 124-128, 148, 167, 190-192, 218, 220 to 223, 229 to 230, or 286, 414 or mixtures thereof.
  • a structural binding site for HGF ⁇ on the Met receptor comprises, consists essentially of, or consists of at least one or more or all amino acid residue corresponding to residues T124, Y125, Y126, D127, D128, H148, E 167, E168, D190, R191, F192, R218, K220, E221, T222, K223, D224, M227, L229, T230, I284, S286, D414, or mixtures thereof or conservative substitutions thereof. These residues may participate in polar interactions with charged residues on HGF ⁇ .
  • the binding site of HGF ⁇ or Met may be defined by those amino acids whose backbone atoms are situated within about 5 ⁇ of one or more constituent atoms of a bound substrate or ligand.
  • the binding site for HGF ⁇ on Met receptor can be defined by those amino acids whose backbone atoms are situated within a sphere centered on the coordinates representing the alpha carbon atom of amino acid E221 on the Met receptor, the sphere having a radius of about 5-6 ⁇ , for example 5.8 ⁇ .
  • Computational techniques can be used to screen, identify, select, design ligands, and combinations thereof, capable of associating with Met or structurally homologous molecules.
  • Candidate modulators of HGF, HGF ⁇ and/or Met may be identified using functional assays, such as binding to HGF ⁇ or Met, and novel modulators designed based on the structure of the candidate molecules so identified.
  • Knowledge of the structure coordinates for Met or HGF ⁇ :Met permits, for example, the design, the identification of synthetic compounds, and like processes, and the design, the identification of other molecules and like processes, that have a shape complementary to the conformation of the Met and/or HGF ⁇ binding sites.
  • computational techniques can be used to identify or design ligands, such as agonists and/or antagonists, that associate with a Met and/or HGF ⁇ binding site.
  • Antagonists may bind to or interfere with all or a portion of an active site of Met, and can be competitive, non-competitive, or uncompetitive inhibitors.
  • these agonists, antagonists, and combinations thereof may be used therapeutically and/or prophylactically, for example, to block Met activity and thus prevent the onset and/or further progression of diseases associated with Met activity.
  • Structure-activity data for analogues of ligands that bind to or interfere with Met binding sites and/or HGF ⁇ binding sites can also be obtained computationally.
  • an antagonist or agonist may be a molecule that mimics either HGF ⁇ or the Met receptor such that it binds to either the Met receptor or HGF ⁇ or both.
  • HGF ⁇ is an inhibitor of full length HGF and can be used to identify or design other like inhibitors.
  • if the molecule is an antagonist it binds to either receptor or both but does not activate the Met receptor.
  • agonists or antagonists can be designed to include components that preserve and/or strengthen the charge charge interactions.
  • antagonists or agonists would include components that are able to interact, for example, hydrogen bond with the charged amino acids found in either the HGF ⁇ or Met receptor binding site or both.
  • antagonist or agonist molecules are designed or selected that can interact with at least one or more or all amino acid residues that comprise, consist essentially of, or consist of amino acid residues corresponding to amino acid residues Y513, K516, R533, Y619, R647, R695, K649, R702, E656, E670, Y673, or D578 or mixtures thereof.
  • antagonist or agonist molecules are designed or selected that can interact with at least one or more or all amino acid residues that comprise, consist essentially of, or consist of amino acid residues corresponding to amino acid residues Y125, Y126, H148, R191, R218, K223, D127, D128, E168, F192, E221, or D224 or mixtures thereof.
  • another criteria that may be utilized in the design of modulators is whether the modulator can fit into the binding site cavity on HGF ⁇ that is blocked by Met.
  • the volume of that cavity is about 380 cubic angstroms.
  • the volume of the cavity can be determined by placing atoms in the entrance of the pocket close to the surface and using a program like GRASP to calculate the volume of those atoms.
  • Data stored in a machine-readable storage medium that is capable of displaying a graphical three-dimensional representation of the structure of Met or a structurally homologous molecule or molecular complex, as identified herein, or portions thereof may thus be advantageously used for drug discovery.
  • the structure coordinates of the ligand are used to generate a three-dimensional image that can be computationally fit to the three-dimensional image of Met, HGF ⁇ :Met complex, or a structurally homologous molecule.
  • the three-dimensional molecular structure encoded by the data in the data storage medium can then be computationally evaluated for its ability to associate with ligands.
  • the protein structure can also be visually inspected for potential association with ligands.
  • One embodiment of the method of drug design involves evaluating the potential association of a candidate ligand with Met, such as HGF ⁇ , or a structurally homologous molecule or homologous complex, particularly with a binding site on the Met receptor.
  • the method of drug design thus includes computationally evaluating the potential of a selected ligand to associate with any of the molecules or molecular complexes set forth above.
  • This method includes the steps of: (a) employing computational means, for example, such as a programmable computer including the appropriate software known in the art or as disclosed herein, to perform a fitting operation between the selected ligand and a ligand binding site or a pocket nearby the ligand binding site of the molecule or molecular complex; and (b) analyzing the results of the fitting operation to quantify the association between the ligand and the ligand binding site.
  • the method further comprises analyzing the ability of the selected ligand to interact with charged amino acids in either the HGF ⁇ and/or Met receptor binding sites. Other structural features of the Met receptor and/or HGF ⁇ :Met complex can also be analyzed in the same manner.
  • the method of drug design involves computer-assisted design of ligand that associate with Met, HGF ⁇ :Met, its homologs, or portions thereof.
  • Ligands can be designed in a step-wise fashion, one fragment at a time, or may be designed as a whole or de novo.
  • Ligands can be designed based on the structure of molecules that can modulate at least one biological function of HGF ⁇ or Met.
  • the ligand identified or designed according to the method must be capable of structurally associating with at least part of a Met binding site and/or HGF ⁇ binding site, and must be able, sterically and energetically, to assume a conformation that allows it to associate with the Met binding site and/or HGF ⁇ binding site.
  • Non-covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions, and/or electrostatic interactions.
  • agents may contact at least one amino acid position in the Met binding site for HGF ⁇ .
  • Conformational considerations include the overall three-dimensional structure and orientation of the ligand in relation to the ligand binding site, and the spacing between various functional groups of a ligand that directly interact with the Met binding site and/or HGF ⁇ binding site or homologs thereof.
  • the potential binding of a ligand to a Met binding site and/or HGF ⁇ binding site is analyzed using computer modeling techniques prior to the actual synthesis and testing of the ligand. If these computational experiments suggest insufficient interaction and association between it and the Met binding site, and/or HGF ⁇ binding site testing of the ligand is obviated. However, if computer modeling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to or interfere with a Met binding site and/or HGF ⁇ binding site. Binding assays to determine if a compound actually modulates with Met activity can also be performed and are well known in the art.
  • Several methods can be used to screen ligands or fragments for the ability to associate with a Met binding site and/or HGF ⁇ binding site. This process may begin by visual inspection of, for example, a Met binding site and/or HGF ⁇ binding site on the computer screen based on the Met or HGF ⁇ :Met structure coordinates or other coordinates which define a similar shape generated from the machine-readable storage medium. Selected ligands may then be positioned in a variety of orientations, or docked, within the binding site. Docking may be accomplished using software such as QUANTA and SYBYL, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.
  • Specialized computer programs may also assist in the process of selecting ligands. Examples include GRID (Hubbard, S. 1999 . Nature Struct. Biol. 6:711-4); MCSS (Miranker, et al. 1991 . Proteins 11:29-34) available from Molecular Simulations, San Diego, Calif.; AUTODOCK (Goodsell, et al. 1990 . Proteins 8:195-202) available from Scripps Research Institute, La Jolla, Calif.; and DOCK (Kuntz, et al. 1982 . J. Mol. Biol. 161:269-88) available from University of California, San Francisco, Calif.
  • HGF ⁇ an examination of the structure of HGF ⁇ shows a tunnel or void formed by amino acid residues 634, 660-670, 673, 691 and 693-706.
  • a molecule with an indole ring can fit within this void as determined by manual docking
  • Met binding ligands can be designed to fit a Met binding site and/or HGF ⁇ binding site, optionally as defined by the binding of a known modulator or one identified as modulating the activity of HGF ⁇ or Met.
  • tyrosine kinase inhibitor compounds are disclosed in U.S. Pat. No. 6,696,463.
  • There are many ligand design methods including, without limitation, LUDI (Bohm, 1992 . J. Comput. Aided Molec. Design 6:61-78) available from Molecular Simulations Inc., San Diego, Calif.; LEGEND (Nishibata, Y., and Itai, A. 1993 . J. Med. Chem.
  • an effective Met binding site ligand and/or HGF ⁇ binding site should preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding).
  • an efficient Met binding site ligand should preferably be designed with a deformation energy of binding of not greater than about 10 to about 15 kcal/mole, such as about 12 kcal/mole, preferably not greater than about 8 to about 12 kcal/mole, such as about 10 kcal/mole, and more preferably not greater than about 5 to about 10 kcal/mole, such as about 7 kcal/mole.
  • Met binding site and/or HGF ⁇ binding site ligands may interact with the binding site in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the free energy of the ligand and the average energy of the conformations observed when the ligand binds to the protein.
  • a ligand designed or selected as binding to or interfering with a Met binding site and/or HGF ⁇ binding site may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme and with the surrounding water molecules.
  • Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole, and charge-dipole interactions.
  • Another approach encompassed by this disclosure is the computational screening of small molecule databases for ligands or compounds that can bind in whole, or in part, to a Met binding site and/or HGF ⁇ binding site.
  • the quality of fit of such ligands to the binding site may be judged either by shape complementarity or by estimated interaction energy (Meng, et al., 1992 . J. Comp. Chem., 13:505-24).
  • these small molecule databases can be screened for the ability to interact with the charged amino acids in the Met binding site and/or HGF ⁇ binding site as identified herein.
  • a compound that is identified or designed as a result of any of these methods can be obtained (or synthesized) and tested for its biological activity, for example, binding and/or inhibition of HGF and/or Met activity.
  • a method involves assessing agents that are antagonists or agonists of the Met receptor.
  • a method comprises applying at least a portion of the crystallography coordinates of a cocrystal of HGF ⁇ and Met, such as provided in Tables 7 and/or 2 to a computer algorithm that generates a three-dimensional model of HGF ⁇ :Met complex or the Met receptor suitable for designing molecules that are antagonists or agonists and searching a molecular structure database to identify potential antagonists or agonists.
  • a portion of the structural coordinates of a cocrystal of HGF ⁇ and Met such as provided in Tables 7 and/or 2 that define a structural feature, for example, binding site for HGF ⁇ , may be utilized.
  • the method may further comprise synthesizing or obtaining the agonist or antagonist and contacting the agonist or antagonist with the Met receptor and/or HGF ⁇ and selecting the antagonist or agonist that modulates the Met receptor and/or HGF ⁇ activity compared to a control without the agonist or antagonists and/or selecting the antagonist or agonist that binds to the Met receptor and/or HGF ⁇ .
  • Activities of HGF and/or the Met receptor include phosphorylation of Met, stimulation of cell proliferation, and stimulation of cell migration.
  • a compound that is identified or designed as a result of any of these methods can be obtained (or synthesized) and tested for its biological activity, for example, binding to HGF ⁇ and/or Met receptor and/or modulation of HGF, HGF ⁇ and/or Met activity.
  • Other modulators of the Met receptor include, for example, monoclonal antibodies directed against the Met receptor, peptide(s) that can modulate Met receptor function, or small-molecule compounds, such as organic and inorganic molecules, which can be identified with methods of the present disclosure.
  • Transformation of the structure coordinates for all or a portion of Met or the HGF ⁇ :Met complex or one of its ligand binding sites, for structurally homologous molecules as defined below, or for the structural equivalents of any of these molecules or molecular complexes as defined above, into three-dimensional graphical representations of the molecule or complex can be conveniently achieved through the use of commercially-available software.
  • the disclosure thus further provides a machine-readable storage medium including a data storage material encoded with machine-readable data wherein a machine programmed with instructions for using said data displays a graphical three-dimensional representation of any of the molecule or molecular complexes of this disclosure that have been described above.
  • the machine-readable data storage medium includes a data storage material encoded with machine-readable data wherein a machine programmed with instructions for using the abovementioned data displays a graphical three-dimensional representation of a molecule or molecular complex including all or any parts of a Met, Met ligand binding site, or Met-like ligand binding site, HGF ⁇ , HGF ⁇ binding site, or HGF ⁇ : Met complex as defined above.
  • the machine-readable data storage medium includes a data storage material encoded with machine readable data wherein a machine programmed with instructions for using the data displays a graphical three-dimensional representation of a molecule or molecular complex ⁇ a root mean square deviation from the atoms of the amino acids of not more than 0.05 ⁇ .
  • the machine-readable data storage medium includes a data storage material encoded with a first set of machine readable data which includes the Fourier transform of structure coordinates, and wherein a machine programmed with instructions for using the data is combined with a second set of machine readable data including the X-ray diffraction pattern of a molecule or molecular complex to determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
  • a system for reading a data storage medium may include a computer including a central processing unit (“CPU”), a working memory which may be, for example, RAM (random access memory) or “core” memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more display devices (e.g., cathode-ray tube (“CRT”) displays, light emitting diode (“LED”) displays, liquid crystal displays (“LCDs”), electroluminescent displays, vacuum fluorescent displays, field emission displays (“FEDs”), plasma displays, projection panels, etc.), one or more user input devices (e.g., keyboards, microphones, mice, track balls, touch pads, etc.), one or more input lines, and one or more output lines, all of which are interconnected by a conventional bidirectional system bus.
  • CPU central processing unit
  • working memory which may be, for example, RAM (random access memory) or “core” memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more display devices (e.g.,
  • the system may be a stand-alone computer, or may be networked (e.g., through local area networks, wide area networks, intranets, extranets, or the internet) to other systems (e.g., computers, hosts, servers, etc.).
  • the system may also include additional computer controlled devices such as consumer electronics and appliances.
  • Input hardware may be coupled to the computer by input lines and may be implemented in a variety of ways. Machine-readable data of this disclosure may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line. Alternatively or additionally, the input hardware may include CD-ROM drives or disk drives. In conjunction with a display terminal, a keyboard may also be used as an input device.
  • Output hardware may be coupled to the computer by output lines and may similarly be implemented by conventional devices.
  • the output hardware may include a display device for displaying a graphical representation of a binding site of this disclosure using a program such as QUANTA as described herein.
  • Output hardware might also include a printer, so that hard copy output may be produced, or a disk drive, to store system output for later use.
  • a CPU coordinates the use of the various input and output devices, coordinates data accesses from mass storage devices, accesses to and from working memory, and determines the sequence of data processing steps.
  • a number of programs may be used to process the machine-readable data of this disclosure. Such programs are discussed in reference to the computational methods of drug discovery as described herein. References to components of the hardware system are included as appropriate throughout the following description of the data storage medium.
  • Machine-readable storage devices useful in the present disclosure include, but are not limited to, magnetic devices, electrical devices, optical devices, and combinations thereof.
  • Examples of such data storage devices include, but are not limited to, hard disk devices, CD devices, digital video disk devices, floppy disk devices, removable hard disk devices, magneto-optic disk devices, magnetic tape devices, flash memory devices, bubble memory devices, holographic storage devices, and any other mass storage peripheral device.
  • these storage devices include necessary hardware (e.g., drives, controllers, power supplies, etc.) as well as any necessary media (e.g., disks, flash cards, etc.) to enable the storage of data.
  • HGF, Met, and/or HGF ⁇ :Met complex modulator compounds obtained by methods of the invention are useful in a variety of therapeutic settings.
  • Met antagonists designed or identified using the crystal structure of an extracellular fragment of Met or HGF ⁇ :Met complex can be used to treat disorders or conditions, where inhibition or prevention of Met binding or activity is indicated.
  • Met agonists designed or identified using the crystal structure of the HGF ⁇ :Met complex or an extracellular fragment of Met can be used to treat disorders or conditions, where induction or stimulation of Met activity is indicated.
  • An indication can be, for example, inhibition or stimulation of Met phosphorylation and the concomitant activation of a complex set of intracellular pathways that lead to cell growth, differentiation, and migration in a variety of cell types.
  • the ability of HGF to stimulate mitogenesis, cell motility, and matrix invasion gives it and the Met receptor a central role in angiogenensis, tumorogenesis and tissue regeneration.
  • Another indication can be, for example, in inhibition or stimulation of embryonic development.
  • Still another indication can be, for example, in inhibition or stimulation of tissue regeneration.
  • Another indication can be, for example, in inhibition of angiogenesis, mitogenesis and/or vasculogenesis.
  • Expression of HGF has been associated with thyroid cancer, colon cancer, lymphoma, prostate cancer, and multiple myeloma.
  • Yet another indication can be, for example, in inhibition or stimulation of the HGF/Met signaling pathway.
  • Still yet another indication can be, for example, in inhibition of invasive tumor growth and metastasis.
  • Met and/or HGF ⁇ :Met complex antagonists are also useful as chemosensitizing agents, useful in combination with other chemotherapeutic drugs, in particular, drugs that induce apoptosis.
  • chemotherapeutic drugs that can be used in combination with chemosensitizing Met inhibitors include topoisomerase I inhibitors (e.g., camptothesin or topotecan), topoisomerase II inhibitors (e.g., daunomycin and etoposide), alkylating agents (e.g., cyclophosphamide, melphalan and BCNU), tubulin-directed agents (e.g., taxol and vinblastine), and biological agents (e.g., antibodies such as anti CD20 antibody, IDEC 8, immunotoxins, and cytokines).
  • topoisomerase I inhibitors e.g., camptothesin or topotecan
  • topoisomerase II inhibitors e.g., daunomycin and etop
  • topoisomerase I inhibitors e.g., camptothecin or topotecan
  • topoisomerase II inhibitors e.g., daunomycin and etoposide
  • alkylating agents e.g., cyclophosphamide, melphalan and BCNU
  • tubulin-directed agents e.g
  • chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin I and cryptophycin 8); dolastatin
  • dynemicin including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, e
  • anti-hormonal agents that act to regulate or inhibit hormone action on tumors
  • SERMs selective estrogen receptor modulators
  • tamoxifen including NOLVADEX® tamoxifen
  • raloxifene including NOLVADEX® tamoxifen
  • droloxifene 4-hydroxytamoxifen
  • trioxifene keoxifene
  • LY117018 onapristone
  • aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole
  • anti-androgens such as, for example, 4(5)-imidazoles, amino
  • the crystals also are useful to store and/or deliver HGF ⁇ -chain or Met receptor molecules.
  • HGF ⁇ is useful as an inhibitor of full length HGF and can be used to identify or design other like inhibitors.
  • HGF ⁇ :Met complex may be useful as a standards in assays including diagnostic assays. Crystals can be prepared and used to store HGF ⁇ -chain Met receptor complexes for later use.
  • a purified polypeptide is contacted with a precipitant in the presence of a buffer.
  • Precipitants include salts, polymers, or organic molecules.
  • Organic precipitants include isopropanol, ethanol, hexanediol, and 2-methyl-2,4-pentanediol.
  • Polymeric precipitants include polyethylene glycol and polyamines. Salts used include ammonium sulfate, sodium citrate, sodium acetate, ammonium dichloride, sodium chloride and magnesium formate. Many buffers can be utilized and are known to those of skill in the art.
  • crystals can be cross-linked to one another. Such cross-linking may enhance the stability of the crystal.
  • Methods of cross-linking crystals are know to those of skill in the art and have been described, for example, in U.S. Pat. No. 5,849,296.
  • the crystals can be maintained in crystallization solution, they can be dried, or combined with other carriers and/or other ingredients to form compositions and formulations.
  • the crystals can be combined with a polymeric carrier for stability and sustained release.
  • Formulations of crystals of proteins, such as enzymes, receptors, antibodies, and like molecules, or fragments thereof, can include at least one ingredient or excipient.
  • Ingredient or expedients are known to those of skill in the art and include acidifying agents, aerosol propellants, alcohol denaturants, alkalizing agents, anti-caking agents, antifoaming agents, microbial preservatives, anti-antioxidants, buffering agents, lubricants, chelating agents, colors, desiccants, emulsifying agents, filtering aids, flavors and perfumes, humectants, ointments, plasticizers, solvents (e.g.
  • oils or organic oils or organic
  • sorbents carbon dioxide sorbents, stiffening agents, suppository bases, suspending or viscosity increasing agents, sweetening agents, tablet binders, table or capsule diluents, tablet disintegrants, tablet or capsule lubricants, tonicity agent, flavored or sweetened vehicles, oleaginous vehicles, solid carrier vehicles, water repelling agent, and wetting or solubilizing agents.
  • the ingredients enhance storage stability.
  • the ingredient or excipient is preferably selected from the group consisting of albumin, sucrose, trehalose, lactitol, gelatin, and hydroxyproyl- ⁇ -cyclodextran.
  • the HGF ⁇ -chain protein used for crystallization begins with residue Val495 (the N-terminal residue obtained after maturation of single chain HGF), and has one alteration from the natural sequence: in full length, mature HGF, the ⁇ - and ⁇ -chains are covalently tethered by a disulfide bridge putatively formed between Cys487 and Cys604 (Donate et al., 1994).
  • Cys604 was replaced with serine. (SEQ ID NO:1)
  • SEQ ID NO:1 The complex of the HGF ⁇ -chain and the Met fragment was formed in solution, purified using size exclusion chromatography and set up for crystallization trials.
  • the cDNA for the full length Met receptor was kindly provided by D. Wickramasinghe. PCR was carried out on the region encoding residues 25-567 of the Met receptor. A 2-step overlapping PCR scheme was used to introduce the thrombin cleavage site (LVPRG) (SEQ ID NO:5) and remove the native sequence (KRKKR) (SEQ ID NO:4). An N-terminal primer added overlapping sequence with the C-terminus of the insect cell secretion signal present in the pAcGP67A vector (BD Biosciences). A C-terminal primer contained coding sequence for (His) 8 and a NotI restriction site added directly onto the C-terminus.
  • LPRG thrombin cleavage site
  • KRKKR native sequence
  • An N-terminal primer added overlapping sequence with the C-terminus of the insect cell secretion signal present in the pAcGP67A vector (BD Biosciences).
  • a C-terminal primer contained coding sequence for (His) 8 and
  • plasmid DNA (pAcGP67A plus Met Sema and PSI domain) was transfected into Sf9 insect cells according to the manufacturer's protocol (BD Biosciences). Viral stock was amplified 3 times before use in protein expression. For expression, IL of Hi5 insect cells growing in ESF 921 media (Protein Expression, LLC) at a density of 5 ⁇ 10 5 cells/mL were infected with 10 mL of viral stock from the 3 rd amplification and incubated at 27° C. for 72 hours. Cells were then removed from the supernatant by centrifugation at 3000 g for 15 minutes.
  • ESF 921 media Protein Expression, LLC
  • amino acid sequence of an extracellular fragment of Met is shown in Table 6. (SEQ ID NO:3). Another embodiment of an extracellular fragment of Met comprises an amino acid sequence of SEQ ID NO:10 and is shown in FIG. 3 .
  • HGF ⁇ proteins were expressed in insect cells using baculovirus secretion vector pAcGP67 (Pharmingen, San Diego, Calif.). All constructs contained a His 6 tag at the carboxy terminus and were purified to homogeneity (>95% purity) by Ni NTA metal chelate and gel filtration chromatography.
  • pAcGP67 Baculovirus secretion vector
  • All constructs contained a His 6 tag at the carboxy terminus and were purified to homogeneity (>95% purity) by Ni NTA metal chelate and gel filtration chromatography.
  • a cDNA fragment encoding the HGF ⁇ -chain from residues Val495 [c16] to Ser728 [c250] was cloned by PCR such that Val495 [c16] was inserted immediately after the secretion signal sequence.
  • HGF ⁇ Site-directed mutagenesis was carried out using QuikChangeTM (Stratagene, La Jolla, Calif.) with oligonucleotide 5′CCTAATTATGGATCCACAATTCCTG3′ (SEQ ID NO:6) to make HGF ⁇ containing a Cys604 to Ser mutation (HGF ⁇ ).
  • the cysteine was not altered in this construct to allow putative disulfide formation between Cys487 and Cys604.
  • Wildtype HGF ⁇ (SEQ ID NO:14) refers to the native sequence and HGF ⁇ (SEQ ID NO:1) refers to the C604S mutant. Numbering is as follows: full length HGF sequence starting with MWV . . .
  • an isoform may have structural “differences”, for example, if it carries insertion(s) or deletion(s) relative to the HGF ⁇ reference sequence.
  • the chymotrypsinogen numbering convention may be useful for comparision to workers in the field.
  • HGF ⁇ The amino acid sequence of a HGF ⁇ is shown in Table 4 (SEQ ID NO:1) and Table 8 (SEQ ID NO:14).
  • Baculovirus vectors containing the desired inserts were transfected into Spodoptera frugiperda (Sf9) cells on plates in TNM-FH media via the BaculogoldTM Expression System according to manufacturer's instructions (Pharmingen, San Diego, Calif.). After 2-4 rounds of virus amplification, 10 mL of viral stock was used to infect 1 L of High FiveTM cells (Invitrogen, San Diego, Calif.) in suspension at 5 ⁇ 10 5 cells/mL in TNM-FH media. Cultures were incubated at 27° C. for 72 h before harvesting the culture media by centrifugation at 8,000 ⁇ g for 15 min.
  • Met was combined with HGF ⁇ -chain in a 1:1.5 ratio and concentrated for loading onto a Superdex S-200 gel filtration column (Amersham Biosciences) equilibrated with 10 mM Tris 8.0, 250 mM NaCl. Elution fractions were assayed with SDS-PAGE, and those containing the complex were pooled. Buffer exchange into 10 mM Tris 8.0, 125 mM NaCl was carried out, and the complex was then concentrated to 10 mg/mL for crystallization trials. Although crystals grew without deglycosylation, diffraction was enhanced after deglycosylating the Met protein.
  • Met previously purified using Nickel chromatography as described above, was mixed with a combination of PNGase F (Roche) and Endoglycosidase A (Roche) at 1:100 enzyme:Met concentration and incubated at room temperature for 3 hours. Met was then combined with HGF ⁇ -chain, concentrated, and loaded onto a gel filtration column as described above for the non-deglcosylated material.
  • HGF ⁇ Met was analyzed to identify amino acid positions involved in binding and/or activation of the Met receptor by HGF ⁇ .
  • HGF The ⁇ -chain of HGF shares close to 40% sequence identity with the protease domain of plasmin, a trypsin-like serine protease. Structurally, these enzymes can be described as globular proteins composed of two antiparallel ⁇ -barrel domains ( FIG. 1A ). Both of the ⁇ -barrels share the same general topology and are formed by six antiparallel ⁇ -strands, with the N-terminal four strands folding into a Greek key motif, followed by two strands that form a hairpin. HGF, like serine proteases, is expressed as a zymogen-like precursor.
  • the ‘activated’ form of the HGF ⁇ -chain is very similar to the mature form of serine proteases: superposition with plasmin (pdb-code 1 BML) yields an rmsd of about 1.3 ⁇ for 212 C ⁇ pairs.
  • superposition between HGF ⁇ -chain and plasminogen (pdb-code 1QRZ) reveal differences in their ‘activation domain’ (Freer et al., 1970) and only 198 C ⁇ pairs can be aligned well.
  • the N-terminal amine of Val495 is inserted into the core of the C-terminal ⁇ -barrel and forms a salt bridge with the carboxyl group of Asp672, which corresponds to Asp 194 in plasmin, presumably leading to similar rearrangements, which have been characterized in serine proteases.
  • the region in HGF corresponding to this so-called ‘activation domain’ i.e., the loops that undergo conformational changes in serine proteases (Freer et al., 1970; Huber and Bode, 1978), forms part of the binding surface with Met, discussed below. Therefore, proper display of the residues that interact with Met requires maturation of HGF.
  • the ⁇ - and ⁇ -chains of HGF remain connected via a disulfide bond.
  • the two cysteine residues responsible for the formation of this disulfide bond were identified as Cys487 on the ⁇ -chain of HGF and Cys604 on the ⁇ -chain (Donate et al., 1994).
  • the crystal structure raises the possibility of an alternative cysteine residue as the anchor for the HGF ⁇ -chain.
  • the HGF ⁇ -chain has two (2) cysteine residues that do not have partners for the formation of disulfide bridges within the ⁇ -chain.
  • FIG. 1C shows that the ⁇ -chain cysteine forming the disulfide bond in plasmin and MSP is 13 and 15 residues away from the cleavage site in those proteins respectively, but there are only 7 residues in HGF to span the distance from Cys487 to the cleavage site. Therefore, due to distance requirements, the C-terminus of the HGF ⁇ -chain cannot follow the same path on the surface of the ⁇ -chain as it does in plasmin or MSP. Continuing work seeks to clarify which of the two free cysteine residues in HGF ⁇ forms the disulfide bond with the ⁇ -chain of HGF.
  • the Sema domain of Met forms 7-bladed ⁇ -propeller with a diameter of a little more than 50 ⁇ .
  • the overall shape of the domain resembles a funnel with an inner diameter of about 25 ⁇ between main chain atoms at the wide portion and 10 ⁇ in the narrowest part ( FIG. 2 ).
  • each of the blades is formed by 4 antiparallel ⁇ -strands with strand A in the center of the propeller followed by strands B and C, and with strand D forming the outermost strand of the blade.
  • the blades are arranged in a circular fashion, with the N-terminal strand forming strand D of the last blade, thus closing the propeller and stabilizing the overall structure ( FIG. 2A ).
  • each blade of the Met Sema domain form the relatively flat ‘bottom’ face, and the generally longer BC and DA loops form the ‘top’ face of the propeller ( FIG. 2B ).
  • the position of the 6th and the 7th blade are off-center, with blade 7 being closer to the center of the barrel and blade 6 more distant. This gives the domain an overall oval shape.
  • the ⁇ -propeller of the Met Sema domain is structurally most closely related to the recently reported crystal structures of Sema4D (Love et al., 2003) and Sema3A (Antipenkov et al., 2003). With the exception of the D-strands in blades 3 and 5, the core of Sema4D and the Met Sema domain align well ( FIGS. 3 and 4 ) and the superposition of residues 40 to 519 with the Sema domain of Sema4D results in an rmsd of 1.6 ⁇ for 303 atom pairs ( FIG. 4 ).
  • the residues that form strand D5 in Sema4A are hydrogen bonding to strand D4 in Met, thus the 4th blade of Met contains an extra strand while blade 5 is missing its strand D. While the core of both proteins align well, the loops contain a number of insertions or deletions and generally adopt very different conformations.
  • the Sema domains of Met and of Sema4D both have an insert of about 20 residues following strand D1. In Met, these residues form a short antiparallel two-stranded ⁇ -sheet, while Sema4D has an ⁇ -helix ( FIGS. 3 and 4 ).
  • the loop containing the cleavage site between the ⁇ - and ⁇ -chain of Met connects strand D4 to A5; it is disordered in the electron density.
  • the ⁇ -chain which forms the N-terminal 4 blades of the Sema domain, and the ⁇ -chain remain connected via at least 2 disulfide bonds.
  • One disulfide bond is formed between residues Cys298 on strand D4 and Cys363 on C5, and the second is formed between Cys282 (D3) and Cys409. This last cysteine is positioned in a disordered region of the insert after blade 4.
  • the domain is stabilized by 5 additional disulfide bridges formed between Cys95-Cys101, Cys98-Cys159, Cys133-Cys141, Cys172-Cys175, and Cys385-Cys397 ( FIG. 3 ).
  • the surface of the Met Sema domain appears to be mostly negatively charged, especially in the center of the bottom face of the Sema domain ( FIG. 2C ).
  • This surface which is formed by a 20 residue insertion after strand D in the first blade and includes the rather irregular area of strand D in the third blade, shows clusters of acidic residues.
  • Monomeric, full length Met was shown to bind to heparin (Gherardi et al., 2003).
  • two arginines are located in the vicinity of the disordered furin-cleavage site. Together with the 6 positively charged residues that reside in this loop, these arginines could constitute a potential heparin binding site.
  • the last strand of the Sema domain (C7) is followed immediately by the PSI domain.
  • This domain with dimensions of about 20 ⁇ 15 ⁇ , contains four (4) disulfide bridges and is not an integral part of the Sema domain but rather an independent structural module.
  • the small core of the domain is formed by a helix and a short two-stranded antiparallel ⁇ -sheet that are connected via a disulfide bond and sandwich the side-chain of Trp540.
  • Superposition of this domain with the PSI domain of Sema4D results in an rmsd of 1.6 ⁇ for 41 Ca pairs.
  • the relative orientation between the Sema and the PSI domains in the Met and the Sema4D structures is different and requires a rotation of about 40° for superposition.
  • the HGF ⁇ -chain binds to the Sema domain of Met at the bottom face of the propeller, and forms contacts with residues that protrude from blades 2 and 3 ( FIGS. 2 and 3 ). This is unlike other ⁇ -propeller containing receptors, such as the integrins, which bind their ligands utilizing the top face of the propeller (Xiong et al., 2002).
  • Other Sema domain containing proteins, such as Sema3A and Sema4D are also postulated to bind ligands using the top face (Antipenko et al., 2003; Love et al., 2003).
  • HGF ⁇ -chain and Met buries a total of 1770 ⁇ 2 of solvent accessible surface and is dominated by polar or charge-charge interactions.
  • 6 are positively charged
  • 3 carry negative charges
  • 3 are aromatic.
  • 4 are positively charged
  • 3 are aromatic.
  • the combined buried surface of the hydrophobic residues Ala, Val, Leu, Ile, Met and Phe amounts to a mere 145 ⁇ 2
  • the charged residues Asp, Glu, Lys, Arg, and His are responsible for more than 1,000 ⁇ 2 of buried surface.
  • the resolution of the presently disclosed structure does not permit a detailed discussion of hydrogen bonds; however, the position of the side chains suggest the presence of at least 7 charged interactions between Met and the HGF ⁇ -chain. (See Table 3)
  • HGF On HGF, the residues analogous to those responsible for substrate binding and catalysis in the related serine proteases form most of the interactions with Met. Serine proteases bind linear peptides to their recognition site and form hydrogen bonds to main chain atoms to position a specific peptide bond for proteolytic cleavage.
  • the HGF ⁇ -chain binds to a series of protruding polar side chains from Met that originate mainly from 3 separate loops ( FIG. 5B ). The first of these loops includes residues 124-128 and connects strands A2 and B2 of Met. This loop contains two tyrosines that are in the core of the binding interface and pack against Arg695 of HGF.
  • the second loop of Met that contacts HGF ⁇ -chain contains residues Asp190, Arg191, and Phe192 and connects A3 and B3.
  • Asp190 of Met forms charged interactions with Arg533 of HGF.
  • the side chain of Arg191 of Met packs against Val692 and Pro693 of HGF with its hydrophobic portion and in the presently disclosed model is in hydrogen bonding distance to the side chains of Glu656 and Asp578 with its guanidinium group.
  • This Asp578 corresponds to aspartic acid [c102] in the catalytic triad of the related serine proteases.
  • the backbone of this loop forms hydrophilic interactions with Gln534, the residue homologous to the histidine [c57] of the protease catalytic triad.
  • the third segment contributing to the interface also includes strand D in the third blade of the propeller, an area that deviates from the classical ‘propeller fold’.
  • Strand D is interrupted and has a short helical insert within its strand. This unusual conformation presents a number of residues towards the surface of the HGF ⁇ -chain.
  • the most prominent interaction formed by this loop involves Glu221 which extends its side chain towards what would be the S1 binding site in serine proteases ( FIGS. 5 and 6 ).
  • the carboxylate of Glu221 forms an extensive network of polar interactions with the side chain of Tyr673 (corresponding to the serine [c195] of the catalytic triad in proteases), as well as the backbone amides of Gly694 and Gly696 ( FIG.
  • Arg695 also undergoes a change in conformation upon Met binding. This residue, located in the center of the receptor binding interface, packs against Tyr125 of Met, and its backbone forms part of the S1 pocket. In the structure of unliganded HGF ⁇ , the conformation of the backbone in this area is different, and the side chain of Arg695 projects toward the disordered region of the structure. It is conceivable that the binding event alters the position of Arg695, which in turn allows residues 645 to 651 to adopt a more stable conformation.
  • a model for HGF mediated Met receptor activation is provided. Little is known about the signaling complex itself, and details of this interaction, such as the stoichiometry between ligand and receptor, have been elusive.
  • HGF ⁇ -chain and the Sema domain of Met were purified from the individual components via size exclusion chromatography. This clearly showed that HGF ⁇ and the N-terminal 564 residues of Met form a stable 1:1 complex. If Met activation via HGF indeed entails a 2:1 complex, the present disclosure characterizes the low affinity binding interaction between HGF and Met.
  • the high affinity binding interaction involves the ⁇ -chain of HGF, in particular the NK1 domains (Lokker et al., 1992), and a previously uncharacterized binding site on Met. This model is in good agreement with the notion that single chain HGF is able to bind Met via its high affinity binding site which is contained in its N-terminal portion, yet unable to signal.
  • HGF For signaling, maturation of HGF is required. This leads to rearrangements in the activation domain of HGF ⁇ , the formation of the low affinity binding site and possibly allows for a reorientation of the ⁇ -chain of HGF relative to its ⁇ -chain. This model could also be valid for the closely related Ron/MSP system. Like HGF, single chain MSP can bind to its receptor Ron, but is only able to signal in its matured 2-chain form. Interestingly and in contrast to HGF, the high affinity binding site in MSP is contained within its ⁇ -chain while the low affinity binding site is harbored by its ⁇ -chain (Danilkovitch et al., 1999).
  • the present disclosure shows that the low affinity interaction between HGF ⁇ and Met is sufficient for 1:1 complex formation.
  • An alternative explanation for the absence of 2:1 complexes is that ⁇ - and ⁇ -chain of a single HGF molecule bind to the same Met receptor and form stable 1:1 complexes. These 1:1 complexes only associate very weakly and require the juxtamembrane or intracellular portion of the receptors or need additional molecules or co-receptors for the assembly of 2:2 or higher order signaling complexes.
  • Sema4D dimerization of the Sema domains is mediated by four loops that protrude from the core of the propeller. Three of these loops connect strands B4-C4, D4-A5, and B5-C5, and the fourth is part of the insert that follows the 5th blade of the propeller ( FIG. 3 ).
  • the interface observed in the Semaphorin structures is not present.
  • the superposition of the complex described here and the dimer of Sema4D shows that none of the regions relevant for dimerization in Sema4D are conserved in the Met structure ( FIG. 4B ). Thus, it is unlikely that the Met dimerization follows the Semaphorin paradigm.
  • this dimer can only form after maturation which explains the requirement of HGF maturation for proper signaling.
  • the C-termini of the Met receptor Sema domains are separated by about 110 ⁇ , a gap that could be easily spanned by the PSI and the 4 IPT domains of the two receptors that connect the Sema domains to the transmembrane helix.
  • HGF ⁇ -chain Once cleavage occurs, the N-terminus of the newly formed ⁇ -chain inserts into the protein and leads to rearrangements in the ‘activation domain’ creating the Met binding site on HGF ⁇ -chain. Now the HGF ⁇ -chain can bind to Met, which positions the ⁇ -chain dimerization surface for contact with a neighboring HGF/Met complex. The presence of heparin sulfate proteoglycans may serve to strengthen these interactions.
  • the 2:2 model is supported by the stoichiometry studies mentioned above which show no dimerization of complexes in solution (Gherardi et al., 2003), indicating that the 2:2 complex formation must be very weak. Also, the fact that the ⁇ -chain alone (NK4) is not able to mediate dimerization, but instead acts as an antagonist in vivo (Date et al., 1997), further highlights the potential role for the HGF ⁇ -chain in dimerization. The disclosed structure of Met lacks the IPT domains, and their role in the signaling of the Met/HGF complex is still unclear. A crystal structure of the full length Met in complex with full length, activated HGF could further resolve these issues.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The disclosure provides a crystal structure of a complex of the HGF β-chain with am extracellular fragment of the Met receptor, as well as use of the crystal structure in the design, identification, and selection of ligands that modulate the Met Receptor and the interaction of HGF with the Met receptor.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of 35 U.S.C. § 119(e) to U.S. Ser. No. 60/568,865 filed May 6, 2004, which application is hereby incorporated by reference.
  • BACKGROUND
  • The receptor tyrosine kinase Met, and its ligand, hepatocyte growth factor (HGF, also called scatter factor), have been implicated in promoting invasive growth of many tumor types due to inappropriate activation of Met function (Jankowski et al., 2003; Nardone et al., 2003; Trusolino and Comoglio, 2002; Birchmeier et al., 2003). This activation can arise from a variety of sources, but in each case the Met receptor activates signaling cascades that normally function to organize groups of cells into branching, tubular structures that are present in a variety of organs (Montesano et al., 1992; Sonnenberg et al., 1993; Rosen et al., 1994; Trusolino and Comoglio, 2002; Zhang and Vande Woude, 2003). The Met receptor plays a unique role during development as a master switch, which can stimulate proliferation and motility necessary for the full program of growth and scattering of cells. Its role in the invasiveness of many cancers makes it an attractive target for therapeutics (Ma et al., 2003). However, many questions remain about how the ligand, HGF, binds to Met and induces its tyrosine kinase cascade and thus leads to a biological response.
  • The Met receptor is part of a larger family of growth factor receptors with identical domain architecture that includes the Ron and Sea receptors (Monsin et al., 1992, Huff et al., 1993). The extracellular portions of Met family members are composed of three domain types. The N-terminal 500 residues fold into a Sema domain, which shares sequence homology with domains found in the Semaphorin and plexin families of neural development proteins (Winburg et al., 1998). As reported recently, Sema domains form a 7-bladed β-propeller structure (Antipenkov et al., 2003, Love et al., 2003). Met undergoes proteolytic cleavage within the Sema domain during normal processing, although the role for this remains unclear since cells that are unable to cleave Met show normal levels of Met activation upon ligand binding (Komada et al., 1993). A PSI domain, a small domain spanning about 50 residues and containing 4 disulfide bonds, follows the Sema domain. In addition to the Met receptor family, PSI domains are also found in the plexins, Semaphorins and integrins, hence its name (Bork et al., 1999). In Met, the PSI domain is connected via 4 IPT domains to the transmembrane helix and the kinase domain in the intracellular portion of the receptor. IPT domains are related to immunoglobulin-like domains and are named after their presence in plexins and transcription factors (Takagi et al., 1995).
  • HGF is a large growth factor of 728 residues that is produced as an inactive single-chain precursor which is proteolytically processed to form the biologically active disulfide-linked α/β-heterodimer (Nakamura et al., 1989; Hartmann et al., 1992; Kataoka et al., 2003). The α-chain folds into an N-terminal domain (N-domain) followed by 4 Kringle domains. The β-chain starts with residue Val495 and is homologous to the protease domain of chymotrypsin like serine proteases, which, like HGF, are activated by a proteolytic cleavage event (Perona and Craig, 1995; Hedstrom 2002). However, no protease activity has been demonstrated for HGF β-chain (Lokker et al., 1992) consistent with the absence of the key serine and histidine residues that are part of the ‘catalytic triad’ Asp[c102]-His[c57]-Ser[c195] ([chymotrypsinogen numbering]) required for catalytic activity in serine proteases.
  • Comparisons of the biologically active, two-chain HGF, and the inactive single-chain HGF precursor on the Met receptor have shown that both forms of HGF bind Met with similar affinity, but only the cleaved, mature form of HGF is able to activate Met (Lokker et al., 1992). In addition, various C-terminally truncated fragments of the α-chain (termed NK1, NK2, or NK4 depending on the number of Kringle domains retained) bind Met; in many cases they act as potent antagonists of Met receptor function (Cioce et al., 1996; Chan et al., 1991; Date et al., 1997). Studies involving the cross-linking of Met receptors by a variety of specific antibodies to its extracellular domain have demonstrated that simple dimerization of Met is sufficient for activation (Prat et al., 1998). Based on these characteristics, the fundamental mechanism for Met dimerization remains unclear.
  • Currently, there is no detailed structural information about HGF β-chain complexed with Met receptor. A completely solved crystal structure of the HGF β-chain complexed with Met receptor is needed, for example, for assays for Met-ligand (e.g., HGF β-chain) interaction and function, modeling the structure-function relationship of Met and other molecules, diagnostic assays for mutation-induced pathologies, and rational design of agents useful in modulating Met or HGF activity or activation.
  • SUMMARY
  • In some embodiments, the present disclosure provides a crystalline form of hepatocyte growth factor beta chain (HGF β) complexed with Met receptor, and the structural coordinates of the crystal. Coordinates of a crystal structure solved by molecular replacement are listed in Table 2. In some embodiments, HGF β comprises an amino acid sequence of SEQ ID NO: 1 or conservative substitutions thereof and the Met receptor comprises an amino acid sequence of SEQ ID NO:3 or conservative substitutions thereof.
  • In some embodiments, the disclosure provides a crystal structure of HGF β complexed with Met receptor, as well as use of the crystal structure to model Met receptor activity when complexed with HGF β. This use of the structure includes: modeling the interaction of ligands with the Met receptor; activation and inhibition of Met receptor; and the rational design of modulators of Met receptor activity. For example, these modulators include ligands that interact with Met receptor and modulate Met receptor activities, such as cell migration, HGF β binding to Met, and Met phosphorylation and signaling.
  • In other embodiments, the amino acid residues that form the binding site for the Met receptor on HGF β are identified and are useful, for example, in methods to model the structure of HGF binding site and to identify agents that can bind or fit into the binding site. In addition, the amino acid positions that form the binding site for HGF β on Met have been identified and are useful, for example, in methods to model the structure of the Met ligand binding site and to identify other agents that can bind or fit into the binding site.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1A shows a superposition representation of HGF β-chain (grey) and plasmin. The plasmin α chain is shown as a thin dark line. Selected side-chains of HGF β and plasmin are shown as sticks. They include the residues of the catalytic triad in serine proteases (His[c57], Asp[c102], and Ser[c195]) and the respective residues in the catalytically inactive HGF β-chain (Gln534, Asp578 and Tyr673), the N-terminal Val495 (V495; Val16 in plasmin) and Asp672 (D672; Asp194 in plasmin). After maturation, the N-terminus of Val495 of HGF is inserted into the core of the protein. The N-terminal amine forms a salt bridge with the side-chain of Asp672 and thus rearranges the loops that carry the catalytic triad. The numbering system with a lower case c is that of the chymotyrpsinogen numbering system.
  • FIG. 1B shows the same superposition of FIG. 1A rotated 180° around the y-axis. The surface of HGF β-chain is grey. Cysteines 561 (C561) and 604 (C604) in HGF β-chain and the Asp598 (D598) are shown. The α-chain of plasmin follows a groove that is also present on the HGF surface. The distance requirements for the formation of the disulfide bond between the α- and the β-chain analogous to plasmin and MSP are not satisfied. The two cysteines on the plasmin α-chain are shown as stick stubs.
  • FIG. 1C shows the sequence alignment of selected regions of HGF, MSP, and plasmin. (SEQ ID NOs:7-9) The alignment shows the Cys residues that are present in the a and β chain of HGF. The Cys at position 487 in the α chain of HGF is conserved when compared with MSP and plasmin. However, the Cys residues in the β chain of HGF are not at conserved positions, but are found at positions 561 and 604. A disulfide bond between amino acid residues at 487 in the α chain and the cysteine residue at 604 in the β chain may be formed. However, given the location of cysteine 561 in the three-dimensional structure, this residue could also form a disulfide bond with amino acid residue 487 in the α chain. Asterisks indicate amino acid residues that are conserved when the three sequences are compared and dots indicate amino acids that are conservative substitutions.
  • FIGS. 2A-C show representations of the complex of Met and HGF β-chain. FIGS. 2A and 2B show ribbon representations with HGF β-chain.
  • FIG. 2A provides a view onto the ‘top’ side of the propeller. The numbers in the center refer to the blades. The β-strands in blade 1 are labeled A, B, C, and D. Disordered residues in the represented model are indicated with dotted lines and the dotted line associated numbers refer to the last and first amino acid residues present in the model.
  • FIG. 2B provides a side view of the same complex of FIG. 2A. Note that the loops on the top face of the propeller are longer than the ones on the bottom face. All figures were made using Pymol (DeLano, 2002).
  • FIG. 2C provides a surface representation of the Met Sema domain and an associated HGF β-chain represented as a gray ribbon. The left panel of FIG. 2C captures the complex in the same view as FIG. 2A and shows approximate molecular dimensions. The right panel of FIG. 2C is a view towards the bottom of the propeller and indicates a proteolysis site.
  • FIG. 3 shows sequence alignment of the Sema domains of human Met receptor (Met_h) (SEQ ID NO:10), human Sema4D (hSema4d) (SEQ ID NO:11), and mouse Sema3A (mSema3a) (SEQ ID NO:12). The secondary structure elements depicted refer to the Met structure. The structural elements identified as A1, B1, C1, etc. refer to β sheets that form the blades 1-7 of the propeller of the human Met receptor. For example, A1, B1, C1 and D1 identify the amino acids that form propellor blade 1 of the Met Sema domain. The amino acids forming other blades of the propeller are also identified. The boxes indicate structural equivalent positions between Met and Sema4D. The coordinates of the Sema3A structure were unavailable. Dots above the amino acid residues indicate these residues contact HGF β. Residues in the dimer interface of Sema4D are shaded. Cysteines engaged in disulfide bonds are marked with letters A to G and those with same letter form a disulfide bond. Residues that are disordered in the represented structure are shown in italics.
  • FIG. 4A shows a superposition representation of Met and Sema4D. Note the structural similarities within the β-propellers and the differences in the insertions. The topology of the PSI domains in both structures is identical, but the relative orientation in comparison to the Sema domains is rather different.
  • FIGS. 4B and 4C shows two different views of a model of a potential Met-dimer based on the dimer of Sema4D and the superposition shown in FIG. 4A. The interface between the two molecules forming the Sema4D dimer is large and buries approximately 2,500 Å2. If this dimerization interface were present on Met, the respective interface in Met would be much smaller due to the different conformation of the loops that correspond to the loops forming the dimer interface in Sema4D. Also shown are two HGF β molecules. Residues shown as spheres represent Cys604 (C604) and Cys561 (C561), which are potential disulfide partners of Cys487 in the α-chain of HGF.
  • FIG. 5A shows an open-book surface representation view of the Met-HGF complex interface. Atoms of an amino acid residues of HGF β (shown on the left) that are closer than about 4.7 Å to an atom of an amino acid of Met include Y513, K516, R533, Q534, P537, Y673, E670, Y619, D578, R647, P693, C669, V692, C697, E656, G694, G696, R695, I699, K649, and R702. Atoms of an amino acid residues of Met (shown on the right) closer than about 4.7 Å to an atom of an amino acid residues of HGF β include R218, K220, E221, T222, L229, T230, E167, D190, R191, F192, K223, Y126, D127, D128, H148, S286, and Y125. Contact residues are labeled. HGF is on the left side and Met is on the right side. The three underlined amino acid residue numbers indicate the residues that form the catalytic triad in serine proteases.
  • FIG. 5B shows differences in binding mode between a HGF:Met complex (left) and a trypsin:BPTI (pdb 2PTC) complex (right). Orientations of HGF and trypsin are similar to the view in FIG. 1. Contact residues of Met are shown as sticks. The numbers refer to Met residues. Contact residues of BPTI are also shown as sticks and the “P” number labels refer to BPTI residues.
  • FIG. 6 shows a view of the ‘S 1-pocket’ of HGF β. Selected numbered residues that form the ‘S1 pocket’ of HGF are shown as sticks with gray carbons. Glu221 (E221) of Met is shown. The dotted lines indicate potential hydrogen bonds between HGF β and Met amino acid residues.
  • FIGS. 7A and 7B show two different views of two crystallographically related HGF β-chain:Met complexes that may represent a portion of the active signaling complex. Residues 495:499 of both HGF β-chains are shown in stick representation to indicate the position of the HGF β-chain N-termini. Two cysteines (C604 and C561) shown as spheres, are candidates for the formation of the disulfide bond with Cys487 in the HGF α-chain.
  • FIG. 8 shows a schematic diagram for Met signaling. FIG. 8A shows the domain structure of Met. FIG. 8B shows a complex of Met with HGF in its uncleaved, immature form. High affinity binding of HGF to Met is established via the N and the K1 domains. FIGS. 8C and 8D show examples of maturation of HGF where the α- and β-chains remain connected via a single disulfide bond (—S—S—) between two cysteines (shown as —C≡C—). Maturation of HGF further leads to rearrangements in its activation domain and to an increased affinity of the HGF β-chain to the Sema domain of Met. FIG. 8C shows a 2:1 model where the α- and β-chains of HGF bind to different Met receptor molecules. FIG. 8D shows a 2:2 model where the α- and β-chains of HGF bind to the same Met receptor molecule to form stable 1:1 complexes. Maturation of HGF creates a new binding interface in the β-chain and allows the formation of a weak 2:2 Met:HGF complex. Such complexes may be stabilized via heparin or other co-receptors.
  • DETAILED DESCRIPTION
  • A. Abbreviations:
      • (Å) Ångström
      • (AA or aa) Amino acid; Amino acids are represented by single letter code or three letter code
      • PSI domain is a small domain, which follows the Sema domain of Met, and spans about 50 residues and contains 4 disulfide bonds
      • trypsin:BPTI (pdb 2PTC) is trypsin complexed with bovine pancreatic trypsin inhibitor
      • MSP is macrophage stimulating protein
      • NK1 is a region of the α-chain of a HGF variant, see U.S. Pat. No. 5,849,689.
  • B. Definitions:
  • The following definitions are used herein, unless specifically or contextually indicated otherwise:
  • The term “hepatocyte growth factor” or “HGF”, as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) HGF polypeptide that is capable of binding to Met and/or activating the HGF/Met signaling pathway under conditions that permit such process to occur, for example, conditions that allow for the formation of the two chain form. The term “wild type HGF sequence” generally refers to an amino acid sequence found in a naturally occurring HGF and includes naturally occurring truncated or secreted forms, variant forms (e.g. alternatively spliced forms) and naturally occurring allelic variants.
  • “HGF β” or “HGF β-chain”, “HGF-beta” or variations thereof, refers to any HGF β chain having the conformation that is adopted by wild type HGF β chain upon conversion of wild type HGF protein from a single chain form to a 2 chain form (i.e., α and β chain). In some embodiments, the conversion results at least in part from cleavage between residue 494 and residue 495 of the wild type HGF protein. In some embodiments, the conformation refers specifically to the conformation of the activation domain of the protease-like domain in the β chain. In some embodiments, the conformation refers even more specifically to the conformation of the active site of the protease-like domain in the HGF β chain. Generally, adoption of the conformation reveals a Met binding site, as described herein. HGF β includes variants of wild type HGF β, for example, a variant comprising an amino acid sequence of SEQ ID NO:1. The HGF β chain may be isolated from a variety of sources such as human tissue or prepared by recombinant or synthetic methods. One embodiment of HGF β chain comprises an amino acid sequence of SEQ ID NO:1 in Table 4. Another embodiment of HGF βchain comprises an amino acid sequence of SEQ ID NO:14 in Table 8.
  • “HGF β variant” as used herein refers to polypeptide that has a different sequence than a reference polypeptide. In some embodiments, the reference polypeptide is a HGF β polypeptide comprising SEQ ID NO:1 in Table 4. In some embodiments, a variant has at least 80% amino acid sequence identity with the HGF β amino acid sequence of Table 4 (SEQ ID NO:1) or Table 8 (SEQ ID NO:14). The variants include those polypeptides that have substitutions, additions or deletions. The variants also include those polypeptides that have at least one conservative amino acid substitutions, preferably all of the substitutions are conservative. In some embodiments, the HGF β variant has about 1-25 conservative amino amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions. In some embodiments, the variants have the biological activity of binding to the Met receptor and/or activating it. In other embodiments, the variant can bind to the Met receptor but not activate it.
  • Ordinarily, a HGF β variant polypeptide will have at least 80% sequence identity, more preferably will have at least 81% sequence identity, more preferably will have at least 82% sequence identity, more preferably will have at least 83% sequence identity, more preferably will have at least 84% sequence identity; more preferably will have at least 85% sequence identity, more preferably will have at least 86% sequence identity, more preferably will have at least 87% sequence identity, more preferably will have at least 88% sequence identity, more preferably will have at least 89% sequence identity, more preferably will have at least 90% sequence identity, more preferably will have at least 91% sequence identity, more preferably will have at least 92% sequence identity, more preferably will have at least 93% sequence identity, more preferably will have at least 94% sequence identity, more preferably will have at least 95% sequence identity, more preferably will have at least 96% sequence identity, more preferably will have at least 96% sequence identity, more preferably will have at least 97% sequence identity, more preferably will have at least 98% sequence identity, more preferably will have at least 99% sequence identity with a HGF β polypeptide having an amino acid sequence comprising SEQ ID NO: 1 or SEQ ID NO:14.
  • The term “Met receptor” or “Met”, as used herein, refers to any native or variant (whether native or synthetic) Met polypeptide that is capable of binding to and/or being activated by HGF. The term “wild-type Met receptor” generally refers to a polypeptide comprising an amino acid sequence found in a naturally occurring Met receptor and includes naturally occurring truncated or secreted forms, variant forms (e.g. alternatively spliced forms) and naturally occurring allelic variants. The “Met Sema domain” comprises the N terminal 500 amino acid residues of a wild type Met receptor. A PSI domain follows the Sema domain and comprises 50 amino acid residues and has 4 disulfide bonds. Following the PSI domain are four IPT domains. IPT domains are related to immunoglobulin like domains. An embodiment of the Met receptor comprises an amino acid sequence of SEQ ID NO:2 as shown in Table 5. An embodiment of the extracellular fragment including the Sema domain of the Met receptor comprises an amino acid sequence of SEQ ID NO:3 as shown in Table 6 or comprises an amino acid sequence of SEQ ID NO:10 as shown in FIG. 3.
  • The term “Met receptor variant”, as used herein, refers to a polypeptide that has a different sequence than a reference polypeptide, whereine the reference polypeptide is the Met receptor that comprises an amino acid sequence of SEQ ID NO:2 or the extracellular fragment of the Met receptor that comprises an amino acid sequence of SEQ ID NO:3. Another embodiment of an extracellular fragment of the Met receptor comprises an amino acid sequence of SEQ ID NO:10 as shown in FIG. 3. An extracellular fragment of Met receptor comprising a sequence of SEQ ID NO:3 has amino acid substitutions at positions 304-308 of wild type sequence to insert a thrombin cleavage site. Variants include those polypeptides that have substitutions, deletions, and/or deletions. Variants also include those polypeptides that have at least one conservative amino acid substitution, preferably, all of the substitutions are conservative. In some embodiments, the Met receptor variant has about 1-25 conservative amino amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions. In some embodiments, the variant has the biological activity of binding to HGF, but not becoming activated.
  • Ordinarily, a Met receptor variant will have at least 80% sequence identity to a polypeptide having SEQ ID NO:3 In some embodiments, Met receptor polypeptide variants have at least 80% sequence identity, more preferably 81% sequence identity, more preferably 82% sequence identity, more preferably 83% sequence identity, more preferably 84% sequence identity, more preferably 85% sequence identity, more preferably 86% sequence identity, more preferably 87% sequence identity, more preferably 88% sequence identity, more preferably 89% sequence identity, more preferably 90% sequence identity, more preferably 91% sequence identity, more preferably 92% sequence identity, more preferably 93% sequence identity, more preferably 94% sequence identity, more preferably 95% sequence identity, more preferably 96% sequence identity, more preferably 97% sequence identity, more preferably 98% sequence identity, more preferably 99% sequence identity or greater, to a polypeptide having a sequence of SEQ ID NO:2 or SEQ ID NO:3.
  • The term “binding site,” as used herein, refers to a region of a molecule or molecular complex that, as a result of its shape, distribution of electrostatic charge and/or distribution of nonpolar regions, favorably associates with a ligand. Thus, a binding site may include or consist of features such as cavities, surfaces, or interfaces between domains. Ligands that may associate with a binding site include, but are not limited to, cofactors, substrates, receptors, agonists, and antagonists. The term binding site includes a functional binding site and/or a structural binding site. A structural binding site includes “in contact” amino acid residues as determined from examination of a three-dimensional structure. “Contact” can be determined using Van der Waals radii of atoms or by proximity sufficient to exclude solvent, typically water, from the space between the ligand and the molecule or molecular complex. Some of the “in contact” amino acid residues may not cause any change in a biochemical assay, a cell-based assay, or an in vivo assay used to define a functional binding site but may contribute to the formation of a three dimensional structure. A functional binding site includes amino acid residues that are identified as binding site residues based upon loss or gain of function, for example, loss of binding to ligand upon mutation of the residue. In some embodiments, the amino acid residues of a functional binding site are a subset of the amino acid residues of the structural binding site.
  • The term “HGF β structural binding site” includes all or a portion of a molecule or molecular complex whose shape is sufficiently similar to at least a portion of a binding site on HGF β for Met as to be expected to bind Met or related structural analogs of Met. A structurally equivalent ligand binding site is defined by a root mean square deviation from the structure coordinates of the backbone atoms of the amino acids that make up binding sites in HGF β for Met of at most about 0.70 Å, preferably about 0.5 Å. In some embodiments, a structural binding site for the Met receptor on HGF β comprises, consists essentially of, or consists of at least one amino acid residue corresponding to a residue 513, 516, 533, 534, 536, 537, 539, 578, 619, 647, 649, 656, 668 to 670, 673, 692 to 697, 699, 702, 705 or 707 or mixtures thereof. Numbering of amino acids is that of the native receptor.
  • The term “Met structural binding site” includes all, or a portion of, a molecule whose shape is sufficiently similar to the binding site on Met for HGF β to be expected to bind HGF β or structural analogs of HGF β. A structurally equivalent “Met binding site” is defined by root mean square deviation from the structure coordinates of the amino acids that make up the binding sites in Met of at most about 0.70 Å, preferably about 0.5 Å. In some embodiments, a structural binding site for HGF β on the Met receptor comprises, consists essentially of, or consists of at least one amino acid residue corresponding to a residue 124-128, 148, 167, 190-192, 218, 220 to 224, 227, 229 to 230, 286 or 414 or mixtures thereof. Numbering of amino acids is that of the native receptor.
  • The term “a blade of a propeller” refers to a structural feature of the Met receptor. A blade is formed by four antiparallel strands with strand A in the center of the blade followed by strands B and C, and with strand D forming the outermost strand of the blade. The 7 blades are arranged in a circular fashion, with the N terminal strand forming strand D of the last blade. The AB and CD loops of each blade of the Met Sema domain form the flat bottom face of the propeller and the BC and DA loops form the top face of the propeller. In some embodiments, each of the blades of the propeller of the human Met receptor comprise the amino acid sequence as identified in FIG. 3.
  • “Crystal” as used herein, refers to one form of a solid state of matter in which atoms are arranged in a pattern that repeats periodically in three-dimensions, typically forming a lattice.
  • “Complementary or complement” as used herein, means the fit or relationship between two molecules that permits interaction, including for example, space, charge, three-dimensional configuration, and the like.
  • The term “corresponding” or “corresponds” refers to an amino acid residue or amino acid sequence that is found at the same positions or positions in a sequence when the amino acid position or sequences are aligned with a reference sequence. In some embodiments, the reference sequence is the extracellular fragment of the Met receptor comprising a sequence of SEQ D NO:3. It will be appreciated that when the amino acid position or sequence is aligned with the reference sequence the numbering of the amino acids may differ from that of the reference sequence or a different numbering system may be utilized.
  • “Heavy atom derivative”, as used herein, means a derivative produced by chemically modifying a crystal with a heavy atom such as Hg, Au, or a halogen.
  • “Structural homolog” of Met receptor as used herein refers to a protein that contains one or more amino acid substitutions, deletions, additions, or rearrangements with respect to the amino acid sequence of Met receptor, but that, when folded into its native conformation, exhibits or is reasonably expected to exhibit at least a portion of the tertiary (three-dimensional) structure of the Met receptor. In some embodiments, a portion of the three dimensional structure refers to structural domains of the Met receptor including the Sema domain, PSI domain, IPT domains, transmembrane domain and/or intracellular domain, and combinations thereof. For example, structurally homologous molecules of Met receptor include Met receptor variants, preferably variants with one or more conservative amino acid substitutions. In some embodiments, a Met receptor variant has only conservative amino acid substitutions. Homolog tertiary structure can be probed, measured, or confirmed by known analytic or diagnostic methods, for example, X-ray, NMR, circular dichroism, a panel of monoclonal antibodies that recognize native Met receptor, and like techniques. For example, structurally homologous molecules can have substitutions, deletions or additions of one or more contiguous or noncontiguous amino acids, such as a loop or a domain. Structurally homologous molecules also include “modified” Met receptor molecules that have been chemically or enzymatically derivatized at one or more constituent amino acid, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors, and like modifications.
  • “Ligand”, as used herein, refers to an agent and/or compound that associates with a binding site on a molecule, for example, Met and/or HGF β binding sites, and may be an antagonist or agonist of Met or HGF β activity. Ligands include molecules that mimic HGF β binding to Met and in some embodiments, are not capable of activating HGF β/Met signalling pathway.
  • “Compound” refers to molecule that associates with the Met or the HGF β or a pharmaceutically acceptable salt, ester, amide, prodrug, isomer, or metabolite, thereof. “Pharmaceutically acceptable salt” refers to a formulation of a compound that does not compromise the biological activity and properties of the compound. Pharmaceutical salts can be obtained by reacting a binding-active compound of the disclosure with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. “Prodrug” refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug. An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the “prodrug”) to facilitate transport across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water solubility is beneficial. A further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group wherein the peptide is metabolized to yield the active moiety.
  • “Molecular complex”, as used herein, refers to a combination of bound substrate or ligand with polypeptide, such as HGF β bound to Met, or a ligand bound to HGF β or Met.
  • “Machine-readable data storage medium”, as used herein, means a data storage material encoded with machine-readable data, wherein a machine programmed with instructions for using such data and is capable of displaying data in the desired format, for example, a graphical three-dimensional representation of molecules or molecular complexes.
  • “Scalable,” as used herein, means the increasing or decreasing of distances between coordinates (configuration of points) by a scalar factor while keeping the angles essentially the same.
  • “Space group symmetry”, as used herein, means the whole symmetry of the crystal that combines the translational symmetry of a crystalline lattice with the point group symmetry. A space group is designated by a capital letter identifying the lattice type (P, A, F, etc.) followed by the point group symbol in which the rotation and reflection elements are extended to include screw axes and glide planes. Note that the point group symmetry for a given space group can be determined by removing the cell centering symbol of the space group and replacing all screw axes by similar rotation axes and replacing all glide planes with mirror planes. The point group symmetry for a space group describes the true symmetry of its reciprocal lattice.
  • “Unit cell”, as used herein, means the atoms in a crystal that are arranged in a regular repeating pattern, in which the smallest repeating unit is called the unit cell. The entire structure can be reconstructed from knowledge of the unit cell, which is characterized by three lengths (a, b and c) and three angles (α, β and γ). The quantities a and b are the lengths of the sides of the base of the cell and γ is the angle between these two sides. The quantity c is the height of the unit cell. The angles α and β describe the angles between the base and the vertical sides of the unit cell.
  • “X-ray diffraction pattern” means the pattern obtained from X-ray scattering of the periodic assembly of molecules or atoms in a crystal. X-ray crystallography is a technique that exploits the fact that X-rays are diffracted by crystals. X-rays have the proper wavelength (in the Angstrom (Å) range, approximately 10-8 cm) to be scattered by the electron cloud of an atom of comparable size. Based on the diffraction pattern obtained from X-ray scattering of the periodic assembly of molecules or atoms in the crystal, the electron density can be reconstructed. Additional phase information can be extracted either from the diffraction data or from supplementing diffraction experiments to complete the reconstruction (the phase problem in crystallography). A model is then progressively built into the experimental electron density, refined against the data to produce an accurate molecular structure.
  • X-ray structure coordinates define a unique configuration of points in space. Those of skill in the art understand that a set of structure coordinates for a protein or a protein/ligand complex, or a portion thereof, define a relative set of points that, in turn, define a configuration in three dimensions. A similar or identical configuration can be defined by an entirely different set of coordinates, provided the distances and angles between coordinates remain essentially the same. In addition, a configuration of points can be defined by increasing or decreasing the distances between coordinates by a scalar factor, while keeping the angles essentially the same.
  • “Crystal structure” generally refers to the three-dimensional or lattice spacing arrangement of repeating atomic or molecular units in a crystalline material. The crystal structure of a crystalline material can be determined by X-ray crystallographic methods, see for example, “Principles of Protein X-Ray Crystallography,” by Jan Drenth, Springer Advanced Texts in Chemistry, Springer Verlag; 2nd ed., February 1999, ISBN: 0387985875, and “Introduction to Macromolecular Crystallography,” by Alexander McPherson, Wiley-Liss, Oct. 18, 2002, ISBN: 0471251224.
  • C. Modes for Carrying out the Invention:
  • The present disclosure thus includes a crystalline form and a crystal structure of hepatocyte growth factor beta-chain (HGF β) complexed with Met receptor (HGF β:Met) and methods of using the HGF β:Met crystal structure and structural coordinates to identify homologous proteins and to design or identify agents that can modulate the function of HGF, Met, and/or HGF β:Met complex. In some embodiments, the crystalline form of HGF β complexed with Met receptor diffracts X-rays for a determination of atomic coordinates to a resolution of 5 Å or better. The present disclosure also includes the three-dimensional configuration of points derived from the structure coordinates of at least a portion of an extracellular fragment of a Met receptor molecule or molecular complex, as well as structurally equivalent configurations, as described below. The three-dimensional configuration includes points derived from structure coordinates representing the locations of a plurality of the amino acids defining the Met binding site for HGF β, the blades of the propeller, and the PSI domain.
  • In some embodiments, the three-dimensional configuration includes points derived from structure coordinates representing the locations of the backbone atoms of a plurality of amino acids defining the Met or HGF β:Met complex binding site. Alternatively, the three-dimensional configuration includes points derived from structure coordinates representing the locations of the side chain and the backbone atoms (other than hydrogens) of a plurality of the amino acids defining the Met or HGF β:Met complex binding site including the Met binding site for HGF β and the HGF β binding site for Met.
  • The disclosure also includes the three-dimensional configuration of points identifying other structural features of an extracellular fragment of the Met receptor. Those other structural features include the blades of the propeller structure and PSI domain. A plurality of amino acid residues have been identified as contributing to these structural features of Met receptor. In some embodiments, the amino acid residues comprise those identified as corresponding to structural features as shown in FIG. 3.
  • Likewise, the disclosure also includes the scalable three-dimensional configuration of points derived from structure coordinates of molecules or molecular complexes that are structurally homologous to HGF β:Met complex or extracellular fragment of the Met receptor including the Sema domain, as well as structurally equivalent configurations. Structurally homologous molecules or molecular complexes are defined below. Advantageously, structurally homologous molecules can be identified using the structure coordinates of the HGF β:Met complex or extracellular fragment of the Met receptor according to a method of the disclosure.
  • The configurations of points in space derived from structure coordinates according to the disclosure can be visualized as, for example, a holographic image, a stereodiagram, a model, or a computer-displayed image, and the disclosure thus includes such images, diagrams or models.
  • The crystal structure and structural coordinates can be used in methods, for example, for obtaining structural information of a related molecule, and for identifying and designing agents that modulate Met or HGF β:Met complex activity.
  • The coordinates of the present disclosure have been deposited in the RCSB Protein Data Bank under accession code: PDBISHY.
  • 1. Met and HGF β Polypeptides, Polynucleotides and Variants Thereof
  • The present disclosure includes a description of HGF β and an extracellular fragment of Met including the Sema domain of the Met receptor.
  • The present disclosure includes a description of hepatocyte growth factor and/or portions thereof. Hepatocyte growth factor comprises a 69 kDa alpha chain and 34 kDa beta chain. HGF is secreted as a single chain precursor form (scHGF). The 69 kDa alpha chain comprise a N terminal finger domain and four kringle domains (K1-K4). A representative amino acid sequence of human HGF β chain is shown in Table 4 (SEQ ID NO: 1). The sequence of Table 4 has one amino acid change from wild type shown in Table 8; the cysteine at amino acid position 604 is changed to a serine. It would be expected that a wild type HGF β would have an equivalent crystal structure. The amino acid numbering of the HGF β chain is based on the numbering of the single chain precursor form. Numbers in brackets or preceeded by a lower case c represent a numbering system based on reference to chymotrypsinogen.
  • The Met receptor is a tyrosine kinase and is part of a larger family of growth factor receptors with domain architecture similar to the Ron and Sea receptors. The extracellular portion of the Met receptor comprises N-terminal 500 amino acids that fold into a Sema domain. A PSI domain follows the Sema domain and comprises about 50 amino acids and has 4 disulfide bonds. The PSI domain is connected to the transmembrane domain and extracellular kinase domain by 4 IPT domains. IPT domains are immunoglobulin-like domains and are located C terminal to the PSI domain. Met becomes activated upon binding of a ligand, such as HGF β, the receptor is phosphorylated and cells expressing activated Met are stimulated to migrate, proliferate and/or differentiate. Crosslinking of Met receptors to form dimers also activates the Met receptor. A representative example of an amino acid sequence of a Met receptor is shown in Table 5 and comprises an amino acid sequence of SEQ ID NO:2. A representative example of a sequence of an extracellular portion of the Met receptor including the Sema domain and the PSI domain is shown in Table 6 and comprises an amino acid sequence of SEQ ID NO:3. The extracellular fragment of the Met receptor having a sequence of SEQ ID NO:3 differs from wild type in that amino acids at positions 304 to 308 have been substituted to include a thrombin cleavage site. Another embodiment of an extracellular fragment of Met is provided in FIG. 3 and comprises an amino acid sequence of SEQ ID NO:10. The numbering system of Met receptor is that of the Swiss Prot database as shown in Table 6.
  • Native or wild-type HGF, HGFα HGF β, or Met receptor polypeptides are those polypeptides that have a sequence of a polypeptide obtained from nature. Native or wild-type polypeptides include naturally occurring variants, secreted or truncated forms. Some domains of HGF and/or the Met receptor are known. Several isoforms of HGF are known such as isoform 1, isoform 2, isoform 3, isoform 4, and isoform 5. Representative sequences can be found at GenBank Accession Numbers NM000601, NM001010931, NM001010932, NM001010933, NM001010934, and NP000592.
  • The present disclosure also includes a polypeptide comprising, consisting essentially of, or consisting of a portion or fragment of the Met receptor. The polypeptide fragment includes amino acid residues from any of amino acid 1 to 25 residues to amino acid position 567 or residues corresponding to those positions. In some embodiments, the polypeptide portion has the ability to bind to ligand HGF. The polypeptide portion may also be fused to heterologous polypeptide, such as a peptide tag. Preferably, the fusion polypeptide retains the ability to bind a ligand, such as HGF.
  • The disclosure also provides a polypeptide comprising, consisting essentially of, or consisting of a portion or fragment of the Met receptor starting at amino acid residue 124 and ending at any one of amino acid residues 230 to 286 or residues corresponding to these residues. This polypeptide includes the amino acid residues that contact the HGF β ligand and preferably, the polypeptide has the ability to bind to a ligand such as HGF β. The polypeptide portion or fragment may be fused to a heterologous polypeptide. Preferably, the fusion protein can bind to a ligand, such as HGF β.
  • The present disclosure also includes variants of the Met receptor. Variants include those polypeptides that have amino acid substitutions, deletions, and additions. Amino acid substitutions can be made for example to replace cysteines and eliminate formation of disulfide bonds. Amino acid substitutions can also be made to change proteolytic cleavage sites. The variants also include those polypeptides that have at least one conservative amino acid substitution. In some embodiments a variant only has conservative amino acid substitutions. In some embodiments, the Met receptor variant has about 1-25 conservative amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitutions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions. In some embodiments, a Met receptor variant has at least 90% sequence identity to an extracellular domain fragment of the Met receptor, such as SEQ ID NO:3, and has changes at amino acids other than those associated with the binding site for HGF β on Met, preferably the amino acid changes are only conservative substitutions. Other variants can be made at the Met binding site for HGF β. In other embodiments, the variants of the Met receptor bind HGF β bind with the same or higher affinity than the wild type Met receptor.
  • Fusion Proteins
  • A Met receptor, variant or structural homolog or portions thereof, may be fused to a heterologous polypeptide or compound. The heterologous polypeptide is a polypeptide that has a different function than that of the Met receptor. Examples of heterologous polypeptide include polypeptides that may act as carriers, may extend half life, may act as epitope tags, may provide ways to detect or purify the fusion protein. Heterologous polypeptides include KLH, albumin, salvage receptor binding epitopes, immunoglobulin constant regions, and peptide tags. Peptide tags useful for detection or purification include FLAG, gD protein, polyhistidine tags, hemagluthinin from influenza virus, T7 tag, S tag, Strep tag, chloramiphenicol acetyl transferase, biotin, glutathione-S transferase, green fluorescent protein and maltose binding protein. Compounds that can be combined with the Met receptor, variants or structural homolog or portions thereof, include radioactive labels, protecting groups, and carbohydrate or lipid moieties.
  • Polynucleotides, Vectors and Host Cells
  • Variants of a Met receptor or extracellular fragment thereof can be prepared by introducing appropriate nucleotide changes into DNA encoding Met or the extracellular fragment, or by synthesis of the desired polypeptide variants. HGF β chain variants can be prepared by introducing appropriate nucleotide changes into DNA encoding HGF β or by synthesis of the desired polypeptide variants. Variants can be made using standard methods.
  • Amino acid substitutions, include one or more conservative amino acid substitutions. The term “conservative” amino acid substitution as used herein refers to an amino acid substitution which substitutes a functionally equivalent amino acid. Conservative amino acid changes result in silent changes in the amino acid sequence of the resulting polypeptide. For example, one or more amino acids of a similar polarity act as functional equivalents and result in a silent alteration within the amino acid sequence of the peptide. In general, substitutions within a group can be considered conservative with respect to structure and function. However, the skilled artisan will recognize that the role of a particular residue is determined by its context within the three-dimensional structure of the molecule in which it occurs. For example, Cys residues may occur in the oxidized (disulfide) form, which is less polar than the reduced (thiol) form. The long aliphatic portion of the Arg side chain can constitute a feature of its structural or functional role, and this may be best conserved by substitution of a nonpolar, rather than another basic residue. Also, it will be recognized that side chains containing aromatic groups (Trp, Tyr, and Phe) can participate in ionic-aromatic or “cation-pi” interactions. In these cases, substitution of one of these side chains with a member of the acidic or uncharged polar group may be conservative with respect to structure and function. Residues such as Pro, Gly, and Cys (disulfide form) can have direct effects on the main chain conformation, and often may not be substituted without structural distortions.
  • Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Examples of conservative substitutions are shown in Table 9. The variation allowed can be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the native sequence.
    TABLE 9
    Original Preferred
    Residue Exemplary Substitutions Substitutions
    Ala (A) Val; Leu; Ile Val
    Arg (R) Lys; Gln; Asn Lys
    Asn (N) Gln; His; Asp, Lys; Arg Gln
    Asp (D) Glu; Asn Glu
    Cys (C) Ser; Ala Ser
    Gln (Q) Asn; Glu Asn
    Glu (E) Asp; Gln Asp
    Gly () Ala Ala
    His (H) Asn; Gln; Lys; Arg Arg
    Ile (I) Leu; Val; Met; Ala; Phe; Leu
    Norleucine
    Leu (L) Norleucine; Ile; Val; Met; Ile
    Ala; Phe
    Lys (K) Arg; Gln; Asn Arg
    Met (M) Leu; Phe; Ile Leu
    Phe (F) Trp; Leu; Val; Ile; Ala; Tyr Tyr
    Pro (P) Ala Ala
    Ser (S) Thr Thr
    Thr (T) Val; Ser Ser
    Trp (W) Tyr; Phe Tyr
    Tyr (Y) Trp; Phe; Thr; Ser Phe
    Val (V) Ile; Leu; Met; Phe; Ala; Leu
    Norleucine
  • Polynucleotide sequences encoding the polypeptides described herein can be obtained using standard recombinant techniques. Desired polynucleotide sequences may be isolated and sequenced from appropriate source cells. Alternatively, polynucleotides can be synthesized using nucleotide synthesizer or PCR techniques. Once obtained, sequences encoding the polypeptides or variant polypeptides are inserted into a recombinant vector capable of replicating and expressing heterologous polynucleotides in a host cell. Many vectors that are available and known in the art can be used for the purpose of the present invention. Selection of an appropriate vector will depend mainly on the size of the nucleic acids to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components, depending on its function (amplification or expression of heterologous polynucleotide, or both) and its compatibility with the particular host cell in which it resides. The vector components generally include, but are not limited to: an origin of replication (in particular when the vector is inserted into a prokaryotic cell), a selection marker gene, a promoter, a ribosome binding site (RBS), a signal sequence, the heterologous nucleic acid insert and a transcription termination sequence.
  • In general, plasmid vectors containing replicon and control sequences, which are derived from a species compatible with the host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as marking sequences, which are capable of providing phenotypic selection in transformed cells. For example, E. coli is typically transformed using pBR322, a plasmid derived from an E. coli species. pBR322 contains genes encoding ampicillin (Amp) and tetracycline (Tet) resistance and thus provides easy means for identifying transformed cells. pBR322, its derivatives, or other microbial plasmids or bacteriophage may also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of endogenous proteins.
  • In addition, phage vectors containing replicon and control sequences that are compatible with the host microorganism can be used as transforming vectors in connection with these hosts. For example, bacteriophage such as λGEM™-11 may be utilized in making a recombinant vector which can be used to transform susceptible host cells such as E. coli LE392.
  • Either constitutive or inducible promoters can be used in the present invention, in accordance with the needs of a particular situation, which can be ascertained by one skilled in the art. A large number of promoters recognized by a variety of potential host cells are well known. The selected promoter can be operably linked to cistron DNA encoding a polypeptide described herein by removing the promoter from the source DNA via restriction enzyme digestion and inserting the isolated promoter sequence into the vector of choice. Both the native promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the target genes. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of expressed target gene as compared to the native target polypeptide promoter.
  • Promoters suitable for use with prokaryotic hosts include the PhoA promoter, the β-galactamase and lactose promoter systems, a tryptophan (trp) promoter system and hybrid promoters such as the tac or the trc promoter. However, other promoters that are functional in bacteria (such as other known bacterial or phage promoters) are suitable as well. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to cistrons encoding the polypeptides or variant polypeptides (Siebenlist et al. (1980) Cell 20: 269) using linkers or adaptors to supply any required restriction sites.
  • In embodiments, each cistron within a recombinant vector comprises a secretion signal sequence component that directs translocation of the expressed polypeptides across a membrane. In general, the signal sequence may be a component of the vector, or it may be a part of the polypeptide encoding DNA that is inserted into the vector. The signal sequence selected for the purpose of this invention should be one that is recognized and processed (i.e. cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the signal sequences native to the heterologous polypeptides, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II (STII) leaders, LamB, PhoE, PelB, OmpA and MBP.
  • Prokaryotic host cells suitable for expressing polypeptides include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms. Examples of useful bacteria include Escherichia (e.g., E. coli), Bacilli (e.g., B. subtilis), Enterobacteria, Pseudomonas species (e.g., P. aeruginosa), Salmonella typhimurium, Serratia marcescans, Klebsiella, Proteus, Shigella, Rhizobia, Vitreoscilla, or Paracoccus. Preferably, gram-negative cells are used. Preferably the host cell should secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture.
  • Besides prokaryotic host cells, eukaryotic host cell systems are also well established in the art. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plants and plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CVI line transformed by SV40 (COS-7, ATCC CRL 1651); Chinese hamster ovary cells/-DHFR(CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); and mouse mammary tumor (MMT 060562, ATCC CCL51).
  • Polypeptide Production
  • Host cells are transformed or transfected with the above-described expression vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
  • Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 precipitation and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
  • Transformation means introducing DNA into the prokaryotic host so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride is generally used for bacterial cells that contain substantial cell-wall barriers. Another method for transformation employs polyethylene glycol/DMSO. Yet another technique used is electroporation.
  • Prokaryotic cells used to produce the polypeptides of the invention are grown in media known in the art and suitable for culture of the selected host cells. Examples of suitable media include luria broth (LB) plus necessary nutrient supplements. In preferred embodiments, the media also contains a selection agent, chosen based on the construction of the expression vector, to selectively permit growth of prokaryotic cells containing the expression vector. For example, ampicillin is added to media for growth of cells expressing ampicillin resistant gene.
  • Any necessary supplements besides carbon, nitrogen, and inorganic phosphate sources may also be included at appropriate concentrations introduced alone or as a mixture with another supplement or medium such as a complex nitrogen source. Optionally the culture medium may contain one or more reducing agents selected from the group consisting of glutathione, cysteine, cystamine, thioglycollate, dithioerythritol and dithiothreitol.
  • The prokaryotic host cells are cultured at suitable temperatures. For E. coli growth, for example, the preferred temperature ranges from about 20° C. to about 39° C., more preferably from about 25° C. to about 37° C., even more preferably at about 30° C. The pH of the medium may be any pH ranging from about 5 to about 9, depending mainly on the host organism. For E. coli, the pH is preferably from about 6.8 to about 7.4, and more preferably about 7.0.
  • If an inducible promoter is used in the expression vector, protein expression is induced under conditions suitable for the activation of the promoter. For example, if a PhoA promoter is used for controlling transcription, the transformed host cells may be cultured in a phosphate-limiting medium for induction. A variety of other inducers may be used, according to the vector construct employed, as is known in the art.
  • Eukaryotic host cells are cultured under conditions suitable for expression of the HGF and/or Met receptor polypeptides. The host cells used to produce the polypeptides may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in one or more of Ham et al., 1979, Meth. Enz. 58:44, Barnes et al., 1980, Anal. Biochem. 102: 255, U.S. Pat. No. 4,767,704, U.S. Pat. No. 4,657,866, U.S. Pat. No. 4,927,762, U.S. Pat. No. 4,560,655, or U.S. Pat. No. 5,122,469, WO 90/103430, WO 87/00195, and U.S. Pat. No. Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES™), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Other supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • Polypeptides described herein expressed in a host cell may be secreted into and/or recovered from the periplasm of the host cells. Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and isolated there from. Cells may be removed from the culture and the culture supernatant being filtered and concentrated for further purification of the proteins produced. The expressed polypeptides can be further isolated and identified using commonly known methods such as fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; hydrophobic affinity resins, ligand affinity using a suitable antigen immobilized on a matrix and Western blot assay.
  • Polypeptides that are produced may be purified to obtain preparations that are substantially homogeneous for further assays and uses. Standard protein purification methods known in the art can be employed. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, chromatography on silica or on a cation-exchange resin such as DEAE, chromatofocusing, SDS-PAGE, ammonium sulfate precipitation, and gel filtration using, for example, Sephadex G-75.
  • 2. Crystals and Crystal Structures
  • The present disclosure provides crystals of and a crystal structure of HGF β chain cocrystalized with a fragment of the Met receptor. In some embodiments, the Met receptor fragment includes the Sema and PSI domain. The crystals were formed by contacting a mixture of purified HGF β chain and the Met receptor extracellular fragment with a precipitant in a buffer. In some embodiments, the crystal of a HGF β and a Met receptor can be diffracted by X-rays to determine atomic coordinates to a resolution of 5 Å or better. In some embodiments, the precipitant was 12-15% polyethylene glycol 10,000. In some embodiments, the crystals are formed from a HGF β comprising SEQ ID NO:1 and a Met receptor fragment comprising SEQ ID NO:3.
  • The resulting crystals diffracted to 3.2 Å resolution (Table 1) and have one (1) full complex containing one Met fragment and a single HGF β-chain in the asymmetric unit. The structure was refined to an R-value of 20.9% (Rfree 27.0%) with good geometry. Of the 628 non-glycine and non-proline residues, 97.6% have their main-chain torsion angles in the ‘most-favored’ or the ‘additionally allowed’ regions of the Ramachandran plot (Laskowski et al., 1993). The refined model includes residues 495 to 722 of HGF and residues 40 to 301, 311 to 377, 382 to 400, and 414 to 564 of Met. Although a number of glycosylation sites displayed electron density, none of the sugars were modeled into the structure.
  • In a specific embodiment, the structure of HGF β complexed with a Met receptor extracellular fragment (HGF β:Met) was solved by molecular replacement with the program AMORE (NAVAZC 1994) using the crystal structure of HGF β chain alone as search model (coordinates for HGF β can be found in the RCSB Protein Data Bank under accession code: PDB1UX3). The crystals belonged to space group P21P21P with cell parameters of a=137.1 Å, b=186.4 Å and c=66.7 Å and contained 1 complex of Met: HGF β chain in the asymmetric unit.
  • Each of the constituent amino acids in HGF β:Met is defined by a set of structural coordinates as set forth in Table 2. The coordinates and structure factors of the present disclosure have been deposited by the RCSB Protein Data Bank under Accession Code: PDB 1SHY.
  • The term “structure coordinates” refers to Cartesian coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a Met receptor or Met: HGF β in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the Met receptor or protein/ligand complex.
  • Slight variations in structure coordinates can be generated by mathematically manipulating the Met receptor or Met: HGF β complex structure coordinates. For example, the structure coordinates as set forth in Table 2 could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates, or any combination of the above. Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, deletions, and combinations thereof, of amino acids, or other changes in any of the components that make up the crystal, could also yield variations in structure coordinates. Such slight variations in the individual coordinates will have little effect on overall shape. If such variations are within an acceptable standard error as compared to the original coordinates, the resulting three-dimensional shape is considered to be structurally equivalent. Structural equivalence is described in more detail below.
  • It should be noted that slight variations in individual structure coordinates of the HGF β:Met would not be expected to significantly alter the nature of chemical entities such as ligands that could associate with a binding site or other structural features of HGF β or Met. In this context, the phrase “associating with” refers to a condition of proximity between a ligand, or portions thereof, and a HGF β or Met molecule or portions thereof. The association may be non-covalent, wherein the juxtaposition is energetically favored by hydrogen bonding, van der Waals forces, and/or electrostatic interactions, or it may be covalent.
  • HGF β Chain Structure
  • The β-chain of HGF shares close to 40% sequence identity with the protease domain of plasmin, a trypsin-like serine protease. Structurally, these enzymes can be described as globular proteins composed of two antiparallel β-barrel domains (FIG. 1A). Both of the β-barrels share the same general topology and are formed by six antiparallel β-strands, with the N-terminal four strands folding into a Greek key motif, followed by two strands that form a hairpin. HGF, like serine proteases, is expressed as a zymogen-like precursor. For serine proteases, structural studies have shown that insertion of the N-terminus resulting from the maturation process leads to allosteric rearrangments within the binding site for the protease substrate (Perona and Craig, 1995; Hedstrom 2002). In serine proteases, the newly formed N-terminus forms a salt bridge with a nearby aspartate, which leads to the formation of the oxyanion hole via the backbone NH's of two neighboring residues and the creation of a part of the S1 pocket (FIG. 1). The ‘activated’ form of the HGF β-chain, as seen in the structure presented here, is similar to the mature form of serine proteases: superposition with plasmin (pdb-code IBML) yields an rmsd of about 1.3 Å for 212 Cα, pairs. Superposition between HGF β-chain and plasminogen (pdb-code 1QRZ) reveal differences in their ‘activation domain’ (Freer et al., 1970) and only 198 Cα pairs can be aligned well.
  • As with serine proteases, the N-terminal amine of HGF β, Val495, is inserted into the core of the C-terminal β-barrel and forms a salt bridge with the carboxyl group of Asp672, which corresponds to Asp[c 194] in plasmin, presumably leading to similar rearrangements, which have been characterized in serine proteases. The region in HGF corresponding to this so-called ‘activation domain’, i.e., the loops that undergo conformational changes in serine proteases (Freer et al., 1970; Huber and Bode, 1978), form part of the binding surface with Met.
  • After maturation, the α- and β-chains of HGF remain connected via a disulfide bond. Based on alignments of the kringle domains K1 to K4 of HGF α chain and macrophage stimulating protein (MSP), the two cysteine residues responsible for the formation of this disulfide bond were identified as Cys487 on the α-chain of HGF and Cys604 on the β-chain (Donate et al., 1994). The crystal structure, however, raises the possibility of an alternative cysteine residue as the anchor for the HGF α-chain. The HGF β-chain has two (2) cysteine residues that do not have partners for the formation of disulfide bridges within the β-chain. Neither is conserved in plasmin or MSP and both are located on the periphery of the protein and are at least partially solvent exposed; either could be potential partners for the formation of a disulfide bond with the α-chain while the other remains unpaired. The superposition of the plasmin structure that contains part of the α-chain (FIG. 1B), and the HGF β-chain structure presented here, shows that the distance between the C-terminus of the plasmin α-chain and Cys604 of the HGF β-chain is 27 Å and thus only slightly shorter than the respective distance between the plasmin α-chain C-terminus and Cys561 (33 Å) (FIG. 1B). In addition, the sequence alignment between plasmin, MSP, and HGF (FIG. 1C) shows that the α-chain cysteine forming the disulfide bond in plasmin and MSP is 13 and 15 residues away from the cleavage site in those proteins respectively, but there are only 7 residues in HGF to span the distance from Cys487 to the cleavage site. Therefore, due to distance requirements, the C-terminus of the HGF α-chain cannot follow the same path on the surface of the β-chain as it does in plasmin or MSP. Regardless of the position of the disulfide bond between the alpha and beta chain, the overall structure or the structural model of the Met receptor or Met: HGF β complex is not impacted.
  • Met Stucture
  • The analysis of crystal structure of the Sema domain of Met shows that it forms 7-bladed β-propeller with a diameter of a little more than 50 Å. The overall shape of the domain resembles a funnel with an inner diameter of about 25 Å between main chain atoms at the wide portion and 10 Å in the narrowest part (FIG. 2). Generally, in β-propellers, each of the blades is formed by 4 antiparallel β-strands with strand A in the center of the propeller followed by strands B and C, and with strand D forming the outermost strand of the blade. The blades are arranged in a circular fashion, with the N-terminal strand forming strand D of the last blade, thus closing the propeller and stabilizing the overall structure (FIG. 2A). The AB and CD loops of each blade of the Met Sema domain form the relatively flat ‘bottom’ face, and the generally longer BC and DA loops form the ‘top’ face of the propeller (FIG. 2B). In Met, the position of the 6th and the 7th blade are off-center, with blade 7 being closer to the center of the barrel and blade 6 more distant. This gives the domain an overall oval shape.
  • The β-propeller of the Met Sema domain is structurally most closely related to the recently reported crystal structures of Sema4D (Love et al., 2003) and Sema3A (Antipenkov et al., 2003). With the exception of the D-strands in blades 3 and 5, the core of Sema4D and the Met Sema domain align well (FIGS. 3 and 4) and the superposition of residues 40 to 519 with the Sema domain of Sema4D results in an rmsd of 1.6 Å for 303 atom pairs (FIG. 4). The residues that form strand D5 in Sema4A are hydrogen bonded to strand D4 in Met, thus the 4th blade of Met contains an extra strand while blade 5 is missing its strand D. While the core of both proteins align well, the loops contain a number of insertions or deletions and generally adopt very different conformations. For example, the Sema domains of Met and of Sema4D both have an insert of about 20 residues following strand D1. In Met, these residues form a short antiparallel two-stranded β-sheet, while Sema4D has an α-helix (FIGS. 3 and 4). Of the 24 loops that connect the various strands, only 3 have no insertions or deletions when comparing Met with Sema4D or Sema3A (FIG. 3). Interestingly, both the Semaphorins and the Met receptor have their largest insertion between strands C5 and A6; however, these inserts are not related in structure or sequence to each other. In Sema3A, this insert is involved in dimer formation and has been shown to be important for neuropilin binding (Antipenko et al., 2003). In the Met Sema domain, some of the residues within the insert are disordered and not included in our model (see FIG. 2). The function of the insert in Met is not known but its proximity to the HGF β-chain binding site, discussed below, suggests that it might be involved in binding to the α-chain of HGF.
  • The loop containing the cleavage site between the α- and β-chain of Met connects strand D4 to A5; it is disordered in the electron density. After processing of native Met, the α-chain, which forms the N-terminal 4 blades of the Sema domain, and the β-chain remain connected via at least 2 disulfide bonds. One disulfide bond is formed between residues Cys298 on strand D4 and Cys363 on C5, and the second is formed between Cys282 (D3) and Cys409. This last cysteine is positioned in a disordered region of the insert after blade 4. The electron density does not allow tracing of the main chain in this area but there is sufficient density in the area of the Sγ position to suggest that the disulfide bond is at least partially formed. With the exception of the N-terminal Cys26, which is disordered in the presently disclosed crystal structure and has no potential partner in the construct that was used for crystallization, all cysteine residues are engaged in disulfide bonds. It is unclear if Cys26 remains unpaired in the context of full length Met receptor or if it forms a disulfide bond with another cysteine that resides in the IPT domains. Besides the two disulfide bonds that covalently connect the α- and β-chain of the Sema domain, the domain is stabilized by 5 additional disulfide bridges formed between Cys95-Cys101, Cys98-Cys159, Cys133-Cys141, Cys172-Cys175, and Cys385-Cys397 (FIG. 3).
  • The surface of the Met Sema domain appears to be mostly negatively charged, especially in the center of the bottom face of the Sema domain (FIG. 2C). This surface, which is formed by a 20 residue insertion after strand D in the first blade and includes the rather irregular area of strand D in the third blade, shows clusters of acidic residues. Monomeric, full length Met was shown to bind to heparin (Gherardi et al., 2003). In the presently disclosed structure there are no dominant positively charged patches within the Met Sema domain; however, two arginines are located in the vicinity of the disordered furin-cleavage site. Together with the 6 positively charged residues that reside in this loop, these arginines could constitute a potential heparin binding site.
  • The last strand of the Sema domain (C7) is followed immediately by the PSI domain. This domain, with dimensions of about 20×15 Å, contains four (4) disulfide bridges and is not an integral part of the Sema domain but rather an independent structural module. The small core of the domain is formed by a helix and a short two-stranded antiparallel β-sheet that are connected via a disulfide bond and sandwich the side-chain of Trp540. Superposition of this domain with the PSI domain of Sema4D results in an rmsd of 1.6 Å for 41 Cα pairs. The relative orientation between the Sema and the PSI domains in the Met and the Sema4D structures, however, is different and requires a rotation of about 40° for superposition.
  • Th Interface Between the HGF β-Chain and Met
  • The HGF β-chain binds to the Sema domain of Met at the bottom face of the propeller, and forms contacts with residues that protrude from blades 2 and 3 (FIGS. 2 and 3). This is unlike other β-propeller containing receptors, such as the integrins, which bind their ligands utilizing the top face of the propeller (Xiong et al., 2002). Other Sema domain containing proteins, such as Sema3A and Sema4D, are also postulated to bind ligands using the top face (Antipenko et al., 2003; Love et al., 2003).
  • The interface between HGF β-chain and Met buries a total of 1770 Å2 of solvent accessible surface and is dominated by polar or charge-charge interactions. The volume of the cavity of the pocket that is blocked by Met on the surface of HGF β is about 380 cubic angstroms as determined by placing a number of atoms at the entrance of the pocket to close the pocket and using the program GRASP (available from Columbia University at ihonigts@columbia/edu) to calculate the volume of the resulting cavity.
  • Of the 20 HGF β residues that have more that 10 Å2 buried in the interface, 6 are positively charged, 3 carry negative charges, and 3 are aromatic. The positively charged amino acids include K516, R533, R647, R695, K649, and R702. The negatively charged amino acids include E656, E670, and D578. The aromatic amino acids include Y513, Y673, and Y619. (See Table 3).
  • Even more dramatic, of the 18 residues contributing more than 10 Å2 of buried surface to the interface on the Met receptor, 6 carry negative charges, 4 are positively charged and 3 are aromatic. The positively charged amino acid residues include H148, R191, R218, and K223. The negatively charged amino acids include D127, D128, E168, E221, and D224. The aromatic amino acids include Y125, Y126, and F192. The combined buried surface of the hydrophobic residues Ala, Val, Leu, Ile, Met and Phe amounts to a mere 145 Å2, while the charged residues Asp, Glu, Lys, Arg, and His are responsible for more than 1,000 Å2 of buried surface. The resolution of the presently disclosed structure does not permit a detailed discussion of hydrogen bonds; however, the position of the side chains suggest the presence of at least 7 charged interactions between Met and the HGF β-chain. In some embodiments, variants of HGF beta or Met receptor may be designed to preserve and/or strengthen these charge charge interactions. In other embodiments, small molecules may be designed to mimic the charge-charge interaction of either the HGF β binding site for Met or the Met binding site for HGF β. (See Table 3).
  • On HGF, the residues analogous to those responsible for substrate binding and catalysis in the related serine proteases form most of the interactions with Met. Serine proteases bind linear peptides to their recognition site and form hydrogen bonds to main chain atoms to position a specific peptide bond for proteolytic cleavage. In contrast, the HGF β-chain binds to a series of protruding polar side chains from Met that comprise amino acid residues from 3 separate loops (FIG. 5B). The first of these loops includes residues 124-128 of Met and connects strands A2 and B2 of Met. This loop contains two tyrosines that are in the core of the binding interface and pack against Arg695 of HGF β. The second loop of Met that contacts HGF β-chain includes residues Asp190, Arg191, and Phe192 and connects A3 and B3. Asp190 of Met forms charged interactions with Arg533 of HGF. The side chain of Arg191 of Met packs against Val692 and Pro693 of HGF with its hydrophobic portion and in the presently disclosed model is in hydrogen bonding distance to the side chains of Glu656 and Asp578 with its guanidinium group. This Asp578 corresponds to aspartic acid [c102] in the catalytic triad of the related serine proteases. Furthermore, the backbone of this loop forms hydrophilic interactions with Gln534, the residue homologous to the histidine [c57] of the protease catalytic triad.
  • The third segment contributing to the interface also includes strand D in the third blade of the propeller, an area that deviates from the classical ‘propeller fold’. Strand D is interrupted and has a short helical insert within its strand. This unusual conformation presents a number of residues towards the surface of the HGF β-chain. The most prominent interaction formed by this loop involves Glu221 which extends its side chain towards what would be the S1 binding site in serine proteases (FIGS. 5 and 6). The carboxylate of Glu221 forms an extensive network of polar interactions with the side chain of Tyr673 (corresponding to the serine [c 195] of the catalytic triad in proteases), as well as the backbone amides of Gly694 and Gly696 (FIG. 6); however, unlike in serine proteases, where the S1 pocket is filled by the specificity determining P1 residue, it does not penetrate deeply into the S1 pocket. As a result of the exchange of Ser to Tyr in position 673 [c195], the entrance of the S1 pocket is much smaller than in the related proteases. Thus, Glu221 projects towards the entrance of the S1 pocket from a different angle when compared to a complex between trypsin and bovine pancreatic trypsin inhibitor (BPTI) and does not fill the pocket (FIG. 6). Therefore, a large cavity, presumably filled with a number of water molecules, remains in HGF β-chain.
  • Comparison of HGF β-Chain Unbound and Bound to Met
  • The structures of the HGF β-chain bound to Met and HGF β in its unbound state, as disclosed in application U.S. Ser. No. 60/569,301, filed May 6, 2004, which is hereby incorporated by reference, are very similar and superimpose with an rmsd of less than 0.8 Å for 218 Cα-pairs. The only significant differences between the two structures involve residues that are close to the Met binding interface. The backbone of residues 645 to 651 is disordered in unliganded HGF β but well defined in the structure of the complex, where it adopts a conformation that is commonly observed in serine proteases (FIG. 1). The side chains of the basic residues Arg647 and Lys649 are not well defined in the electron density but project towards the Met binding interface and, in presently disclosed model, participate in the formation of the complex. Arg695 also undergoes a change in conformation upon Met binding. This residue, located in the center of the receptor binding interface, packs against Tyr125 of Met, and its backbone forms part of the S1 pocket. In the structure of unliganded HGF β, the conformation of the backbone in this area is different, and the side chain of Arg695 projects toward the disordered region of the structure. It is conceivable that the binding event alters the position of Arg695, which in turn allows residues 645 to 651 to adopt a more stable conformation. The tunnel or void identified in the crystal structure of HGFβ, is also seen in the cocrystal.
  • 3. Structurally Equivalent Crystal Structures
  • Various computational analyses can be used to determine whether a molecule or portions of the molecule defining structure features are “structurally equivalent,” defined in terms of its three-dimensional structure, to all or part of a Met receptor or HGF β:Met complex or its ligand binding sites. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif.), Version 4.1, and as described in the accompanying User's Guide.
  • The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. A procedure used in Molecular Similarity to compare structures comprises: 1) loading the structures to be compared; 2) defining the atom equivalences in these structures; 3) performing a fitting operation; and 4) analyzing the results.
  • One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this disclosure equivalent atoms are defined as protein backbone atoms (N, Cα, C, and O) for all conserved residues between the two structures being compared. A conserved residue is defined as a residue that is structurally or functionally equivalent. Only rigid fitting operations are considered.
  • When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in Angstroms, is reported by QUANTA.
  • Structurally equivalent crystal structures have portions of the two molecules that are substantially identical, within an acceptable margin of error. The margin of error can be calculated by methods known to those of skill in the art. In some embodiments, any molecule or molecular complex or any portion thereof, that has a root mean square deviation of conserved residue backbone atoms (N, Cα, C, O) of less than about 0.70 Å, preferably 0.5 Å. For example, structurally equivalent molecules or molecular complexes are those that are defined by the entire set of structure coordinates listed in Table 2±a root mean square deviation from the conserved backbone atoms of those amino acids of not more than 0.70 Å, preferably 0.5 Å. The term “root mean square deviation” means the square root of the arithmetic mean of the squares of the deviations. It is a way to express the deviation or variation from a trend or object. For purposes of this disclosure, the “root mean square deviation” defines the variation in the backbone of a protein from the backbone of HGF β:Met complex (as defined by the structure coordinates of the complex as described herein) or a defining structural feature thereof.
  • 4. Structurally Homologous Molecules, Molecular Complexes, and Crystal Structures
  • Structure coordinates can be used to aid in obtaining structural information about another crystallized molecule or molecular complex. The method of the disclosure allows determination of at least a portion of the three-dimensional structure of molecules or molecular complexes that contain one or more structural features that are similar to structural features of at least a portion of Met receptor or HGF β:Met complex. These molecules are referred to herein as “structurally homologous” to Met receptor or HGF β:Met. Similar structural features can include, for example, regions of amino acid identity, conserved active site or binding site motifs, and similarly arranged secondary structural elements (e.g. binding sites for HGF β, PSI domain, IPT domain, and propellor blades of the Sema domain).
  • Optionally, structural homology is determined by aligning the residues of the two amino acid sequences to optimize the number of identical amino acids along the lengths of their sequences; gaps in either or both sequences are permitted in making the alignment in order to optimize the number of identical amino acids, although the amino acids in each sequence must nonetheless remain in their proper order. Two amino acid sequences are compared using the BLAST program, version 2.0.9, of the BLAST 2 search algorithm, as described by Tatusova et al. (56), and available at http:www.ncbi.nlm.nih.gov/BLAST/. Preferably, the default values for all BLAST 2 search parameters are used, including matrix=BLOSUM62; open gap penalty=11, extension gap penalty=1, gap x_dropoff=50, expect=10, wordsize=3, and filter on. In the comparison of two amino acid sequences using the BLAST search algorithm, structural similarity is referred to as “identity.”
  • In some embodiments, a structurally homologous molecule is a protein that has an amino acid sequence sharing at least 80% identity with a native or recombinant amino acid sequence of Met, preferably an extracellular fragment of the Met receptor comprising a sequence of SEQ ID NO:3 or SEQ ID NO:10. An extracellular fragment of Met receptor comprising a sequence of SEQ ID NO:3 has amino acid substitutions at positions 304-308 to insert a thrombin cleavage site. In some embodiments, a Met receptor has a sequence of SEQ ID NO:3 and the structurally homologous molecule is a variant that has a % sequence identity to SEQ ID NO: 3 of at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater. In some embodiments, the Met receptor variant or structurally homologous molecule has one or more conservative amino acid substitutions, preferably only conservative amino acid substitutions and retains the structure of the binding site for HGF β. In some embodiments, the Met receptor variant has about 1-25 conservative amino amino acid substitutions, more preferably about 1-20 conservative amino acids substitutions, more preferably about 1-10 conservative amino acid substitions, more preferably about 1-5 conservative amino acid substitutions, and more preferably about 1-2 conservative amino acid substitutions. Preferably, the variant retains at least one or more domains such as the binding site for HGF β. More preferably, a protein that is structurally homologous to Met includes at least one contiguous stretch of at least 50 amino acids that shares at least 80% amino acid sequence identity with the analogous portion of the native or recombinant Met. Methods for generating structural information about the structurally homologous molecule or molecular complex are well known and include, for example, molecular replacement techniques.
  • Therefore, in another embodiment this disclosure provides a method of utilizing molecular replacement to obtain structural information about a molecule or molecular complex whose structure is unknown comprising:
      • (a) generating an X-ray diffraction pattern from a crystallized molecule or molecular complex of unknown or incompletely known structure; and/or
      • (b) applying at least a portion of the structural coordinates of the Met receptor or HGF β:Met complex complex to the X-ray diffraction pattern to generate a three-dimensional electron density map of the molecule or molecular complex whose structure is unknown or incompletely known.
  • By using molecular replacement, all or part of the structure coordinates of the Met receptor and/or HGF β:Met complex as provided by this disclosure can be used to determine the unsolved structure of a crystallized molecule or molecular complex more quickly and efficiently than attempting to determine such information ab initio. Coordinates of structural features of the Met receptor can be utilized including the Sema domain, PSI domain and the binding site for HGF β.
  • Molecular replacement can provide an accurate estimation of the phases for an unknown or incompletely known structure. Phases are one factor in equations that are used to solve crystal structures, and this factor cannot be determined directly. Obtaining accurate values for the phases, by methods other than molecular replacement, can be a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a structurally homologous portion has been solved, molecular replacement using the known structure provide a useful estimate of the phases for the unknown or incompletely known structure.
  • Thus, this method involves generating a preliminary model of a molecule or molecular complex whose structure coordinates are unknown, by orienting and positioning the relevant portion of the Met receptor and/or HGF β:Met complex within the unit cell of the crystal of the unknown molecule or molecular complex. This orientation or positioning is conducted so as best to account for the observed X-ray diffraction pattern of the crystal of the molecule or molecular complex whose structure is unknown. Phases can then be calculated from this model and combined with the observed X-ray diffraction pattern amplitudes to generate an electron density map of the structure. This map, in turn, can be subjected to established and well-known model building and structure refinement techniques to provide a final, accurate structure of the unknown crystallized molecule or molecular complex (see for example, Lattman, 1985. Methods in Enzymology 115:55-77).
  • Structural information about a portion of any crystallized molecule or molecular complex that is sufficiently structurally homologous to a portion of the Met receptor and/or HGF β:Met can be resolved by this method. In addition to a molecule that shares one or more structural features with the Met receptor, such as the Sema domain, and/or HGF β:Met as described above, a molecule that has similar bioactivity, such as the same catalytic activity, substrate specificity or ligand binding activity as the Met receptor and/or HGF β:Met, may also be sufficiently structurally homologous to a portion of the Met receptor and/or HGF β:Met to permit use of the structure coordinates of HGF β:Met to solve its crystal structure or identify structural features that are similar to those identified in the Met receptor described herein. It will be appreciated that amino acid residues in the structurally homologous molecule identified as corresponding to the Met receptor structural feature may have different amino acid numbering.
  • In one embodiment of the disclosure, the method of molecular replacement is utilized to obtain structural information about a molecule or molecular complex, wherein the molecule or molecular complex includes at least one HGF β:Met or Met receptor subunit or homolog. In the context of the present disclosure, a “structural homolog” of the Met receptor or HGF β:Met is a protein that contains one or more amino acid substitutions, deletions, additions, or rearrangements with respect to the amino acid sequence of HGF β:Met complex or Met receptor, but that, when folded into its native conformation, exhibits or is reasonably expected to exhibit at least a portion of the tertiary (three-dimensional) structure of at least a portion of the Met receptor and/or HGF β:Met complex. A portion of the Met receptor includes the Sema domain, PSI domain, IPT domains, and binding site for HGF β and combinations thereof.
  • For example, structurally homologous molecules can contain deletions or additions of one or more contiguous or noncontiguous amino acids, such as a loop or a domain. Structurally homologous molecules also include “modified” extracellular fragment of the Met receptor and/or HGF β:Met molecules that have been chemically or enzymatically derivatized at one or more constituent amino acid, including side chain modifications, backbone modifications, and N- and C-terminal modifications including acetylation, hydroxylation, methylation, amidation, and the attachment of carbohydrate or lipid moieties, cofactors, and like modifications. It will be appreciated that amino acid residues in the structurally homologous molecule identified as corresponding to extracellular fragment of the Met receptor or other structural feature of the Sema domain of the Met receptor may have different amino acid numbering.
  • A heavy atom derivative of HGF β:Met is also included as a HGF β:Met homolog. The term “heavy atom derivative” refers to derivatives of HGF β:Met produced by chemically modifying a crystal of HGF β or Met or both. In practice, a crystal is soaked in a solution containing heavy metal atom salts, or organometallic compounds, e.g., lead chloride, gold thiomalate, thiomersal or uranyl acetate, which can diffuse through the crystal and bind to the surface of the protein. The location(s) of the bound heavy metal atom(s) can be determined by X-ray diffraction analysis of the soaked crystal. This information, in turn, is used to generate the phase information used to construct three-dimensional structure of the protein (Blundell, et al., 1976, Protein Crystallography, Academic Press, San Diego, Calif.).
  • The structure coordinates of HGF β:Met provided by this disclosure are particularly useful in solving the structure of Met variants. Variants may be prepared, for example, by expression of Met cDNA previously altered in its coding sequence by oligonucleotide-directed mutagenesis as described herein. Variants may also be generated by site-specific incorporation of unnatural amino acids into Met proteins using known biosynthetic methods (Noren, et al., 1989, Science 244:182-88). In this method, the codon encoding the amino acid of interest in wild-type Met is replaced by a “blank” nonsense codon, TAG, using oligonucleotide-directed mutagenesis. A suppressor tRNA directed against this codon is then chemically aminoacylated in vitro with the desired unnatural amino acid. The aminoacylated tRNA is then added to an in vitro translation system to yield a mutant Met with the site-specific incorporated unnatural amino acid.
  • The structure coordinates of HGF β:Met are also particularly useful to solve or model the structure of crystals of HGF β, Met, HGF β variants, Met variants, or Met homologs or HGF β homologs which are co-complexed with a variety of ligands. HGF β is an inhibitor of full length HGF and can be used to identify or design other like inhibitors. This approach enables the determination of the optimal sites for interaction between ligand entities, including candidate HGF β or Met ligands. Potential sites for modification within the various binding sites of the molecule can also be identified. This information provides an additional tool for determining more efficient binding interactions, for example, increased hydrophobic or polar interactions, between Met and a ligand. For example, high-resolution X-ray diffraction data collected from crystals exposed to different types of solvent allows the determination of where each type of solvent molecule resides. Small molecules that bind tightly to those sites can then be designed and synthesized and tested for their Met affinity, such as inhibition activity.
  • In another embodiment, homology modeling can be conducted using the structural coordinates of HGF β and/or the Met receptor and a program designed to generate models of structures, such as Protein Explorer, Swiss Model, or RASMOL. The programs can provide a structural model of a homolog or variant of HGF β and/or Met by providing the structural coordinates such as provided in Table 2 and an alignment of the sequences.
  • All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 1.5-3.5 Å resolution X-ray data to an R-factor of about 0.30 or less using computer software, such as X-PLOR (Yale University, distributed by Molecular Simulations, Inc.)(see for example, Blundell, et al. 1976. Protein Crystallography, Academic Press, San Diego, Calif., and Methods in Enzymology, Vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)). This information may thus be used to optimize known Met modulators, and more importantly, to design new Met modulators.
  • The disclosure also includes the unique three-dimensional configuration defined by a set of points defined by the structure coordinates for a molecule or molecular complex structurally homologous to an extracellular fragment of the Met receptor or HGF β:Met complex as determined using the method of the present disclosure, structurally equivalent configurations, and magnetic storage media including such set of structure coordinates.
  • 4. Homology Modeling
  • Using homology modeling, a computer model of a HGF β:Met complex or Met receptor homolog can be built or refined without crystallizing the homolog. First, a preliminary model of the homolog is created by sequence alignment with HGF β:Met or an extracellular fragment of Met, secondary structure prediction, the screening of structural libraries, or any combination of those techniques. Computational software may be used to carry out the sequence alignments and the secondary structure predictions. Programs available for such an analysis include Protein Explorer (eg available at molvissdsc.edu.protexpl.frontdoor.htm), Swiss Model (eg available at swissmodel.expasy.org) and RASMOL.Structural incoherences, e.g., structural fragments around insertions and deletions, can be modeled by screening a structural library for peptides of the desired length and with a suitable conformation. For prediction of the side chain conformation, a side chain rotamer library may be employed. If the homolog has been crystallized, the final homology model can be used to solve the crystal structure of the homolog by molecular replacement, as described above. Next, the preliminary model is subjected to energy minimization to yield an energy-minimized model. The energy-minimized model may contain regions where stereochemistry restraints are violated, in which case such regions are remodeled to obtain a final homology model. The homology model is positioned according to the results of molecular replacement, and subjected to further refinement including molecular dynamics calculations.
  • 6. Methods for Identification of Modulators of HGF β:Met
  • Potent and selective ligands that modulate activity (antagonists and agonists) are identified using the three-dimensional model of the Met binding site for HGF β and/or other structural features produced using the coordinates of a cocrystal of HGF β with Met or a fragment thereof, such as provided in Table 2. Using this model, ligands that interact with the Met binding site for HGF β are identified, and the result of the interactions is modeled. In some embodiments, agents identified as candidate molecules for modulating the activity of HGF, Met and/or HGF β:Met can be screened against known bioassays. For example, the ability of an agent to inhibit the anti-apoptotic effects of Met can be measured using assays known in the art, or for example, the assays disclosed in the Examples. Using the modeling information and the assays described, one can identify agents that possess HGF, Met and/or HGF β:Met-modulating properties.
  • The methods of the disclosure also include methods of identifying molecules that mimic HGF β binding to a ligand (such as the Met receptor) or Met receptor binding to HGF β or both, but do not activate the HGF/Met signaling pathway. HGF β is an inhibitor of full length HGF and can be used to identify or design other like inhibitors. These molecules can be identified using the three-dimensional model of HGF β:Met complex using the coordinates of Tables 7 and 2.
  • In another embodiment, a candidate modulator can be identified using a biological assay such as binding to HGF and/or HGF β, modulating Met phosporylation or modulating HGF induced cell migration. The candidate modulator can then serve as a model to design similar agents and/or to modify the candidate modulator for example, to improve characteristics such as binding to HGF β or Met receptor. Design or modification of candidate modulators can be accomplished using the crystal structure coordinates and available software.
  • Binding Site and Other Structural Features
  • Applicants' disclosure provides information inter alia about the shape and structure of the structural binding site of Met for HGF β in the presence or absence of a modulator. Binding sites are of significant utility in fields such as drug discovery. The association of natural ligands or substrates with the binding sites of their corresponding receptors or enzymes is the basis of many biological mechanisms of action. Similarly, many drugs exert their biological effects through association with the binding sites of receptors and enzymes. Such associations may occur with all or any part of the binding site. An understanding of such associations helps lead to the design of drugs having more favorable associations with their target, and thus improved biological effects. Therefore, this information is valuable in designing potential modulators of HGF, Met and/or HGF β:Met binding sites, as discussed in more detail below.
  • The amino acid constituents of a Met or HGF β:Met binding site as defined herein are positioned in three dimensions. In one aspect, the structure coordinates defining a binding site of Met or HGF β:Met include structure coordinates of all atoms in the constituent amino acids; in another aspect, the structure coordinates of a binding site include structure coordinates of just the backbone atoms of the constituent atoms.
  • In some embodiments, the HGF β structural binding site for Met, for example, includes the amino acids highlighted in FIG. 5A as well as those identified in Table 3. In some embodiments, the amino acid residues identified in the HGF β binding site for Met comprise, consist essentially of, or consist of at least one or more or all amino acid residue corresponding to residues 513, 516, 533, 534, 537, 578, 619, 647, 649, 656, 669, 670, 673, 692, 693, 694, 695, 696, 697, 699 or 702 or mixtures thereof. In some embodiments, the amino acid residues identified in the HGF β binding site for Met comprise, consist essentially of, or consist of at least one or more or all amino acid residue corresponding to residues Y513, K516, R533, Q 534, P537, D 578, Y619, R647, K 649, E656, C669, E670, Y673, V692, P693, G694, R695, G 696, C697, 1699 or R702 or mixtures thereof, or conservative amino acid substitutions thereof. The cocrystalization studies indicate that amino acids residues 645 to 651 are better ordered in the HGF β:Met complex and further indicate that K649 contacts the Met receptor. In other embodiments, the amino acid residues identified in the HGF β binding site for Met comprise, consist essentially of, or consist of at least one or more or all amino acid residue corresponding to residues Y513, K516, R533, Q534, F536, P537, S538, R539, D578, Y619, R647, K649, E656, P668, C669, E670, Y673, V692, P693, G694, R695, C696, C697, 1699, R702 or mixtures thereof or conservative amino acid substitutions thereof. These residues may participate in polar or nonpolar interactions with charged residues on Met.
  • The term “Met structural binding site” includes all or a portion of a molecule or molecular complex whose shape is sufficiently similar to at least a portion of a binding site of Met for HGF β as to be expected to bind HGF β or related structural analogs. A structurally equivalent ligand binding site is defined by a root mean square deviation from the structure coordinates of the backbone atoms of the amino acids that make up binding sites in Met of at most about 0.70 Å, preferably about 0.5 Å. In some embodiments, the Met structural binding site for HGF β, for example, includes the amino acids highlighted in FIG. 5B as well as those identified in Table 3. In some embodiments, a structural binding site for HGF β on the Met receptor comprises, consists essentially of, or consists of at least one or more or all amino acid residues corresponding to residues 124-128, 148, 167, 190-192, 218, 220 to 223, 229 to 230, or 286, 414 or mixtures thereof. In some embodiments, a structural binding site for HGF β on the Met receptor comprises, consists essentially of, or consists of at least one or more or all amino acid residue corresponding to residues T124, Y125, Y126, D127, D128, H148, E 167, E168, D190, R191, F192, R218, K220, E221, T222, K223, D224, M227, L229, T230, I284, S286, D414, or mixtures thereof or conservative substitutions thereof. These residues may participate in polar interactions with charged residues on HGF β.
  • The binding site of HGF β or Met may be defined by those amino acids whose backbone atoms are situated within about 5 Å of one or more constituent atoms of a bound substrate or ligand. In yet another alternative, the binding site for HGF β on Met receptor can be defined by those amino acids whose backbone atoms are situated within a sphere centered on the coordinates representing the alpha carbon atom of amino acid E221 on the Met receptor, the sphere having a radius of about 5-6 Å, for example 5.8 Å.
  • Other structural features include the blades of the propellor of the Sema domain of the Met receptor and those that define the void in the center of the propellor, as well as the domains of the Met receptor including PSI and IPT domains. Amino acid residues that form these structural features can be found in FIG. 3.
  • Rational Drug Design
  • Computational techniques can be used to screen, identify, select, design ligands, and combinations thereof, capable of associating with Met or structurally homologous molecules. Candidate modulators of HGF, HGF β and/or Met may be identified using functional assays, such as binding to HGF β or Met, and novel modulators designed based on the structure of the candidate molecules so identified. Knowledge of the structure coordinates for Met or HGF β:Met permits, for example, the design, the identification of synthetic compounds, and like processes, and the design, the identification of other molecules and like processes, that have a shape complementary to the conformation of the Met and/or HGF β binding sites. In particular, computational techniques can be used to identify or design ligands, such as agonists and/or antagonists, that associate with a Met and/or HGF β binding site. Antagonists may bind to or interfere with all or a portion of an active site of Met, and can be competitive, non-competitive, or uncompetitive inhibitors. Once identified and screened for biological activity, these agonists, antagonists, and combinations thereof, may be used therapeutically and/or prophylactically, for example, to block Met activity and thus prevent the onset and/or further progression of diseases associated with Met activity. Structure-activity data for analogues of ligands that bind to or interfere with Met binding sites and/or HGF β binding sites can also be obtained computationally.
  • In some embodiments, an antagonist or agonist may be a molecule that mimics either HGF β or the Met receptor such that it binds to either the Met receptor or HGF β or both. HGF β is an inhibitor of full length HGF and can be used to identify or design other like inhibitors. In some embodiments, if the molecule is an antagonist, it binds to either receptor or both but does not activate the Met receptor. As the structural information provided herein indicates that the interaction of the HGF β with the Met receptor includes charge-charge interactions, in some embodiments, agonists or antagonists can be designed to include components that preserve and/or strengthen the charge charge interactions. Such antagonists or agonists would include components that are able to interact, for example, hydrogen bond with the charged amino acids found in either the HGF β or Met receptor binding site or both. In some embodiments, for HGF β, antagonist or agonist molecules are designed or selected that can interact with at least one or more or all amino acid residues that comprise, consist essentially of, or consist of amino acid residues corresponding to amino acid residues Y513, K516, R533, Y619, R647, R695, K649, R702, E656, E670, Y673, or D578 or mixtures thereof. In some embodiments, for the Met receptor, antagonist or agonist molecules are designed or selected that can interact with at least one or more or all amino acid residues that comprise, consist essentially of, or consist of amino acid residues corresponding to amino acid residues Y125, Y126, H148, R191, R218, K223, D127, D128, E168, F192, E221, or D224 or mixtures thereof.
  • In other embodiments, another criteria that may be utilized in the design of modulators is whether the modulator can fit into the binding site cavity on HGF β that is blocked by Met. The volume of that cavity is about 380 cubic angstroms. The volume of the cavity can be determined by placing atoms in the entrance of the pocket close to the surface and using a program like GRASP to calculate the volume of those atoms.
  • Data stored in a machine-readable storage medium that is capable of displaying a graphical three-dimensional representation of the structure of Met or a structurally homologous molecule or molecular complex, as identified herein, or portions thereof may thus be advantageously used for drug discovery. The structure coordinates of the ligand are used to generate a three-dimensional image that can be computationally fit to the three-dimensional image of Met, HGF β:Met complex, or a structurally homologous molecule. The three-dimensional molecular structure encoded by the data in the data storage medium can then be computationally evaluated for its ability to associate with ligands. When the molecular structures encoded by the data is displayed in a graphical three-dimensional representation on a computer screen, the protein structure can also be visually inspected for potential association with ligands.
  • One embodiment of the method of drug design involves evaluating the potential association of a candidate ligand with Met, such as HGF β, or a structurally homologous molecule or homologous complex, particularly with a binding site on the Met receptor. The method of drug design thus includes computationally evaluating the potential of a selected ligand to associate with any of the molecules or molecular complexes set forth above. This method includes the steps of: (a) employing computational means, for example, such as a programmable computer including the appropriate software known in the art or as disclosed herein, to perform a fitting operation between the selected ligand and a ligand binding site or a pocket nearby the ligand binding site of the molecule or molecular complex; and (b) analyzing the results of the fitting operation to quantify the association between the ligand and the ligand binding site. Optionally, the method further comprises analyzing the ability of the selected ligand to interact with charged amino acids in either the HGF β and/or Met receptor binding sites. Other structural features of the Met receptor and/or HGF β:Met complex can also be analyzed in the same manner.
  • In another embodiment, the method of drug design involves computer-assisted design of ligand that associate with Met, HGF β:Met, its homologs, or portions thereof. Ligands can be designed in a step-wise fashion, one fragment at a time, or may be designed as a whole or de novo. Ligands can be designed based on the structure of molecules that can modulate at least one biological function of HGF β or Met.
  • In some embodiments, to be a viable drug candidate, the ligand identified or designed according to the method must be capable of structurally associating with at least part of a Met binding site and/or HGF β binding site, and must be able, sterically and energetically, to assume a conformation that allows it to associate with the Met binding site and/or HGF β binding site. Non-covalent molecular interactions important in this association include hydrogen bonding, van der Waals interactions, hydrophobic interactions, and/or electrostatic interactions. In some embodiments, agents may contact at least one amino acid position in the Met binding site for HGF β. Conformational considerations include the overall three-dimensional structure and orientation of the ligand in relation to the ligand binding site, and the spacing between various functional groups of a ligand that directly interact with the Met binding site and/or HGF β binding site or homologs thereof.
  • Optionally, the potential binding of a ligand to a Met binding site and/or HGF β binding site is analyzed using computer modeling techniques prior to the actual synthesis and testing of the ligand. If these computational experiments suggest insufficient interaction and association between it and the Met binding site, and/or HGF β binding site testing of the ligand is obviated. However, if computer modeling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to or interfere with a Met binding site and/or HGF β binding site. Binding assays to determine if a compound actually modulates with Met activity can also be performed and are well known in the art.
  • Several methods can be used to screen ligands or fragments for the ability to associate with a Met binding site and/or HGF β binding site. This process may begin by visual inspection of, for example, a Met binding site and/or HGF β binding site on the computer screen based on the Met or HGF β:Met structure coordinates or other coordinates which define a similar shape generated from the machine-readable storage medium. Selected ligands may then be positioned in a variety of orientations, or docked, within the binding site. Docking may be accomplished using software such as QUANTA and SYBYL, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.
  • Specialized computer programs may also assist in the process of selecting ligands. Examples include GRID (Hubbard, S. 1999. Nature Struct. Biol. 6:711-4); MCSS (Miranker, et al. 1991. Proteins 11:29-34) available from Molecular Simulations, San Diego, Calif.; AUTODOCK (Goodsell, et al. 1990. Proteins 8:195-202) available from Scripps Research Institute, La Jolla, Calif.; and DOCK (Kuntz, et al. 1982. J. Mol. Biol. 161:269-88) available from University of California, San Francisco, Calif.
  • For example, an examination of the structure of HGF β shows a tunnel or void formed by amino acid residues 634, 660-670, 673, 691 and 693-706. A molecule with an indole ring can fit within this void as determined by manual docking
  • Met binding ligands can be designed to fit a Met binding site and/or HGF β binding site, optionally as defined by the binding of a known modulator or one identified as modulating the activity of HGF β or Met. Examples of tyrosine kinase inhibitor compounds are disclosed in U.S. Pat. No. 6,696,463. There are many ligand design methods including, without limitation, LUDI (Bohm, 1992. J. Comput. Aided Molec. Design 6:61-78) available from Molecular Simulations Inc., San Diego, Calif.; LEGEND (Nishibata, Y., and Itai, A. 1993. J. Med. Chem. 36:2921-8) available from Molecular Simulations Inc., San Diego, Calif.; LeapFrog, available from Tripos Associates, St. Louis, Mo.; and SPROUT (Gillet, et al. 1993. J. Comput. Aided Mol. Design 7:127-53) available from the University of Leeds, UK.
  • Once a compound has been designed or selected by the above methods, the efficiency with which that ligand may bind to or interfere with a Met binding site and/or HGF β binding site may be tested and optimized by computational evaluation. For example, an effective Met binding site ligand and/or HGF β binding site should preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, an efficient Met binding site ligand should preferably be designed with a deformation energy of binding of not greater than about 10 to about 15 kcal/mole, such as about 12 kcal/mole, preferably not greater than about 8 to about 12 kcal/mole, such as about 10 kcal/mole, and more preferably not greater than about 5 to about 10 kcal/mole, such as about 7 kcal/mole. Met binding site and/or HGF β binding site ligands may interact with the binding site in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the free energy of the ligand and the average energy of the conformations observed when the ligand binds to the protein.
  • A ligand designed or selected as binding to or interfering with a Met binding site and/or HGF β binding site may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme and with the surrounding water molecules. Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole, and charge-dipole interactions.
  • Specific computer software is available to evaluate compound deformation energy and electrostatic interactions. Examples of programs designed for such uses include: Gaussian 94, revision C (M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa.); AMBER, version 4.1 (P. A. Kollman, University of California at San Francisco,); QUANTA/CHARMM (Molecular Simulations, Inc., San Diego, Calif.); Insight II/Discover (Molecular Simulations, Inc., San Diego, Calif.); DelPhi (Molecular Simulations, Inc., San Diego, Calif.); and AMSOL (Quantum Chemistry Program Exchange, Indiana University). These programs can be implemented, for instance, using a Silicon Graphics workstation, such as an Indigo2 with IMPACT graphics. Other hardware systems and software packages will be known to those skilled in the art.
  • Another approach encompassed by this disclosure is the computational screening of small molecule databases for ligands or compounds that can bind in whole, or in part, to a Met binding site and/or HGF β binding site. In this screening, the quality of fit of such ligands to the binding site may be judged either by shape complementarity or by estimated interaction energy (Meng, et al., 1992. J. Comp. Chem., 13:505-24). In addition, these small molecule databases can be screened for the ability to interact with the charged amino acids in the Met binding site and/or HGF β binding site as identified herein.
  • A compound that is identified or designed as a result of any of these methods can be obtained (or synthesized) and tested for its biological activity, for example, binding and/or inhibition of HGF and/or Met activity.
  • Another method involves assessing agents that are antagonists or agonists of the Met receptor. A method comprises applying at least a portion of the crystallography coordinates of a cocrystal of HGF β and Met, such as provided in Tables 7 and/or 2 to a computer algorithm that generates a three-dimensional model of HGF β:Met complex or the Met receptor suitable for designing molecules that are antagonists or agonists and searching a molecular structure database to identify potential antagonists or agonists. In some embodiments, a portion of the structural coordinates of a cocrystal of HGF β and Met, such as provided in Tables 7 and/or 2 that define a structural feature, for example, binding site for HGF β, may be utilized. The method may further comprise synthesizing or obtaining the agonist or antagonist and contacting the agonist or antagonist with the Met receptor and/or HGF β and selecting the antagonist or agonist that modulates the Met receptor and/or HGF β activity compared to a control without the agonist or antagonists and/or selecting the antagonist or agonist that binds to the Met receptor and/or HGF β. Activities of HGF and/or the Met receptor include phosphorylation of Met, stimulation of cell proliferation, and stimulation of cell migration.
  • A compound that is identified or designed as a result of any of these methods can be obtained (or synthesized) and tested for its biological activity, for example, binding to HGF β and/or Met receptor and/or modulation of HGF, HGF β and/or Met activity. Other modulators of the Met receptor include, for example, monoclonal antibodies directed against the Met receptor, peptide(s) that can modulate Met receptor function, or small-molecule compounds, such as organic and inorganic molecules, which can be identified with methods of the present disclosure.
  • 7. Machine-Readable Storage Media
  • Transformation of the structure coordinates for all or a portion of Met or the HGF β:Met complex or one of its ligand binding sites, for structurally homologous molecules as defined below, or for the structural equivalents of any of these molecules or molecular complexes as defined above, into three-dimensional graphical representations of the molecule or complex can be conveniently achieved through the use of commercially-available software.
  • The disclosure thus further provides a machine-readable storage medium including a data storage material encoded with machine-readable data wherein a machine programmed with instructions for using said data displays a graphical three-dimensional representation of any of the molecule or molecular complexes of this disclosure that have been described above. In a preferred embodiment, the machine-readable data storage medium includes a data storage material encoded with machine-readable data wherein a machine programmed with instructions for using the abovementioned data displays a graphical three-dimensional representation of a molecule or molecular complex including all or any parts of a Met, Met ligand binding site, or Met-like ligand binding site, HGF β, HGF β binding site, or HGFβ: Met complex as defined above. In another preferred embodiment, the machine-readable data storage medium includes a data storage material encoded with machine readable data wherein a machine programmed with instructions for using the data displays a graphical three-dimensional representation of a molecule or molecular complex ±a root mean square deviation from the atoms of the amino acids of not more than 0.05 Å.
  • In an alternative embodiment, the machine-readable data storage medium includes a data storage material encoded with a first set of machine readable data which includes the Fourier transform of structure coordinates, and wherein a machine programmed with instructions for using the data is combined with a second set of machine readable data including the X-ray diffraction pattern of a molecule or molecular complex to determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.
  • For example, a system for reading a data storage medium may include a computer including a central processing unit (“CPU”), a working memory which may be, for example, RAM (random access memory) or “core” memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more display devices (e.g., cathode-ray tube (“CRT”) displays, light emitting diode (“LED”) displays, liquid crystal displays (“LCDs”), electroluminescent displays, vacuum fluorescent displays, field emission displays (“FEDs”), plasma displays, projection panels, etc.), one or more user input devices (e.g., keyboards, microphones, mice, track balls, touch pads, etc.), one or more input lines, and one or more output lines, all of which are interconnected by a conventional bidirectional system bus. The system may be a stand-alone computer, or may be networked (e.g., through local area networks, wide area networks, intranets, extranets, or the internet) to other systems (e.g., computers, hosts, servers, etc.). The system may also include additional computer controlled devices such as consumer electronics and appliances.
  • Input hardware may be coupled to the computer by input lines and may be implemented in a variety of ways. Machine-readable data of this disclosure may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line. Alternatively or additionally, the input hardware may include CD-ROM drives or disk drives. In conjunction with a display terminal, a keyboard may also be used as an input device.
  • Output hardware may be coupled to the computer by output lines and may similarly be implemented by conventional devices. By way of example, the output hardware may include a display device for displaying a graphical representation of a binding site of this disclosure using a program such as QUANTA as described herein. Output hardware might also include a printer, so that hard copy output may be produced, or a disk drive, to store system output for later use.
  • In operation, a CPU coordinates the use of the various input and output devices, coordinates data accesses from mass storage devices, accesses to and from working memory, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data of this disclosure. Such programs are discussed in reference to the computational methods of drug discovery as described herein. References to components of the hardware system are included as appropriate throughout the following description of the data storage medium.
  • Machine-readable storage devices useful in the present disclosure include, but are not limited to, magnetic devices, electrical devices, optical devices, and combinations thereof. Examples of such data storage devices include, but are not limited to, hard disk devices, CD devices, digital video disk devices, floppy disk devices, removable hard disk devices, magneto-optic disk devices, magnetic tape devices, flash memory devices, bubble memory devices, holographic storage devices, and any other mass storage peripheral device. It should be understood that these storage devices include necessary hardware (e.g., drives, controllers, power supplies, etc.) as well as any necessary media (e.g., disks, flash cards, etc.) to enable the storage of data.
  • 8. Therapeutic Use
  • HGF, Met, and/or HGF β:Met complex modulator compounds obtained by methods of the invention are useful in a variety of therapeutic settings. For example, Met antagonists designed or identified using the crystal structure of an extracellular fragment of Met or HGF β:Met complex can be used to treat disorders or conditions, where inhibition or prevention of Met binding or activity is indicated.
  • Likewise, Met agonists designed or identified using the crystal structure of the HGF β:Met complex or an extracellular fragment of Met can be used to treat disorders or conditions, where induction or stimulation of Met activity is indicated.
  • An indication can be, for example, inhibition or stimulation of Met phosphorylation and the concomitant activation of a complex set of intracellular pathways that lead to cell growth, differentiation, and migration in a variety of cell types. The ability of HGF to stimulate mitogenesis, cell motility, and matrix invasion gives it and the Met receptor a central role in angiogenensis, tumorogenesis and tissue regeneration. Another indication can be, for example, in inhibition or stimulation of embryonic development. Still another indication can be, for example, in inhibition or stimulation of tissue regeneration. Another indication can be, for example, in inhibition of angiogenesis, mitogenesis and/or vasculogenesis. Expression of HGF has been associated with thyroid cancer, colon cancer, lymphoma, prostate cancer, and multiple myeloma. Yet another indication can be, for example, in inhibition or stimulation of the HGF/Met signaling pathway. Still yet another indication can be, for example, in inhibition of invasive tumor growth and metastasis.
  • Met and/or HGF β:Met complex antagonists are also useful as chemosensitizing agents, useful in combination with other chemotherapeutic drugs, in particular, drugs that induce apoptosis. Examples of other chemotherapeutic drugs that can be used in combination with chemosensitizing Met inhibitors include topoisomerase I inhibitors (e.g., camptothesin or topotecan), topoisomerase II inhibitors (e.g., daunomycin and etoposide), alkylating agents (e.g., cyclophosphamide, melphalan and BCNU), tubulin-directed agents (e.g., taxol and vinblastine), and biological agents (e.g., antibodies such as anti CD20 antibody, IDEC 8, immunotoxins, and cytokines). Examples of other chemotherapeutic drugs that can be used in combination with chemosensitizing HGF β inhibitors include topoisomerase I inhibitors (e.g., camptothecin or topotecan), topoisomerase II inhibitors (e.g., daunomycin and etoposide), alkylating agents (e.g., cyclophosphamide, melphalan and BCNU), tubulin-directed agents (e.g., taxol and vinblastine), and biological agents (e.g., antibodies such as anti CD20 antibody, IDEC 8, anti-VEGF antibody, immunotoxins, and cytokines). Other examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin I and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CBI-TMI); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gamma1I and calicheamicin omegaI1 (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, Oreg.); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE™ Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Ill.), and TAXOTERE® doxetaxel (Rhône-Poulenc Rorer, Antony, France); chloranbucil; GEMZAR® gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE® vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluorometlhylornithine (DMFO); retinoids such as retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
  • Also included in the definition of “chemotherapeutic agent” above are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and FARESTON toremifene; aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those which inhibit expression of genes in signaling pathways implicated in abherant cell proliferation, such as, for example, PKC-alpha, Ralf and H-Ras; ribozymes such as a VEGF expression inhibitor (e.g., ANGIOZYME® ribozyme) and a HER2 expression inhibitor; vaccines such as gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN™ vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; and pharmaceutically acceptable salts, acids or derivatives of any of the above.
  • 9. Other Uses
  • The HGF β chain, or variants thereof, form cocrystals with the Met receptor in accord with the methods described herein. The crystals also are useful to store and/or deliver HGF β-chain or Met receptor molecules. HGF β is useful as an inhibitor of full length HGF and can be used to identify or design other like inhibitors. HGF β:Met complex may be useful as a standards in assays including diagnostic assays. Crystals can be prepared and used to store HGF β-chain Met receptor complexes for later use.
  • A variety of methods are known to those of skill in the art for formation of crystals. In some embodiments, for crystals prepared for storage, the crystal size and structure does not have to be so uniform or homogenous as for X-ray diffraction. In other embodiments, the crystals effectively diffract x-rays to a resolution of 5 Å or better. Typically, a purified polypeptide is contacted with a precipitant in the presence of a buffer. Precipitants include salts, polymers, or organic molecules. Organic precipitants include isopropanol, ethanol, hexanediol, and 2-methyl-2,4-pentanediol. Polymeric precipitants include polyethylene glycol and polyamines. Salts used include ammonium sulfate, sodium citrate, sodium acetate, ammonium dichloride, sodium chloride and magnesium formate. Many buffers can be utilized and are known to those of skill in the art.
  • In some cases, crystals can be cross-linked to one another. Such cross-linking may enhance the stability of the crystal. Methods of cross-linking crystals are know to those of skill in the art and have been described, for example, in U.S. Pat. No. 5,849,296.
  • The crystals can be maintained in crystallization solution, they can be dried, or combined with other carriers and/or other ingredients to form compositions and formulations. In some embodiments, the crystals can be combined with a polymeric carrier for stability and sustained release. Formulations of crystals of proteins, such as enzymes, receptors, antibodies, and like molecules, or fragments thereof, can include at least one ingredient or excipient. Ingredient or expedients are known to those of skill in the art and include acidifying agents, aerosol propellants, alcohol denaturants, alkalizing agents, anti-caking agents, antifoaming agents, microbial preservatives, anti-antioxidants, buffering agents, lubricants, chelating agents, colors, desiccants, emulsifying agents, filtering aids, flavors and perfumes, humectants, ointments, plasticizers, solvents (e.g. oils or organic), sorbents, carbon dioxide sorbents, stiffening agents, suppository bases, suspending or viscosity increasing agents, sweetening agents, tablet binders, table or capsule diluents, tablet disintegrants, tablet or capsule lubricants, tonicity agent, flavored or sweetened vehicles, oleaginous vehicles, solid carrier vehicles, water repelling agent, and wetting or solubilizing agents.
  • In some embodiments, the ingredients enhance storage stability. In other embodiments, the ingredient or excipient is preferably selected from the group consisting of albumin, sucrose, trehalose, lactitol, gelatin, and hydroxyproyl-β-cyclodextran.
  • All publications, patents, and patent documents are incorporated by reference herein, as though individually incorporated by reference. The disclosure has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications can be made while remaining within the spirit and scope of the disclosure.
  • EXAMPLE 1 Protein Expression and Purification
  • For crystallization, we used a construct of the Met receptor that contained residues 25 to 567 and an additional C-terminal (His)8-tag. In addition, the cleavage site after residue Arg308, present in the Met receptor family but not in the Sema domain of the Semaphorins or plexins, was replaced with a thrombin cleavable site. This exchange (residues 304 to 308 were exchanged from KRKKR (SEQ ID NO:4) to LVPRG (SEQ ID NO:5)) was introduced since native Met expressed in insect cells was partially cleaved and not homogeneous. Mutation of the cleavage site allowed for the production of homogeneous protein that depending on treatment with thrombin was cleaved or uncleaved. The complex presented here was obtained with the unprocessed, single chain Met.
  • The HGF β-chain protein used for crystallization begins with residue Val495 (the N-terminal residue obtained after maturation of single chain HGF), and has one alteration from the natural sequence: in full length, mature HGF, the α- and β-chains are covalently tethered by a disulfide bridge putatively formed between Cys487 and Cys604 (Donate et al., 1994). In order to prevent artificial dimerization of HGF β-chains during purification and crystallization, Cys604 was replaced with serine. (SEQ ID NO:1) The complex of the HGF β-chain and the Met fragment was formed in solution, purified using size exclusion chromatography and set up for crystallization trials.
  • Materials and Methods
  • The cDNA for the full length Met receptor was kindly provided by D. Wickramasinghe. PCR was carried out on the region encoding residues 25-567 of the Met receptor. A 2-step overlapping PCR scheme was used to introduce the thrombin cleavage site (LVPRG) (SEQ ID NO:5) and remove the native sequence (KRKKR) (SEQ ID NO:4). An N-terminal primer added overlapping sequence with the C-terminus of the insect cell secretion signal present in the pAcGP67A vector (BD Biosciences). A C-terminal primer contained coding sequence for (His)8 and a NotI restriction site added directly onto the C-terminus. For placement into the pAcGP67A vector, an additional PCR was carried out on the coding region for the insect cell secretion signal, with additional overlapping sequence from the N-terminus of our Met construct. A final PCR was done to directly fuse the C-terminus of the secretion signal to the N-terminus of our Met construct. This PCR product, as well as pAcGP67A, were digested with SpeI and NotI. Insert was combined with vector at a 3:1 ratio, ligated, and transformed into XL-1 Blue cells (Stratagene).
  • Purified plasmid DNA (pAcGP67A plus Met Sema and PSI domain) was transfected into Sf9 insect cells according to the manufacturer's protocol (BD Biosciences). Viral stock was amplified 3 times before use in protein expression. For expression, IL of Hi5 insect cells growing in ESF 921 media (Protein Expression, LLC) at a density of 5×105 cells/mL were infected with 10 mL of viral stock from the 3rd amplification and incubated at 27° C. for 72 hours. Cells were then removed from the supernatant by centrifugation at 3000 g for 15 minutes. 1 mM of NiCl2, 5 mM of CaCl2, and 50 mM Tris pH 8.0 were added to the supernatant. The supernatant was then filtered through a 0.2 μm vacuum filter. Supernatant was applied to a 2 mL Ni-NTA column (Qiagen) by gravity flow, followed by 20 mL of wash buffer (50 mM Tris pH 8.0, 500 mM NaCl, 5 mM imidazole). Protein was eluted with a buffer containing 50 mM Tris 8.0, 300 mM NaCl, 250 mM imidazole. Fractions containing Met were identified by SDS-PAGE analysis and pooled, concentrated to 500 μL, and loaded onto a Superdex S-75 gel filtration column (Amersham Biosciences) equilibrated with 50 mM Tris 8.0, 500 mM NaCl. The final yield for Met (Sema and PSI domain) was approximately 0.25 mg/L of insect cell supernatant.
  • The amino acid sequence of an extracellular fragment of Met is shown in Table 6. (SEQ ID NO:3). Another embodiment of an extracellular fragment of Met comprises an amino acid sequence of SEQ ID NO:10 and is shown in FIG. 3.
  • HGF β proteins were expressed in insect cells using baculovirus secretion vector pAcGP67 (Pharmingen, San Diego, Calif.). All constructs contained a His6 tag at the carboxy terminus and were purified to homogeneity (>95% purity) by Ni NTA metal chelate and gel filtration chromatography. For wildtype HGF β, a cDNA fragment encoding the HGF β-chain from residues Val495 [c16] to Ser728 [c250] was cloned by PCR such that Val495 [c16] was inserted immediately after the secretion signal sequence. Site-directed mutagenesis was carried out using QuikChange™ (Stratagene, La Jolla, Calif.) with oligonucleotide 5′CCTAATTATGGATCCACAATTCCTG3′ (SEQ ID NO:6) to make HGF β containing a Cys604 to Ser mutation (HGF β). The cysteine was not altered in this construct to allow putative disulfide formation between Cys487 and Cys604. Wildtype HGF β (SEQ ID NO:14) refers to the native sequence and HGF β (SEQ ID NO:1) refers to the C604S mutant. Numbering is as follows: full length HGF sequence starting with MWV . . . as numbers 1-3 [chymotrypsinogen numbering is shown in the brackets]. It will be readily apparent that the numbering of amino acids in other isoforms of HGF β may be different than that of the HGF β numbering disclosed herein. The disclosure provides sequential numbering based on sequence only. In embodiments, an isoform may have structural “differences”, for example, if it carries insertion(s) or deletion(s) relative to the HGF β reference sequence. The chymotrypsinogen numbering convention may be useful for comparision to workers in the field.
  • The amino acid sequence of a HGF β is shown in Table 4 (SEQ ID NO:1) and Table 8 (SEQ ID NO:14).
  • Baculovirus vectors containing the desired inserts were transfected into Spodoptera frugiperda (Sf9) cells on plates in TNM-FH media via the Baculogold™ Expression System according to manufacturer's instructions (Pharmingen, San Diego, Calif.). After 2-4 rounds of virus amplification, 10 mL of viral stock was used to infect 1 L of High Five™ cells (Invitrogen, San Diego, Calif.) in suspension at 5×105 cells/mL in TNM-FH media. Cultures were incubated at 27° C. for 72 h before harvesting the culture media by centrifugation at 8,000×g for 15 min. Cell culture media was applied to a 4 mL Ni-NTA agarose column (Qiagen, Valencia, Calif.). After washing with 4 column volumes of 50 mM Tris.HCl, pH 8.0, 500 mM NaCl, 5 mM imidazole, HGF β proteins were eluted with 50 mM Tris HCl pH 8.0, 500 mM NaCl, 500 mM imidazole. The eluate was pooled and applied to a Superdex™-200 column (Amersham Biosciences, Piscataway, N.J.) equilibrated in 10 mM HEPES pH 7.2, 150 mM NaCl, 5 mM CaCl2. Protein peaks were collected and concentrated using a Centriprep™ YM-10 (Millipore, Bedford, Mass.). Fractions were analyzed by 12% SDS-PAGE stained with Coomassie blue.
  • Met was combined with HGF β-chain in a 1:1.5 ratio and concentrated for loading onto a Superdex S-200 gel filtration column (Amersham Biosciences) equilibrated with 10 mM Tris 8.0, 250 mM NaCl. Elution fractions were assayed with SDS-PAGE, and those containing the complex were pooled. Buffer exchange into 10 mM Tris 8.0, 125 mM NaCl was carried out, and the complex was then concentrated to 10 mg/mL for crystallization trials. Although crystals grew without deglycosylation, diffraction was enhanced after deglycosylating the Met protein. For this, Met, previously purified using Nickel chromatography as described above, was mixed with a combination of PNGase F (Roche) and Endoglycosidase A (Roche) at 1:100 enzyme:Met concentration and incubated at room temperature for 3 hours. Met was then combined with HGF β-chain, concentrated, and loaded onto a gel filtration column as described above for the non-deglcosylated material.
  • EXAMPLE 2 Crystallization, Data Collection and Refinement
  • Met/HGF β-chain crystallized at 19° C. in 4 μL hanging drops in a 1:1 ratio of protein to mother liquor, suspended over mother liquor (12-15% PEG 10,000, Tris pH 8.0). Crystals grew to approximately 100 μm×200 μm×200 μm in 3 to 7 days. For data collection, crystals were placed in a solution of mother liquor containing 25% xylitol for 30 seconds, and then flash frozen in liquid N2.
  • Data were collected at CHESS beamline A1 to 3.2 Å resolution and processed using the HKL package (Otwinowski et al., 1997). The crystals belonged to space group P2 1212 with cell parameters of a=137.1 Å, b=186.4 Å, and c=66.7 Å and contained 1 complex of Met:HGF β-chain in the asymmetric unit and thus have a solvent content of about 75%. The structure was solved by molecular replacement with the program AMoRe (Navaza 1994), with the crystal structure of HGF β-chain alone (structural coordinates available at RCS Protein Databank, Accession No: PDBIUX3) as a search model. Using data from 8 Å to 4 Å yielded a clear solution in the rotation and translation functions and the best solution was subjected to rigid body refinement in program Refmac (CCP4, 1994). Solvent flattening, which due to the high crystal solvent content led to dramatic improvements in the quality of the phases, yielded maps that were of sufficient quality to recognize the β-propeller of the Sema domain and allowed for building the Met receptor without the use of any additional models. Subsequent rounds of model building with program 0 (Jones et al., 1991) and further refinement with program Refmac resulted in the final model with an Rfree and Rcryst of 27.0% and 20.9%, respectively, for all data between 30 Å and 3.2 Å.
    TABLE 1
    Data Collection and Refinement Statistics for a 1:1 complex of
    the HGF β-chain with the Sema domain of the Met Receptor.
    Data Collection
    Resolution (Å) 50-3.2 (3.3-3.2)a
    Rsym b 0.058 (0.586)a
    Number of observations 98,834
    Unique reflections 28,312
    Completeness (%) 99.4 (100.0)a
    Refinement
    Resolution (Å) 30-3.2
    Number of reflections 26830
    Final Rc, Rfree (F > 0) 0.209, 0.270
    Number of residues 727
    Number of solvent 0
    molecules
    Number of non-H 5728
    atoms
    Rmsd bonds (Å) 0.013
    Rmsd angles (°) 1.6
    Space Group P2 1212

    aNumbers in parentheses refer to the highest resolution shell.

    bRsym = Σ|I − <I>|/ΣI. <I> is the average intensity of symmetry related observations of a unique reflection.

    cR = Σ|F0 − Fc|/ΣFo. Rfree is calculated as R, but for 5% of the reflections excluded from all refinement.

    Results
  • The crystal structure of HGFβ: Met was analyzed to identify amino acid positions involved in binding and/or activation of the Met receptor by HGF β.
  • Structure of HGF β
  • The α-chain of HGF shares close to 40% sequence identity with the protease domain of plasmin, a trypsin-like serine protease. Structurally, these enzymes can be described as globular proteins composed of two antiparallel β-barrel domains (FIG. 1A). Both of the β-barrels share the same general topology and are formed by six antiparallel β-strands, with the N-terminal four strands folding into a Greek key motif, followed by two strands that form a hairpin. HGF, like serine proteases, is expressed as a zymogen-like precursor. For serine proteases, structural studies have shown that insertion of the N-terminus resulting from the maturation process leads to allosteric rearrangments within the binding site for the protease substrate (Perona and Craig, 1995; Hedstrom 2002). In serine proteases, the newly formed N-terminus forms a salt bridge with a nearby aspartate, which leads to the formation of the oxyanion hole via the backbone NH's of two neighboring residues and the creation of a part of the S1 pocket (FIG. 1). The ‘activated’ form of the HGF β-chain, as seen in the structure presented here, is very similar to the mature form of serine proteases: superposition with plasmin (pdb-code 1 BML) yields an rmsd of about 1.3 Å for 212 Cα pairs. Superposition between HGF β-chain and plasminogen (pdb-code 1QRZ) reveal differences in their ‘activation domain’ (Freer et al., 1970) and only 198 Cα pairs can be aligned well.
  • As with serine proteases, the N-terminal amine of Val495 is inserted into the core of the C-terminal β-barrel and forms a salt bridge with the carboxyl group of Asp672, which corresponds to Asp 194 in plasmin, presumably leading to similar rearrangements, which have been characterized in serine proteases. The region in HGF corresponding to this so-called ‘activation domain’, i.e., the loops that undergo conformational changes in serine proteases (Freer et al., 1970; Huber and Bode, 1978), forms part of the binding surface with Met, discussed below. Therefore, proper display of the residues that interact with Met requires maturation of HGF.
  • After maturation, the α- and β-chains of HGF remain connected via a disulfide bond. Based on alignments of the kringle domains K1 to K4 of HGF and macrophage stimulating protein (MSP), the two cysteine residues responsible for the formation of this disulfide bond were identified as Cys487 on the α-chain of HGF and Cys604 on the β-chain (Donate et al., 1994). The crystal structure, however, raises the possibility of an alternative cysteine residue as the anchor for the HGF α-chain. The HGF β-chain has two (2) cysteine residues that do not have partners for the formation of disulfide bridges within the β-chain. Neither is conserved in plasmin or MSP and both are located on the periphery of the protein and are at least partially solvent exposed; either could be potential partners for the formation of a disulfide bond with the α-chain while the other remains unpaired. The superposition of the plasmin structure that contains part of the α-chain (FIG. 1B), and the HGF β-chain structure presented here, shows that the distance between the C-terminus of the plasmin β-chain and Cys604 of the HGF β-chain is 27 Å and thus only slightly shorter than the respective distance between the plasmin α-chain C-terminus and Cys561 (33 Å) (FIG. 1B). In addition, the sequence alignment between plasmin, MSP, and HGF (FIG. 1C) shows that the α-chain cysteine forming the disulfide bond in plasmin and MSP is 13 and 15 residues away from the cleavage site in those proteins respectively, but there are only 7 residues in HGF to span the distance from Cys487 to the cleavage site. Therefore, due to distance requirements, the C-terminus of the HGF α-chain cannot follow the same path on the surface of the β-chain as it does in plasmin or MSP. Continuing work seeks to clarify which of the two free cysteine residues in HGF β forms the disulfide bond with the α-chain of HGF.
  • Met Stucture
  • The Sema domain of Met forms 7-bladed β-propeller with a diameter of a little more than 50 Å. The overall shape of the domain resembles a funnel with an inner diameter of about 25 Å between main chain atoms at the wide portion and 10 Å in the narrowest part (FIG. 2). Generally, in β-propellers, each of the blades is formed by 4 antiparallel β-strands with strand A in the center of the propeller followed by strands B and C, and with strand D forming the outermost strand of the blade. The blades are arranged in a circular fashion, with the N-terminal strand forming strand D of the last blade, thus closing the propeller and stabilizing the overall structure (FIG. 2A). The AB and CD loops of each blade of the Met Sema domain form the relatively flat ‘bottom’ face, and the generally longer BC and DA loops form the ‘top’ face of the propeller (FIG. 2B). In Met, the position of the 6th and the 7th blade are off-center, with blade 7 being closer to the center of the barrel and blade 6 more distant. This gives the domain an overall oval shape.
  • The β-propeller of the Met Sema domain is structurally most closely related to the recently reported crystal structures of Sema4D (Love et al., 2003) and Sema3A (Antipenkov et al., 2003). With the exception of the D-strands in blades 3 and 5, the core of Sema4D and the Met Sema domain align well (FIGS. 3 and 4) and the superposition of residues 40 to 519 with the Sema domain of Sema4D results in an rmsd of 1.6 Å for 303 atom pairs (FIG. 4). The residues that form strand D5 in Sema4A are hydrogen bonding to strand D4 in Met, thus the 4th blade of Met contains an extra strand while blade 5 is missing its strand D. While the core of both proteins align well, the loops contain a number of insertions or deletions and generally adopt very different conformations. For example, the Sema domains of Met and of Sema4D both have an insert of about 20 residues following strand D1. In Met, these residues form a short antiparallel two-stranded β-sheet, while Sema4D has an α-helix (FIGS. 3 and 4). Of the 24 loops that connect the various strands, only 3 have no insertions or deletions when comparing Met with Sema4D or Sema3A (FIG. 3). Interestingly, both the Semaphorins and the Met receptor have their largest insertion between strands C5 and A6; however, these inserts are not related in structure or sequence to each other. In Sema3A, this insert is involved in dimer formation and has been shown to be important for neuropilin binding (Antipenko et al., 2003). In the Met Sema domain, some of the residues within the insert are disordered and not included in our model (see FIG. 2). The function of the insert in Met is not known but its proximity to the HGF β-chain binding site, discussed below, suggests that it might be involved in binding to the α-chain of HGF.
  • The loop containing the cleavage site between the α- and β-chain of Met connects strand D4 to A5; it is disordered in the electron density. After processing of native Met, the α-chain, which forms the N-terminal 4 blades of the Sema domain, and the β-chain remain connected via at least 2 disulfide bonds. One disulfide bond is formed between residues Cys298 on strand D4 and Cys363 on C5, and the second is formed between Cys282 (D3) and Cys409. This last cysteine is positioned in a disordered region of the insert after blade 4. The electron density does not allow tracing of the main chain in this area but there is sufficient density in the area of the Sγ position to suggest that the disulfide bond is at least partially formed. With the exception of the N-terminal Cys26, which is disordered in the presently disclosed crystal structure and has no potential partner in the construct that was used for crystallization, all cysteine residues are engaged in disulfide bonds. It is unclear if Cys26 remains unpaired in the context of full length Met receptor or if it forms a disulfide bond with another cysteine that resides in the IPT domains. Besides the two disulfide bonds that covalently connect the α- and β-chain of the Sema domain, the domain is stabilized by 5 additional disulfide bridges formed between Cys95-Cys101, Cys98-Cys159, Cys133-Cys141, Cys172-Cys175, and Cys385-Cys397 (FIG. 3).
  • The surface of the Met Sema domain appears to be mostly negatively charged, especially in the center of the bottom face of the Sema domain (FIG. 2C). This surface, which is formed by a 20 residue insertion after strand D in the first blade and includes the rather irregular area of strand D in the third blade, shows clusters of acidic residues. Monomeric, full length Met was shown to bind to heparin (Gherardi et al., 2003). In presently disclosed structure there are no dominant positively charged patches within the Met Sema domain; however, two arginines are located in the vicinity of the disordered furin-cleavage site. Together with the 6 positively charged residues that reside in this loop, these arginines could constitute a potential heparin binding site.
  • The last strand of the Sema domain (C7) is followed immediately by the PSI domain. This domain, with dimensions of about 20×15 Å, contains four (4) disulfide bridges and is not an integral part of the Sema domain but rather an independent structural module. The small core of the domain is formed by a helix and a short two-stranded antiparallel β-sheet that are connected via a disulfide bond and sandwich the side-chain of Trp540. Superposition of this domain with the PSI domain of Sema4D results in an rmsd of 1.6 Å for 41 Ca pairs. The relative orientation between the Sema and the PSI domains in the Met and the Sema4D structures, however, is different and requires a rotation of about 40° for superposition.
  • The interface Between the HGF β-Chain and Met
  • The HGF β-chain binds to the Sema domain of Met at the bottom face of the propeller, and forms contacts with residues that protrude from blades 2 and 3 (FIGS. 2 and 3). This is unlike other β-propeller containing receptors, such as the integrins, which bind their ligands utilizing the top face of the propeller (Xiong et al., 2002). Other Sema domain containing proteins, such as Sema3A and Sema4D, are also postulated to bind ligands using the top face (Antipenko et al., 2003; Love et al., 2003).
  • The interface between HGF β-chain and Met buries a total of 1770 Å2 of solvent accessible surface and is dominated by polar or charge-charge interactions. Of the 20 HGF residues that have more that 10 Å2 buried in the interface, 6 are positively charged, 3 carry negative charges, and 3 are aromatic. Even more dramatic, of the 18 residues contributing more than 10 Å2 of buried surface to the interface on the Met side, 6 carry negative charges, 4 are positively charged and 3 are aromatic. The combined buried surface of the hydrophobic residues Ala, Val, Leu, Ile, Met and Phe amounts to a mere 145 Å2, while the charged residues Asp, Glu, Lys, Arg, and His are responsible for more than 1,000 Å2 of buried surface. The resolution of the presently disclosed structure does not permit a detailed discussion of hydrogen bonds; however, the position of the side chains suggest the presence of at least 7 charged interactions between Met and the HGF β-chain. (See Table 3)
  • On HGF, the residues analogous to those responsible for substrate binding and catalysis in the related serine proteases form most of the interactions with Met. Serine proteases bind linear peptides to their recognition site and form hydrogen bonds to main chain atoms to position a specific peptide bond for proteolytic cleavage. In contrast, the HGF β-chain binds to a series of protruding polar side chains from Met that originate mainly from 3 separate loops (FIG. 5B). The first of these loops includes residues 124-128 and connects strands A2 and B2 of Met. This loop contains two tyrosines that are in the core of the binding interface and pack against Arg695 of HGF. The second loop of Met that contacts HGF β-chain contains residues Asp190, Arg191, and Phe192 and connects A3 and B3. Asp190 of Met forms charged interactions with Arg533 of HGF. The side chain of Arg191 of Met packs against Val692 and Pro693 of HGF with its hydrophobic portion and in the presently disclosed model is in hydrogen bonding distance to the side chains of Glu656 and Asp578 with its guanidinium group. This Asp578 corresponds to aspartic acid [c102] in the catalytic triad of the related serine proteases. Furthermore, the backbone of this loop forms hydrophilic interactions with Gln534, the residue homologous to the histidine [c57] of the protease catalytic triad.
  • The third segment contributing to the interface also includes strand D in the third blade of the propeller, an area that deviates from the classical ‘propeller fold’. Strand D is interrupted and has a short helical insert within its strand. This unusual conformation presents a number of residues towards the surface of the HGF β-chain. The most prominent interaction formed by this loop involves Glu221 which extends its side chain towards what would be the S1 binding site in serine proteases (FIGS. 5 and 6). The carboxylate of Glu221 forms an extensive network of polar interactions with the side chain of Tyr673 (corresponding to the serine [c195] of the catalytic triad in proteases), as well as the backbone amides of Gly694 and Gly696 (FIG. 6); however, unlike in serine proteases, where the S1 pocket is filled by the specificity determining P1 residue, it does not penetrate deeply into the S1 pocket. As a result of the exchange of Ser to Tyr in position 673 [c195], the entrance of the S8 pocket is much smaller than in the related proteases. Thus, Glu221 projects towards the entrance of the S1 pocket from a different angle when compared to a complex between trypsin and bovine pancreatic trypsin inhibitor (BPTI) and does not fill the pocket (FIG. 6). Therefore, a large cavity, presumably filled with a number of water molecules, remains in HGF β-chain.
  • Comparison of HGF β-Chain Unbound and Bound to Met
  • The structures of the HGF β-chain bound to Met and in its unbound state, as disclosed in application U.S. Ser. No. 60/569,301 filed May 6, 2004, which application is hereby incorporated by reference, are very similar and superimpose with an rmsd of less than 0.8 Å for 218 Cα-pairs. The only significant differences between the two structures involve residues that are close to the Met binding interface. The backbone of residues 645 to 651 is disordered in unliganded HGF β but well defined in the structure of the complex, where it adopts a conformation that is commonly observed in serine proteases (FIG. 1). The side chains of the basic residues Arg647 and Lys649 are not well defined in the electron density but project towards the Met binding interface and, in presently disclosed model, participate in the formation of the complex. Arg695 also undergoes a change in conformation upon Met binding. This residue, located in the center of the receptor binding interface, packs against Tyr125 of Met, and its backbone forms part of the S1 pocket. In the structure of unliganded HGF β, the conformation of the backbone in this area is different, and the side chain of Arg695 projects toward the disordered region of the structure. It is conceivable that the binding event alters the position of Arg695, which in turn allows residues 645 to 651 to adopt a more stable conformation.
  • Models for Receptor Activation
  • In embodiments, a model for HGF mediated Met receptor activation is provided. Little is known about the signaling complex itself, and details of this interaction, such as the stoichiometry between ligand and receptor, have been elusive.
  • The presently disclosed structure shows unambiguously how Met binds to the β-chain of HGF. However, the exact role this interaction might play in Met activation remains uncertain. Two general models of how HGF can lead to Met dimerization have been suggested (Miller and Leonard, 1998). One of these models, follows the growth hormone paradigm (de Vos et al, 1994) where one HGF molecule binds to two different Met receptors with different affinities to form the 2:1 signaling complex. The other model suggests that two 1:1 complexes of Met and HGF are dimerized either via heparin or an alternative mechanism to form stable 2:2 complexes.
  • In the present disclosure, complexes of HGF β-chain and the Sema domain of Met were purified from the individual components via size exclusion chromatography. This clearly showed that HGF β and the N-terminal 564 residues of Met form a stable 1:1 complex. If Met activation via HGF indeed entails a 2:1 complex, the present disclosure characterizes the low affinity binding interaction between HGF and Met. The high affinity binding interaction involves the α-chain of HGF, in particular the NK1 domains (Lokker et al., 1992), and a previously uncharacterized binding site on Met. This model is in good agreement with the notion that single chain HGF is able to bind Met via its high affinity binding site which is contained in its N-terminal portion, yet unable to signal. For signaling, maturation of HGF is required. This leads to rearrangements in the activation domain of HGF β, the formation of the low affinity binding site and possibly allows for a reorientation of the β-chain of HGF relative to its α-chain. This model could also be valid for the closely related Ron/MSP system. Like HGF, single chain MSP can bind to its receptor Ron, but is only able to signal in its matured 2-chain form. Interestingly and in contrast to HGF, the high affinity binding site in MSP is contained within its β-chain while the low affinity binding site is harbored by its α-chain (Danilkovitch et al., 1999).
  • Recent studies employing analytical ultracentrifugation and light scattering experiments indicate that mature HGF and the Met ectodomain form 1:1 complexes that can be stabilized with heparin to form a 1:1:1 complex (Gherardi et al., 2003). However, in those experiments no higher order complexes or aggregates could be detected.
  • The present disclosure shows that the low affinity interaction between HGF β and Met is sufficient for 1:1 complex formation. The absence of 2:1 complexes in Gherardi et al, (2003), suggest two possible scenarios. Firstly, it is possible that the high and low affinity binding sites on the receptor overlap. In this case, at a 1:1 molar ratio of ligand and receptor, all high affinity binding sites on the receptor are occupied and none of the low affinity binding sites available thus preventing the formation of 2:1 complexes. An alternative explanation for the absence of 2:1 complexes is that α- and β-chain of a single HGF molecule bind to the same Met receptor and form stable 1:1 complexes. These 1:1 complexes only associate very weakly and require the juxtamembrane or intracellular portion of the receptors or need additional molecules or co-receptors for the assembly of 2:2 or higher order signaling complexes.
  • Recent crystal structures of dimeric Sema4D and Sema3A have demonstrated how these Sema domains dimerize. Antipenko A, Himanen J P, van Leyen K, Nardi-Dei V, Lesniak J, Barton W A, Rajashankar Kr, Lu M, Hoemme C, Puschel A W, Nikolov D B (2003) Structure of the Semaphorin-3A receptor binding module. Neuron 39:589-598 and Love C A, Harlos K, Mavaddat N, Davis S J, Stuart D I, Jones E Y, Esnouf R M (2003). The ligand-binding face of the Semaphorins revealed by the high-resolution crystal structure of Sema4D. Nat. Struct. Biol. 10:843-848.
  • In Sema4D, dimerization of the Sema domains is mediated by four loops that protrude from the core of the propeller. Three of these loops connect strands B4-C4, D4-A5, and B5-C5, and the fourth is part of the insert that follows the 5th blade of the propeller (FIG. 3). In the present crystal structure the interface observed in the Semaphorin structures is not present. The superposition of the complex described here and the dimer of Sema4D shows that none of the regions relevant for dimerization in Sema4D are conserved in the Met structure (FIG. 4B). Thus, it is unlikely that the Met dimerization follows the Semaphorin paradigm. However, since the loop connecting D4-A5 contains the furin cleavage site that was altered in the present construct, the possibility that the dimer seen in Sema4D is similar in the Met receptor system cannot be excluded. A number of characteristics of Met speak against this model. As discussed above, cleavage of Met at the furin cleavage site is not required for signaling. Therefore, it seems unlikely that this loop is involved in crucial interactions in the signaling complex. Furthermore, if Met were to dimerize similarly to the Semaphorins, the β-chains of HGF would be more than 70 Å apart from each other and lie on opposite sides of the Sema domain. Thus, they could not participate in the stabilization of a 2:2 complex, yet it is known that maturation of HGF and the presence of the HGF β-chain are required for the formation of a signaling complex.
  • A different model for a 2:2 signaling complex is suggested by the crystal packing of the 1:1 complexes in the disclosed crystal structure where two HGF β-chains form a symmetric interface with about 1250 Å2 of total buried surface (FIG. 7). This interface is formed via interactions from 3 loops: the strand immediately following the N-terminus, residues 619-630, and residues 662-665. These 3 loops are part of the so-called ‘activation domain’ in the related serine proteases and rearrange upon zymogen maturation (Huber and Bode, 1978). As the surface engaged in this interface can only be present if full length HGF is properly cleaved and in its matured form, this dimer can only form after maturation which explains the requirement of HGF maturation for proper signaling. In this model, the C-termini of the Met receptor Sema domains are separated by about 110 Å, a gap that could be easily spanned by the PSI and the 4 IPT domains of the two receptors that connect the Sema domains to the transmembrane helix. Interestingly, while HGF β-chain/β-chain interactions are clearly weak, no oligomers were detected during size exclusion chromatography of the complex and the HGF β-chain is monomeric in solution (data not shown), the same interface is also present in crystals containing only the HGF β-chain and that were derived under different crystallization conditions, see application U.S. Ser. No. 60/569,301 filed May 6, 2004.
  • Based on these observations we propose a model in which the α-chain of HGF provides the initial binding event for HGF to Met (FIG. 8). The large, negatively charged patches in the center of the ‘bottom’ of the Sema domain propeller may represent a potential binding site for the HGF α-chain, allowing for interaction with the positively charged surface region of the NK1 domain (Lokker et al., 1992, Ultsch et al., 1998). Before cleavage of single-chain HGF, the protease-like domain of HGF would be unavailable for binding to Met. Once cleavage occurs, the N-terminus of the newly formed β-chain inserts into the protein and leads to rearrangements in the ‘activation domain’ creating the Met binding site on HGF β-chain. Now the HGF β-chain can bind to Met, which positions the α-chain dimerization surface for contact with a neighboring HGF/Met complex. The presence of heparin sulfate proteoglycans may serve to strengthen these interactions.
  • The 2:2 model is supported by the stoichiometry studies mentioned above which show no dimerization of complexes in solution (Gherardi et al., 2003), indicating that the 2:2 complex formation must be very weak. Also, the fact that the α-chain alone (NK4) is not able to mediate dimerization, but instead acts as an antagonist in vivo (Date et al., 1997), further highlights the potential role for the HGF β-chain in dimerization. The disclosed structure of Met lacks the IPT domains, and their role in the signaling of the Met/HGF complex is still unclear. A crystal structure of the full length Met in complex with full length, activated HGF could further resolve these issues.
    TABLE 2
    Atomic Coordinates of Hepatocyte Growth Factor Beta Chain with Met Receptor
    Amino Acid Temp
    Atom Number Residue X Y Z Occ. Factor Atom Type
    ATOM 1 N VAL A 495 3.648 8.257 25.688 1.00 34.05 A N
    ATOM 2 CA VAL A 495 2.510 8.343 24.730 1.00 31.80 A C
    ATOM 3 CB VAL A 495 2.999 8.054 23.335 1.00 34.93 A C
    ATOM 4 CG1 VAL A 495 1.840 7.978 22.370 1.00 33.34 A C
    ATOM 5 CG2 VAL A 495 4.062 9.062 22.921 1.00 39.47 A C
    ATOM 6 C VAL A 495 1.486 7.274 25.046 1.00 36.19 A C
    ATOM 7 O VAL A 495 1.814 6.071 25.187 1.00 35.83 A O
    ATOM 8 N VAL A 496 0.231 7.684 25.129 1.00 39.53 A N
    ATOM 9 CA VAL A 496 −0.796 6.708 25.480 1.00 41.32 A C
    ATOM 10 CB VAL A 496 −1.903 7.308 26.306 1.00 39.20 A C
    ATOM 11 CG1 VAL A 496 −3.011 6.306 26.467 1.00 36.02 A C
    ATOM 12 CG2 VAL A 496 −1.334 7.729 27.656 1.00 40.39 A C
    ATOM 13 C VAL A 496 −1.329 5.988 24.255 1.00 41.88 A C
    ATOM 14 O VAL A 496 −1.609 6.606 23.213 1.00 43.50 A O
    ATOM 15 N ASN A 497 −1.427 4.670 24.399 1.00 35.06 A N
    ATOM 16 CA ASN A 497 −1.803 3.780 23.313 1.00 31.56 A C
    ATOM 17 CB ASN A 497 −3.300 3.842 23.067 1.00 25.35 A C
    ATOM 18 CG ASN A 497 −4.046 3.020 24.063 1.00 34.07 A C
    ATOM 19 OD1 ASN A 497 −3.513 2.045 24.585 1.00 39.84 A O
    ATOM 20 ND2 ASN A 497 −5.271 3.395 24.356 1.00 41.50 A N
    ATOM 21 C ASN A 497 −0.960 3.807 22.021 1.00 33.76 A C
    ATOM 22 O ASN A 497 −1.488 3.849 20.916 1.00 37.21 A O
    ATOM 23 N GLY A 498 0.362 3.773 22.177 1.00 34.65 A N
    ATOM 24 CA GLY A 498 1.265 3.585 21.052 1.00 32.53 A C
    ATOM 25 C GLY A 498 2.206 2.425 21.294 1.00 32.73 A C
    ATOM 26 O GLY A 498 2.168 1.802 22.361 1.00 38.63 A O
    ATOM 27 N ILE A 499 3.058 2.128 20.318 1.00 30.60 A N
    ATOM 28 CA ILE A 499 3.983 0.994 20.458 1.00 28.08 A C
    ATOM 29 CB ILE A 499 3.766 −0.081 19.357 1.00 26.10 A C
    ATOM 30 CG1 ILE A 499 4.267 0.409 18.011 1.00 30.80 A C
    ATOM 31 CD1 ILE A 499 3.730 −0.420 16.858 1.00 41.02 A C
    ATOM 32 CG2 ILE A 499 2.318 −0.445 19.244 1.00 24.14 A C
    ATOM 33 C ILE A 499 5.452 1.407 20.532 1.00 26.32 A C
    ATOM 34 O ILE A 499 5.821 2.539 20.200 1.00 29.62 A O
    ATOM 35 N PRO A 500 6.286 0.494 21.002 1.00 22.97 A N
    ATOM 36 CA PRO A 500 7.734 0.707 20.994 1.00 25.27 A C
    ATOM 37 CB PRO A 500 8.269 −0.630 21.510 1.00 28.37 A C
    ATOM 38 CG PRO A 500 7.119 −1.233 22.318 1.00 23.04 A C
    ATOM 39 CD PRO A 500 5.906 −0.804 21.591 1.00 20.18 A C
    ATOM 40 C PRO A 500 8.229 0.950 19.570 1.00 29.77 A C
    ATOM 41 O PRO A 500 7.752 0.311 18.614 1.00 30.70 A O
    ATOM 42 N THR A 501 9.166 1.877 19.409 1.00 32.11 A N
    ATOM 43 CA THR A 501 9.764 2.076 18.087 1.00 32.08 A C
    ATOM 44 CB THR A 501 10.433 3.459 17.931 1.00 30.15 A C
    ATOM 45 OG1 THR A 501 11.565 3.581 18.811 1.00 26.33 A O
    ATOM 46 CG2 THR A 501 9.475 4.579 18.353 1.00 29.78 A C
    ATOM 47 C THR A 501 10.770 0.977 17.841 1.00 36.15 A C
    ATOM 48 O THR A 501 11.510 0.597 18.752 1.00 36.54 A O
    ATOM 49 N ARG A 502 10.788 0.467 16.611 1.00 40.43 A N
    ATOM 50 CA ARG A 502 11.698 −0.612 16.235 1.00 36.95 A C
    ATOM 51 CB ARG A 502 11.661 −0.825 14.734 1.00 32.79 A C
    ATOM 52 CG ARG A 502 11.170 −2.173 14.365 1.00 39.24 A C
    ATOM 53 CD ARG A 502 10.928 −2.361 12.889 1.00 51.53 A C
    ATOM 54 NE ARG A 502 9.667 −1.765 12.471 1.00 59.18 A N
    ATOM 55 CZ ARG A 502 9.564 −0.590 11.871 1.00 65.00 A C
    ATOM 56 NH1 ARG A 502 10.659 0.119 11.596 1.00 67.56 A N
    ATOM 57 NH2 ARG A 502 8.366 −0.127 11.529 1.00 68.74 A N
    ATOM 58 C ARG A 502 13.127 −0.356 16.708 1.00 41.11 A C
    ATOM 59 O ARG A 502 13.750 −1.205 17.321 1.00 46.19 A O
    ATOM 60 N THR A 503 13.630 0.838 16.449 1.00 45.57 A N
    ATOM 61 CA THR A 503 14.999 1.186 16.776 1.00 49.27 A C
    ATOM 62 CB THR A 503 15.864 1.002 15.524 1.00 56.77 A C
    ATOM 63 OG1 THR A 503 17.186 1.495 15.774 1.00 62.39 A O
    ATOM 64 CG2 THR A 503 15.321 1.860 14.324 1.00 56.70 A C
    ATOM 65 C THR A 503 14.952 2.638 17.208 1.00 48.38 A C
    ATOM 66 O THR A 503 13.856 3.193 17.333 1.00 51.69 A O
    ATOM 67 N ASN A 504 16.091 3.286 17.427 1.00 43.12 A N
    ATOM 68 CA ASN A 504 15.971 4.699 17.763 1.00 45.81 A C
    ATOM 69 CB ASN A 504 17.002 5.205 18.793 1.00 51.99 A C
    ATOM 70 CG ASN A 504 18.415 5.244 18.278 1.00 52.58 A C
    ATOM 71 OD1 ASN A 504 19.003 6.329 18.154 1.00 53.21 A O
    ATOM 72 ND2 ASN A 504 19.003 4.069 18.055 1.00 51.18 A N
    ATOM 73 C ASN A 504 15.719 5.618 16.573 1.00 40.80 A C
    ATOM 74 O ASN A 504 15.688 5.153 15.447 1.00 38.18 A O
    ATOM 75 N ILE A 505 15.469 6.899 16.847 1.00 41.30 A N
    ATOM 76 CA ILE A 505 15.003 7.857 15.840 1.00 39.57 A C
    ATOM 77 CB ILE A 505 13.530 8.190 16.087 1.00 35.88 A C
    ATOM 78 CG1 ILE A 505 12.662 6.955 15.901 1.00 30.11 A C
    ATOM 79 CD1 ILE A 505 11.804 6.992 14.674 1.00 31.81 A C
    ATOM 80 CG2 ILE A 505 13.099 9.344 15.213 1.00 36.92 A C
    ATOM 81 C ILE A 505 15.840 9.139 15.865 1.00 43.61 A C
    ATOM 82 O ILE A 505 16.022 9.761 16.915 1.00 54.35 A O
    ATOM 83 N GLY A 506 16.315 9.549 14.700 1.00 42.54 A N
    ATOM 84 CA GLY A 506 17.426 10.484 14.611 1.00 43.52 A C
    ATOM 85 C GLY A 506 17.219 11.885 15.135 1.00 39.59 A C
    ATOM 86 O GLY A 506 18.144 12.485 15.658 1.00 38.26 A O
    ATOM 87 N TRP A 507 16.004 12.393 14.992 1.00 39.65 A N
    ATOM 88 CA TRP A 507 15.683 13.773 15.324 1.00 43.96 A C
    ATOM 89 CB TRP A 507 14.541 14.257 14.448 1.00 46.87 A C
    ATOM 90 CG TRP A 507 13.981 13.179 13.606 1.00 50.10 A C
    ATOM 91 CD1 TRP A 507 14.613 12.518 12.578 1.00 56.98 A C
    ATOM 92 NE1 TRP A 507 13.784 11.566 12.031 1.00 52.84 A N
    ATOM 93 CE2 TRP A 507 12.593 11.603 12.691 1.00 47.24 A C
    ATOM 94 CD2 TRP A 507 12.694 12.613 13.703 1.00 46.13 A C
    ATOM 95 CE3 TRP A 507 11.602 12.850 14.525 1.00 44.57 A C
    ATOM 96 CZ3 TRP A 507 10.465 12.090 14.329 1.00 53.59 A C
    ATOM 97 CH2 TRP A 507 10.401 11.087 13.315 1.00 52.29 A C
    ATOM 98 CZ2 TRP A 507 11.459 10.842 12.490 1.00 46.18 A C
    ATOM 99 C TRP A 507 15.247 13.868 16.763 1.00 47.81 A C
    ATOM 100 O TRP A 507 15.144 14.975 17.322 1.00 49.41 A O
    ATOM 101 N MET A 508 14.978 12.706 17.356 1.00 43.74 A N
    ATOM 102 CA MET A 508 14.458 12.667 18.700 1.00 42.90 A C
    ATOM 103 CB MET A 508 13.918 11.277 19.029 1.00 45.76 A C
    ATOM 104 CG MET A 508 12.426 11.074 18.763 1.00 46.01 A C
    ATOM 105 SD MET A 508 11.392 12.550 18.899 1.00 46.79 A S
    ATOM 106 CE MET A 508 10.964 12.526 20.590 1.00 46.16 A C
    ATOM 107 C MET A 508 15.517 13.118 19.703 1.00 43.48 A C
    ATOM 108 O MET A 508 16.665 12.640 19.687 1.00 45.57 A O
    ATOM 109 N VAL A 509 15.101 14.062 20.546 1.00 39.27 A N
    ATOM 110 CA VAL A 509 15.898 14.649 21.612 1.00 35.93 A C
    ATOM 111 CB VAL A 509 16.175 16.141 21.318 1.00 34.18 A C
    ATOM 112 CG1 VAL A 509 16.950 16.819 22.451 1.00 30.42 A C
    ATOM 113 CG2 VAL A 509 16.885 16.315 19.968 1.00 35.44 A C
    ATOM 114 C VAL A 509 15.097 14.554 22.915 1.00 41.47 A C
    ATOM 115 O VAL A 509 13.904 14.930 22.976 1.00 40.48 A O
    ATOM 116 N SER A 510 15.743 14.049 23.960 1.00 41.97 A N
    ATOM 117 CA SER A 510 15.151 14.100 25.290 1.00 40.20 A C
    ATOM 118 CB SER A 510 15.345 12.786 26.045 1.00 40.31 A C
    ATOM 119 OG SER A 510 15.428 12.979 27.448 1.00 41.82 A O
    ATOM 120 C SER A 510 15.799 15.267 26.009 1.00 40.83 A C
    ATOM 121 O SER A 510 17.030 15.344 26.089 1.00 37.61 A O
    ATOM 122 N LEU A 511 14.950 16.195 26.466 1.00 42.88 A N
    ATOM 123 CA LEU A 511 15.348 17.347 27.263 1.00 40.77 A C
    ATOM 124 CB LEU A 511 14.337 18.478 27.124 1.00 38.22 A C
    ATOM 125 CG LEU A 511 14.830 19.924 27.325 1.00 41.51 A C
    ATOM 126 CD1 LEU A 511 14.024 20.711 28.358 1.00 39.28 A C
    ATOM 127 CD2 LEU A 511 16.300 19.998 27.665 1.00 43.86 A C
    ATOM 128 C LEU A 511 15.325 16.888 28.686 1.00 43.00 A C
    ATOM 129 O LEU A 511 14.362 16.246 29.100 1.00 42.35 A O
    ATOM 130 N ARG A 512 16.376 17.208 29.435 1.00 43.58 A N
    ATOM 131 CA ARG A 512 16.405 16.838 30.838 1.00 48.38 A C
    ATOM 132 CB ARG A 512 17.401 15.722 31.112 1.00 53.42 A C
    ATOM 133 CG ARG A 512 18.088 15.190 29.906 1.00 61.05 A C
    ATOM 134 CD ARG A 512 17.820 13.739 29.651 1.00 68.73 A C
    ATOM 135 NE ARG A 512 18.355 12.882 30.700 1.00 73.03 A N
    ATOM 136 CZ ARG A 512 17.944 11.640 30.889 1.00 78.60 A C
    ATOM 137 NH1 ARG A 512 18.477 10.916 31.875 1.00 82.59 A N
    ATOM 138 NH2 ARG A 512 16.990 11.128 30.092 1.00 73.30 A N
    ATOM 139 C ARG A 512 16.676 17.990 31.769 1.00 50.34 A C
    ATOM 140 O ARG A 512 17.745 18.598 31.723 1.00 51.89 A O
    ATOM 141 N TYR A 513 15.683 18.266 32.613 1.00 50.28 A N
    ATOM 142 CA TYR A 513 15.767 19.236 33.692 1.00 51.88 A C
    ATOM 143 CB TYR A 513 14.419 19.913 33.875 1.00 51.30 A C
    ATOM 144 CG TYR A 513 14.306 20.769 35.110 1.00 57.87 A C
    ATOM 145 CD1 TYR A 513 14.988 21.981 35.210 1.00 62.28 A C
    ATOM 146 CE1 TYR A 513 14.875 22.779 36.339 1.00 65.67 A C
    ATOM 147 CZ TYR A 513 14.064 22.369 37.383 1.00 70.03 A C
    ATOM 148 OH TYR A 513 13.945 23.147 38.514 1.00 75.63 A O
    ATOM 149 CE2 TYR A 513 13.376 21.170 37.304 1.00 67.53 A C
    ATOM 150 CD2 TYR A 513 13.502 20.380 36.168 1.00 61.73 A C
    ATOM 151 C TYR A 513 16.155 18.512 34.968 1.00 55.13 A C
    ATOM 152 O TYR A 513 15.646 17.428 35.241 1.00 58.26 A O
    ATOM 153 N ARG A 514 17.056 19.112 35.745 1.00 56.46 A N
    ATOM 154 CA ARG A 514 17.542 18.520 36.991 1.00 55.86 A C
    ATOM 155 CB ARG A 514 16.650 18.929 38.173 1.00 57.14 A C
    ATOM 156 CG ARG A 514 16.811 20.378 38.602 1.00 64.13 A C
    ATOM 157 CD ARG A 514 16.260 20.721 39.982 1.00 68.04 A C
    ATOM 158 NE ARG A 514 17.340 21.090 40.889 1.00 72.92 A N
    ATOM 159 CZ ARG A 514 17.856 20.278 41.810 1.00 78.47 A C
    ATOM 160 NH1 ARG A 514 17.375 19.047 41.963 1.00 78.38 A N
    ATOM 161 NH2 ARG A 514 18.857 20.697 42.585 1.00 81.64 A N
    ATOM 162 C ARG A 514 17.654 16.995 36.907 1.00 54.80 A C
    ATOM 163 O ARG A 514 17.101 16.283 37.738 1.00 57.67 A O
    ATOM 164 N ASN A 515 18.330 16.506 35.872 1.00 52.97 A N
    ATOM 165 CA ASN A 515 18.721 15.090 35.760 1.00 55.78 A C
    ATOM 166 CB ASN A 515 19.449 14.624 37.012 1.00 57.23 A C
    ATOM 167 CG ASN A 515 20.867 15.102 37.031 1.00 62.81 A C
    ATOM 168 OD1 ASN A 515 21.654 14.754 36.143 1.00 63.04 A O
    ATOM 169 ND2 ASN A 515 21.203 15.942 38.010 1.00 65.31 A N
    ATOM 170 C ASN A 515 17.721 14.030 35.280 1.00 57.34 A C
    ATOM 171 O ASN A 515 18.139 13.003 34.716 1.00 59.88 A O
    ATOM 172 N LYS A 516 16.427 14.270 35.478 1.00 53.97 A N
    ATOM 173 CA LYS A 516 15.409 13.383 34.924 1.00 52.63 A C
    ATOM 174 CB LYS A 516 14.329 13.081 35.980 1.00 59.60 A C
    ATOM 175 CG LYS A 516 13.107 13.990 36.034 1.00 71.77 A C
    ATOM 176 CD LYS A 516 11.887 13.206 36.610 1.00 80.27 A C
    ATOM 177 CE LYS A 516 10.558 13.533 35.874 1.00 85.92 A C
    ATOM 178 NZ LYS A 516 9.889 12.372 35.163 1.00 85.07 A N
    ATOM 179 C LYS A 516 14.866 13.943 33.600 1.00 48.79 A C
    ATOM 180 O LYS A 516 14.991 15.139 33.364 1.00 50.31 A O
    ATOM 181 N HIS A 517 14.308 13.100 32.724 1.00 44.58 A N
    ATOM 182 CA HIS A 517 13.729 13.590 31.451 1.00 41.66 A C
    ATOM 183 CB HIS A 517 13.611 12.474 30.402 1.00 45.12 A C
    ATOM 184 CG HIS A 517 12.438 12.613 29.463 1.00 40.15 A C
    ATOM 185 ND1 HIS A 517 12.534 13.226 28.231 1.00 42.52 A N
    ATOM 186 CE1 HIS A 517 11.364 13.175 27.618 1.00 38.84 A C
    ATOM 187 NE2 HIS A 517 10.515 12.548 28.405 1.00 35.65 A N
    ATOM 188 CD2 HIS A 517 11.163 12.175 29.558 1.00 35.82 A C
    ATOM 189 C HIS A 517 12.383 14.244 31.644 1.00 39.70 A C
    ATOM 190 O HIS A 517 11.574 13.779 32.439 1.00 43.99 A O
    ATOM 191 N ILE A 518 12.134 15.282 30.859 1.00 36.76 A N
    ATOM 192 CA ILE A 518 10.999 16.168 31.062 1.00 33.32 A C
    ATOM 193 CB ILE A 518 11.511 17.479 31.710 1.00 30.15 A C
    ATOM 194 CG1 ILE A 518 10.367 18.337 32.228 1.00 33.32 A C
    ATOM 195 CD1 ILE A 518 10.804 19.711 32.739 1.00 30.08 A C
    ATOM 196 CG2 ILE A 518 12.299 18.295 30.718 1.00 29.73 A C
    ATOM 197 C ILE A 518 10.206 16.482 29.784 1.00 33.64 A C
    ATOM 198 O ILE A 518 9.082 16.954 29.868 1.00 36.86 A O
    ATOM 199 N CYS A 519 10.787 16.235 28.610 1.00 36.15 A N
    ATOM 200 CA CYS A 519 10.261 16.799 27.363 1.00 37.62 A C
    ATOM 201 CB CYS A 519 10.465 18.305 27.357 1.00 43.78 A C
    ATOM 202 SG CYS A 519 8.955 19.198 27.665 1.00 53.07 A S
    ATOM 203 C CYS A 519 10.962 16.269 26.145 1.00 36.96 A C
    ATOM 204 O CYS A 519 12.135 15.923 26.215 1.00 44.22 A O
    ATOM 205 N GLY A 520 10.256 16.252 25.018 1.00 33.67 A N
    ATOM 206 CA GLY A 520 10.824 15.825 23.750 1.00 31.07 A C
    ATOM 207 C GLY A 520 11.312 16.997 22.941 1.00 35.19 A C
    ATOM 208 O GLY A 520 11.103 18.162 23.307 1.00 38.25 A O
    ATOM 209 N GLY A 521 11.975 16.699 21.835 1.00 36.29 A N
    ATOM 210 CA GLY A 521 12.538 17.749 21.002 1.00 37.32 A C
    ATOM 211 C GLY A 521 12.990 17.241 19.652 1.00 38.07 A C
    ATOM 212 O GLY A 521 13.538 16.142 19.526 1.00 38.85 A O
    ATOM 213 N SER A 522 12.745 18.041 18.626 1.00 38.93 A N
    ATOM 214 CA SER A 522 13.114 17.658 17.271 1.00 34.80 A C
    ATOM 215 CB SER A 522 11.988 17.977 16.271 1.00 33.89 A C
    ATOM 216 OG SER A 522 10.701 18.060 16.889 1.00 33.28 A O
    ATOM 217 C SER A 522 14.398 18.400 16.935 1.00 34.35 A C
    ATOM 218 O SER A 522 14.491 19.626 17.102 1.00 32.30 A O
    ATOM 219 N LEU A 523 15.407 17.643 16.521 1.00 34.26 A N
    ATOM 220 CA LEU A 523 16.674 18.234 16.113 1.00 34.02 A C
    ATOM 221 CB LEU A 523 17.818 17.221 16.278 1.00 30.65 A C
    ATOM 222 CG LEU A 523 19.200 17.502 15.672 1.00 30.72 A C
    ATOM 223 CD1 LEU A 523 19.812 18.751 16.258 1.00 34.42 A C
    ATOM 224 CD2 LEU A 523 20.155 16.338 15.864 1.00 25.93 A C
    ATOM 225 C LEU A 523 16.510 18.722 14.666 1.00 35.12 A C
    ATOM 226 O LEU A 523 16.286 17.928 13.748 1.00 34.62 A O
    ATOM 227 N ILE A 524 16.576 20.033 14.468 1.00 34.63 A N
    ATOM 228 CA ILE A 524 16.254 20.582 13.157 1.00 35.75 A C
    ATOM 229 CB ILE A 524 15.155 21.663 13.218 1.00 35.51 A C
    ATOM 230 CG1 ILE A 524 15.564 22.814 14.117 1.00 33.46 A C
    ATOM 231 CD1 ILE A 524 14.971 24.098 13.673 1.00 34.02 A C
    ATOM 232 CG2 ILE A 524 13.846 21.071 13.687 1.00 37.56 A C
    ATOM 233 C ILE A 524 17.466 21.070 12.400 1.00 37.14 A C
    ATOM 234 O ILE A 524 17.416 21.204 11.178 1.00 40.12 A O
    ATOM 235 N LYS A 525 18.533 21.369 13.128 1.00 37.43 A N
    ATOM 236 CA LYS A 525 19.843 21.598 12.527 1.00 38.70 A C
    ATOM 237 CB LYS A 525 19.997 23.024 11.995 1.00 40.01 A C
    ATOM 238 CG LYS A 525 19.923 23.104 10.465 1.00 48.89 A C
    ATOM 239 CD LYS A 525 20.464 24.447 9.928 1.00 58.25 A C
    ATOM 240 CE LYS A 525 20.461 24.504 8.394 1.00 60.68 A C
    ATOM 241 NZ LYS A 525 19.090 24.706 7.818 1.00 59.37 A N
    ATOM 242 C LYS A 525 20.889 21.270 13.568 1.00 38.37 A C
    ATOM 243 O LYS A 525 20.575 21.202 14.761 1.00 40.24 A O
    ATOM 244 N GLU A 526 22.123 21.071 13.111 1.00 36.22 A N
    ATOM 245 CA GLU A 526 23.226 20.562 13.931 1.00 38.49 A C
    ATOM 246 CB GLU A 526 24.544 20.747 13.178 1.00 41.99 A C
    ATOM 247 CG GLU A 526 24.727 19.735 12.053 1.00 49.92 A C
    ATOM 248 CD GLU A 526 24.503 20.305 10.651 1.00 55.90 A C
    ATOM 249 OE1 GLU A 526 23.479 20.986 10.403 1.00 57.40 A O
    ATOM 250 OE2 GLU A 526 25.358 20.049 9.772 1.00 59.44 A O
    ATOM 251 C GLU A 526 23.323 21.129 15.364 1.00 39.56 A C
    ATOM 252 O GLU A 526 23.780 20.444 16.288 1.00 36.08 A O
    ATOM 253 N SER A 527 22.866 22.369 15.535 1.00 41.92 A N
    ATOM 254 CA SER A 527 22.946 23.089 16.806 1.00 39.39 A C
    ATOM 255 CB SER A 527 23.880 24.303 16.657 1.00 37.58 A C
    ATOM 256 OG SER A 527 25.194 24.021 17.132 1.00 37.03 A O
    ATOM 257 C SER A 527 21.582 23.541 17.361 1.00 38.77 A C
    ATOM 258 O SER A 527 21.530 24.361 18.296 1.00 40.76 A O
    ATOM 259 N TRP A 528 20.485 23.011 16.810 1.00 33.24 A N
    ATOM 260 CA TRP A 528 19.160 23.515 17.178 1.00 30.57 A C
    ATOM 261 CB TRP A 528 18.646 24.492 16.140 1.00 29.10 A C
    ATOM 262 CG TRP A 528 19.412 25.747 16.114 1.00 31.01 A C
    ATOM 263 CD1 TRP A 528 20.396 26.075 15.243 1.00 30.54 A C
    ATOM 264 NE1 TRP A 528 20.886 27.325 15.527 1.00 29.07 A N
    ATOM 265 CE2 TRP A 528 20.215 27.832 16.605 1.00 26.11 A C
    ATOM 266 CD2 TRP A 528 19.278 26.860 17.004 1.00 30.79 A C
    ATOM 267 CE3 TRP A 528 18.454 27.142 18.096 1.00 32.09 A C
    ATOM 268 CZ3 TRP A 528 18.605 28.371 18.744 1.00 30.15 A C
    ATOM 269 CH2 TRP A 528 19.549 29.310 18.312 1.00 19.71 A C
    ATOM 270 CZ2 TRP A 528 20.350 29.059 17.249 1.00 21.17 A C
    ATOM 271 C TRP A 528 18.106 22.467 17.401 1.00 32.06 A C
    ATOM 272 O TRP A 528 17.775 21.697 16.500 1.00 37.40 A O
    ATOM 273 N VAL A 529 17.560 22.457 18.606 1.00 29.15 A N
    ATOM 274 CA VAL A 529 16.450 21.588 18.887 1.00 34.38 A C
    ATOM 275 CB VAL A 529 16.653 20.814 20.191 1.00 39.86 A C
    ATOM 276 CG1 VAL A 529 15.491 19.858 20.418 1.00 45.49 A C
    ATOM 277 CG2 VAL A 529 17.945 20.047 20.156 1.00 40.27 A C
    ATOM 278 C VAL A 529 15.207 22.443 18.991 1.00 36.13 A C
    ATOM 279 O VAL A 529 15.154 23.375 19.803 1.00 35.20 A O
    ATOM 280 N LEU A 530 14.216 22.136 18.156 1.00 37.62 A N
    ATOM 281 CA LEU A 530 12.910 22.785 18.251 1.00 36.57 A C
    ATOM 282 CB LEU A 530 12.191 22.760 16.909 1.00 31.08 A C
    ATOM 283 CG LEU A 530 10.770 23.313 16.984 1.00 29.72 A C
    ATOM 284 CD1 LEU A 530 10.777 24.824 16.970 1.00 28.98 A C
    ATOM 285 CD2 LEU A 530 9.943 22.788 15.847 1.00 30.51 A C
    ATOM 286 C LEU A 530 12.054 22.101 19.312 1.00 38.92 A C
    ATOM 287 O LEU A 530 11.896 20.871 19.298 1.00 44.45 A O
    ATOM 288 N THR A 531 11.496 22.891 20.224 1.00 34.89 A N
    ATOM 289 CA THR A 531 10.706 22.315 21.313 1.00 36.51 A C
    ATOM 290 CB THR A 531 11.655 21.749 22.382 1.00 29.03 A C
    ATOM 291 OG1 THR A 531 10.884 21.120 23.415 1.00 26.10 A O
    ATOM 292 CG2 THR A 531 12.405 22.866 23.059 1.00 23.72 A C
    ATOM 293 C THR A 531 9.608 23.230 21.905 1.00 40.20 A C
    ATOM 294 O THR A 531 9.405 24.338 21.426 1.00 47.18 A O
    ATOM 295 N ALA A 532 8.885 22.770 22.921 1.00 39.47 A N
    ATOM 296 CA ALA A 532 7.810 23.588 23.496 1.00 42.64 A C
    ATOM 297 CB ALA A 532 6.606 22.751 23.803 1.00 47.31 A C
    ATOM 298 C ALA A 532 8.217 24.384 24.736 1.00 42.64 A C
    ATOM 299 O ALA A 532 9.181 24.041 25.423 1.00 38.19 A O
    ATOM 300 N ARG A 533 7.464 25.443 25.024 1.00 44.00 A N
    ATOM 301 CA ARG A 533 7.873 26.378 26.058 1.00 44.35 A C
    ATOM 302 CB ARG A 533 7.242 27.761 25.892 1.00 46.20 A C
    ATOM 303 CG ARG A 533 5.867 27.917 26.489 1.00 53.50 A C
    ATOM 304 CD ARG A 533 5.162 29.162 26.000 1.00 63.95 A C
    ATOM 305 NE ARG A 533 4.710 30.013 27.094 1.00 71.05 A N
    ATOM 306 CZ ARG A 533 5.460 30.932 27.695 1.00 73.73 A C
    ATOM 307 NH1 ARG A 533 4.948 31.652 28.685 1.00 74.71 A N
    ATOM 308 NH2 ARG A 533 6.718 31.133 27.315 1.00 74.31 A N
    ATOM 309 C ARG A 533 7.573 25.802 27.401 1.00 46.11 A C
    ATOM 310 O ARG A 533 8.343 25.999 28.329 1.00 56.79 A O
    ATOM 311 N GLN A 534 6.477 25.062 27.497 1.00 40.40 A N
    ATOM 312 CA GLN A 534 6.120 24.373 28.719 1.00 38.80 A C
    ATOM 313 CB GLN A 534 4.852 23.532 28.507 1.00 42.02 A C
    ATOM 314 CG GLN A 534 3.522 24.276 28.352 1.00 40.73 A C
    ATOM 315 CD GLN A 534 3.303 24.893 26.973 1.00 42.20 A C
    ATOM 316 OE1 GLN A 534 2.382 25.697 26.801 1.00 40.04 A O
    ATOM 317 NE2 GLN A 534 4.151 24.539 25.997 1.00 44.63 A N
    ATOM 318 C GLN A 534 7.238 23.435 29.169 1.00 40.36 A C
    ATOM 319 O GLN A 534 7.039 22.646 30.069 1.00 45.68 A O
    ATOM 320 N CYS A 535 8.408 23.503 28.548 1.00 42.90 A N
    ATOM 321 CA CYS A 535 9.492 22.585 28.896 1.00 45.34 A C
    ATOM 322 CB CYS A 535 10.138 22.036 27.640 1.00 45.96 A C
    ATOM 323 SG CYS A 535 8.973 21.017 26.756 1.00 51.38 A S
    ATOM 324 C CYS A 535 10.574 23.134 29.799 1.00 47.11 A C
    ATOM 325 O CYS A 535 11.520 22.425 30.108 1.00 52.64 A O
    ATOM 326 N PHE A 536 10.444 24.381 30.231 1.00 46.54 A N
    ATOM 327 CA PHE A 536 11.521 25.032 30.969 1.00 40.70 A C
    ATOM 328 CB PHE A 536 12.183 26.086 30.082 1.00 41.52 A C
    ATOM 329 CG PHE A 536 12.679 25.541 28.778 1.00 43.07 A C
    ATOM 330 CD1 PHE A 536 13.919 24.898 28.705 1.00 45.52 A C
    ATOM 331 CE1 PHE A 536 14.376 24.359 27.504 1.00 44.59 A C
    ATOM 332 CZ PHE A 536 13.592 24.472 26.365 1.00 41.06 A C
    ATOM 333 CE2 PHE A 536 12.356 25.121 26.437 1.00 39.09 A C
    ATOM 334 CD2 PHE A 536 11.905 25.641 27.632 1.00 37.71 A C
    ATOM 335 C PHE A 536 11.056 25.645 32.287 1.00 38.93 A C
    ATOM 336 O PHE A 536 10.680 26.792 32.339 1.00 42.14 A O
    ATOM 337 N PRO A 537 11.082 24.878 33.358 1.00 38.38 A N
    ATOM 338 CA PRO A 537 10.711 25.394 34.678 1.00 39.14 A C
    ATOM 339 CB PRO A 537 10.728 24.140 35.541 1.00 44.43 A C
    ATOM 340 CG PRO A 537 10.593 23.029 34.540 1.00 45.79 A C
    ATOM 341 CD PRO A 537 11.452 23.457 33.402 1.00 41.04 A C
    ATOM 342 C PRO A 537 11.721 26.396 35.212 1.00 38.67 A C
    ATOM 343 O PRO A 537 11.316 27.387 35.777 1.00 38.75 A O
    ATOM 344 N SER A 538 13.008 26.119 35.038 1.00 43.61 A N
    ATOM 345 CA SER A 538 14.095 26.998 35.444 1.00 47.01 A C
    ATOM 346 CB SER A 538 15.383 26.191 35.550 1.00 50.27 A C
    ATOM 347 OG SER A 538 15.968 26.280 36.836 1.00 54.13 A O
    ATOM 348 C SER A 538 14.328 28.032 34.382 1.00 53.40 A C
    ATOM 349 O SER A 538 13.931 27.838 33.240 1.00 56.52 A O
    ATOM 350 N ARG A 539 14.985 29.129 34.750 1.00 59.84 A N
    ATOM 351 CA ARG A 539 15.570 30.015 33.749 1.00 62.13 A C
    ATOM 352 CB ARG A 539 15.334 31.495 34.072 1.00 65.44 A C
    ATOM 353 CG ARG A 539 14.786 32.357 32.897 1.00 73.11 A C
    ATOM 354 CD ARG A 539 14.232 31.582 31.648 1.00 79.75 A C
    ATOM 355 NE ARG A 539 12.759 31.550 31.546 1.00 83.84 A N
    ATOM 356 CZ ARG A 539 11.977 32.568 31.138 1.00 85.20 A C
    ATOM 357 NH1 ARG A 539 10.659 32.419 31.094 1.00 85.44 A N
    ATOM 358 NH2 ARG A 539 12.495 33.737 30.779 1.00 86.16 A N
    ATOM 359 C ARG A 539 17.050 29.702 33.622 1.00 61.46 A C
    ATOM 360 O ARG A 539 17.637 29.908 32.574 1.00 63.21 A O
    ATOM 361 N ASP A 540 17.639 29.175 34.689 1.00 63.93 A N
    ATOM 362 CA ASP A 540 19.062 28.855 34.718 1.00 68.12 A C
    ATOM 363 CB ASP A 540 19.509 28.615 36.169 1.00 74.68 A C
    ATOM 364 CG ASP A 540 20.922 28.049 36.270 1.00 82.15 A C
    ATOM 365 OD1 ASP A 540 21.708 28.200 35.302 1.00 83.45 A O
    ATOM 366 OD2 ASP A 540 21.335 27.438 37.285 1.00 86.19 A O
    ATOM 367 C ASP A 540 19.348 27.629 33.854 1.00 66.59 A C
    ATOM 368 O ASP A 540 18.929 26.525 34.204 1.00 71.11 A O
    ATOM 369 N LEU A 541 20.070 27.816 32.745 1.00 60.72 A N
    ATOM 370 CA LEU A 541 20.310 26.722 31.782 1.00 53.13 A C
    ATOM 371 CB LEU A 541 20.669 27.244 30.378 1.00 49.17 A C
    ATOM 372 CG LEU A 541 19.815 28.280 29.630 1.00 44.30 A C
    ATOM 373 CD1 LEU A 541 20.286 28.383 28.185 1.00 41.68 A C
    ATOM 374 CD2 LEU A 541 18.297 28.033 29.700 1.00 38.17 A C
    ATOM 375 C LEU A 541 21.360 25.712 32.243 1.00 49.37 A C
    ATOM 376 O LEU A 541 21.642 24.741 31.526 1.00 46.25 A O
    ATOM 377 N LYS A 542 21.933 25.952 33.425 1.00 47.11 A N
    ATOM 378 CA LYS A 542 22.772 24.973 34.106 1.00 51.16 A C
    ATOM 379 CB LYS A 542 23.253 25.528 35.450 1.00 55.37 A C
    ATOM 380 CG LYS A 542 24.763 25.754 35.545 1.00 63.15 A C
    ATOM 381 CD LYS A 542 25.122 27.183 35.986 1.00 65.17 A C
    ATOM 382 CE LYS A 542 26.207 27.795 35.097 1.00 64.91 A C
    ATOM 383 NZ LYS A 542 26.907 28.922 35.774 1.00 66.28 A N
    ATOM 384 C LYS A 542 21.985 23.678 34.333 1.00 53.42 A C
    ATOM 385 O LYS A 542 22.470 22.578 34.054 1.00 53.95 A O
    ATOM 386 N ASP A 543 20.751 23.830 34.808 1.00 53.44 A N
    ATOM 387 CA ASP A 543 19.910 22.711 35.212 1.00 52.87 A C
    ATOM 388 CB ASP A 543 18.650 23.231 35.887 1.00 56.38 A C
    ATOM 389 CG ASP A 543 18.942 23.964 37.176 1.00 60.48 A C
    ATOM 390 OD1 ASP A 543 19.775 23.488 37.994 1.00 58.01 A O
    ATOM 391 OD2 ASP A 543 18.364 25.033 37.450 1.00 65.01 A O
    ATOM 392 C ASP A 543 19.512 21.753 34.099 1.00 50.26 A C
    ATOM 393 O ASP A 543 19.065 20.637 34.380 1.00 54.20 A O
    ATOM 394 N TYR A 544 19.672 22.174 32.848 1.00 43.23 A N
    ATOM 395 CA TYR A 544 19.286 21.330 31.722 1.00 38.63 A C
    ATOM 396 CB TYR A 544 18.477 22.116 30.716 1.00 29.69 A C
    ATOM 397 CG TYR A 544 17.306 22.885 31.238 1.00 27.52 A C
    ATOM 398 CD1 TYR A 544 16.008 22.363 31.143 1.00 30.21 A C
    ATOM 399 CE1 TYR A 544 14.893 23.090 31.571 1.00 24.62 A C
    ATOM 400 CZ TYR A 544 15.086 24.348 32.080 1.00 24.13 A C
    ATOM 401 OH TYR A 544 14.019 25.055 32.497 1.00 28.35 A O
    ATOM 402 CE2 TYR A 544 16.350 24.900 32.182 1.00 25.18 A C
    ATOM 403 CD2 TYR A 544 17.461 24.166 31.746 1.00 25.99 A C
    ATOM 404 C TYR A 544 20.452 20.632 30.985 1.00 42.29 A C
    ATOM 405 O TYR A 544 21.630 20.955 31.192 1.00 44.90 A O
    ATOM 406 N GLU A 545 20.083 19.710 30.093 1.00 40.12 A N
    ATOM 407 CA GLU A 545 20.994 18.824 29.378 1.00 40.44 A C
    ATOM 408 CB GLU A 545 21.542 17.790 30.359 1.00 46.13 A C
    ATOM 409 CG GLU A 545 22.580 16.830 29.811 1.00 54.99 A C
    ATOM 410 CD GLU A 545 23.458 16.255 30.913 1.00 62.86 A C
    ATOM 411 OE1 GLU A 545 23.387 15.028 31.148 1.00 65.66 A O
    ATOM 412 OE2 GLU A 545 24.223 17.026 31.549 1.00 65.70 A O
    ATOM 413 C GLU A 545 20.178 18.124 28.273 1.00 42.84 A C
    ATOM 414 O GLU A 545 19.017 17.735 28.495 1.00 47.57 A O
    ATOM 415 N ALA A 546 20.758 17.977 27.084 1.00 37.78 A N
    ATOM 416 CA ALA A 546 20.041 17.392 25.952 1.00 31.25 A C
    ATOM 417 CB ALA A 546 19.925 18.396 24.825 1.00 23.18 A C
    ATOM 418 C ALA A 546 20.722 16.119 25.469 1.00 34.99 A C
    ATOM 419 O ALA A 546 21.838 16.161 24.959 1.00 37.39 A O
    ATOM 420 N TRP A 547 20.044 14.988 25.633 1.00 38.48 A N
    ATOM 421 CA TRP A 547 20.576 13.704 25.201 1.00 40.47 A C
    ATOM 422 CB TRP A 547 20.082 12.616 26.117 1.00 40.48 A C
    ATOM 423 CG TRP A 547 20.618 12.697 27.487 1.00 41.31 A C
    ATOM 424 CD1 TRP A 547 21.048 13.810 28.139 1.00 42.51 A C
    ATOM 425 NE1 TRP A 547 21.456 13.480 29.407 1.00 45.89 A N
    ATOM 426 CE2 TRP A 547 21.294 12.130 29.586 1.00 44.69 A C
    ATOM 427 CD2 TRP A 547 20.771 11.610 28.398 1.00 41.64 A C
    ATOM 428 CE3 TRP A 547 20.515 10.237 28.327 1.00 43.81 A C
    ATOM 429 CZ3 TRP A 547 20.779 9.448 29.421 1.00 44.52 A C
    ATOM 430 CH2 TRP A 547 21.301 9.992 30.585 1.00 46.82 A C
    ATOM 431 CZ2 TRP A 547 21.567 11.330 30.691 1.00 48.64 A C
    ATOM 432 C TRP A 547 20.109 13.385 23.805 1.00 44.57 A C
    ATOM 433 O TRP A 547 18.922 13.531 23.508 1.00 50.42 A O
    ATOM 434 N LEU A 548 21.037 12.934 22.963 1.00 43.65 A N
    ATOM 435 CA LEU A 548 20.772 12.711 21.544 1.00 45.06 A C
    ATOM 436 CB LEU A 548 21.617 13.658 20.693 1.00 41.86 A C
    ATOM 437 CG LEU A 548 21.288 15.146 20.522 1.00 39.52 A C
    ATOM 438 CD1 LEU A 548 20.574 15.345 19.210 1.00 40.81 A C
    ATOM 439 CD2 LEU A 548 20.487 15.769 21.662 1.00 33.92 A C
    ATOM 440 C LEU A 548 21.096 11.278 21.163 1.00 51.45 A C
    ATOM 441 O LEU A 548 21.915 10.626 21.816 1.00 51.74 A O
    ATOM 442 N GLY A 549 20.455 10.797 20.099 1.00 58.34 A N
    ATOM 443 CA GLY A 549 20.631 9.427 19.628 1.00 59.49 A C
    ATOM 444 C GLY A 549 20.411 8.354 20.685 1.00 58.01 A C
    ATOM 445 O GLY A 549 21.236 7.461 20.851 1.00 56.69 A O
    ATOM 446 N ILE A 550 19.306 8.457 21.417 1.00 57.21 A N
    ATOM 447 CA ILE A 550 18.940 7.433 22.391 1.00 56.71 A C
    ATOM 448 CB ILE A 550 18.836 8.022 23.803 1.00 53.72 A C
    ATOM 449 CG1 ILE A 550 17.671 8.994 23.892 1.00 52.36 A C
    ATOM 450 CD1 ILE A 550 17.114 9.109 25.269 1.00 53.68 A C
    ATOM 451 CG2 ILE A 550 20.107 8.729 24.165 1.00 55.94 A C
    ATOM 452 C ILE A 550 17.637 6.729 22.001 1.00 59.34 A C
    ATOM 453 O ILE A 550 16.900 7.194 21.116 1.00 66.68 A O
    ATOM 454 N HIS A 551 17.373 5.604 22.658 1.00 51.80 A N
    ATOM 455 CA HIS A 551 16.178 4.818 22.424 1.00 43.88 A C
    ATOM 456 CB HIS A 551 16.541 3.483 21.800 1.00 40.60 A C
    ATOM 457 CG HIS A 551 15.387 2.764 21.175 1.00 40.32 A C
    ATOM 458 ND1 HIS A 551 15.490 1.472 20.698 1.00 39.93 A N
    ATOM 459 CE1 HIS A 551 14.326 1.097 20.200 1.00 39.40 A C
    ATOM 460 NE2 HIS A 551 13.473 2.098 20.331 1.00 39.45 A N
    ATOM 461 CD2 HIS A 551 14.112 3.154 20.935 1.00 39.43 A C
    ATOM 462 C HIS A 551 15.542 4.583 23.769 1.00 47.12 A C
    ATOM 463 O HIS A 551 14.323 4.661 23.893 1.00 53.18 A O
    ATOM 464 N ASP A 552 16.369 4.283 24.775 1.00 44.11 A N
    ATOM 465 CA ASP A 552 15.895 4.157 26.149 1.00 39.32 A C
    ATOM 466 CB ASP A 552 16.705 3.135 26.934 1.00 38.59 A C
    ATOM 467 CG ASP A 552 16.098 2.862 28.304 1.00 44.48 A C
    ATOM 468 OD1 ASP A 552 16.576 3.424 29.316 1.00 42.47 A O
    ATOM 469 OD2 ASP A 552 15.104 2.118 28.459 1.00 48.70 A O
    ATOM 470 C ASP A 552 15.955 5.494 26.879 1.00 36.72 A C
    ATOM 471 O ASP A 552 17.018 6.031 27.078 1.00 37.41 A O
    ATOM 472 N VAL A 553 14.810 6.017 27.295 1.00 35.32 A N
    ATOM 473 CA VAL A 553 14.755 7.260 28.051 1.00 35.91 A C
    ATOM 474 CB VAL A 553 13.381 7.424 28.755 1.00 32.99 A C
    ATOM 475 CG1 VAL A 553 13.321 6.616 30.034 1.00 30.23 A C
    ATOM 476 CG2 VAL A 553 13.042 8.903 28.997 1.00 26.91 A C
    ATOM 477 C VAL A 553 15.918 7.438 29.046 1.00 43.64 A C
    ATOM 478 O VAL A 553 16.364 8.568 29.276 1.00 52.45 A O
    ATOM 479 N HIS A 554 16.410 6.335 29.617 1.00 45.61 A N
    ATOM 480 CA HIS A 554 17.535 6.367 30.556 1.00 46.89 A C
    ATOM 481 CB HIS A 554 17.284 5.408 31.719 1.00 46.90 A C
    ATOM 482 CG HIS A 554 16.199 5.845 32.644 1.00 49.56 A C
    ATOM 483 ND1 HIS A 554 14.981 5.208 32.711 1.00 52.02 A N
    ATOM 484 CE1 HIS A 554 14.223 5.794 33.621 1.00 53.44 A C
    ATOM 485 NE2 HIS A 554 14.909 6.789 34.151 1.00 56.69 A N
    ATOM 486 CD2 HIS A 554 16.150 6.842 33.557 1.00 55.35 A C
    ATOM 487 C HIS A 554 18.850 5.985 29.883 1.00 46.94 A C
    ATOM 488 O HIS A 554 19.847 5.737 30.543 1.00 51.15 A O
    ATOM 489 N GLY A 555 18.845 5.900 28.566 1.00 48.30 A N
    ATOM 490 CA GLY A 555 20.049 5.588 27.816 1.00 50.65 A C
    ATOM 491 C GLY A 555 20.513 4.149 27.921 1.00 51.26 A C
    ATOM 492 O GLY A 555 21.633 3.828 27.492 1.00 54.15 A O
    ATOM 493 N ARG A 556 19.652 3.282 28.455 1.00 46.93 A N
    ATOM 494 CA ARG A 556 20.066 1.933 28.834 1.00 45.09 A C
    ATOM 495 CB ARG A 556 18.970 1.222 29.613 1.00 40.39 A C
    ATOM 496 CG ARG A 556 18.843 1.746 31.027 1.00 42.37 A C
    ATOM 497 CD ARG A 556 17.875 0.969 31.916 1.00 49.31 A C
    ATOM 498 NE ARG A 556 16.603 1.668 32.122 1.00 51.71 A N
    ATOM 499 CZ ARG A 556 15.444 1.287 31.602 1.00 54.36 A C
    ATOM 500 NH1 ARG A 556 14.331 1.974 31.849 1.00 54.30 A N
    ATOM 501 NH2 ARG A 556 15.393 0.207 30.832 1.00 59.72 A N
    ATOM 502 C ARG A 556 20.646 1.069 27.701 1.00 48.74 A C
    ATOM 503 O ARG A 556 21.717 0.463 27.859 1.00 51.93 A O
    ATOM 504 N GLY A 557 19.984 1.025 26.555 1.00 49.49 A N
    ATOM 505 CA GLY A 557 20.560 0.286 25.441 1.00 53.98 A C
    ATOM 506 C GLY A 557 21.794 0.931 24.810 1.00 54.64 A C
    ATOM 507 O GLY A 557 22.660 0.250 24.246 1.00 47.61 A O
    ATOM 508 N ASP A 558 21.882 2.253 24.935 1.00 59.36 A N
    ATOM 509 CA ASP A 558 22.565 3.049 23.925 1.00 64.13 A C
    ATOM 510 CB ASP A 558 21.577 4.015 23.225 1.00 64.08 A C
    ATOM 511 CG ASP A 558 20.132 3.875 23.724 1.00 63.54 A C
    ATOM 512 OD1 ASP A 558 19.724 4.707 24.567 1.00 63.63 A O
    ATOM 513 OD2 ASP A 558 19.331 2.988 23.327 1.00 60.19 A O
    ATOM 514 C ASP A 558 23.806 3.784 24.411 1.00 69.82 A C
    ATOM 515 O ASP A 558 23.799 5.010 24.542 1.00 73.90 A O
    ATOM 516 N GLU A 559 24.878 3.038 24.658 1.00 72.43 A N
    ATOM 517 CA GLU A 559 26.152 3.646 25.038 1.00 70.11 A C
    ATOM 518 CB GLU A 559 27.004 2.694 25.886 1.00 74.85 A C
    ATOM 519 CG GLU A 559 26.470 1.263 26.010 1.00 82.18 A C
    ATOM 520 CD GLU A 559 25.396 1.091 27.089 1.00 85.89 A C
    ATOM 521 OE1 GLU A 559 25.367 1.875 28.068 1.00 86.56 A O
    ATOM 522 OE2 GLU A 559 24.568 0.160 26.956 1.00 86.27 A O
    ATOM 523 C GLU A 559 26.870 4.047 23.766 1.00 65.20 A C
    ATOM 524 O GLU A 559 27.501 5.090 23.699 1.00 62.09 A O
    ATOM 525 N LYS A 560 26.716 3.229 22.737 1.00 66.52 A N
    ATOM 526 CA LYS A 560 27.395 3.455 21.473 1.00 70.54 A C
    ATOM 527 CB LYS A 560 27.572 2.128 20.719 1.00 78.87 A C
    ATOM 528 CG LYS A 560 29.014 1.865 20.249 1.00 86.89 A C
    ATOM 529 CD LYS A 560 29.280 0.382 19.952 1.00 91.41 A C
    ATOM 530 CE LYS A 560 29.837 0.176 18.530 1.00 94.26 A C
    ATOM 531 NZ LYS A 560 31.286 −0.214 18.490 1.00 93.72 A N
    ATOM 532 C LYS A 560 26.745 4.512 20.569 1.00 68.03 A C
    ATOM 533 O LYS A 560 27.231 4.742 19.460 1.00 69.10 A O
    ATOM 534 N CYS A 561 25.665 5.153 21.023 1.00 65.42 A N
    ATOM 535 CA CYS A 561 25.006 6.189 20.206 1.00 63.80 A C
    ATOM 536 CB CYS A 561 23.696 5.687 19.592 1.00 65.05 A C
    ATOM 537 SG CYS A 561 23.114 4.077 20.148 1.00 71.04 A S
    ATOM 538 C CYS A 561 24.779 7.541 20.900 1.00 60.62 A C
    ATOM 539 O CYS A 561 24.883 8.606 20.261 1.00 59.98 A O
    ATOM 540 N LYS A 562 24.471 7.479 22.195 1.00 55.53 A N
    ATOM 541 CA LYS A 562 24.241 8.649 23.053 1.00 51.59 A C
    ATOM 542 CB LYS A 562 24.284 8.204 24.517 1.00 50.33 A C
    ATOM 543 CG LYS A 562 23.663 9.172 25.506 1.00 50.06 A C
    ATOM 544 CD LYS A 562 23.388 8.476 26.829 1.00 49.50 A C
    ATOM 545 CE LYS A 562 24.453 8.784 27.862 1.00 50.51 A C
    ATOM 546 NZ LYS A 562 23.950 8.466 29.219 1.00 51.61 A N
    ATOM 547 C LYS A 562 25.199 9.842 22.855 1.00 48.90 A C
    ATOM 548 O LYS A 562 26.406 9.678 22.719 1.00 48.37 A O
    ATOM 549 N GLN A 563 24.635 11.041 22.856 1.00 47.04 A N
    ATOM 550 CA GLN A 563 25.396 12.278 22.799 1.00 43.96 A C
    ATOM 551 CB GLN A 563 25.290 12.881 21.402 1.00 41.41 A C
    ATOM 552 CG GLN A 563 26.214 12.301 20.363 1.00 43.30 A C
    ATOM 553 CD GLN A 563 26.240 13.135 19.075 1.00 47.28 A C
    ATOM 554 OE1 GLN A 563 26.723 14.289 19.053 1.00 48.43 A O
    ATOM 555 NE2 GLN A 563 25.730 12.549 17.997 1.00 45.76 A N
    ATOM 556 C GLN A 563 24.738 13.231 23.792 1.00 45.34 A C
    ATOM 557 O GLN A 563 23.577 13.604 23.597 1.00 49.13 A O
    ATOM 558 N VAL A 564 25.436 13.621 24.857 1.00 41.21 A N
    ATOM 559 CA VAL A 564 24.840 14.595 25.780 1.00 39.36 A C
    ATOM 560 CB VAL A 564 24.832 14.133 27.272 1.00 39.41 A C
    ATOM 561 CG1 VAL A 564 24.330 12.699 27.395 1.00 37.33 A C
    ATOM 562 CG2 VAL A 564 26.203 14.301 27.936 1.00 44.32 A C
    ATOM 563 C VAL A 564 25.437 15.988 25.614 1.00 38.92 A C
    ATOM 564 O VAL A 564 26.659 16.162 25.656 1.00 44.75 A O
    ATOM 565 N LEU A 565 24.567 16.972 25.414 1.00 34.38 A N
    ATOM 566 CA LEU A 565 25.001 18.338 25.159 1.00 34.56 A C
    ATOM 567 CB LEU A 565 24.632 18.727 23.738 1.00 35.95 A C
    ATOM 568 CG LEU A 565 25.329 17.895 22.669 1.00 42.59 A C
    ATOM 569 CD1 LEU A 565 24.769 18.194 21.290 1.00 45.02 A C
    ATOM 570 CD2 LEU A 565 26.853 18.128 22.703 1.00 48.14 A C
    ATOM 571 C LEU A 565 24.384 19.323 26.131 1.00 34.92 A C
    ATOM 572 O LEU A 565 23.209 19.217 26.442 1.00 39.73 A O
    ATOM 573 N ASN A 566 25.169 20.281 26.610 1.00 35.34 A N
    ATOM 574 CA ASN A 566 24.633 21.358 27.443 1.00 39.72 A C
    ATOM 575 CB ASN A 566 25.761 22.065 28.194 1.00 47.83 A C
    ATOM 576 CG ASN A 566 26.303 21.245 29.356 1.00 54.40 A C
    ATOM 577 OD1 ASN A 566 25.550 20.864 30.252 1.00 57.20 A O
    ATOM 578 ND2 ASN A 566 27.620 20.980 29.353 1.00 55.33 A N
    ATOM 579 C ASN A 566 23.839 22.362 26.601 1.00 38.42 A C
    ATOM 580 O ASN A 566 24.045 22.464 25.398 1.00 40.20 A O
    ATOM 581 N VAL A 567 22.928 23.099 27.217 1.00 37.71 A N
    ATOM 582 CA VAL A 567 22.124 24.045 26.456 1.00 42.36 A C
    ATOM 583 CB VAL A 567 20.658 24.000 26.886 1.00 44.62 A C
    ATOM 584 CG1 VAL A 567 19.933 25.232 26.408 1.00 45.19 A C
    ATOM 585 CG2 VAL A 567 19.974 22.736 26.339 1.00 47.75 A C
    ATOM 586 C VAL A 567 22.662 25.460 26.616 1.00 48.80 A C
    ATOM 587 O VAL A 567 22.792 25.953 27.742 1.00 56.77 A O
    ATOM 588 N SER A 568 22.958 26.118 25.496 1.00 47.82 A N
    ATOM 589 CA SER A 568 23.579 27.444 25.531 1.00 45.87 A C
    ATOM 590 CB SER A 568 24.660 27.547 24.465 1.00 48.47 A C
    ATOM 591 OG SER A 568 24.078 27.925 23.233 1.00 53.38 A O
    ATOM 592 C SER A 568 22.613 28.622 25.378 1.00 42.18 A C
    ATOM 593 O SER A 568 22.913 29.727 25.817 1.00 43.85 A O
    ATOM 594 N GLN A 569 21.471 28.397 24.745 1.00 38.76 A N
    ATOM 595 CA GLN A 569 20.524 29.476 24.495 1.00 39.06 A C
    ATOM 596 CB GLN A 569 20.852 30.165 23.176 1.00 45.06 A C
    ATOM 597 CG GLN A 569 21.818 31.327 23.243 1.00 50.32 A C
    ATOM 598 CD GLN A 569 22.452 31.614 21.888 1.00 51.10 A C
    ATOM 599 OE1 GLN A 569 23.693 31.665 21.757 1.00 48.40 A O
    ATOM 600 NE2 GLN A 569 21.603 31.787 20.870 1.00 49.35 A N
    ATOM 601 C GLN A 569 19.086 28.985 24.391 1.00 37.54 A C
    ATOM 602 O GLN A 569 18.804 27.889 23.871 1.00 34.48 A O
    ATOM 603 N LEU A 570 18.175 29.826 24.855 1.00 33.79 A N
    ATOM 604 CA LEU A 570 16.754 29.603 24.661 1.00 34.68 A C
    ATOM 605 CB LEU A 570 16.050 29.567 26.008 1.00 31.54 A C
    ATOM 606 CG LEU A 570 15.741 28.169 26.504 1.00 38.19 A C
    ATOM 607 CD1 LEU A 570 16.987 27.329 26.642 1.00 37.37 A C
    ATOM 608 CD2 LEU A 570 15.009 28.238 27.826 1.00 43.38 A C
    ATOM 609 C LEU A 570 16.227 30.764 23.838 1.00 39.24 A C
    ATOM 610 O LEU A 570 16.413 31.928 24.209 1.00 46.68 A O
    ATOM 611 N VAL A 571 15.605 30.490 22.700 1.00 36.53 A N
    ATOM 612 CA VAL A 571 15.016 31.598 21.971 1.00 31.35 A C
    ATOM 613 CB VAL A 571 15.680 31.835 20.589 1.00 26.55 A C
    ATOM 614 CG1 VAL A 571 15.038 33.029 19.908 1.00 25.85 A C
    ATOM 615 CG2 VAL A 571 17.181 32.066 20.725 1.00 16.87 A C
    ATOM 616 C VAL A 571 13.541 31.310 21.851 1.00 32.50 A C
    ATOM 617 O VAL A 571 13.157 30.403 21.118 1.00 37.07 A O
    ATOM 618 N TYR A 572 12.726 32.048 22.602 1.00 34.10 A N
    ATOM 619 CA TYR A 572 11.272 31.849 22.600 1.00 40.89 A C
    ATOM 620 CB TYR A 572 10.615 32.516 23.822 1.00 39.82 A C
    ATOM 621 CG TYR A 572 10.908 31.851 25.151 1.00 42.43 A C
    ATOM 622 CD1 TYR A 572 12.195 31.865 25.682 1.00 47.25 A C
    ATOM 623 CE1 TYR A 572 12.481 31.252 26.903 1.00 47.44 A C
    ATOM 624 CZ TYR A 572 11.466 30.625 27.612 1.00 47.09 A C
    ATOM 625 OH TYR A 572 11.778 30.030 28.819 1.00 49.58 A O
    ATOM 626 CE2 TYR A 572 10.167 30.603 27.113 1.00 44.22 A C
    ATOM 627 CD2 TYR A 572 9.898 31.216 25.886 1.00 43.00 A C
    ATOM 628 C TYR A 572 10.692 32.432 21.307 1.00 46.28 A C
    ATOM 629 O TYR A 572 11.125 33.505 20.854 1.00 48.74 A O
    ATOM 630 N GLY A 573 9.727 31.731 20.710 1.00 43.96 A N
    ATOM 631 CA GLY A 573 9.081 32.215 19.500 1.00 44.58 A C
    ATOM 632 C GLY A 573 7.976 33.201 19.824 1.00 47.16 A C
    ATOM 633 O GLY A 573 7.668 33.398 20.991 1.00 48.67 A O
    ATOM 634 N PRO A 574 7.371 33.793 18.793 1.00 47.15 A N
    ATOM 635 CA PRO A 574 6.301 34.802 18.916 1.00 48.36 A C
    ATOM 636 CB PRO A 574 5.575 34.658 17.599 1.00 44.73 A C
    ATOM 637 CG PRO A 574 6.678 34.358 16.654 1.00 47.04 A C
    ATOM 638 CD PRO A 574 7.703 33.524 17.384 1.00 45.01 A C
    ATOM 639 C PRO A 574 5.298 34.620 20.045 1.00 55.13 A C
    ATOM 640 O PRO A 574 5.043 33.489 20.451 1.00 58.51 A O
    ATOM 641 N GLU A 575 4.714 35.728 20.501 1.00 63.03 A N
    ATOM 642 CA GLU A 575 3.846 35.761 21.684 1.00 72.31 A C
    ATOM 643 CB GLU A 575 3.172 37.131 21.825 1.00 82.86 A C
    ATOM 644 CG GLU A 575 2.901 37.549 23.272 1.00 96.88 A C
    ATOM 645 CD GLU A 575 1.466 38.025 23.498 1.00 106.66 A C
    ATOM 646 OE1 GLU A 575 1.117 39.114 22.971 1.00 110.29 A O
    ATOM 647 OE2 GLU A 575 0.686 37.317 24.198 1.00 108.80 A O
    ATOM 648 C GLU A 575 2.803 34.646 21.752 1.00 73.37 A C
    ATOM 649 O GLU A 575 2.685 33.953 22.773 1.00 75.73 A O
    ATOM 650 N GLY A 576 2.055 34.466 20.669 1.00 72.32 A N
    ATOM 651 CA GLY A 576 1.073 33.397 20.599 1.00 72.86 A C
    ATOM 652 C GLY A 576 1.612 31.997 20.886 1.00 69.25 A C
    ATOM 653 O GLY A 576 1.072 31.285 21.730 1.00 71.38 A O
    ATOM 654 N SER A 577 2.688 31.626 20.194 1.00 64.77 A N
    ATOM 655 CA SER A 577 3.167 30.247 20.118 1.00 59.78 A C
    ATOM 656 CB SER A 577 4.297 30.122 19.078 1.00 55.51 A C
    ATOM 657 OG SER A 577 5.485 30.795 19.464 1.00 45.00 A O
    ATOM 658 C SER A 577 3.665 29.720 21.443 1.00 61.46 A C
    ATOM 659 O SER A 577 3.946 30.494 22.368 1.00 65.82 A O
    ATOM 660 N ASP A 578 3.774 28.397 21.530 1.00 54.85 A N
    ATOM 661 CA ASP A 578 4.485 27.800 22.638 1.00 47.81 A C
    ATOM 662 CB ASP A 578 3.616 26.766 23.371 1.00 50.27 A C
    ATOM 663 CG ASP A 578 2.324 27.373 23.933 1.00 53.63 A C
    ATOM 664 OD1 ASP A 578 2.383 28.234 24.849 1.00 52.49 A O
    ATOM 665 OD2 ASP A 578 1.197 27.053 23.501 1.00 56.11 A O
    ATOM 666 C ASP A 578 5.784 27.212 22.119 1.00 43.41 A C
    ATOM 667 O ASP A 578 6.335 26.294 22.707 1.00 47.68 A O
    ATOM 668 N LEU A 579 6.273 27.751 21.010 1.00 39.96 A N
    ATOM 669 CA LEU A 579 7.542 27.309 20.438 1.00 43.17 A C
    ATOM 670 CB LEU A 579 7.651 27.727 18.968 1.00 40.90 A C
    ATOM 671 CG LEU A 579 6.831 26.942 17.947 1.00 43.06 A C
    ATOM 672 CD1 LEU A 579 7.406 27.120 16.571 1.00 39.25 A C
    ATOM 673 CD2 LEU A 579 6.717 25.446 18.311 1.00 45.29 A C
    ATOM 674 C LEU A 579 8.716 27.910 21.188 1.00 47.30 A C
    ATOM 675 O LEU A 579 8.645 29.065 21.622 1.00 57.38 A O
    ATOM 676 N VAL A 580 9.794 27.142 21.342 1.00 41.85 A N
    ATOM 677 CA VAL A 580 11.087 27.720 21.722 1.00 39.69 A C
    ATOM 678 CB VAL A 580 11.323 27.831 23.266 1.00 38.42 A C
    ATOM 679 CG1 VAL A 580 10.460 26.871 24.001 1.00 37.78 A C
    ATOM 680 CG2 VAL A 580 12.810 27.613 23.628 1.00 38.21 A C
    ATOM 681 C VAL A 580 12.200 26.952 21.057 1.00 37.51 A C
    ATOM 682 O VAL A 580 12.176 25.729 21.030 1.00 40.20 A O
    ATOM 683 N LEU A 581 13.159 27.691 20.511 1.00 35.83 A N
    ATOM 684 CA LEU A 581 14.315 27.111 19.859 1.00 35.33 A C
    ATOM 685 CB LEU A 581 14.664 27.906 18.605 1.00 34.56 A C
    ATOM 686 CG LEU A 581 13.805 27.569 17.393 1.00 34.36 A C
    ATOM 687 CD1 LEU A 581 13.948 28.631 16.319 1.00 34.77 A C
    ATOM 688 CD2 LEU A 581 14.208 26.222 16.862 1.00 34.20 A C
    ATOM 689 C LEU A 581 15.503 27.060 20.806 1.00 36.62 A C
    ATOM 690 O LEU A 581 15.945 28.092 21.337 1.00 37.07 A O
    ATOM 691 N MET A 582 16.014 25.847 20.991 1.00 33.93 A N
    ATOM 692 CA MET A 582 17.113 25.569 21.898 1.00 36.12 A C
    ATOM 693 CB MET A 582 16.844 24.225 22.551 1.00 37.17 A C
    ATOM 694 CG MET A 582 17.334 24.040 23.963 1.00 38.27 A C
    ATOM 695 SD MET A 582 16.405 22.691 24.755 1.00 44.57 A S
    ATOM 696 CE MET A 582 16.599 21.366 23.601 1.00 41.92 A C
    ATOM 697 C MET A 582 18.433 25.486 21.139 1.00 39.39 A C
    ATOM 698 O MET A 582 18.565 24.668 20.220 1.00 41.71 A O
    ATOM 699 N LYS A 583 19.406 26.320 21.516 1.00 40.97 A N
    ATOM 700 CA LYS A 583 20.788 26.203 21.001 1.00 40.86 A C
    ATOM 701 CB LYS A 583 21.488 27.576 20.892 1.00 37.40 A C
    ATOM 702 CG LYS A 583 22.197 27.812 19.560 1.00 39.18 A C
    ATOM 703 CD LYS A 583 23.728 27.624 19.622 1.00 42.16 A C
    ATOM 704 CE LYS A 583 24.496 28.615 18.693 1.00 39.55 A C
    ATOM 705 NZ LYS A 583 25.333 29.620 19.428 1.00 34.06 A N
    ATOM 706 C LYS A 583 21.601 25.311 21.925 1.00 39.35 A C
    ATOM 707 O LYS A 583 21.647 25.552 23.140 1.00 42.05 A O
    ATOM 708 N LEU A 584 22.238 24.284 21.377 1.00 34.24 A N
    ATOM 709 CA LEU A 584 23.117 23.471 22.213 1.00 38.37 A C
    ATOM 710 CB LEU A 584 22.919 21.977 21.963 1.00 35.18 A C
    ATOM 711 CG LEU A 584 22.189 21.527 20.706 1.00 32.63 A C
    ATOM 712 CD1 LEU A 584 23.174 21.472 19.551 1.00 33.30 A C
    ATOM 713 CD2 LEU A 584 21.544 20.166 20.929 1.00 25.36 A C
    ATOM 714 C LEU A 584 24.591 23.883 22.092 1.00 43.10 A C
    ATOM 715 O LEU A 584 25.049 24.272 21.014 1.00 46.68 A O
    ATOM 716 N ALA A 585 25.317 23.809 23.208 1.00 46.13 A N
    ATOM 717 CA ALA A 585 26.678 24.344 23.300 1.00 53.33 A C
    ATOM 718 CB ALA A 585 27.050 24.598 24.763 1.00 54.74 A C
    ATOM 719 C ALA A 585 27.723 23.449 22.628 1.00 57.39 A C
    ATOM 720 O ALA A 585 28.535 22.822 23.311 1.00 62.76 A O
    ATOM 721 N ARG A 586 27.717 23.444 21.294 1.00 55.41 A N
    ATOM 722 CA ARG A 586 28.465 22.506 20.456 1.00 53.60 A C
    ATOM 723 CB ARG A 586 29.282 21.491 21.273 1.00 60.66 A C
    ATOM 724 CG ARG A 586 29.413 20.068 20.657 1.00 69.53 A C
    ATOM 725 CD ARG A 586 30.358 19.105 21.403 1.00 77.97 A C
    ATOM 726 NE ARG A 586 31.213 19.811 22.367 1.00 86.84 A N
    ATOM 727 CZ ARG A 586 31.276 19.544 23.671 1.00 90.03 A C
    ATOM 728 NH1 ARG A 586 30.543 18.561 24.187 1.00 92.95 A N
    ATOM 729 NH2 ARG A 586 32.074 20.259 24.461 1.00 88.53 A N
    ATOM 730 C ARG A 586 27.416 21.776 19.669 1.00 50.51 A C
    ATOM 731 O ARG A 586 26.431 21.325 20.260 1.00 51.03 A O
    ATOM 732 N PRO A 587 27.602 21.660 18.351 1.00 48.26 A N
    ATOM 733 CA PRO A 587 26.690 20.896 17.504 1.00 51.39 A C
    ATOM 734 CB PRO A 587 27.310 21.057 16.113 1.00 46.83 A C
    ATOM 735 CG PRO A 587 27.984 22.297 16.190 1.00 43.63 A C
    ATOM 736 CD PRO A 587 28.665 22.255 17.536 1.00 46.48 A C
    ATOM 737 C PRO A 587 26.627 19.418 17.865 1.00 53.08 A C
    ATOM 738 O PRO A 587 27.610 18.847 18.349 1.00 58.56 A O
    ATOM 739 N ALA A 588 25.466 18.819 17.639 1.00 48.21 A N
    ATOM 740 CA ALA A 588 25.363 17.377 17.609 1.00 51.17 A C
    ATOM 741 CB ALA A 588 23.919 16.960 17.465 1.00 56.53 A C
    ATOM 742 C ALA A 588 26.166 16.883 16.422 1.00 52.04 A C
    ATOM 743 O ALA A 588 26.262 17.561 15.389 1.00 52.47 A O
    ATOM 744 N VAL A 589 26.760 15.709 16.576 1.00 52.26 A N
    ATOM 745 CA VAL A 589 27.524 15.106 15.496 1.00 51.82 A C
    ATOM 746 CB VAL A 589 28.839 14.523 16.031 1.00 52.02 A C
    ATOM 747 CG1 VAL A 589 29.159 13.154 15.413 1.00 52.14 A C
    ATOM 748 CG2 VAL A 589 29.965 15.527 15.798 1.00 55.27 A C
    ATOM 749 C VAL A 589 26.626 14.065 14.848 1.00 49.96 A C
    ATOM 750 O VAL A 589 26.070 13.211 15.540 1.00 48.25 A O
    ATOM 751 N LEU A 590 26.451 14.151 13.532 1.00 47.38 A N
    ATOM 752 CA LEU A 590 25.423 13.340 12.883 1.00 45.62 A C
    ATOM 753 CB LEU A 590 24.685 14.125 11.789 1.00 41.44 A C
    ATOM 754 CG LEU A 590 24.303 15.586 12.053 1.00 40.18 A C
    ATOM 755 CD1 LEU A 590 23.703 16.257 10.818 1.00 38.93 A C
    ATOM 756 CD2 LEU A 590 23.344 15.693 13.217 1.00 41.47 A C
    ATOM 757 C LEU A 590 25.933 12.006 12.351 1.00 49.38 A C
    ATOM 758 O LEU A 590 26.514 11.935 11.270 1.00 53.92 A O
    ATOM 759 N ASP A 591 25.731 10.948 13.124 1.00 51.83 A N
    ATOM 760 CA ASP A 591 25.926 9.608 12.597 1.00 58.39 A C
    ATOM 761 CB ASP A 591 26.476 8.634 13.657 1.00 61.53 A C
    ATOM 762 CG ASP A 591 26.002 8.950 15.068 1.00 66.29 A C
    ATOM 763 OD1 ASP A 591 24.841 9.389 15.249 1.00 69.83 A O
    ATOM 764 OD2 ASP A 591 26.728 8.769 16.068 1.00 67.55 A O
    ATOM 765 C ASP A 591 24.608 9.112 12.009 1.00 61.73 A C
    ATOM 766 O ASP A 591 23.817 9.898 11.466 1.00 60.56 A O
    ATOM 767 N ASP A 592 24.385 7.806 12.120 1.00 65.41 A N
    ATOM 768 CA ASP A 592 23.149 7.182 11.686 1.00 66.25 A C
    ATOM 769 CB ASP A 592 23.412 5.723 11.323 1.00 70.88 A C
    ATOM 770 CG ASP A 592 24.441 5.578 10.196 1.00 76.70 A C
    ATOM 771 OD1 ASP A 592 24.462 4.512 9.539 1.00 76.48 A O
    ATOM 772 OD2 ASP A 592 25.270 6.475 9.893 1.00 79.23 A O
    ATOM 773 C ASP A 592 22.115 7.295 12.790 1.00 65.00 A C
    ATOM 774 O ASP A 592 20.915 7.302 12.529 1.00 69.47 A O
    ATOM 775 N PHE A 593 22.591 7.416 14.023 1.00 60.82 A N
    ATOM 776 CA PHE A 593 21.724 7.541 15.187 1.00 57.43 A C
    ATOM 777 CB PHE A 593 22.426 6.945 16.393 1.00 58.58 A C
    ATOM 778 CG PHE A 593 22.879 5.555 16.160 1.00 64.33 A C
    ATOM 779 CD1 PHE A 593 24.232 5.255 16.095 1.00 67.61 A C
    ATOM 780 CE1 PHE A 593 24.658 3.949 15.847 1.00 72.30 A C
    ATOM 781 CZ PHE A 593 23.706 2.924 15.645 1.00 73.94 A C
    ATOM 782 CE2 PHE A 593 22.342 3.222 15.695 1.00 71.33 A C
    ATOM 783 CD2 PHE A 593 21.941 4.539 15.943 1.00 68.72 A C
    ATOM 784 C PHE A 593 21.247 8.966 15.460 1.00 55.48 A C
    ATOM 785 O PHE A 593 20.196 9.182 16.089 1.00 58.42 A O
    ATOM 786 N VAL A 594 22.002 9.943 14.979 1.00 46.31 A N
    ATOM 787 CA VAL A 594 21.563 11.314 15.107 1.00 42.48 A C
    ATOM 788 CB VAL A 594 22.511 12.101 16.006 1.00 39.97 A C
    ATOM 789 CG1 VAL A 594 22.170 13.566 15.996 1.00 41.29 A C
    ATOM 790 CG2 VAL A 594 22.421 11.576 17.418 1.00 39.95 A C
    ATOM 791 C VAL A 594 21.365 11.966 13.739 1.00 45.57 A C
    ATOM 792 O VAL A 594 22.298 12.067 12.937 1.00 51.69 A O
    ATOM 793 N SER A 595 20.130 12.382 13.473 1.00 44.40 A N
    ATOM 794 CA SER A 595 19.777 13.041 12.214 1.00 46.13 A C
    ATOM 795 CB SER A 595 19.079 12.046 11.258 1.00 48.36 A C
    ATOM 796 OG SER A 595 17.667 11.921 11.450 1.00 42.75 A O
    ATOM 797 C SER A 595 18.901 14.258 12.486 1.00 46.72 A C
    ATOM 798 O SER A 595 18.242 14.322 13.521 1.00 53.75 A O
    ATOM 799 N THR A 596 18.892 15.227 11.581 1.00 40.90 A N
    ATOM 800 CA THR A 596 17.956 16.337 11.720 1.00 39.67 A C
    ATOM 801 CB THR A 596 18.517 17.621 11.097 1.00 44.54 A C
    ATOM 802 OG1 THR A 596 18.456 17.514 9.664 1.00 46.83 A O
    ATOM 803 CG2 THR A 596 20.006 17.800 11.412 1.00 44.46 A C
    ATOM 804 C THR A 596 16.683 15.984 10.990 1.00 35.98 A C
    ATOM 805 O THR A 596 16.735 15.238 10.024 1.00 39.34 A O
    ATOM 806 N ILE A 597 15.550 16.533 11.421 1.00 33.54 A N
    ATOM 807 CA ILE A 597 14.320 16.452 10.617 1.00 36.14 A C
    ATOM 808 CB ILE A 597 13.059 16.214 11.492 1.00 34.21 A C
    ATOM 809 CG1 ILE A 597 11.823 16.072 10.603 1.00 37.04 A C
    ATOM 810 CD1 ILE A 597 10.913 14.943 10.975 1.00 41.42 A C
    ATOM 811 CG2 ILE A 597 12.842 17.358 12.464 1.00 32.87 A C
    ATOM 812 C ILE A 597 14.132 17.669 9.681 1.00 36.20 A C
    ATOM 813 O ILE A 597 14.605 18.768 9.974 1.00 39.83 A O
    ATOM 814 N ASP A 598 13.444 17.466 8.559 1.00 33.50 A N
    ATOM 815 CA ASP A 598 13.169 18.555 7.632 1.00 38.28 A C
    ATOM 816 CB ASP A 598 12.742 18.014 6.258 1.00 48.59 A C
    ATOM 817 CG ASP A 598 13.926 17.791 5.298 1.00 57.53 A C
    ATOM 818 OD1 ASP A 598 15.099 17.784 5.742 1.00 62.59 A O
    ATOM 819 OD2 ASP A 598 13.772 17.607 4.067 1.00 60.83 A O
    ATOM 820 C ASP A 598 12.094 19.456 8.227 1.00 35.55 A C
    ATOM 821 O ASP A 598 11.575 19.162 9.294 1.00 35.49 A O
    ATOM 822 N LEU A 599 11.774 20.550 7.538 1.00 34.01 A N
    ATOM 823 CA LEU A 599 10.771 21.514 7.981 1.00 30.60 A C
    ATOM 824 CB LEU A 599 11.468 22.770 8.469 1.00 30.58 A C
    ATOM 825 CG LEU A 599 11.894 23.007 9.904 1.00 31.49 A C
    ATOM 826 CD1 LEU A 599 12.389 24.428 9.975 1.00 33.85 A C
    ATOM 827 CD2 LEU A 599 10.752 22.828 10.850 1.00 34.76 A C
    ATOM 828 C LEU A 599 9.929 21.917 6.785 1.00 31.69 A C
    ATOM 829 O LEU A 599 10.417 21.832 5.664 1.00 36.90 A O
    ATOM 830 N PRO A 600 8.705 22.405 7.000 1.00 31.33 A N
    ATOM 831 CA PRO A 600 7.858 22.898 5.906 1.00 35.28 A C
    ATOM 832 CB PRO A 600 6.507 23.062 6.581 1.00 29.03 A C
    ATOM 833 CG PRO A 600 6.634 22.344 7.838 1.00 29.28 A C
    ATOM 834 CD PRO A 600 8.019 22.535 8.290 1.00 30.60 A C
    ATOM 835 C PRO A 600 8.289 24.265 5.340 1.00 44.44 A C
    ATOM 836 O PRO A 600 9.114 24.967 5.946 1.00 45.45 A O
    ATOM 837 N ASN A 601 7.740 24.626 4.176 1.00 48.63 A N
    ATOM 838 CA ASN A 601 7.846 25.994 3.658 1.00 49.79 A C
    ATOM 839 CB ASN A 601 7.684 26.017 2.141 1.00 54.84 A C
    ATOM 840 CG ASN A 601 9.009 26.081 1.424 1.00 60.02 A C
    ATOM 841 OD1 ASN A 601 9.924 25.301 1.715 1.00 62.59 A O
    ATOM 842 ND2 ASN A 601 9.132 27.017 0.485 1.00 61.65 A N
    ATOM 843 C ASN A 601 6.797 26.881 4.316 1.00 46.76 A C
    ATOM 844 O ASN A 601 5.729 26.396 4.691 1.00 48.29 A O
    ATOM 845 N TYR A 602 7.089 28.172 4.453 1.00 41.68 A N
    ATOM 846 CA TYR A 602 6.260 29.049 5.275 1.00 38.41 A C
    ATOM 847 CB TYR A 602 6.682 30.523 5.147 1.00 38.69 A C
    ATOM 848 CG TYR A 602 5.668 31.503 5.700 1.00 40.48 A C
    ATOM 849 CD1 TYR A 602 5.116 31.332 6.968 1.00 45.45 A C
    ATOM 850 CE1 TYR A 602 4.169 32.218 7.469 1.00 48.45 A C
    ATOM 851 CZ TYR A 602 3.774 33.291 6.698 1.00 48.94 A C
    ATOM 852 OH TYR A 602 2.842 34.166 7.192 1.00 56.21 A O
    ATOM 853 CE2 TYR A 602 4.305 33.487 5.443 1.00 44.43 A C
    ATOM 854 CD2 TYR A 602 5.246 32.591 4.950 1.00 42.93 A C
    ATOM 855 C TYR A 602 4.752 28.872 5.055 1.00 40.51 A C
    ATOM 856 O TYR A 602 4.026 28.531 5.988 1.00 43.26 A O
    ATOM 857 N GLY A 603 4.277 29.079 3.833 1.00 42.23 A N
    ATOM 858 CA GLY A 603 2.839 29.087 3.583 1.00 43.75 A C
    ATOM 859 C GLY A 603 2.105 27.749 3.576 1.00 42.17 A C
    ATOM 860 O GLY A 603 0.885 27.712 3.750 1.00 41.68 A O
    ATOM 861 N SER A 604 2.860 26.666 3.399 1.00 40.29 A N
    ATOM 862 CA SER A 604 2.350 25.319 3.121 1.00 39.35 A C
    ATOM 863 CB SER A 604 3.489 24.308 3.264 1.00 36.47 A C
    ATOM 864 OG SER A 604 4.073 24.379 4.548 1.00 32.06 A O
    ATOM 865 C SER A 604 1.132 24.815 3.900 1.00 43.44 A C
    ATOM 866 O SER A 604 0.886 25.206 5.043 1.00 44.15 A O
    ATOM 867 N THR A 605 0.376 23.933 3.249 1.00 49.57 A N
    ATOM 868 CA THR A 605 −0.707 23.190 3.891 1.00 54.12 A C
    ATOM 869 CB THR A 605 −2.016 23.296 3.074 1.00 53.99 A C
    ATOM 870 OG1 THR A 605 −1.719 23.660 1.715 1.00 50.74 A O
    ATOM 871 CG2 THR A 605 −2.905 24.422 3.618 1.00 53.92 A C
    ATOM 872 C THR A 605 −0.327 21.717 4.016 1.00 55.98 A C
    ATOM 873 O THR A 605 0.789 21.317 3.662 1.00 59.51 A O
    ATOM 874 N ILE A 606 −1.259 20.925 4.545 1.00 51.78 A N
    ATOM 875 CA ILE A 606 −1.223 19.465 4.436 1.00 46.91 A C
    ATOM 876 CB ILE A 606 −0.730 18.770 5.719 1.00 43.94 A C
    ATOM 877 CG1 ILE A 606 −0.568 19.764 6.889 1.00 52.16 A C
    ATOM 878 CD1 ILE A 606 −1.883 20.487 7.367 1.00 55.17 A C
    ATOM 879 CG2 ILE A 606 0.531 17.972 5.410 1.00 35.80 A C
    ATOM 880 C ILE A 606 −2.621 18.970 4.105 1.00 46.21 A C
    ATOM 881 O ILE A 606 −3.602 19.485 4.653 1.00 49.11 A O
    ATOM 882 N PRO A 607 −2.721 17.976 3.224 1.00 40.22 A N
    ATOM 883 CA PRO A 607 −4.022 17.440 2.854 1.00 38.66 A C
    ATOM 884 CB PRO A 607 −3.695 16.531 1.678 1.00 40.37 A C
    ATOM 885 CG PRO A 607 −2.274 16.854 1.306 1.00 39.77 A C
    ATOM 886 CD PRO A 607 −1.623 17.263 2.547 1.00 38.08 A C
    ATOM 887 C PRO A 607 −4.561 16.628 4.020 1.00 42.73 A C
    ATOM 888 O PRO A 607 −3.782 16.103 4.830 1.00 39.65 A O
    ATOM 889 N GLU A 608 −5.884 16.539 4.114 1.00 48.15 A N
    ATOM 890 CA GLU A 608 −6.518 15.771 5.178 1.00 50.92 A C
    ATOM 891 CB GLU A 608 −8.026 15.990 5.172 1.00 57.50 A C
    ATOM 892 CG GLU A 608 −8.539 16.639 6.442 1.00 66.78 A C
    ATOM 893 CD GLU A 608 −9.840 17.392 6.234 1.00 75.65 A C
    ATOM 894 OE1 GLU A 608 −10.170 17.712 5.066 1.00 77.06 A O
    ATOM 895 OE2 GLU A 608 −10.537 17.664 7.243 1.00 80.92 A O
    ATOM 896 C GLU A 608 −6.194 14.288 5.060 1.00 46.92 A C
    ATOM 897 O GLU A 608 −5.885 13.787 3.981 1.00 45.35 A O
    ATOM 898 N LYS A 609 −6.256 13.594 6.187 1.00 45.44 A N
    ATOM 899 CA LYS A 609 −5.980 12.165 6.245 1.00 46.36 A C
    ATOM 900 CB LYS A 609 −7.001 11.366 5.423 1.00 49.56 A C
    ATOM 901 CG LYS A 609 −8.251 10.957 6.197 1.00 57.13 A C
    ATOM 902 CD LYS A 609 −9.444 11.878 5.894 1.00 63.83 A C
    ATOM 903 CE LYS A 609 −10.740 11.083 5.628 1.00 68.12 A C
    ATOM 904 NZ LYS A 609 −10.818 10.437 4.264 1.00 68.00 A N
    ATOM 905 C LYS A 609 −4.559 11.829 5.823 1.00 44.97 A C
    ATOM 906 O LYS A 609 −4.269 10.687 5.485 1.00 47.16 A O
    ATOM 907 N THR A 610 −3.676 12.822 5.837 1.00 45.02 A N
    ATOM 908 CA THR A 610 −2.257 12.558 5.646 1.00 45.55 A C
    ATOM 909 CB THR A 610 −1.477 13.849 5.416 1.00 44.23 A C
    ATOM 910 OG1 THR A 610 −1.966 14.493 4.233 1.00 44.60 A O
    ATOM 911 CG2 THR A 610 −0.043 13.519 5.053 1.00 45.14 A C
    ATOM 912 C THR A 610 −1.768 11.862 6.894 1.00 45.88 A C
    ATOM 913 O THR A 610 −2.047 12.321 8.000 1.00 50.74 A O
    ATOM 914 N SER A 611 −1.064 10.749 6.730 1.00 44.73 A N
    ATOM 915 CA SER A 611 −0.715 9.928 7.885 1.00 48.38 A C
    ATOM 916 CB SER A 611 −0.485 8.475 7.476 1.00 53.73 A C
    ATOM 917 OG SER A 611 0.802 8.291 6.929 1.00 59.49 A O
    ATOM 918 C SER A 611 0.487 10.489 8.618 1.00 46.61 A C
    ATOM 919 O SER A 611 1.387 11.030 7.990 1.00 48.47 A O
    ATOM 920 N CYS A 612 0.487 10.368 9.945 1.00 44.70 A N
    ATOM 921 CA CYS A 612 1.511 10.980 10.790 1.00 42.57 A C
    ATOM 922 CB CYS A 612 1.011 12.319 11.297 1.00 44.39 A C
    ATOM 923 SG CYS A 612 0.540 13.427 9.985 1.00 51.77 A S
    ATOM 924 C CYS A 612 1.878 10.150 12.004 1.00 41.16 A C
    ATOM 925 O CYS A 612 1.229 9.172 12.316 1.00 43.24 A O
    ATOM 926 N SER A 613 2.909 10.577 12.717 1.00 42.06 A N
    ATOM 927 CA SER A 613 3.273 9.956 13.985 1.00 40.39 A C
    ATOM 928 CB SER A 613 4.427 8.982 13.785 1.00 39.56 A C
    ATOM 929 OG SER A 613 4.162 8.149 12.669 1.00 43.63 A O
    ATOM 930 C SER A 613 3.654 10.986 15.028 1.00 38.90 A C
    ATOM 931 O SER A 613 4.210 12.038 14.685 1.00 40.20 A O
    ATOM 932 N VAL A 614 3.315 10.696 16.288 1.00 36.87 A N
    ATOM 933 CA VAL A 614 3.922 11.384 17.432 1.00 35.60 A C
    ATOM 934 CB VAL A 614 2.895 11.967 18.458 1.00 33.11 A C
    ATOM 935 CG1 VAL A 614 2.072 13.070 17.828 1.00 35.92 A C
    ATOM 936 CG2 VAL A 614 1.993 10.919 18.999 1.00 29.73 A C
    ATOM 937 C VAL A 614 4.904 10.424 18.092 1.00 36.63 A C
    ATOM 938 O VAL A 614 4.769 9.195 17.954 1.00 37.34 A O
    ATOM 939 N TYR A 615 5.907 10.981 18.770 1.00 33.21 A N
    ATOM 940 CA TYR A 615 6.951 10.172 19.389 1.00 34.27 A C
    ATOM 941 CB TYR A 615 8.215 10.242 18.564 1.00 33.61 A C
    ATOM 942 CG TYR A 615 8.110 9.650 17.205 1.00 33.31 A C
    ATOM 943 CD1 TYR A 615 8.583 8.383 16.944 1.00 37.92 A C
    ATOM 944 CE1 TYR A 615 8.514 7.853 15.677 1.00 40.92 A C
    ATOM 945 CZ TYR A 615 7.967 8.601 14.669 1.00 39.71 A C
    ATOM 946 OH TYR A 615 7.864 8.108 13.404 1.00 44.92 A O
    ATOM 947 CE2 TYR A 615 7.503 9.850 14.911 1.00 37.86 A C
    ATOM 948 CD2 TYR A 615 7.583 10.372 16.169 1.00 35.59 A C
    ATOM 949 C TYR A 615 7.298 10.644 20.787 1.00 35.76 A C
    ATOM 950 O TYR A 615 7.390 11.852 21.038 1.00 43.10 A O
    ATOM 951 N GLY A 616 7.547 9.721 21.703 1.00 34.06 A N
    ATOM 952 CA GLY A 616 7.847 10.190 23.040 1.00 45.60 A C
    ATOM 953 C GLY A 616 8.214 9.200 24.107 1.00 46.49 A C
    ATOM 954 O GLY A 616 7.930 8.010 23.969 1.00 55.54 A O
    ATOM 955 N TRP A 617 8.862 9.709 25.158 1.00 38.09 A N
    ATOM 956 CA TRP A 617 9.119 8.936 26.365 1.00 33.79 A C
    ATOM 957 CB TRP A 617 10.556 9.111 26.803 1.00 37.43 A C
    ATOM 958 CG TRP A 617 11.561 8.530 25.883 1.00 38.24 A C
    ATOM 959 CD1 TRP A 617 11.946 7.242 25.830 1.00 38.92 A C
    ATOM 960 NE1 TRP A 617 12.920 7.077 24.877 1.00 41.68 A N
    ATOM 961 CE2 TRP A 617 13.179 8.283 24.288 1.00 36.78 A C
    ATOM 962 CD2 TRP A 617 12.349 9.227 24.905 1.00 39.06 A C
    ATOM 963 CE3 TRP A 617 12.431 10.559 24.480 1.00 41.65 A C
    ATOM 964 CZ3 TRP A 617 13.336 10.889 23.459 1.00 37.19 A C
    ATOM 965 CH2 TRP A 617 14.131 9.922 22.881 1.00 34.06 A C
    ATOM 966 CZ2 TRP A 617 14.067 8.614 23.277 1.00 33.68 A C
    ATOM 967 C TRP A 617 8.194 9.320 27.523 1.00 30.56 A C
    ATOM 968 O TRP A 617 8.397 8.881 28.652 1.00 29.70 A O
    ATOM 969 N GLY A 618 7.188 10.147 27.242 1.00 29.36 A N
    ATOM 970 CA GLY A 618 6.196 10.533 28.231 1.00 27.68 A C
    ATOM 971 C GLY A 618 5.273 9.372 28.607 1.00 32.48 A C
    ATOM 972 O GLY A 618 5.533 8.204 28.256 1.00 40.20 A O
    ATOM 973 N TYR A 619 4.168 9.700 29.271 1.00 23.28 A N
    ATOM 974 CA TYR A 619 3.399 8.745 30.055 1.00 22.13 A C
    ATOM 975 CB TYR A 619 2.421 9.542 30.897 1.00 26.82 A C
    ATOM 976 CG TYR A 619 1.203 8.858 31.444 1.00 25.77 A C
    ATOM 977 CD1 TYR A 619 0.003 8.928 30.787 1.00 32.29 A C
    ATOM 978 CE1 TYR A 619 −1.132 8.335 31.302 1.00 34.56 A C
    ATOM 979 CZ TYR A 619 −1.090 7.702 32.501 1.00 30.93 A C
    ATOM 980 OH TYR A 619 −2.224 7.110 33.002 1.00 35.53 A O
    ATOM 981 CE2 TYR A 619 0.079 7.645 33.189 1.00 32.42 A C
    ATOM 982 CD2 TYR A 619 1.225 8.242 32.659 1.00 28.30 A C
    ATOM 983 C TYR A 619 2.697 7.786 29.164 1.00 27.28 A C
    ATOM 984 O TYR A 619 2.254 8.153 28.097 1.00 35.04 A O
    ATOM 985 N THR A 620 2.605 6.540 29.590 1.00 33.48 A N
    ATOM 986 CA THR A 620 1.992 5.508 28.751 1.00 34.79 A C
    ATOM 987 CB THR A 620 3.032 4.467 28.297 1.00 30.58 A C
    ATOM 988 OG1 THR A 620 3.603 3.826 29.446 1.00 30.46 A O
    ATOM 989 CG2 THR A 620 4.190 5.135 27.615 1.00 30.86 A C
    ATOM 990 C THR A 620 0.889 4.779 29.480 1.00 36.05 A C
    ATOM 991 O THR A 620 0.322 3.815 28.959 1.00 37.97 A O
    ATOM 992 N GLY A 621 0.623 5.217 30.700 1.00 35.69 A N
    ATOM 993 CA GLY A 621 −0.357 4.567 31.537 1.00 35.76 A C
    ATOM 994 C GLY A 621 −0.083 3.100 31.810 1.00 32.89 A C
    ATOM 995 O GLY A 621 −1.030 2.348 32.206 1.00 27.38 A O
    ATOM 996 N LEU A 622 1.179 2.698 31.597 1.00 27.99 A N
    ATOM 997 CA LEU A 622 1.584 1.314 31.819 1.00 28.48 A C
    ATOM 998 CB LEU A 622 2.693 0.921 30.869 1.00 24.30 A C
    ATOM 999 CG LEU A 622 2.470 0.789 29.384 1.00 26.16 A C
    ATOM 1000 CD1 LEU A 622 3.849 0.846 28.758 1.00 31.43 A C
    ATOM 1001 CD2 LEU A 622 1.847 −0.520 29.055 1.00 27.82 A C
    ATOM 1002 C LEU A 622 2.098 1.130 33.240 1.00 31.75 A C
    ATOM 1003 O LEU A 622 2.751 2.026 33.766 1.00 36.31 A O
    ATOM 1004 N ILE A 623 1.827 −0.027 33.845 1.00 30.28 A N
    ATOM 1005 CA ILE A 623 2.367 −0.360 35.164 1.00 29.88 A C
    ATOM 1006 CB ILE A 623 1.895 −1.743 35.609 1.00 22.88 A C
    ATOM 1007 CG1 ILE A 623 0.388 −1.739 35.750 1.00 21.00 A C
    ATOM 1008 CD1 ILE A 623 −0.217 −3.082 35.588 1.00 29.56 A C
    ATOM 1009 CG2 ILE A 623 2.495 −2.136 36.935 1.00 12.88 A C
    ATOM 1010 C ILE A 623 3.892 −0.258 35.222 1.00 37.02 A C
    ATOM 1011 O ILE A 623 4.404 0.361 36.151 1.00 41.18 A O
    ATOM 1012 N ASN A 624 4.604 −0.848 34.253 1.00 37.31 A N
    ATOM 1013 CA ASN A 624 6.055 −0.609 34.129 1.00 41.70 A C
    ATOM 1014 CB ASN A 624 6.886 −1.744 34.730 1.00 47.75 A C
    ATOM 1015 CG ASN A 624 6.162 −2.469 35.808 1.00 57.21 A C
    ATOM 1016 OD1 ASN A 624 6.429 −2.271 36.996 1.00 62.72 A O
    ATOM 1017 ND2 ASN A 624 5.214 −3.313 35.413 1.00 62.41 A N
    ATOM 1018 C ASN A 624 6.583 −0.302 32.729 1.00 38.62 A C
    ATOM 1019 O ASN A 624 7.013 −1.197 31.992 1.00 39.41 A O
    ATOM 1020 N TYR A 625 6.584 0.978 32.390 1.00 31.87 A N
    ATOM 1021 CA TYR A 625 7.121 1.451 31.122 1.00 27.41 A C
    ATOM 1022 CB TYR A 625 7.014 2.968 31.110 1.00 21.78 A C
    ATOM 1023 CG TYR A 625 7.563 3.681 29.945 1.00 21.68 A C
    ATOM 1024 CD1 TYR A 625 7.240 3.333 28.670 1.00 38.53 A C
    ATOM 1025 CE1 TYR A 625 7.773 4.041 27.580 1.00 43.92 A C
    ATOM 1026 CZ TYR A 625 8.602 5.102 27.803 1.00 37.73 A C
    ATOM 1027 OH TYR A 625 9.137 5.816 26.773 1.00 46.04 A O
    ATOM 1028 CE2 TYR A 625 8.921 5.444 29.052 1.00 32.64 A C
    ATOM 1029 CD2 TYR A 625 8.393 4.736 30.117 1.00 29.30 A C
    ATOM 1030 C TYR A 625 8.562 1.032 31.031 1.00 32.45 A C
    ATOM 1031 O TYR A 625 9.352 1.365 31.901 1.00 37.87 A O
    ATOM 1032 N ASP A 626 8.911 0.284 29.993 1.00 37.23 A N
    ATOM 1033 CA ASP A 626 10.295 −0.174 29.824 1.00 40.95 A C
    ATOM 1034 CB ASP A 626 10.359 −1.346 28.850 1.00 47.19 A C
    ATOM 1035 CG ASP A 626 9.714 −1.028 27.515 1.00 53.70 A C
    ATOM 1036 OD1 ASP A 626 10.455 −0.617 26.600 1.00 57.23 A O
    ATOM 1037 OD2 ASP A 626 8.485 −1.159 27.286 1.00 55.98 A O
    ATOM 1038 C ASP A 626 11.271 0.932 29.386 1.00 38.07 A C
    ATOM 1039 O ASP A 626 12.470 0.712 29.359 1.00 36.48 A O
    ATOM 1040 N GLY A 627 10.754 2.102 29.017 1.00 36.16 A N
    ATOM 1041 CA GLY A 627 11.587 3.277 28.845 1.00 33.65 A C
    ATOM 1042 C GLY A 627 11.965 3.573 27.417 1.00 38.25 A C
    ATOM 1043 O GLY A 627 12.599 4.584 27.143 1.00 35.77 A O
    ATOM 1044 N LEU A 628 11.564 2.693 26.502 1.00 44.15 A N
    ATOM 1045 CA LEU A 628 11.857 2.851 25.075 1.00 39.54 A C
    ATOM 1046 CB LEU A 628 11.726 1.515 24.352 1.00 40.26 A C
    ATOM 1047 CG LEU A 628 12.855 0.497 24.547 1.00 39.29 A C
    ATOM 1048 CD1 LEU A 628 12.568 −0.741 23.718 1.00 41.84 A C
    ATOM 1049 CD2 LEU A 628 14.213 1.064 24.195 1.00 35.92 A C
    ATOM 1050 C LEU A 628 10.947 3.851 24.396 1.00 35.47 A C
    ATOM 1051 O LEU A 628 9.801 4.047 24.811 1.00 33.83 A O
    ATOM 1052 N LEU A 629 11.464 4.456 23.329 1.00 35.33 A N
    ATOM 1053 CA LEU A 629 10.720 5.450 22.569 1.00 36.46 A C
    ATOM 1054 CB LEU A 629 11.549 6.019 21.424 1.00 34.38 A C
    ATOM 1055 CG LEU A 629 10.883 7.241 20.773 1.00 38.04 A C
    ATOM 1056 CD1 LEU A 629 11.042 8.480 21.644 1.00 37.39 A C
    ATOM 1057 CD2 LEU A 629 11.357 7.509 19.315 1.00 38.24 A C
    ATOM 1058 C LEU A 629 9.455 4.830 22.025 1.00 39.26 A C
    ATOM 1059 O LEU A 629 9.445 3.662 21.595 1.00 45.57 A O
    ATOM 1060 N ARG A 630 8.379 5.602 22.067 1.00 34.06 A N
    ATOM 1061 CA ARG A 630 7.099 5.076 21.652 1.00 31.59 A C
    ATOM 1062 CB ARG A 630 6.155 5.029 22.833 1.00 29.16 A C
    ATOM 1063 CG ARG A 630 6.130 3.639 23.386 1.00 34.00 A C
    ATOM 1064 CD ARG A 630 5.512 3.490 24.722 1.00 34.33 A C
    ATOM 1065 NE ARG A 630 4.554 2.392 24.764 1.00 34.81 A N
    ATOM 1066 CZ ARG A 630 4.889 1.107 24.826 1.00 39.51 A C
    ATOM 1067 NH1 ARG A 630 6.181 0.733 24.831 1.00 42.05 A N
    ATOM 1068 NH2 ARG A 630 3.921 0.194 24.881 1.00 35.27 A N
    ATOM 1069 C ARG A 630 6.537 5.896 20.544 1.00 37.04 A C
    ATOM 1070 O ARG A 630 6.817 7.079 20.443 1.00 46.58 A O
    ATOM 1071 N VAL A 631 5.755 5.274 19.689 1.00 38.91 A N
    ATOM 1072 CA VAL A 631 5.213 6.000 18.555 1.00 38.59 A C
    ATOM 1073 CB VAL A 631 5.961 5.652 17.271 1.00 33.71 A C
    ATOM 1074 CG1 VAL A 631 5.876 4.176 17.004 1.00 29.88 A C
    ATOM 1075 CG2 VAL A 631 5.371 6.409 16.119 1.00 39.05 A C
    ATOM 1076 C VAL A 631 3.724 5.722 18.397 1.00 38.59 A C
    ATOM 1077 O VAL A 631 3.280 4.575 18.524 1.00 35.78 A O
    ATOM 1078 N ALA A 632 2.958 6.775 18.141 1.00 36.60 A N
    ATOM 1079 CA ALA A 632 1.541 6.603 17.909 1.00 41.30 A C
    ATOM 1080 CB ALA A 632 0.743 7.213 19.007 1.00 44.22 A C
    ATOM 1081 C ALA A 632 1.209 7.263 16.620 1.00 44.95 A C
    ATOM 1082 O ALA A 632 1.681 8.369 16.363 1.00 48.50 A O
    ATOM 1083 N HIS A 633 0.378 6.586 15.830 1.00 47.82 A N
    ATOM 1084 CA HIS A 633 −0.019 7.046 14.508 1.00 47.04 A C
    ATOM 1085 CB HIS A 633 −0.052 5.879 13.550 1.00 49.10 A C
    ATOM 1086 CG HIS A 633 1.256 5.168 13.466 1.00 58.13 A C
    ATOM 1087 ND1 HIS A 633 2.312 5.644 12.719 1.00 62.57 A N
    ATOM 1088 CE1 HIS A 633 3.342 4.823 12.843 1.00 66.84 A C
    ATOM 1089 NE2 HIS A 633 2.995 3.837 13.654 1.00 68.11 A N
    ATOM 1090 CD2 HIS A 633 1.697 4.036 14.065 1.00 64.36 A C
    ATOM 1091 C HIS A 633 −1.343 7.787 14.504 1.00 48.07 A C
    ATOM 1092 O HIS A 633 −2.313 7.364 15.134 1.00 52.00 A O
    ATOM 1093 N LEU A 634 −1.346 8.919 13.809 1.00 45.09 A N
    ATOM 1094 CA LEU A 634 −2.515 9.759 13.658 1.00 42.06 A C
    ATOM 1095 CB LEU A 634 −2.399 10.981 14.556 1.00 38.58 A C
    ATOM 1096 CG LEU A 634 −1.778 10.717 15.927 1.00 39.62 A C
    ATOM 1097 CD1 LEU A 634 −1.089 11.951 16.502 1.00 36.37 A C
    ATOM 1098 CD2 LEU A 634 −2.853 10.184 16.883 1.00 44.78 A C
    ATOM 1099 C LEU A 634 −2.618 10.199 12.209 1.00 47.99 A C
    ATOM 1100 O LEU A 634 −1.633 10.165 11.463 1.00 52.20 A O
    ATOM 1101 N TYR A 635 −3.818 10.598 11.811 1.00 48.00 A N
    ATOM 1102 CA TYR A 635 −4.050 11.161 10.494 1.00 46.87 A C
    ATOM 1103 CB TYR A 635 −5.218 10.448 9.828 1.00 51.37 A C
    ATOM 1104 CG TYR A 635 −4.913 8.995 9.562 1.00 58.24 A C
    ATOM 1105 CD1 TYR A 635 −4.363 8.592 8.353 1.00 62.45 A C
    ATOM 1106 CE1 TYR A 635 −4.065 7.255 8.106 1.00 69.61 A C
    ATOM 1107 CZ TYR A 635 −4.306 6.304 9.089 1.00 73.94 A C
    ATOM 1108 OH TYR A 635 −4.007 4.972 8.853 1.00 78.01 A O
    ATOM 1109 CE2 TYR A 635 −4.851 6.687 10.309 1.00 71.12 A C
    ATOM 1110 CD2 TYR A 635 −5.150 8.026 10.534 1.00 64.85 A C
    ATOM 1111 C TYR A 635 −4.349 12.622 10.727 1.00 45.01 A C
    ATOM 1112 O TYR A 635 −4.885 12.966 11.782 1.00 46.84 A O
    ATOM 1113 N ILE A 636 −3.969 13.489 9.788 1.00 40.98 A N
    ATOM 1114 CA ILE A 636 −4.273 14.915 9.938 1.00 38.58 A C
    ATOM 1115 CB ILE A 636 −3.433 15.808 9.011 1.00 34.96 A C
    ATOM 1116 CG1 ILE A 636 −1.941 15.574 9.219 1.00 34.76 A C
    ATOM 1117 CD1 ILE A 636 −1.376 16.211 10.465 1.00 35.79 A C
    ATOM 1118 CG2 ILE A 636 −3.771 17.269 9.246 1.00 31.89 A C
    ATOM 1119 C ILE A 636 −5.747 15.162 9.675 1.00 39.87 A C
    ATOM 1120 O ILE A 636 −6.282 14.753 8.647 1.00 40.08 A O
    ATOM 1121 N MET A 637 −6.392 15.822 10.625 1.00 39.16 A N
    ATOM 1122 CA MET A 637 −7.769 16.225 10.488 1.00 42.04 A C
    ATOM 1123 CB MET A 637 −8.450 16.076 11.833 1.00 48.65 A C
    ATOM 1124 CG MET A 637 −9.945 15.830 11.791 1.00 55.71 A C
    ATOM 1125 SD MET A 637 −10.473 14.993 13.305 1.00 61.14 A S
    ATOM 1126 CE MET A 637 −9.368 13.410 13.241 1.00 56.87 A C
    ATOM 1127 C MET A 637 −7.742 17.681 10.131 1.00 42.51 A C
    ATOM 1128 O MET A 637 −6.807 18.382 10.504 1.00 48.86 A O
    ATOM 1129 N GLY A 638 −8.759 18.159 9.431 1.00 41.90 A N
    ATOM 1130 CA GLY A 638 −8.922 19.598 9.287 1.00 51.84 A C
    ATOM 1131 C GLY A 638 −9.275 20.283 10.607 1.00 56.75 A C
    ATOM 1132 O GLY A 638 −9.833 19.642 11.496 1.00 59.32 A O
    ATOM 1133 N ASN A 639 −8.952 21.571 10.741 1.00 59.25 A N
    ATOM 1134 CA ASN A 639 −9.334 22.343 11.933 1.00 62.23 A C
    ATOM 1135 CB ASN A 639 −8.637 23.707 11.948 1.00 62.68 A C
    ATOM 1136 CG ASN A 639 −7.130 23.593 11.858 1.00 66.94 A C
    ATOM 1137 OD1 ASN A 639 −6.578 22.491 11.735 1.00 71.75 A O
    ATOM 1138 ND2 ASN A 639 −6.451 24.732 11.909 1.00 66.88 A N
    ATOM 1139 C ASN A 639 −10.848 22.531 12.042 1.00 66.50 A C
    ATOM 1140 O ASN A 639 −11.425 22.500 13.140 1.00 58.81 A O
    ATOM 1141 N GLU A 640 −11.471 22.721 10.873 1.00 75.25 A N
    ATOM 1142 CA GLU A 640 −12.901 22.976 10.739 1.00 76.26 A C
    ATOM 1143 CB GLU A 640 −13.250 23.166 9.266 1.00 75.86 A C
    ATOM 1144 CG GLU A 640 −14.457 24.057 9.006 1.00 78.64 A C
    ATOM 1145 CD GLU A 640 −15.199 23.671 7.731 1.00 78.03 A C
    ATOM 1146 OE1 GLU A 640 −16.091 22.796 7.805 1.00 78.97 A O
    ATOM 1147 OE2 GLU A 640 −14.884 24.229 6.653 1.00 73.67 A O
    ATOM 1148 C GLU A 640 −13.726 21.853 11.371 1.00 78.47 A C
    ATOM 1149 O GLU A 640 −14.683 22.124 12.101 1.00 79.05 A O
    ATOM 1150 N LYS A 641 −13.336 20.603 11.104 1.00 80.15 A N
    ATOM 1151 CA LYS A 641 −13.935 19.431 11.758 1.00 81.49 A C
    ATOM 1152 CB LYS A 641 −13.718 18.161 10.922 1.00 82.67 A C
    ATOM 1153 CG LYS A 641 −14.652 18.018 9.716 1.00 86.07 A C
    ATOM 1154 CD LYS A 641 −16.120 18.376 10.035 1.00 86.82 A C
    ATOM 1155 CE LYS A 641 −16.680 19.437 9.071 1.00 85.12 A C
    ATOM 1156 NZ LYS A 641 −17.344 18.842 7.870 1.00 82.58 A N
    ATOM 1157 C LYS A 641 −13.381 19.233 13.172 1.00 78.08 A C
    ATOM 1158 O LYS A 641 −14.093 18.857 14.101 1.00 77.15 A O
    ATOM 1159 N CYS A 642 −12.098 19.505 13.322 1.00 75.38 A N
    ATOM 1160 CA CYS A 642 −11.435 19.365 14.598 1.00 74.30 A C
    ATOM 1161 CB CYS A 642 −9.968 19.720 14.440 1.00 67.83 A C
    ATOM 1162 SG CYS A 642 −8.958 19.389 15.873 1.00 58.78 A S
    ATOM 1163 C CYS A 642 −12.067 20.240 15.667 1.00 78.61 A C
    ATOM 1164 O CYS A 642 −12.059 19.879 16.843 1.00 79.99 A O
    ATOM 1165 N SER A 643 −12.601 21.391 15.254 1.00 83.11 A N
    ATOM 1166 CA SER A 643 −13.280 22.313 16.166 1.00 86.69 A C
    ATOM 1167 CB SER A 643 −13.636 23.615 15.440 1.00 86.56 A C
    ATOM 1168 OG SER A 643 −12.862 24.710 15.903 1.00 86.24 A O
    ATOM 1169 C SER A 643 −14.544 21.655 16.718 1.00 89.20 A C
    ATOM 1170 O SER A 643 −14.810 21.727 17.927 1.00 84.95 A O
    ATOM 1171 N GLN A 644 −15.273 20.992 15.804 1.00 93.43 A N
    ATOM 1172 CA GLN A 644 −16.581 20.351 16.022 1.00 94.78 A C
    ATOM 1173 CB GLN A 644 −17.270 20.097 14.678 1.00 98.01 A C
    ATOM 1174 CG GLN A 644 −17.847 21.315 13.972 1.00 102.80 A C
    ATOM 1175 CD GLN A 644 −18.544 20.945 12.658 1.00 106.90 A C
    ATOM 1176 OE1 GLN A 644 −18.256 19.900 12.058 1.00 105.89 A O
    ATOM 1177 NE2 GLN A 644 −19.464 21.798 12.216 1.00 109.02 A N
    ATOM 1178 C GLN A 644 −16.497 19.010 16.738 1.00 94.25 A C
    ATOM 1179 O GLN A 644 −17.523 18.429 17.092 1.00 94.53 A O
    ATOM 1180 N HIS A 645 −15.278 18.507 16.905 1.00 95.16 A N
    ATOM 1181 CA HIS A 645 −15.015 17.264 17.626 1.00 94.75 A C
    ATOM 1182 CB HIS A 645 −13.754 16.611 17.059 1.00 93.02 A C
    ATOM 1183 CG HIS A 645 −14.000 15.605 15.978 1.00 92.95 A C
    ATOM 1184 ND1 HIS A 645 −13.933 14.246 16.199 1.00 93.64 A N
    ATOM 1185 CE1 HIS A 645 −14.163 13.605 15.068 1.00 93.83 A C
    ATOM 1186 NE2 HIS A 645 −14.362 14.499 14.116 1.00 94.05 A N
    ATOM 1187 CD2 HIS A 645 −14.255 15.758 14.657 1.00 93.73 A C
    ATOM 1188 C HIS A 645 −14.773 17.552 19.115 1.00 95.54 A C
    ATOM 1189 O HIS A 645 −14.617 16.623 19.924 1.00 95.32 A O
    ATOM 1190 N HIS A 646 −14.758 18.833 19.478 1.00 94.63 A N
    ATOM 1191 CA HIS A 646 −14.042 19.245 20.677 1.00 96.37 A C
    ATOM 1192 CB HIS A 646 −12.865 20.142 20.278 1.00 91.79 A C
    ATOM 1193 CG HIS A 646 −11.540 19.451 20.363 1.00 87.26 A C
    ATOM 1194 ND1 HIS A 646 −10.899 19.216 21.560 1.00 82.73 A N
    ATOM 1195 CE1 HIS A 646 −9.768 18.574 21.333 1.00 82.76 A C
    ATOM 1196 NE2 HIS A 646 −9.650 18.386 20.032 1.00 85.35 A N
    ATOM 1197 CD2 HIS A 646 −10.747 18.921 19.402 1.00 87.17 A C
    ATOM 1198 C HIS A 646 −14.768 19.791 21.934 1.00 104.37 A C
    ATOM 1199 O HIS A 646 −14.130 19.909 22.978 1.00 107.00 A O
    ATOM 1200 N ARG A 647 −16.059 20.111 21.895 1.00 110.75 A N
    ATOM 1201 CA ARG A 647 −16.924 20.025 20.740 1.00 116.40 A C
    ATOM 1202 CB ARG A 647 −18.241 19.326 21.110 1.00 122.17 A C
    ATOM 1203 CG ARG A 647 −18.389 18.942 22.604 1.00 128.16 A C
    ATOM 1204 CD ARG A 647 −18.977 17.546 22.865 1.00 131.91 A C
    ATOM 1205 NE ARG A 647 −20.214 17.327 22.108 1.00 135.96 A N
    ATOM 1206 CZ ARG A 647 −21.245 16.587 22.514 1.00 137.12 A C
    ATOM 1207 NH1 ARG A 647 −21.219 15.965 23.690 1.00 136.96 A N
    ATOM 1208 NH2 ARG A 647 −22.313 16.470 21.733 1.00 137.41 A N
    ATOM 1209 C ARG A 647 −17.165 21.460 20.309 1.00 117.91 A C
    ATOM 1210 O ARG A 647 −17.190 21.766 19.120 1.00 121.75 A O
    ATOM 1211 N GLY A 648 −17.340 22.336 21.295 1.00 115.77 A N
    ATOM 1212 CA GLY A 648 −17.387 23.768 21.070 1.00 112.40 A C
    ATOM 1213 C GLY A 648 −16.419 24.419 22.030 1.00 110.02 A C
    ATOM 1214 O GLY A 648 −16.299 25.645 22.075 1.00 108.47 A O
    ATOM 1215 N LYS A 649 −15.727 23.576 22.795 1.00 109.50 A N
    ATOM 1216 CA LYS A 649 −14.805 24.016 23.842 1.00 109.43 A C
    ATOM 1217 CB LYS A 649 −14.286 22.820 24.659 1.00 110.52 A C
    ATOM 1218 CG LYS A 649 −15.241 22.300 25.762 1.00 109.90 A C
    ATOM 1219 CD LYS A 649 −14.528 21.939 27.084 1.00 105.80 A C
    ATOM 1220 CE LYS A 649 −13.234 21.146 26.869 1.00 104.48 A C
    ATOM 1221 NZ LYS A 649 −13.217 19.855 27.607 1.00 103.67 A N
    ATOM 1222 C LYS A 649 −13.624 24.821 23.301 1.00 108.12 A C
    ATOM 1223 O LYS A 649 −13.204 25.794 23.933 1.00 110.50 A O
    ATOM 1224 N VAL A 650 −13.092 24.416 22.144 1.00 104.25 A N
    ATOM 1225 CA VAL A 650 −11.940 25.091 21.528 1.00 99.47 A C
    ATOM 1226 CB VAL A 650 −10.672 24.186 21.496 1.00 100.20 A C
    ATOM 1227 CG1 VAL A 650 −9.418 24.996 21.875 1.00 104.73 A C
    ATOM 1228 CG2 VAL A 650 −10.829 22.947 22.386 1.00 97.30 A C
    ATOM 1229 C VAL A 650 −12.214 25.565 20.100 1.00 94.68 A C
    ATOM 1230 O VAL A 650 −12.916 24.882 19.346 1.00 94.84 A O
    ATOM 1231 N THR A 651 −11.676 26.734 19.743 1.00 91.93 A N
    ATOM 1232 CA THR A 651 −11.597 27.154 18.329 1.00 94.90 A C
    ATOM 1233 CB THR A 651 −12.592 28.315 17.966 1.00 97.15 A C
    ATOM 1234 OG1 THR A 651 −13.946 27.856 18.100 1.00 98.56 A O
    ATOM 1235 CG2 THR A 651 −12.509 28.667 16.464 1.00 94.87 A C
    ATOM 1236 C THR A 651 −10.148 27.469 17.910 1.00 90.43 A C
    ATOM 1237 O THR A 651 −9.474 28.306 18.522 1.00 92.16 A O
    ATOM 1238 N LEU A 652 −9.695 26.803 16.850 1.00 80.36 A N
    ATOM 1239 CA LEU A 652 −8.284 26.768 16.503 1.00 72.59 A C
    ATOM 1240 CB LEU A 652 −7.978 25.498 15.730 1.00 69.56 A C
    ATOM 1241 CG LEU A 652 −8.464 24.209 16.374 1.00 68.21 A C
    ATOM 1242 CD1 LEU A 652 −8.414 23.106 15.368 1.00 69.16 A C
    ATOM 1243 CD2 LEU A 652 −7.616 23.849 17.564 1.00 70.22 A C
    ATOM 1244 C LEU A 652 −7.817 27.950 15.693 1.00 72.26 A C
    ATOM 1245 O LEU A 652 −8.482 28.360 14.739 1.00 72.28 A O
    ATOM 1246 N ASN A 653 −6.654 28.479 16.065 1.00 73.54 A N
    ATOM 1247 CA ASN A 653 −6.003 29.522 15.278 1.00 78.63 A C
    ATOM 1248 CB ASN A 653 −4.964 30.257 16.123 1.00 83.81 A C
    ATOM 1249 CG ASN A 653 −5.508 31.544 16.722 1.00 88.62 A C
    ATOM 1250 OD1 ASN A 653 −5.377 32.625 16.132 1.00 90.14 A O
    ATOM 1251 ND2 ASN A 653 −6.131 31.433 17.898 1.00 89.12 A N
    ATOM 1252 C ASN A 653 −5.365 28.940 14.019 1.00 75.19 A C
    ATOM 1253 O ASN A 653 −5.153 27.734 13.938 1.00 76.29 A O
    ATOM 1254 N GLU A 654 −5.059 29.778 13.035 1.00 69.05 A N
    ATOM 1255 CA GLU A 654 −4.385 29.274 11.841 1.00 66.11 A C
    ATOM 1256 CB GLU A 654 −4.344 30.329 10.725 1.00 74.38 A C
    ATOM 1257 CG GLU A 654 −4.255 31.783 11.185 1.00 82.02 A C
    ATOM 1258 CD GLU A 654 −4.063 32.762 10.029 1.00 87.39 A C
    ATOM 1259 OE1 GLU A 654 −3.090 32.611 9.244 1.00 89.55 A O
    ATOM 1260 OE2 GLU A 654 −4.890 33.692 9.904 1.00 89.83 A O
    ATOM 1261 C GLU A 654 −2.981 28.749 12.169 1.00 58.30 A C
    ATOM 1262 O GLU A 654 −2.275 28.236 11.306 1.00 58.92 A O
    ATOM 1263 N SER A 655 −2.606 28.866 13.435 1.00 51.31 A N
    ATOM 1264 CA SER A 655 −1.296 28.475 13.927 1.00 49.53 A C
    ATOM 1265 CB SER A 655 −0.827 29.544 14.892 1.00 51.93 A C
    ATOM 1266 OG SER A 655 −1.674 29.564 16.028 1.00 56.85 A O
    ATOM 1267 C SER A 655 −1.305 27.128 14.671 1.00 50.76 A C
    ATOM 1268 O SER A 655 −0.262 26.645 15.119 1.00 51.56 A O
    ATOM 1269 N GLU A 656 −2.493 26.556 14.844 1.00 49.44 A N
    ATOM 1270 CA GLU A 656 −2.670 25.245 15.457 1.00 43.28 A C
    ATOM 1271 CB GLU A 656 −3.763 25.316 16.542 1.00 42.82 A C
    ATOM 1272 CG GLU A 656 −3.305 25.911 17.882 1.00 50.87 A C
    ATOM 1273 CD GLU A 656 −4.440 26.162 18.909 1.00 57.23 A C
    ATOM 1274 OE1 GLU A 656 −5.401 26.908 18.588 1.00 63.80 A O
    ATOM 1275 OE2 GLU A 656 −4.375 25.651 20.064 1.00 51.97 A O
    ATOM 1276 C GLU A 656 −3.022 24.243 14.333 1.00 41.77 A C
    ATOM 1277 O GLU A 656 −3.539 24.635 13.291 1.00 41.76 A O
    ATOM 1278 N ILE A 657 −2.728 22.960 14.533 1.00 44.22 A N
    ATOM 1279 CA ILE A 657 −2.986 21.902 13.530 1.00 43.95 A C
    ATOM 1280 CB ILE A 657 −1.712 21.687 12.649 1.00 36.22 A C
    ATOM 1281 CG1 ILE A 657 −1.932 20.639 11.579 1.00 33.28 A C
    ATOM 1282 CD1 ILE A 657 −0.616 20.125 10.975 1.00 29.39 A C
    ATOM 1283 CG2 ILE A 657 −0.531 21.242 13.482 1.00 39.33 A C
    ATOM 1284 C ILE A 657 −3.462 20.598 14.230 1.00 48.04 A C
    ATOM 1285 O ILE A 657 −3.043 20.321 15.356 1.00 47.63 A O
    ATOM 1286 N CYS A 658 −4.340 19.819 13.590 1.00 50.39 A N
    ATOM 1287 CA CYS A 658 −4.901 18.611 14.236 1.00 49.95 A C
    ATOM 1288 CB CYS A 658 −6.414 18.638 14.204 1.00 51.51 A C
    ATOM 1289 SG CYS A 658 −7.064 19.848 15.306 1.00 57.34 A S
    ATOM 1290 C CYS A 658 −4.488 17.262 13.666 1.00 50.32 A C
    ATOM 1291 O CYS A 658 −4.323 17.090 12.445 1.00 51.27 A O
    ATOM 1292 N ALA A 659 −4.370 16.291 14.562 1.00 46.15 A N
    ATOM 1293 CA ALA A 659 −4.202 14.908 14.150 1.00 46.32 A C
    ATOM 1294 CB ALA A 659 −2.748 14.564 13.927 1.00 47.56 A C
    ATOM 1295 C ALA A 659 −4.800 14.004 15.188 1.00 46.76 A C
    ATOM 1296 O ALA A 659 −4.631 14.202 16.392 1.00 47.65 A O
    ATOM 1297 N GLY A 660 −5.514 13.007 14.701 1.00 47.44 A N
    ATOM 1298 CA GLY A 660 −6.117 12.014 15.555 1.00 51.02 A C
    ATOM 1299 C GLY A 660 −6.064 10.678 14.864 1.00 52.20 A C
    ATOM 1300 O GLY A 660 −5.707 10.590 13.693 1.00 55.62 A O
    ATOM 1301 N ALA A 661 −6.407 9.639 15.603 1.00 52.34 A N
    ATOM 1302 CA ALA A 661 −6.515 8.312 15.044 1.00 53.28 A C
    ATOM 1303 CB ALA A 661 −5.884 7.309 15.983 1.00 55.18 A C
    ATOM 1304 C ALA A 661 −7.995 8.062 14.894 1.00 54.47 A C
    ATOM 1305 O ALA A 661 −8.795 8.645 15.632 1.00 52.98 A O
    ATOM 1306 N GLU A 662 −8.371 7.217 13.940 1.00 58.57 A N
    ATOM 1307 CA GLU A 662 −9.792 6.985 13.686 1.00 63.20 A C
    ATOM 1308 CB GLU A 662 −10.015 6.298 12.329 1.00 70.71 A C
    ATOM 1309 CG GLU A 662 −11.191 6.843 11.514 1.00 77.87 A C
    ATOM 1310 CD GLU A 662 −12.170 5.754 11.069 1.00 85.04 A C
    ATOM 1311 OE1 GLU A 662 −11.723 4.709 10.530 1.00 86.23 A O
    ATOM 1312 OE2 GLU A 662 −13.399 5.937 11.256 1.00 87.81 A O
    ATOM 1313 C GLU A 662 −10.406 6.179 14.823 1.00 58.84 A C
    ATOM 1314 O GLU A 662 −9.953 5.071 15.110 1.00 58.51 A O
    ATOM 1315 N LYS A 663 −11.394 6.779 15.490 1.00 54.07 A N
    ATOM 1316 CA LYS A 663 −12.272 6.103 16.467 1.00 52.93 A C
    ATOM 1317 CB LYS A 663 −13.048 4.936 15.825 1.00 49.89 A C
    ATOM 1318 CG LYS A 663 −13.993 5.349 14.726 1.00 58.71 A C
    ATOM 1319 CD LYS A 663 −15.452 5.187 15.137 1.00 69.67 A C
    ATOM 1320 CE LYS A 663 −16.224 4.300 14.124 1.00 77.42 A C
    ATOM 1321 NZ LYS A 663 −17.728 4.464 14.149 1.00 79.62 A N
    ATOM 1322 C LYS A 663 −11.680 5.640 17.813 1.00 49.67 A C
    ATOM 1323 O LYS A 663 −12.417 5.121 18.649 1.00 55.81 A O
    ATOM 1324 N ILE A 664 −10.385 5.802 18.044 1.00 40.34 A N
    ATOM 1325 CA ILE A 664 −9.809 5.244 19.270 1.00 37.17 A C
    ATOM 1326 CB ILE A 664 −8.825 4.109 18.965 1.00 28.85 A C
    ATOM 1327 CG1 ILE A 664 −7.553 4.627 18.315 1.00 15.23 A C
    ATOM 1328 CD1 ILE A 664 −6.449 3.632 18.419 1.00 7.40 A C
    ATOM 1329 CG2 ILE A 664 −9.462 3.044 18.106 1.00 36.00 A C
    ATOM 1330 C ILE A 664 −9.114 6.285 20.118 1.00 46.28 A C
    ATOM 1331 O ILE A 664 −8.991 7.436 19.699 1.00 59.36 A O
    ATOM 1332 N GLY A 665 −8.646 5.896 21.301 1.00 39.69 A N
    ATOM 1333 CA GLY A 665 −7.838 6.812 22.084 1.00 39.88 A C
    ATOM 1334 C GLY A 665 −6.358 6.507 21.961 1.00 41.10 A C
    ATOM 1335 O GLY A 665 −5.905 5.472 22.422 1.00 43.92 A O
    ATOM 1336 N SER A 666 −5.590 7.388 21.338 1.00 39.79 A N
    ATOM 1337 CA SER A 666 −4.134 7.258 21.370 1.00 38.94 A C
    ATOM 1338 CB SER A 666 −3.607 6.358 20.249 1.00 44.83 A C
    ATOM 1339 OG SER A 666 −3.617 6.986 18.973 1.00 54.44 A O
    ATOM 1340 C SER A 666 −3.617 8.650 21.253 1.00 36.61 A C
    ATOM 1341 O SER A 666 −4.401 9.530 20.919 1.00 39.14 A O
    ATOM 1342 N GLY A 667 −2.332 8.868 21.528 1.00 37.34 A N
    ATOM 1343 CA GLY A 667 −1.785 10.227 21.528 1.00 42.52 A C
    ATOM 1344 C GLY A 667 −0.778 10.644 22.605 1.00 41.01 A C
    ATOM 1345 O GLY A 667 −0.533 9.902 23.561 1.00 44.20 A O
    ATOM 1346 N PRO A 668 −0.158 11.813 22.434 1.00 37.69 A N
    ATOM 1347 CA PRO A 668 0.923 12.245 23.326 1.00 39.24 A C
    ATOM 1348 CB PRO A 668 1.570 13.414 22.571 1.00 38.32 A C
    ATOM 1349 CG PRO A 668 0.507 13.949 21.695 1.00 39.02 A C
    ATOM 1350 CD PRO A 668 −0.421 12.805 21.382 1.00 39.28 A C
    ATOM 1351 C PRO A 668 0.345 12.711 24.642 1.00 40.63 A C
    ATOM 1352 O PRO A 668 −0.888 12.776 24.742 1.00 45.06 A O
    ATOM 1353 N CYS A 669 1.206 13.029 25.608 1.00 35.75 A N
    ATOM 1354 CA CYS A 669 0.782 13.251 26.979 1.00 37.80 A C
    ATOM 1355 CB CYS A 669 0.477 11.911 27.611 1.00 45.73 A C
    ATOM 1356 SG CYS A 669 −0.549 12.119 29.045 1.00 59.82 A S
    ATOM 1357 C CYS A 669 1.854 13.936 27.821 1.00 41.35 A C
    ATOM 1358 O CYS A 669 2.850 14.446 27.287 1.00 41.11 A O
    ATOM 1359 N GLU A 670 1.673 13.931 29.143 1.00 40.48 A N
    ATOM 1360 CA GLU A 670 2.743 14.374 30.034 1.00 40.28 A C
    ATOM 1361 CB GLU A 670 2.453 14.003 31.486 1.00 41.30 A C
    ATOM 1362 CG GLU A 670 1.329 14.778 32.154 1.00 43.75 A C
    ATOM 1363 CD GLU A 670 1.706 16.206 32.497 1.00 46.62 A C
    ATOM 1364 OE1 GLU A 670 2.927 16.504 32.570 1.00 46.28 A O
    ATOM 1365 OE2 GLU A 670 0.767 17.032 32.682 1.00 46.89 A O
    ATOM 1366 C GLU A 670 4.070 13.744 29.599 1.00 42.40 A C
    ATOM 1367 O GLU A 670 4.123 12.556 29.239 1.00 38.92 A O
    ATOM 1368 N GLY A 671 5.132 14.549 29.607 1.00 45.96 A N
    ATOM 1369 CA GLY A 671 6.460 14.071 29.253 1.00 46.38 A C
    ATOM 1370 C GLY A 671 6.701 13.918 27.760 1.00 42.28 A C
    ATOM 1371 O GLY A 671 7.832 13.686 27.324 1.00 40.04 A O
    ATOM 1372 N ASP A 672 5.640 14.058 26.974 1.00 42.20 A N
    ATOM 1373 CA ASP A 672 5.751 13.988 25.523 1.00 43.79 A C
    ATOM 1374 CB ASP A 672 4.476 13.399 24.927 1.00 43.39 A C
    ATOM 1375 CG ASP A 672 4.373 11.896 25.095 1.00 44.59 A C
    ATOM 1376 OD1 ASP A 672 5.414 11.178 25.082 1.00 40.12 A O
    ATOM 1377 OD2 ASP A 672 3.248 11.348 25.209 1.00 46.78 A O
    ATOM 1378 C ASP A 672 5.998 15.346 24.853 1.00 44.68 A C
    ATOM 1379 O ASP A 672 6.479 15.369 23.706 1.00 47.64 A O
    ATOM 1380 N TYR A 673 5.660 16.446 25.556 1.00 38.29 A N
    ATOM 1381 CA TYR A 673 5.613 17.803 24.980 1.00 34.36 A C
    ATOM 1382 CB TYR A 673 5.162 18.849 26.016 1.00 31.83 A C
    ATOM 1383 CG TYR A 673 3.989 18.441 26.880 1.00 30.94 A C
    ATOM 1384 CD1 TYR A 673 2.898 17.812 26.343 1.00 36.19 A C
    ATOM 1385 CE1 TYR A 673 1.828 17.431 27.120 1.00 30.40 A C
    ATOM 1386 CZ TYR A 673 1.832 17.679 28.443 1.00 24.59 A C
    ATOM 1387 OH TYR A 673 0.744 17.259 29.186 1.00 23.65 A O
    ATOM 1388 CE2 TYR A 673 2.890 18.328 29.006 1.00 26.17 A C
    ATOM 1389 CD2 TYR A 673 3.964 18.701 28.226 1.00 28.74 A C
    ATOM 1390 C TYR A 673 6.945 18.243 24.395 1.00 38.55 A C
    ATOM 1391 O TYR A 673 8.004 17.903 24.924 1.00 43.33 A O
    ATOM 1392 N GLY A 674 6.889 19.017 23.316 1.00 35.97 A N
    ATOM 1393 CA GLY A 674 8.087 19.499 22.661 1.00 35.61 A C
    ATOM 1394 C GLY A 674 8.436 18.505 21.581 1.00 42.37 A C
    ATOM 1395 O GLY A 674 9.177 18.807 20.630 1.00 48.06 A O
    ATOM 1396 N GLY A 675 7.870 17.312 21.724 1.00 41.44 A N
    ATOM 1397 CA GLY A 675 8.025 16.261 20.738 1.00 42.59 A C
    ATOM 1398 C GLY A 675 7.423 16.623 19.389 1.00 38.22 A C
    ATOM 1399 O GLY A 675 6.514 17.451 19.320 1.00 36.26 A O
    ATOM 1400 N PRO A 676 7.927 16.000 18.323 1.00 36.98 A N
    ATOM 1401 CA PRO A 676 7.423 16.248 16.967 1.00 36.70 A C
    ATOM 1402 CB PRO A 676 8.538 15.694 16.080 1.00 35.67 A C
    ATOM 1403 CG PRO A 676 9.134 14.564 16.903 1.00 35.15 A C
    ATOM 1404 CD PRO A 676 9.012 14.996 18.335 1.00 34.98 A C
    ATOM 1405 C PRO A 676 6.135 15.490 16.668 1.00 35.69 A C
    ATOM 1406 O PRO A 676 5.947 14.343 17.103 1.00 34.29 A O
    ATOM 1407 N LEU A 677 5.241 16.142 15.942 1.00 34.70 A N
    ATOM 1408 CA LEU A 677 4.224 15.407 15.216 1.00 36.54 A C
    ATOM 1409 CB LEU A 677 2.928 16.198 15.123 1.00 33.41 A C
    ATOM 1410 CG LEU A 677 2.040 15.870 13.922 1.00 29.43 A C
    ATOM 1411 CD1 LEU A 677 1.051 14.802 14.282 1.00 27.30 A C
    ATOM 1412 CD2 LEU A 677 1.341 17.117 13.451 1.00 28.29 A C
    ATOM 1413 C LEU A 677 4.845 15.327 13.856 1.00 37.46 A C
    ATOM 1414 O LEU A 677 5.168 16.367 13.280 1.00 43.56 A O
    ATOM 1415 N VAL A 678 5.060 14.127 13.335 1.00 31.66 A N
    ATOM 1416 CA VAL A 678 5.706 14.085 12.035 1.00 34.44 A C
    ATOM 1417 CB VAL A 678 7.184 13.594 12.084 1.00 28.71 A C
    ATOM 1418 CG1 VAL A 678 7.496 13.062 13.435 1.00 25.66 A C
    ATOM 1419 CG2 VAL A 678 7.502 12.609 10.972 1.00 22.04 A C
    ATOM 1420 C VAL A 678 4.857 13.453 10.971 1.00 39.54 A C
    ATOM 1421 O VAL A 678 4.256 12.409 11.198 1.00 45.36 A O
    ATOM 1422 N CYS A 679 4.791 14.114 9.824 1.00 40.07 A N
    ATOM 1423 CA CYS A 679 4.026 13.622 8.708 1.00 47.18 A C
    ATOM 1424 CB CYS A 679 2.950 14.623 8.337 1.00 46.07 A C
    ATOM 1425 SG CYS A 679 1.845 14.971 9.701 1.00 49.44 A S
    ATOM 1426 C CYS A 679 4.970 13.460 7.561 1.00 56.16 A C
    ATOM 1427 O CYS A 679 6.137 13.818 7.680 1.00 56.93 A O
    ATOM 1428 N GLU A 680 4.469 12.892 6.467 1.00 67.82 A N
    ATOM 1429 CA GLU A 680 5.146 12.959 5.182 1.00 81.24 A C
    ATOM 1430 CB GLU A 680 6.175 11.843 5.022 1.00 90.07 A C
    ATOM 1431 CG GLU A 680 5.611 10.440 4.916 1.00 100.07 A C
    ATOM 1432 CD GLU A 680 6.680 9.394 5.158 1.00 107.31 A C
    ATOM 1433 OE1 GLU A 680 7.501 9.156 4.235 1.00 108.70 A O
    ATOM 1434 OE2 GLU A 680 6.705 8.826 6.279 1.00 110.84 A O
    ATOM 1435 C GLU A 680 4.144 12.929 4.050 1.00 86.73 A C
    ATOM 1436 O GLU A 680 3.079 12.308 4.173 1.00 86.70 A O
    ATOM 1437 N GLN A 681 4.495 13.615 2.961 1.00 94.18 A N
    ATOM 1438 CA GLN A 681 3.709 13.615 1.727 1.00 101.38 A C
    ATOM 1439 CB GLN A 681 2.642 14.742 1.706 1.00 102.61 A C
    ATOM 1440 CG GLN A 681 3.149 16.198 1.671 1.00 103.69 A C
    ATOM 1441 CD GLN A 681 3.823 16.644 2.971 1.00 105.16 A C
    ATOM 1442 OE1 GLN A 681 3.147 16.978 3.949 1.00 104.94 A O
    ATOM 1443 NE2 GLN A 681 5.154 16.653 2.977 1.00 104.44 A N
    ATOM 1444 C GLN A 681 4.616 13.626 0.489 1.00 105.72 A C
    ATOM 1445 O GLN A 681 4.715 12.613 −0.215 1.00 105.20 A O
    ATOM 1446 N HIS A 682 5.293 14.761 0.266 1.00 111.00 A N
    ATOM 1447 CA HIS A 682 6.099 15.028 −0.935 1.00 113.44 A C
    ATOM 1448 CB HIS A 682 6.976 16.292 −0.754 1.00 115.52 A C
    ATOM 1449 CG HIS A 682 6.211 17.583 −0.599 1.00 116.80 A C
    ATOM 1450 ND1 HIS A 682 4.864 17.707 −0.873 1.00 117.06 A N
    ATOM 1451 CE1 HIS A 682 4.480 18.952 −0.644 1.00 115.83 A C
    ATOM 1452 NE2 HIS A 682 5.530 19.645 −0.240 1.00 114.65 A N
    ATOM 1453 CD2 HIS A 682 6.625 18.814 −0.205 1.00 115.72 A C
    ATOM 1454 C HIS A 682 6.981 13.827 −1.296 1.00 112.92 A C
    ATOM 1455 O HIS A 682 6.840 13.250 −2.381 1.00 113.10 A O
    ATOM 1456 N LYS A 683 7.874 13.462 −0.371 1.00 110.95 A N
    ATOM 1457 CA LYS A 683 8.774 12.317 −0.510 1.00 108.18 A C
    ATOM 1458 CB LYS A 683 9.910 12.616 −1.504 1.00 113.61 A C
    ATOM 1459 CG LYS A 683 10.595 11.372 −2.099 1.00 117.52 A C
    ATOM 1460 CD LYS A 683 12.004 11.679 −2.634 1.00 118.90 A C
    ATOM 1461 CE LYS A 683 12.955 10.492 −2.456 1.00 119.08 A C
    ATOM 1462 NZ LYS A 683 13.416 10.330 −1.039 1.00 118.83 A N
    ATOM 1463 C LYS A 683 9.359 11.953 0.847 1.00 101.80 A C
    ATOM 1464 O LYS A 683 9.269 10.806 1.275 1.00 100.60 A O
    ATOM 1465 N MET A 684 9.945 12.947 1.515 1.00 96.97 A N
    ATOM 1466 CA MET A 684 10.666 12.755 2.779 1.00 93.07 A C
    ATOM 1467 CB MET A 684 12.014 13.500 2.750 1.00 97.15 A C
    ATOM 1468 CG MET A 684 11.974 14.904 2.121 1.00 101.00 A C
    ATOM 1469 SD MET A 684 12.278 14.933 0.323 1.00 103.09 A S
    ATOM 1470 CE MET A 684 14.014 15.513 0.260 1.00 102.46 A C
    ATOM 1471 C MET A 684 9.839 13.143 4.021 1.00 86.11 A C
    ATOM 1472 O MET A 684 8.650 13.447 3.904 1.00 85.56 A O
    ATOM 1473 N ARG A 685 10.478 13.126 5.195 1.00 77.84 A N
    ATOM 1474 CA ARG A 685 9.821 13.363 6.492 1.00 67.29 A C
    ATOM 1475 CB ARG A 685 10.397 12.420 7.562 1.00 67.86 A C
    ATOM 1476 CG ARG A 685 10.040 10.958 7.424 1.00 70.14 A C
    ATOM 1477 CD ARG A 685 11.245 10.039 7.195 1.00 77.65 A C
    ATOM 1478 NE ARG A 685 11.614 9.206 8.349 1.00 86.24 A N
    ATOM 1479 CZ ARG A 685 10.800 8.368 9.022 1.00 92.30 A C
    ATOM 1480 NH1 ARG A 685 9.515 8.224 8.698 1.00 92.95 A N
    ATOM 1481 NH2 ARG A 685 11.282 7.667 10.046 1.00 94.20 A N
    ATOM 1482 C ARG A 685 10.010 14.800 6.982 1.00 59.11 A C
    ATOM 1483 O ARG A 685 11.136 15.288 7.042 1.00 59.70 A O
    ATOM 1484 N MET A 686 8.918 15.457 7.363 1.00 52.07 A N
    ATOM 1485 CA MET A 686 8.979 16.806 7.932 1.00 52.77 A C
    ATOM 1486 CB MET A 686 8.240 17.775 7.013 1.00 56.34 A C
    ATOM 1487 CG MET A 686 8.911 18.076 5.693 1.00 63.29 A C
    ATOM 1488 SD MET A 686 7.870 19.177 4.709 1.00 72.90 A S
    ATOM 1489 CE MET A 686 9.003 19.605 3.294 1.00 73.19 A C
    ATOM 1490 C MET A 686 8.352 16.887 9.337 1.00 50.09 A C
    ATOM 1491 O MET A 686 7.330 16.255 9.579 1.00 57.19 A O
    ATOM 1492 N VAL A 687 8.930 17.658 10.261 1.00 40.20 A N
    ATOM 1493 CA VAL A 687 8.206 17.955 11.502 1.00 35.96 A C
    ATOM 1494 CB VAL A 687 9.105 18.371 12.717 1.00 37.17 A C
    ATOM 1495 CG1 VAL A 687 10.031 19.518 12.404 1.00 31.99 A C
    ATOM 1496 CG2 VAL A 687 8.223 18.743 13.901 1.00 40.76 A C
    ATOM 1497 C VAL A 687 7.132 19.000 11.232 1.00 32.99 A C
    ATOM 1498 O VAL A 687 7.426 20.085 10.762 1.00 35.40 A O
    ATOM 1499 N LEU A 688 5.886 18.670 11.531 1.00 31.53 A N
    ATOM 1500 CA LEU A 688 4.763 19.485 11.070 1.00 35.49 A C
    ATOM 1501 CB LEU A 688 3.836 18.631 10.224 1.00 33.52 A C
    ATOM 1502 CG LEU A 688 3.871 18.865 8.727 1.00 27.94 A C
    ATOM 1503 CD1 LEU A 688 5.216 18.497 8.192 1.00 27.81 A C
    ATOM 1504 CD2 LEU A 688 2.836 17.974 8.148 1.00 27.94 A C
    ATOM 1505 C LEU A 688 3.943 20.123 12.174 1.00 39.83 A C
    ATOM 1506 O LEU A 688 3.251 21.107 11.950 1.00 42.40 A O
    ATOM 1507 N GLY A 689 3.999 19.529 13.354 1.00 42.67 A N
    ATOM 1508 CA GLY A 689 3.380 20.095 14.528 1.00 41.64 A C
    ATOM 1509 C GLY A 689 4.332 19.860 15.665 1.00 39.90 A C
    ATOM 1510 O GLY A 689 5.215 18.992 15.557 1.00 37.02 A O
    ATOM 1511 N VAL A 690 4.159 20.632 16.739 1.00 38.49 A N
    ATOM 1512 CA VAL A 690 4.974 20.486 17.944 1.00 36.23 A C
    ATOM 1513 CB VAL A 690 5.742 21.770 18.293 1.00 33.80 A C
    ATOM 1514 CG1 VAL A 690 6.504 21.581 19.575 1.00 40.76 A C
    ATOM 1515 CG2 VAL A 690 6.694 22.148 17.198 1.00 30.12 A C
    ATOM 1516 C VAL A 690 4.049 20.142 19.085 1.00 36.97 A C
    ATOM 1517 O VAL A 690 3.064 20.828 19.302 1.00 41.25 A O
    ATOM 1518 N ILE A 691 4.349 19.068 19.803 1.00 38.52 A N
    ATOM 1519 CA ILE A 691 3.470 18.613 20.873 1.00 40.23 A C
    ATOM 1520 CB ILE A 691 3.932 17.256 21.416 1.00 39.21 A C
    ATOM 1521 CG1 ILE A 691 3.816 16.178 20.341 1.00 35.12 A C
    ATOM 1522 CD1 ILE A 691 4.715 15.000 20.598 1.00 31.55 A C
    ATOM 1523 CG2 ILE A 691 3.120 16.870 22.634 1.00 40.22 A C
    ATOM 1524 C ILE A 691 3.458 19.642 21.993 1.00 41.66 A C
    ATOM 1525 O ILE A 691 4.503 20.033 22.497 1.00 40.52 A O
    ATOM 1526 N VAL A 692 2.264 20.094 22.348 1.00 43.82 A N
    ATOM 1527 CA VAL A 692 2.060 20.955 23.514 1.00 41.79 A C
    ATOM 1528 CB VAL A 692 1.644 22.399 23.113 1.00 37.14 A C
    ATOM 1529 CG1 VAL A 692 2.645 22.999 22.114 1.00 28.48 A C
    ATOM 1530 CG2 VAL A 692 0.216 22.428 22.568 1.00 38.18 A C
    ATOM 1531 C VAL A 692 0.986 20.293 24.378 1.00 44.75 A C
    ATOM 1532 O VAL A 692 0.299 19.388 23.903 1.00 54.64 A O
    ATOM 1533 N PRO A 693 0.828 20.709 25.628 1.00 41.31 A N
    ATOM 1534 CA PRO A 693 −0.174 20.081 26.490 1.00 40.59 A C
    ATOM 1535 CB PRO A 693 −0.069 20.890 27.786 1.00 43.86 A C
    ATOM 1536 CG PRO A 693 1.330 21.404 27.770 1.00 43.42 A C
    ATOM 1537 CD PRO A 693 1.570 21.770 26.333 1.00 41.50 A C
    ATOM 1538 C PRO A 693 −1.595 20.144 25.914 1.00 42.17 A C
    ATOM 1539 O PRO A 693 −2.014 21.132 25.259 1.00 42.65 A O
    ATOM 1540 N GLY A 694 −2.338 19.070 26.165 1.00 38.52 A N
    ATOM 1541 CA GLY A 694 −3.699 18.979 25.684 1.00 37.62 A C
    ATOM 1542 C GLY A 694 −4.779 19.248 26.705 1.00 38.72 A C
    ATOM 1543 O GLY A 694 −4.534 19.942 27.698 1.00 48.67 A O
    ATOM 1544 N ARG A 695 −5.970 18.692 26.447 1.00 37.38 A N
    ATOM 1545 CA ARG A 695 −7.097 18.746 27.365 1.00 34.19 A C
    ATOM 1546 CB ARG A 695 −8.237 19.459 26.716 1.00 34.82 A C
    ATOM 1547 CG ARG A 695 −7.918 20.935 26.594 1.00 44.94 A C
    ATOM 1548 CD ARG A 695 −8.646 21.660 25.475 1.00 47.02 A C
    ATOM 1549 NE ARG A 695 −9.682 22.488 26.059 1.00 46.61 A N
    ATOM 1550 CZ ARG A 695 −9.837 23.758 25.794 1.00 50.72 A C
    ATOM 1551 NH1 ARG A 695 −9.022 24.349 24.925 1.00 49.70 A N
    ATOM 1552 NH2 ARG A 695 −10.818 24.438 26.390 1.00 56.06 A N
    ATOM 1553 C ARG A 695 −7.483 17.358 27.847 1.00 39.34 A C
    ATOM 1554 O ARG A 695 −8.621 17.094 28.302 1.00 42.40 A O
    ATOM 1555 N GLY A 696 −6.482 16.485 27.793 1.00 38.78 A N
    ATOM 1556 CA GLY A 696 −6.610 15.106 28.215 1.00 43.16 A C
    ATOM 1557 C GLY A 696 −5.873 14.210 27.250 1.00 44.55 A C
    ATOM 1558 O GLY A 696 −5.834 14.500 26.068 1.00 50.18 A O
    ATOM 1559 N CYS A 697 −5.277 13.139 27.751 1.00 44.32 A N
    ATOM 1560 CA CYS A 697 −4.524 12.234 26.909 1.00 44.50 A C
    ATOM 1561 CB CYS A 697 −3.426 11.595 27.744 1.00 49.09 A C
    ATOM 1562 SG CYS A 697 −2.394 12.857 28.503 1.00 56.39 A S
    ATOM 1563 C CYS A 697 −5.429 11.178 26.286 1.00 47.38 A C
    ATOM 1564 O CYS A 697 −6.413 10.751 26.886 1.00 50.68 A O
    ATOM 1565 N ALA A 698 −5.101 10.766 25.068 1.00 52.54 A N
    ATOM 1566 CA ALA A 698 −5.835 9.702 24.363 1.00 53.20 A C
    ATOM 1567 CB ALA A 698 −5.124 8.372 24.560 1.00 50.25 A C
    ATOM 1568 C ALA A 698 −7.342 9.584 24.712 1.00 53.22 A C
    ATOM 1569 O ALA A 698 −7.823 8.498 25.079 1.00 55.37 A O
    ATOM 1570 N ILE A 699 −8.074 10.698 24.608 1.00 48.34 A N
    ATOM 1571 CA ILE A 699 −9.521 10.664 24.760 1.00 41.86 A C
    ATOM 1572 CB ILE A 699 −10.092 12.049 24.970 1.00 37.20 A C
    ATOM 1573 CG1 ILE A 699 −10.057 12.394 26.447 1.00 44.24 A C
    ATOM 1574 CD1 ILE A 699 −9.181 13.547 26.806 1.00 44.51 A C
    ATOM 1575 CG2 ILE A 699 −11.536 12.045 24.615 1.00 34.30 A C
    ATOM 1576 C ILE A 699 −10.095 10.079 23.499 1.00 44.19 A C
    ATOM 1577 O ILE A 699 −9.861 10.609 22.417 1.00 52.15 A O
    ATOM 1578 N PRO A 700 −10.861 9.004 23.611 1.00 42.12 A N
    ATOM 1579 CA PRO A 700 −11.352 8.323 22.422 1.00 41.31 A C
    ATOM 1580 CB PRO A 700 −12.317 7.299 22.977 1.00 38.60 A C
    ATOM 1581 CG PRO A 700 −11.837 7.056 24.319 1.00 44.12 A C
    ATOM 1582 CD PRO A 700 −11.357 8.377 24.842 1.00 46.01 A C
    ATOM 1583 C PRO A 700 −12.077 9.330 21.566 1.00 45.33 A C
    ATOM 1584 O PRO A 700 −12.948 10.074 22.048 1.00 43.22 A O
    ATOM 1585 N ASN A 701 −11.635 9.385 20.315 1.00 48.30 A N
    ATOM 1586 CA ASN A 701 −12.299 10.115 19.251 1.00 52.07 A C
    ATOM 1587 CB ASN A 701 −13.693 9.544 19.019 1.00 55.65 A C
    ATOM 1588 CG ASN A 701 −14.174 9.804 17.641 1.00 58.03 A C
    ATOM 1589 OD1 ASN A 701 −13.617 9.303 16.654 1.00 58.32 A O
    ATOM 1590 ND2 ASN A 701 −15.196 10.627 17.544 1.00 61.70 A N
    ATOM 1591 C ASN A 701 −12.321 11.647 19.348 1.00 50.08 A C
    ATOM 1592 O ASN A 701 −13.204 12.310 18.770 1.00 45.34 A O
    ATOM 1593 N ARG A 702 −11.319 12.190 20.039 1.00 46.43 A N
    ATOM 1594 CA ARG A 702 −11.119 13.629 20.138 1.00 48.19 A C
    ATOM 1595 CB ARG A 702 −11.374 14.045 21.579 1.00 55.76 A C
    ATOM 1596 CG ARG A 702 −11.528 15.532 21.870 1.00 65.44 A C
    ATOM 1597 CD ARG A 702 −11.232 15.947 23.381 1.00 72.16 A C
    ATOM 1598 NE ARG A 702 −12.249 15.637 24.415 1.00 73.97 A N
    ATOM 1599 CZ ARG A 702 −13.488 15.134 24.213 1.00 78.19 A C
    ATOM 1600 NH1 ARG A 702 −13.958 14.851 22.993 1.00 75.65 A N
    ATOM 1601 NH2 ARG A 702 −14.274 14.909 25.262 1.00 80.63 A N
    ATOM 1602 C ARG A 702 −9.674 13.913 19.723 1.00 46.23 A C
    ATOM 1603 O ARG A 702 −8.760 13.640 20.481 1.00 50.59 A O
    ATOM 1604 N PRO A 703 −9.450 14.450 18.528 1.00 45.86 A N
    ATOM 1605 CA PRO A 703 −8.087 14.594 17.988 1.00 45.22 A C
    ATOM 1606 CB PRO A 703 −8.318 15.221 16.608 1.00 44.09 A C
    ATOM 1607 CG PRO A 703 −9.627 15.898 16.735 1.00 43.61 A C
    ATOM 1608 CD PRO A 703 −10.455 14.998 17.604 1.00 45.69 A C
    ATOM 1609 C PRO A 703 −7.197 15.520 18.806 1.00 43.55 A C
    ATOM 1610 O PRO A 703 −7.688 16.336 19.584 1.00 44.36 A O
    ATOM 1611 N GLY A 704 −5.890 15.384 18.619 1.00 44.43 A N
    ATOM 1612 CA GLY A 704 −4.928 16.256 19.268 1.00 43.96 A C
    ATOM 1613 C GLY A 704 −4.658 17.493 18.432 1.00 41.94 A C
    ATOM 1614 O GLY A 704 −4.565 17.418 17.199 1.00 47.94 A O
    ATOM 1615 N ILE A 705 −4.560 18.637 19.094 1.00 33.42 A N
    ATOM 1616 CA ILE A 705 −4.159 19.841 18.410 1.00 28.50 A C
    ATOM 1617 CB ILE A 705 −5.147 21.047 18.682 1.00 31.90 A C
    ATOM 1618 CG1 ILE A 705 −4.460 22.418 18.561 1.00 36.99 A C
    ATOM 1619 CD1 ILE A 705 −3.332 22.737 19.529 1.00 37.47 A C
    ATOM 1620 CG2 ILE A 705 −5.965 20.889 19.949 1.00 32.67 A C
    ATOM 1621 C ILE A 705 −2.701 20.117 18.715 1.00 27.05 A C
    ATOM 1622 O ILE A 705 −2.281 20.125 19.865 1.00 35.29 A O
    ATOM 1623 N PHE A 706 −1.925 20.305 17.662 1.00 31.62 A N
    ATOM 1624 CA PHE A 706 −0.487 20.540 17.772 1.00 38.59 A C
    ATOM 1625 CB PHE A 706 0.282 19.522 16.932 1.00 34.95 A C
    ATOM 1626 CG PHE A 706 −0.072 18.096 17.223 1.00 32.87 A C
    ATOM 1627 CD1 PHE A 706 0.855 17.248 17.783 1.00 37.19 A C
    ATOM 1628 CE1 PHE A 706 0.542 15.911 18.024 1.00 38.47 A C
    ATOM 1629 CZ PHE A 706 −0.714 15.424 17.711 1.00 35.32 A C
    ATOM 1630 CE2 PHE A 706 −1.645 16.268 17.163 1.00 32.01 A C
    ATOM 1631 CD2 PHE A 706 −1.322 17.591 16.917 1.00 32.32 A C
    ATOM 1632 C PHE A 706 −0.203 21.944 17.258 1.00 39.92 A C
    ATOM 1633 O PHE A 706 −1.117 22.586 16.742 1.00 42.13 A O
    ATOM 1634 N VAL A 707 1.033 22.433 17.388 1.00 35.91 A N
    ATOM 1635 CA VAL A 707 1.341 23.750 16.833 1.00 34.53 A C
    ATOM 1636 CB VAL A 707 2.227 24.638 17.760 1.00 31.70 A C
    ATOM 1637 CG1 VAL A 707 3.170 23.829 18.523 1.00 33.90 A C
    ATOM 1638 CG2 VAL A 707 3.006 25.656 16.955 1.00 34.25 A C
    ATOM 1639 C VAL A 707 1.880 23.645 15.400 1.00 34.97 A C
    ATOM 1640 O VAL A 707 2.856 22.930 15.138 1.00 35.08 A O
    ATOM 1641 N ARG A 708 1.206 24.338 14.480 1.00 35.14 A N
    ATOM 1642 CA ARG A 708 1.601 24.377 13.075 1.00 39.69 A C
    ATOM 1643 CB ARG A 708 0.639 25.237 12.251 1.00 42.35 A C
    ATOM 1644 CG ARG A 708 0.392 24.734 10.859 1.00 46.08 A C
    ATOM 1645 CD ARG A 708 −1.037 24.982 10.339 1.00 52.26 A C
    ATOM 1646 NE ARG A 708 −1.026 26.025 9.318 1.00 60.83 A N
    ATOM 1647 CZ ARG A 708 −0.483 25.893 8.097 1.00 68.01 A C
    ATOM 1648 NH1 ARG A 708 0.081 24.736 7.717 1.00 71.66 A N
    ATOM 1649 NH2 ARG A 708 −0.511 26.917 7.244 1.00 65.48 A N
    ATOM 1650 C ARG A 708 2.984 24.972 13.008 1.00 39.97 A C
    ATOM 1651 O ARG A 708 3.186 26.120 13.373 1.00 43.82 A O
    ATOM 1652 N VAL A 709 3.948 24.175 12.584 1.00 37.94 A N
    ATOM 1653 CA VAL A 709 5.300 24.673 12.409 1.00 32.57 A C
    ATOM 1654 CB VAL A 709 6.281 23.524 12.228 1.00 28.96 A C
    ATOM 1655 CG1 VAL A 709 7.631 24.029 11.747 1.00 21.41 A C
    ATOM 1656 CG2 VAL A 709 6.378 22.707 13.519 1.00 28.08 A C
    ATOM 1657 C VAL A 709 5.315 25.563 11.178 1.00 35.08 A C
    ATOM 1658 O VAL A 709 5.949 26.606 11.168 1.00 31.30 A O
    ATOM 1659 N ALA A 710 4.585 25.162 10.144 1.00 41.73 A N
    ATOM 1660 CA ALA A 710 4.536 25.956 8.920 1.00 42.71 A C
    ATOM 1661 CB ALA A 710 3.512 25.382 7.952 1.00 44.89 A C
    ATOM 1662 C ALA A 710 4.245 27.434 9.215 1.00 40.16 A C
    ATOM 1663 O ALA A 710 4.770 28.317 8.549 1.00 39.48 A O
    ATOM 1664 N TYR A 711 3.433 27.694 10.235 1.00 40.18 A N
    ATOM 1665 CA TYR A 711 3.038 29.055 10.577 1.00 41.47 A C
    ATOM 1666 CB TYR A 711 1.959 29.040 11.643 1.00 39.79 A C
    ATOM 1667 CG TYR A 711 1.282 30.362 11.903 1.00 36.63 A C
    ATOM 1668 CD1 TYR A 711 0.346 30.875 11.017 1.00 42.57 A C
    ATOM 1669 CE1 TYR A 711 −0.301 32.087 11.266 1.00 46.47 A C
    ATOM 1670 CZ TYR A 711 −0.022 32.781 12.430 1.00 45.43 A C
    ATOM 1671 OH TYR A 711 −0.658 33.979 12.691 1.00 45.18 A O
    ATOM 1672 CE2 TYR A 711 0.901 32.274 13.324 1.00 42.37 A C
    ATOM 1673 CD2 TYR A 711 1.544 31.072 13.053 1.00 36.82 A C
    ATOM 1674 C TYR A 711 4.220 29.821 11.095 1.00 44.95 A C
    ATOM 1675 O TYR A 711 4.275 31.040 10.974 1.00 53.00 A O
    ATOM 1676 N TYR A 712 5.178 29.090 11.646 1.00 42.71 A N
    ATOM 1677 CA TYR A 712 6.345 29.695 12.266 1.00 42.49 A C
    ATOM 1678 CB TYR A 712 6.411 29.198 13.701 1.00 31.49 A C
    ATOM 1679 CG TYR A 712 5.262 29.691 14.537 1.00 26.75 A C
    ATOM 1680 CD1 TYR A 712 5.061 31.049 14.711 1.00 28.18 A C
    ATOM 1681 CE1 TYR A 712 4.027 31.532 15.503 1.00 30.60 A C
    ATOM 1682 CZ TYR A 712 3.161 30.659 16.121 1.00 29.77 A C
    ATOM 1683 OH TYR A 712 2.148 31.219 16.868 1.00 34.02 A O
    ATOM 1684 CE2 TYR A 712 3.325 29.284 15.973 1.00 25.70 A C
    ATOM 1685 CD2 TYR A 712 4.390 28.807 15.181 1.00 25.26 A C
    ATOM 1686 C TYR A 712 7.695 29.487 11.521 1.00 48.23 A C
    ATOM 1687 O TYR A 712 8.754 29.901 12.003 1.00 52.43 A O
    ATOM 1688 N ALA A 713 7.654 28.881 10.339 1.00 47.47 A N
    ATOM 1689 CA ALA A 713 8.875 28.421 9.692 1.00 48.61 A C
    ATOM 1690 CB ALA A 713 8.542 27.636 8.442 1.00 49.02 A C
    ATOM 1691 C ALA A 713 9.837 29.565 9.380 1.00 52.52 A C
    ATOM 1692 O ALA A 713 11.062 29.428 9.531 1.00 53.40 A O
    ATOM 1693 N LYS A 714 9.267 30.689 8.946 1.00 54.15 A N
    ATOM 1694 CA LYS A 714 10.025 31.899 8.639 1.00 50.72 A C
    ATOM 1695 CB LYS A 714 9.072 33.069 8.372 1.00 50.32 A C
    ATOM 1696 CG LYS A 714 9.550 34.058 7.354 1.00 49.64 A C
    ATOM 1697 CD LYS A 714 8.530 34.233 6.245 1.00 52.82 A C
    ATOM 1698 CE LYS A 714 9.107 33.779 4.892 1.00 56.98 A C
    ATOM 1699 NZ LYS A 714 9.283 34.895 3.904 1.00 55.47 A N
    ATOM 1700 C LYS A 714 10.865 32.199 9.858 1.00 46.97 A C
    ATOM 1701 O LYS A 714 12.103 32.125 9.813 1.00 43.57 A O
    ATOM 1702 N TRP A 715 10.170 32.477 10.963 1.00 42.31 A N
    ATOM 1703 CA TRP A 715 10.831 32.815 12.203 1.00 36.99 A C
    ATOM 1704 CB TRP A 715 9.844 32.968 13.342 1.00 33.70 A C
    ATOM 1705 CG TRP A 715 10.556 33.022 14.636 1.00 34.96 A C
    ATOM 1706 CD1 TRP A 715 11.239 34.073 15.133 1.00 36.36 A C
    ATOM 1707 NE1 TRP A 715 11.791 33.751 16.346 1.00 37.12 A N
    ATOM 1708 CE2 TRP A 715 11.469 32.459 16.649 1.00 36.71 A C
    ATOM 1709 CD2 TRP A 715 10.699 31.964 15.585 1.00 38.08 A C
    ATOM 1710 CE3 TRP A 715 10.235 30.643 15.653 1.00 42.71 A C
    ATOM 1711 CZ3 TRP A 715 10.557 29.880 16.758 1.00 43.82 A C
    ATOM 1712 CH2 TRP A 715 11.335 30.409 17.800 1.00 42.73 A C
    ATOM 1713 CZ2 TRP A 715 11.798 31.692 17.761 1.00 38.42 A C
    ATOM 1714 C TRP A 715 11.907 31.793 12.560 1.00 35.89 A C
    ATOM 1715 O TRP A 715 13.046 32.171 12.830 1.00 42.05 A O
    ATOM 1716 N ILE A 716 11.565 30.508 12.532 1.00 29.01 A N
    ATOM 1717 CA ILE A 716 12.551 29.472 12.818 1.00 25.70 A C
    ATOM 1718 CB ILE A 716 12.000 28.086 12.571 1.00 19.69 A C
    ATOM 1719 CG1 ILE A 716 10.683 27.889 13.333 1.00 18.28 A C
    ATOM 1720 CD1 ILE A 716 10.093 26.517 13.207 1.00 13.05 A C
    ATOM 1721 CG2 ILE A 716 13.070 27.064 12.937 1.00 13.56 A C
    ATOM 1722 C ILE A 716 13.793 29.631 11.963 1.00 31.34 A C
    ATOM 1723 O ILE A 716 14.911 29.574 12.469 1.00 34.55 A O
    ATOM 1724 N HIS A 717 13.600 29.826 10.667 1.00 34.01 A N
    ATOM 1725 CA HIS A 717 14.737 29.888 9.776 1.00 40.72 A C
    ATOM 1726 CB HIS A 717 14.288 29.962 8.326 1.00 40.20 A C
    ATOM 1727 CG HIS A 717 13.989 28.628 7.732 1.00 38.10 A C
    ATOM 1728 ND1 HIS A 717 12.706 28.210 7.458 1.00 37.66 A N
    ATOM 1729 CE1 HIS A 717 12.743 26.991 6.947 1.00 39.42 A C
    ATOM 1730 NE2 HIS A 717 14.004 26.602 6.889 1.00 39.68 A N
    ATOM 1731 CD2 HIS A 717 14.804 27.608 7.374 1.00 38.80 A C
    ATOM 1732 C HIS A 717 15.646 31.053 10.134 1.00 47.42 A C
    ATOM 1733 O HIS A 717 16.868 30.892 10.177 1.00 50.86 A O
    ATOM 1734 N LYS A 718 15.048 32.211 10.421 1.00 49.56 A N
    ATOM 1735 CA LYS A 718 15.821 33.418 10.728 1.00 50.74 A C
    ATOM 1736 CB LYS A 718 14.932 34.674 10.689 1.00 53.23 A C
    ATOM 1737 CG LYS A 718 15.153 35.710 11.785 1.00 55.66 A C
    ATOM 1738 CD LYS A 718 13.871 35.914 12.598 1.00 60.99 A C
    ATOM 1739 CE LYS A 718 13.785 37.307 13.223 1.00 65.16 A C
    ATOM 1740 NZ LYS A 718 13.795 38.395 12.194 1.00 68.77 A N
    ATOM 1741 C LYS A 718 16.582 33.275 12.045 1.00 48.84 A C
    ATOM 1742 O LYS A 718 17.526 34.015 12.300 1.00 49.48 A O
    ATOM 1743 N ILE A 719 16.193 32.300 12.859 1.00 45.24 A N
    ATOM 1744 CA ILE A 719 16.927 32.002 14.080 1.00 43.16 A C
    ATOM 1745 CB ILE A 719 15.962 31.552 15.181 1.00 42.64 A C
    ATOM 1746 CG1 ILE A 719 14.993 32.684 15.542 1.00 42.75 A C
    ATOM 1747 CD1 ILE A 719 15.628 33.885 16.185 1.00 43.06 A C
    ATOM 1748 CG2 ILE A 719 16.719 31.019 16.402 1.00 42.10 A C
    ATOM 1749 C ILE A 719 18.019 30.960 13.865 1.00 44.68 A C
    ATOM 1750 O ILE A 719 19.130 31.130 14.364 1.00 44.01 A O
    ATOM 1751 N ILE A 720 17.705 29.897 13.122 1.00 47.92 A N
    ATOM 1752 CA ILE A 720 18.604 28.739 12.998 1.00 53.56 A C
    ATOM 1753 CB ILE A 720 17.823 27.406 12.880 1.00 50.50 A C
    ATOM 1754 CG1 ILE A 720 16.906 27.414 11.666 1.00 49.87 A C
    ATOM 1755 CD1 ILE A 720 17.308 26.438 10.631 1.00 52.61 A C
    ATOM 1756 CG2 ILE A 720 17.007 27.149 14.121 1.00 53.14 A C
    ATOM 1757 C ILE A 720 19.609 28.844 11.857 1.00 61.95 A C
    ATOM 1758 O ILE A 720 20.764 28.419 11.998 1.00 64.33 A O
    ATOM 1759 N LEU A 721 19.160 29.372 10.719 1.00 67.80 A N
    ATOM 1760 CA LEU A 721 20.049 29.574 9.586 1.00 70.56 A C
    ATOM 1761 CB LEU A 721 19.276 29.888 8.302 1.00 69.78 A C
    ATOM 1762 CG LEU A 721 19.365 28.816 7.207 1.00 69.35 A C
    ATOM 1763 CD1 LEU A 721 18.168 27.844 7.255 1.00 63.65 A C
    ATOM 1764 CD2 LEU A 721 19.535 29.464 5.812 1.00 69.06 A C
    ATOM 1765 C LEU A 721 20.980 30.700 9.969 1.00 73.23 A C
    ATOM 1766 O LEU A 721 20.544 31.726 10.494 1.00 70.65 A O
    ATOM 1767 N THR A 722 22.272 30.464 9.763 1.00 80.61 A N
    ATOM 1768 CA THR A 722 23.323 31.413 10.134 1.00 87.21 A C
    ATOM 1769 CB THR A 722 23.375 31.652 11.695 1.00 90.25 A C
    ATOM 1770 OG1 THR A 722 24.652 32.191 12.076 1.00 93.38 A O
    ATOM 1771 CG2 THR A 722 23.270 30.337 12.491 1.00 91.06 A C
    ATOM 1772 C THR A 722 24.686 30.991 9.567 1.00 86.57 A C
    ATOM 1773 O THR A 722 25.245 31.668 8.697 1.00 85.09 A O
    ATOM 1774 N LYS B 40 −40.439 42.342 56.132 1.00 88.31 B N
    ATOM 1775 CA LYS B 40 −40.314 40.869 55.911 1.00 89.08 B C
    ATOM 1776 CB LYS B 40 −41.319 40.112 56.792 1.00 91.05 B C
    ATOM 1777 CG LYS B 40 −41.370 38.601 56.568 1.00 91.08 B C
    ATOM 1778 CD LYS B 40 −42.788 38.072 56.744 1.00 90.84 B C
    ATOM 1779 CE LYS B 40 −43.407 37.692 55.409 1.00 90.34 B C
    ATOM 1780 NZ LYS B 40 −44.531 38.595 55.063 1.00 90.81 B N
    ATOM 1781 C LYS B 40 −40.506 40.510 54.433 1.00 87.17 B C
    ATOM 1782 O LYS B 40 −41.613 40.627 53.890 1.00 87.44 B O
    ATOM 1783 N TYR B 41 −39.423 40.070 53.793 1.00 82.82 B N
    ATOM 1784 CA TYR B 41 −39.455 39.735 52.369 1.00 77.74 B C
    ATOM 1785 CB TYR B 41 −38.214 40.264 51.652 1.00 74.81 B C
    ATOM 1786 CG TYR B 41 −38.096 41.772 51.602 1.00 73.26 B C
    ATOM 1787 CD1 TYR B 41 −36.962 42.402 52.091 1.00 72.23 B C
    ATOM 1788 CE1 TYR B 41 −36.824 43.787 52.050 1.00 71.49 B C
    ATOM 1789 CZ TYR B 41 −37.824 44.566 51.508 1.00 70.43 B C
    ATOM 1790 OH TYR B 41 −37.644 45.935 51.482 1.00 68.52 B O
    ATOM 1791 CE2 TYR B 41 −38.976 43.969 51.004 1.00 72.04 B C
    ATOM 1792 CD2 TYR B 41 −39.105 42.570 51.050 1.00 73.83 B C
    ATOM 1793 C TYR B 41 −39.609 38.240 52.108 1.00 74.94 B C
    ATOM 1794 O TYR B 41 −39.354 37.415 52.983 1.00 72.98 B O
    ATOM 1795 N GLN B 42 −40.028 37.917 50.887 1.00 73.46 B N
    ATOM 1796 CA GLN B 42 −40.326 36.552 50.471 1.00 72.07 B C
    ATOM 1797 CB GLN B 42 −41.851 36.391 50.273 1.00 74.52 B C
    ATOM 1798 CG GLN B 42 −42.323 35.498 49.116 1.00 76.03 B C
    ATOM 1799 CD GLN B 42 −42.263 34.010 49.439 1.00 74.54 B C
    ATOM 1800 OE1 GLN B 42 −43.257 33.420 49.867 1.00 72.50 B O
    ATOM 1801 NE2 GLN B 42 −41.100 33.402 49.222 1.00 74.77 B N
    ATOM 1802 C GLN B 42 −39.498 36.216 49.217 1.00 69.39 B C
    ATOM 1803 O GLN B 42 −39.776 36.699 48.116 1.00 70.35 B O
    ATOM 1804 N LEU B 43 −38.467 35.395 49.406 1.00 65.67 B N
    ATOM 1805 CA LEU B 43 −37.458 35.147 48.374 1.00 60.10 B C
    ATOM 1806 CB LEU B 43 −36.186 35.926 48.707 1.00 55.50 B C
    ATOM 1807 CG LEU B 43 −36.311 37.445 48.634 1.00 53.79 B C
    ATOM 1808 CD1 LEU B 43 −35.264 38.123 49.493 1.00 51.21 B C
    ATOM 1809 CD2 LEU B 43 −36.236 37.931 47.187 1.00 54.63 B C
    ATOM 1810 C LEU B 43 −37.129 33.658 48.226 1.00 58.51 B C
    ATOM 1811 O LEU B 43 −37.399 32.883 49.150 1.00 59.14 B O
    ATOM 1812 N PRO B 44 −36.578 33.255 47.070 1.00 54.41 B N
    ATOM 1813 CA PRO B 44 −36.135 31.871 46.864 1.00 52.74 B C
    ATOM 1814 CB PRO B 44 −35.464 31.930 45.497 1.00 50.09 B C
    ATOM 1815 CG PRO B 44 −36.199 33.016 44.788 1.00 48.95 B C
    ATOM 1816 CD PRO B 44 −36.385 34.064 45.850 1.00 52.02 B C
    ATOM 1817 C PRO B 44 −35.164 31.437 47.956 1.00 55.95 B C
    ATOM 1818 O PRO B 44 −34.059 31.975 48.057 1.00 57.32 B O
    ATOM 1819 N ASN B 45 −35.602 30.475 48.768 1.00 57.90 B N
    ATOM 1820 CA ASN B 45 −34.996 30.210 50.072 1.00 56.49 B C
    ATOM 1821 CB ASN B 45 −35.896 30.734 51.251 1.00 59.73 B C
    ATOM 1822 CG ASN B 45 −37.444 30.377 51.125 1.00 61.49 B C
    ATOM 1823 OD1 ASN B 45 −38.318 31.134 51.606 1.00 56.31 B O
    ATOM 1824 ND2 ASN B 45 −37.756 29.226 50.537 1.00 63.28 B N
    ATOM 1825 C ASN B 45 −34.559 28.770 50.323 1.00 55.39 B C
    ATOM 1826 O ASN B 45 −35.290 28.037 50.995 1.00 59.64 B O
    ATOM 1827 N PHE B 46 −33.381 28.356 49.826 1.00 50.73 B N
    ATOM 1828 CA PHE B 46 −32.858 27.004 50.170 1.00 45.86 B C
    ATOM 1829 CB PHE B 46 −32.065 26.320 49.053 1.00 45.33 B C
    ATOM 1830 CG PHE B 46 −31.521 24.969 49.467 1.00 44.34 B C
    ATOM 1831 CD1 PHE B 46 −32.353 23.853 49.510 1.00 46.55 B C
    ATOM 1832 CE1 PHE B 46 −31.859 22.600 49.920 1.00 43.16 B C
    ATOM 1833 CZ PHE B 46 −30.542 22.476 50.304 1.00 39.14 B C
    ATOM 1834 CE2 PHE B 46 −29.712 23.588 50.285 1.00 38.80 B C
    ATOM 1835 CD2 PHE B 46 −30.201 24.824 49.879 1.00 41.12 B C
    ATOM 1836 C PHE B 46 −32.060 26.841 51.473 1.00 41.12 B C
    ATOM 1837 O PHE B 46 −31.092 27.559 51.722 1.00 33.78 B O
    ATOM 1838 N THR B 47 −32.459 25.826 52.241 1.00 43.61 B N
    ATOM 1839 CA THR B 47 −31.914 25.507 53.555 1.00 47.93 B C
    ATOM 1840 CB THR B 47 −33.049 25.533 54.579 1.00 47.66 B C
    ATOM 1841 OG1 THR B 47 −33.753 26.778 54.498 1.00 49.67 B O
    ATOM 1842 CG2 THR B 47 −32.499 25.486 56.003 1.00 47.43 B C
    ATOM 1843 C THR B 47 −31.297 24.104 53.588 1.00 53.53 B C
    ATOM 1844 O THR B 47 −31.994 23.105 53.386 1.00 57.56 B O
    ATOM 1845 N ALA B 48 −30.006 24.023 53.886 1.00 54.57 B N
    ATOM 1846 CA ALA B 48 −29.338 22.731 54.009 1.00 57.41 B C
    ATOM 1847 CB ALA B 48 −27.942 22.816 53.453 1.00 61.70 B C
    ATOM 1848 C ALA B 48 −29.291 22.235 55.446 1.00 57.95 B C
    ATOM 1849 O ALA B 48 −29.491 23.005 56.387 1.00 58.63 B O
    ATOM 1850 N GLU B 49 −28.996 20.949 55.608 1.00 59.00 B N
    ATOM 1851 CA GLU B 49 −28.923 20.351 56.936 1.00 61.70 B C
    ATOM 1852 CB GLU B 49 −29.316 18.860 56.902 1.00 67.90 B C
    ATOM 1853 CG GLU B 49 −30.824 18.591 56.926 1.00 72.95 B C
    ATOM 1854 CD GLU B 49 −31.524 19.154 58.163 1.00 78.90 B C
    ATOM 1855 OE1 GLU B 49 −31.300 18.617 59.277 1.00 81.87 B O
    ATOM 1856 OE2 GLU B 49 −32.302 20.133 58.027 1.00 78.86 B O
    ATOM 1857 C GLU B 49 −27.568 20.562 57.620 1.00 57.45 B C
    ATOM 1858 O GLU B 49 −27.410 20.234 58.800 1.00 60.69 B O
    ATOM 1859 N THR B 50 −26.597 21.106 56.887 1.00 50.48 B N
    ATOM 1860 CA THR B 50 −25.287 21.443 57.459 1.00 46.07 B C
    ATOM 1861 CB THR B 50 −24.215 20.346 57.182 1.00 45.63 B C
    ATOM 1862 OG1 THR B 50 −23.565 20.588 55.925 1.00 43.30 B O
    ATOM 1863 CG2 THR B 50 −24.852 18.971 57.009 1.00 47.44 B C
    ATOM 1864 C THR B 50 −24.814 22.789 56.939 1.00 42.87 B C
    ATOM 1865 O THR B 50 −25.212 23.184 55.850 1.00 46.52 B O
    ATOM 1866 N PRO B 51 −23.969 23.486 57.704 1.00 39.97 B N
    ATOM 1867 CA PRO B 51 −23.454 24.813 57.318 1.00 41.14 B C
    ATOM 1868 CB PRO B 51 −22.417 25.100 58.402 1.00 39.83 B C
    ATOM 1869 CG PRO B 51 −22.894 24.330 59.568 1.00 39.25 B C
    ATOM 1870 CD PRO B 51 −23.441 23.060 59.012 1.00 39.48 B C
    ATOM 1871 C PRO B 51 −22.788 24.881 55.931 1.00 43.57 B C
    ATOM 1872 O PRO B 51 −22.138 23.917 55.502 1.00 46.80 B O
    ATOM 1873 N ILE B 52 −22.935 26.019 55.252 1.00 40.80 B N
    ATOM 1874 CA ILE B 52 −22.419 26.180 53.889 1.00 38.35 B C
    ATOM 1875 CB ILE B 52 −23.457 26.911 53.006 1.00 39.32 B C
    ATOM 1876 CG1 ILE B 52 −24.813 26.203 53.092 1.00 37.65 B C
    ATOM 1877 CD1 ILE B 52 −25.748 26.480 51.943 1.00 35.28 B C
    ATOM 1878 CG2 ILE B 52 −22.924 27.055 51.565 1.00 41.75 B C
    ATOM 1879 C ILE B 52 −21.096 26.937 53.845 1.00 34.40 B C
    ATOM 1880 O ILE B 52 −21.038 28.113 54.165 1.00 35.36 B O
    ATOM 1881 N GLN B 53 −20.029 26.287 53.423 1.00 33.14 B N
    ATOM 1882 CA GLN B 53 −18.770 27.009 53.342 1.00 36.41 B C
    ATOM 1883 CB GLN B 53 −17.577 26.075 53.474 1.00 35.02 B C
    ATOM 1884 CG GLN B 53 −17.288 25.692 54.878 1.00 38.75 B C
    ATOM 1885 CD GLN B 53 −18.283 24.685 55.393 1.00 41.87 B C
    ATOM 1886 OE1 GLN B 53 −19.091 25.007 56.271 1.00 45.15 B O
    ATOM 1887 NE2 GLN B 53 −18.241 23.467 54.849 1.00 38.83 B N
    ATOM 1888 C GLN B 53 −18.627 27.820 52.068 1.00 38.87 B C
    ATOM 1889 O GLN B 53 −18.137 28.945 52.130 1.00 42.84 B O
    ATOM 1890 N ASN B 54 −19.044 27.247 50.934 1.00 34.88 B N
    ATOM 1891 CA ASN B 54 −18.616 27.716 49.617 1.00 39.39 B C
    ATOM 1892 CB ASN B 54 −17.328 27.018 49.209 1.00 42.49 B C
    ATOM 1893 CG ASN B 54 −16.126 27.575 49.912 1.00 46.56 B C
    ATOM 1894 OD1 ASN B 54 −15.962 28.787 50.023 1.00 49.88 B O
    ATOM 1895 ND2 ASN B 54 −15.271 26.692 50.397 1.00 50.16 B N
    ATOM 1896 C ASN B 54 −19.646 27.491 48.529 1.00 43.00 B C
    ATOM 1897 O ASN B 54 −20.502 26.607 48.660 1.00 46.24 B O
    ATOM 1898 N VAL B 55 −19.550 28.269 47.445 1.00 39.10 B N
    ATOM 1899 CA VAL B 55 −20.634 28.306 46.466 1.00 37.57 B C
    ATOM 1900 CB VAL B 55 −21.693 29.308 46.909 1.00 30.43 B C
    ATOM 1901 CG1 VAL B 55 −22.337 29.978 45.755 1.00 23.21 B C
    ATOM 1902 CG2 VAL B 55 −22.718 28.564 47.647 1.00 36.18 B C
    ATOM 1903 C VAL B 55 −20.206 28.583 45.037 1.00 44.19 B C
    ATOM 1904 O VAL B 55 −19.450 29.517 44.778 1.00 52.60 B O
    ATOM 1905 N ILE B 56 −20.698 27.778 44.104 1.00 44.46 B N
    ATOM 1906 CA ILE B 56 −20.324 27.934 42.704 1.00 45.81 B C
    ATOM 1907 CB ILE B 56 −19.295 26.842 42.287 1.00 46.87 B C
    ATOM 1908 CG1 ILE B 56 −17.892 27.376 42.446 1.00 52.08 B C
    ATOM 1909 CD1 ILE B 56 −17.318 27.148 43.792 1.00 56.76 B C
    ATOM 1910 CG2 ILE B 56 −19.398 26.458 40.836 1.00 45.77 B C
    ATOM 1911 C ILE B 56 −21.570 27.873 41.858 1.00 47.28 B C
    ATOM 1912 O ILE B 56 −22.489 27.083 42.141 1.00 49.61 B O
    ATOM 1913 N LEU B 57 −21.611 28.720 40.832 1.00 43.17 B N
    ATOM 1914 CA LEU B 57 −22.684 28.649 39.859 1.00 43.94 B C
    ATOM 1915 CB LEU B 57 −23.326 30.017 39.659 1.00 44.30 B C
    ATOM 1916 CG LEU B 57 −24.339 30.154 38.525 1.00 41.92 B C
    ATOM 1917 CD1 LEU B 57 −25.656 29.469 38.866 1.00 42.10 B C
    ATOM 1918 CD2 LEU B 57 −24.549 31.616 38.288 1.00 39.61 B C
    ATOM 1919 C LEU B 57 −22.128 28.144 38.556 1.00 46.44 B C
    ATOM 1920 O LEU B 57 −21.215 28.748 38.011 1.00 49.16 B O
    ATOM 1921 N HIS B 58 −22.672 27.037 38.058 1.00 50.00 B N
    ATOM 1922 CA HIS B 58 −22.206 26.468 36.797 1.00 52.04 B C
    ATOM 1923 CB HIS B 58 −21.139 25.426 37.064 1.00 52.03 B C
    ATOM 1924 CG HIS B 58 −20.771 24.625 35.859 1.00 54.05 B C
    ATOM 1925 ND1 HIS B 58 −20.016 25.142 34.828 1.00 51.30 B N
    ATOM 1926 CE1 HIS B 58 −19.848 24.205 33.909 1.00 55.00 B C
    ATOM 1927 NE2 HIS B 58 −20.479 23.109 34.299 1.00 54.05 B N
    ATOM 1928 CD2 HIS B 58 −21.055 23.341 35.522 1.00 53.13 B C
    ATOM 1929 C HIS B 58 −23.331 25.874 35.954 1.00 53.48 B C
    ATOM 1930 O HIS B 58 −24.150 25.116 36.460 1.00 55.42 B O
    ATOM 1931 N GLU B 59 −23.359 26.224 34.670 1.00 55.38 B N
    ATOM 1932 CA GLU B 59 −24.352 25.707 33.736 1.00 58.47 B C
    ATOM 1933 CB GLU B 59 −23.874 24.385 33.133 1.00 63.90 B C
    ATOM 1934 CG GLU B 59 −24.051 24.281 31.628 1.00 72.24 B C
    ATOM 1935 CD GLU B 59 −22.992 25.055 30.864 1.00 81.17 B C
    ATOM 1936 OE1 GLU B 59 −23.345 26.083 30.242 1.00 85.96 B O
    ATOM 1937 OE2 GLU B 59 −21.805 24.643 30.885 1.00 84.29 B O
    ATOM 1938 C GLU B 59 −25.729 25.534 34.382 1.00 59.86 B C
    ATOM 1939 O GLU B 59 −26.275 24.427 34.430 1.00 61.83 B O
    ATOM 1940 N HIS B 60 −26.275 26.635 34.893 1.00 59.00 B N
    ATOM 1941 CA HIS B 60 −27.634 26.668 35.440 1.00 57.01 B C
    ATOM 1942 CB HIS B 60 −28.653 26.383 34.333 1.00 58.99 B C
    ATOM 1943 CG HIS B 60 −28.442 27.210 33.104 1.00 64.85 B C
    ATOM 1944 ND1 HIS B 60 −28.149 28.556 33.155 1.00 67.98 B N
    ATOM 1945 CE1 HIS B 60 −28.008 29.023 31.927 1.00 69.99 B C
    ATOM 1946 NE2 HIS B 60 −28.192 28.025 31.080 1.00 71.81 B N
    ATOM 1947 CD2 HIS B 60 −28.465 26.880 31.791 1.00 68.41 B C
    ATOM 1948 C HIS B 60 −27.854 25.774 36.671 1.00 54.57 B C
    ATOM 1949 O HIS B 60 −28.965 25.348 36.960 1.00 58.35 B O
    ATOM 1950 N HIS B 61 −26.789 25.502 37.404 1.00 50.20 B N
    ATOM 1951 CA HIS B 61 −26.920 24.835 38.682 1.00 48.51 B C
    ATOM 1952 CB HIS B 61 −26.548 23.373 38.552 1.00 53.72 B C
    ATOM 1953 CG HIS B 61 −27.395 22.614 37.579 1.00 60.35 B C
    ATOM 1954 ND1 HIS B 61 −28.477 21.851 37.967 1.00 63.50 B N
    ATOM 1955 CE1 HIS B 61 −29.019 21.284 36.904 1.00 63.17 B C
    ATOM 1956 NE2 HIS B 61 −28.324 21.647 35.840 1.00 63.83 B N
    ATOM 1957 CD2 HIS B 61 −27.301 22.476 36.235 1.00 62.28 B C
    ATOM 1958 C HIS B 61 −26.055 25.520 39.738 1.00 48.02 B C
    ATOM 1959 O HIS B 61 −25.152 26.297 39.424 1.00 49.98 B O
    ATOM 1960 N ILE B 62 −26.345 25.240 40.998 1.00 43.61 B N
    ATOM 1961 CA ILE B 62 −25.661 25.892 42.094 1.00 42.88 B C
    ATOM 1962 CB ILE B 62 −26.681 26.718 42.903 1.00 43.14 B C
    ATOM 1963 CG1 ILE B 62 −27.102 27.963 42.128 1.00 36.21 B C
    ATOM 1964 CD1 ILE B 62 −27.829 28.928 42.974 1.00 32.13 B C
    ATOM 1965 CG2 ILE B 62 −26.133 27.093 44.292 1.00 47.65 B C
    ATOM 1966 C ILE B 62 −25.053 24.788 42.945 1.00 47.29 B C
    ATOM 1967 O ILE B 62 −25.740 23.833 43.313 1.00 53.80 B O
    ATOM 1968 N PHE B 63 −23.769 24.901 43.254 1.00 43.54 B N
    ATOM 1969 CA PHE B 63 −23.103 23.841 43.979 1.00 41.13 B C
    ATOM 1970 CB PHE B 63 −21.900 23.348 43.194 1.00 41.26 B C
    ATOM 1971 CG PHE B 63 −22.238 22.800 41.832 1.00 44.61 B C
    ATOM 1972 CD1 PHE B 63 −22.270 23.640 40.714 1.00 45.84 B C
    ATOM 1973 CE1 PHE B 63 −22.579 23.128 39.455 1.00 46.17 B C
    ATOM 1974 CZ PHE B 63 −22.852 21.745 39.310 1.00 46.42 B C
    ATOM 1975 CE2 PHE B 63 −22.815 20.906 40.412 1.00 40.65 B C
    ATOM 1976 CD2 PHE B 63 −22.510 21.434 41.660 1.00 43.43 B C
    ATOM 1977 C PHE B 63 −22.659 24.375 45.313 1.00 45.66 B C
    ATOM 1978 O PHE B 63 −21.739 25.196 45.389 1.00 52.04 B O
    ATOM 1979 N LEU B 64 −23.323 23.935 46.373 1.00 42.46 B N
    ATOM 1980 CA LEU B 64 −22.908 24.347 47.706 1.00 42.09 B C
    ATOM 1981 CB LEU B 64 −24.114 24.440 48.636 1.00 41.69 B C
    ATOM 1982 CG LEU B 64 −25.365 25.182 48.154 1.00 42.08 B C
    ATOM 1983 CD1 LEU B 64 −26.591 24.571 48.787 1.00 44.25 B C
    ATOM 1984 CD2 LEU B 64 −25.321 26.644 48.511 1.00 40.96 B C
    ATOM 1985 C LEU B 64 −21.855 23.387 48.267 1.00 40.28 B C
    ATOM 1986 O LEU B 64 −22.035 22.182 48.211 1.00 44.05 B O
    ATOM 1987 N GLY B 65 −20.755 23.920 48.791 1.00 37.34 B N
    ATOM 1988 CA GLY B 65 −19.732 23.101 49.422 1.00 37.17 B C
    ATOM 1989 C GLY B 65 −19.905 23.231 50.914 1.00 42.05 B C
    ATOM 1990 O GLY B 65 −19.662 24.296 51.471 1.00 47.10 B O
    ATOM 1991 N ALA B 66 −20.342 22.157 51.561 1.00 44.53 B N
    ATOM 1992 CA ALA B 66 −20.892 22.253 52.912 1.00 48.80 B C
    ATOM 1993 CB ALA B 66 −22.389 21.972 52.888 1.00 48.72 B C
    ATOM 1994 C ALA B 66 −20.203 21.287 53.836 1.00 53.33 B C
    ATOM 1995 O ALA B 66 −19.468 20.412 53.364 1.00 58.02 B O
    ATOM 1996 N THR B 67 −20.439 21.436 55.146 1.00 54.28 B N
    ATOM 1997 CA THR B 67 −19.855 20.522 56.139 1.00 51.15 B C
    ATOM 1998 CB THR B 67 −20.165 20.930 57.593 1.00 53.21 B C
    ATOM 1999 OG1 THR B 67 −20.088 22.352 57.740 1.00 57.91 B O
    ATOM 2000 CG2 THR B 67 −19.061 20.461 58.491 1.00 53.41 B C
    ATOM 2001 C THR B 67 −20.329 19.103 55.866 1.00 47.02 B C
    ATOM 2002 O THR B 67 −21.516 18.788 55.965 1.00 40.82 B O
    ATOM 2003 N ASN B 68 −19.383 18.272 55.451 1.00 50.36 B N
    ATOM 2004 CA ASN B 68 −19.649 16.877 55.108 1.00 52.51 B C
    ATOM 2005 CB ASN B 68 −20.235 16.140 56.331 1.00 52.59 B C
    ATOM 2006 CG ASN B 68 −19.210 15.965 57.461 1.00 51.03 B C
    ATOM 2007 OD1 ASN B 68 −18.111 15.446 57.243 1.00 51.42 B O
    ATOM 2008 ND2 ASN B 68 −19.563 16.406 58.662 1.00 45.80 B N
    ATOM 2009 C ASN B 68 −20.488 16.686 53.819 1.00 50.64 B C
    ATOM 2010 O ASN B 68 −20.866 15.565 53.458 1.00 44.48 B O
    ATOM 2011 N TYR B 69 −20.738 17.778 53.101 1.00 52.92 B N
    ATOM 2012 CA TYR B 69 −21.653 17.721 51.967 1.00 55.27 B C
    ATOM 2013 CB TYR B 69 −23.085 18.021 52.436 1.00 60.82 B C
    ATOM 2014 CG TYR B 69 −23.773 16.805 52.983 1.00 64.11 B C
    ATOM 2015 CD1 TYR B 69 −23.769 16.542 54.351 1.00 66.02 B C
    ATOM 2016 CE1 TYR B 69 −24.382 15.408 54.863 1.00 68.88 B C
    ATOM 2017 CZ TYR B 69 −25.006 14.521 53.997 1.00 71.22 B C
    ATOM 2018 OH TYR B 69 −25.616 13.398 54.506 1.00 75.18 B O
    ATOM 2019 CE2 TYR B 69 −25.017 14.757 52.627 1.00 69.32 B C
    ATOM 2020 CD2 TYR B 69 −24.397 15.895 52.130 1.00 66.33 B C
    ATOM 2021 C TYR B 69 −21.306 18.619 50.793 1.00 51.42 B C
    ATOM 2022 O TYR B 69 −20.702 19.677 50.962 1.00 51.14 B O
    ATOM 2023 N ILE B 70 −21.701 18.174 49.603 1.00 46.28 B N
    ATOM 2024 CA ILE B 70 −21.839 19.058 48.451 1.00 43.86 B C
    ATOM 2025 CB ILE B 70 −20.843 18.667 47.346 1.00 37.93 B C
    ATOM 2026 CG1 ILE B 70 −19.444 19.128 47.717 1.00 32.94 B C
    ATOM 2027 CD1 ILE B 70 −18.399 18.442 46.925 1.00 34.13 B C
    ATOM 2028 CG2 ILE B 70 −21.259 19.241 45.989 1.00 35.59 B C
    ATOM 2029 C ILE B 70 −23.277 18.950 47.948 1.00 47.16 B C
    ATOM 2030 O ILE B 70 −23.763 17.838 47.730 1.00 53.11 B O
    ATOM 2031 N TYR B 71 −23.961 20.086 47.794 1.00 46.45 B N
    ATOM 2032 CA TYR B 71 −25.315 20.094 47.227 1.00 47.00 B C
    ATOM 2033 CB TYR B 71 −26.296 20.874 48.101 1.00 45.72 B C
    ATOM 2034 CG TYR B 71 −26.279 20.473 49.539 1.00 47.73 B C
    ATOM 2035 CD1 TYR B 71 −26.054 21.415 50.527 1.00 50.65 B C
    ATOM 2036 CE1 TYR B 71 −26.021 21.067 51.850 1.00 54.50 B C
    ATOM 2037 CZ TYR B 71 −26.222 19.753 52.207 1.00 60.11 B C
    ATOM 2038 OH TYR B 71 −26.193 19.402 53.541 1.00 67.11 B O
    ATOM 2039 CE2 TYR B 71 −26.445 18.788 51.237 1.00 57.17 B C
    ATOM 2040 CD2 TYR B 71 −26.476 19.157 49.912 1.00 50.73 B C
    ATOM 2041 C TYR B 71 −25.382 20.653 45.820 1.00 48.72 B C
    ATOM 2042 O TYR B 71 −24.512 21.401 45.377 1.00 53.16 B O
    ATOM 2043 N VAL B 72 −26.445 20.289 45.124 1.00 47.30 B N
    ATOM 2044 CA VAL B 72 −26.719 20.847 43.819 1.00 47.03 B C
    ATOM 2045 CB VAL B 72 −26.503 19.814 42.696 1.00 48.79 B C
    ATOM 2046 CG1 VAL B 72 −26.205 20.515 41.378 1.00 48.07 B C
    ATOM 2047 CG2 VAL B 72 −25.368 18.860 43.059 1.00 49.23 B C
    ATOM 2048 C VAL B 72 −28.145 21.372 43.824 1.00 44.93 B C
    ATOM 2049 O VAL B 72 −29.085 20.627 44.081 1.00 46.42 B O
    ATOM 2050 N LEU B 73 −28.288 22.667 43.571 1.00 42.05 B N
    ATOM 2051 CA LEU B 73 −29.594 23.294 43.462 1.00 40.82 B C
    ATOM 2052 CB LEU B 73 −29.690 24.478 44.406 1.00 39.41 B C
    ATOM 2053 CG LEU B 73 −28.964 24.390 45.744 1.00 38.24 B C
    ATOM 2054 CD1 LEU B 73 −29.253 25.650 46.544 1.00 34.92 B C
    ATOM 2055 CD2 LEU B 73 −29.368 23.121 46.520 1.00 36.03 B C
    ATOM 2056 C LEU B 73 −29.810 23.782 42.052 1.00 44.28 B C
    ATOM 2057 O LEU B 73 −28.848 24.014 41.318 1.00 46.00 B O
    ATOM 2058 N ASN B 74 −31.069 23.938 41.668 1.00 47.90 B N
    ATOM 2059 CA ASN B 74 −31.384 24.522 40.374 1.00 58.54 B C
    ATOM 2060 CB ASN B 74 −32.808 24.161 39.984 1.00 64.84 B C
    ATOM 2061 CG ASN B 74 −32.852 23.164 38.865 1.00 72.43 B C
    ATOM 2062 OD1 ASN B 74 −32.112 23.291 37.881 1.00 76.53 B O
    ATOM 2063 ND2 ASN B 74 −33.711 22.152 39.000 1.00 73.79 B N
    ATOM 2064 C ASN B 74 −31.226 26.037 40.393 1.00 62.21 B C
    ATOM 2065 O ASN B 74 −31.793 26.691 41.265 1.00 66.91 B O
    ATOM 2066 N GLU B 75 −30.472 26.603 39.448 1.00 61.46 B N
    ATOM 2067 CA GLU B 75 −30.289 28.065 39.404 1.00 61.67 B C
    ATOM 2068 CB GLU B 75 −29.537 28.526 38.146 1.00 60.79 B C
    ATOM 2069 CG GLU B 75 −29.614 30.042 37.927 1.00 62.00 B C
    ATOM 2070 CD GLU B 75 −29.076 30.516 36.586 1.00 64.68 B C
    ATOM 2071 OE1 GLU B 75 −29.298 29.813 35.571 1.00 69.00 B O
    ATOM 2072 OE2 GLU B 75 −28.441 31.601 36.542 1.00 60.03 B O
    ATOM 2073 C GLU B 75 −31.621 28.817 39.490 1.00 62.54 B C
    ATOM 2074 O GLU B 75 −31.722 29.860 40.144 1.00 58.12 B O
    ATOM 2075 N GLU B 76 −32.638 28.268 38.831 1.00 66.63 B N
    ATOM 2076 CA GLU B 76 −33.910 28.962 38.676 1.00 66.67 B C
    ATOM 2077 CB GLU B 76 −34.747 28.336 37.562 1.00 72.43 B C
    ATOM 2078 CG GLU B 76 −35.688 29.317 36.888 1.00 75.56 B C
    ATOM 2079 CD GLU B 76 −37.076 29.248 37.482 1.00 80.75 B C
    ATOM 2080 OE1 GLU B 76 −37.390 28.214 38.116 1.00 82.06 B O
    ATOM 2081 OE2 GLU B 76 −37.850 30.222 37.324 1.00 83.79 B O
    ATOM 2082 C GLU B 76 −34.711 29.097 39.965 1.00 60.03 B C
    ATOM 2083 O GLU B 76 −35.141 30.191 40.282 1.00 59.16 B O
    ATOM 2084 N ASP B 77 −34.892 28.018 40.718 1.00 55.97 B N
    ATOM 2085 CA ASP B 77 −35.711 28.109 41.925 1.00 56.24 B C
    ATOM 2086 CB ASP B 77 −37.060 27.418 41.706 1.00 61.87 B C
    ATOM 2087 CG ASP B 77 −36.977 25.912 41.842 1.00 67.33 B C
    ATOM 2088 OD1 ASP B 77 −37.984 25.237 41.533 1.00 68.78 B O
    ATOM 2089 OD2 ASP B 77 −35.953 25.316 42.248 1.00 69.35 B O
    ATOM 2090 C ASP B 77 −35.058 27.642 43.231 1.00 54.59 B C
    ATOM 2091 O ASP B 77 −35.696 27.645 44.279 1.00 54.85 B O
    ATOM 2092 N LEU B 78 −33.797 27.232 43.157 1.00 55.56 B N
    ATOM 2093 CA LEU B 78 −33.003 26.833 44.337 1.00 58.90 B C
    ATOM 2094 CB LEU B 78 −32.897 27.974 45.376 1.00 53.06 B C
    ATOM 2095 CG LEU B 78 −32.152 29.307 45.162 1.00 47.82 B C
    ATOM 2096 CD1 LEU B 78 −31.018 29.485 46.171 1.00 44.03 B C
    ATOM 2097 CD2 LEU B 78 −31.640 29.540 43.741 1.00 46.46 B C
    ATOM 2098 C LEU B 78 −33.450 25.516 45.012 1.00 65.07 B C
    ATOM 2099 O LEU B 78 −33.004 25.197 46.123 1.00 66.17 B O
    ATOM 2100 N GLN B 79 −34.319 24.760 44.339 1.00 67.54 B N
    ATOM 2101 CA GLN B 79 −34.654 23.397 44.756 1.00 69.76 B C
    ATOM 2102 CB GLN B 79 −35.741 22.814 43.850 1.00 76.35 B C
    ATOM 2103 CG GLN B 79 −36.637 21.762 44.505 1.00 80.54 B C
    ATOM 2104 CD GLN B 79 −38.004 22.319 44.866 1.00 82.06 B C
    ATOM 2105 OE1 GLN B 79 −38.692 22.886 44.014 1.00 82.50 B O
    ATOM 2106 NE2 GLN B 79 −38.394 22.170 46.128 1.00 82.37 B N
    ATOM 2107 C GLN B 79 −33.427 22.499 44.674 1.00 65.91 B C
    ATOM 2108 O GLN B 79 −32.692 22.539 43.679 1.00 65.87 B O
    ATOM 2109 N LYS B 80 −33.214 21.695 45.717 1.00 62.42 B N
    ATOM 2110 CA LYS B 80 −32.112 20.727 45.745 1.00 58.13 B C
    ATOM 2111 CB LYS B 80 −31.918 20.140 47.155 1.00 54.23 B C
    ATOM 2112 CG LYS B 80 −30.826 19.091 47.281 1.00 52.77 B C
    ATOM 2113 CD LYS B 80 −31.018 18.220 48.518 1.00 55.97 B C
    ATOM 2114 CE LYS B 80 −31.433 16.786 48.144 1.00 58.79 B C
    ATOM 2115 NZ LYS B 80 −32.514 16.211 49.026 1.00 58.94 B N
    ATOM 2116 C LYS B 80 −32.406 19.636 44.730 1.00 56.61 B C
    ATOM 2117 O LYS B 80 −33.469 19.024 44.760 1.00 58.06 B O
    ATOM 2118 N VAL B 81 −31.475 19.425 43.811 1.00 55.86 B N
    ATOM 2119 CA VAL B 81 −31.624 18.392 42.805 1.00 57.02 B C
    ATOM 2120 CB VAL B 81 −31.165 18.874 41.411 1.00 57.57 B C
    ATOM 2121 CG1 VAL B 81 −31.286 17.752 40.378 1.00 59.42 B C
    ATOM 2122 CG2 VAL B 81 −31.984 20.061 40.974 1.00 57.61 B C
    ATOM 2123 C VAL B 81 −30.836 17.164 43.232 1.00 58.29 B C
    ATOM 2124 O VAL B 81 −31.331 16.044 43.138 1.00 59.22 B O
    ATOM 2125 N ALA B 82 −29.616 17.380 43.714 1.00 59.89 B N
    ATOM 2126 CA ALA B 82 −28.717 16.274 44.032 1.00 62.94 B C
    ATOM 2127 CB ALA B 82 −27.822 15.975 42.837 1.00 63.74 B C
    ATOM 2128 C ALA B 82 −27.864 16.550 45.261 1.00 63.09 B C
    ATOM 2129 O ALA B 82 −27.544 17.704 45.552 1.00 64.92 B O
    ATOM 2130 N GLU B 83 −27.503 15.492 45.984 1.00 60.73 B N
    ATOM 2131 CA GLU B 83 −26.475 15.612 47.009 1.00 62.28 B C
    ATOM 2132 CB GLU B 83 −27.023 15.376 48.419 1.00 68.08 B C
    ATOM 2133 CG GLU B 83 −27.855 14.121 48.610 1.00 76.60 B C
    ATOM 2134 CD GLU B 83 −29.189 14.422 49.274 1.00 83.85 B C
    ATOM 2135 OE1 GLU B 83 −29.224 15.283 50.188 1.00 84.72 B O
    ATOM 2136 OE2 GLU B 83 −30.211 13.809 48.878 1.00 87.29 B O
    ATOM 2137 C GLU B 83 −25.299 14.691 46.742 1.00 62.10 B C
    ATOM 2138 O GLU B 83 −25.396 13.727 45.980 1.00 67.85 B O
    ATOM 2139 N TYR B 84 −24.171 15.015 47.349 1.00 56.36 B N
    ATOM 2140 CA TYR B 84 −23.093 14.063 47.448 1.00 54.60 B C
    ATOM 2141 CB TYR B 84 −22.068 14.297 46.377 1.00 50.63 B C
    ATOM 2142 CG TYR B 84 −20.818 13.464 46.515 1.00 49.86 B C
    ATOM 2143 CD1 TYR B 84 −20.534 12.463 45.590 1.00 50.46 B C
    ATOM 2144 CE1 TYR B 84 −19.367 11.713 45.684 1.00 53.44 B C
    ATOM 2145 CZ TYR B 84 −18.463 11.965 46.716 1.00 51.46 B C
    ATOM 2146 OH TYR B 84 −17.315 11.206 46.799 1.00 48.79 B O
    ATOM 2147 CE2 TYR B 84 −18.723 12.965 47.649 1.00 48.70 B C
    ATOM 2148 CD2 TYR B 84 −19.892 13.708 47.540 1.00 47.48 B C
    ATOM 2149 C TYR B 84 −22.479 14.221 48.808 1.00 58.89 B C
    ATOM 2150 O TYR B 84 −22.178 15.343 49.243 1.00 61.06 B O
    ATOM 2151 N LYS B 85 −22.298 13.081 49.465 1.00 57.68 B N
    ATOM 2152 CA LYS B 85 −21.894 13.027 50.851 1.00 60.94 B C
    ATOM 2153 CB LYS B 85 −22.559 11.835 51.556 1.00 73.10 B C
    ATOM 2154 CG LYS B 85 −23.450 10.931 50.661 1.00 84.97 B C
    ATOM 2155 CD LYS B 85 −22.697 10.288 49.455 1.00 90.64 B C
    ATOM 2156 CE LYS B 85 −23.613 9.395 48.601 1.00 93.15 B C
    ATOM 2157 NZ LYS B 85 −24.897 10.052 48.177 1.00 94.06 B N
    ATOM 2158 C LYS B 85 −20.391 12.897 50.924 1.00 59.56 B C
    ATOM 2159 O LYS B 85 −19.839 11.833 50.633 1.00 61.16 B O
    ATOM 2160 N THR B 86 −19.730 13.994 51.289 1.00 58.76 B N
    ATOM 2161 CA THR B 86 −18.303 13.977 51.629 1.00 54.81 B C
    ATOM 2162 CB THR B 86 −17.622 15.350 51.401 1.00 52.10 B C
    ATOM 2163 OG1 THR B 86 −17.486 16.049 52.649 1.00 49.16 B O
    ATOM 2164 CG2 THR B 86 −18.502 16.278 50.574 1.00 53.02 B C
    ATOM 2165 C THR B 86 −18.217 13.605 53.089 1.00 55.10 B C
    ATOM 2166 O THR B 86 −17.123 13.520 53.637 1.00 53.13 B O
    ATOM 2167 N GLY B 87 −19.405 13.451 53.690 1.00 57.63 B N
    ATOM 2168 CA GLY B 87 −19.688 12.920 55.024 1.00 58.47 B C
    ATOM 2169 C GLY B 87 −18.574 12.647 56.016 1.00 58.99 B C
    ATOM 2170 O GLY B 87 −17.429 12.406 55.627 1.00 66.01 B O
    ATOM 2171 N PRO B 88 −18.912 12.634 57.303 1.00 51.01 B N
    ATOM 2172 CA PRO B 88 −17.918 12.481 58.367 1.00 45.55 B C
    ATOM 2173 CB PRO B 88 −18.756 11.997 59.527 1.00 47.72 B C
    ATOM 2174 CG PRO B 88 −20.084 11.695 58.912 1.00 50.77 B C
    ATOM 2175 CD PRO B 88 −20.273 12.703 57.841 1.00 48.75 B C
    ATOM 2176 C PRO B 88 −16.898 11.426 57.981 1.00 44.01 B C
    ATOM 2177 O PRO B 88 −17.287 10.397 57.432 1.00 40.96 B O
    ATOM 2178 N VAL B 89 −15.622 11.696 58.249 1.00 47.96 B N
    ATOM 2179 CA VAL B 89 −14.507 10.857 57.790 1.00 54.42 B C
    ATOM 2180 CB VAL B 89 −13.786 11.555 56.641 1.00 51.16 B C
    ATOM 2181 CG1 VAL B 89 −12.286 11.281 56.664 1.00 49.32 B C
    ATOM 2182 CG2 VAL B 89 −14.409 11.150 55.323 1.00 53.87 B C
    ATOM 2183 C VAL B 89 −13.506 10.542 58.913 1.00 63.96 B C
    ATOM 2184 O VAL B 89 −13.316 11.368 59.808 1.00 69.59 B O
    ATOM 2185 N LEU B 90 −12.855 9.372 58.854 1.00 66.84 B N
    ATOM 2186 CA LEU B 90 −11.980 8.900 59.943 1.00 70.30 B C
    ATOM 2187 CB LEU B 90 −12.246 7.420 60.203 1.00 72.52 B C
    ATOM 2188 CG LEU B 90 −11.263 6.685 61.110 1.00 73.28 B C
    ATOM 2189 CD1 LEU B 90 −11.986 6.110 62.309 1.00 72.75 B C
    ATOM 2190 CD2 LEU B 90 −10.545 5.599 60.320 1.00 74.60 B C
    ATOM 2191 C LEU B 90 −10.459 9.144 59.791 1.00 73.50 B C
    ATOM 2192 O LEU B 90 −9.820 8.635 58.858 1.00 72.88 B O
    ATOM 2193 N GLU B 91 −9.892 9.905 60.734 1.00 77.68 B N
    ATOM 2194 CA GLU B 91 −8.464 10.260 60.730 1.00 83.04 B C
    ATOM 2195 CB GLU B 91 −8.196 11.607 61.431 1.00 83.67 B C
    ATOM 2196 CG GLU B 91 −9.029 12.788 60.952 1.00 87.14 B C
    ATOM 2197 CD GLU B 91 −8.398 13.569 59.802 1.00 90.79 B C
    ATOM 2198 OE1 GLU B 91 −7.634 12.980 59.000 1.00 91.75 B O
    ATOM 2199 OE2 GLU B 91 −8.683 14.786 59.690 1.00 91.43 B O
    ATOM 2200 C GLU B 91 −7.622 9.184 61.398 1.00 85.64 B C
    ATOM 2201 O GLU B 91 −8.017 8.612 62.414 1.00 83.23 B O
    ATOM 2202 N HIS B 92 −6.447 8.934 60.831 1.00 90.71 B N
    ATOM 2203 CA HIS B 92 −5.544 7.910 61.347 1.00 93.48 B C
    ATOM 2204 CB HIS B 92 −6.044 6.525 60.945 1.00 93.96 B C
    ATOM 2205 CG HIS B 92 −5.654 5.448 61.902 1.00 95.14 B C
    ATOM 2206 ND1 HIS B 92 −4.667 4.530 61.624 1.00 95.64 B N
    ATOM 2207 CE1 HIS B 92 −4.531 3.709 62.649 1.00 95.43 B C
    ATOM 2208 NE2 HIS B 92 −5.392 4.066 63.584 1.00 96.05 B N
    ATOM 2209 CD2 HIS B 92 −6.106 5.152 63.143 1.00 95.04 B C
    ATOM 2210 C HIS B 92 −4.102 8.100 60.865 1.00 94.62 B C
    ATOM 2211 O HIS B 92 −3.879 8.569 59.742 1.00 96.12 B O
    ATOM 2212 N PRO B 93 −3.125 7.753 61.710 1.00 93.29 B N
    ATOM 2213 CA PRO B 93 −1.720 7.761 61.287 1.00 92.34 B C
    ATOM 2214 CB PRO B 93 −0.966 7.348 62.558 1.00 91.96 B C
    ATOM 2215 CG PRO B 93 −1.913 7.623 63.683 1.00 91.22 B C
    ATOM 2216 CD PRO B 93 −3.270 7.355 63.125 1.00 91.62 B C
    ATOM 2217 C PRO B 93 −1.503 6.732 60.185 1.00 91.87 B C
    ATOM 2218 O PRO B 93 −0.830 7.029 59.194 1.00 89.55 B O
    ATOM 2219 N ASP B 94 −2.096 5.552 60.367 1.00 93.42 B N
    ATOM 2220 CA ASP B 94 −1.970 4.434 59.436 1.00 95.65 B C
    ATOM 2221 CB ASP B 94 −2.314 3.099 60.124 1.00 95.17 B C
    ATOM 2222 CG ASP B 94 −1.314 2.705 61.219 1.00 94.05 B C
    ATOM 2223 OD1 ASP B 94 −0.971 3.553 62.073 1.00 93.69 B O
    ATOM 2224 OD2 ASP B 94 −0.832 1.555 61.312 1.00 92.70 B O
    ATOM 2225 C ASP B 94 −2.840 4.620 58.190 1.00 97.92 B C
    ATOM 2226 O ASP B 94 −2.438 4.222 57.091 1.00 98.07 B O
    ATOM 2227 N CYS B 95 −4.021 5.217 58.353 1.00 100.21 B N
    ATOM 2228 CA CYS B 95 −4.911 5.449 57.210 1.00 103.84 B C
    ATOM 2229 CB CYS B 95 −6.373 5.586 57.641 1.00 104.67 B C
    ATOM 2230 SG CYS B 95 −7.538 5.098 56.347 1.00 106.67 B S
    ATOM 2231 C CYS B 95 −4.472 6.639 56.354 1.00 105.37 B C
    ATOM 2232 O CYS B 95 −4.582 7.798 56.769 1.00 104.25 B O
    ATOM 2233 N PHE B 96 −3.988 6.332 55.152 1.00 108.74 B N
    ATOM 2234 CA PHE B 96 −3.347 7.320 54.279 1.00 111.75 B C
    ATOM 2235 CB PHE B 96 −2.229 6.655 53.453 1.00 116.20 B C
    ATOM 2236 CG PHE B 96 −0.862 6.684 54.124 1.00 120.68 B C
    ATOM 2237 CD1 PHE B 96 0.300 6.806 53.359 1.00 123.52 B C
    ATOM 2238 CE1 PHE B 96 1.566 6.828 53.970 1.00 124.46 B C
    ATOM 2239 CZ PHE B 96 1.673 6.727 55.360 1.00 122.54 B C
    ATOM 2240 CE2 PHE B 96 0.524 6.601 56.132 1.00 120.99 B C
    ATOM 2241 CD2 PHE B 96 −0.734 6.577 55.514 1.00 120.92 B C
    ATOM 2242 C PHE B 96 −4.353 8.137 53.420 1.00 109.63 B C
    ATOM 2243 O PHE B 96 −5.543 7.804 53.372 1.00 110.42 B O
    ATOM 2244 N PRO B 97 −3.878 9.193 52.752 1.00 104.75 B N
    ATOM 2245 CA PRO B 97 −4.741 10.310 52.366 1.00 100.12 B C
    ATOM 2246 CB PRO B 97 −3.738 11.441 52.102 1.00 101.09 B C
    ATOM 2247 CG PRO B 97 −2.433 10.910 52.577 1.00 103.80 B C
    ATOM 2248 CD PRO B 97 −2.493 9.440 52.323 1.00 104.87 B C
    ATOM 2249 C PRO B 97 −5.700 10.152 51.179 1.00 96.19 B C
    ATOM 2250 O PRO B 97 −6.636 10.957 51.112 1.00 100.40 B O
    ATOM 2251 N CYS B 98 −5.520 9.208 50.266 1.00 87.61 B N
    ATOM 2252 CA CYS B 98 −6.560 9.081 49.241 1.00 84.10 B C
    ATOM 2253 CB CYS B 98 −6.045 9.392 47.830 1.00 80.73 B C
    ATOM 2254 SG CYS B 98 −6.621 10.975 47.108 1.00 71.77 B S
    ATOM 2255 C CYS B 98 −7.287 7.753 49.302 1.00 87.62 B C
    ATOM 2256 O CYS B 98 −8.265 7.540 48.576 1.00 85.32 B O
    ATOM 2257 N GLN B 99 −6.812 6.876 50.187 1.00 95.06 B N
    ATOM 2258 CA GLN B 99 −7.485 5.607 50.489 1.00 99.82 B C
    ATOM 2259 CB GLN B 99 −6.482 4.452 50.640 1.00 101.05 B C
    ATOM 2260 CG GLN B 99 −5.259 4.753 51.502 1.00 103.61 B C
    ATOM 2261 CD GLN B 99 −4.905 3.601 52.425 1.00 105.79 B C
    ATOM 2262 OE1 GLN B 99 −5.161 3.659 53.631 1.00 104.51 B O
    ATOM 2263 NE2 GLN B 99 −4.322 2.546 51.860 1.00 107.30 B N
    ATOM 2264 C GLN B 99 −8.364 5.743 51.730 1.00 101.30 B C
    ATOM 2265 O GLN B 99 −7.971 6.381 52.711 1.00 97.88 B O
    ATOM 2266 N ASP B 100 −9.560 5.158 51.669 1.00 107.39 B N
    ATOM 2267 CA ASP B 100 −10.548 5.309 52.745 1.00 114.11 B C
    ATOM 2268 CB ASP B 100 −11.900 5.864 52.210 1.00 121.61 B C
    ATOM 2269 CG ASP B 100 −12.948 4.773 51.925 1.00 126.01 B C
    ATOM 2270 OD1 ASP B 100 −13.378 4.662 50.752 1.00 127.43 B O
    ATOM 2271 OD2 ASP B 100 −13.428 4.013 52.803 1.00 126.52 B O
    ATOM 2272 C ASP B 100 −10.695 4.054 53.609 1.00 110.78 B C
    ATOM 2273 O ASP B 100 −10.300 2.963 53.201 1.00 110.09 B O
    ATOM 2274 N CYS B 101 −11.256 4.214 54.804 1.00 109.34 B N
    ATOM 2275 CA CYS B 101 −11.262 3.124 55.771 1.00 110.92 B C
    ATOM 2276 CB CYS B 101 −9.951 3.117 56.568 1.00 109.38 B C
    ATOM 2277 SG CYS B 101 −9.389 4.750 57.104 1.00 107.17 B S
    ATOM 2278 C CYS B 101 −12.452 3.054 56.735 1.00 113.41 B C
    ATOM 2279 O CYS B 101 −12.663 3.945 57.567 1.00 111.59 B O
    ATOM 2280 N SER B 102 −13.234 1.987 56.579 1.00 116.32 B N
    ATOM 2281 CA SER B 102 −13.985 1.389 57.683 1.00 116.98 B C
    ATOM 2282 CB SER B 102 −15.427 1.033 57.284 1.00 119.06 B C
    ATOM 2283 OG SER B 102 −15.554 0.767 55.894 1.00 121.46 B O
    ATOM 2284 C SER B 102 −13.181 0.145 58.076 1.00 114.30 B C
    ATOM 2285 O SER B 102 −13.592 −0.653 58.925 1.00 112.54 B O
    ATOM 2286 N SER B 103 −12.020 0.015 57.429 1.00 112.80 B N
    ATOM 2287 CA SER B 103 −11.023 −1.010 57.723 1.00 112.40 B C
    ATOM 2288 CB SER B 103 −10.246 −1.382 56.446 1.00 113.52 B C
    ATOM 2289 OG SER B 103 −8.915 −0.889 56.457 1.00 113.78 B O
    ATOM 2290 C SER B 103 −10.080 −0.556 58.847 1.00 110.28 B C
    ATOM 2291 O SER B 103 −8.990 −1.112 59.025 1.00 110.84 B O
    ATOM 2292 N LYS B 104 −10.510 0.469 59.583 1.00 107.08 B N
    ATOM 2293 CA LYS B 104 −9.869 0.886 60.832 1.00 104.77 B C
    ATOM 2294 CB LYS B 104 −8.674 1.814 60.569 1.00 102.55 B C
    ATOM 2295 CG LYS B 104 −7.350 1.277 61.118 1.00 102.04 B C
    ATOM 2296 CD LYS B 104 −7.255 1.436 62.647 1.00 102.16 B C
    ATOM 2297 CE LYS B 104 −7.226 0.095 63.414 1.00 97.37 B C
    ATOM 2298 NZ LYS B 104 −7.273 0.328 64.885 1.00 90.84 B N
    ATOM 2299 C LYS B 104 −10.873 1.536 61.796 1.00 103.99 B C
    ATOM 2300 O LYS B 104 −10.492 2.078 62.840 1.00 102.61 B O
    ATOM 2301 N ALA B 105 −12.157 1.443 61.446 1.00 104.09 B N
    ATOM 2302 CA ALA B 105 −13.239 2.100 62.181 1.00 104.10 B C
    ATOM 2303 CB ALA B 105 −14.590 1.774 61.543 1.00 101.87 B C
    ATOM 2304 C ALA B 105 −13.252 1.768 63.673 1.00 106.64 B C
    ATOM 2305 O ALA B 105 −13.732 2.566 64.484 1.00 105.54 B O
    ATOM 2306 N ASN B 106 −12.711 0.598 64.020 1.00 110.83 B N
    ATOM 2307 CA ASN B 106 −12.686 0.104 65.402 1.00 112.90 B C
    ATOM 2308 CB ASN B 106 −12.560 −1.419 65.419 1.00 112.61 B C
    ATOM 2309 CG ASN B 106 −13.662 −2.099 64.628 1.00 112.48 B C
    ATOM 2310 OD1 ASN B 106 −14.782 −2.268 65.117 1.00 112.22 B O
    ATOM 2311 ND2 ASN B 106 −13.353 −2.476 63.391 1.00 111.53 B N
    ATOM 2312 C ASN B 106 −11.624 0.767 66.287 1.00 114.33 B C
    ATOM 2313 O ASN B 106 −11.708 0.697 67.516 1.00 112.37 B O
    ATOM 2314 N LEU B 107 −10.638 1.397 65.638 1.00 116.71 B N
    ATOM 2315 CA LEU B 107 −9.740 2.421 66.219 1.00 117.65 B C
    ATOM 2316 CB LEU B 107 −10.501 3.735 66.558 1.00 118.18 B C
    ATOM 2317 CG LEU B 107 −11.825 3.803 67.349 1.00 117.62 B C
    ATOM 2318 CD1 LEU B 107 −11.611 3.881 68.860 1.00 116.54 B C
    ATOM 2319 CD2 LEU B 107 −12.698 4.964 66.876 1.00 116.79 B C
    ATOM 2320 C LEU B 107 −8.830 2.026 67.386 1.00 117.14 B C
    ATOM 2321 O LEU B 107 −9.295 1.490 68.392 1.00 118.13 B O
    ATOM 2322 N SER B 108 −7.532 2.304 67.243 1.00 116.38 B N
    ATOM 2323 CA SER B 108 −6.592 2.207 68.368 1.00 117.71 B C
    ATOM 2324 CB SER B 108 −5.433 1.245 68.066 1.00 118.45 B C
    ATOM 2325 OG SER B 108 −5.151 0.407 69.185 1.00 114.88 B O
    ATOM 2326 C SER B 108 −6.067 3.590 68.752 1.00 116.80 B C
    ATOM 2327 O SER B 108 −5.739 3.847 69.916 1.00 116.90 B O
    ATOM 2328 N GLY B 109 −5.991 4.470 67.757 1.00 115.23 B N
    ATOM 2329 CA GLY B 109 −5.668 5.870 67.965 1.00 114.60 B C
    ATOM 2330 C GLY B 109 −6.196 6.711 66.816 1.00 113.83 B C
    ATOM 2331 O GLY B 109 −5.471 7.544 66.262 1.00 115.22 B O
    ATOM 2332 N GLY B 110 −7.460 6.487 66.456 1.00 110.69 B N
    ATOM 2333 CA GLY B 110 −8.067 7.131 65.304 1.00 106.40 B C
    ATOM 2334 C GLY B 110 −9.356 7.848 65.640 1.00 103.85 B C
    ATOM 2335 O GLY B 110 −10.210 7.297 66.340 1.00 105.05 B O
    ATOM 2336 N VAL B 111 −9.495 9.074 65.135 1.00 99.89 B N
    ATOM 2337 CA VAL B 111 −10.651 9.922 65.442 1.00 97.25 B C
    ATOM 2338 CB VAL B 111 −10.219 11.257 66.141 1.00 97.47 B C
    ATOM 2339 CG1 VAL B 111 −9.412 12.155 65.206 1.00 97.24 B C
    ATOM 2340 CG2 VAL B 111 −11.424 12.001 66.734 1.00 97.90 B C
    ATOM 2341 C VAL B 111 −11.551 10.183 64.225 1.00 95.04 B C
    ATOM 2342 O VAL B 111 −11.072 10.317 63.102 1.00 96.37 B O
    ATOM 2343 N TRP B 112 −12.859 10.229 64.468 1.00 92.55 B N
    ATOM 2344 CA TRP B 112 −13.851 10.530 63.442 1.00 90.06 B C
    ATOM 2345 CB TRP B 112 −15.193 9.946 63.862 1.00 100.15 B C
    ATOM 2346 CG TRP B 112 −15.775 8.890 62.958 1.00 108.23 B C
    ATOM 2347 CD1 TRP B 112 −15.115 8.104 62.042 1.00 107.69 B C
    ATOM 2348 NE1 TRP B 112 −16.002 7.257 61.419 1.00 109.43 B N
    ATOM 2349 CE2 TRP B 112 −17.260 7.476 61.926 1.00 114.91 B C
    ATOM 2350 CD2 TRP B 112 −17.152 8.497 62.901 1.00 113.79 B C
    ATOM 2351 CE3 TRP B 112 −18.319 8.912 63.578 1.00 114.66 B C
    ATOM 2352 CZ3 TRP B 112 −19.538 8.306 63.268 1.00 115.28 B C
    ATOM 2353 CH2 TRP B 112 −19.612 7.294 62.295 1.00 117.95 B C
    ATOM 2354 CZ2 TRP B 112 −18.488 6.865 61.612 1.00 118.19 B C
    ATOM 2355 C TRP B 112 −13.964 12.047 63.285 1.00 80.41 B C
    ATOM 2356 O TRP B 112 −14.092 12.772 64.274 1.00 77.18 B O
    ATOM 2357 N LYS B 113 −13.921 12.525 62.044 1.00 72.68 B N
    ATOM 2358 CA LYS B 113 −13.757 13.959 61.785 1.00 65.54 B C
    ATOM 2359 CB LYS B 113 −12.296 14.273 61.423 1.00 64.56 B C
    ATOM 2360 CG LYS B 113 −11.738 15.565 62.025 1.00 66.31 B C
    ATOM 2361 CD LYS B 113 −11.284 15.412 63.479 1.00 70.15 B C
    ATOM 2362 CE LYS B 113 −11.922 16.489 64.389 1.00 73.85 B C
    ATOM 2363 NZ LYS B 113 −12.001 16.101 65.850 1.00 72.65 B N
    ATOM 2364 C LYS B 113 −14.731 14.574 60.761 1.00 59.44 B C
    ATOM 2365 O LYS B 113 −15.106 13.949 59.763 1.00 52.74 B O
    ATOM 2366 N ASP B 114 −15.139 15.807 61.055 1.00 56.80 B N
    ATOM 2367 CA ASP B 114 −16.058 16.573 60.230 1.00 52.56 B C
    ATOM 2368 CB ASP B 114 −16.678 17.707 61.046 1.00 55.24 B C
    ATOM 2369 CG ASP B 114 −18.062 17.386 61.523 1.00 55.57 B C
    ATOM 2370 OD1 ASP B 114 −18.499 16.231 61.321 1.00 56.68 B O
    ATOM 2371 OD2 ASP B 114 −18.779 18.228 62.111 1.00 54.42 B O
    ATOM 2372 C ASP B 114 −15.306 17.169 59.068 1.00 47.86 B C
    ATOM 2373 O ASP B 114 −14.254 17.788 59.250 1.00 46.73 B O
    ATOM 2374 N ASN B 115 −15.873 17.001 57.880 1.00 44.76 B N
    ATOM 2375 CA ASN B 115 −15.207 17.356 56.639 1.00 42.15 B C
    ATOM 2376 CB ASN B 115 −15.489 16.275 55.585 1.00 41.27 B C
    ATOM 2377 CG ASN B 115 −14.563 16.362 54.379 1.00 40.72 B C
    ATOM 2378 OD1 ASN B 115 −13.708 17.245 54.284 1.00 41.54 B O
    ATOM 2379 ND2 ASN B 115 −14.746 15.444 53.440 1.00 38.72 B N
    ATOM 2380 C ASN B 115 −15.596 18.735 56.118 1.00 40.63 B C
    ATOM 2381 O ASN B 115 −16.400 18.841 55.172 1.00 43.96 B O
    ATOM 2382 N ILE B 116 −15.020 19.784 56.711 1.00 36.29 B N
    ATOM 2383 CA ILE B 116 −15.301 21.157 56.255 1.00 42.57 B C
    ATOM 2384 CB ILE B 116 −14.724 22.206 57.236 1.00 41.18 B C
    ATOM 2385 CG1 ILE B 116 −15.416 22.117 58.577 1.00 42.73 B C
    ATOM 2386 CD1 ILE B 116 −14.515 21.560 59.639 1.00 52.68 B C
    ATOM 2387 CG2 ILE B 116 −14.927 23.600 56.719 1.00 39.91 B C
    ATOM 2388 C ILE B 116 −14.817 21.430 54.810 1.00 41.86 B C
    ATOM 2389 O ILE B 116 −13.661 21.185 54.479 1.00 40.94 B O
    ATOM 2390 N ASN B 117 −15.711 21.918 53.955 1.00 41.50 B N
    ATOM 2391 CA ASN B 117 −15.304 22.323 52.622 1.00 44.19 B C
    ATOM 2392 CB ASN B 117 −16.480 22.617 51.715 1.00 46.40 B C
    ATOM 2393 CG ASN B 117 −16.035 22.856 50.298 1.00 50.38 B C
    ATOM 2394 OD1 ASN B 117 −16.001 23.987 49.810 1.00 49.26 B O
    ATOM 2395 ND2 ASN B 117 −15.632 21.778 49.635 1.00 57.83 B N
    ATOM 2396 C ASN B 117 −14.459 23.565 52.660 1.00 46.47 B C
    ATOM 2397 O ASN B 117 −14.845 24.573 53.239 1.00 54.75 B O
    ATOM 2398 N MET B 118 −13.315 23.510 52.006 1.00 43.70 B N
    ATOM 2399 CA MET B 118 −12.406 24.633 52.022 1.00 39.66 B C
    ATOM 2400 CB MET B 118 −11.039 24.186 52.479 1.00 31.69 B C
    ATOM 2401 CG MET B 118 −11.139 23.407 53.748 1.00 33.38 B C
    ATOM 2402 SD MET B 118 −10.931 24.407 55.204 1.00 31.79 B S
    ATOM 2403 CE MET B 118 −12.315 25.652 55.009 1.00 44.44 B C
    ATOM 2404 C MET B 118 −12.332 25.294 50.682 1.00 42.98 B C
    ATOM 2405 O MET B 118 −12.171 26.508 50.598 1.00 55.86 B O
    ATOM 2406 N ALA B 119 −12.468 24.509 49.629 1.00 35.90 B N
    ATOM 2407 CA ALA B 119 −12.353 25.057 48.304 1.00 37.59 B C
    ATOM 2408 CB ALA B 119 −10.947 24.869 47.801 1.00 37.93 B C
    ATOM 2409 C ALA B 119 −13.355 24.379 47.394 1.00 41.21 B C
    ATOM 2410 O ALA B 119 −13.808 23.271 47.675 1.00 44.45 B O
    ATOM 2411 N LEU B 120 −13.705 25.052 46.305 1.00 40.87 B N
    ATOM 2412 CA LEU B 120 −14.646 24.504 45.343 1.00 38.31 B C
    ATOM 2413 CB LEU B 120 −16.065 24.657 45.876 1.00 35.61 B C
    ATOM 2414 CG LEU B 120 −17.214 23.947 45.194 1.00 34.31 B C
    ATOM 2415 CD1 LEU B 120 −16.986 22.455 45.139 1.00 36.68 B C
    ATOM 2416 CD2 LEU B 120 −18.456 24.243 45.994 1.00 37.88 B C
    ATOM 2417 C LEU B 120 −14.456 25.243 44.041 1.00 39.32 B C
    ATOM 2418 O LEU B 120 −14.624 26.448 43.994 1.00 46.51 B O
    ATOM 2419 N VAL B 121 −14.057 24.512 43.005 1.00 40.71 B N
    ATOM 2420 CA VAL B 121 −13.658 25.055 41.703 1.00 38.95 B C
    ATOM 2421 CB VAL B 121 −12.125 24.890 41.486 1.00 38.21 B C
    ATOM 2422 CG1 VAL B 121 −11.725 25.174 40.048 1.00 44.46 B C
    ATOM 2423 CG2 VAL B 121 −11.353 25.784 42.382 1.00 37.18 B C
    ATOM 2424 C VAL B 121 −14.325 24.201 40.635 1.00 41.66 B C
    ATOM 2425 O VAL B 121 −14.182 22.971 40.636 1.00 43.10 B O
    ATOM 2426 N VAL B 122 −15.055 24.838 39.726 1.00 43.07 B N
    ATOM 2427 CA VAL B 122 −15.458 24.156 38.494 1.00 41.96 B C
    ATOM 2428 CB VAL B 122 −16.767 24.713 37.940 1.00 35.78 B C
    ATOM 2429 CG1 VAL B 122 −16.605 25.113 36.525 1.00 34.77 B C
    ATOM 2430 CG2 VAL B 122 −17.808 23.676 38.003 1.00 38.83 B C
    ATOM 2431 C VAL B 122 −14.333 24.362 37.489 1.00 43.26 B C
    ATOM 2432 O VAL B 122 −13.808 25.467 37.391 1.00 46.50 B O
    ATOM 2433 N ASP B 123 −13.928 23.308 36.785 1.00 44.35 B N
    ATOM 2434 CA ASP B 123 −12.900 23.451 35.752 1.00 51.92 B C
    ATOM 2435 CB ASP B 123 −11.695 22.544 35.963 1.00 61.96 B C
    ATOM 2436 CG ASP B 123 −11.083 22.086 34.628 1.00 64.45 B C
    ATOM 2437 OD1 ASP B 123 −10.597 22.975 33.879 1.00 65.02 B O
    ATOM 2438 OD2 ASP B 123 −11.090 20.887 34.242 1.00 61.38 B O
    ATOM 2439 C ASP B 123 −13.475 23.038 34.451 1.00 48.41 B C
    ATOM 2440 O ASP B 123 −14.202 22.060 34.379 1.00 53.22 B O
    ATOM 2441 N THR B 124 −13.080 23.730 33.400 1.00 47.40 B N
    ATOM 2442 CA THR B 124 −13.768 23.538 32.145 1.00 47.40 B C
    ATOM 2443 CB THR B 124 −14.883 24.554 32.038 1.00 43.24 B C
    ATOM 2444 OG1 THR B 124 −16.097 23.823 31.851 1.00 47.08 B O
    ATOM 2445 CG2 THR B 124 −14.727 25.442 30.816 1.00 37.20 B C
    ATOM 2446 C THR B 124 −12.882 23.507 30.928 1.00 49.31 B C
    ATOM 2447 O THR B 124 −13.375 23.395 29.813 1.00 52.93 B O
    ATOM 2448 N TYR B 125 −11.581 23.627 31.179 1.00 50.42 B N
    ATOM 2449 CA TYR B 125 −10.528 23.488 30.195 1.00 45.77 B C
    ATOM 2450 CB TYR B 125 −9.194 23.956 30.785 1.00 44.67 B C
    ATOM 2451 CG TYR B 125 −8.074 23.995 29.795 1.00 42.53 B C
    ATOM 2452 CD1 TYR B 125 −8.168 24.795 28.667 1.00 44.26 B C
    ATOM 2453 CE1 TYR B 125 −7.156 24.853 27.726 1.00 46.25 B C
    ATOM 2454 CZ TYR B 125 −6.021 24.100 27.902 1.00 50.62 B C
    ATOM 2455 OH TYR B 125 −5.040 24.192 26.926 1.00 57.46 B O
    ATOM 2456 CE2 TYR B 125 −5.888 23.281 29.033 1.00 45.35 B C
    ATOM 2457 CD2 TYR B 125 −6.925 23.234 29.972 1.00 41.33 B C
    ATOM 2458 C TYR B 125 −10.466 22.011 29.883 1.00 47.99 B C
    ATOM 2459 O TYR B 125 −10.520 21.620 28.719 1.00 55.63 B O
    ATOM 2460 N TYR B 126 −10.382 21.179 30.915 1.00 42.77 B N
    ATOM 2461 CA TYR B 126 −10.505 19.748 30.689 1.00 48.14 B C
    ATOM 2462 CB TYR B 126 −9.865 18.943 31.822 1.00 45.89 B C
    ATOM 2463 CG TYR B 126 −8.368 19.056 31.814 1.00 41.38 B C
    ATOM 2464 CD1 TYR B 126 −7.611 18.680 32.893 1.00 34.20 B C
    ATOM 2465 CE1 TYR B 126 −6.248 18.811 32.863 1.00 33.38 B C
    ATOM 2466 CZ TYR B 126 −5.642 19.304 31.750 1.00 37.54 B C
    ATOM 2467 OH TYR B 126 −4.290 19.467 31.673 1.00 48.33 B O
    ATOM 2468 CE2 TYR B 126 −6.370 19.683 30.674 1.00 41.80 B C
    ATOM 2469 CD2 TYR B 126 −7.714 19.567 30.707 1.00 44.40 B C
    ATOM 2470 C TYR B 126 −11.975 19.453 30.563 1.00 56.46 B C
    ATOM 2471 O TYR B 126 −12.779 20.380 30.560 1.00 64.10 B O
    ATOM 2472 N ASP B 127 −12.335 18.178 30.449 1.00 59.78 B N
    ATOM 2473 CA ASP B 127 −13.740 17.787 30.427 1.00 57.64 B C
    ATOM 2474 CB ASP B 127 −13.866 16.284 30.170 1.00 66.23 B C
    ATOM 2475 CG ASP B 127 −13.341 15.897 28.785 1.00 73.41 B C
    ATOM 2476 OD1 ASP B 127 −14.141 15.903 27.817 1.00 72.62 B O
    ATOM 2477 OD2 ASP B 127 −12.132 15.624 28.564 1.00 78.10 B O
    ATOM 2478 C ASP B 127 −14.364 18.224 31.739 1.00 50.09 B C
    ATOM 2479 O ASP B 127 −13.779 17.969 32.791 1.00 44.38 B O
    ATOM 2480 N ASP B 128 −15.511 18.920 31.639 1.00 50.03 B N
    ATOM 2481 CA ASP B 128 −16.159 19.689 32.725 1.00 46.93 B C
    ATOM 2482 CB ASP B 128 −17.615 20.032 32.395 1.00 57.55 B C
    ATOM 2483 CG ASP B 128 −17.778 20.854 31.128 1.00 66.78 B C
    ATOM 2484 OD1 ASP B 128 −18.857 21.478 30.984 1.00 66.39 B O
    ATOM 2485 OD2 ASP B 128 −16.917 20.927 30.218 1.00 75.20 B O
    ATOM 2486 C ASP B 128 −16.195 18.882 33.980 1.00 41.66 B C
    ATOM 2487 O ASP B 128 −16.663 17.741 33.967 1.00 47.23 B O
    ATOM 2488 N GLN B 129 −15.700 19.463 35.060 1.00 35.06 B N
    ATOM 2489 CA GLN B 129 −15.570 18.743 36.314 1.00 40.83 B C
    ATOM 2490 CB GLN B 129 −14.255 17.965 36.389 1.00 42.79 B C
    ATOM 2491 CG GLN B 129 −13.027 18.697 35.836 1.00 52.65 B C
    ATOM 2492 CD GLN B 129 −11.706 17.927 36.035 1.00 58.28 B C
    ATOM 2493 OE1 GLN B 129 −10.651 18.548 36.212 1.00 56.96 B O
    ATOM 2494 NE2 GLN B 129 −11.762 16.584 35.993 1.00 58.06 B N
    ATOM 2495 C GLN B 129 −15.664 19.675 37.495 1.00 45.17 B C
    ATOM 2496 O GLN B 129 −15.241 20.824 37.420 1.00 51.51 B O
    ATOM 2497 N LEU B 130 −16.241 19.183 38.581 1.00 43.79 B N
    ATOM 2498 CA LEU B 130 −16.167 19.872 39.845 1.00 43.88 B C
    ATOM 2499 CB LEU B 130 −17.454 19.661 40.627 1.00 42.37 B C
    ATOM 2500 CG LEU B 130 −17.573 20.644 41.785 1.00 43.44 B C
    ATOM 2501 CD1 LEU B 130 −17.291 22.057 41.272 1.00 43.17 B C
    ATOM 2502 CD2 LEU B 130 −18.938 20.554 42.438 1.00 40.31 B C
    ATOM 2503 C LEU B 130 −14.958 19.369 40.650 1.00 47.73 B C
    ATOM 2504 O LEU B 130 −14.846 18.181 40.939 1.00 54.37 B O
    ATOM 2505 N ILE B 131 −14.058 20.278 41.006 1.00 42.98 B N
    ATOM 2506 CA ILE B 131 −12.927 19.958 41.863 1.00 37.29 B C
    ATOM 2507 CB ILE B 131 −11.652 20.609 41.290 1.00 33.48 B C
    ATOM 2508 CG1 ILE B 131 −11.204 19.859 40.043 1.00 36.20 B C
    ATOM 2509 CD1 ILE B 131 −10.173 20.596 39.219 1.00 35.22 B C
    ATOM 2510 CG2 ILE B 131 −10.527 20.572 42.282 1.00 31.94 B C
    ATOM 2511 C ILE B 131 −13.250 20.511 43.247 1.00 38.31 B C
    ATOM 2512 O ILE B 131 −13.578 21.683 43.371 1.00 42.71 B O
    ATOM 2513 N SER B 132 −13.178 19.687 44.285 1.00 35.31 B N
    ATOM 2514 CA SER B 132 −13.474 20.173 45.634 1.00 36.79 B C
    ATOM 2515 CB SER B 132 −14.862 19.710 46.084 1.00 36.06 B C
    ATOM 2516 OG SER B 132 −14.900 18.309 46.322 1.00 35.94 B O
    ATOM 2517 C SER B 132 −12.426 19.735 46.643 1.00 43.95 B C
    ATOM 2518 O SER B 132 −11.915 18.609 46.584 1.00 51.56 B O
    ATOM 2519 N CYS B 133 −12.122 20.604 47.595 1.00 42.29 B N
    ATOM 2520 CA CYS B 133 −11.007 20.333 48.478 1.00 43.14 B C
    ATOM 2521 CB CYS B 133 −9.878 21.294 48.169 1.00 46.61 B C
    ATOM 2522 SG CYS B 133 −9.498 21.339 46.411 1.00 49.26 B S
    ATOM 2523 C CYS B 133 −11.407 20.486 49.903 1.00 45.17 B C
    ATOM 2524 O CYS B 133 −11.608 21.596 50.371 1.00 48.43 B O
    ATOM 2525 N GLY B 134 −11.493 19.356 50.595 1.00 50.96 B N
    ATOM 2526 CA GLY B 134 −11.880 19.303 52.002 1.00 47.23 B C
    ATOM 2527 C GLY B 134 −10.753 19.528 52.986 1.00 39.00 B C
    ATOM 2528 O GLY B 134 −9.589 19.518 52.619 1.00 40.38 B O
    ATOM 2529 N SER B 135 −11.111 19.714 54.247 1.00 34.97 B N
    ATOM 2530 CA SER B 135 −10.146 20.011 55.299 1.00 40.38 B C
    ATOM 2531 CB SER B 135 −10.912 20.575 56.468 1.00 41.02 B C
    ATOM 2532 OG SER B 135 −11.915 19.643 56.838 1.00 43.62 B O
    ATOM 2533 C SER B 135 −9.425 18.783 55.840 1.00 48.34 B C
    ATOM 2534 O SER B 135 −8.572 18.894 56.711 1.00 55.69 B O
    ATOM 2535 N VAL B 136 −9.765 17.609 55.344 1.00 49.73 B N
    ATOM 2536 CA VAL B 136 −9.730 16.472 56.224 1.00 47.33 B C
    ATOM 2537 CB VAL B 136 −11.157 15.856 56.374 1.00 38.19 B C
    ATOM 2538 CG1 VAL B 136 −11.435 14.768 55.351 1.00 32.38 B C
    ATOM 2539 CG2 VAL B 136 −11.380 15.387 57.789 1.00 39.28 B C
    ATOM 2540 C VAL B 136 −8.586 15.485 55.993 1.00 58.89 B C
    ATOM 2541 O VAL B 136 −7.891 15.100 56.950 1.00 66.03 B O
    ATOM 2542 N ASN B 137 −8.351 15.083 54.752 1.00 63.66 B N
    ATOM 2543 CA ASN B 137 −7.286 14.102 54.531 1.00 66.38 B C
    ATOM 2544 CB ASN B 137 −7.739 12.971 53.616 1.00 70.31 B C
    ATOM 2545 CG ASN B 137 −8.170 11.750 54.398 1.00 74.06 B C
    ATOM 2546 OD1 ASN B 137 −7.363 11.122 55.102 1.00 74.99 B O
    ATOM 2547 ND2 ASN B 137 −9.450 11.411 54.295 1.00 75.95 B N
    ATOM 2548 C ASN B 137 −5.985 14.742 54.085 1.00 64.84 B C
    ATOM 2549 O ASN B 137 −5.452 14.451 53.019 1.00 62.52 B O
    ATOM 2550 N ARG B 138 −5.486 15.607 54.961 1.00 66.90 B N
    ATOM 2551 CA ARG B 138 −4.336 16.464 54.717 1.00 65.01 B C
    ATOM 2552 CB ARG B 138 −3.047 15.654 54.503 1.00 71.48 B C
    ATOM 2553 CG ARG B 138 −1.956 15.954 55.529 1.00 79.03 B C
    ATOM 2554 CD ARG B 138 −1.753 17.448 55.823 1.00 85.21 B C
    ATOM 2555 NE ARG B 138 −1.583 17.732 57.252 1.00 90.48 B N
    ATOM 2556 CZ ARG B 138 −2.579 17.968 58.109 1.00 92.99 B C
    ATOM 2557 NH1 ARG B 138 −3.844 17.956 57.701 1.00 92.99 B N
    ATOM 2558 NH2 ARG B 138 −2.306 18.218 59.387 1.00 94.36 B N
    ATOM 2559 C ARG B 138 −4.580 17.428 53.580 1.00 58.68 B C
    ATOM 2560 O ARG B 138 −3.652 17.754 52.855 1.00 57.43 B O
    ATOM 2561 N GLY B 139 −5.827 17.881 53.436 1.00 56.99 B N
    ATOM 2562 CA GLY B 139 −6.186 18.869 52.419 1.00 60.31 B C
    ATOM 2563 C GLY B 139 −6.125 18.413 50.959 1.00 56.23 B C
    ATOM 2564 O GLY B 139 −5.474 19.025 50.107 1.00 53.01 B O
    ATOM 2565 N THR B 140 −6.892 17.374 50.677 1.00 51.49 B N
    ATOM 2566 CA THR B 140 −6.708 16.542 49.523 1.00 44.96 B C
    ATOM 2567 CB THR B 140 −6.359 15.144 50.079 1.00 40.88 B C
    ATOM 2568 OG1 THR B 140 −5.543 14.445 49.159 1.00 42.11 B O
    ATOM 2569 CG2 THR B 140 −7.570 14.236 50.258 1.00 39.68 B C
    ATOM 2570 C THR B 140 −7.969 16.581 48.635 1.00 49.45 B C
    ATOM 2571 O THR B 140 −9.023 16.049 49.005 1.00 52.07 B O
    ATOM 2572 N CYS B 141 −7.860 17.234 47.475 1.00 51.13 B N
    ATOM 2573 CA CYS B 141 −9.010 17.478 46.577 1.00 50.29 B C
    ATOM 2574 CB CYS B 141 −8.664 18.515 45.512 1.00 47.76 B C
    ATOM 2575 SG CYS B 141 −7.972 20.064 46.098 1.00 47.46 B S
    ATOM 2576 C CYS B 141 −9.505 16.256 45.814 1.00 49.65 B C
    ATOM 2577 O CYS B 141 −8.722 15.377 45.478 1.00 54.28 B O
    ATOM 2578 N GLN B 142 −10.796 16.226 45.508 1.00 44.81 B N
    ATOM 2579 CA GLN B 142 −11.312 15.252 44.556 1.00 45.82 B C
    ATOM 2580 CB GLN B 142 −12.224 14.230 45.229 1.00 50.74 B C
    ATOM 2581 CG GLN B 142 −13.118 14.773 46.300 1.00 61.11 B C
    ATOM 2582 CD GLN B 142 −13.706 13.667 47.164 1.00 69.68 B C
    ATOM 2583 OE1 GLN B 142 −14.920 13.650 47.414 1.00 73.98 B O
    ATOM 2584 NE2 GLN B 142 −12.852 12.745 47.629 1.00 69.82 B N
    ATOM 2585 C GLN B 142 −12.032 15.898 43.371 1.00 45.42 B C
    ATOM 2586 O GLN B 142 −12.597 16.996 43.491 1.00 46.11 B O
    ATOM 2587 N ARG B 143 −12.007 15.216 42.227 1.00 40.44 B N
    ATOM 2588 CA ARG B 143 −12.773 15.673 41.079 1.00 42.36 B C
    ATOM 2589 CB ARG B 143 −11.916 15.712 39.821 1.00 43.64 B C
    ATOM 2590 CG ARG B 143 −10.693 14.855 39.870 1.00 46.96 B C
    ATOM 2591 CD ARG B 143 −9.746 15.107 38.695 1.00 52.05 B C
    ATOM 2592 NE ARG B 143 −10.263 14.581 37.430 1.00 53.03 B N
    ATOM 2593 CZ ARG B 143 −10.090 13.331 37.013 1.00 52.65 B C
    ATOM 2594 NH1 ARG B 143 −9.405 12.456 37.758 1.00 50.91 B N
    ATOM 2595 NH2 ARG B 143 −10.612 12.954 35.852 1.00 53.00 B N
    ATOM 2596 C ARG B 143 −14.063 14.872 40.836 1.00 42.84 B C
    ATOM 2597 O ARG B 143 −14.048 13.656 40.824 1.00 46.36 B O
    ATOM 2598 N HIS B 144 −15.175 15.575 40.664 1.00 37.53 B N
    ATOM 2599 CA HIS B 144 −16.422 14.988 40.232 1.00 35.23 B C
    ATOM 2600 CB HIS B 144 −17.549 15.616 41.028 1.00 37.05 B C
    ATOM 2601 CG HIS B 144 −17.291 15.651 42.499 1.00 43.08 B C
    ATOM 2602 ND1 HIS B 144 −17.933 14.811 43.390 1.00 45.29 B N
    ATOM 2603 CE1 HIS B 144 −17.513 15.068 44.617 1.00 44.50 B C
    ATOM 2604 NE2 HIS B 144 −16.616 16.037 44.554 1.00 45.75 B N
    ATOM 2605 CD2 HIS B 144 −16.460 16.421 43.240 1.00 43.81 B C
    ATOM 2606 C HIS B 144 −16.598 15.311 38.753 1.00 37.70 B C
    ATOM 2607 O HIS B 144 −16.655 16.476 38.387 1.00 43.32 B O
    ATOM 2608 N VAL B 145 −16.678 14.301 37.893 1.00 36.97 B N
    ATOM 2609 CA VAL B 145 −16.786 14.561 36.457 1.00 36.81 B C
    ATOM 2610 CB VAL B 145 −15.956 13.579 35.611 1.00 34.75 B C
    ATOM 2611 CG1 VAL B 145 −15.910 14.054 34.189 1.00 35.76 B C
    ATOM 2612 CG2 VAL B 145 −14.556 13.416 36.148 1.00 32.94 B C
    ATOM 2613 C VAL B 145 −18.223 14.441 35.995 1.00 43.42 B C
    ATOM 2614 O VAL B 145 −18.809 13.342 36.043 1.00 47.84 B O
    ATOM 2615 N PHE B 146 −18.785 15.564 35.543 1.00 43.72 B N
    ATOM 2616 CA PHE B 146 −20.146 15.592 35.018 1.00 44.43 B C
    ATOM 2617 CB PHE B 146 −20.522 16.990 34.570 1.00 45.43 B C
    ATOM 2618 CG PHE B 146 −20.341 18.050 35.610 1.00 49.30 B C
    ATOM 2619 CD1 PHE B 146 −19.604 19.191 35.324 1.00 52.90 B C
    ATOM 2620 CE1 PHE B 146 −19.451 20.197 36.271 1.00 54.03 B C
    ATOM 2621 CZ PHE B 146 −20.053 20.080 37.502 1.00 51.89 B C
    ATOM 2622 CE2 PHE B 146 −20.808 18.963 37.786 1.00 50.76 B C
    ATOM 2623 CD2 PHE B 146 −20.949 17.950 36.846 1.00 48.78 B C
    ATOM 2624 C PHE B 146 −20.233 14.726 33.787 1.00 49.11 B C
    ATOM 2625 O PHE B 146 −19.447 14.904 32.878 1.00 56.47 B O
    ATOM 2626 N PRO B 147 −21.176 13.793 33.751 1.00 52.30 B N
    ATOM 2627 CA PRO B 147 −21.520 13.069 32.523 1.00 55.83 B C
    ATOM 2628 CB PRO B 147 −22.685 12.195 32.959 1.00 54.10 B C
    ATOM 2629 CG PRO B 147 −22.490 12.025 34.405 1.00 55.02 B C
    ATOM 2630 CD PRO B 147 −21.968 13.337 34.901 1.00 53.64 B C
    ATOM 2631 C PRO B 147 −22.001 14.027 31.456 1.00 64.29 B C
    ATOM 2632 O PRO B 147 −22.433 15.127 31.786 1.00 64.18 B O
    ATOM 2633 N HIS B 148 −21.954 13.612 30.196 1.00 78.08 B N
    ATOM 2634 CA HIS B 148 −22.141 14.555 29.092 1.00 92.40 B C
    ATOM 2635 CB HIS B 148 −21.535 14.011 27.783 1.00 101.33 B C
    ATOM 2636 CG HIS B 148 −20.107 14.429 27.550 1.00 107.97 B C
    ATOM 2637 ND1 HIS B 148 −19.759 15.689 27.106 1.00 111.16 B N
    ATOM 2638 CE1 HIS B 148 −18.444 15.765 26.988 1.00 112.02 B C
    ATOM 2639 NE2 HIS B 148 −17.926 14.601 27.338 1.00 110.28 B N
    ATOM 2640 CD2 HIS B 148 −18.943 13.748 27.694 1.00 109.07 B C
    ATOM 2641 C HIS B 148 −23.572 15.096 28.892 1.00 94.82 B C
    ATOM 2642 O HIS B 148 −23.874 15.676 27.847 1.00 95.71 B O
    ATOM 2643 N ASN B 149 −24.438 14.908 29.888 1.00 97.59 B N
    ATOM 2644 CA ASN B 149 −25.715 15.626 29.928 1.00 101.83 B C
    ATOM 2645 CB ASN B 149 −26.774 14.995 29.018 1.00 108.36 B C
    ATOM 2646 CG ASN B 149 −27.356 16.003 28.019 1.00 114.29 B C
    ATOM 2647 OD1 ASN B 149 −26.613 16.720 27.338 1.00 115.73 B O
    ATOM 2648 ND2 ASN B 149 −28.689 16.066 27.937 1.00 116.16 B N
    ATOM 2649 C ASN B 149 −26.294 15.944 31.310 1.00 101.43 B C
    ATOM 2650 O ASN B 149 −26.712 17.082 31.546 1.00 103.14 B O
    ATOM 2651 N HIS B 150 −26.343 14.966 32.214 1.00 98.98 B N
    ATOM 2652 CA HIS B 150 −26.765 15.262 33.586 1.00 96.40 B C
    ATOM 2653 CB HIS B 150 −27.117 13.984 34.375 1.00 103.90 B C
    ATOM 2654 CG HIS B 150 −28.007 14.226 35.566 1.00 112.70 B C
    ATOM 2655 ND1 HIS B 150 −28.322 13.236 36.477 1.00 115.18 B N
    ATOM 2656 CE1 HIS B 150 −29.116 13.732 37.412 1.00 115.57 B C
    ATOM 2657 NE2 HIS B 150 −29.329 15.008 37.143 1.00 116.22 B N
    ATOM 2658 CD2 HIS B 150 −28.648 15.343 35.995 1.00 114.87 B C
    ATOM 2659 C HIS B 150 −25.678 16.092 34.283 1.00 86.18 B C
    ATOM 2660 O HIS B 150 −24.553 15.636 34.441 1.00 83.39 B O
    ATOM 2661 N THR B 151 −26.017 17.321 34.661 1.00 77.85 B N
    ATOM 2662 CA THR B 151 −25.064 18.239 35.284 1.00 71.05 B C
    ATOM 2663 CB THR B 151 −25.316 19.678 34.800 1.00 71.38 B C
    ATOM 2664 OG1 THR B 151 −25.137 19.740 33.385 1.00 74.39 B O
    ATOM 2665 CG2 THR B 151 −24.253 20.638 35.318 1.00 67.68 B C
    ATOM 2666 C THR B 151 −25.147 18.193 36.802 1.00 68.37 B C
    ATOM 2667 O THR B 151 −24.286 18.726 37.494 1.00 69.11 B O
    ATOM 2668 N ALA B 152 −26.188 17.569 37.328 1.00 65.26 B N
    ATOM 2669 CA ALA B 152 −26.322 17.475 38.766 1.00 66.60 B C
    ATOM 2670 CB ALA B 152 −27.775 17.454 39.151 1.00 70.48 B C
    ATOM 2671 C ALA B 152 −25.613 16.226 39.267 1.00 68.90 B C
    ATOM 2672 O ALA B 152 −25.715 15.868 40.450 1.00 73.24 B O
    ATOM 2673 N ASP B 153 −24.885 15.569 38.368 1.00 65.99 B N
    ATOM 2674 CA ASP B 153 −24.266 14.294 38.690 1.00 64.22 B C
    ATOM 2675 CB ASP B 153 −24.356 13.338 37.507 1.00 67.82 B C
    ATOM 2676 CG ASP B 153 −24.270 11.886 37.927 1.00 72.99 B C
    ATOM 2677 OD1 ASP B 153 −23.834 11.619 39.070 1.00 77.73 B O
    ATOM 2678 OD2 ASP B 153 −24.607 10.940 37.180 1.00 72.88 B O
    ATOM 2679 C ASP B 153 −22.836 14.427 39.205 1.00 61.94 B C
    ATOM 2680 O ASP B 153 −21.872 14.052 38.541 1.00 64.99 B O
    ATOM 2681 N ILE B 154 −22.743 14.962 40.415 1.00 59.23 B N
    ATOM 2682 CA ILE B 154 −21.538 15.035 41.245 1.00 57.56 B C
    ATOM 2683 CB ILE B 154 −21.912 15.942 42.471 1.00 55.70 B C
    ATOM 2684 CG1 ILE B 154 −22.096 17.368 42.013 1.00 54.79 B C
    ATOM 2685 CD1 ILE B 154 −21.086 17.754 40.980 1.00 57.56 B C
    ATOM 2686 CG2 ILE B 154 −20.876 15.932 43.576 1.00 57.05 B C
    ATOM 2687 C ILE B 154 −21.074 13.635 41.729 1.00 58.25 B C
    ATOM 2688 O ILE B 154 −20.039 13.496 42.403 1.00 46.30 B O
    ATOM 2689 N GLN B 155 −21.846 12.612 41.359 1.00 63.86 B N
    ATOM 2690 CA GLN B 155 −21.941 11.372 42.127 1.00 67.23 B C
    ATOM 2691 CB GLN B 155 −23.412 11.112 42.485 1.00 75.19 B C
    ATOM 2692 CG GLN B 155 −23.688 9.775 43.154 1.00 82.02 B C
    ATOM 2693 CD GLN B 155 −23.728 9.870 44.673 1.00 86.58 B C
    ATOM 2694 OE1 GLN B 155 −22.981 9.164 45.366 1.00 86.57 B O
    ATOM 2695 NE2 GLN B 155 −24.603 10.737 45.194 1.00 87.11 B N
    ATOM 2696 C GLN B 155 −21.365 10.167 41.416 1.00 65.06 B C
    ATOM 2697 O GLN B 155 −20.639 9.377 42.023 1.00 66.82 B O
    ATOM 2698 N SER B 156 −21.684 10.025 40.135 1.00 61.98 B N
    ATOM 2699 CA SER B 156 −21.338 8.809 39.408 1.00 62.24 B C
    ATOM 2700 CB SER B 156 −22.242 8.638 38.183 1.00 62.44 B C
    ATOM 2701 OG SER B 156 −21.611 9.101 37.007 1.00 66.58 B O
    ATOM 2702 C SER B 156 −19.827 8.614 39.093 1.00 61.49 B C
    ATOM 2703 O SER B 156 −19.299 7.526 39.271 1.00 63.76 B O
    ATOM 2704 N GLU B 157 −19.126 9.654 38.658 1.00 63.78 B N
    ATOM 2705 CA GLU B 157 −17.672 9.542 38.424 1.00 60.36 B C
    ATOM 2706 CB GLU B 157 −17.346 9.605 36.933 1.00 61.77 B C
    ATOM 2707 CG GLU B 157 −15.858 9.657 36.659 1.00 62.96 B C
    ATOM 2708 CD GLU B 157 −15.568 9.856 35.201 1.00 69.04 B C
    ATOM 2709 OE1 GLU B 157 −16.515 10.214 34.461 1.00 71.13 B O
    ATOM 2710 OE2 GLU B 157 −14.399 9.656 34.799 1.00 72.81 B O
    ATOM 2711 C GLU B 157 −16.831 10.569 39.207 1.00 52.41 B C
    ATOM 2712 O GLU B 157 −16.754 11.743 38.834 1.00 50.81 B O
    ATOM 2713 N VAL B 158 −16.212 10.095 40.286 1.00 44.97 B N
    ATOM 2714 CA VAL B 158 −15.491 10.926 41.235 1.00 41.41 B C
    ATOM 2715 CB VAL B 158 −16.212 11.004 42.585 1.00 38.90 B C
    ATOM 2716 CG1 VAL B 158 −15.343 11.713 43.606 1.00 41.55 B C
    ATOM 2717 CG2 VAL B 158 −17.523 11.684 42.462 1.00 38.40 B C
    ATOM 2718 C VAL B 158 −14.181 10.246 41.544 1.00 44.87 B C
    ATOM 2719 O VAL B 158 −14.190 9.158 42.091 1.00 48.33 B O
    ATOM 2720 N HIS B 159 −13.066 10.897 41.222 1.00 48.81 B N
    ATOM 2721 CA HIS B 159 −11.728 10.413 41.558 1.00 49.97 B C
    ATOM 2722 CB HIS B 159 −10.822 10.456 40.334 1.00 55.24 B C
    ATOM 2723 CG HIS B 159 −11.455 9.934 39.092 1.00 57.18 B C
    ATOM 2724 ND1 HIS B 159 −11.255 8.649 38.645 1.00 61.70 B N
    ATOM 2725 CE1 HIS B 159 −11.921 8.472 37.518 1.00 66.34 B C
    ATOM 2726 NE2 HIS B 159 −12.549 9.596 37.224 1.00 64.77 B N
    ATOM 2727 CD2 HIS B 159 −12.266 10.528 38.190 1.00 59.87 B C
    ATOM 2728 C HIS B 159 −11.079 11.289 42.603 1.00 45.65 B C
    ATOM 2729 O HIS B 159 −11.085 12.512 42.465 1.00 46.99 B O
    ATOM 2730 N CYS B 160 −10.486 10.667 43.617 1.00 43.49 B N
    ATOM 2731 CA CYS B 160 −9.662 11.386 44.589 1.00 50.24 B C
    ATOM 2732 CB CYS B 160 −9.462 10.511 45.829 1.00 56.49 B C
    ATOM 2733 SG CYS B 160 −8.633 11.276 47.239 1.00 63.33 B S
    ATOM 2734 C CYS B 160 −8.319 11.773 43.936 1.00 50.29 B C
    ATOM 2735 O CYS B 160 −7.827 11.040 43.081 1.00 55.87 B O
    ATOM 2736 N ILE B 161 −7.741 12.924 44.286 1.00 47.03 B N
    ATOM 2737 CA ILE B 161 −6.490 13.348 43.632 1.00 46.63 B C
    ATOM 2738 CB ILE B 161 −6.543 14.777 43.026 1.00 38.65 B C
    ATOM 2739 CG1 ILE B 161 −7.751 14.997 42.127 1.00 34.38 B C
    ATOM 2740 CD1 ILE B 161 −7.701 16.338 41.444 1.00 34.32 B C
    ATOM 2741 CG2 ILE B 161 −5.260 15.053 42.246 1.00 34.37 B C
    ATOM 2742 C ILE B 161 −5.317 13.324 44.583 1.00 56.92 B C
    ATOM 2743 O ILE B 161 −5.078 14.321 45.300 1.00 62.39 B O
    ATOM 2744 N PHE B 162 −4.580 12.209 44.556 1.00 60.69 B N
    ATOM 2745 CA PHE B 162 −3.338 12.051 45.300 1.00 61.03 B C
    ATOM 2746 CB PHE B 162 −3.620 11.632 46.745 1.00 59.23 B C
    ATOM 2747 CG PHE B 162 −2.393 11.330 47.547 1.00 66.31 B C
    ATOM 2748 CD1 PHE B 162 −2.396 11.515 48.917 1.00 69.32 B C
    ATOM 2749 CE1 PHE B 162 −1.268 11.236 49.679 1.00 71.72 B C
    ATOM 2750 CZ PHE B 162 −0.118 10.759 49.067 1.00 76.67 B C
    ATOM 2751 CE2 PHE B 162 −0.102 10.560 47.681 1.00 75.24 B C
    ATOM 2752 CD2 PHE B 162 −1.234 10.844 46.940 1.00 71.12 B C
    ATOM 2753 C PHE B 162 −2.451 11.023 44.616 1.00 64.46 B C
    ATOM 2754 O PHE B 162 −2.581 9.832 44.862 1.00 69.15 B O
    ATOM 2755 N SER B 163 −1.543 11.491 43.771 1.00 67.84 B N
    ATOM 2756 CA SER B 163 −0.518 10.642 43.167 1.00 72.18 B C
    ATOM 2757 CB SER B 163 −0.001 11.298 41.887 1.00 76.28 B C
    ATOM 2758 OG SER B 163 0.847 10.416 41.184 1.00 81.52 B O
    ATOM 2759 C SER B 163 0.645 10.423 44.137 1.00 72.44 B C
    ATOM 2760 O SER B 163 1.159 11.390 44.684 1.00 69.21 B O
    ATOM 2761 N PRO B 164 1.074 9.173 44.344 1.00 79.41 B N
    ATOM 2762 CA PRO B 164 2.144 8.879 45.318 1.00 83.15 B C
    ATOM 2763 CB PRO B 164 2.208 7.348 45.330 1.00 82.50 B C
    ATOM 2764 CG PRO B 164 1.633 6.927 44.023 1.00 81.14 B C
    ATOM 2765 CD PRO B 164 0.598 7.954 43.664 1.00 81.00 B C
    ATOM 2766 C PRO B 164 3.490 9.499 44.913 1.00 82.80 B C
    ATOM 2767 O PRO B 164 3.808 9.545 43.729 1.00 81.17 B O
    ATOM 2768 N GLN B 165 4.252 9.975 45.893 1.00 85.72 B N
    ATOM 2769 CA GLN B 165 5.390 10.850 45.629 1.00 91.50 B C
    ATOM 2770 CB GLN B 165 5.401 11.986 46.649 1.00 89.42 B C
    ATOM 2771 CG GLN B 165 5.925 13.312 46.096 1.00 87.88 B C
    ATOM 2772 CD GLN B 165 5.147 13.843 44.892 1.00 83.64 B C
    ATOM 2773 OE1 GLN B 165 4.042 13.382 44.587 1.00 81.23 B O
    ATOM 2774 NE2 GLN B 165 5.729 14.820 44.212 1.00 81.96 B N
    ATOM 2775 C GLN B 165 6.735 10.129 45.608 1.00 99.59 B C
    ATOM 2776 O GLN B 165 7.138 9.544 46.613 1.00 103.36 B O
    ATOM 2777 N ILE B 166 7.440 10.189 44.476 1.00 106.48 B N
    ATOM 2778 CA ILE B 166 8.581 9.286 44.246 1.00 113.53 B C
    ATOM 2779 CB ILE B 166 8.212 8.200 43.163 1.00 114.08 B C
    ATOM 2780 CG1 ILE B 166 8.067 6.820 43.825 1.00 114.36 B C
    ATOM 2781 CD1 ILE B 166 6.653 6.505 44.350 1.00 113.22 B C
    ATOM 2782 CG2 ILE B 166 9.192 8.178 41.965 1.00 112.30 B C
    ATOM 2783 C ILE B 166 9.953 9.945 44.014 1.00 118.30 B C
    ATOM 2784 O ILE B 166 10.966 9.458 44.533 1.00 114.87 B O
    ATOM 2785 N GLU B 167 9.980 11.045 43.257 1.00 126.36 B N
    ATOM 2786 CA GLU B 167 11.223 11.788 43.003 1.00 131.46 B C
    ATOM 2787 CB GLU B 167 11.053 12.807 41.859 1.00 135.17 B C
    ATOM 2788 CG GLU B 167 10.514 12.245 40.540 1.00 138.96 B C
    ATOM 2789 CD GLU B 167 11.389 11.154 39.931 1.00 140.44 B C
    ATOM 2790 OE1 GLU B 167 12.610 11.380 39.754 1.00 139.92 B O
    ATOM 2791 OE2 GLU B 167 10.848 10.067 39.624 1.00 140.86 B O
    ATOM 2792 C GLU B 167 11.708 12.478 44.286 1.00 131.99 B C
    ATOM 2793 O GLU B 167 12.810 12.199 44.771 1.00 132.18 B O
    ATOM 2794 N GLU B 168 10.872 13.365 44.829 1.00 131.33 B N
    ATOM 2795 CA GLU B 168 11.119 13.991 46.126 1.00 128.96 B C
    ATOM 2796 CB GLU B 168 11.189 15.524 45.986 1.00 132.26 B C
    ATOM 2797 CG GLU B 168 12.602 16.105 45.894 1.00 136.32 B C
    ATOM 2798 CD GLU B 168 13.399 16.025 47.200 1.00 138.39 B C
    ATOM 2799 OE1 GLU B 168 12.797 16.080 48.299 1.00 138.49 B O
    ATOM 2800 OE2 GLU B 168 14.645 15.914 47.129 1.00 138.47 B O
    ATOM 2801 C GLU B 168 10.026 13.583 47.128 1.00 123.48 B C
    ATOM 2802 O GLU B 168 9.061 14.326 47.314 1.00 125.00 B O
    ATOM 2803 N PRO B 169 10.174 12.415 47.770 1.00 117.59 B N
    ATOM 2804 CA PRO B 169 9.169 11.894 48.718 1.00 112.28 B C
    ATOM 2805 CB PRO B 169 9.774 10.558 49.172 1.00 113.47 B C
    ATOM 2806 CG PRO B 169 10.708 10.189 48.084 1.00 115.63 B C
    ATOM 2807 CD PRO B 169 11.312 11.488 47.632 1.00 116.96 B C
    ATOM 2808 C PRO B 169 8.912 12.782 49.938 1.00 105.68 B C
    ATOM 2809 O PRO B 169 8.082 12.436 50.783 1.00 101.38 B O
    ATOM 2810 N SER B 170 9.621 13.905 50.011 1.00 102.05 B N
    ATOM 2811 CA SER B 170 9.467 14.878 51.087 1.00 97.82 B C
    ATOM 2812 CB SER B 170 10.746 15.715 51.247 1.00 99.30 B C
    ATOM 2813 OG SER B 170 11.837 15.150 50.530 1.00 100.06 B O
    ATOM 2814 C SER B 170 8.279 15.796 50.826 1.00 91.37 B C
    ATOM 2815 O SER B 170 7.655 16.293 51.766 1.00 91.05 B O
    ATOM 2816 N GLN B 171 7.976 16.008 49.547 1.00 83.23 B N
    ATOM 2817 CA GLN B 171 6.943 16.955 49.132 1.00 78.78 B C
    ATOM 2818 CB GLN B 171 7.286 17.565 47.768 1.00 82.89 B C
    ATOM 2819 CG GLN B 171 8.143 18.836 47.832 1.00 84.78 B C
    ATOM 2820 CD GLN B 171 7.735 19.785 48.947 1.00 85.40 B C
    ATOM 2821 OE1 GLN B 171 8.498 19.992 49.901 1.00 87.87 B O
    ATOM 2822 NE2 GLN B 171 6.535 20.362 48.837 1.00 82.96 B N
    ATOM 2823 C GLN B 171 5.544 16.347 49.096 1.00 72.27 B C
    ATOM 2824 O GLN B 171 5.398 15.122 49.101 1.00 73.45 B O
    ATOM 2825 N CYS B 172 4.525 17.211 49.084 1.00 62.06 B N
    ATOM 2826 CA CYS B 172 3.137 16.774 49.018 1.00 54.69 B C
    ATOM 2827 CB CYS B 172 2.534 16.578 50.395 1.00 52.71 B C
    ATOM 2828 SG CYS B 172 0.962 15.724 50.194 1.00 58.58 B S
    ATOM 2829 C CYS B 172 2.262 17.745 48.256 1.00 53.37 B C
    ATOM 2830 O CYS B 172 1.546 18.567 48.852 1.00 58.82 B O
    ATOM 2831 N PRO B 173 2.286 17.643 46.940 1.00 43.62 B N
    ATOM 2832 CA PRO B 173 1.628 18.638 46.099 1.00 40.98 B C
    ATOM 2833 CB PRO B 173 2.383 18.530 44.780 1.00 34.49 B C
    ATOM 2834 CG PRO B 173 3.372 17.483 45.011 1.00 38.66 B C
    ATOM 2835 CD PRO B 173 2.918 16.594 46.144 1.00 37.31 B C
    ATOM 2836 C PRO B 173 0.165 18.283 45.914 1.00 43.04 B C
    ATOM 2837 O PRO B 173 −0.543 18.973 45.190 1.00 48.61 B O
    ATOM 2838 N ASP B 174 −0.292 17.214 46.545 1.00 39.17 B N
    ATOM 2839 CA ASP B 174 −1.687 16.864 46.402 1.00 40.82 B C
    ATOM 2840 CB ASP B 174 −1.864 15.373 46.099 1.00 43.79 B C
    ATOM 2841 CG ASP B 174 −1.166 14.936 44.828 1.00 45.66 B C
    ATOM 2842 OD1 ASP B 174 −1.259 15.623 43.779 1.00 46.41 B O
    ATOM 2843 OD2 ASP B 174 −0.500 13.890 44.796 1.00 48.95 B O
    ATOM 2844 C ASP B 174 −2.379 17.257 47.692 1.00 42.23 B C
    ATOM 2845 O ASP B 174 −3.600 17.080 47.851 1.00 46.03 B O
    ATOM 2846 N CYS B 175 −1.574 17.773 48.614 1.00 38.28 B N
    ATOM 2847 CA CYS B 175 −2.068 18.295 49.860 1.00 42.16 B C
    ATOM 2848 CB CYS B 175 −1.022 18.087 50.935 1.00 47.27 B C
    ATOM 2849 SG CYS B 175 −0.658 16.364 51.258 1.00 53.13 B S
    ATOM 2850 C CYS B 175 −2.297 19.784 49.650 1.00 44.67 B C
    ATOM 2851 O CYS B 175 −1.408 20.606 49.901 1.00 54.11 B O
    ATOM 2852 N VAL B 176 −3.482 20.140 49.180 1.00 37.73 B N
    ATOM 2853 CA VAL B 176 −3.695 21.490 48.729 1.00 37.04 B C
    ATOM 2854 CB VAL B 176 −4.755 21.583 47.637 1.00 34.29 B C
    ATOM 2855 CG1 VAL B 176 −4.717 22.976 47.038 1.00 36.64 B C
    ATOM 2856 CG2 VAL B 176 −4.550 20.534 46.565 1.00 26.75 B C
    ATOM 2857 C VAL B 176 −4.146 22.382 49.855 1.00 45.28 B C
    ATOM 2858 O VAL B 176 −3.530 23.396 50.115 1.00 54.88 B O
    ATOM 2859 N VAL B 177 −5.224 22.006 50.523 1.00 44.67 B N
    ATOM 2860 CA VAL B 177 −5.956 22.942 51.359 1.00 41.51 B C
    ATOM 2861 CB VAL B 177 −7.431 22.706 51.098 1.00 39.22 B C
    ATOM 2862 CG1 VAL B 177 −8.169 22.253 52.331 1.00 35.75 B C
    ATOM 2863 CG2 VAL B 177 −8.037 23.920 50.460 1.00 42.41 B C
    ATOM 2864 C VAL B 177 −5.591 22.820 52.851 1.00 48.49 B C
    ATOM 2865 O VAL B 177 −5.154 21.755 53.307 1.00 55.50 B O
    ATOM 2866 N SER B 178 −5.731 23.902 53.617 1.00 45.01 B N
    ATOM 2867 CA SER B 178 −5.509 23.797 55.065 1.00 39.42 B C
    ATOM 2868 CB SER B 178 −4.477 24.797 55.579 1.00 36.20 B C
    ATOM 2869 OG SER B 178 −4.842 25.259 56.871 1.00 38.11 B O
    ATOM 2870 C SER B 178 −6.788 23.898 55.892 1.00 40.49 B C
    ATOM 2871 O SER B 178 −7.555 24.883 55.817 1.00 37.91 B O
    ATOM 2872 N ALA B 179 −6.974 22.855 56.695 1.00 39.49 B N
    ATOM 2873 CA ALA B 179 −8.061 22.723 57.648 1.00 31.63 B C
    ATOM 2874 CB ALA B 179 −7.722 21.632 58.655 1.00 37.29 B C
    ATOM 2875 C ALA B 179 −8.317 24.010 58.378 1.00 28.72 B C
    ATOM 2876 O ALA B 179 −9.466 24.300 58.740 1.00 30.40 B O
    ATOM 2877 N LEU B 180 −7.261 24.782 58.618 1.00 26.42 B N
    ATOM 2878 CA LEU B 180 −7.440 25.993 59.412 1.00 36.32 B C
    ATOM 2879 CB LEU B 180 −6.543 26.006 60.657 1.00 37.97 B C
    ATOM 2880 CG LEU B 180 −5.100 25.527 60.601 1.00 33.91 B C
    ATOM 2881 CD1 LEU B 180 −4.212 26.631 60.098 1.00 34.16 B C
    ATOM 2882 CD2 LEU B 180 −4.722 25.159 61.992 1.00 30.99 B C
    ATOM 2883 C LEU B 180 −7.329 27.285 58.632 1.00 40.07 B C
    ATOM 2884 O LEU B 180 −6.853 28.295 59.161 1.00 39.73 B O
    ATOM 2885 N GLY B 181 −7.786 27.238 57.379 1.00 45.44 B N
    ATOM 2886 CA GLY B 181 −7.998 28.425 56.567 1.00 44.24 B C
    ATOM 2887 C GLY B 181 −7.245 28.363 55.268 1.00 41.77 B C
    ATOM 2888 O GLY B 181 −6.011 28.299 55.287 1.00 40.12 B O
    ATOM 2889 N ALA B 182 −7.990 28.386 54.155 1.00 42.59 B N
    ATOM 2890 CA ALA B 182 −7.435 28.343 52.783 1.00 33.05 B C
    ATOM 2891 CB ALA B 182 −7.517 26.957 52.252 1.00 25.62 B C
    ATOM 2892 C ALA B 182 −8.184 29.261 51.846 1.00 34.56 B C
    ATOM 2893 O ALA B 182 −9.386 29.476 52.023 1.00 44.68 B O
    ATOM 2894 N LYS B 183 −7.490 29.813 50.859 1.00 33.14 B N
    ATOM 2895 CA LYS B 183 −8.171 30.373 49.678 1.00 36.30 B C
    ATOM 2896 CB LYS B 183 −8.171 31.896 49.646 1.00 39.28 B C
    ATOM 2897 CG LYS B 183 −9.279 32.532 50.470 1.00 49.30 B C
    ATOM 2898 CD LYS B 183 −10.623 32.584 49.732 1.00 58.73 B C
    ATOM 2899 CE LYS B 183 −11.785 32.976 50.668 1.00 61.53 B C
    ATOM 2900 NZ LYS B 183 −11.672 32.401 52.056 1.00 62.38 B N
    ATOM 2901 C LYS B 183 −7.520 29.845 48.426 1.00 35.29 B C
    ATOM 2902 O LYS B 183 −6.299 29.836 48.290 1.00 36.47 B O
    ATOM 2903 N VAL B 184 −8.348 29.379 47.514 1.00 33.14 B N
    ATOM 2904 CA VAL B 184 −7.855 28.698 46.337 1.00 27.03 B C
    ATOM 2905 CB VAL B 184 −8.357 27.264 46.296 1.00 24.13 B C
    ATOM 2906 CG1 VAL B 184 −8.210 26.679 44.889 1.00 16.54 B C
    ATOM 2907 CG2 VAL B 184 −7.609 26.438 47.354 1.00 23.45 B C
    ATOM 2908 C VAL B 184 −8.371 29.406 45.143 1.00 25.71 B C
    ATOM 2909 O VAL B 184 −9.561 29.648 45.032 1.00 31.46 B O
    ATOM 2910 N LEU B 185 −7.478 29.742 44.239 1.00 29.38 B N
    ATOM 2911 CA LEU B 185 −7.882 30.436 43.041 1.00 36.04 B C
    ATOM 2912 CB LEU B 185 −7.410 31.880 43.129 1.00 33.81 B C
    ATOM 2913 CG LEU B 185 −7.123 32.673 41.874 1.00 41.23 B C
    ATOM 2914 CD1 LEU B 185 −8.215 32.469 40.836 1.00 52.79 B C
    ATOM 2915 CD2 LEU B 185 −7.011 34.133 42.222 1.00 41.51 B C
    ATOM 2916 C LEU B 185 −7.276 29.681 41.879 1.00 40.80 B C
    ATOM 2917 O LEU B 185 −6.076 29.432 41.876 1.00 49.60 B O
    ATOM 2918 N SER B 186 −8.097 29.275 40.916 1.00 41.06 B N
    ATOM 2919 CA SER B 186 −7.589 28.435 39.828 1.00 48.57 B C
    ATOM 2920 CB SER B 186 −8.332 27.076 39.747 1.00 55.01 B C
    ATOM 2921 OG SER B 186 −8.931 26.835 38.468 1.00 54.97 B O
    ATOM 2922 C SER B 186 −7.712 29.173 38.536 1.00 46.06 B C
    ATOM 2923 O SER B 186 −8.736 29.782 38.294 1.00 55.39 B O
    ATOM 2924 N SER B 187 −6.687 29.108 37.703 1.00 42.07 B N
    ATOM 2925 CA SER B 187 −6.729 29.786 36.412 1.00 46.72 B C
    ATOM 2926 CB SER B 187 −6.203 31.218 36.557 1.00 49.29 B C
    ATOM 2927 OG SER B 187 −4.809 31.325 36.265 1.00 54.33 B O
    ATOM 2928 C SER B 187 −5.955 29.025 35.334 1.00 49.35 B C
    ATOM 2929 O SER B 187 −4.938 28.385 35.628 1.00 54.65 B O
    ATOM 2930 N VAL B 188 −6.424 29.089 34.090 1.00 44.80 B N
    ATOM 2931 CA VAL B 188 −5.719 28.408 33.005 1.00 45.35 B C
    ATOM 2932 CB VAL B 188 −6.627 28.078 31.861 1.00 44.43 B C
    ATOM 2933 CG1 VAL B 188 −6.399 26.680 31.421 1.00 45.45 B C
    ATOM 2934 CG2 VAL B 188 −8.064 28.268 32.285 1.00 53.50 B C
    ATOM 2935 C VAL B 188 −4.623 29.292 32.474 1.00 49.38 B C
    ATOM 2936 O VAL B 188 −4.833 30.475 32.252 1.00 52.76 B O
    ATOM 2937 N LYS B 189 −3.446 28.718 32.290 1.00 55.20 B N
    ATOM 2938 CA LYS B 189 −2.282 29.477 31.849 1.00 61.71 B C
    ATOM 2939 CB LYS B 189 −1.688 30.298 33.006 1.00 68.93 B C
    ATOM 2940 CG LYS B 189 −0.918 31.531 32.551 1.00 78.03 B C
    ATOM 2941 CD LYS B 189 −1.587 32.825 33.019 1.00 85.92 B C
    ATOM 2942 CE LYS B 189 −1.457 33.948 31.964 1.00 88.26 B C
    ATOM 2943 NZ LYS B 189 −0.885 35.223 32.509 1.00 87.34 B N
    ATOM 2944 C LYS B 189 −1.240 28.541 31.221 1.00 60.86 B C
    ATOM 2945 O LYS B 189 −0.802 27.544 31.834 1.00 61.91 B O
    ATOM 2946 N ASP B 190 −0.862 28.871 29.990 1.00 53.49 B N
    ATOM 2947 CA ASP B 190 0.075 28.068 29.222 1.00 48.50 B C
    ATOM 2948 CB ASP B 190 1.451 28.083 29.886 1.00 48.87 B C
    ATOM 2949 CG ASP B 190 2.270 29.280 29.461 1.00 54.63 B C
    ATOM 2950 OD1 ASP B 190 1.731 30.121 28.695 1.00 53.84 B O
    ATOM 2951 OD2 ASP B 190 3.456 29.469 29.832 1.00 59.09 B O
    ATOM 2952 C ASP B 190 −0.403 26.646 28.931 1.00 45.42 B C
    ATOM 2953 O ASP B 190 0.397 25.728 28.833 1.00 45.42 B O
    ATOM 2954 N ARG B 191 −1.709 26.484 28.754 1.00 43.30 B N
    ATOM 2955 CA ARG B 191 −2.339 25.176 28.510 1.00 38.92 B C
    ATOM 2956 CB ARG B 191 −1.695 24.424 27.338 1.00 34.43 B C
    ATOM 2957 CG ARG B 191 −1.910 25.039 26.008 1.00 35.89 B C
    ATOM 2958 CD ARG B 191 −0.698 24.935 25.096 1.00 43.60 B C
    ATOM 2959 NE ARG B 191 −0.925 25.495 23.757 1.00 45.85 B N
    ATOM 2960 CZ ARG B 191 −1.912 25.130 22.943 1.00 43.18 B C
    ATOM 2961 NH1 ARG B 191 −2.774 24.186 23.326 1.00 46.90 B N
    ATOM 2962 NH2 ARG B 191 −2.043 25.713 21.758 1.00 36.04 B N
    ATOM 2963 C ARG B 191 −2.367 24.276 29.731 1.00 40.27 B C
    ATOM 2964 O ARG B 191 −2.762 23.103 29.627 1.00 49.44 B O
    ATOM 2965 N PHE B 192 −1.928 24.799 30.876 1.00 37.02 B N
    ATOM 2966 CA PHE B 192 −2.050 24.071 32.144 1.00 36.02 B C
    ATOM 2967 CB PHE B 192 −0.697 24.004 32.864 1.00 38.65 B C
    ATOM 2968 CG PHE B 192 0.289 23.041 32.248 1.00 40.43 B C
    ATOM 2969 CD1 PHE B 192 1.555 23.467 31.890 1.00 45.65 B C
    ATOM 2970 CE1 PHE B 192 2.458 22.603 31.313 1.00 46.19 B C
    ATOM 2971 CZ PHE B 192 2.098 21.282 31.110 1.00 47.84 B C
    ATOM 2972 CE2 PHE B 192 0.863 20.841 31.484 1.00 42.36 B C
    ATOM 2973 CD2 PHE B 192 −0.036 21.719 32.051 1.00 42.76 B C
    ATOM 2974 C PHE B 192 −3.102 24.700 33.067 1.00 34.90 B C
    ATOM 2975 O PHE B 192 −3.181 25.926 33.177 1.00 38.45 B O
    ATOM 2976 N ILE B 193 −3.907 23.882 33.737 1.00 31.74 B N
    ATOM 2977 CA ILE B 193 −4.689 24.404 34.873 1.00 36.25 B C
    ATOM 2978 CB ILE B 193 −5.808 23.415 35.237 1.00 31.14 B C
    ATOM 2979 CG1 ILE B 193 −6.790 23.305 34.079 1.00 34.97 B C
    ATOM 2980 CD1 ILE B 193 −7.471 21.956 33.991 1.00 36.83 B C
    ATOM 2981 CG2 ILE B 193 −6.500 23.822 36.511 1.00 20.62 B C
    ATOM 2982 C ILE B 193 −3.787 24.730 36.120 1.00 42.24 B C
    ATOM 2983 O ILE B 193 −3.135 23.840 36.702 1.00 40.91 B O
    ATOM 2984 N ASN B 194 −3.738 26.002 36.516 1.00 42.02 B N
    ATOM 2985 CA ASN B 194 −2.909 26.409 37.652 1.00 42.83 B C
    ATOM 2986 CB ASN B 194 −2.082 27.642 37.304 1.00 48.68 B C
    ATOM 2987 CG ASN B 194 −1.103 27.389 36.187 1.00 55.84 B C
    ATOM 2988 OD1 ASN B 194 −0.970 26.269 35.705 1.00 57.27 B O
    ATOM 2989 ND2 ASN B 194 −0.410 28.440 35.760 1.00 61.82 B N
    ATOM 2990 C ASN B 194 −3.715 26.709 38.903 1.00 42.86 B C
    ATOM 2991 O ASN B 194 −4.787 27.324 38.830 1.00 46.24 B O
    ATOM 2992 N PHE B 195 −3.187 26.291 40.049 1.00 35.15 B N
    ATOM 2993 CA PHE B 195 −3.822 26.562 41.315 1.00 32.96 B C
    ATOM 2994 CB PHE B 195 −4.081 25.255 42.030 1.00 35.85 B C
    ATOM 2995 CG PHE B 195 −5.338 24.580 41.616 1.00 43.13 B C
    ATOM 2996 CD1 PHE B 195 −5.585 24.281 40.269 1.00 44.31 B C
    ATOM 2997 CE1 PHE B 195 −6.752 23.637 39.882 1.00 40.86 B C
    ATOM 2998 CZ PHE B 195 −7.688 23.277 40.837 1.00 41.96 B C
    ATOM 2999 CE2 PHE B 195 −7.455 23.559 42.189 1.00 44.66 B C
    ATOM 3000 CD2 PHE B 195 −6.279 24.212 42.571 1.00 44.66 B C
    ATOM 3001 C PHE B 195 −2.944 27.435 42.182 1.00 36.69 B C
    ATOM 3002 O PHE B 195 −1.861 27.012 42.615 1.00 46.03 B O
    ATOM 3003 N PHE B 196 −3.411 28.646 42.453 1.00 35.16 B N
    ATOM 3004 CA PHE B 196 −2.778 29.532 43.434 1.00 34.28 B C
    ATOM 3005 CB PHE B 196 −2.859 30.958 42.956 1.00 32.45 B C
    ATOM 3006 CG PHE B 196 −2.313 31.131 41.592 1.00 38.26 B C
    ATOM 3007 CD1 PHE B 196 −3.085 30.853 40.487 1.00 36.46 B C
    ATOM 3008 CE1 PHE B 196 −2.575 30.991 39.225 1.00 35.74 B C
    ATOM 3009 CZ PHE B 196 −1.284 31.407 39.044 1.00 38.69 B C
    ATOM 3010 CE2 PHE B 196 −0.493 31.692 40.128 1.00 41.38 B C
    ATOM 3011 CD2 PHE B 196 −1.005 31.537 41.405 1.00 42.89 B C
    ATOM 3012 C PHE B 196 −3.505 29.387 44.741 1.00 34.55 B C
    ATOM 3013 O PHE B 196 −4.728 29.351 44.751 1.00 40.48 B O
    ATOM 3014 N VAL B 197 −2.768 29.294 45.841 1.00 32.43 B N
    ATOM 3015 CA VAL B 197 −3.370 28.869 47.102 1.00 34.63 B C
    ATOM 3016 CB VAL B 197 −3.238 27.343 47.287 1.00 35.94 B C
    ATOM 3017 CG1 VAL B 197 −3.680 26.939 48.697 1.00 34.44 B C
    ATOM 3018 CG2 VAL B 197 −3.983 26.585 46.213 1.00 32.05 B C
    ATOM 3019 C VAL B 197 −2.785 29.509 48.363 1.00 37.15 B C
    ATOM 3020 O VAL B 197 −1.611 29.267 48.738 1.00 41.19 B O
    ATOM 3021 N GLY B 198 −3.631 30.281 49.039 1.00 34.43 B N
    ATOM 3022 CA GLY B 198 −3.318 30.808 50.360 1.00 34.89 B C
    ATOM 3023 C GLY B 198 −3.738 29.863 51.478 1.00 31.71 B C
    ATOM 3024 O GLY B 198 −4.881 29.383 51.514 1.00 30.34 B O
    ATOM 3025 N ASN B 199 −2.824 29.609 52.406 1.00 28.72 B N
    ATOM 3026 CA ASN B 199 −3.102 28.668 53.473 1.00 33.64 B C
    ATOM 3027 CB ASN B 199 −2.558 27.282 53.117 1.00 32.78 B C
    ATOM 3028 CG ASN B 199 −3.633 26.337 52.613 1.00 29.87 B C
    ATOM 3029 OD1 ASN B 199 −4.780 26.423 53.010 1.00 31.50 B O
    ATOM 3030 ND2 ASN B 199 −3.254 25.417 51.756 1.00 26.99 B N
    ATOM 3031 C ASN B 199 −2.536 29.117 54.804 1.00 40.81 B C
    ATOM 3032 O ASN B 199 −1.316 29.309 54.934 1.00 45.86 B O
    ATOM 3033 N THR B 200 −3.430 29.295 55.781 1.00 41.96 B N
    ATOM 3034 CA THR B 200 −3.038 29.525 57.172 1.00 45.39 B C
    ATOM 3035 CB THR B 200 −4.233 29.913 58.008 1.00 47.52 B C
    ATOM 3036 OG1 THR B 200 −5.152 30.661 57.188 1.00 58.61 B O
    ATOM 3037 CG2 THR B 200 −3.811 30.890 59.076 1.00 39.80 B C
    ATOM 3038 C THR B 200 −2.456 28.243 57.701 1.00 47.44 B C
    ATOM 3039 O THR B 200 −2.978 27.164 57.436 1.00 50.95 B O
    ATOM 3040 N ILE B 201 −1.373 28.363 58.454 1.00 47.30 B N
    ATOM 3041 CA ILE B 201 −0.518 27.220 58.734 1.00 46.34 B C
    ATOM 3042 CB ILE B 201 0.588 27.217 57.680 1.00 39.76 B C
    ATOM 3043 CG1 ILE B 201 0.408 26.018 56.782 1.00 39.93 B C
    ATOM 3044 CD1 ILE B 201 1.659 25.680 56.053 1.00 45.00 B C
    ATOM 3045 CG2 ILE B 201 1.989 27.282 58.274 1.00 39.70 B C
    ATOM 3046 C ILE B 201 −0.011 27.238 60.189 1.00 56.10 B C
    ATOM 3047 O ILE B 201 0.285 28.317 60.734 1.00 61.66 B O
    ATOM 3048 N ASN B 202 0.057 26.066 60.832 1.00 58.28 B N
    ATOM 3049 CA ASN B 202 0.121 26.055 62.299 1.00 60.14 B C
    ATOM 3050 CB ASN B 202 −1.312 26.021 62.917 1.00 59.83 B C
    ATOM 3051 CG ASN B 202 −1.615 24.758 63.742 1.00 58.90 B C
    ATOM 3052 OD1 ASN B 202 −1.394 23.622 63.302 1.00 56.49 B O
    ATOM 3053 ND2 ASN B 202 −2.175 24.968 64.938 1.00 58.00 B N
    ATOM 3054 C ASN B 202 1.150 25.162 62.990 1.00 63.14 B C
    ATOM 3055 O ASN B 202 1.034 24.872 64.185 1.00 67.58 B O
    ATOM 3056 N SER B 203 2.175 24.754 62.246 1.00 63.26 B N
    ATOM 3057 CA SER B 203 3.317 24.005 62.820 1.00 62.77 B C
    ATOM 3058 CB SER B 203 4.094 24.825 63.884 1.00 59.71 B C
    ATOM 3059 OG SER B 203 4.057 24.247 65.182 1.00 52.81 B O
    ATOM 3060 C SER B 203 3.024 22.603 63.340 1.00 60.77 B C
    ATOM 3061 O SER B 203 3.886 22.003 63.963 1.00 60.35 B O
    ATOM 3062 N SER B 204 1.828 22.082 63.095 1.00 64.29 B N
    ATOM 3063 CA SER B 204 1.629 20.645 63.172 1.00 72.70 B C
    ATOM 3064 CB SER B 204 0.170 20.260 62.914 1.00 70.92 B C
    ATOM 3065 OG SER B 204 −0.727 21.224 63.436 1.00 68.03 B O
    ATOM 3066 C SER B 204 2.581 20.019 62.136 1.00 84.48 B C
    ATOM 3067 O SER B 204 2.212 19.746 60.982 1.00 85.81 B O
    ATOM 3068 N TYR B 205 3.832 19.864 62.566 1.00 95.91 B N
    ATOM 3069 CA TYR B 205 4.895 19.220 61.807 1.00 106.72 B C
    ATOM 3070 CB TYR B 205 6.069 18.915 62.756 1.00 109.83 B C
    ATOM 3071 CG TYR B 205 7.343 18.333 62.153 1.00 112.86 B C
    ATOM 3072 CD1 TYR B 205 8.575 18.553 62.772 1.00 114.06 B C
    ATOM 3073 CE1 TYR B 205 9.751 18.026 62.250 1.00 116.83 B C
    ATOM 3074 CZ TYR B 205 9.705 17.260 61.091 1.00 118.54 B C
    ATOM 3075 OH TYR B 205 10.874 16.739 60.576 1.00 120.05 B O
    ATOM 3076 CE2 TYR B 205 8.492 17.021 60.453 1.00 116.68 B C
    ATOM 3077 CD2 TYR B 205 7.322 17.551 60.989 1.00 114.93 B C
    ATOM 3078 C TYR B 205 4.341 17.935 61.217 1.00 112.90 B C
    ATOM 3079 O TYR B 205 4.270 16.905 61.896 1.00 115.51 B O
    ATOM 3080 N PHE B 206 3.919 18.008 59.961 1.00 117.30 B N
    ATOM 3081 CA PHE B 206 3.410 16.828 59.285 1.00 121.57 B C
    ATOM 3082 CB PHE B 206 2.037 17.095 58.643 1.00 123.14 B C
    ATOM 3083 CG PHE B 206 1.039 15.987 58.866 1.00 125.12 B C
    ATOM 3084 CD1 PHE B 206 −0.091 16.199 59.645 1.00 125.23 B C
    ATOM 3085 CE1 PHE B 206 −1.021 15.174 59.859 1.00 125.71 B C
    ATOM 3086 CZ PHE B 206 −0.813 13.916 59.297 1.00 126.53 B C
    ATOM 3087 CE2 PHE B 206 0.320 13.686 58.522 1.00 127.26 B C
    ATOM 3088 CD2 PHE B 206 1.239 14.721 58.311 1.00 126.85 B C
    ATOM 3089 C PHE B 206 4.423 16.269 58.276 1.00 122.66 B C
    ATOM 3090 O PHE B 206 4.653 16.856 57.213 1.00 124.48 B O
    ATOM 3091 N PRO B 207 5.070 15.165 58.637 1.00 121.91 B N
    ATOM 3092 CA PRO B 207 5.781 14.346 57.654 1.00 121.85 B C
    ATOM 3093 CB PRO B 207 6.900 13.697 58.481 1.00 122.51 B C
    ATOM 3094 CG PRO B 207 6.437 13.761 59.928 1.00 122.28 B C
    ATOM 3095 CD PRO B 207 5.209 14.630 60.004 1.00 121.65 B C
    ATOM 3096 C PRO B 207 4.837 13.279 57.071 1.00 120.05 B C
    ATOM 3097 O PRO B 207 3.991 12.766 57.809 1.00 123.06 B O
    ATOM 3098 N ASP B 208 4.919 12.989 55.774 1.00 113.77 B N
    ATOM 3099 CA ASP B 208 5.694 13.766 54.818 1.00 107.36 B C
    ATOM 3100 CB ASP B 208 6.502 12.826 53.907 1.00 109.81 B C
    ATOM 3101 CG ASP B 208 7.957 12.657 54.354 1.00 109.55 B C
    ATOM 3102 OD1 ASP B 208 8.743 13.626 54.253 1.00 109.43 B O
    ATOM 3103 OD2 ASP B 208 8.413 11.579 54.792 1.00 109.72 B O
    ATOM 3104 C ASP B 208 4.712 14.613 53.996 1.00 99.67 B C
    ATOM 3105 O ASP B 208 4.823 14.687 52.766 1.00 95.43 B O
    ATOM 3106 N HIS B 209 3.752 15.236 54.693 1.00 93.92 B N
    ATOM 3107 CA HIS B 209 2.711 16.084 54.078 1.00 87.26 B C
    ATOM 3108 CB HIS B 209 1.319 15.433 54.174 1.00 90.82 B C
    ATOM 3109 CG HIS B 209 1.304 13.957 53.923 1.00 94.92 B C
    ATOM 3110 ND1 HIS B 209 1.835 13.386 52.786 1.00 96.15 B N
    ATOM 3111 CE1 HIS B 209 1.675 12.076 52.837 1.00 99.11 B C
    ATOM 3112 NE2 HIS B 209 1.053 11.776 53.964 1.00 100.69 B N
    ATOM 3113 CD2 HIS B 209 0.807 12.936 54.660 1.00 97.75 B C
    ATOM 3114 C HIS B 209 2.629 17.493 54.684 1.00 76.18 B C
    ATOM 3115 O HIS B 209 1.686 17.796 55.418 1.00 70.71 B O
    ATOM 3116 N PRO B 210 3.580 18.372 54.372 1.00 71.36 B N
    ATOM 3117 CA PRO B 210 3.530 19.709 54.951 1.00 68.49 B C
    ATOM 3118 CB PRO B 210 4.960 20.231 54.763 1.00 67.93 B C
    ATOM 3119 CG PRO B 210 5.432 19.566 53.498 1.00 68.51 B C
    ATOM 3120 CD PRO B 210 4.711 18.230 53.430 1.00 70.48 B C
    ATOM 3121 C PRO B 210 2.541 20.492 54.105 1.00 67.58 B C
    ATOM 3122 O PRO B 210 2.049 20.000 53.077 1.00 69.65 B O
    ATOM 3123 N LEU B 211 2.231 21.697 54.548 1.00 59.38 B N
    ATOM 3124 CA LEU B 211 1.387 22.567 53.776 1.00 45.84 B C
    ATOM 3125 CB LEU B 211 0.122 22.858 54.570 1.00 37.57 B C
    ATOM 3126 CG LEU B 211 −0.797 21.639 54.710 1.00 36.06 B C
    ATOM 3127 CD1 LEU B 211 −2.121 22.022 55.306 1.00 41.90 B C
    ATOM 3128 CD2 LEU B 211 −1.040 20.937 53.389 1.00 34.99 B C
    ATOM 3129 C LEU B 211 2.217 23.805 53.467 1.00 45.29 B C
    ATOM 3130 O LEU B 211 3.272 23.996 54.054 1.00 51.36 B O
    ATOM 3131 N HIS B 212 1.790 24.626 52.523 1.00 41.89 B N
    ATOM 3132 CA HIS B 212 2.529 25.838 52.252 1.00 40.20 B C
    ATOM 3133 CB HIS B 212 3.059 25.814 50.832 1.00 39.63 B C
    ATOM 3134 CG HIS B 212 3.964 24.671 50.553 1.00 37.59 B C
    ATOM 3135 ND1 HIS B 212 5.163 24.504 51.203 1.00 38.64 B N
    ATOM 3136 CE1 HIS B 212 5.752 23.408 50.758 1.00 41.59 B C
    ATOM 3137 NE2 HIS B 212 4.975 22.860 49.842 1.00 42.57 B N
    ATOM 3138 CD2 HIS B 212 3.847 23.631 49.698 1.00 40.72 B C
    ATOM 3139 C HIS B 212 1.644 27.056 52.444 1.00 45.66 B C
    ATOM 3140 O HIS B 212 0.419 26.959 52.320 1.00 50.32 B O
    ATOM 3141 N SER B 213 2.264 28.203 52.716 1.00 41.75 B N
    ATOM 3142 CA SER B 213 1.514 29.429 52.891 1.00 40.69 B C
    ATOM 3143 CB SER B 213 2.307 30.392 53.756 1.00 46.44 B C
    ATOM 3144 OG SER B 213 1.855 30.299 55.102 1.00 51.16 B O
    ATOM 3145 C SER B 213 0.983 30.071 51.585 1.00 39.99 B C
    ATOM 3146 O SER B 213 −0.173 30.478 51.532 1.00 41.81 B O
    ATOM 3147 N ILE B 214 1.816 30.180 50.553 1.00 38.33 B N
    ATOM 3148 CA ILE B 214 1.346 30.452 49.180 1.00 37.83 B C
    ATOM 3149 CB ILE B 214 1.530 31.936 48.676 1.00 34.62 B C
    ATOM 3150 CG1 ILE B 214 2.868 32.534 49.139 1.00 42.04 B C
    ATOM 3151 CD1 ILE B 214 2.996 32.857 50.671 1.00 49.36 B C
    ATOM 3152 CG2 ILE B 214 0.270 32.808 48.863 1.00 25.30 B C
    ATOM 3153 C ILE B 214 2.169 29.595 48.260 1.00 40.06 B C
    ATOM 3154 O ILE B 214 3.331 29.282 48.547 1.00 39.53 B O
    ATOM 3155 N SER B 215 1.587 29.283 47.115 1.00 38.26 B N
    ATOM 3156 CA SER B 215 2.152 28.297 46.242 1.00 40.18 B C
    ATOM 3157 CB SER B 215 1.945 26.909 46.852 1.00 50.01 B C
    ATOM 3158 OG SER B 215 0.656 26.796 47.458 1.00 56.98 B O
    ATOM 3159 C SER B 215 1.434 28.339 44.923 1.00 40.51 B C
    ATOM 3160 O SER B 215 0.294 28.814 44.835 1.00 37.50 B O
    ATOM 3161 N VAL B 216 2.110 27.813 43.904 1.00 40.40 B N
    ATOM 3162 CA VAL B 216 1.500 27.562 42.607 1.00 37.18 B C
    ATOM 3163 CB VAL B 216 2.091 28.423 41.502 1.00 29.19 B C
    ATOM 3164 CG1 VAL B 216 0.998 29.064 40.731 1.00 32.27 B C
    ATOM 3165 CG2 VAL B 216 3.027 29.430 42.052 1.00 25.24 B C
    ATOM 3166 C VAL B 216 1.780 26.149 42.191 1.00 40.74 B C
    ATOM 3167 O VAL B 216 2.950 25.784 41.971 1.00 51.27 B O
    ATOM 3168 N ARG B 217 0.733 25.343 42.073 1.00 32.18 B N
    ATOM 3169 CA ARG B 217 0.923 24.045 41.450 1.00 29.02 B C
    ATOM 3170 CB ARG B 217 0.840 22.871 42.456 1.00 27.36 B C
    ATOM 3171 CG ARG B 217 −0.516 22.508 43.036 1.00 26.02 B C
    ATOM 3172 CD ARG B 217 −1.169 23.610 43.835 1.00 38.67 B C
    ATOM 3173 NE ARG B 217 −0.632 23.876 45.189 1.00 44.65 B N
    ATOM 3174 CZ ARG B 217 −0.536 22.985 46.183 1.00 36.92 B C
    ATOM 3175 NH1 ARG B 217 −0.882 21.719 45.998 1.00 29.77 B N
    ATOM 3176 NH2 ARG B 217 −0.068 23.368 47.360 1.00 33.63 B N
    ATOM 3177 C ARG B 217 −0.036 23.923 40.307 1.00 27.19 B C
    ATOM 3178 O ARG B 217 −1.095 24.556 40.329 1.00 30.77 B O
    ATOM 3179 N ARG B 218 0.347 23.140 39.300 1.00 24.74 B N
    ATOM 3180 CA ARG B 218 −0.562 22.817 38.205 1.00 29.88 B C
    ATOM 3181 CB ARG B 218 0.120 23.006 36.872 1.00 26.23 B C
    ATOM 3182 CG ARG B 218 1.227 22.044 36.596 1.00 28.59 B C
    ATOM 3183 CD ARG B 218 1.831 22.250 35.228 1.00 35.20 B C
    ATOM 3184 NE ARG B 218 2.799 21.210 34.902 1.00 43.71 B N
    ATOM 3185 CZ ARG B 218 2.482 20.043 34.355 1.00 43.88 B C
    ATOM 3186 NH1 ARG B 218 1.219 19.765 34.058 1.00 47.77 B N
    ATOM 3187 NH2 ARG B 218 3.427 19.160 34.090 1.00 37.51 B N
    ATOM 3188 C ARG B 218 −1.076 21.393 38.323 1.00 39.55 B C
    ATOM 3189 O ARG B 218 −0.468 20.584 39.017 1.00 46.37 B O
    ATOM 3190 N LEU B 219 −2.205 21.094 37.671 1.00 44.95 B N
    ATOM 3191 CA LEU B 219 −2.702 19.714 37.544 1.00 43.41 B C
    ATOM 3192 CB LEU B 219 −4.139 19.692 37.017 1.00 44.18 B C
    ATOM 3193 CG LEU B 219 −5.316 19.154 37.844 1.00 42.53 B C
    ATOM 3194 CD1 LEU B 219 −6.467 18.699 36.936 1.00 37.24 B C
    ATOM 3195 CD2 LEU B 219 −4.901 18.032 38.782 1.00 41.80 B C
    ATOM 3196 C LEU B 219 −1.821 18.982 36.552 1.00 42.76 B C
    ATOM 3197 O LEU B 219 −1.108 19.603 35.761 1.00 45.42 B O
    ATOM 3198 N LYS B 220 −1.846 17.663 36.593 1.00 41.24 B N
    ATOM 3199 CA LYS B 220 −1.169 16.914 35.556 1.00 42.17 B C
    ATOM 3200 CB LYS B 220 −0.670 15.590 36.110 1.00 40.03 B C
    ATOM 3201 CG LYS B 220 0.472 15.693 37.135 1.00 46.15 B C
    ATOM 3202 CD LYS B 220 1.435 14.475 37.057 1.00 53.99 B C
    ATOM 3203 CE LYS B 220 2.144 14.165 38.368 1.00 56.43 B C
    ATOM 3204 NZ LYS B 220 1.285 13.328 39.285 1.00 62.88 B N
    ATOM 3205 C LYS B 220 −2.245 16.717 34.480 1.00 46.84 B C
    ATOM 3206 O LYS B 220 −3.448 16.683 34.811 1.00 44.45 B O
    ATOM 3207 N GLU B 221 −1.848 16.639 33.204 1.00 43.21 B N
    ATOM 3208 CA GLU B 221 −2.829 16.369 32.153 1.00 37.91 B C
    ATOM 3209 CB GLU B 221 −2.249 16.485 30.733 1.00 42.50 B C
    ATOM 3210 CG GLU B 221 −3.320 16.757 29.669 1.00 51.31 B C
    ATOM 3211 CD GLU B 221 −2.817 16.628 28.238 1.00 58.55 B C
    ATOM 3212 OE1 GLU B 221 −3.634 16.511 27.284 1.00 54.22 B O
    ATOM 3213 OE2 GLU B 221 −1.588 16.651 28.058 1.00 68.04 B O
    ATOM 3214 C GLU B 221 −3.370 14.986 32.386 1.00 37.57 B C
    ATOM 3215 O GLU B 221 −4.433 14.627 31.867 1.00 46.72 B O
    ATOM 3216 N THR B 222 −2.652 14.194 33.176 1.00 31.96 B N
    ATOM 3217 CA THR B 222 −3.203 12.908 33.554 1.00 35.83 B C
    ATOM 3218 CB THR B 222 −2.117 11.873 33.864 1.00 40.54 B C
    ATOM 3219 OG1 THR B 222 −1.116 12.463 34.688 1.00 46.68 B O
    ATOM 3220 CG2 THR B 222 −1.331 11.529 32.615 1.00 42.02 B C
    ATOM 3221 C THR B 222 −4.240 13.027 34.663 1.00 36.10 B C
    ATOM 3222 O THR B 222 −4.816 12.036 35.064 1.00 41.48 B O
    ATOM 3223 N LYS B 223 −4.495 14.246 35.132 1.00 39.96 B N
    ATOM 3224 CA LYS B 223 −5.643 14.546 36.008 1.00 43.76 B C
    ATOM 3225 CB LYS B 223 −6.954 14.218 35.298 1.00 41.79 B C
    ATOM 3226 CG LYS B 223 −7.411 15.256 34.327 1.00 46.07 B C
    ATOM 3227 CD LYS B 223 −8.660 14.790 33.637 1.00 54.35 B C
    ATOM 3228 CE LYS B 223 −8.359 14.301 32.244 1.00 62.18 B C
    ATOM 3229 NZ LYS B 223 −9.324 14.941 31.302 1.00 74.28 B N
    ATOM 3230 C LYS B 223 −5.610 13.827 37.362 1.00 45.88 B C
    ATOM 3231 O LYS B 223 −6.627 13.747 38.078 1.00 46.67 B O
    ATOM 3232 N ASP B 224 −4.440 13.316 37.711 1.00 42.42 B N
    ATOM 3233 CA ASP B 224 −4.335 12.401 38.816 1.00 46.20 B C
    ATOM 3234 CB ASP B 224 −3.913 11.035 38.300 1.00 48.69 B C
    ATOM 3235 CG ASP B 224 −2.558 11.071 37.675 1.00 53.56 B C
    ATOM 3236 OD1 ASP B 224 −1.751 10.146 37.880 1.00 57.92 B O
    ATOM 3237 OD2 ASP B 224 −2.203 12.028 36.972 1.00 59.52 B O
    ATOM 3238 C ASP B 224 −3.293 12.916 39.773 1.00 49.82 B C
    ATOM 3239 O ASP B 224 −2.750 12.149 40.579 1.00 57.22 B O
    ATOM 3240 N GLY B 225 −2.995 14.207 39.682 1.00 45.94 B N
    ATOM 3241 CA GLY B 225 −2.039 14.799 40.595 1.00 44.41 B C
    ATOM 3242 C GLY B 225 −1.607 16.202 40.257 1.00 41.32 B C
    ATOM 3243 O GLY B 225 −1.470 16.567 39.093 1.00 37.54 B O
    ATOM 3244 N PHE B 226 −1.405 16.990 41.301 1.00 40.89 B N
    ATOM 3245 CA PHE B 226 −0.805 18.301 41.162 1.00 38.23 B C
    ATOM 3246 CB PHE B 226 −1.305 19.190 42.285 1.00 34.25 B C
    ATOM 3247 CG PHE B 226 −2.770 19.432 42.247 1.00 36.48 B C
    ATOM 3248 CD1 PHE B 226 −3.645 18.568 42.875 1.00 34.58 B C
    ATOM 3249 CE1 PHE B 226 −5.027 18.800 42.847 1.00 29.74 B C
    ATOM 3250 CZ PHE B 226 −5.532 19.891 42.187 1.00 29.66 B C
    ATOM 3251 CE2 PHE B 226 −4.677 20.759 41.537 1.00 36.03 B C
    ATOM 3252 CD2 PHE B 226 −3.292 20.529 41.571 1.00 40.84 B C
    ATOM 3253 C PHE B 226 0.724 18.201 41.225 1.00 38.49 B C
    ATOM 3254 O PHE B 226 1.272 17.294 41.883 1.00 43.61 B O
    ATOM 3255 N MET B 227 1.407 19.129 40.559 1.00 31.84 B N
    ATOM 3256 CA MET B 227 2.843 19.247 40.714 1.00 36.84 B C
    ATOM 3257 CB MET B 227 3.539 18.522 39.577 1.00 43.03 B C
    ATOM 3258 CG MET B 227 3.554 19.217 38.246 1.00 51.35 B C
    ATOM 3259 SD MET B 227 4.875 18.500 37.239 1.00 56.42 B S
    ATOM 3260 CE MET B 227 4.193 16.873 36.930 1.00 58.19 B C
    ATOM 3261 C MET B 227 3.372 20.680 40.906 1.00 40.56 B C
    ATOM 3262 O MET B 227 2.886 21.620 40.255 1.00 33.62 B O
    ATOM 3263 N PHE B 228 4.344 20.831 41.825 1.00 46.58 B N
    ATOM 3264 CA PHE B 228 5.021 22.119 42.060 1.00 47.51 B C
    ATOM 3265 CB PHE B 228 5.661 22.216 43.435 1.00 38.62 B C
    ATOM 3266 CG PHE B 228 4.692 22.332 44.543 1.00 37.82 B C
    ATOM 3267 CD1 PHE B 228 4.846 21.567 45.683 1.00 36.64 B C
    ATOM 3268 CE1 PHE B 228 3.963 21.652 46.709 1.00 41.22 B C
    ATOM 3269 CZ PHE B 228 2.888 22.515 46.617 1.00 46.15 B C
    ATOM 3270 CE2 PHE B 228 2.720 23.294 45.490 1.00 45.56 B C
    ATOM 3271 CD2 PHE B 228 3.624 23.197 44.456 1.00 42.25 B C
    ATOM 3272 C PHE B 228 6.137 22.183 41.075 1.00 56.71 B C
    ATOM 3273 O PHE B 228 6.926 21.243 40.998 1.00 58.54 B O
    ATOM 3274 N LEU B 229 6.223 23.287 40.337 1.00 62.47 B N
    ATOM 3275 CA LEU B 229 7.131 23.335 39.200 1.00 62.53 B C
    ATOM 3276 CB LEU B 229 6.693 24.393 38.200 1.00 69.25 B C
    ATOM 3277 CG LEU B 229 6.466 23.730 36.843 1.00 73.88 B C
    ATOM 3278 CD1 LEU B 229 4.989 23.436 36.553 1.00 71.88 B C
    ATOM 3279 CD2 LEU B 229 7.079 24.585 35.754 1.00 79.85 B C
    ATOM 3280 C LEU B 229 8.611 23.448 39.552 1.00 58.82 B C
    ATOM 3281 O LEU B 229 9.440 22.852 38.868 1.00 60.51 B O
    ATOM 3282 N THR B 230 8.928 24.226 40.590 1.00 54.11 B N
    ATOM 3283 CA THR B 230 10.273 24.310 41.166 1.00 56.90 B C
    ATOM 3284 CB THR B 230 11.124 25.377 40.502 1.00 56.66 B C
    ATOM 3285 OG1 THR B 230 10.567 26.667 40.800 1.00 56.72 B O
    ATOM 3286 CG2 THR B 230 11.095 25.267 38.981 1.00 57.50 B C
    ATOM 3287 C THR B 230 10.146 24.708 42.623 1.00 62.33 B C
    ATOM 3288 O THR B 230 9.046 25.052 43.066 1.00 64.63 B O
    ATOM 3289 N ASP B 231 11.272 24.705 43.352 1.00 62.30 B N
    ATOM 3290 CA ASP B 231 11.273 24.977 44.791 1.00 61.19 B C
    ATOM 3291 CB ASP B 231 12.584 24.512 45.455 1.00 68.70 B C
    ATOM 3292 CG ASP B 231 13.787 25.423 45.145 1.00 77.39 B C
    ATOM 3293 OD1 ASP B 231 14.765 25.428 45.942 1.00 76.12 B O
    ATOM 3294 OD2 ASP B 231 13.857 26.155 44.130 1.00 83.28 B O
    ATOM 3295 C ASP B 231 10.961 26.441 45.074 1.00 60.67 B C
    ATOM 3296 O ASP B 231 10.769 26.845 46.226 1.00 60.08 B O
    ATOM 3297 N GLN B 232 10.889 27.225 44.002 1.00 61.02 B N
    ATOM 3298 CA GLN B 232 10.543 28.635 44.084 1.00 63.06 B C
    ATOM 3299 CB GLN B 232 11.277 29.402 42.991 1.00 70.00 B C
    ATOM 3300 CG GLN B 232 12.295 30.405 43.507 1.00 80.47 B C
    ATOM 3301 CD GLN B 232 13.141 31.010 42.388 1.00 89.22 B C
    ATOM 3302 OE1 GLN B 232 12.682 31.123 41.238 1.00 92.67 B O
    ATOM 3303 NE2 GLN B 232 14.380 31.400 42.719 1.00 91.85 B N
    ATOM 3304 C GLN B 232 9.039 28.858 43.954 1.00 59.86 B C
    ATOM 3305 O GLN B 232 8.584 29.992 43.855 1.00 65.25 B O
    ATOM 3306 N SER B 233 8.271 27.774 43.958 1.00 54.46 B N
    ATOM 3307 CA SER B 233 6.841 27.840 43.706 1.00 46.84 B C
    ATOM 3308 CB SER B 233 6.379 26.632 42.892 1.00 50.64 B C
    ATOM 3309 OG SER B 233 7.127 26.481 41.699 1.00 53.85 B O
    ATOM 3310 C SER B 233 6.041 27.900 44.983 1.00 42.79 B C
    ATOM 3311 O SER B 233 4.824 27.930 44.933 1.00 46.51 B O
    ATOM 3312 N TYR B 234 6.702 27.884 46.131 1.00 40.06 B N
    ATOM 3313 CA TYR B 234 6.006 28.200 47.377 1.00 45.71 B C
    ATOM 3314 CB TYR B 234 5.705 26.967 48.225 1.00 48.88 B C
    ATOM 3315 CG TYR B 234 6.706 25.874 48.058 1.00 51.32 B C
    ATOM 3316 CD1 TYR B 234 7.882 25.852 48.797 1.00 48.29 B C
    ATOM 3317 CE1 TYR B 234 8.813 24.826 48.628 1.00 49.61 B C
    ATOM 3318 CZ TYR B 234 8.560 23.827 47.707 1.00 52.52 B C
    ATOM 3319 OH TYR B 234 9.439 22.802 47.494 1.00 53.66 B O
    ATOM 3320 CE2 TYR B 234 7.397 23.837 46.964 1.00 57.47 B C
    ATOM 3321 CD2 TYR B 234 6.479 24.854 47.142 1.00 55.92 B C
    ATOM 3322 C TYR B 234 6.832 29.142 48.196 1.00 46.38 B C
    ATOM 3323 O TYR B 234 8.058 29.132 48.098 1.00 49.19 B O
    ATOM 3324 N ILE B 235 6.145 29.957 48.990 1.00 43.14 B N
    ATOM 3325 CA ILE B 235 6.781 30.758 50.019 1.00 44.98 B C
    ATOM 3326 CB ILE B 235 6.577 32.254 49.738 1.00 42.96 B C
    ATOM 3327 CG1 ILE B 235 7.321 32.660 48.458 1.00 41.25 B C
    ATOM 3328 CD1 ILE B 235 6.708 33.807 47.709 1.00 39.31 B C
    ATOM 3329 CG2 ILE B 235 6.989 33.094 50.953 1.00 39.46 B C
    ATOM 3330 C ILE B 235 6.146 30.368 51.337 1.00 49.83 B C
    ATOM 3331 O ILE B 235 4.916 30.407 51.474 1.00 54.64 B O
    ATOM 3332 N ASP B 236 6.971 29.990 52.306 1.00 49.31 B N
    ATOM 3333 CA ASP B 236 6.438 29.503 53.575 1.00 52.33 B C
    ATOM 3334 CB ASP B 236 6.869 28.058 53.785 1.00 57.78 B C
    ATOM 3335 CG ASP B 236 5.985 27.079 53.061 1.00 63.72 B C
    ATOM 3336 OD1 ASP B 236 6.243 25.860 53.159 1.00 66.98 B O
    ATOM 3337 OD2 ASP B 236 5.008 27.433 52.375 1.00 67.67 B O
    ATOM 3338 C ASP B 236 6.856 30.311 54.789 1.00 51.93 B C
    ATOM 3339 O ASP B 236 8.025 30.657 54.933 1.00 57.61 B O
    ATOM 3340 N VAL B 237 5.908 30.591 55.677 1.00 48.39 B N
    ATOM 3341 CA VAL B 237 6.255 31.044 57.029 1.00 45.95 B C
    ATOM 3342 CB VAL B 237 5.010 31.037 57.967 1.00 41.63 B C
    ATOM 3343 CG1 VAL B 237 5.405 31.113 59.418 1.00 35.80 B C
    ATOM 3344 CG2 VAL B 237 4.094 32.180 57.629 1.00 41.77 B C
    ATOM 3345 C VAL B 237 7.380 30.148 57.596 1.00 44.14 B C
    ATOM 3346 O VAL B 237 7.327 28.918 57.478 1.00 42.65 B O
    ATOM 3347 N LEU B 238 8.407 30.769 58.172 1.00 42.83 B N
    ATOM 3348 CA LEU B 238 9.515 30.015 58.751 1.00 43.08 B C
    ATOM 3349 CB LEU B 238 10.627 30.946 59.237 1.00 40.25 B C
    ATOM 3350 CG LEU B 238 11.641 31.454 58.215 1.00 41.13 B C
    ATOM 3351 CD1 LEU B 238 12.642 32.352 58.880 1.00 40.12 B C
    ATOM 3352 CD2 LEU B 238 12.369 30.309 57.517 1.00 45.90 B C
    ATOM 3353 C LEU B 238 9.026 29.143 59.902 1.00 46.38 B C
    ATOM 3354 O LEU B 238 8.185 29.575 60.692 1.00 51.15 B O
    ATOM 3355 N PRO B 239 9.538 27.917 59.988 1.00 46.41 B N
    ATOM 3356 CA PRO B 239 9.187 26.993 61.070 1.00 48.37 B C
    ATOM 3357 CB PRO B 239 10.328 25.986 61.028 1.00 47.70 B C
    ATOM 3358 CG PRO B 239 10.751 25.957 59.600 1.00 44.52 B C
    ATOM 3359 CD PRO B 239 10.486 27.307 59.039 1.00 45.44 B C
    ATOM 3360 C PRO B 239 9.108 27.648 62.457 1.00 51.15 B C
    ATOM 3361 O PRO B 239 8.221 27.305 63.234 1.00 51.28 B O
    ATOM 3362 N GLU B 240 10.006 28.586 62.741 1.00 54.22 B N
    ATOM 3363 CA GLU B 240 10.055 29.271 64.035 1.00 59.88 B C
    ATOM 3364 CB GLU B 240 11.323 30.137 64.140 1.00 67.63 B C
    ATOM 3365 CG GLU B 240 12.212 30.100 62.893 1.00 73.77 B C
    ATOM 3366 CD GLU B 240 13.507 30.897 63.023 1.00 76.92 B C
    ATOM 3367 OE1 GLU B 240 13.725 31.559 64.076 1.00 78.28 B O
    ATOM 3368 OE2 GLU B 240 14.308 30.854 62.054 1.00 75.94 B O
    ATOM 3369 C GLU B 240 8.813 30.117 64.334 1.00 57.36 B C
    ATOM 3370 O GLU B 240 8.355 30.166 65.481 1.00 57.03 B O
    ATOM 3371 N PHE B 241 8.276 30.773 63.306 1.00 53.58 B N
    ATOM 3372 CA PHE B 241 7.129 31.678 63.472 1.00 52.07 B C
    ATOM 3373 CB PHE B 241 7.345 32.976 62.693 1.00 52.16 B C
    ATOM 3374 CG PHE B 241 8.762 33.443 62.690 1.00 52.22 B C
    ATOM 3375 CD1 PHE B 241 9.564 33.243 61.581 1.00 50.50 B C
    ATOM 3376 CE1 PHE B 241 10.875 33.671 61.569 1.00 51.40 B C
    ATOM 3377 CZ PHE B 241 11.410 34.298 62.679 1.00 54.59 B C
    ATOM 3378 CE2 PHE B 241 10.620 34.500 63.804 1.00 55.99 B C
    ATOM 3379 CD2 PHE B 241 9.300 34.071 63.803 1.00 54.67 B C
    ATOM 3380 C PHE B 241 5.787 31.062 63.090 1.00 48.67 B C
    ATOM 3381 O PHE B 241 4.731 31.679 63.293 1.00 45.77 B O
    ATOM 3382 N ARG B 242 5.852 29.844 62.550 1.00 48.21 B N
    ATOM 3383 CA ARG B 242 4.694 29.048 62.135 1.00 50.12 B C
    ATOM 3384 CB ARG B 242 5.146 27.617 61.852 1.00 49.18 B C
    ATOM 3385 CG ARG B 242 4.870 27.113 60.463 1.00 48.17 B C
    ATOM 3386 CD ARG B 242 5.936 26.151 59.964 1.00 48.47 B C
    ATOM 3387 NE ARG B 242 6.231 26.331 58.546 1.00 47.70 B N
    ATOM 3388 CZ ARG B 242 7.220 25.726 57.902 1.00 49.41 B C
    ATOM 3389 NH1 ARG B 242 8.036 24.893 58.542 1.00 48.09 B N
    ATOM 3390 NH2 ARG B 242 7.397 25.956 56.608 1.00 51.25 B N
    ATOM 3391 C ARG B 242 3.557 29.021 63.158 1.00 52.31 B C
    ATOM 3392 O ARG B 242 2.426 28.663 62.831 1.00 55.05 B O
    ATOM 3393 N ASP B 243 3.876 29.382 64.394 1.00 53.59 B N
    ATOM 3394 CA ASP B 243 2.893 29.471 65.458 1.00 56.95 B C
    ATOM 3395 CB ASP B 243 3.286 28.560 66.632 1.00 56.30 B C
    ATOM 3396 CG ASP B 243 2.700 27.157 66.520 1.00 55.00 B C
    ATOM 3397 OD1 ASP B 243 1.457 27.031 66.439 1.00 56.52 B O
    ATOM 3398 OD2 ASP B 243 3.403 26.122 66.525 1.00 51.18 B O
    ATOM 3399 C ASP B 243 2.789 30.924 65.914 1.00 59.72 B C
    ATOM 3400 O ASP B 243 1.684 31.461 65.989 1.00 55.22 B O
    ATOM 3401 N SER B 244 3.951 31.541 66.185 1.00 66.19 B N
    ATOM 3402 CA SER B 244 4.089 32.898 66.761 1.00 68.87 B C
    ATOM 3403 CB SER B 244 5.300 33.633 66.167 1.00 70.26 B C
    ATOM 3404 OG SER B 244 6.500 32.916 66.410 1.00 70.08 B O
    ATOM 3405 C SER B 244 2.821 33.713 66.583 1.00 67.72 B C
    ATOM 3406 O SER B 244 2.127 34.020 67.556 1.00 72.14 B O
    ATOM 3407 N TYR B 245 2.545 34.082 65.340 1.00 62.87 B N
    ATOM 3408 CA TYR B 245 1.158 34.146 64.880 1.00 62.23 B C
    ATOM 3409 CB TYR B 245 0.174 34.918 65.820 1.00 64.16 B C
    ATOM 3410 CG TYR B 245 0.485 36.342 66.238 1.00 65.78 B C
    ATOM 3411 CD1 TYR B 245 0.083 36.798 67.486 1.00 67.36 B C
    ATOM 3412 CE1 TYR B 245 0.324 38.092 67.881 1.00 70.36 B C
    ATOM 3413 CZ TYR B 245 0.962 38.960 67.014 1.00 71.24 B C
    ATOM 3414 OH TYR B 245 1.202 40.246 67.422 1.00 75.50 B O
    ATOM 3415 CE2 TYR B 245 1.356 38.549 65.758 1.00 67.14 B C
    ATOM 3416 CD2 TYR B 245 1.112 37.247 65.376 1.00 67.51 B C
    ATOM 3417 C TYR B 245 0.912 34.247 63.344 1.00 54.35 B C
    ATOM 3418 O TYR B 245 1.823 34.500 62.555 1.00 51.13 B O
    ATOM 3419 N PRO B 246 −0.313 33.978 62.933 1.00 46.72 B N
    ATOM 3420 CA PRO B 246 −0.530 33.443 61.613 1.00 47.43 B C
    ATOM 3421 CB PRO B 246 −1.565 32.361 61.902 1.00 50.33 B C
    ATOM 3422 CG PRO B 246 −2.277 32.831 63.208 1.00 46.80 B C
    ATOM 3423 CD PRO B 246 −1.590 34.091 63.654 1.00 46.95 B C
    ATOM 3424 C PRO B 246 −1.074 34.470 60.626 1.00 46.80 B C
    ATOM 3425 O PRO B 246 −1.158 35.675 60.968 1.00 47.31 B O
    ATOM 3426 N ILE B 247 −1.436 33.959 59.436 1.00 38.47 B N
    ATOM 3427 CA ILE B 247 −1.840 34.741 58.278 1.00 36.07 B C
    ATOM 3428 CB ILE B 247 −0.774 34.623 57.179 1.00 35.40 B C
    ATOM 3429 CG1 ILE B 247 0.612 34.986 57.710 1.00 34.70 B C
    ATOM 3430 CD1 ILE B 247 1.738 34.674 56.747 1.00 36.11 B C
    ATOM 3431 CG2 ILE B 247 −1.127 35.506 55.990 1.00 37.67 B C
    ATOM 3432 C ILE B 247 −3.187 34.279 57.717 1.00 39.08 B C
    ATOM 3433 O ILE B 247 −3.243 33.338 56.941 1.00 42.52 B O
    ATOM 3434 N LYS B 248 −4.269 34.949 58.097 1.00 41.51 B N
    ATOM 3435 CA LYS B 248 −5.576 34.640 57.539 1.00 47.33 B C
    ATOM 3436 CB LYS B 248 −6.707 35.325 58.344 1.00 54.93 B C
    ATOM 3437 CG LYS B 248 −7.774 34.372 58.969 1.00 62.42 B C
    ATOM 3438 CD LYS B 248 −7.130 33.130 59.696 1.00 65.56 B C
    ATOM 3439 CE LYS B 248 −7.609 32.961 61.161 1.00 67.44 B C
    ATOM 3440 NZ LYS B 248 −6.536 33.198 62.185 1.00 66.17 B N
    ATOM 3441 C LYS B 248 −5.594 35.099 56.086 1.00 47.12 B C
    ATOM 3442 O LYS B 248 −5.103 36.186 55.770 1.00 50.24 B O
    ATOM 3443 N TYR B 249 −6.146 34.271 55.204 1.00 44.18 B N
    ATOM 3444 CA TYR B 249 −6.320 34.666 53.807 1.00 41.12 B C
    ATOM 3445 CB TYR B 249 −5.694 33.610 52.873 1.00 39.51 B C
    ATOM 3446 CG TYR B 249 −4.179 33.494 53.061 1.00 39.99 B C
    ATOM 3447 CD1 TYR B 249 −3.623 32.520 53.899 1.00 39.32 B C
    ATOM 3448 CE1 TYR B 249 −2.252 32.420 54.084 1.00 37.22 B C
    ATOM 3449 CZ TYR B 249 −1.414 33.310 53.445 1.00 40.31 B C
    ATOM 3450 OH TYR B 249 −0.041 33.235 53.623 1.00 39.21 B O
    ATOM 3451 CE2 TYR B 249 −1.944 34.294 52.624 1.00 40.32 B C
    ATOM 3452 CD2 TYR B 249 −3.313 34.377 52.433 1.00 38.21 B C
    ATOM 3453 C TYR B 249 −7.797 34.965 53.497 1.00 41.07 B C
    ATOM 3454 O TYR B 249 −8.624 34.065 53.431 1.00 46.67 B O
    ATOM 3455 N VAL B 250 −8.132 36.237 53.330 1.00 40.04 B N
    ATOM 3456 CA VAL B 250 −9.531 36.646 53.156 1.00 41.00 B C
    ATOM 3457 CB VAL B 250 −9.740 38.102 53.563 1.00 39.09 B C
    ATOM 3458 CG1 VAL B 250 −11.214 38.394 53.745 1.00 39.71 B C
    ATOM 3459 CG2 VAL B 250 −9.000 38.388 54.839 1.00 44.78 B C
    ATOM 3460 C VAL B 250 −10.049 36.496 51.726 1.00 42.79 B C
    ATOM 3461 O VAL B 250 −11.206 36.126 51.501 1.00 44.52 B O
    ATOM 3462 N HIS B 251 −9.199 36.804 50.760 1.00 40.74 B N
    ATOM 3463 CA HIS B 251 −9.636 36.852 49.386 1.00 41.24 B C
    ATOM 3464 CB HIS B 251 −10.375 38.164 49.135 1.00 41.80 B C
    ATOM 3465 CG HIS B 251 −11.170 38.176 47.874 1.00 43.37 B C
    ATOM 3466 ND1 HIS B 251 −11.037 39.164 46.925 1.00 46.38 B N
    ATOM 3467 CE1 HIS B 251 −11.859 38.925 45.919 1.00 50.12 B C
    ATOM 3468 NE2 HIS B 251 −12.518 37.812 46.183 1.00 52.95 B N
    ATOM 3469 CD2 HIS B 251 −12.103 37.322 47.398 1.00 47.36 B C
    ATOM 3470 C HIS B 251 −8.459 36.747 48.444 1.00 42.18 B C
    ATOM 3471 O HIS B 251 −7.345 37.159 48.776 1.00 40.54 B O
    ATOM 3472 N ALA B 252 −8.713 36.184 47.268 1.00 42.50 B N
    ATOM 3473 CA ALA B 252 −7.744 36.220 46.184 1.00 39.62 B C
    ATOM 3474 CB ALA B 252 −6.959 34.920 46.122 1.00 34.04 B C
    ATOM 3475 C ALA B 252 −8.460 36.489 44.872 1.00 38.17 B C
    ATOM 3476 O ALA B 252 −9.628 36.158 44.727 1.00 40.85 B O
    ATOM 3477 N PHE B 253 −7.758 37.102 43.927 1.00 37.56 B N
    ATOM 3478 CA PHE B 253 −8.280 37.319 42.583 1.00 37.97 B C
    ATOM 3479 CB PHE B 253 −9.274 38.467 42.593 1.00 39.09 B C
    ATOM 3480 CG PHE B 253 −8.661 39.775 42.991 1.00 37.16 B C
    ATOM 3481 CD1 PHE B 253 −8.132 40.634 42.024 1.00 35.82 B C
    ATOM 3482 CE1 PHE B 253 −7.548 41.831 42.382 1.00 34.32 B C
    ATOM 3483 CZ PHE B 253 −7.481 42.184 43.711 1.00 35.35 B C
    ATOM 3484 CE2 PHE B 253 −8.002 41.333 44.688 1.00 35.47 B C
    ATOM 3485 CD2 PHE B 253 −8.585 40.137 44.325 1.00 35.03 B C
    ATOM 3486 C PHE B 253 −7.155 37.627 41.590 1.00 40.06 B C
    ATOM 3487 O PHE B 253 −6.099 38.144 41.954 1.00 38.73 B O
    ATOM 3488 N GLU B 254 −7.405 37.317 40.329 1.00 44.48 B N
    ATOM 3489 CA GLU B 254 −6.440 37.554 39.273 1.00 48.19 B C
    ATOM 3490 CB GLU B 254 −6.511 36.392 38.295 1.00 56.38 B C
    ATOM 3491 CG GLU B 254 −5.384 36.257 37.277 1.00 60.98 B C
    ATOM 3492 CD GLU B 254 −5.461 34.907 36.578 1.00 66.37 B C
    ATOM 3493 OE1 GLU B 254 −6.409 34.140 36.883 1.00 68.84 B O
    ATOM 3494 OE2 GLU B 254 −4.587 34.597 35.737 1.00 69.66 B O
    ATOM 3495 C GLU B 254 −6.909 38.781 38.573 1.00 44.37 B C
    ATOM 3496 O GLU B 254 −8.077 38.886 38.300 1.00 49.37 B O
    ATOM 3497 N SER B 255 −6.017 39.711 38.278 1.00 46.27 B N
    ATOM 3498 CA SER B 255 −6.357 40.842 37.418 1.00 53.56 B C
    ATOM 3499 CB SER B 255 −7.166 41.910 38.164 1.00 52.55 B C
    ATOM 3500 OG SER B 255 −6.783 43.221 37.762 1.00 47.80 B O
    ATOM 3501 C SER B 255 −5.106 41.472 36.856 1.00 62.94 B C
    ATOM 3502 O SER B 255 −4.139 41.714 37.592 1.00 64.63 B O
    ATOM 3503 N ASN B 256 −5.146 41.749 35.552 1.00 71.08 B N
    ATOM 3504 CA ASN B 256 −4.093 42.499 34.861 1.00 75.79 B C
    ATOM 3505 CB ASN B 256 −3.778 43.816 35.594 1.00 82.60 B C
    ATOM 3506 CG ASN B 256 −4.344 45.022 34.884 1.00 89.10 B C
    ATOM 3507 OD1 ASN B 256 −4.107 45.224 33.691 1.00 92.54 B O
    ATOM 3508 ND2 ASN B 256 −5.106 45.832 35.610 1.00 91.19 B N
    ATOM 3509 C ASN B 256 −2.816 41.706 34.685 1.00 70.33 B C
    ATOM 3510 O ASN B 256 −1.765 42.279 34.421 1.00 70.32 B O
    ATOM 3511 N ASN B 257 −2.916 40.393 34.846 1.00 66.90 B N
    ATOM 3512 CA ASN B 257 −1.759 39.509 34.750 1.00 72.76 B C
    ATOM 3513 CB ASN B 257 −0.871 39.894 33.564 1.00 82.20 B C
    ATOM 3514 CG ASN B 257 −1.003 38.933 32.403 1.00 89.28 B C
    ATOM 3515 OD1 ASN B 257 −1.889 38.062 32.383 1.00 91.61 B O
    ATOM 3516 ND2 ASN B 257 −0.113 39.079 31.424 1.00 91.54 B N
    ATOM 3517 C ASN B 257 −0.922 39.327 36.029 1.00 66.57 B C
    ATOM 3518 O ASN B 257 0.134 38.689 36.001 1.00 65.77 B O
    ATOM 3519 N PHE B 258 −1.406 39.874 37.140 1.00 59.48 B N
    ATOM 3520 CA PHE B 258 −0.951 39.446 38.457 1.00 53.56 B C
    ATOM 3521 CB PHE B 258 −0.515 40.635 39.283 1.00 56.13 B C
    ATOM 3522 CG PHE B 258 0.517 41.470 38.623 1.00 62.69 B C
    ATOM 3523 CD1 PHE B 258 0.176 42.684 38.044 1.00 67.09 B C
    ATOM 3524 CE1 PHE B 258 1.135 43.480 37.424 1.00 67.82 B C
    ATOM 3525 CZ PHE B 258 2.443 43.061 37.384 1.00 68.92 B C
    ATOM 3526 CE2 PHE B 258 2.798 41.841 37.965 1.00 69.58 B C
    ATOM 3527 CD2 PHE B 258 1.834 41.055 38.579 1.00 66.62 B C
    ATOM 3528 C PHE B 258 −2.018 38.648 39.221 1.00 48.68 B C
    ATOM 3529 O PHE B 258 −3.206 38.672 38.896 1.00 48.22 B O
    ATOM 3530 N ILE B 259 −1.573 37.912 40.224 1.00 40.91 B N
    ATOM 3531 CA ILE B 259 −2.485 37.301 41.153 1.00 39.53 B C
    ATOM 3532 CB ILE B 259 −2.055 35.890 41.478 1.00 40.17 B C
    ATOM 3533 CG1 ILE B 259 −1.652 35.134 40.209 1.00 39.96 B C
    ATOM 3534 CD1 ILE B 259 −2.786 34.790 39.319 1.00 45.11 B C
    ATOM 3535 CG2 ILE B 259 −3.134 35.196 42.289 1.00 40.75 B C
    ATOM 3536 C ILE B 259 −2.386 38.128 42.408 1.00 44.07 B C
    ATOM 3537 O ILE B 259 −1.284 38.523 42.817 1.00 47.98 B O
    ATOM 3538 N TYR B 260 −3.533 38.385 43.026 1.00 42.44 B N
    ATOM 3539 CA TYR B 260 −3.574 39.155 44.257 1.00 39.09 B C
    ATOM 3540 CB TYR B 260 −4.389 40.432 44.059 1.00 38.57 B C
    ATOM 3541 CG TYR B 260 −3.826 41.372 43.025 1.00 37.97 B C
    ATOM 3542 CD1 TYR B 260 −4.002 41.132 41.668 1.00 39.75 B C
    ATOM 3543 CE1 TYR B 260 −3.479 41.993 40.708 1.00 38.56 B C
    ATOM 3544 CZ TYR B 260 −2.785 43.113 41.109 1.00 39.14 B C
    ATOM 3545 OH TYR B 260 −2.280 43.967 40.159 1.00 45.15 B O
    ATOM 3546 CE2 TYR B 260 −2.603 43.378 42.448 1.00 36.98 B C
    ATOM 3547 CD2 TYR B 260 −3.119 42.503 43.399 1.00 37.90 B C
    ATOM 3548 C TYR B 260 −4.162 38.337 45.398 1.00 36.34 B C
    ATOM 3549 O TYR B 260 −5.162 37.643 45.234 1.00 35.00 B O
    ATOM 3550 N PHE B 261 −3.536 38.421 46.559 1.00 33.91 B N
    ATOM 3551 CA PHE B 261 −4.176 37.919 47.754 1.00 34.52 B C
    ATOM 3552 CB PHE B 261 −3.360 36.804 48.363 1.00 32.25 B C
    ATOM 3553 CG PHE B 261 −3.601 35.472 47.728 1.00 32.31 B C
    ATOM 3554 CD1 PHE B 261 −3.017 35.153 46.506 1.00 32.46 B C
    ATOM 3555 CE1 PHE B 261 −3.226 33.916 45.917 1.00 28.63 B C
    ATOM 3556 CZ PHE B 261 −4.024 32.996 46.539 1.00 26.50 B C
    ATOM 3557 CE2 PHE B 261 −4.615 33.299 47.759 1.00 29.46 B C
    ATOM 3558 CD2 PHE B 261 −4.403 34.532 48.349 1.00 30.29 B C
    ATOM 3559 C PHE B 261 −4.442 39.011 48.771 1.00 38.12 B C
    ATOM 3560 O PHE B 261 −3.664 39.958 48.914 1.00 39.60 B O
    ATOM 3561 N LEU B 262 −5.571 38.883 49.457 1.00 39.87 B N
    ATOM 3562 CA LEU B 262 −5.890 39.764 50.566 1.00 40.14 B C
    ATOM 3563 CB LEU B 262 −7.258 40.378 50.377 1.00 42.28 B C
    ATOM 3564 CG LEU B 262 −7.193 41.526 49.367 1.00 44.27 B C
    ATOM 3565 CD1 LEU B 262 −8.595 42.027 49.064 1.00 41.80 B C
    ATOM 3566 CD2 LEU B 262 −6.289 42.667 49.862 1.00 44.80 B C
    ATOM 3567 C LEU B 262 −5.759 39.050 51.904 1.00 39.04 B C
    ATOM 3568 O LEU B 262 −6.107 37.879 52.049 1.00 37.11 B O
    ATOM 3569 N THR B 263 −5.226 39.760 52.883 1.00 40.23 B N
    ATOM 3570 CA THR B 263 −4.630 39.078 54.013 1.00 38.36 B C
    ATOM 3571 CB THR B 263 −3.201 38.746 53.650 1.00 36.92 B C
    ATOM 3572 OG1 THR B 263 −2.786 37.650 54.448 1.00 46.37 B O
    ATOM 3573 CG2 THR B 263 −2.249 39.871 54.055 1.00 32.81 B C
    ATOM 3574 C THR B 263 −4.693 39.833 55.338 1.00 38.68 B C
    ATOM 3575 O THR B 263 −4.705 41.067 55.356 1.00 42.54 B O
    ATOM 3576 N VAL B 264 −4.738 39.092 56.440 1.00 35.16 B N
    ATOM 3577 CA VAL B 264 −4.763 39.707 57.768 1.00 37.34 B C
    ATOM 3578 CB VAL B 264 −6.172 39.626 58.415 1.00 33.52 B C
    ATOM 3579 CG1 VAL B 264 −6.117 39.809 59.939 1.00 23.23 B C
    ATOM 3580 CG2 VAL B 264 −7.112 40.650 57.769 1.00 33.16 B C
    ATOM 3581 C VAL B 264 −3.695 39.080 58.654 1.00 41.03 B C
    ATOM 3582 O VAL B 264 −3.749 37.883 58.932 1.00 43.04 B O
    ATOM 3583 N GLN B 265 −2.724 39.892 59.083 1.00 43.99 B N
    ATOM 3584 CA GLN B 265 −1.511 39.378 59.723 1.00 46.02 B C
    ATOM 3585 CB GLN B 265 −0.705 38.512 58.739 1.00 45.87 B C
    ATOM 3586 CG GLN B 265 −0.727 38.986 57.265 1.00 46.68 B C
    ATOM 3587 CD GLN B 265 0.663 39.172 56.658 1.00 47.96 B C
    ATOM 3588 OE1 GLN B 265 1.650 39.339 57.385 1.00 54.67 B O
    ATOM 3589 NE2 GLN B 265 0.740 39.157 55.328 1.00 41.34 B N
    ATOM 3590 C GLN B 265 −0.573 40.442 60.261 1.00 49.72 B C
    ATOM 3591 O GLN B 265 −0.152 41.324 59.517 1.00 49.81 B O
    ATOM 3592 N ARG B 266 −0.283 40.345 61.565 1.00 56.89 B N
    ATOM 3593 CA ARG B 266 0.990 40.764 62.207 1.00 56.47 B C
    ATOM 3594 CB ARG B 266 1.979 39.575 62.168 1.00 58.34 B C
    ATOM 3595 CG ARG B 266 2.075 38.835 60.766 1.00 55.22 B C
    ATOM 3596 CD ARG B 266 3.450 38.296 60.372 1.00 49.40 B C
    ATOM 3597 NE ARG B 266 3.966 37.380 61.392 1.00 47.15 B N
    ATOM 3598 CZ ARG B 266 3.725 36.070 61.436 1.00 47.63 B C
    ATOM 3599 NH1 ARG B 266 2.974 35.488 60.506 1.00 48.62 B N
    ATOM 3600 NH2 ARG B 266 4.244 35.331 62.415 1.00 45.83 B N
    ATOM 3601 C ARG B 266 1.700 41.995 61.636 1.00 56.19 B C
    ATOM 3602 O ARG B 266 2.615 41.853 60.819 1.00 60.41 B O
    ATOM 3603 N GLU B 267 1.307 43.194 62.055 1.00 52.91 B N
    ATOM 3604 CA GLU B 267 1.960 44.403 61.549 1.00 52.98 B C
    ATOM 3605 CB GLU B 267 1.706 45.578 62.484 1.00 56.71 B C
    ATOM 3606 CG GLU B 267 1.691 46.934 61.805 1.00 58.19 B C
    ATOM 3607 CD GLU B 267 0.987 47.961 62.657 1.00 59.65 B C
    ATOM 3608 OE1 GLU B 267 −0.256 48.072 62.543 1.00 58.53 B O
    ATOM 3609 OE2 GLU B 267 1.675 48.636 63.456 1.00 61.07 B O
    ATOM 3610 C GLU B 267 3.460 44.152 61.410 1.00 51.15 B C
    ATOM 3611 O GLU B 267 4.090 44.565 60.435 1.00 46.09 B O
    ATOM 3612 N THR B 268 4.005 43.481 62.421 1.00 54.84 B N
    ATOM 3613 CA THR B 268 5.303 42.813 62.358 1.00 62.31 B C
    ATOM 3614 CB THR B 268 6.458 43.752 62.743 1.00 64.85 B C
    ATOM 3615 OG1 THR B 268 5.939 44.927 63.383 1.00 65.50 B O
    ATOM 3616 CG2 THR B 268 7.146 44.279 61.483 1.00 66.37 B C
    ATOM 3617 C THR B 268 5.263 41.587 63.275 1.00 64.01 B C
    ATOM 3618 O THR B 268 4.324 41.435 64.065 1.00 67.03 B O
    ATOM 3619 N LEU B 269 6.259 40.710 63.160 1.00 60.92 B N
    ATOM 3620 CA LEU B 269 6.266 39.470 63.929 1.00 60.85 B C
    ATOM 3621 CB LEU B 269 7.294 38.473 63.395 1.00 61.11 B C
    ATOM 3622 CG LEU B 269 8.696 38.888 62.946 1.00 62.75 B C
    ATOM 3623 CD1 LEU B 269 9.146 37.935 61.854 1.00 61.57 B C
    ATOM 3624 CD2 LEU B 269 8.792 40.346 62.475 1.00 63.50 B C
    ATOM 3625 C LEU B 269 6.490 39.772 65.397 1.00 63.03 B C
    ATOM 3626 O LEU B 269 7.050 40.821 65.733 1.00 65.56 B O
    ATOM 3627 N ASP B 270 6.046 38.851 66.256 1.00 64.16 B N
    ATOM 3628 CA ASP B 270 5.834 39.100 67.702 1.00 64.38 B C
    ATOM 3629 CB ASP B 270 6.965 38.532 68.616 1.00 63.72 B C
    ATOM 3630 CG ASP B 270 8.367 39.029 68.250 1.00 61.18 B C
    ATOM 3631 OD1 ASP B 270 8.591 40.254 68.181 1.00 59.90 B O
    ATOM 3632 OD2 ASP B 270 9.322 38.249 68.048 1.00 59.89 B O
    ATOM 3633 C ASP B 270 5.451 40.538 68.070 1.00 61.42 B C
    ATOM 3634 O ASP B 270 5.716 40.999 69.187 1.00 62.01 B O
    ATOM 3635 N ALA B 271 4.806 41.225 67.127 1.00 56.80 B N
    ATOM 3636 CA ALA B 271 4.461 42.626 67.293 1.00 55.54 B C
    ATOM 3637 CB ALA B 271 5.014 43.451 66.146 1.00 53.22 B C
    ATOM 3638 C ALA B 271 2.961 42.858 67.467 1.00 56.34 B C
    ATOM 3639 O ALA B 271 2.306 43.436 66.599 1.00 55.44 B O
    ATOM 3640 N GLN B 272 2.437 42.365 68.590 1.00 58.23 B N
    ATOM 3641 CA GLN B 272 1.131 42.749 69.154 1.00 60.29 B C
    ATOM 3642 CB GLN B 272 1.311 43.941 70.109 1.00 62.16 B C
    ATOM 3643 CG GLN B 272 2.416 43.749 71.142 1.00 66.34 B C
    ATOM 3644 CD GLN B 272 1.937 43.049 72.408 1.00 68.87 B C
    ATOM 3645 OE1 GLN B 272 1.965 43.634 73.500 1.00 67.92 B O
    ATOM 3646 NE2 GLN B 272 1.506 41.793 72.269 1.00 69.10 B N
    ATOM 3647 C GLN B 272 −0.061 43.009 68.206 1.00 58.84 B C
    ATOM 3648 O GLN B 272 −1.054 42.277 68.252 1.00 57.37 B O
    ATOM 3649 N THR B 273 0.049 44.044 67.368 1.00 57.66 B N
    ATOM 3650 CA THR B 273 −1.083 44.609 66.621 1.00 56.42 B C
    ATOM 3651 CB THR B 273 −1.024 46.172 66.636 1.00 57.29 B C
    ATOM 3652 OG1 THR B 273 −1.629 46.695 65.447 1.00 61.32 B O
    ATOM 3653 CG2 THR B 273 0.415 46.685 66.545 1.00 55.99 B C
    ATOM 3654 C THR B 273 −1.246 44.077 65.186 1.00 53.53 B C
    ATOM 3655 O THR B 273 −0.263 43.824 64.494 1.00 50.75 B O
    ATOM 3656 N PHE B 274 −2.503 43.944 64.751 1.00 52.92 B N
    ATOM 3657 CA PHE B 274 −2.839 43.377 63.438 1.00 51.47 B C
    ATOM 3658 CB PHE B 274 −3.888 42.275 63.569 1.00 46.97 B C
    ATOM 3659 CG PHE B 274 −3.333 40.979 64.073 1.00 42.64 B C
    ATOM 3660 CD1 PHE B 274 −2.904 40.855 65.390 1.00 39.44 B C
    ATOM 3661 CE1 PHE B 274 −2.388 39.657 65.869 1.00 37.37 B C
    ATOM 3662 CZ PHE B 274 −2.300 38.570 65.043 1.00 37.12 B C
    ATOM 3663 CE2 PHE B 274 −2.732 38.671 63.717 1.00 42.55 B C
    ATOM 3664 CD2 PHE B 274 −3.237 39.880 63.237 1.00 42.40 B C
    ATOM 3665 C PHE B 274 −3.232 44.419 62.374 1.00 53.87 B C
    ATOM 3666 O PHE B 274 −3.213 45.628 62.654 1.00 57.55 B O
    ATOM 3667 N HIS B 275 −3.637 43.940 61.189 1.00 49.35 B N
    ATOM 3668 CA HIS B 275 −3.129 44.498 59.942 1.00 44.95 B C
    ATOM 3669 CB HIS B 275 −1.634 44.213 60.011 1.00 49.77 B C
    ATOM 3670 CG HIS B 275 −0.802 44.995 59.060 1.00 54.02 B C
    ATOM 3671 ND1 HIS B 275 −1.104 46.287 58.691 1.00 56.86 B N
    ATOM 3672 CE1 HIS B 275 −0.177 46.724 57.857 1.00 59.62 B C
    ATOM 3673 NE2 HIS B 275 0.712 45.762 57.676 1.00 58.82 B N
    ATOM 3674 CD2 HIS B 275 0.349 44.673 58.425 1.00 54.88 B C
    ATOM 3675 C HIS B 275 −3.663 43.778 58.699 1.00 44.44 B C
    ATOM 3676 O HIS B 275 −3.753 42.552 58.678 1.00 44.99 B O
    ATOM 3677 N THR B 276 −3.975 44.528 57.644 1.00 42.61 B N
    ATOM 3678 CA THR B 276 −4.378 43.933 56.358 1.00 38.29 B C
    ATOM 3679 CB THR B 276 −5.746 44.500 55.911 1.00 35.81 B C
    ATOM 3680 OG1 THR B 276 −6.786 43.962 56.728 1.00 39.39 B O
    ATOM 3681 CG2 THR B 276 −6.127 44.011 54.527 1.00 34.00 B C
    ATOM 3682 C THR B 276 −3.352 44.264 55.286 1.00 39.94 B C
    ATOM 3683 O THR B 276 −2.967 45.424 55.157 1.00 45.44 B O
    ATOM 3684 N ARG B 277 −2.919 43.277 54.501 1.00 37.62 B N
    ATOM 3685 CA ARG B 277 −2.063 43.577 53.346 1.00 38.46 B C
    ATOM 3686 CB ARG B 277 −0.673 42.971 53.509 1.00 42.89 B C
    ATOM 3687 CG ARG B 277 0.089 43.397 54.743 1.00 48.14 B C
    ATOM 3688 CD ARG B 277 0.853 42.246 55.360 1.00 50.64 B C
    ATOM 3689 NE ARG B 277 1.732 42.636 56.460 1.00 51.88 B N
    ATOM 3690 CZ ARG B 277 2.995 42.246 56.562 1.00 51.75 B C
    ATOM 3691 NH1 ARG B 277 3.517 41.462 55.618 1.00 50.20 B N
    ATOM 3692 NH2 ARG B 277 3.735 42.636 57.598 1.00 49.27 B N
    ATOM 3693 C ARG B 277 −2.643 43.092 52.025 1.00 39.50 B C
    ATOM 3694 O ARG B 277 −3.572 42.278 52.010 1.00 38.59 B O
    ATOM 3695 N ILE B 278 −2.107 43.616 50.918 1.00 40.77 B N
    ATOM 3696 CA ILE B 278 −2.204 42.931 49.633 1.00 43.35 B C
    ATOM 3697 CB ILE B 278 −2.365 43.879 48.429 1.00 46.48 B C
    ATOM 3698 CG1 ILE B 278 −3.534 44.833 48.611 1.00 53.74 B C
    ATOM 3699 CD1 ILE B 278 −4.565 44.776 47.457 1.00 56.04 B C
    ATOM 3700 CG2 ILE B 278 −2.626 43.059 47.159 1.00 45.36 B C
    ATOM 3701 C ILE B 278 −0.934 42.125 49.428 1.00 45.96 B C
    ATOM 3702 O ILE B 278 0.150 42.505 49.881 1.00 47.89 B O
    ATOM 3703 N ILE B 279 −1.086 41.003 48.740 1.00 45.37 B N
    ATOM 3704 CA ILE B 279 0.028 40.239 48.243 1.00 42.10 B C
    ATOM 3705 CB ILE B 279 −0.010 38.859 48.862 1.00 46.45 B C
    ATOM 3706 CG1 ILE B 279 0.560 38.922 50.277 1.00 53.46 B C
    ATOM 3707 CD1 ILE B 279 −0.234 38.137 51.300 1.00 58.89 B C
    ATOM 3708 CG2 ILE B 279 0.786 37.873 48.043 1.00 48.44 B C
    ATOM 3709 C ILE B 279 −0.158 40.180 46.747 1.00 41.15 B C
    ATOM 3710 O ILE B 279 −1.258 39.945 46.256 1.00 43.82 B O
    ATOM 3711 N ARG B 280 0.910 40.421 46.012 1.00 41.34 B N
    ATOM 3712 CA ARG B 280 0.824 40.424 44.563 1.00 45.85 B C
    ATOM 3713 CB ARG B 280 0.811 41.869 44.068 1.00 51.26 B C
    ATOM 3714 CG ARG B 280 0.662 42.049 42.584 1.00 55.05 B C
    ATOM 3715 CD ARG B 280 1.913 42.550 41.938 1.00 60.03 B C
    ATOM 3716 NE ARG B 280 1.758 43.887 41.382 1.00 63.67 B N
    ATOM 3717 CZ ARG B 280 2.748 44.569 40.814 1.00 69.54 B C
    ATOM 3718 NH1 ARG B 280 3.970 44.046 40.730 1.00 71.74 B N
    ATOM 3719 NH2 ARG B 280 2.522 45.780 40.325 1.00 72.83 B N
    ATOM 3720 C ARG B 280 2.013 39.666 44.003 1.00 47.40 B C
    ATOM 3721 O ARG B 280 3.123 39.783 44.527 1.00 50.74 B O
    ATOM 3722 N PHE B 281 1.778 38.855 42.975 1.00 46.60 B N
    ATOM 3723 CA PHE B 281 2.872 38.195 42.258 1.00 45.38 B C
    ATOM 3724 CB PHE B 281 3.370 36.936 42.965 1.00 39.87 B C
    ATOM 3725 CG PHE B 281 2.282 36.035 43.438 1.00 37.45 B C
    ATOM 3726 CD1 PHE B 281 1.625 35.184 42.549 1.00 39.49 B C
    ATOM 3727 CE1 PHE B 281 0.595 34.323 42.983 1.00 37.51 B C
    ATOM 3728 CZ PHE B 281 0.229 34.318 44.309 1.00 37.59 B C
    ATOM 3729 CE2 PHE B 281 0.905 35.157 45.220 1.00 40.03 B C
    ATOM 3730 CD2 PHE B 281 1.925 36.010 44.776 1.00 36.13 B C
    ATOM 3731 C PHE B 281 2.474 37.862 40.845 1.00 49.53 B C
    ATOM 3732 O PHE B 281 1.286 37.795 40.527 1.00 47.11 B O
    ATOM 3733 N CYS B 282 3.490 37.663 40.011 1.00 56.23 B N
    ATOM 3734 CA CYS B 282 3.315 37.412 38.596 1.00 57.99 B C
    ATOM 3735 CB CYS B 282 4.663 37.392 37.899 1.00 65.24 B C
    ATOM 3736 SG CYS B 282 4.825 38.675 36.652 1.00 78.83 B S
    ATOM 3737 C CYS B 282 2.629 36.094 38.412 1.00 59.66 B C
    ATOM 3738 O CYS B 282 2.938 35.121 39.097 1.00 60.32 B O
    ATOM 3739 N SER B 283 1.681 36.086 37.484 1.00 67.93 B N
    ATOM 3740 CA SER B 283 0.865 34.913 37.149 1.00 72.78 B C
    ATOM 3741 CB SER B 283 −0.389 35.376 36.361 1.00 70.36 B C
    ATOM 3742 OG SER B 283 −1.117 34.287 35.803 1.00 72.53 B O
    ATOM 3743 C SER B 283 1.675 33.833 36.380 1.00 73.87 B C
    ATOM 3744 O SER B 283 1.633 33.762 35.146 1.00 77.97 B O
    ATOM 3745 N ILE B 284 2.430 33.007 37.094 1.00 70.60 B N
    ATOM 3746 CA ILE B 284 3.182 31.973 36.404 1.00 76.76 B C
    ATOM 3747 CB ILE B 284 4.622 32.445 35.992 1.00 76.61 B C
    ATOM 3748 CG1 ILE B 284 4.722 33.963 35.880 1.00 75.68 B C
    ATOM 3749 CD1 ILE B 284 5.398 34.456 34.599 1.00 78.40 B C
    ATOM 3750 CG2 ILE B 284 5.028 31.806 34.660 1.00 80.65 B C
    ATOM 3751 C ILE B 284 3.239 30.618 37.122 1.00 83.89 B C
    ATOM 3752 O ILE B 284 3.513 30.530 38.330 1.00 83.74 B O
    ATOM 3753 N ASN B 285 2.964 29.574 36.333 1.00 86.69 B N
    ATOM 3754 CA ASN B 285 3.291 28.179 36.629 1.00 84.66 B C
    ATOM 3755 CB ASN B 285 3.435 27.449 35.306 1.00 87.10 B C
    ATOM 3756 CG ASN B 285 2.370 26.442 35.099 1.00 90.93 B C
    ATOM 3757 OD1 ASN B 285 2.008 25.724 36.025 1.00 88.91 B O
    ATOM 3758 ND2 ASN B 285 1.835 26.380 33.875 1.00 94.17 B N
    ATOM 3759 C ASN B 285 4.614 28.002 37.324 1.00 82.64 B C
    ATOM 3760 O ASN B 285 4.709 27.384 38.384 1.00 80.16 B O
    ATOM 3761 N SER B 286 5.629 28.566 36.673 1.00 84.00 B N
    ATOM 3762 CA SER B 286 7.039 28.312 36.927 1.00 85.66 B C
    ATOM 3763 CB SER B 286 7.896 29.115 35.934 1.00 88.63 B C
    ATOM 3764 OG SER B 286 7.581 30.505 35.951 1.00 88.36 B O
    ATOM 3765 C SER B 286 7.447 28.636 38.349 1.00 85.35 B C
    ATOM 3766 O SER B 286 8.517 28.211 38.807 1.00 88.05 B O
    ATOM 3767 N GLY B 287 6.595 29.390 39.038 1.00 79.54 B N
    ATOM 3768 CA GLY B 287 6.879 29.803 40.398 1.00 74.83 B C
    ATOM 3769 C GLY B 287 6.294 31.157 40.722 1.00 70.55 B C
    ATOM 3770 O GLY B 287 5.763 31.857 39.847 1.00 72.26 B O
    ATOM 3771 N LEU B 288 6.371 31.521 41.995 1.00 62.57 B N
    ATOM 3772 CA LEU B 288 5.925 32.830 42.422 1.00 56.34 B C
    ATOM 3773 CB LEU B 288 5.698 32.833 43.913 1.00 48.19 B C
    ATOM 3774 CG LEU B 288 4.757 31.729 44.318 1.00 44.46 B C
    ATOM 3775 CD1 LEU B 288 5.230 31.232 45.641 1.00 50.30 B C
    ATOM 3776 CD2 LEU B 288 3.331 32.254 44.391 1.00 41.40 B C
    ATOM 3777 C LEU B 288 7.022 33.798 42.087 1.00 58.68 B C
    ATOM 3778 O LEU B 288 8.149 33.631 42.564 1.00 55.28 B O
    ATOM 3779 N HIS B 289 6.713 34.806 41.273 1.00 62.56 B N
    ATOM 3780 CA HIS B 289 7.792 35.643 40.771 1.00 67.70 B C
    ATOM 3781 CB HIS B 289 7.951 35.543 39.242 1.00 69.53 B C
    ATOM 3782 CG HIS B 289 8.564 34.241 38.806 1.00 71.32 B C
    ATOM 3783 ND1 HIS B 289 9.708 33.731 39.383 1.00 70.97 B N
    ATOM 3784 CE1 HIS B 289 9.993 32.560 38.839 1.00 72.47 B C
    ATOM 3785 NE2 HIS B 289 9.073 32.288 37.932 1.00 72.64 B N
    ATOM 3786 CD2 HIS B 289 8.163 33.319 37.896 1.00 73.23 B C
    ATOM 3787 C HIS B 289 7.973 37.039 41.376 1.00 70.32 B C
    ATOM 3788 O HIS B 289 8.902 37.242 42.179 1.00 78.40 B O
    ATOM 3789 N SER B 290 7.142 38.010 41.053 1.00 63.75 B N
    ATOM 3790 CA SER B 290 7.478 39.304 41.628 1.00 62.91 B C
    ATOM 3791 CB SER B 290 7.361 40.425 40.605 1.00 68.79 B C
    ATOM 3792 OG SER B 290 8.626 40.636 40.007 1.00 70.89 B O
    ATOM 3793 C SER B 290 6.737 39.585 42.928 1.00 58.08 B C
    ATOM 3794 O SER B 290 5.916 40.503 43.015 1.00 63.24 B O
    ATOM 3795 N TYR B 291 7.069 38.791 43.941 1.00 47.39 B N
    ATOM 3796 CA TYR B 291 6.309 38.736 45.180 1.00 41.83 B C
    ATOM 3797 CB TYR B 291 6.660 37.456 45.927 1.00 37.48 B C
    ATOM 3798 CG TYR B 291 5.744 37.182 47.084 1.00 36.21 B C
    ATOM 3799 CD1 TYR B 291 4.686 36.281 46.961 1.00 33.62 B C
    ATOM 3800 CE1 TYR B 291 3.840 36.030 48.034 1.00 34.80 B C
    ATOM 3801 CZ TYR B 291 4.047 36.696 49.248 1.00 36.53 B C
    ATOM 3802 OH TYR B 291 3.213 36.478 50.320 1.00 36.69 B O
    ATOM 3803 CE2 TYR B 291 5.089 37.600 49.387 1.00 36.23 B C
    ATOM 3804 CD2 TYR B 291 5.927 37.836 48.309 1.00 35.98 B C
    ATOM 3805 C TYR B 291 6.536 39.944 46.085 1.00 45.26 B C
    ATOM 3806 O TYR B 291 7.676 40.338 46.333 1.00 49.90 B O
    ATOM 3807 N MET B 292 5.449 40.532 46.578 1.00 43.80 B N
    ATOM 3808 CA MET B 292 5.515 41.703 47.458 1.00 44.36 B C
    ATOM 3809 CB MET B 292 5.717 43.014 46.672 1.00 47.97 B C
    ATOM 3810 CG MET B 292 6.627 42.930 45.445 1.00 53.67 B C
    ATOM 3811 SD MET B 292 6.460 44.262 44.234 1.00 57.70 B S
    ATOM 3812 CE MET B 292 7.795 45.383 44.800 1.00 54.66 B C
    ATOM 3813 C MET B 292 4.227 41.812 48.250 1.00 44.44 B C
    ATOM 3814 O MET B 292 3.139 41.710 47.689 1.00 51.08 B O
    ATOM 3815 N GLU B 293 4.333 42.024 49.550 1.00 40.31 B N
    ATOM 3816 CA GLU B 293 3.143 42.289 50.339 1.00 38.64 B C
    ATOM 3817 CB GLU B 293 3.098 41.424 51.594 1.00 39.59 B C
    ATOM 3818 CG GLU B 293 3.923 40.150 51.552 1.00 38.35 B C
    ATOM 3819 CD GLU B 293 3.505 39.163 52.627 1.00 38.12 B C
    ATOM 3820 OE1 GLU B 293 3.526 39.536 53.834 1.00 37.86 B O
    ATOM 3821 OE2 GLU B 293 3.142 38.021 52.263 1.00 35.21 B O
    ATOM 3822 C GLU B 293 3.142 43.747 50.740 1.00 40.30 B C
    ATOM 3823 O GLU B 293 4.114 44.233 51.301 1.00 43.67 B O
    ATOM 3824 N MET B 294 2.060 44.454 50.460 1.00 39.60 B N
    ATOM 3825 CA MET B 294 1.975 45.843 50.866 1.00 41.04 B C
    ATOM 3826 CB MET B 294 2.044 46.749 49.639 1.00 44.09 B C
    ATOM 3827 CG MET B 294 1.049 47.881 49.546 1.00 48.48 B C
    ATOM 3828 SD MET B 294 0.858 48.261 47.786 1.00 56.51 B S
    ATOM 3829 CE MET B 294 −0.751 48.941 47.750 1.00 57.49 B C
    ATOM 3830 C MET B 294 0.733 46.079 51.708 1.00 43.27 B C
    ATOM 3831 O MET B 294 −0.370 45.731 51.289 1.00 48.54 B O
    ATOM 3832 N PRO B 295 0.933 46.610 52.917 1.00 42.18 B N
    ATOM 3833 CA PRO B 295 −0.154 46.989 53.833 1.00 39.90 B C
    ATOM 3834 CB PRO B 295 0.575 47.748 54.935 1.00 38.78 B C
    ATOM 3835 CG PRO B 295 1.934 48.002 54.398 1.00 41.92 B C
    ATOM 3836 CD PRO B 295 2.252 46.842 53.524 1.00 42.28 B C
    ATOM 3837 C PRO B 295 −1.218 47.899 53.233 1.00 40.13 B C
    ATOM 3838 O PRO B 295 −0.902 48.692 52.344 1.00 38.20 B O
    ATOM 3839 N LEU B 296 −2.451 47.757 53.731 1.00 41.86 B N
    ATOM 3840 CA LEU B 296 −3.620 48.548 53.334 1.00 41.65 B C
    ATOM 3841 CB LEU B 296 −4.625 47.670 52.598 1.00 36.91 B C
    ATOM 3842 CG LEU B 296 −4.347 47.267 51.149 1.00 38.16 B C
    ATOM 3843 CD1 LEU B 296 −5.656 47.151 50.378 1.00 38.38 B C
    ATOM 3844 CD2 LEU B 296 −3.432 48.251 50.447 1.00 39.97 B C
    ATOM 3845 C LEU B 296 −4.294 49.163 54.569 1.00 48.76 B C
    ATOM 3846 O LEU B 296 −4.422 48.509 55.610 1.00 51.59 B O
    ATOM 3847 N GLU B 297 −4.725 50.417 54.450 1.00 52.95 B N
    ATOM 3848 CA GLU B 297 −5.309 51.155 55.568 1.00 54.84 B C
    ATOM 3849 CB GLU B 297 −4.375 52.302 55.978 1.00 57.43 B C
    ATOM 3850 CG GLU B 297 −3.502 52.030 57.198 1.00 62.42 B C
    ATOM 3851 CD GLU B 297 −2.773 53.269 57.724 1.00 66.04 B C
    ATOM 3852 OE1 GLU B 297 −3.095 54.411 57.309 1.00 67.50 B O
    ATOM 3853 OE2 GLU B 297 −1.865 53.102 58.570 1.00 66.40 B O
    ATOM 3854 C GLU B 297 −6.669 51.730 55.184 1.00 56.60 B C
    ATOM 3855 O GLU B 297 −6.782 52.451 54.188 1.00 57.35 B O
    ATOM 3856 N CYS B 298 −7.701 51.403 55.957 1.00 56.57 B N
    ATOM 3857 CA CYS B 298 −8.980 52.111 55.851 1.00 55.08 B C
    ATOM 3858 CB CYS B 298 −10.152 51.153 55.764 1.00 52.43 B C
    ATOM 3859 SG CYS B 298 −11.578 51.921 54.988 1.00 53.14 B S
    ATOM 3860 C CYS B 298 −9.179 53.008 57.056 1.00 57.69 B C
    ATOM 3861 O CYS B 298 −8.995 52.570 58.186 1.00 59.46 B O
    ATOM 3862 N ILE B 299 −9.564 54.258 56.817 1.00 59.66 B N
    ATOM 3863 CA ILE B 299 −9.727 55.230 57.899 1.00 59.53 B C
    ATOM 3864 CB ILE B 299 −8.511 56.184 57.967 1.00 59.74 B C
    ATOM 3865 CG1 ILE B 299 −8.095 56.653 56.565 1.00 61.08 B C
    ATOM 3866 CD1 ILE B 299 −7.489 58.053 56.521 1.00 60.66 B C
    ATOM 3867 CG2 ILE B 299 −7.354 55.506 58.679 1.00 59.40 B C
    ATOM 3868 C ILE B 299 −11.044 56.014 57.851 1.00 62.03 B C
    ATOM 3869 O ILE B 299 −11.657 56.170 56.785 1.00 58.16 B O
    ATOM 3870 N LEU B 300 −11.459 56.501 59.024 1.00 68.13 B N
    ATOM 3871 CA LEU B 300 −12.708 57.258 59.199 1.00 71.33 B C
    ATOM 3872 CB LEU B 300 −13.269 57.057 60.616 1.00 70.08 B C
    ATOM 3873 CG LEU B 300 −14.760 57.356 60.821 1.00 70.36 B C
    ATOM 3874 CD1 LEU B 300 −15.630 56.190 60.371 1.00 69.76 B C
    ATOM 3875 CD2 LEU B 300 −15.061 57.724 62.273 1.00 71.69 B C
    ATOM 3876 C LEU B 300 −12.603 58.760 58.883 1.00 73.92 B C
    ATOM 3877 O LEU B 300 −13.527 59.322 58.290 1.00 75.89 B O
    ATOM 3878 N THR B 301 −11.491 59.391 59.284 1.00 74.85 B N
    ATOM 3879 CA THR B 301 −11.243 60.839 59.111 1.00 73.74 B C
    ATOM 3880 CB THR B 301 −11.152 61.239 57.600 1.00 73.95 B C
    ATOM 3881 OG1 THR B 301 −9.890 61.867 57.339 1.00 74.72 B O
    ATOM 3882 CG2 THR B 301 −12.183 62.316 57.225 1.00 71.77 B C
    ATOM 3883 C THR B 301 −12.250 61.708 59.867 1.00 71.57 B C
    ATOM 3884 O THR B 301 −12.473 61.512 61.061 1.00 69.93 B O
    ATOM 3885 N LYS B 311 −5.981 59.549 63.217 1.00 75.59 B N
    ATOM 3886 CA LYS B 311 −6.434 58.536 62.267 1.00 76.17 B C
    ATOM 3887 CB LYS B 311 −5.240 57.941 61.505 1.00 78.74 B C
    ATOM 3888 CG LYS B 311 −4.699 58.809 60.371 1.00 81.19 B C
    ATOM 3889 CD LYS B 311 −3.521 58.136 59.662 1.00 81.72 B C
    ATOM 3890 CE LYS B 311 −2.818 59.103 58.711 1.00 81.77 B C
    ATOM 3891 NZ LYS B 311 −1.672 58.467 57.997 1.00 80.78 B N
    ATOM 3892 C LYS B 311 −7.197 57.416 62.973 1.00 73.12 B C
    ATOM 3893 O LYS B 311 −6.675 56.793 63.895 1.00 73.93 B O
    ATOM 3894 N GLU B 312 −8.431 57.172 62.546 1.00 70.40 B N
    ATOM 3895 CA GLU B 312 −9.203 56.030 63.036 1.00 70.15 B C
    ATOM 3896 CB GLU B 312 −10.627 56.461 63.418 1.00 71.10 B C
    ATOM 3897 CG GLU B 312 −11.398 55.423 64.225 1.00 72.95 B C
    ATOM 3898 CD GLU B 312 −11.576 55.806 65.684 1.00 73.81 B C
    ATOM 3899 OE1 GLU B 312 −12.398 56.701 65.961 1.00 75.52 B O
    ATOM 3900 OE2 GLU B 312 −10.907 55.209 66.559 1.00 73.04 B O
    ATOM 3901 C GLU B 312 −9.206 54.897 61.989 1.00 69.21 B C
    ATOM 3902 O GLU B 312 −9.962 54.938 61.011 1.00 68.31 B O
    ATOM 3903 N VAL B 313 −8.363 53.887 62.217 1.00 66.47 B N
    ATOM 3904 CA VAL B 313 −8.036 52.878 61.199 1.00 63.03 B C
    ATOM 3905 CB VAL B 313 −6.518 52.572 61.167 1.00 64.23 B C
    ATOM 3906 CG1 VAL B 313 −6.090 52.118 59.787 1.00 65.00 B C
    ATOM 3907 CG2 VAL B 313 −5.699 53.786 61.602 1.00 66.29 B C
    ATOM 3908 C VAL B 313 −8.790 51.558 61.344 1.00 60.30 B C
    ATOM 3909 O VAL B 313 −8.998 51.068 62.445 1.00 60.55 B O
    ATOM 3910 N PHE B 314 −9.178 50.985 60.211 1.00 60.20 B N
    ATOM 3911 CA PHE B 314 −9.881 49.708 60.177 1.00 63.28 B C
    ATOM 3912 CB PHE B 314 −11.215 49.846 59.443 1.00 68.40 B C
    ATOM 3913 CG PHE B 314 −12.164 50.797 60.111 1.00 72.13 B C
    ATOM 3914 CD1 PHE B 314 −13.025 50.354 61.110 1.00 73.60 B C
    ATOM 3915 CE1 PHE B 314 −13.900 51.235 61.743 1.00 73.55 B C
    ATOM 3916 CZ PHE B 314 −13.912 52.576 61.382 1.00 73.29 B C
    ATOM 3917 CE2 PHE B 314 −13.048 53.034 60.393 1.00 73.17 B C
    ATOM 3918 CD2 PHE B 314 −12.180 52.143 59.762 1.00 73.47 B C
    ATOM 3919 C PHE B 314 −8.980 48.623 59.585 1.00 62.17 B C
    ATOM 3920 O PHE B 314 −8.934 48.370 58.372 1.00 60.61 B O
    ATOM 3921 N ASN B 315 −8.262 47.985 60.492 1.00 60.37 B N
    ATOM 3922 CA ASN B 315 −7.112 47.181 60.146 1.00 59.51 B C
    ATOM 3923 CB ASN B 315 −6.130 47.235 61.306 1.00 59.70 B C
    ATOM 3924 CG ASN B 315 −6.766 46.820 62.609 1.00 59.13 B C
    ATOM 3925 OD1 ASN B 315 −7.854 47.282 62.958 1.00 56.72 B O
    ATOM 3926 ND2 ASN B 315 −6.102 45.925 63.328 1.00 61.68 B N
    ATOM 3927 C ASN B 315 −7.452 45.734 59.832 1.00 56.95 B C
    ATOM 3928 O ASN B 315 −6.575 44.968 59.423 1.00 57.41 B O
    ATOM 3929 N ILE B 316 −8.709 45.351 60.041 1.00 52.39 B N
    ATOM 3930 CA ILE B 316 −9.113 43.981 59.749 1.00 49.80 B C
    ATOM 3931 CB ILE B 316 −9.503 43.217 61.022 1.00 48.77 B C
    ATOM 3932 CG1 ILE B 316 −8.296 43.127 61.947 1.00 49.54 B C
    ATOM 3933 CD1 ILE B 316 −8.646 43.083 63.388 1.00 52.82 B C
    ATOM 3934 CG2 ILE B 316 −9.924 41.790 60.676 1.00 51.23 B C
    ATOM 3935 C ILE B 316 −10.167 43.864 58.642 1.00 48.52 B C
    ATOM 3936 O ILE B 316 −11.376 44.011 58.879 1.00 50.06 B O
    ATOM 3937 N LEU B 317 −9.666 43.604 57.434 1.00 42.09 B N
    ATOM 3938 CA LEU B 317 −10.481 43.320 56.270 1.00 34.53 B C
    ATOM 3939 CB LEU B 317 −9.591 43.078 55.073 1.00 30.31 B C
    ATOM 3940 CG LEU B 317 −10.287 42.652 53.796 1.00 32.72 B C
    ATOM 3941 CD1 LEU B 317 −10.778 43.860 53.020 1.00 33.80 B C
    ATOM 3942 CD2 LEU B 317 −9.311 41.873 52.979 1.00 36.29 B C
    ATOM 3943 C LEU B 317 −11.340 42.102 56.533 1.00 36.99 B C
    ATOM 3944 O LEU B 317 −10.852 41.085 57.040 1.00 37.81 B O
    ATOM 3945 N GLN B 318 −12.622 42.232 56.190 1.00 39.38 B N
    ATOM 3946 CA GLN B 318 −13.667 41.275 56.559 1.00 38.34 B C
    ATOM 3947 CB GLN B 318 −14.842 42.008 57.198 1.00 35.95 B C
    ATOM 3948 CG GLN B 318 −14.550 42.550 58.560 1.00 34.95 B C
    ATOM 3949 CD GLN B 318 −14.256 41.448 59.549 1.00 34.71 B C
    ATOM 3950 OE1 GLN B 318 −14.998 40.466 59.635 1.00 32.68 B O
    ATOM 3951 NE2 GLN B 318 −13.169 41.598 60.290 1.00 35.89 B N
    ATOM 3952 C GLN B 318 −14.191 40.515 55.366 1.00 39.89 B C
    ATOM 3953 O GLN B 318 −14.563 39.350 55.482 1.00 43.86 B O
    ATOM 3954 N ALA B 319 −14.264 41.208 54.237 1.00 38.76 B N
    ATOM 3955 CA ALA B 319 −14.702 40.634 52.980 1.00 42.20 B C
    ATOM 3956 CB ALA B 319 −16.206 40.436 52.970 1.00 43.13 B C
    ATOM 3957 C ALA B 319 −14.296 41.631 51.919 1.00 45.19 B C
    ATOM 3958 O ALA B 319 −13.906 42.754 52.259 1.00 47.84 B O
    ATOM 3959 N ALA B 320 −14.397 41.224 50.648 1.00 43.30 B N
    ATOM 3960 CA ALA B 320 −14.019 42.068 49.516 1.00 38.82 B C
    ATOM 3961 CB ALA B 320 −12.515 42.188 49.442 1.00 39.16 B C
    ATOM 3962 C ALA B 320 −14.545 41.508 48.215 1.00 37.73 B C
    ATOM 3963 O ALA B 320 −14.533 40.290 48.028 1.00 42.20 B O
    ATOM 3964 N ALA B 321 −15.032 42.390 47.340 1.00 36.21 B N
    ATOM 3965 CA ALA B 321 −15.285 42.055 45.930 1.00 38.81 B C
    ATOM 3966 CB ALA B 321 −16.828 42.041 45.531 1.00 33.42 B C
    ATOM 3967 C ALA B 321 −14.496 42.994 45.032 1.00 41.25 B C
    ATOM 3968 O ALA B 321 −14.039 44.063 45.472 1.00 41.88 B O
    ATOM 3969 N VAL B 322 −14.346 42.573 43.775 1.00 42.72 B N
    ATOM 3970 CA VAL B 322 −13.604 43.306 42.759 1.00 43.41 B C
    ATOM 3971 CB VAL B 322 −12.337 42.565 42.360 1.00 45.20 B C
    ATOM 3972 CG1 VAL B 322 −11.598 43.339 41.310 1.00 45.05 B C
    ATOM 3973 CG2 VAL B 322 −11.448 42.329 43.572 1.00 49.72 B C
    ATOM 3974 C VAL B 322 −14.475 43.471 41.527 1.00 43.73 B C
    ATOM 3975 O VAL B 322 −14.951 42.514 40.965 1.00 47.79 B O
    ATOM 3976 N SER B 323 −14.695 44.699 41.105 1.00 47.05 B N
    ATOM 3977 CA SER B 323 −15.589 44.931 39.988 1.00 48.01 B C
    ATOM 3978 CB SER B 323 −17.061 44.989 40.444 1.00 47.16 B C
    ATOM 3979 OG SER B 323 −17.377 46.210 41.095 1.00 42.34 B O
    ATOM 3980 C SER B 323 −15.197 46.216 39.309 1.00 49.32 B C
    ATOM 3981 O SER B 323 −14.264 46.924 39.744 1.00 50.83 B O
    ATOM 3982 N LYS B 324 −15.914 46.509 38.234 1.00 42.95 B N
    ATOM 3983 CA LYS B 324 −15.702 47.733 37.528 1.00 39.54 B C
    ATOM 3984 CB LYS B 324 −16.078 47.489 36.082 1.00 45.40 B C
    ATOM 3985 CG LYS B 324 −14.884 47.335 35.169 1.00 47.01 B C
    ATOM 3986 CD LYS B 324 −14.282 45.960 35.203 1.00 47.97 B C
    ATOM 3987 CE LYS B 324 −12.862 46.016 34.666 1.00 52.58 B C
    ATOM 3988 NZ LYS B 324 −12.750 45.426 33.300 1.00 58.24 B N
    ATOM 3989 C LYS B 324 −16.589 48.768 38.212 1.00 37.81 B C
    ATOM 3990 O LYS B 324 −17.543 48.390 38.883 1.00 37.79 B O
    ATOM 3991 N PRO B 325 −16.269 50.054 38.103 1.00 39.23 B N
    ATOM 3992 CA PRO B 325 −17.136 51.106 38.648 1.00 42.38 B C
    ATOM 3993 CB PRO B 325 −16.155 52.250 38.890 1.00 39.95 B C
    ATOM 3994 CG PRO B 325 −15.199 52.131 37.747 1.00 40.77 B C
    ATOM 3995 CD PRO B 325 −15.064 50.629 37.479 1.00 41.47 B C
    ATOM 3996 C PRO B 325 −18.209 51.583 37.659 1.00 45.95 B C
    ATOM 3997 O PRO B 325 −18.120 51.312 36.448 1.00 49.67 B O
    ATOM 3998 N GLY B 326 −19.212 52.280 38.186 1.00 45.56 B N
    ATOM 3999 CA GLY B 326 −20.128 53.056 37.369 1.00 49.09 B C
    ATOM 4000 C GLY B 326 −19.605 54.476 37.241 1.00 48.35 B C
    ATOM 4001 O GLY B 326 −18.752 54.890 38.030 1.00 50.25 B O
    ATOM 4002 N ALA B 327 −20.119 55.227 36.272 1.00 43.52 B N
    ATOM 4003 CA ALA B 327 −19.586 56.559 35.995 1.00 45.27 B C
    ATOM 4004 CB ALA B 327 −20.368 57.232 34.898 1.00 49.23 B C
    ATOM 4005 C ALA B 327 −19.471 57.483 37.206 1.00 47.02 B C
    ATOM 4006 O ALA B 327 −18.439 58.129 37.373 1.00 49.70 B O
    ATOM 4007 N GLN B 328 −20.516 57.556 38.036 1.00 48.51 B N
    ATOM 4008 CA GLN B 328 −20.528 58.471 39.191 1.00 48.61 B C
    ATOM 4009 CB GLN B 328 −21.844 58.407 39.989 1.00 52.15 B C
    ATOM 4010 CG GLN B 328 −22.154 59.689 40.799 1.00 56.98 B C
    ATOM 4011 CD GLN B 328 −23.030 59.450 42.035 1.00 61.65 B C
    ATOM 4012 OE1 GLN B 328 −22.527 59.373 43.161 1.00 63.61 B O
    ATOM 4013 NE2 GLN B 328 −24.340 59.356 41.826 1.00 63.51 B N
    ATOM 4014 C GLN B 328 −19.351 58.186 40.100 1.00 47.42 B C
    ATOM 4015 O GLN B 328 −18.495 59.053 40.318 1.00 44.44 B O
    ATOM 4016 N LEU B 329 −19.294 56.958 40.608 1.00 48.25 B N
    ATOM 4017 CA LEU B 329 −18.167 56.568 41.431 1.00 47.42 B C
    ATOM 4018 CB LEU B 329 −18.294 55.129 41.906 1.00 46.47 B C
    ATOM 4019 CG LEU B 329 −17.867 54.835 43.349 1.00 43.93 B C
    ATOM 4020 CD1 LEU B 329 −17.375 53.404 43.422 1.00 42.68 B C
    ATOM 4021 CD2 LEU B 329 −16.826 55.809 43.905 1.00 39.29 B C
    ATOM 4022 C LEU B 329 −16.867 56.748 40.668 1.00 47.05 B C
    ATOM 4023 O LEU B 329 −15.892 57.231 41.236 1.00 49.30 B O
    ATOM 4024 N ALA B 330 −16.866 56.380 39.386 1.00 43.69 B N
    ATOM 4025 CA ALA B 330 −15.654 56.419 38.586 1.00 42.15 B C
    ATOM 4026 CB ALA B 330 −15.939 56.080 37.151 1.00 41.25 B C
    ATOM 4027 C ALA B 330 −15.034 57.788 38.713 1.00 46.79 B C
    ATOM 4028 O ALA B 330 −14.026 57.940 39.397 1.00 48.86 B O
    ATOM 4029 N ARG B 331 −15.656 58.783 38.080 1.00 52.99 B N
    ATOM 4030 CA ARG B 331 −15.266 60.185 38.196 1.00 54.31 B C
    ATOM 4031 CB ARG B 331 −16.508 61.047 38.047 1.00 57.66 B C
    ATOM 4032 CG ARG B 331 −16.285 62.389 37.401 1.00 66.59 B C
    ATOM 4033 CD ARG B 331 −17.572 63.218 37.248 1.00 74.27 B C
    ATOM 4034 NE ARG B 331 −18.753 62.389 36.960 1.00 78.56 B N
    ATOM 4035 CZ ARG B 331 −19.128 61.980 35.741 1.00 78.96 B C
    ATOM 4036 NH1 ARG B 331 −18.423 62.316 34.663 1.00 78.56 B N
    ATOM 4037 NH2 ARG B 331 −20.216 61.229 35.600 1.00 77.36 B N
    ATOM 4038 C ARG B 331 −14.587 60.491 39.537 1.00 54.34 B C
    ATOM 4039 O ARG B 331 −13.501 61.068 39.571 1.00 53.46 B O
    ATOM 4040 N GLN B 332 −15.219 60.057 40.627 1.00 54.05 B N
    ATOM 4041 CA GLN B 332 −14.801 60.401 41.987 1.00 56.11 B C
    ATOM 4042 CB GLN B 332 −15.908 60.051 42.978 1.00 56.59 B C
    ATOM 4043 CG GLN B 332 −17.171 60.858 42.840 1.00 57.97 B C
    ATOM 4044 CD GLN B 332 −18.350 60.192 43.518 1.00 60.52 B C
    ATOM 4045 OE1 GLN B 332 −19.471 60.259 43.021 1.00 62.43 B O
    ATOM 4046 NE2 GLN B 332 −18.102 59.547 44.654 1.00 60.21 B N
    ATOM 4047 C GLN B 332 −13.487 59.802 42.511 1.00 58.78 B C
    ATOM 4048 O GLN B 332 −12.777 60.464 43.264 1.00 61.01 B O
    ATOM 4049 N ILE B 333 −13.178 58.554 42.163 1.00 60.02 B N
    ATOM 4050 CA ILE B 333 −12.048 57.859 42.801 1.00 61.37 B C
    ATOM 4051 CB ILE B 333 −12.462 56.453 43.376 1.00 60.29 B C
    ATOM 4052 CG1 ILE B 333 −13.532 55.790 42.520 1.00 57.86 B C
    ATOM 4053 CD1 ILE B 333 −12.967 55.019 41.368 1.00 59.06 B C
    ATOM 4054 CG2 ILE B 333 −12.884 56.542 44.846 1.00 62.90 B C
    ATOM 4055 C ILE B 333 −10.803 57.692 41.930 1.00 62.41 B C
    ATOM 4056 O ILE B 333 −9.843 57.034 42.344 1.00 65.96 B O
    ATOM 4057 N GLY B 334 −10.810 58.270 40.734 1.00 60.64 B N
    ATOM 4058 CA GLY B 334 −9.712 58.055 39.808 1.00 61.54 B C
    ATOM 4059 C GLY B 334 −10.127 57.351 38.531 1.00 63.72 B C
    ATOM 4060 O GLY B 334 −9.316 57.206 37.617 1.00 65.07 B O
    ATOM 4061 N ALA B 335 −11.375 56.876 38.504 1.00 64.54 B N
    ATOM 4062 CA ALA B 335 −12.128 56.609 37.270 1.00 63.84 B C
    ATOM 4063 CB ALA B 335 −12.319 57.925 36.447 1.00 68.98 B C
    ATOM 4064 C ALA B 335 −11.620 55.487 36.381 1.00 61.10 B C
    ATOM 4065 O ALA B 335 −10.965 54.560 36.853 1.00 60.42 B O
    ATOM 4066 N SER B 336 −11.920 55.627 35.087 1.00 62.19 B N
    ATOM 4067 CA SER B 336 −11.779 54.595 34.058 1.00 66.51 B C
    ATOM 4068 CB SER B 336 −10.412 53.901 34.109 1.00 74.49 B C
    ATOM 4069 OG SER B 336 −10.411 52.686 33.371 1.00 82.14 B O
    ATOM 4070 C SER B 336 −12.957 53.610 34.106 1.00 65.03 B C
    ATOM 4071 O SER B 336 −12.960 52.627 34.852 1.00 62.64 B O
    ATOM 4072 N LEU B 337 −13.962 53.911 33.291 1.00 66.13 B N
    ATOM 4073 CA LEU B 337 −15.194 53.136 33.176 1.00 66.47 B C
    ATOM 4074 CB LEU B 337 −15.887 53.528 31.861 1.00 69.76 B C
    ATOM 4075 CG LEU B 337 −17.392 53.824 31.789 1.00 73.26 B C
    ATOM 4076 CD1 LEU B 337 −18.157 52.606 31.242 1.00 76.33 B C
    ATOM 4077 CD2 LEU B 337 −17.982 54.285 33.126 1.00 73.40 B C
    ATOM 4078 C LEU B 337 −14.948 51.629 33.212 1.00 63.98 B C
    ATOM 4079 O LEU B 337 −15.752 50.857 33.748 1.00 57.87 B O
    ATOM 4080 N ASN B 338 −13.815 51.239 32.638 1.00 67.61 B N
    ATOM 4081 CA ASN B 338 −13.431 49.852 32.468 1.00 72.58 B C
    ATOM 4082 CB ASN B 338 −13.182 49.583 30.978 1.00 80.29 B C
    ATOM 4083 CG ASN B 338 −12.809 48.137 30.695 1.00 87.12 B C
    ATOM 4084 OD1 ASN B 338 −13.556 47.205 31.028 1.00 88.04 B O
    ATOM 4085 ND2 ASN B 338 −11.639 47.941 30.081 1.00 89.20 B N
    ATOM 4086 C ASN B 338 −12.205 49.500 33.324 1.00 70.16 B C
    ATOM 4087 O ASN B 338 −11.214 48.963 32.834 1.00 69.51 B O
    ATOM 4088 N ASP B 339 −12.286 49.806 34.615 1.00 69.79 B N
    ATOM 4089 CA ASP B 339 −11.199 49.517 35.542 1.00 67.80 B C
    ATOM 4090 CB ASP B 339 −10.582 50.807 36.054 1.00 70.33 B C
    ATOM 4091 CG ASP B 339 −9.113 50.877 35.767 1.00 77.20 B C
    ATOM 4092 OD1 ASP B 339 −8.389 49.949 36.218 1.00 82.67 B O
    ATOM 4093 OD2 ASP B 339 −8.594 51.796 35.090 1.00 76.34 B O
    ATOM 4094 C ASP B 339 −11.593 48.636 36.720 1.00 64.34 B C
    ATOM 4095 O ASP B 339 −12.700 48.730 37.238 1.00 64.14 B O
    ATOM 4096 N ASP B 340 −10.674 47.777 37.142 1.00 60.50 B N
    ATOM 4097 CA ASP B 340 −10.924 46.932 38.299 1.00 57.67 B C
    ATOM 4098 CB ASP B 340 −10.064 45.675 38.228 1.00 56.39 B C
    ATOM 4099 CG ASP B 340 −10.554 44.698 37.182 1.00 59.37 B C
    ATOM 4100 OD1 ASP B 340 −11.784 44.529 37.020 1.00 58.17 B O
    ATOM 4101 OD2 ASP B 340 −9.774 44.030 36.481 1.00 63.66 B O
    ATOM 4102 C ASP B 340 −10.699 47.676 39.622 1.00 57.34 B C
    ATOM 4103 O ASP B 340 −9.643 48.294 39.840 1.00 60.14 B O
    ATOM 4104 N ILE B 341 −11.708 47.635 40.491 1.00 50.94 B N
    ATOM 4105 CA ILE B 341 −11.584 48.209 41.822 1.00 46.54 B C
    ATOM 4106 CB ILE B 341 −12.555 49.357 42.014 1.00 44.72 B C
    ATOM 4107 CG1 ILE B 341 −12.116 50.557 41.193 1.00 45.57 B C
    ATOM 4108 CD1 ILE B 341 −12.832 50.677 39.908 1.00 44.81 B C
    ATOM 4109 CG2 ILE B 341 −12.599 49.757 43.473 1.00 44.54 B C
    ATOM 4110 C ILE B 341 −11.845 47.164 42.884 1.00 49.43 B C
    ATOM 4111 O ILE B 341 −12.760 46.351 42.775 1.00 52.41 B O
    ATOM 4112 N LEU B 342 −11.030 47.201 43.922 1.00 48.88 B N
    ATOM 4113 CA LEU B 342 −11.190 46.319 45.055 1.00 46.16 B C
    ATOM 4114 CB LEU B 342 −9.812 45.918 45.596 1.00 42.06 B C
    ATOM 4115 CG LEU B 342 −9.746 45.306 46.989 1.00 40.05 B C
    ATOM 4116 CD1 LEU B 342 −10.387 43.942 46.949 1.00 41.44 B C
    ATOM 4117 CD2 LEU B 342 −8.314 45.213 47.477 1.00 39.40 B C
    ATOM 4118 C LEU B 342 −12.034 47.033 46.116 1.00 47.55 B C
    ATOM 4119 O LEU B 342 −11.562 47.949 46.811 1.00 50.43 B O
    ATOM 4120 N PHE B 343 −13.293 46.625 46.215 1.00 41.92 B N
    ATOM 4121 CA PHE B 343 −14.141 47.077 47.298 1.00 38.40 B C
    ATOM 4122 CB PHE B 343 −15.596 46.984 46.878 1.00 36.63 B C
    ATOM 4123 CG PHE B 343 −15.923 47.858 45.716 1.00 34.84 B C
    ATOM 4124 CD1 PHE B 343 −16.015 47.326 44.440 1.00 34.47 B C
    ATOM 4125 CE1 PHE B 343 −16.296 48.144 43.363 1.00 33.66 B C
    ATOM 4126 CZ PHE B 343 −16.470 49.511 43.565 1.00 30.55 B C
    ATOM 4127 CE2 PHE B 343 −16.365 50.044 44.836 1.00 26.40 B C
    ATOM 4128 CD2 PHE B 343 −16.100 49.225 45.893 1.00 29.75 B C
    ATOM 4129 C PHE B 343 −13.868 46.201 48.496 1.00 39.49 B C
    ATOM 4130 O PHE B 343 −14.008 44.987 48.422 1.00 43.25 B O
    ATOM 4131 N GLY B 344 −13.452 46.815 49.594 1.00 38.93 B N
    ATOM 4132 CA GLY B 344 −13.107 46.068 50.790 1.00 41.21 B C
    ATOM 4133 C GLY B 344 −13.843 46.525 52.032 1.00 44.97 B C
    ATOM 4134 O GLY B 344 −13.740 47.678 52.461 1.00 48.19 B O
    ATOM 4135 N VAL B 345 −14.597 45.616 52.624 1.00 45.74 B N
    ATOM 4136 CA VAL B 345 −15.332 45.943 53.832 1.00 48.71 B C
    ATOM 4137 CB VAL B 345 −16.716 45.237 53.825 1.00 50.32 B C
    ATOM 4138 CG1 VAL B 345 −17.159 44.856 55.218 1.00 55.50 B C
    ATOM 4139 CG2 VAL B 345 −17.767 46.121 53.156 1.00 45.23 B C
    ATOM 4140 C VAL B 345 −14.451 45.610 55.052 1.00 48.69 B C
    ATOM 4141 O VAL B 345 −14.153 44.437 55.309 1.00 47.46 B O
    ATOM 4142 N PHE B 346 −14.016 46.649 55.771 1.00 48.12 B N
    ATOM 4143 CA PHE B 346 −13.022 46.509 56.854 1.00 49.20 B C
    ATOM 4144 CB PHE B 346 −11.926 47.575 56.748 1.00 46.30 B C
    ATOM 4145 CG PHE B 346 −11.031 47.408 55.565 1.00 45.81 B C
    ATOM 4146 CD1 PHE B 346 −11.440 47.830 54.302 1.00 44.17 B C
    ATOM 4147 CE1 PHE B 346 −10.620 47.672 53.191 1.00 45.65 B C
    ATOM 4148 CZ PHE B 346 −9.370 47.097 53.336 1.00 47.76 B C
    ATOM 4149 CE2 PHE B 346 −8.946 46.666 54.600 1.00 49.85 B C
    ATOM 4150 CD2 PHE B 346 −9.779 46.829 55.707 1.00 48.05 B C
    ATOM 4151 C PHE B 346 −13.651 46.587 58.232 1.00 51.63 B C
    ATOM 4152 O PHE B 346 −14.873 46.585 58.350 1.00 59.52 B O
    ATOM 4153 N ALA B 347 −12.811 46.667 59.265 1.00 47.44 B N
    ATOM 4154 CA ALA B 347 −13.259 46.670 60.658 1.00 45.63 B C
    ATOM 4155 CB ALA B 347 −13.910 45.331 61.020 1.00 41.64 B C
    ATOM 4156 C ALA B 347 −12.119 46.991 61.633 1.00 48.68 B C
    ATOM 4157 O ALA B 347 −10.939 46.742 61.340 1.00 52.11 B O
    ATOM 4158 N GLN B 348 −12.485 47.528 62.797 1.00 46.37 B N
    ATOM 4159 CA GLN B 348 −11.523 47.935 63.812 1.00 46.50 B C
    ATOM 4160 CB GLN B 348 −12.030 49.163 64.566 1.00 51.95 B C
    ATOM 4161 CG GLN B 348 −11.016 49.802 65.518 1.00 56.38 B C
    ATOM 4162 CD GLN B 348 −11.488 51.143 66.055 1.00 59.58 B C
    ATOM 4163 OE1 GLN B 348 −12.351 51.198 66.933 1.00 61.38 B O
    ATOM 4164 NE2 GLN B 348 −10.925 52.227 65.528 1.00 60.96 B N
    ATOM 4165 C GLN B 348 −11.204 46.810 64.789 1.00 45.95 B C
    ATOM 4166 O GLN B 348 −12.095 46.089 65.248 1.00 45.26 B O
    ATOM 4167 N SER B 349 −9.916 46.688 65.099 1.00 45.22 B N
    ATOM 4168 CA SER B 349 −9.389 45.665 65.979 1.00 42.27 B C
    ATOM 4169 CB SER B 349 −7.881 45.644 65.851 1.00 41.04 B C
    ATOM 4170 OG SER B 349 −7.369 44.411 66.289 1.00 44.60 B O
    ATOM 4171 C SER B 349 −9.716 45.944 67.426 1.00 45.73 B C
    ATOM 4172 O SER B 349 −9.662 47.092 67.871 1.00 45.84 B O
    ATOM 4173 N LYS B 350 −10.060 44.886 68.157 1.00 49.08 B N
    ATOM 4174 CA LYS B 350 −10.035 44.916 69.614 1.00 51.24 B C
    ATOM 4175 CB LYS B 350 −10.611 43.627 70.201 1.00 54.70 B C
    ATOM 4176 CG LYS B 350 −12.127 43.567 70.242 1.00 59.23 B C
    ATOM 4177 CD LYS B 350 −12.620 42.165 70.587 1.00 63.81 B C
    ATOM 4178 CE LYS B 350 −14.036 42.200 71.153 1.00 68.32 B C
    ATOM 4179 NZ LYS B 350 −14.042 42.442 72.637 1.00 72.71 B N
    ATOM 4180 C LYS B 350 −8.562 45.042 69.985 1.00 51.58 B C
    ATOM 4181 O LYS B 350 −7.743 44.261 69.496 1.00 50.93 B O
    ATOM 4182 N PRO B 351 −8.211 46.015 70.826 1.00 52.22 B N
    ATOM 4183 CA PRO B 351 −6.802 46.361 71.048 1.00 52.90 B C
    ATOM 4184 CB PRO B 351 −6.872 47.347 72.200 1.00 50.68 B C
    ATOM 4185 CG PRO B 351 −8.197 47.984 72.011 1.00 50.11 B C
    ATOM 4186 CD PRO B 351 −9.110 46.859 71.633 1.00 50.04 B C
    ATOM 4187 C PRO B 351 −5.928 45.154 71.384 1.00 56.85 B C
    ATOM 4188 O PRO B 351 −6.322 44.304 72.189 1.00 55.91 B O
    ATOM 4189 N ASP B 352 −4.771 45.091 70.719 1.00 61.69 B N
    ATOM 4190 CA ASP B 352 −3.788 44.001 70.824 1.00 63.92 B C
    ATOM 4191 CB ASP B 352 −3.288 43.827 72.271 1.00 69.49 B C
    ATOM 4192 CG ASP B 352 −2.046 44.660 72.572 1.00 73.65 B C
    ATOM 4193 OD1 ASP B 352 −2.038 45.865 72.230 1.00 75.00 B O
    ATOM 4194 OD2 ASP B 352 −1.033 44.199 73.155 1.00 75.16 B O
    ATOM 4195 C ASP B 352 −4.265 42.667 70.249 1.00 60.93 B C
    ATOM 4196 O ASP B 352 −3.705 41.618 70.565 1.00 58.50 B O
    ATOM 4197 N SER B 353 −5.277 42.712 69.385 1.00 61.20 B N
    ATOM 4198 CA SER B 353 −5.843 41.487 68.817 1.00 61.71 B C
    ATOM 4199 CB SER B 353 −7.135 41.103 69.553 1.00 64.07 B C
    ATOM 4200 OG SER B 353 −8.282 41.293 68.734 1.00 64.99 B O
    ATOM 4201 C SER B 353 −6.077 41.526 67.301 1.00 58.70 B C
    ATOM 4202 O SER B 353 −5.708 42.488 66.620 1.00 56.25 B O
    ATOM 4203 N ALA B 354 −6.695 40.455 66.805 1.00 57.57 B N
    ATOM 4204 CA ALA B 354 −7.019 40.273 65.397 1.00 56.61 B C
    ATOM 4205 CB ALA B 354 −6.290 39.073 64.876 1.00 56.85 B C
    ATOM 4206 C ALA B 354 −8.524 40.089 65.214 1.00 56.79 B C
    ATOM 4207 O ALA B 354 −9.046 40.181 64.099 1.00 55.29 B O
    ATOM 4208 N GLU B 355 −9.200 39.810 66.323 1.00 59.16 B N
    ATOM 4209 CA GLU B 355 −10.652 39.736 66.385 1.00 62.50 B C
    ATOM 4210 CB GLU B 355 −11.094 39.174 67.741 1.00 70.39 B C
    ATOM 4211 CG GLU B 355 −10.388 37.885 68.155 1.00 78.56 B C
    ATOM 4212 CD GLU B 355 −9.384 38.086 69.291 1.00 84.21 B C
    ATOM 4213 OE1 GLU B 355 −9.792 38.558 70.380 1.00 85.26 B O
    ATOM 4214 OE2 GLU B 355 −8.183 37.763 69.103 1.00 86.79 B O
    ATOM 4215 C GLU B 355 −11.253 41.128 66.174 1.00 58.99 B C
    ATOM 4216 O GLU B 355 −10.697 42.127 66.640 1.00 58.55 B O
    ATOM 4217 N PRO B 356 −12.374 41.198 65.461 1.00 55.08 B N
    ATOM 4218 CA PRO B 356 −12.996 42.476 65.127 1.00 52.43 B C
    ATOM 4219 CB PRO B 356 −13.608 42.192 63.759 1.00 51.64 B C
    ATOM 4220 CG PRO B 356 −13.989 40.748 63.817 1.00 52.95 B C
    ATOM 4221 CD PRO B 356 −13.127 40.076 64.878 1.00 55.18 B C
    ATOM 4222 C PRO B 356 −14.100 42.892 66.088 1.00 52.14 B C
    ATOM 4223 O PRO B 356 −14.894 42.060 66.535 1.00 50.25 B O
    ATOM 4224 N MET B 357 −14.141 44.186 66.380 1.00 53.89 B N
    ATOM 4225 CA MET B 357 −15.249 44.794 67.102 1.00 57.79 B C
    ATOM 4226 CB MET B 357 −14.761 46.051 67.811 1.00 61.40 B C
    ATOM 4227 CG MET B 357 −14.551 45.873 69.292 1.00 64.49 B C
    ATOM 4228 SD MET B 357 −13.841 47.351 69.981 1.00 68.87 B S
    ATOM 4229 CE MET B 357 −15.363 48.302 70.459 1.00 67.95 B C
    ATOM 4230 C MET B 357 −16.375 45.139 66.126 1.00 57.94 B C
    ATOM 4231 O MET B 357 −16.177 45.089 64.920 1.00 61.91 B O
    ATOM 4232 N ASP B 358 −17.548 45.501 66.632 1.00 57.25 B N
    ATOM 4233 CA ASP B 358 −18.677 45.819 65.759 1.00 57.76 B C
    ATOM 4234 CB ASP B 358 −20.000 45.655 66.519 1.00 63.05 B C
    ATOM 4235 CG ASP B 358 −20.349 44.196 66.788 1.00 67.73 B C
    ATOM 4236 OD1 ASP B 358 −21.292 43.955 67.575 1.00 69.44 B O
    ATOM 4237 OD2 ASP B 358 −19.744 43.225 66.267 1.00 69.02 B O
    ATOM 4238 C ASP B 358 −18.578 47.214 65.124 1.00 56.07 B C
    ATOM 4239 O ASP B 358 −19.547 47.966 65.108 1.00 55.88 B O
    ATOM 4240 N ARG B 359 −17.403 47.550 64.599 1.00 55.50 B N
    ATOM 4241 CA ARG B 359 −17.165 48.841 63.956 1.00 57.49 B C
    ATOM 4242 CB ARG B 359 −16.070 49.611 64.702 1.00 58.09 B C
    ATOM 4243 CG ARG B 359 −16.531 50.420 65.893 1.00 59.68 B C
    ATOM 4244 CD ARG B 359 −15.554 51.509 66.290 1.00 62.07 B C
    ATOM 4245 NE ARG B 359 −16.131 52.845 66.143 1.00 66.02 B N
    ATOM 4246 CZ ARG B 359 −15.538 53.872 65.536 1.00 66.88 B C
    ATOM 4247 NH1 ARG B 359 −14.331 53.736 64.998 1.00 66.41 B N
    ATOM 4248 NH2 ARG B 359 −16.158 55.047 65.465 1.00 67.49 B N
    ATOM 4249 C ARG B 359 −16.728 48.625 62.507 1.00 58.84 B C
    ATOM 4250 O ARG B 359 −15.655 48.081 62.255 1.00 61.46 B O
    ATOM 4251 N SER B 360 −17.541 49.050 61.550 1.00 57.61 B N
    ATOM 4252 CA SER B 360 −17.193 48.821 60.158 1.00 57.19 B C
    ATOM 4253 CB SER B 360 −18.198 47.882 59.505 1.00 57.10 B C
    ATOM 4254 OG SER B 360 −18.169 46.613 60.119 1.00 56.60 B O
    ATOM 4255 C SER B 360 −17.070 50.085 59.332 1.00 60.28 B C
    ATOM 4256 O SER B 360 −17.589 51.143 59.696 1.00 61.65 B O
    ATOM 4257 N ALA B 361 −16.377 49.946 58.205 1.00 63.10 B N
    ATOM 4258 CA ALA B 361 −16.225 51.004 57.212 1.00 64.03 B C
    ATOM 4259 CB ALA B 361 −15.295 52.077 57.727 1.00 66.25 B C
    ATOM 4260 C ALA B 361 −15.648 50.377 55.960 1.00 61.46 B C
    ATOM 4261 O ALA B 361 −14.620 49.716 56.035 1.00 66.20 B O
    ATOM 4262 N MET B 362 −16.309 50.559 54.820 1.00 56.08 B N
    ATOM 4263 CA MET B 362 −15.803 50.023 53.559 1.00 51.84 B C
    ATOM 4264 CB MET B 362 −16.939 49.477 52.711 1.00 49.64 B C
    ATOM 4265 CG MET B 362 −16.540 49.118 51.303 1.00 47.97 B C
    ATOM 4266 SD MET B 362 −17.156 50.314 50.155 1.00 48.28 B S
    ATOM 4267 CE MET B 362 −15.969 50.265 48.955 1.00 50.81 B C
    ATOM 4268 C MET B 362 −15.074 51.106 52.794 1.00 49.81 B C
    ATOM 4269 O MET B 362 −15.430 52.274 52.905 1.00 52.45 B O
    ATOM 4270 N CYS B 363 −14.044 50.719 52.044 1.00 45.97 B N
    ATOM 4271 CA CYS B 363 −13.360 51.642 51.143 1.00 47.77 B C
    ATOM 4272 CB CYS B 363 −12.450 52.634 51.889 1.00 49.60 B C
    ATOM 4273 SG CYS B 363 −11.206 51.931 52.980 1.00 56.58 B S
    ATOM 4274 C CYS B 363 −12.653 50.921 49.997 1.00 48.50 B C
    ATOM 4275 O CYS B 363 −12.271 49.753 50.119 1.00 44.35 B O
    ATOM 4276 N ALA B 364 −12.503 51.636 48.879 1.00 50.42 B N
    ATOM 4277 CA ALA B 364 −12.252 51.017 47.577 1.00 49.03 B C
    ATOM 4278 CB ALA B 364 −13.368 51.371 46.627 1.00 49.45 B C
    ATOM 4279 C ALA B 364 −10.920 51.392 46.954 1.00 48.18 B C
    ATOM 4280 O ALA B 364 −10.594 52.572 46.847 1.00 51.58 B O
    ATOM 4281 N PHE B 365 −10.175 50.382 46.515 1.00 44.80 B N
    ATOM 4282 CA PHE B 365 −8.870 50.579 45.904 1.00 41.71 B C
    ATOM 4283 CB PHE B 365 −7.861 49.703 46.606 1.00 41.63 B C
    ATOM 4284 CG PHE B 365 −7.780 49.938 48.067 1.00 45.47 B C
    ATOM 4285 CD1 PHE B 365 −8.780 49.470 48.913 1.00 48.02 B C
    ATOM 4286 CE1 PHE B 365 −8.706 49.681 50.272 1.00 48.86 B C
    ATOM 4287 CZ PHE B 365 −7.619 50.366 50.797 1.00 49.81 B C
    ATOM 4288 CE2 PHE B 365 −6.612 50.836 49.956 1.00 47.81 B C
    ATOM 4289 CD2 PHE B 365 −6.697 50.618 48.605 1.00 45.32 B C
    ATOM 4290 C PHE B 365 −8.901 50.138 44.463 1.00 43.46 B C
    ATOM 4291 O PHE B 365 −9.124 48.964 44.205 1.00 51.12 B O
    ATOM 4292 N PRO B 366 −8.690 51.037 43.508 1.00 39.40 B N
    ATOM 4293 CA PRO B 366 −8.539 50.607 42.121 1.00 42.33 B C
    ATOM 4294 CB PRO B 366 −8.555 51.925 41.343 1.00 35.18 B C
    ATOM 4295 CG PRO B 366 −9.128 52.865 42.252 1.00 32.75 B C
    ATOM 4296 CD PRO B 366 −8.598 52.494 43.612 1.00 36.60 B C
    ATOM 4297 C PRO B 366 −7.199 49.893 41.996 1.00 46.12 B C
    ATOM 4298 O PRO B 366 −6.173 50.396 42.483 1.00 44.02 B O
    ATOM 4299 N ILE B 367 −7.211 48.714 41.382 1.00 48.74 B N
    ATOM 4300 CA ILE B 367 −5.995 47.916 41.347 1.00 50.89 B C
    ATOM 4301 CB ILE B 367 −6.237 46.423 40.917 1.00 49.40 B C
    ATOM 4302 CG1 ILE B 367 −6.395 46.283 39.406 1.00 55.32 B C
    ATOM 4303 CD1 ILE B 367 −5.207 45.601 38.745 1.00 59.97 B C
    ATOM 4304 CG2 ILE B 367 −7.430 45.816 41.639 1.00 44.92 B C
    ATOM 4305 C ILE B 367 −4.934 48.625 40.515 1.00 51.72 B C
    ATOM 4306 O ILE B 367 −3.738 48.383 40.690 1.00 54.19 B O
    ATOM 4307 N LYS B 368 −5.376 49.526 39.637 1.00 50.99 B N
    ATOM 4308 CA LYS B 368 −4.440 50.293 38.828 1.00 51.13 B C
    ATOM 4309 CB LYS B 368 −5.170 51.118 37.760 1.00 50.48 B C
    ATOM 4310 CG LYS B 368 −4.782 52.580 37.653 1.00 53.35 B C
    ATOM 4311 CD LYS B 368 −6.001 53.489 37.860 1.00 58.19 B C
    ATOM 4312 CE LYS B 368 −6.688 53.898 36.542 1.00 60.10 B C
    ATOM 4313 NZ LYS B 368 −6.615 55.367 36.294 1.00 61.31 B N
    ATOM 4314 C LYS B 368 −3.515 51.116 39.726 1.00 50.15 B C
    ATOM 4315 O LYS B 368 −2.324 51.206 39.449 1.00 51.42 B O
    ATOM 4316 N TYR B 369 −4.051 51.660 40.821 1.00 49.60 B N
    ATOM 4317 CA TYR B 369 −3.243 52.431 41.775 1.00 49.84 B C
    ATOM 4318 CB TYR B 369 −4.095 53.424 42.574 1.00 54.03 B C
    ATOM 4319 CG TYR B 369 −4.700 54.486 41.694 1.00 58.71 B C
    ATOM 4320 CD1 TYR B 369 −5.959 55.017 41.963 1.00 58.12 B C
    ATOM 4321 CE1 TYR B 369 −6.513 55.977 41.129 1.00 59.82 B C
    ATOM 4322 CZ TYR B 369 −5.801 56.412 40.013 1.00 61.33 B C
    ATOM 4323 OH TYR B 369 −6.323 57.357 39.169 1.00 62.86 B O
    ATOM 4324 CE2 TYR B 369 −4.554 55.905 39.731 1.00 62.39 B C
    ATOM 4325 CD2 TYR B 369 −4.013 54.944 40.565 1.00 62.25 B C
    ATOM 4326 C TYR B 369 −2.438 51.545 42.700 1.00 48.25 B C
    ATOM 4327 O TYR B 369 −1.279 51.838 42.987 1.00 49.03 B O
    ATOM 4328 N VAL B 370 −3.051 50.460 43.160 1.00 46.31 B N
    ATOM 4329 CA VAL B 370 −2.331 49.415 43.882 1.00 44.83 B C
    ATOM 4330 CB VAL B 370 −3.176 48.117 44.009 1.00 44.32 B C
    ATOM 4331 CG1 VAL B 370 −2.517 47.119 44.953 1.00 43.89 B C
    ATOM 4332 CG2 VAL B 370 −4.592 48.429 44.475 1.00 43.16 B C
    ATOM 4333 C VAL B 370 −0.990 49.109 43.189 1.00 43.84 B C
    ATOM 4334 O VAL B 370 0.059 49.178 43.826 1.00 44.09 B O
    ATOM 4335 N ASN B 371 −1.033 48.799 41.891 1.00 41.71 B N
    ATOM 4336 CA ASN B 371 0.172 48.541 41.107 1.00 43.99 B C
    ATOM 4337 CB ASN B 371 −0.171 48.212 39.657 1.00 45.83 B C
    ATOM 4338 CG ASN B 371 −0.936 46.929 39.522 1.00 48.53 B C
    ATOM 4339 OD1 ASN B 371 −0.773 46.014 40.321 1.00 50.49 B O
    ATOM 4340 ND2 ASN B 371 −1.786 46.850 38.506 1.00 51.01 B N
    ATOM 4341 C ASN B 371 1.160 49.694 41.125 1.00 48.30 B C
    ATOM 4342 O ASN B 371 2.359 49.486 41.293 1.00 49.07 B O
    ATOM 4343 N ASP B 372 0.663 50.911 40.938 1.00 52.74 B N
    ATOM 4344 CA ASP B 372 1.534 52.076 40.962 1.00 58.36 B C
    ATOM 4345 CB ASP B 372 0.731 53.373 40.807 1.00 63.81 B C
    ATOM 4346 CG ASP B 372 0.061 53.483 39.447 1.00 67.32 B C
    ATOM 4347 OD1 ASP B 372 0.402 52.669 38.553 1.00 67.14 B O
    ATOM 4348 OD2 ASP B 372 −0.813 54.348 39.185 1.00 68.87 B O
    ATOM 4349 C ASP B 372 2.319 52.067 42.264 1.00 57.54 B C
    ATOM 4350 O ASP B 372 3.553 52.110 42.254 1.00 59.02 B O
    ATOM 4351 N PHE B 373 1.592 51.959 43.374 1.00 54.22 B N
    ATOM 4352 CA PHE B 373 2.191 51.901 44.695 1.00 54.15 B C
    ATOM 4353 CB PHE B 373 1.111 51.765 45.757 1.00 53.80 B C
    ATOM 4354 CG PHE B 373 1.442 52.457 47.035 1.00 53.26 B C
    ATOM 4355 CD1 PHE B 373 1.209 53.824 47.176 1.00 54.06 B C
    ATOM 4356 CE1 PHE B 373 1.520 54.477 48.359 1.00 55.19 B C
    ATOM 4357 CZ PHE B 373 2.072 53.754 49.416 1.00 56.46 B C
    ATOM 4358 CE2 PHE B 373 2.312 52.380 49.281 1.00 53.58 B C
    ATOM 4359 CD2 PHE B 373 1.997 51.747 48.096 1.00 51.74 B C
    ATOM 4360 C PHE B 373 3.197 50.765 44.829 1.00 57.41 B C
    ATOM 4361 O PHE B 373 4.187 50.899 45.545 1.00 60.76 B O
    ATOM 4362 N PHE B 374 2.942 49.656 44.138 1.00 58.65 B N
    ATOM 4363 CA PHE B 374 3.855 48.522 44.119 1.00 58.06 B C
    ATOM 4364 CB PHE B 374 3.154 47.283 43.576 1.00 54.16 B C
    ATOM 4365 CG PHE B 374 2.540 46.410 44.628 1.00 52.99 B C
    ATOM 4366 CD1 PHE B 374 1.197 46.080 44.568 1.00 52.81 B C
    ATOM 4367 CE1 PHE B 374 0.626 45.258 45.527 1.00 51.49 B C
    ATOM 4368 CZ PHE B 374 1.400 44.746 46.555 1.00 50.43 B C
    ATOM 4369 CE2 PHE B 374 2.737 45.053 46.621 1.00 50.67 B C
    ATOM 4370 CD2 PHE B 374 3.305 45.879 45.655 1.00 53.35 B C
    ATOM 4371 C PHE B 374 5.072 48.814 43.251 1.00 65.91 B C
    ATOM 4372 O PHE B 374 6.194 48.497 43.642 1.00 69.66 B O
    ATOM 4373 N ASN B 375 4.850 49.420 42.083 1.00 72.20 B N
    ATOM 4374 CA ASN B 375 5.911 49.628 41.089 1.00 79.93 B C
    ATOM 4375 CB ASN B 375 5.318 49.842 39.690 1.00 82.27 B C
    ATOM 4376 CG ASN B 375 4.508 48.657 39.204 1.00 85.14 B C
    ATOM 4377 OD1 ASN B 375 4.745 47.514 39.600 1.00 85.93 B O
    ATOM 4378 ND2 ASN B 375 3.538 48.927 38.335 1.00 86.47 B N
    ATOM 4379 C ASN B 375 6.882 50.771 41.388 1.00 85.35 B C
    ATOM 4380 O ASN B 375 8.100 50.578 41.353 1.00 88.87 B O
    ATOM 4381 N LYS B 376 6.338 51.951 41.679 1.00 86.99 B N
    ATOM 4382 CA LYS B 376 7.123 53.186 41.734 1.00 89.89 B C
    ATOM 4383 CB LYS B 376 6.193 54.394 41.939 1.00 93.49 B C
    ATOM 4384 CG LYS B 376 6.107 55.346 40.730 1.00 96.51 B C
    ATOM 4385 CD LYS B 376 5.448 54.695 39.504 1.00 98.20 B C
    ATOM 4386 CE LYS B 376 6.358 54.745 38.270 1.00 98.62 B C
    ATOM 4387 NZ LYS B 376 5.665 54.286 37.025 1.00 97.72 B N
    ATOM 4388 C LYS B 376 8.289 53.185 42.744 1.00 89.01 B C
    ATOM 4389 O LYS B 376 8.275 52.429 43.720 1.00 86.61 B O
    ATOM 4390 N ALA B 377 9.290 54.033 42.473 1.00 88.95 B N
    ATOM 4391 CA ALA B 377 10.514 54.155 43.277 1.00 86.04 B C
    ATOM 4392 CB ALA B 377 11.636 54.795 42.452 1.00 83.79 B C
    ATOM 4393 C ALA B 377 10.297 54.934 44.574 1.00 83.26 B C
    ATOM 4394 O ALA B 377 9.772 56.046 44.566 1.00 80.21 B O
    ATOM 4395 N ASN B 382 12.804 52.854 52.307 1.00 90.79 B N
    ATOM 4396 CA ASN B 382 11.818 52.620 51.256 1.00 93.43 B C
    ATOM 4397 CB ASN B 382 12.470 52.774 49.864 1.00 95.86 B C
    ATOM 4398 CG ASN B 382 11.509 52.453 48.697 1.00 96.25 B C
    ATOM 4399 OD1 ASN B 382 11.915 51.847 47.699 1.00 94.77 B O
    ATOM 4400 ND2 ASN B 382 10.249 52.878 48.812 1.00 95.05 B N
    ATOM 4401 C ASN B 382 11.112 51.263 51.392 1.00 91.79 B C
    ATOM 4402 O ASN B 382 9.929 51.201 51.741 1.00 90.56 B O
    ATOM 4403 N VAL B 383 11.853 50.188 51.127 1.00 90.36 B N
    ATOM 4404 CA VAL B 383 11.295 48.840 51.019 1.00 88.88 B C
    ATOM 4405 CB VAL B 383 11.441 48.311 49.569 1.00 87.27 B C
    ATOM 4406 CG1 VAL B 383 11.215 46.818 49.500 1.00 85.52 B C
    ATOM 4407 CG2 VAL B 383 10.485 49.030 48.636 1.00 88.67 B C
    ATOM 4408 C VAL B 383 11.986 47.870 51.980 1.00 89.70 B C
    ATOM 4409 O VAL B 383 13.212 47.750 51.970 1.00 92.76 B O
    ATOM 4410 N ARG B 384 11.202 47.177 52.802 1.00 87.96 B N
    ATOM 4411 CA ARG B 384 11.750 46.185 53.731 1.00 85.72 B C
    ATOM 4412 CB ARG B 384 10.849 46.045 54.964 1.00 83.28 B C
    ATOM 4413 CG ARG B 384 11.590 46.085 56.284 1.00 80.78 B C
    ATOM 4414 CD ARG B 384 10.782 45.579 57.471 1.00 80.11 B C
    ATOM 4415 NE ARG B 384 10.595 46.597 58.506 1.00 81.51 B N
    ATOM 4416 CZ ARG B 384 11.545 47.036 59.340 1.00 82.35 B C
    ATOM 4417 NH1 ARG B 384 12.786 46.561 59.284 1.00 81.49 B N
    ATOM 4418 NH2 ARG B 384 11.250 47.966 60.240 1.00 82.81 B N
    ATOM 4419 C ARG B 384 11.964 44.825 53.047 1.00 86.09 B C
    ATOM 4420 O ARG B 384 11.932 44.721 51.819 1.00 85.04 B O
    ATOM 4421 N CYS B 385 12.196 43.792 53.850 1.00 86.91 B N
    ATOM 4422 CA CYS B 385 12.377 42.437 53.342 1.00 86.40 B C
    ATOM 4423 CB CYS B 385 13.867 42.059 53.361 1.00 93.48 B C
    ATOM 4424 SG CYS B 385 14.337 40.488 54.130 1.00 101.78 B S
    ATOM 4425 C CYS B 385 11.491 41.475 54.140 1.00 80.84 B C
    ATOM 4426 O CYS B 385 11.177 41.727 55.311 1.00 79.23 B O
    ATOM 4427 N LEU B 386 11.090 40.382 53.494 1.00 75.98 B N
    ATOM 4428 CA LEU B 386 10.003 39.531 53.983 1.00 72.77 B C
    ATOM 4429 CB LEU B 386 9.596 38.520 52.914 1.00 72.03 B C
    ATOM 4430 CG LEU B 386 8.101 38.539 52.625 1.00 70.14 B C
    ATOM 4431 CD1 LEU B 386 7.773 39.669 51.661 1.00 70.58 B C
    ATOM 4432 CD2 LEU B 386 7.654 37.199 52.078 1.00 69.14 B C
    ATOM 4433 C LEU B 386 10.306 38.817 55.285 1.00 70.79 B C
    ATOM 4434 O LEU B 386 10.760 37.674 55.285 1.00 70.38 B O
    ATOM 4435 N GLN B 387 10.008 39.491 56.390 1.00 70.99 B N
    ATOM 4436 CA GLN B 387 10.450 39.070 57.719 1.00 71.21 B C
    ATOM 4437 CB GLN B 387 10.000 40.081 58.770 1.00 76.73 B C
    ATOM 4438 CG GLN B 387 11.090 40.472 59.747 1.00 83.54 B C
    ATOM 4439 CD GLN B 387 11.192 41.970 59.922 1.00 89.26 B C
    ATOM 4440 OE1 GLN B 387 10.956 42.502 61.017 1.00 90.36 B O
    ATOM 4441 NE2 GLN B 387 11.542 42.663 58.840 1.00 92.01 B N
    ATOM 4442 C GLN B 387 10.031 37.666 58.147 1.00 66.69 B C
    ATOM 4443 O GLN B 387 10.724 37.032 58.945 1.00 67.30 B O
    ATOM 4444 N HIS B 388 8.915 37.180 57.616 1.00 61.67 B N
    ATOM 4445 CA HIS B 388 8.366 35.889 58.029 1.00 60.32 B C
    ATOM 4446 CB HIS B 388 6.842 35.962 58.010 1.00 65.91 B C
    ATOM 4447 CG HIS B 388 6.284 36.234 56.652 1.00 75.18 B C
    ATOM 4448 ND1 HIS B 388 5.974 37.506 56.219 1.00 77.75 B N
    ATOM 4449 CE1 HIS B 388 5.524 37.441 54.977 1.00 80.74 B C
    ATOM 4450 NE2 HIS B 388 5.545 36.177 54.584 1.00 78.94 B N
    ATOM 4451 CD2 HIS B 388 6.024 35.403 55.612 1.00 77.60 B C
    ATOM 4452 C HIS B 388 8.850 34.697 57.178 1.00 55.01 B C
    ATOM 4453 O HIS B 388 8.593 33.542 57.521 1.00 50.27 B O
    ATOM 4454 N PHE B 389 9.544 34.986 56.080 1.00 53.61 B N
    ATOM 4455 CA PHE B 389 9.953 33.963 55.114 1.00 55.30 B C
    ATOM 4456 CB PHE B 389 9.411 34.301 53.714 1.00 57.26 B C
    ATOM 4457 CG PHE B 389 10.279 33.799 52.569 1.00 59.85 B C
    ATOM 4458 CD1 PHE B 389 10.133 32.498 52.076 1.00 61.44 B C
    ATOM 4459 CE1 PHE B 389 10.916 32.030 51.012 1.00 60.58 B C
    ATOM 4460 CZ PHE B 389 11.858 32.870 50.432 1.00 60.77 B C
    ATOM 4461 CE2 PHE B 389 12.015 34.169 50.914 1.00 60.24 B C
    ATOM 4462 CD2 PHE B 389 11.227 34.630 51.973 1.00 59.50 B C
    ATOM 4463 C PHE B 389 11.468 33.805 55.069 1.00 53.57 B C
    ATOM 4464 O PHE B 389 11.984 32.686 54.991 1.00 48.22 B O
    ATOM 4465 N TYR B 390 12.153 34.946 55.046 1.00 56.37 B N
    ATOM 4466 CA TYR B 390 13.584 35.028 55.271 1.00 60.65 B C
    ATOM 4467 CB TYR B 390 14.151 36.311 54.664 1.00 60.39 B C
    ATOM 4468 CG TYR B 390 14.215 36.368 53.159 1.00 62.98 B C
    ATOM 4469 CD1 TYR B 390 13.526 37.355 52.456 1.00 65.15 B C
    ATOM 4470 CE1 TYR B 390 13.591 37.427 51.067 1.00 67.84 B C
    ATOM 4471 CZ TYR B 390 14.363 36.508 50.366 1.00 68.16 B C
    ATOM 4472 OH TYR B 390 14.427 36.572 48.991 1.00 69.28 B O
    ATOM 4473 CE2 TYR B 390 15.068 35.524 51.043 1.00 66.83 B C
    ATOM 4474 CD2 TYR B 390 14.992 35.462 52.435 1.00 65.28 B C
    ATOM 4475 C TYR B 390 13.731 35.137 56.769 1.00 65.50 B C
    ATOM 4476 O TYR B 390 12.737 35.284 57.478 1.00 66.93 B O
    ATOM 4477 N GLY B 391 14.962 35.092 57.262 1.00 70.76 B N
    ATOM 4478 CA GLY B 391 15.203 35.522 58.625 1.00 79.44 B C
    ATOM 4479 C GLY B 391 14.958 37.024 58.689 1.00 85.18 B C
    ATOM 4480 O GLY B 391 14.863 37.674 57.641 1.00 83.68 B O
    ATOM 4481 N PRO B 392 14.818 37.584 59.891 1.00 89.97 B N
    ATOM 4482 CA PRO B 392 15.016 39.027 60.065 1.00 92.05 B C
    ATOM 4483 CB PRO B 392 14.600 39.273 61.519 1.00 91.69 B C
    ATOM 4484 CG PRO B 392 13.798 38.075 61.895 1.00 91.59 B C
    ATOM 4485 CD PRO B 392 14.429 36.928 61.153 1.00 91.23 B C
    ATOM 4486 C PRO B 392 16.499 39.320 59.860 1.00 94.53 B C
    ATOM 4487 O PRO B 392 16.865 40.438 59.504 1.00 94.28 B O
    ATOM 4488 N ASN B 393 17.330 38.299 60.064 1.00 97.98 B N
    ATOM 4489 CA ASN B 393 18.761 38.395 59.835 1.00 103.04 B C
    ATOM 4490 CB ASN B 393 19.524 38.000 61.103 1.00 104.26 B C
    ATOM 4491 CG ASN B 393 19.878 39.199 61.973 1.00 105.22 B C
    ATOM 4492 OD1 ASN B 393 21.012 39.330 62.437 1.00 105.99 B O
    ATOM 4493 ND2 ASN B 393 18.905 40.079 62.202 1.00 104.86 B N
    ATOM 4494 C ASN B 393 19.214 37.556 58.641 1.00 106.92 B C
    ATOM 4495 O ASN B 393 18.390 37.010 57.904 1.00 104.77 B O
    ATOM 4496 N HIS B 394 20.534 37.468 58.472 1.00 114.08 B N
    ATOM 4497 CA HIS B 394 21.197 36.791 57.343 1.00 120.13 B C
    ATOM 4498 CB HIS B 394 20.898 35.274 57.299 1.00 122.25 B C
    ATOM 4499 CG HIS B 394 22.118 34.407 57.441 1.00 123.57 B C
    ATOM 4500 ND1 HIS B 394 22.990 34.510 58.507 1.00 123.45 B N
    ATOM 4501 CE1 HIS B 394 23.963 33.626 58.367 1.00 123.00 B C
    ATOM 4502 NE2 HIS B 394 23.755 32.951 57.251 1.00 123.36 B N
    ATOM 4503 CD2 HIS B 394 22.608 33.419 56.653 1.00 123.77 B C
    ATOM 4504 C HIS B 394 20.967 37.477 55.982 1.00 121.03 B C
    ATOM 4505 O HIS B 394 20.172 38.420 55.871 1.00 120.31 B O
    ATOM 4506 N GLU B 395 21.685 36.987 54.967 1.00 122.26 B N
    ATOM 4507 CA GLU B 395 21.757 37.598 53.636 1.00 124.02 B C
    ATOM 4508 CB GLU B 395 22.643 36.767 52.686 1.00 124.48 B C
    ATOM 4509 CG GLU B 395 23.282 35.525 53.293 1.00 125.18 B C
    ATOM 4510 CD GLU B 395 24.693 35.779 53.798 1.00 125.91 B C
    ATOM 4511 OE1 GLU B 395 25.650 35.595 53.017 1.00 126.50 B O
    ATOM 4512 OE2 GLU B 395 24.848 36.160 54.978 1.00 125.56 B O
    ATOM 4513 C GLU B 395 20.390 37.865 52.995 1.00 125.92 B C
    ATOM 4514 O GLU B 395 19.347 37.484 53.544 1.00 127.28 B O
    ATOM 4515 N HIS B 396 20.416 38.503 51.822 1.00 125.20 B N
    ATOM 4516 CA HIS B 396 19.221 38.992 51.121 1.00 121.60 B C
    ATOM 4517 CB HIS B 396 18.197 37.877 50.851 1.00 121.80 B C
    ATOM 4518 CG HIS B 396 18.812 36.558 50.496 1.00 123.47 B C
    ATOM 4519 ND1 HIS B 396 19.370 36.304 49.262 1.00 124.95 B N
    ATOM 4520 CE1 HIS B 396 19.831 35.066 49.235 1.00 125.85 B C
    ATOM 4521 NE2 HIS B 396 19.596 34.509 50.410 1.00 126.04 B N
    ATOM 4522 CD2 HIS B 396 18.958 35.419 51.216 1.00 124.24 B C
    ATOM 4523 C HIS B 396 18.583 40.158 51.880 1.00 118.72 B C
    ATOM 4524 O HIS B 396 18.293 41.199 51.291 1.00 119.52 B O
    ATOM 4525 N CYS B 397 18.391 39.980 53.186 1.00 114.19 B N
    ATOM 4526 CA CYS B 397 17.796 40.999 54.042 1.00 110.17 B C
    ATOM 4527 CB CYS B 397 17.284 40.371 55.338 1.00 106.64 B C
    ATOM 4528 SG CYS B 397 15.560 40.767 55.731 1.00 102.28 B S
    ATOM 4529 C CYS B 397 18.761 42.148 54.341 1.00 110.73 B C
    ATOM 4530 O CYS B 397 18.333 43.281 54.567 1.00 110.81 B O
    ATOM 4531 N PHE B 398 20.057 41.852 54.346 1.00 111.68 B N
    ATOM 4532 CA PHE B 398 21.086 42.879 54.497 1.00 112.35 B C
    ATOM 4533 CB PHE B 398 22.096 42.466 55.579 1.00 110.38 B C
    ATOM 4534 CG PHE B 398 22.058 43.322 56.824 1.00 110.12 B C
    ATOM 4535 CD1 PHE B 398 20.857 43.849 57.302 1.00 109.64 B C
    ATOM 4536 CE1 PHE B 398 20.828 44.640 58.459 1.00 109.56 B C
    ATOM 4537 CZ PHE B 398 22.013 44.904 59.152 1.00 110.46 B C
    ATOM 4538 CE2 PHE B 398 23.220 44.380 58.687 1.00 110.54 B C
    ATOM 4539 CD2 PHE B 398 23.235 43.592 57.528 1.00 111.21 B C
    ATOM 4540 C PHE B 398 21.776 43.112 53.146 1.00 114.23 B C
    ATOM 4541 O PHE B 398 23.008 43.110 53.055 1.00 114.14 B O
    ATOM 4542 N ASN B 399 20.969 43.318 52.101 1.00 116.16 B N
    ATOM 4543 CA ASN B 399 21.465 43.388 50.719 1.00 116.83 B C
    ATOM 4544 CB ASN B 399 21.302 42.022 50.027 1.00 114.97 B C
    ATOM 4545 CG ASN B 399 22.618 41.273 49.877 1.00 112.37 B C
    ATOM 4546 OD1 ASN B 399 23.371 41.500 48.928 1.00 111.41 B O
    ATOM 4547 ND2 ASN B 399 22.890 40.365 50.808 1.00 110.93 B N
    ATOM 4548 C ASN B 399 20.875 44.521 49.840 1.00 117.60 B C
    ATOM 4549 O ASN B 399 21.156 45.702 50.067 1.00 116.73 B O
    ATOM 4550 N ARG B 400 20.057 44.136 48.853 1.00 118.44 B N
    ATOM 4551 CA ARG B 400 19.609 45.005 47.751 1.00 117.82 B C
    ATOM 4552 CB ARG B 400 18.609 46.074 48.216 1.00 115.30 B C
    ATOM 4553 CG ARG B 400 17.187 45.876 47.688 1.00 113.12 B C
    ATOM 4554 CD ARG B 400 17.015 46.104 46.189 1.00 111.57 B C
    ATOM 4555 NE ARG B 400 15.717 45.618 45.717 1.00 110.25 B N
    ATOM 4556 CZ ARG B 400 15.384 45.448 44.438 1.00 108.16 B C
    ATOM 4557 NH1 ARG B 400 16.249 45.723 43.469 1.00 108.42 B N
    ATOM 4558 NH2 ARG B 400 14.177 45.001 44.124 1.00 105.39 B N
    ATOM 4559 C ARG B 400 20.775 45.638 46.987 1.00 118.38 B C
    ATOM 4560 O ARG B 400 21.136 45.190 45.896 1.00 118.43 B O
    ATOM 4561 N ASP B 414 11.162 37.092 40.828 1.00 118.53 B N
    ATOM 4562 CA ASP B 414 12.040 35.945 40.646 1.00 121.11 B C
    ATOM 4563 CB ASP B 414 13.014 36.193 39.474 1.00 123.45 B C
    ATOM 4564 CG ASP B 414 13.127 34.999 38.521 1.00 124.03 B C
    ATOM 4565 OD1 ASP B 414 14.022 34.149 38.731 1.00 122.65 B O
    ATOM 4566 OD2 ASP B 414 12.384 34.840 37.523 1.00 124.38 B O
    ATOM 4567 C ASP B 414 12.803 35.641 41.943 1.00 121.30 B C
    ATOM 4568 O ASP B 414 12.532 34.639 42.607 1.00 120.92 B O
    ATOM 4569 N GLU B 415 13.726 36.531 42.314 1.00 121.17 B N
    ATOM 4570 CA GLU B 415 14.741 36.237 43.332 1.00 117.56 B C
    ATOM 4571 CB GLU B 415 16.122 36.716 42.865 1.00 118.51 B C
    ATOM 4572 CG GLU B 415 16.578 36.105 41.546 1.00 120.09 B C
    ATOM 4573 CD GLU B 415 17.038 34.664 41.688 1.00 120.61 B C
    ATOM 4574 OE1 GLU B 415 18.161 34.461 42.198 1.00 121.28 B O
    ATOM 4575 OE2 GLU B 415 16.286 33.739 41.289 1.00 119.11 B O
    ATOM 4576 C GLU B 415 14.441 36.780 44.730 1.00 113.94 B C
    ATOM 4577 O GLU B 415 14.597 36.062 45.716 1.00 112.85 B O
    ATOM 4578 N TYR B 416 14.019 38.040 44.809 1.00 111.10 B N
    ATOM 4579 CA TYR B 416 13.765 38.699 46.097 1.00 108.01 B C
    ATOM 4580 CB TYR B 416 14.486 40.060 46.204 1.00 116.70 B C
    ATOM 4581 CG TYR B 416 15.349 40.472 45.015 1.00 125.64 B C
    ATOM 4582 CD1 TYR B 416 14.876 40.373 43.691 1.00 128.98 B C
    ATOM 4583 CE1 TYR B 416 15.670 40.760 42.603 1.00 130.95 B C
    ATOM 4584 CZ TYR B 416 16.946 41.268 42.835 1.00 131.58 B C
    ATOM 4585 OH TYR B 416 17.732 41.657 41.774 1.00 131.74 B O
    ATOM 4586 CE2 TYR B 416 17.434 41.386 44.135 1.00 130.79 B C
    ATOM 4587 CD2 TYR B 416 16.634 40.992 45.217 1.00 128.48 B C
    ATOM 4588 C TYR B 416 12.270 38.849 46.436 1.00 98.37 B C
    ATOM 4589 O TYR B 416 11.403 38.858 45.550 1.00 97.84 B O
    ATOM 4590 N ARG B 417 11.996 38.971 47.732 1.00 86.10 B N
    ATOM 4591 CA ARG B 417 10.646 38.935 48.269 1.00 76.02 B C
    ATOM 4592 CB ARG B 417 10.423 37.608 48.995 1.00 72.99 B C
    ATOM 4593 CG ARG B 417 9.785 36.517 48.128 1.00 70.00 B C
    ATOM 4594 CD ARG B 417 10.764 35.574 47.442 1.00 65.42 B C
    ATOM 4595 NE ARG B 417 10.280 35.179 46.122 1.00 63.02 B N
    ATOM 4596 CZ ARG B 417 10.061 33.922 45.754 1.00 63.41 B C
    ATOM 4597 NH1 ARG B 417 10.286 32.924 46.600 1.00 64.27 B N
    ATOM 4598 NH2 ARG B 417 9.615 33.657 44.535 1.00 61.59 B N
    ATOM 4599 C ARG B 417 10.437 40.107 49.216 1.00 73.44 B C
    ATOM 4600 O ARG B 417 10.948 40.110 50.333 1.00 74.00 B O
    ATOM 4601 N THR B 418 9.654 41.086 48.768 1.00 72.29 B N
    ATOM 4602 CA THR B 418 9.659 42.430 49.350 1.00 71.34 B C
    ATOM 4603 CB THR B 418 9.921 43.475 48.234 1.00 74.11 B C
    ATOM 4604 OG1 THR B 418 9.420 42.981 46.983 1.00 77.18 B O
    ATOM 4605 CG2 THR B 418 11.413 43.622 47.967 1.00 74.10 B C
    ATOM 4606 C THR B 418 8.418 42.837 50.152 1.00 68.83 B C
    ATOM 4607 O THR B 418 7.307 42.872 49.640 1.00 69.50 B O
    ATOM 4608 N GLU B 419 8.637 43.152 51.420 1.00 68.82 B N
    ATOM 4609 CA GLU B 419 7.639 43.798 52.263 1.00 69.08 B C
    ATOM 4610 CB GLU B 419 7.934 43.489 53.731 1.00 71.63 B C
    ATOM 4611 CG GLU B 419 6.716 43.402 54.635 1.00 75.07 B C
    ATOM 4612 CD GLU B 419 7.003 42.674 55.942 1.00 78.09 B C
    ATOM 4613 OE1 GLU B 419 7.584 41.558 55.909 1.00 79.05 B O
    ATOM 4614 OE2 GLU B 419 6.639 43.218 57.008 1.00 79.41 B O
    ATOM 4615 C GLU B 419 7.699 45.313 52.040 1.00 68.22 B C
    ATOM 4616 O GLU B 419 8.740 45.850 51.659 1.00 69.26 B O
    ATOM 4617 N PHE B 420 6.584 45.996 52.275 1.00 66.82 B N
    ATOM 4618 CA PHE B 420 6.533 47.450 52.187 1.00 65.27 B C
    ATOM 4619 CB PHE B 420 5.407 47.905 51.254 1.00 65.84 B C
    ATOM 4620 CG PHE B 420 5.821 48.053 49.802 1.00 65.70 B C
    ATOM 4621 CD1 PHE B 420 6.559 47.058 49.154 1.00 67.04 B C
    ATOM 4622 CE1 PHE B 420 6.933 47.196 47.811 1.00 66.15 B C
    ATOM 4623 CZ PHE B 420 6.562 48.337 47.105 1.00 64.22 B C
    ATOM 4624 CE2 PHE B 420 5.818 49.325 47.737 1.00 63.92 B C
    ATOM 4625 CD2 PHE B 420 5.448 49.179 49.075 1.00 64.43 B C
    ATOM 4626 C PHE B 420 6.304 47.983 53.585 1.00 66.39 B C
    ATOM 4627 O PHE B 420 5.642 47.335 54.402 1.00 64.77 B O
    ATOM 4628 N THR B 421 6.856 49.162 53.855 1.00 68.67 B N
    ATOM 4629 CA THR B 421 6.843 49.736 55.198 1.00 68.95 B C
    ATOM 4630 CB THR B 421 8.187 50.410 55.504 1.00 70.44 B C
    ATOM 4631 OG1 THR B 421 8.945 50.546 54.295 1.00 71.76 B O
    ATOM 4632 CG2 THR B 421 9.049 49.497 56.363 1.00 71.22 B C
    ATOM 4633 C THR B 421 5.693 50.709 55.436 1.00 69.61 B C
    ATOM 4634 O THR B 421 5.372 51.011 56.583 1.00 70.63 B O
    ATOM 4635 N THR B 422 5.080 51.198 54.356 1.00 71.01 B N
    ATOM 4636 CA THR B 422 3.919 52.096 54.452 1.00 70.55 B C
    ATOM 4637 CB THR B 422 4.256 53.523 53.958 1.00 73.13 B C
    ATOM 4638 OG1 THR B 422 4.820 53.458 52.640 1.00 74.02 B O
    ATOM 4639 CG2 THR B 422 5.350 54.168 54.819 1.00 74.37 B C
    ATOM 4640 C THR B 422 2.705 51.584 53.681 1.00 66.95 B C
    ATOM 4641 O THR B 422 2.830 51.012 52.590 1.00 65.46 B O
    ATOM 4642 N ALA B 423 1.530 51.826 54.254 1.00 63.45 B N
    ATOM 4643 CA ALA B 423 0.263 51.413 53.655 1.00 59.07 B C
    ATOM 4644 CB ALA B 423 −0.817 51.297 54.727 1.00 58.52 B C
    ATOM 4645 C ALA B 423 −0.205 52.347 52.549 1.00 55.58 B C
    ATOM 4646 O ALA B 423 0.216 53.489 52.456 1.00 57.64 B O
    ATOM 4647 N LEU B 424 −1.071 51.828 51.696 1.00 55.39 B N
    ATOM 4648 CA LEU B 424 −1.829 52.637 50.771 1.00 54.07 B C
    ATOM 4649 CB LEU B 424 −2.076 51.854 49.481 1.00 53.16 B C
    ATOM 4650 CG LEU B 424 −2.428 52.537 48.159 1.00 53.34 B C
    ATOM 4651 CD1 LEU B 424 −2.975 51.496 47.196 1.00 52.78 B C
    ATOM 4652 CD2 LEU B 424 −3.431 53.671 48.323 1.00 54.86 B C
    ATOM 4653 C LEU B 424 −3.138 52.889 51.500 1.00 54.78 B C
    ATOM 4654 O LEU B 424 −3.909 51.956 51.758 1.00 55.38 B O
    ATOM 4655 N GLN B 425 −3.382 54.143 51.857 1.00 53.26 B N
    ATOM 4656 CA GLN B 425 −4.586 54.469 52.605 1.00 50.56 B C
    ATOM 4657 CB GLN B 425 −4.265 55.326 53.833 1.00 57.95 B C
    ATOM 4658 CG GLN B 425 −4.052 56.810 53.566 1.00 64.03 B C
    ATOM 4659 CD GLN B 425 −3.515 57.523 54.783 1.00 67.46 B C
    ATOM 4660 OE1 GLN B 425 −4.202 57.623 55.803 1.00 67.84 B O
    ATOM 4661 NE2 GLN B 425 −2.278 58.004 54.692 1.00 70.00 B N
    ATOM 4662 C GLN B 425 −5.661 55.115 51.751 1.00 43.53 B C
    ATOM 4663 O GLN B 425 −5.378 55.805 50.770 1.00 40.15 B O
    ATOM 4664 N ARG B 426 −6.899 54.844 52.139 1.00 40.50 B N
    ATOM 4665 CA ARG B 426 −8.084 55.424 51.534 1.00 39.82 B C
    ATOM 4666 CB ARG B 426 −8.641 54.524 50.435 1.00 40.11 B C
    ATOM 4667 CG ARG B 426 −7.739 54.326 49.235 1.00 41.18 B C
    ATOM 4668 CD ARG B 426 −7.735 55.478 48.261 1.00 42.28 B C
    ATOM 4669 NE ARG B 426 −6.378 55.792 47.829 1.00 45.34 B N
    ATOM 4670 CZ ARG B 426 −5.993 55.870 46.559 1.00 47.98 B C
    ATOM 4671 NH1 ARG B 426 −6.871 55.663 45.570 1.00 46.25 B N
    ATOM 4672 NH2 ARG B 426 −4.724 56.168 46.277 1.00 49.60 B N
    ATOM 4673 C ARG B 426 −9.122 55.581 52.631 1.00 42.57 B C
    ATOM 4674 O ARG B 426 −9.062 54.907 53.663 1.00 40.06 B O
    ATOM 4675 N VAL B 427 −10.081 56.468 52.393 1.00 48.48 B N
    ATOM 4676 CA VAL B 427 −11.068 56.844 53.401 1.00 52.05 B C
    ATOM 4677 CB VAL B 427 −11.393 58.346 53.327 1.00 51.13 B C
    ATOM 4678 CG1 VAL B 427 −10.956 59.031 54.603 1.00 52.45 B C
    ATOM 4679 CG2 VAL B 427 −10.741 58.996 52.093 1.00 50.22 B C
    ATOM 4680 C VAL B 427 −12.363 56.063 53.243 1.00 54.73 B C
    ATOM 4681 O VAL B 427 −12.691 55.626 52.136 1.00 58.88 B O
    ATOM 4682 N ASP B 428 −13.090 55.894 54.350 1.00 52.40 B N
    ATOM 4683 CA ASP B 428 −14.414 55.274 54.327 1.00 48.88 B C
    ATOM 4684 CB ASP B 428 −15.051 55.293 55.727 1.00 52.09 B C
    ATOM 4685 CG ASP B 428 −16.360 54.500 55.802 1.00 53.53 B C
    ATOM 4686 OD1 ASP B 428 −16.851 54.049 54.748 1.00 56.25 B O
    ATOM 4687 OD2 ASP B 428 −16.970 54.276 56.876 1.00 50.49 B O
    ATOM 4688 C ASP B 428 −15.304 55.986 53.305 1.00 43.23 B C
    ATOM 4689 O ASP B 428 −15.346 57.213 53.233 1.00 38.01 B O
    ATOM 4690 N LEU B 429 −15.984 55.193 52.494 1.00 41.94 B N
    ATOM 4691 CA LEU B 429 −16.854 55.713 51.463 1.00 44.73 B C
    ATOM 4692 CB LEU B 429 −16.849 54.772 50.266 1.00 42.69 B C
    ATOM 4693 CG LEU B 429 −15.909 55.232 49.159 1.00 45.03 B C
    ATOM 4694 CD1 LEU B 429 −14.963 54.120 48.741 1.00 47.96 B C
    ATOM 4695 CD2 LEU B 429 −16.711 55.735 47.974 1.00 45.51 B C
    ATOM 4696 C LEU B 429 −18.263 55.885 52.016 1.00 48.78 B C
    ATOM 4697 O LEU B 429 −19.132 56.509 51.383 1.00 49.46 B O
    ATOM 4698 N PHE B 430 −18.473 55.331 53.206 1.00 48.13 B N
    ATOM 4699 CA PHE B 430 −19.757 55.397 53.874 1.00 51.15 B C
    ATOM 4700 CB PHE B 430 −20.098 54.034 54.463 1.00 47.94 B C
    ATOM 4701 CG PHE B 430 −20.464 52.998 53.427 1.00 47.14 B C
    ATOM 4702 CD1 PHE B 430 −19.868 51.746 53.430 1.00 46.71 B C
    ATOM 4703 CE1 PHE B 430 −20.219 50.777 52.479 1.00 44.76 B C
    ATOM 4704 CZ PHE B 430 −21.160 51.056 51.520 1.00 43.07 B C
    ATOM 4705 CE2 PHE B 430 −21.760 52.297 51.501 1.00 46.29 B C
    ATOM 4706 CD2 PHE B 430 −21.413 53.267 52.451 1.00 47.40 B C
    ATOM 4707 C PHE B 430 −19.749 56.486 54.939 1.00 57.21 B C
    ATOM 4708 O PHE B 430 −20.801 56.883 55.451 1.00 58.51 B O
    ATOM 4709 N MET B 431 −18.549 56.979 55.242 1.00 62.60 B N
    ATOM 4710 CA MET B 431 −18.330 58.080 56.189 1.00 66.92 B C
    ATOM 4711 CB MET B 431 −18.965 59.387 55.685 1.00 71.06 B C
    ATOM 4712 CG MET B 431 −18.235 60.033 54.527 1.00 78.05 B C
    ATOM 4713 SD MET B 431 −19.019 59.627 52.944 1.00 86.26 B S
    ATOM 4714 CE MET B 431 −19.859 61.190 52.582 1.00 86.91 B C
    ATOM 4715 C MET B 431 −18.804 57.769 57.611 1.00 66.59 B C
    ATOM 4716 O MET B 431 −19.202 58.664 58.348 1.00 69.83 B O
    ATOM 4717 N GLY B 432 −18.749 56.500 57.997 1.00 65.32 B N
    ATOM 4718 CA GLY B 432 −19.175 56.097 59.324 1.00 63.07 B C
    ATOM 4719 C GLY B 432 −20.603 55.595 59.364 1.00 61.89 B C
    ATOM 4720 O GLY B 432 −21.057 55.116 60.403 1.00 61.93 B O
    ATOM 4721 N GLN B 433 −21.307 55.699 58.237 1.00 60.80 B N
    ATOM 4722 CA GLN B 433 −22.661 55.167 58.095 1.00 60.89 B C
    ATOM 4723 CB GLN B 433 −23.011 55.019 56.611 1.00 64.40 B C
    ATOM 4724 CG GLN B 433 −24.331 55.642 56.186 1.00 69.58 B C
    ATOM 4725 CD GLN B 433 −25.420 55.499 57.239 1.00 74.21 B C
    ATOM 4726 OE1 GLN B 433 −26.012 54.429 57.383 1.00 75.27 B O
    ATOM 4727 NE2 GLN B 433 −25.682 56.578 57.979 1.00 76.91 B N
    ATOM 4728 C GLN B 433 −22.815 53.812 58.783 1.00 59.31 B C
    ATOM 4729 O GLN B 433 −23.914 53.425 59.184 1.00 57.45 B O
    ATOM 4730 N PHE B 434 −21.697 53.106 58.924 1.00 58.44 B N
    ATOM 4731 CA PHE B 434 −21.698 51.738 59.410 1.00 57.23 B C
    ATOM 4732 CB PHE B 434 −21.399 50.804 58.243 1.00 51.73 B C
    ATOM 4733 CG PHE B 434 −22.448 50.818 57.187 1.00 45.56 B C
    ATOM 4734 CD1 PHE B 434 −22.164 51.316 55.926 1.00 44.36 B C
    ATOM 4735 CE1 PHE B 434 −23.132 51.333 54.930 1.00 43.99 B C
    ATOM 4736 CZ PHE B 434 −24.409 50.862 55.207 1.00 46.41 B C
    ATOM 4737 CE2 PHE B 434 −24.706 50.368 56.480 1.00 46.50 B C
    ATOM 4738 CD2 PHE B 434 −23.727 50.350 57.457 1.00 43.77 B C
    ATOM 4739 C PHE B 434 −20.710 51.495 60.546 1.00 59.69 B C
    ATOM 4740 O PHE B 434 −20.254 50.362 60.763 1.00 58.41 B O
    ATOM 4741 N SER B 435 −20.405 52.553 61.288 1.00 61.94 B N
    ATOM 4742 CA SER B 435 −19.361 52.490 62.304 1.00 64.51 B C
    ATOM 4743 CB SER B 435 −18.734 53.869 62.507 1.00 64.60 B C
    ATOM 4744 OG SER B 435 −19.723 54.880 62.488 1.00 65.36 B O
    ATOM 4745 C SER B 435 −19.841 51.900 63.631 1.00 66.67 B C
    ATOM 4746 O SER B 435 −19.125 51.947 64.635 1.00 67.92 B O
    ATOM 4747 N GLU B 436 −21.045 51.332 63.632 1.00 68.21 B N
    ATOM 4748 CA GLU B 436 −21.578 50.691 64.833 1.00 68.82 B C
    ATOM 4749 CB GLU B 436 −22.713 51.525 65.412 1.00 69.36 B C
    ATOM 4750 CG GLU B 436 −22.218 52.768 66.124 1.00 71.12 B C
    ATOM 4751 CD GLU B 436 −23.180 53.228 67.190 1.00 73.99 B C
    ATOM 4752 OE1 GLU B 436 −24.040 54.080 66.878 1.00 75.03 B O
    ATOM 4753 OE2 GLU B 436 −23.079 52.731 68.333 1.00 75.48 B O
    ATOM 4754 C GLU B 436 −22.003 49.230 64.633 1.00 68.01 B C
    ATOM 4755 O GLU B 436 −22.383 48.555 65.602 1.00 67.22 B O
    ATOM 4756 N VAL B 437 −21.904 48.750 63.386 1.00 65.67 B N
    ATOM 4757 CA VAL B 437 −22.197 47.354 63.009 1.00 60.81 B C
    ATOM 4758 CB VAL B 437 −23.421 47.248 62.059 1.00 60.54 B C
    ATOM 4759 CG1 VAL B 437 −24.699 47.669 62.761 1.00 62.37 B C
    ATOM 4760 CG2 VAL B 437 −23.206 48.075 60.798 1.00 60.85 B C
    ATOM 4761 C VAL B 437 −20.995 46.679 62.331 1.00 57.32 B C
    ATOM 4762 O VAL B 437 −20.110 47.370 61.812 1.00 55.78 B O
    ATOM 4763 N LEU B 438 −20.980 45.339 62.334 1.00 52.98 B N
    ATOM 4764 CA LEU B 438 −19.895 44.548 61.727 1.00 49.77 B C
    ATOM 4765 CB LEU B 438 −19.444 43.414 62.667 1.00 49.82 B C
    ATOM 4766 CG LEU B 438 −18.042 42.764 62.637 1.00 49.14 B C
    ATOM 4767 CD1 LEU B 438 −18.127 41.240 62.819 1.00 47.45 B C
    ATOM 4768 CD2 LEU B 438 −17.194 43.113 61.406 1.00 47.89 B C
    ATOM 4769 C LEU B 438 −20.257 43.975 60.347 1.00 48.76 B C
    ATOM 4770 O LEU B 438 −20.828 42.878 60.248 1.00 47.95 B O
    ATOM 4771 N LEU B 439 −19.913 44.727 59.296 1.00 45.69 B N
    ATOM 4772 CA LEU B 439 −20.106 44.305 57.910 1.00 40.13 B C
    ATOM 4773 CB LEU B 439 −19.723 45.427 56.962 1.00 36.46 B C
    ATOM 4774 CG LEU B 439 −20.577 46.684 57.053 1.00 39.82 B C
    ATOM 4775 CD1 LEU B 439 −19.976 47.807 56.216 1.00 38.71 B C
    ATOM 4776 CD2 LEU B 439 −22.007 46.400 56.625 1.00 43.44 B C
    ATOM 4777 C LEU B 439 −19.258 43.080 57.631 1.00 40.26 B C
    ATOM 4778 O LEU B 439 −18.054 43.083 57.883 1.00 42.45 B O
    ATOM 4779 N THR B 440 −19.889 42.023 57.135 1.00 37.08 B N
    ATOM 4780 CA THR B 440 −19.215 40.739 57.017 1.00 34.37 B C
    ATOM 4781 CB THR B 440 −19.895 39.677 57.883 1.00 34.54 B C
    ATOM 4782 OG1 THR B 440 −21.305 39.699 57.643 1.00 34.99 B O
    ATOM 4783 CG2 THR B 440 −19.766 40.012 59.361 1.00 38.15 B C
    ATOM 4784 C THR B 440 −19.232 40.257 55.602 1.00 35.73 B C
    ATOM 4785 O THR B 440 −18.657 39.208 55.301 1.00 38.80 B O
    ATOM 4786 N SER B 441 −19.900 41.006 54.732 1.00 33.65 B N
    ATOM 4787 CA SER B 441 −19.974 40.613 53.337 1.00 36.43 B C
    ATOM 4788 CB SER B 441 −20.985 39.476 53.181 1.00 35.52 B C
    ATOM 4789 OG SER B 441 −21.583 39.526 51.900 1.00 44.41 B O
    ATOM 4790 C SER B 441 −20.279 41.780 52.384 1.00 38.69 B C
    ATOM 4791 O SER B 441 −21.182 42.570 52.629 1.00 44.18 B O
    ATOM 4792 N ILE B 442 −19.520 41.883 51.298 1.00 39.13 B N
    ATOM 4793 CA ILE B 442 −19.767 42.918 50.287 1.00 37.48 B C
    ATOM 4794 CB ILE B 442 −18.750 44.080 50.391 1.00 37.49 B C
    ATOM 4795 CG1 ILE B 442 −18.952 45.067 49.241 1.00 36.31 B C
    ATOM 4796 CD1 ILE B 442 −18.239 46.385 49.411 1.00 37.95 B C
    ATOM 4797 CG2 ILE B 442 −17.308 43.552 50.369 1.00 40.87 B C
    ATOM 4798 C ILE B 442 −19.741 42.353 48.875 1.00 35.99 B C
    ATOM 4799 O ILE B 442 −19.038 41.371 48.589 1.00 41.60 B O
    ATOM 4800 N SER B 443 −20.496 43.011 48.007 1.00 24.89 B N
    ATOM 4801 CA SER B 443 −20.629 42.656 46.618 1.00 24.75 B C
    ATOM 4802 CB SER B 443 −21.674 41.540 46.490 1.00 26.63 B C
    ATOM 4803 OG SER B 443 −22.647 41.816 45.507 1.00 31.94 B O
    ATOM 4804 C SER B 443 −21.032 43.969 45.924 1.00 28.80 B C
    ATOM 4805 O SER B 443 −21.431 44.926 46.603 1.00 33.49 B O
    ATOM 4806 N THR B 444 −20.930 44.045 44.597 1.00 26.26 B N
    ATOM 4807 CA THR B 444 −21.014 45.339 43.927 1.00 29.84 B C
    ATOM 4808 CB THR B 444 −19.618 46.001 43.918 1.00 31.03 B C
    ATOM 4809 OG1 THR B 444 −19.448 46.780 45.114 1.00 32.86 B O
    ATOM 4810 CG2 THR B 444 −19.518 47.038 42.810 1.00 34.52 B C
    ATOM 4811 C THR B 444 −21.592 45.304 42.512 1.00 35.65 B C
    ATOM 4812 O THR B 444 −21.283 44.406 41.723 1.00 37.14 B O
    ATOM 4813 N PHE B 445 −22.419 46.294 42.176 1.00 39.23 B N
    ATOM 4814 CA PHE B 445 −22.930 46.380 40.807 1.00 43.15 B C
    ATOM 4815 CB PHE B 445 −24.112 45.419 40.562 1.00 41.98 B C
    ATOM 4816 CG PHE B 445 −25.347 45.754 41.329 1.00 44.70 B C
    ATOM 4817 CD1 PHE B 445 −26.443 46.316 40.687 1.00 47.35 B C
    ATOM 4818 CE1 PHE B 445 −27.611 46.622 41.386 1.00 46.24 B C
    ATOM 4819 CZ PHE B 445 −27.688 46.358 42.746 1.00 47.03 B C
    ATOM 4820 CE2 PHE B 445 −26.603 45.793 43.401 1.00 49.40 B C
    ATOM 4821 CD2 PHE B 445 −25.435 45.491 42.689 1.00 48.57 B C
    ATOM 4822 C PHE B 445 −23.256 47.778 40.320 1.00 45.35 B C
    ATOM 4823 O PHE B 445 −23.404 48.720 41.113 1.00 43.42 B O
    ATOM 4824 N ILE B 446 −23.350 47.887 38.994 1.00 46.73 B N
    ATOM 4825 CA ILE B 446 −23.651 49.144 38.320 1.00 43.12 B C
    ATOM 4826 CB ILE B 446 −22.786 49.303 37.034 1.00 38.88 B C
    ATOM 4827 CG1 ILE B 446 −21.293 49.483 37.358 1.00 34.98 B C
    ATOM 4828 CD1 ILE B 446 −20.344 49.107 36.186 1.00 30.34 B C
    ATOM 4829 CG2 ILE B 446 −23.278 50.468 36.201 1.00 39.10 B C
    ATOM 4830 C ILE B 446 −25.120 49.151 37.944 1.00 43.23 B C
    ATOM 4831 O ILE B 446 −25.637 48.157 37.447 1.00 45.02 B O
    ATOM 4832 N LYS B 447 −25.794 50.265 38.206 1.00 47.38 B N
    ATOM 4833 CA LYS B 447 −27.074 50.566 37.558 1.00 50.70 B C
    ATOM 4834 CB LYS B 447 −28.255 50.536 38.543 1.00 55.97 B C
    ATOM 4835 CG LYS B 447 −29.283 49.425 38.266 1.00 60.13 B C
    ATOM 4836 CD LYS B 447 −30.344 49.858 37.234 1.00 63.00 B C
    ATOM 4837 CE LYS B 447 −30.918 48.661 36.457 1.00 61.30 B C
    ATOM 4838 NZ LYS B 447 −30.831 48.836 34.979 1.00 58.41 B N
    ATOM 4839 C LYS B 447 −26.934 51.932 36.906 1.00 45.71 B C
    ATOM 4840 O LYS B 447 −26.796 52.942 37.591 1.00 42.70 B O
    ATOM 4841 N GLY B 448 −26.926 51.941 35.579 1.00 43.97 B N
    ATOM 4842 CA GLY B 448 −26.660 53.147 34.820 1.00 47.86 B C
    ATOM 4843 C GLY B 448 −25.401 53.871 35.255 1.00 48.53 B C
    ATOM 4844 O GLY B 448 −24.299 53.495 34.882 1.00 50.36 B O
    ATOM 4845 N ASP B 449 −25.569 54.917 36.049 1.00 51.47 B N
    ATOM 4846 CA ASP B 449 −24.435 55.695 36.521 1.00 56.72 B C
    ATOM 4847 CB ASP B 449 −24.756 57.187 36.451 1.00 63.14 B C
    ATOM 4848 CG ASP B 449 −24.788 57.712 35.022 1.00 69.19 B C
    ATOM 4849 OD1 ASP B 449 −24.985 56.905 34.079 1.00 72.01 B O
    ATOM 4850 OD2 ASP B 449 −24.627 58.923 34.747 1.00 70.41 B O
    ATOM 4851 C ASP B 449 −24.086 55.302 37.940 1.00 56.41 B C
    ATOM 4852 O ASP B 449 −23.024 55.644 38.458 1.00 59.77 B O
    ATOM 4853 N LEU B 450 −24.982 54.559 38.563 1.00 54.31 B N
    ATOM 4854 CA LEU B 450 −24.849 54.265 39.970 1.00 54.00 B C
    ATOM 4855 CB LEU B 450 −26.228 54.064 40.579 1.00 49.47 B C
    ATOM 4856 CG LEU B 450 −27.011 55.358 40.763 1.00 45.84 B C
    ATOM 4857 CD1 LEU B 450 −28.188 55.102 41.673 1.00 45.47 B C
    ATOM 4858 CD2 LEU B 450 −26.113 56.458 41.319 1.00 43.49 B C
    ATOM 4859 C LEU B 450 −23.992 53.047 40.214 1.00 58.29 B C
    ATOM 4860 O LEU B 450 −24.019 52.093 39.428 1.00 60.64 B O
    ATOM 4861 N THR B 451 −23.228 53.093 41.306 1.00 59.31 B N
    ATOM 4862 CA THR B 451 −22.509 51.918 41.813 1.00 55.51 B C
    ATOM 4863 CB THR B 451 −21.010 52.252 42.009 1.00 53.64 B C
    ATOM 4864 OG1 THR B 451 −20.370 52.312 40.728 1.00 55.62 B O
    ATOM 4865 CG2 THR B 451 −20.280 51.137 42.722 1.00 46.00 B C
    ATOM 4866 C THR B 451 −23.164 51.458 43.117 1.00 51.77 B C
    ATOM 4867 O THR B 451 −23.294 52.240 44.065 1.00 49.91 B O
    ATOM 4868 N ILE B 452 −23.590 50.198 43.155 1.00 49.75 B N
    ATOM 4869 CA ILE B 452 −24.301 49.679 44.329 1.00 45.76 B C
    ATOM 4870 CB ILE B 452 −25.751 49.322 43.975 1.00 40.39 B C
    ATOM 4871 CG1 ILE B 452 −26.520 50.598 43.645 1.00 36.18 B C
    ATOM 4872 CD1 ILE B 452 −27.881 50.350 43.055 1.00 37.39 B C
    ATOM 4873 CG2 ILE B 452 −26.415 48.592 45.137 1.00 39.83 B C
    ATOM 4874 C ILE B 452 −23.622 48.535 45.095 1.00 44.89 B C
    ATOM 4875 O ILE B 452 −23.334 47.467 44.541 1.00 43.92 B O
    ATOM 4876 N ALA B 453 −23.387 48.786 46.379 1.00 43.54 B N
    ATOM 4877 CA ALA B 453 −22.919 47.770 47.308 1.00 44.19 B C
    ATOM 4878 CB ALA B 453 −22.318 48.427 48.516 1.00 44.73 B C
    ATOM 4879 C ALA B 453 −24.065 46.872 47.749 1.00 44.71 B C
    ATOM 4880 O ALA B 453 −25.180 47.348 47.990 1.00 45.36 B O
    ATOM 4881 N ASN B 454 −23.781 45.576 47.842 1.00 40.95 B N
    ATOM 4882 CA ASN B 454 −24.655 44.623 48.514 1.00 41.90 B C
    ATOM 4883 CB ASN B 454 −24.845 43.368 47.655 1.00 42.70 B C
    ATOM 4884 CG ASN B 454 −25.754 43.598 46.475 1.00 42.78 B C
    ATOM 4885 OD1 ASN B 454 −26.895 44.022 46.644 1.00 48.51 B O
    ATOM 4886 ND2 ASN B 454 −25.264 43.308 45.269 1.00 36.52 B N
    ATOM 4887 C ASN B 454 −24.012 44.251 49.852 1.00 44.33 B C
    ATOM 4888 O ASN B 454 −22.978 43.565 49.890 1.00 52.12 B O
    ATOM 4889 N LEU B 455 −24.604 44.687 50.952 1.00 39.41 B N
    ATOM 4890 CA LEU B 455 −23.942 44.508 52.234 1.00 41.76 B C
    ATOM 4891 CB LEU B 455 −23.848 45.837 52.963 1.00 44.00 B C
    ATOM 4892 CG LEU B 455 −22.929 46.833 52.269 1.00 46.17 B C
    ATOM 4893 CD1 LEU B 455 −22.703 48.020 53.179 1.00 49.05 B C
    ATOM 4894 CD2 LEU B 455 −21.610 46.176 51.897 1.00 47.33 B C
    ATOM 4895 C LEU B 455 −24.575 43.459 53.125 1.00 44.02 B C
    ATOM 4896 O LEU B 455 −25.768 43.190 53.021 1.00 50.25 B O
    ATOM 4897 N GLY B 456 −23.759 42.879 54.002 1.00 41.74 B N
    ATOM 4898 CA GLY B 456 −24.182 41.846 54.933 1.00 43.52 B C
    ATOM 4899 C GLY B 456 −23.527 42.039 56.291 1.00 48.25 B C
    ATOM 4900 O GLY B 456 −22.424 42.592 56.390 1.00 50.51 B O
    ATOM 4901 N THR B 457 −24.195 41.556 57.335 1.00 49.52 B N
    ATOM 4902 CA THR B 457 −23.906 41.955 58.711 1.00 51.08 B C
    ATOM 4903 CB THR B 457 −24.976 42.970 59.152 1.00 52.55 B C
    ATOM 4904 OG1 THR B 457 −24.848 44.155 58.360 1.00 51.16 B O
    ATOM 4905 CG2 THR B 457 −24.737 43.468 60.578 1.00 56.96 B C
    ATOM 4906 C THR B 457 −23.911 40.759 59.654 1.00 50.98 B C
    ATOM 4907 O THR B 457 −24.577 39.765 59.388 1.00 54.42 B O
    ATOM 4908 N SER B 458 −23.182 40.865 60.761 1.00 48.51 B N
    ATOM 4909 CA SER B 458 −23.175 39.810 61.764 1.00 52.73 B C
    ATOM 4910 CB SER B 458 −22.139 40.088 62.852 1.00 55.88 B C
    ATOM 4911 OG SER B 458 −21.805 41.459 62.901 1.00 60.09 B O
    ATOM 4912 C SER B 458 −24.549 39.588 62.398 1.00 56.80 B C
    ATOM 4913 O SER B 458 −24.846 38.479 62.858 1.00 57.21 B O
    ATOM 4914 N GLU B 459 −25.378 40.634 62.423 1.00 60.11 B N
    ATOM 4915 CA GLU B 459 −26.721 40.546 63.008 1.00 62.67 B C
    ATOM 4916 CB GLU B 459 −27.235 41.929 63.451 1.00 69.19 B C
    ATOM 4917 CG GLU B 459 −28.035 41.934 64.760 1.00 77.41 B C
    ATOM 4918 CD GLU B 459 −28.984 43.142 64.927 1.00 83.69 B C
    ATOM 4919 OE1 GLU B 459 −29.075 44.007 64.014 1.00 85.31 B O
    ATOM 4920 OE2 GLU B 459 −29.656 43.235 65.991 1.00 84.05 B O
    ATOM 4921 C GLU B 459 −27.701 39.850 62.049 1.00 58.99 B C
    ATOM 4922 O GLU B 459 −28.800 39.458 62.449 1.00 61.26 B O
    ATOM 4923 N GLY B 460 −27.290 39.678 60.796 1.00 52.54 B N
    ATOM 4924 CA GLY B 460 −28.113 39.003 59.812 1.00 51.41 B C
    ATOM 4925 C GLY B 460 −28.703 39.949 58.779 1.00 54.46 B C
    ATOM 4926 O GLY B 460 −29.418 39.523 57.868 1.00 56.75 B O
    ATOM 4927 N ARG B 461 −28.403 41.236 58.904 1.00 53.63 B N
    ATOM 4928 CA ARG B 461 −29.029 42.225 58.039 1.00 54.19 B C
    ATOM 4929 CB ARG B 461 −29.048 43.598 58.711 1.00 59.04 B C
    ATOM 4930 CG ARG B 461 −29.954 43.657 59.934 1.00 64.20 B C
    ATOM 4931 CD ARG B 461 −31.192 44.545 59.792 1.00 67.13 B C
    ATOM 4932 NE ARG B 461 −31.338 45.373 60.979 1.00 70.07 B N
    ATOM 4933 CZ ARG B 461 −30.687 46.515 61.172 1.00 74.01 B C
    ATOM 4934 NH1 ARG B 461 −29.858 46.972 60.238 1.00 73.29 B N
    ATOM 4935 NH2 ARG B 461 −30.864 47.207 62.296 1.00 76.45 B N
    ATOM 4936 C ARG B 461 −28.367 42.289 56.668 1.00 52.80 B C
    ATOM 4937 O ARG B 461 −27.141 42.358 56.566 1.00 52.65 B O
    ATOM 4938 N PHE B 462 −29.193 42.247 55.623 1.00 49.71 B N
    ATOM 4939 CA PHE B 462 −28.739 42.429 54.247 1.00 46.62 B C
    ATOM 4940 CB PHE B 462 −29.313 41.345 53.356 1.00 45.04 B C
    ATOM 4941 CG PHE B 462 −29.078 41.585 51.903 1.00 45.52 B C
    ATOM 4942 CD1 PHE B 462 −27.916 41.136 51.294 1.00 46.69 B C
    ATOM 4943 CE1 PHE B 462 −27.679 41.357 49.946 1.00 47.63 B C
    ATOM 4944 CZ PHE B 462 −28.613 42.032 49.191 1.00 52.02 B C
    ATOM 4945 CE2 PHE B 462 −29.790 42.486 49.791 1.00 52.61 B C
    ATOM 4946 CD2 PHE B 462 −30.012 42.260 51.141 1.00 48.34 B C
    ATOM 4947 C PHE B 462 −29.218 43.758 53.719 1.00 48.50 B C
    ATOM 4948 O PHE B 462 −30.392 44.086 53.874 1.00 53.90 B O
    ATOM 4949 N MET B 463 −28.346 44.519 53.066 1.00 48.12 B N
    ATOM 4950 CA MET B 463 −28.769 45.841 52.590 1.00 51.33 B C
    ATOM 4951 CB MET B 463 −28.715 46.868 53.723 1.00 51.90 B C
    ATOM 4952 CG MET B 463 −27.387 46.980 54.406 1.00 52.83 B C
    ATOM 4953 SD MET B 463 −27.615 47.955 55.864 1.00 54.23 B S
    ATOM 4954 CE MET B 463 −27.473 46.667 57.089 1.00 54.31 B C
    ATOM 4955 C MET B 463 −28.048 46.386 51.363 1.00 50.31 B C
    ATOM 4956 O MET B 463 −26.827 46.286 51.264 1.00 56.78 B O
    ATOM 4957 N GLN B 464 −28.820 46.978 50.453 1.00 42.79 B N
    ATOM 4958 CA GLN B 464 −28.297 47.571 49.230 1.00 40.97 B C
    ATOM 4959 CB GLN B 464 −29.272 47.344 48.067 1.00 42.04 B C
    ATOM 4960 CG GLN B 464 −29.567 45.888 47.717 1.00 42.69 B C
    ATOM 4961 CD GLN B 464 −30.184 45.723 46.318 1.00 44.59 B C
    ATOM 4962 OE1 GLN B 464 −31.267 46.250 46.036 1.00 43.02 B O
    ATOM 4963 NE2 GLN B 464 −29.492 44.985 45.446 1.00 45.35 B N
    ATOM 4964 C GLN B 464 −28.064 49.079 49.404 1.00 41.44 B C
    ATOM 4965 O GLN B 464 −29.013 49.830 49.649 1.00 41.15 B O
    ATOM 4966 N VAL B 465 −26.808 49.517 49.262 1.00 41.53 B N
    ATOM 4967 CA VAL B 465 −26.453 50.947 49.310 1.00 38.42 B C
    ATOM 4968 CB VAL B 465 −25.397 51.267 50.379 1.00 33.77 B C
    ATOM 4969 CG1 VAL B 465 −25.309 52.770 50.585 1.00 27.24 B C
    ATOM 4970 CG2 VAL B 465 −25.690 50.549 51.685 1.00 35.35 B C
    ATOM 4971 C VAL B 465 −25.857 51.451 48.003 1.00 41.08 B C
    ATOM 4972 O VAL B 465 −25.300 50.672 47.225 1.00 43.64 B O
    ATOM 4973 N VAL B 466 −25.961 52.765 47.792 1.00 40.30 B N
    ATOM 4974 CA VAL B 466 −25.289 53.456 46.694 1.00 37.42 B C
    ATOM 4975 CB VAL B 466 −26.139 54.619 46.132 1.00 29.50 B C
    ATOM 4976 CG1 VAL B 466 −25.475 55.239 44.927 1.00 25.98 B C
    ATOM 4977 CG2 VAL B 466 −27.513 54.130 45.750 1.00 28.27 B C
    ATOM 4978 C VAL B 466 −23.938 53.983 47.168 1.00 41.60 B C
    ATOM 4979 O VAL B 466 −23.828 54.595 48.230 1.00 44.30 B O
    ATOM 4980 N VAL B 467 −22.914 53.737 46.365 1.00 44.45 B N
    ATOM 4981 CA VAL B 467 −21.554 54.133 46.691 1.00 49.08 B C
    ATOM 4982 CB VAL B 467 −20.561 53.127 46.097 1.00 50.63 B C
    ATOM 4983 CG1 VAL B 467 −19.166 53.354 46.650 1.00 52.55 B C
    ATOM 4984 CG2 VAL B 467 −21.031 51.707 46.389 1.00 51.28 B C
    ATOM 4985 C VAL B 467 −21.252 55.533 46.169 1.00 51.76 B C
    ATOM 4986 O VAL B 467 −21.438 55.806 44.975 1.00 52.74 B O
    ATOM 4987 N SER B 468 −20.799 56.416 47.061 1.00 54.51 B N
    ATOM 4988 CA SER B 468 −20.439 57.787 46.673 1.00 58.45 B C
    ATOM 4989 CB SER B 468 −21.689 58.621 46.372 1.00 58.52 B C
    ATOM 4990 OG SER B 468 −21.343 59.852 45.764 1.00 57.13 B O
    ATOM 4991 C SER B 468 −19.589 58.522 47.702 1.00 60.39 B C
    ATOM 4992 O SER B 468 −19.705 58.283 48.905 1.00 63.74 B O
    ATOM 4993 N ARG B 469 −18.736 59.414 47.207 1.00 60.12 B N
    ATOM 4994 CA ARG B 469 −18.012 60.350 48.048 1.00 64.67 B C
    ATOM 4995 CB ARG B 469 −16.757 60.861 47.334 1.00 62.58 B C
    ATOM 4996 CG ARG B 469 −15.639 59.844 47.145 1.00 61.40 B C
    ATOM 4997 CD ARG B 469 −14.329 60.189 47.865 1.00 62.15 B C
    ATOM 4998 NE ARG B 469 −14.371 59.832 49.286 1.00 64.27 B N
    ATOM 4999 CZ ARG B 469 −13.932 58.678 49.802 1.00 68.65 B C
    ATOM 5000 NH1 ARG B 469 −13.393 57.732 49.024 1.00 71.37 B N
    ATOM 5001 NH2 ARG B 469 −14.034 58.463 51.109 1.00 67.94 B N
    ATOM 5002 C ARG B 469 −18.964 61.508 48.311 1.00 71.94 B C
    ATOM 5003 O ARG B 469 −19.378 61.747 49.446 1.00 72.50 B O
    ATOM 5004 N SER B 470 −19.317 62.209 47.234 1.00 79.52 B N
    ATOM 5005 CA SER B 470 −20.306 63.278 47.255 1.00 84.96 B C
    ATOM 5006 CB SER B 470 −20.197 64.117 45.977 1.00 87.60 B C
    ATOM 5007 OG SER B 470 −20.151 65.505 46.271 1.00 90.87 B O
    ATOM 5008 C SER B 470 −21.702 62.676 47.376 1.00 87.59 B C
    ATOM 5009 O SER B 470 −22.277 62.207 46.391 1.00 87.54 B O
    ATOM 5010 N GLY B 471 −22.240 62.695 48.591 1.00 91.10 B N
    ATOM 5011 CA GLY B 471 −23.490 62.023 48.893 1.00 96.12 B C
    ATOM 5012 C GLY B 471 −23.223 60.953 49.935 1.00 100.89 B C
    ATOM 5013 O GLY B 471 −22.493 59.993 49.663 1.00 102.51 B O
    ATOM 5014 N PRO B 472 −23.789 61.123 51.132 1.00 102.46 B N
    ATOM 5015 CA PRO B 472 −23.551 60.202 52.252 1.00 101.06 B C
    ATOM 5016 CB PRO B 472 −23.580 61.143 53.460 1.00 102.61 B C
    ATOM 5017 CG PRO B 472 −24.489 62.320 53.020 1.00 102.73 B C
    ATOM 5018 CD PRO B 472 −24.699 62.219 51.518 1.00 102.43 B C
    ATOM 5019 C PRO B 472 −24.675 59.172 52.358 1.00 98.22 B C
    ATOM 5020 O PRO B 472 −25.289 59.035 53.417 1.00 100.80 B O
    ATOM 5021 N SER B 473 −24.915 58.446 51.270 1.00 92.28 B N
    ATOM 5022 CA SER B 473 −26.193 57.768 51.055 1.00 85.23 B C
    ATOM 5023 CB SER B 473 −26.281 57.209 49.630 1.00 87.85 B C
    ATOM 5024 OG SER B 473 −26.618 58.236 48.708 1.00 89.36 B O
    ATOM 5025 C SER B 473 −26.603 56.715 52.088 1.00 76.93 B C
    ATOM 5026 O SER B 473 −25.769 56.014 52.685 1.00 71.07 B O
    ATOM 5027 N THR B 474 −27.916 56.651 52.286 1.00 71.17 B N
    ATOM 5028 CA THR B 474 −28.548 55.708 53.189 1.00 67.45 B C
    ATOM 5029 CB THR B 474 −29.644 56.393 54.018 1.00 68.82 B C
    ATOM 5030 OG1 THR B 474 −30.325 57.345 53.199 1.00 69.66 B O
    ATOM 5031 CG2 THR B 474 −29.040 57.239 55.145 1.00 69.65 B C
    ATOM 5032 C THR B 474 −29.170 54.608 52.351 1.00 63.31 B C
    ATOM 5033 O THR B 474 −29.694 54.870 51.267 1.00 60.40 B O
    ATOM 5034 N PRO B 475 −29.137 53.386 52.874 1.00 61.03 B N
    ATOM 5035 CA PRO B 475 −29.483 52.201 52.091 1.00 57.57 B C
    ATOM 5036 CB PRO B 475 −29.198 51.048 53.062 1.00 61.28 B C
    ATOM 5037 CG PRO B 475 −28.340 51.636 54.142 1.00 61.97 B C
    ATOM 5038 CD PRO B 475 −28.806 53.042 54.269 1.00 62.40 B C
    ATOM 5039 C PRO B 475 −30.947 52.204 51.716 1.00 52.11 B C
    ATOM 5040 O PRO B 475 −31.784 52.514 52.556 1.00 50.78 B O
    ATOM 5041 N HIS B 476 −31.243 51.868 50.470 1.00 49.87 B N
    ATOM 5042 CA HIS B 476 −32.625 51.779 50.025 1.00 52.15 B C
    ATOM 5043 CB HIS B 476 −32.746 52.159 48.557 1.00 56.56 B C
    ATOM 5044 CG HIS B 476 −31.676 51.576 47.702 1.00 58.73 B C
    ATOM 5045 ND1 HIS B 476 −31.865 50.434 46.955 1.00 61.50 B N
    ATOM 5046 CE1 HIS B 476 −30.752 50.148 46.306 1.00 63.67 B C
    ATOM 5047 NE2 HIS B 476 −29.848 51.064 46.610 1.00 64.44 B N
    ATOM 5048 CD2 HIS B 476 −30.400 51.966 47.485 1.00 59.29 B C
    ATOM 5049 C HIS B 476 −33.226 50.399 50.259 1.00 50.23 B C
    ATOM 5050 O HIS B 476 −34.445 50.229 50.180 1.00 53.09 B O
    ATOM 5051 N VAL B 477 −32.373 49.419 50.530 1.00 46.49 B N
    ATOM 5052 CA VAL B 477 −32.832 48.111 50.996 1.00 47.76 B C
    ATOM 5053 CB VAL B 477 −32.606 47.006 49.934 1.00 46.95 B C
    ATOM 5054 CG1 VAL B 477 −32.646 45.618 50.565 1.00 47.09 B C
    ATOM 5055 CG2 VAL B 477 −33.639 47.103 48.841 1.00 45.62 B C
    ATOM 5056 C VAL B 477 −32.144 47.758 52.326 1.00 49.84 B C
    ATOM 5057 O VAL B 477 −30.931 47.921 52.471 1.00 50.41 B O
    ATOM 5058 N ASN B 478 −32.930 47.291 53.292 1.00 49.08 B N
    ATOM 5059 CA ASN B 478 −32.428 46.989 54.625 1.00 47.03 B C
    ATOM 5060 CB ASN B 478 −32.276 48.274 55.430 1.00 42.47 B C
    ATOM 5061 CG ASN B 478 −31.610 48.049 56.764 1.00 42.92 B C
    ATOM 5062 OD1 ASN B 478 −31.747 46.985 57.390 1.00 43.55 B O
    ATOM 5063 ND2 ASN B 478 −30.882 49.057 57.219 1.00 43.21 B N
    ATOM 5064 C ASN B 478 −33.384 46.057 55.346 1.00 50.05 B C
    ATOM 5065 O ASN B 478 −34.540 46.422 55.584 1.00 53.51 B O
    ATOM 5066 N PHE B 479 −32.900 44.869 55.711 1.00 49.23 B N
    ATOM 5067 CA PHE B 479 −33.753 43.845 56.312 1.00 48.17 B C
    ATOM 5068 CB PHE B 479 −34.837 43.412 55.314 1.00 46.07 B C
    ATOM 5069 CG PHE B 479 −34.348 42.487 54.247 1.00 42.47 B C
    ATOM 5070 CD1 PHE B 479 −34.525 41.111 54.371 1.00 44.25 B C
    ATOM 5071 CE1 PHE B 479 −34.072 40.238 53.387 1.00 45.91 B C
    ATOM 5072 CZ PHE B 479 −33.447 40.747 52.254 1.00 45.90 B C
    ATOM 5073 CE2 PHE B 479 −33.276 42.125 52.117 1.00 45.61 B C
    ATOM 5074 CD2 PHE B 479 −33.722 42.984 53.116 1.00 42.76 B C
    ATOM 5075 C PHE B 479 −33.015 42.608 56.846 1.00 49.08 B C
    ATOM 5076 O PHE B 479 −31.814 42.428 56.618 1.00 50.71 B O
    ATOM 5077 N LEU B 480 −33.772 41.749 57.530 1.00 46.27 B N
    ATOM 5078 CA LEU B 480 −33.249 40.559 58.177 1.00 44.17 B C
    ATOM 5079 CB LEU B 480 −34.053 40.279 59.445 1.00 41.95 B C
    ATOM 5080 CG LEU B 480 −33.432 40.258 60.850 1.00 41.22 B C
    ATOM 5081 CD1 LEU B 480 −33.112 38.820 61.275 1.00 41.81 B C
    ATOM 5082 CD2 LEU B 480 −32.216 41.165 61.000 1.00 38.89 B C
    ATOM 5083 C LEU B 480 −33.282 39.324 57.277 1.00 49.14 B C
    ATOM 5084 O LEU B 480 −34.350 38.875 56.853 1.00 50.31 B O
    ATOM 5085 N LEU B 481 −32.097 38.800 56.974 1.00 51.40 B N
    ATOM 5086 CA LEU B 481 −31.942 37.423 56.533 1.00 52.20 B C
    ATOM 5087 CB LEU B 481 −30.746 37.309 55.607 1.00 51.29 B C
    ATOM 5088 CG LEU B 481 −30.934 37.705 54.147 1.00 51.97 B C
    ATOM 5089 CD1 LEU B 481 −29.604 37.552 53.419 1.00 49.65 B C
    ATOM 5090 CD2 LEU B 481 −32.024 36.870 53.474 1.00 52.97 B C
    ATOM 5091 C LEU B 481 −31.714 36.573 57.782 1.00 57.76 B C
    ATOM 5092 O LEU B 481 −31.457 37.115 58.867 1.00 58.80 B O
    ATOM 5093 N ASP B 482 −31.784 35.251 57.638 1.00 64.02 B N
    ATOM 5094 CA ASP B 482 −31.758 34.344 58.799 1.00 72.45 B C
    ATOM 5095 CB ASP B 482 −31.563 32.892 58.370 1.00 76.40 B C
    ATOM 5096 CG ASP B 482 −32.823 32.303 57.791 1.00 82.98 B C
    ATOM 5097 OD1 ASP B 482 −32.919 32.251 56.542 1.00 85.28 B O
    ATOM 5098 OD2 ASP B 482 −33.778 31.897 58.502 1.00 84.14 B O
    ATOM 5099 C ASP B 482 −30.771 34.709 59.896 1.00 72.93 B C
    ATOM 5100 O ASP B 482 −29.630 35.038 59.623 1.00 74.57 B O
    ATOM 5101 N SER B 483 −31.244 34.649 61.135 1.00 73.97 B N
    ATOM 5102 CA SER B 483 −30.507 35.101 62.318 1.00 74.74 B C
    ATOM 5103 CB SER B 483 −31.111 34.477 63.577 1.00 77.91 B C
    ATOM 5104 OG SER B 483 −32.362 33.876 63.292 1.00 81.95 B O
    ATOM 5105 C SER B 483 −28.996 34.859 62.309 1.00 73.44 B C
    ATOM 5106 O SER B 483 −28.259 35.552 63.009 1.00 74.47 B O
    ATOM 5107 N HIS B 484 −28.539 33.880 61.531 1.00 69.37 B N
    ATOM 5108 CA HIS B 484 −27.114 33.600 61.427 1.00 67.50 B C
    ATOM 5109 CB HIS B 484 −26.894 32.195 60.857 1.00 78.88 B C
    ATOM 5110 CG HIS B 484 −27.277 31.090 61.801 1.00 89.66 B C
    ATOM 5111 ND1 HIS B 484 −27.930 31.316 62.999 1.00 93.08 B N
    ATOM 5112 CE1 HIS B 484 −28.131 30.165 63.616 1.00 94.13 B C
    ATOM 5113 NE2 HIS B 484 −27.633 29.198 62.863 1.00 95.47 B N
    ATOM 5114 CD2 HIS B 484 −27.093 29.749 61.723 1.00 92.90 B C
    ATOM 5115 C HIS B 484 −26.426 34.673 60.578 1.00 58.79 B C
    ATOM 5116 O HIS B 484 −27.027 35.178 59.638 1.00 56.11 B O
    ATOM 5117 N PRO B 485 −25.175 35.022 60.893 1.00 53.92 B N
    ATOM 5118 CA PRO B 485 −24.482 36.124 60.207 1.00 49.97 B C
    ATOM 5119 CB PRO B 485 −23.048 36.028 60.746 1.00 47.43 B C
    ATOM 5120 CG PRO B 485 −23.162 35.349 62.017 1.00 49.05 B C
    ATOM 5121 CD PRO B 485 −24.305 34.378 61.893 1.00 53.07 B C
    ATOM 5122 C PRO B 485 −24.464 35.955 58.692 1.00 49.45 B C
    ATOM 5123 O PRO B 485 −24.781 34.876 58.193 1.00 52.13 B O
    ATOM 5124 N VAL B 486 −24.091 37.006 57.969 1.00 49.91 B N
    ATOM 5125 CA VAL B 486 −23.974 36.925 56.510 1.00 51.43 B C
    ATOM 5126 CB VAL B 486 −24.359 38.252 55.823 1.00 51.96 B C
    ATOM 5127 CG1 VAL B 486 −24.307 38.106 54.321 1.00 51.08 B C
    ATOM 5128 CG2 VAL B 486 −25.749 38.696 56.258 1.00 53.12 B C
    ATOM 5129 C VAL B 486 −22.562 36.498 56.106 1.00 50.68 B C
    ATOM 5130 O VAL B 486 −21.572 36.985 56.656 1.00 53.67 B O
    ATOM 5131 N SER B 487 −22.478 35.583 55.147 1.00 47.61 B N
    ATOM 5132 CA SER B 487 −21.204 34.984 54.780 1.00 42.82 B C
    ATOM 5133 CB SER B 487 −21.408 33.541 54.319 1.00 43.71 B C
    ATOM 5134 OG SER B 487 −20.368 33.132 53.457 1.00 44.64 B O
    ATOM 5135 C SER B 487 −20.519 35.801 53.701 1.00 39.94 B C
    ATOM 5136 O SER B 487 −21.190 36.324 52.792 1.00 37.15 B O
    ATOM 5137 N PRO B 488 −19.187 35.889 53.795 1.00 38.13 B N
    ATOM 5138 CA PRO B 488 −18.388 36.671 52.843 1.00 40.98 B C
    ATOM 5139 CB PRO B 488 −16.990 36.684 53.481 1.00 35.56 B C
    ATOM 5140 CG PRO B 488 −16.944 35.471 54.289 1.00 32.78 B C
    ATOM 5141 CD PRO B 488 −18.335 35.240 54.805 1.00 32.47 B C
    ATOM 5142 C PRO B 488 −18.359 36.006 51.467 1.00 44.47 B C
    ATOM 5143 O PRO B 488 −18.133 36.692 50.465 1.00 46.31 B O
    ATOM 5144 N GLU B 489 −18.597 34.694 51.428 1.00 45.82 B N
    ATOM 5145 CA GLU B 489 −18.694 33.967 50.171 1.00 47.70 B C
    ATOM 5146 CB GLU B 489 −18.602 32.461 50.409 1.00 50.47 B C
    ATOM 5147 CG GLU B 489 −17.273 31.990 50.995 1.00 62.01 B C
    ATOM 5148 CD GLU B 489 −16.042 32.659 50.383 1.00 71.18 B C
    ATOM 5149 OE1 GLU B 489 −15.157 33.106 51.163 1.00 72.92 B O
    ATOM 5150 OE2 GLU B 489 −15.946 32.727 49.129 1.00 75.99 B O
    ATOM 5151 C GLU B 489 −19.991 34.336 49.467 1.00 47.82 B C
    ATOM 5152 O GLU B 489 −21.071 34.064 49.984 1.00 52.07 B O
    ATOM 5153 N VAL B 490 −19.885 34.984 48.305 1.00 44.97 B N
    ATOM 5154 CA VAL B 490 −21.065 35.520 47.619 1.00 41.07 B C
    ATOM 5155 CB VAL B 490 −21.256 37.023 47.926 1.00 41.20 B C
    ATOM 5156 CG1 VAL B 490 −21.323 37.267 49.440 1.00 45.24 B C
    ATOM 5157 CG2 VAL B 490 −20.156 37.855 47.311 1.00 36.78 B C
    ATOM 5158 C VAL B 490 −20.991 35.353 46.117 1.00 42.15 B C
    ATOM 5159 O VAL B 490 −19.899 35.341 45.552 1.00 48.59 B O
    ATOM 5160 N ILE B 491 −22.150 35.242 45.470 1.00 40.75 B N
    ATOM 5161 CA ILE B 491 −22.215 35.204 44.001 1.00 41.60 B C
    ATOM 5162 CB ILE B 491 −22.684 33.818 43.526 1.00 36.63 B C
    ATOM 5163 CG1 ILE B 491 −21.562 32.824 43.740 1.00 43.17 B C
    ATOM 5164 CD1 ILE B 491 −21.483 31.715 42.697 1.00 53.37 B C
    ATOM 5165 CG2 ILE B 491 −23.050 33.833 42.066 1.00 35.14 B C
    ATOM 5166 C ILE B 491 −23.084 36.329 43.393 1.00 44.75 B C
    ATOM 5167 O ILE B 491 −24.221 36.577 43.841 1.00 43.94 B O
    ATOM 5168 N VAL B 492 −22.544 37.007 42.380 1.00 41.70 B N
    ATOM 5169 CA VAL B 492 −23.348 37.943 41.595 1.00 43.44 B C
    ATOM 5170 CB VAL B 492 −22.767 39.368 41.599 1.00 40.20 B C
    ATOM 5171 CG1 VAL B 492 −23.561 40.274 40.664 1.00 38.26 B C
    ATOM 5172 CG2 VAL B 492 −22.761 39.937 42.984 1.00 37.76 B C
    ATOM 5173 C VAL B 492 −23.439 37.456 40.158 1.00 47.34 B C
    ATOM 5174 O VAL B 492 −22.437 37.132 39.557 1.00 52.98 B O
    ATOM 5175 N GLU B 493 −24.633 37.390 39.599 1.00 53.09 B N
    ATOM 5176 CA GLU B 493 −24.717 37.032 38.200 1.00 62.17 B C
    ATOM 5177 CB GLU B 493 −25.062 35.575 38.000 1.00 64.03 B C
    ATOM 5178 CG GLU B 493 −24.305 35.007 36.815 1.00 66.27 B C
    ATOM 5179 CD GLU B 493 −25.195 34.219 35.890 1.00 66.33 B C
    ATOM 5180 OE1 GLU B 493 −26.290 33.805 36.332 1.00 66.86 B O
    ATOM 5181 OE2 GLU B 493 −24.785 33.998 34.731 1.00 68.08 B O
    ATOM 5182 C GLU B 493 −25.683 37.881 37.444 1.00 68.85 B C
    ATOM 5183 O GLU B 493 −26.852 37.964 37.794 1.00 71.46 B O
    ATOM 5184 N HIS B 494 −25.176 38.484 36.380 1.00 74.96 B N
    ATOM 5185 CA HIS B 494 −25.947 39.409 35.583 1.00 78.80 B C
    ATOM 5186 CB HIS B 494 −25.019 40.425 34.932 1.00 78.18 B C
    ATOM 5187 CG HIS B 494 −24.054 41.053 35.883 1.00 74.88 B C
    ATOM 5188 ND1 HIS B 494 −24.363 42.176 36.618 1.00 72.93 B N
    ATOM 5189 CE1 HIS B 494 −23.325 42.502 37.367 1.00 75.94 B C
    ATOM 5190 NE2 HIS B 494 −22.356 41.632 37.144 1.00 76.91 B N
    ATOM 5191 CD2 HIS B 494 −22.787 40.715 36.218 1.00 76.17 B C
    ATOM 5192 C HIS B 494 −26.747 38.689 34.520 1.00 84.27 B C
    ATOM 5193 O HIS B 494 −26.450 37.560 34.149 1.00 85.88 B O
    ATOM 5194 N THR B 495 −27.778 39.363 34.045 1.00 93.42 B N
    ATOM 5195 CA THR B 495 −28.557 38.892 32.922 1.00 103.57 B C
    ATOM 5196 CB THR B 495 −29.865 38.219 33.407 1.00 106.89 B C
    ATOM 5197 OG1 THR B 495 −30.187 38.672 34.730 1.00 108.84 B O
    ATOM 5198 CG2 THR B 495 −29.647 36.719 33.613 1.00 107.44 B C
    ATOM 5199 C THR B 495 −28.816 40.107 32.045 1.00 108.32 B C
    ATOM 5200 O THR B 495 −28.671 41.251 32.503 1.00 107.90 B O
    ATOM 5201 N LEU B 496 −29.174 39.860 30.786 1.00 113.43 B N
    ATOM 5202 CA LEU B 496 −29.323 40.925 29.792 1.00 116.98 B C
    ATOM 5203 CB LEU B 496 −29.878 40.365 28.478 1.00 118.11 B C
    ATOM 5204 CG LEU B 496 −29.179 40.837 27.198 1.00 119.60 B C
    ATOM 5205 CD1 LEU B 496 −27.997 39.932 26.825 1.00 118.19 B C
    ATOM 5206 CD2 LEU B 496 −30.188 40.949 26.047 1.00 121.39 B C
    ATOM 5207 C LEU B 496 −30.182 42.088 30.289 1.00 117.02 B C
    ATOM 5208 O LEU B 496 −31.197 41.868 30.957 1.00 117.36 B O
    ATOM 5209 N ASN B 497 −29.740 43.310 29.968 1.00 116.73 B N
    ATOM 5210 CA ASN B 497 −30.419 44.577 30.308 1.00 116.78 B C
    ATOM 5211 CB ASN B 497 −31.935 44.522 30.017 1.00 119.09 B C
    ATOM 5212 CG ASN B 497 −32.275 44.789 28.551 1.00 120.22 B C
    ATOM 5213 OD1 ASN B 497 −31.749 44.140 27.643 1.00 121.41 B O
    ATOM 5214 ND2 ASN B 497 −33.179 45.734 28.321 1.00 120.02 B N
    ATOM 5215 C ASN B 497 −30.144 45.112 31.728 1.00 114.89 B C
    ATOM 5216 O ASN B 497 −30.892 45.947 32.244 1.00 115.25 B O
    ATOM 5217 N GLN B 498 −29.073 44.617 32.349 1.00 112.39 B N
    ATOM 5218 CA GLN B 498 −28.541 45.155 33.614 1.00 109.04 B C
    ATOM 5219 CB GLN B 498 −28.317 46.680 33.522 1.00 108.39 B C
    ATOM 5220 CG GLN B 498 −27.048 47.177 34.216 1.00 108.33 B C
    ATOM 5221 CD GLN B 498 −26.557 48.511 33.672 1.00 108.37 B C
    ATOM 5222 OE1 GLN B 498 −26.860 49.569 34.230 1.00 108.10 B O
    ATOM 5223 NE2 GLN B 498 −25.794 48.464 32.586 1.00 108.25 B N
    ATOM 5224 C GLN B 498 −29.275 44.793 34.922 1.00 105.07 B C
    ATOM 5225 O GLN B 498 −29.174 45.532 35.909 1.00 104.96 B O
    ATOM 5226 N ASN B 499 −29.996 43.668 34.941 1.00 99.22 B N
    ATOM 5227 CA ASN B 499 −30.388 43.060 36.225 1.00 93.30 B C
    ATOM 5228 CB ASN B 499 −31.920 42.898 36.427 1.00 93.03 B C
    ATOM 5229 CG ASN B 499 −32.640 42.347 35.210 1.00 92.94 B C
    ATOM 5230 OD1 ASN B 499 −33.119 43.106 34.368 1.00 93.01 B O
    ATOM 5231 ND2 ASN B 499 −32.760 41.023 35.136 1.00 91.88 B N
    ATOM 5232 C ASN B 499 −29.579 41.797 36.559 1.00 86.53 B C
    ATOM 5233 O ASN B 499 −28.408 41.707 36.186 1.00 86.38 B O
    ATOM 5234 N GLY B 500 −30.195 40.843 37.260 1.00 78.18 B N
    ATOM 5235 CA GLY B 500 −29.510 39.665 37.771 1.00 67.60 B C
    ATOM 5236 C GLY B 500 −29.802 39.461 39.247 1.00 61.51 B C
    ATOM 5237 O GLY B 500 −30.786 39.989 39.748 1.00 68.61 B O
    ATOM 5238 N TYR B 501 −28.955 38.718 39.953 1.00 50.28 B N
    ATOM 5239 CA TYR B 501 −29.215 38.388 41.347 1.00 44.13 B C
    ATOM 5240 CB TYR B 501 −30.105 37.149 41.420 1.00 43.20 B C
    ATOM 5241 CG TYR B 501 −29.497 35.910 40.788 1.00 46.13 B C
    ATOM 5242 CD1 TYR B 501 −28.689 35.035 41.535 1.00 50.06 B C
    ATOM 5243 CE1 TYR B 501 −28.121 33.889 40.960 1.00 47.10 B C
    ATOM 5244 CZ TYR B 501 −28.360 33.610 39.628 1.00 46.87 B C
    ATOM 5245 OH TYR B 501 −27.809 32.486 39.048 1.00 43.18 B O
    ATOM 5246 CE2 TYR B 501 −29.163 34.459 38.871 1.00 47.16 B C
    ATOM 5247 CD2 TYR B 501 −29.725 35.603 39.453 1.00 44.69 B C
    ATOM 5248 C TYR B 501 −27.929 38.123 42.116 1.00 46.69 B C
    ATOM 5249 O TYR B 501 −26.900 37.838 41.518 1.00 52.06 B O
    ATOM 5250 N THR B 502 −27.992 38.208 43.443 1.00 44.56 B N
    ATOM 5251 CA THR B 502 −26.901 37.766 44.295 1.00 42.16 B C
    ATOM 5252 CB THR B 502 −26.597 38.772 45.369 1.00 43.95 B C
    ATOM 5253 OG1 THR B 502 −26.543 40.071 44.795 1.00 51.23 B O
    ATOM 5254 CG2 THR B 502 −25.186 38.570 45.902 1.00 45.26 B C
    ATOM 5255 C THR B 502 −27.386 36.550 45.003 1.00 46.82 B C
    ATOM 5256 O THR B 502 −28.552 36.500 45.423 1.00 47.28 B O
    ATOM 5257 N LEU B 503 −26.494 35.573 45.145 1.00 46.91 B N
    ATOM 5258 CA LEU B 503 −26.745 34.443 46.020 1.00 41.81 B C
    ATOM 5259 CB LEU B 503 −26.258 33.153 45.401 1.00 39.18 B C
    ATOM 5260 CG LEU B 503 −26.990 32.801 44.116 1.00 43.11 B C
    ATOM 5261 CD1 LEU B 503 −26.080 31.952 43.246 1.00 49.37 B C
    ATOM 5262 CD2 LEU B 503 −28.293 32.085 44.407 1.00 42.13 B C
    ATOM 5263 C LEU B 503 −26.031 34.721 47.317 1.00 43.62 B C
    ATOM 5264 O LEU B 503 −24.846 35.060 47.323 1.00 45.71 B O
    ATOM 5265 N VAL B 504 −26.766 34.589 48.416 1.00 43.24 B N
    ATOM 5266 CA VAL B 504 −26.293 35.037 49.714 1.00 38.51 B C
    ATOM 5267 CB VAL B 504 −26.956 36.339 50.069 1.00 30.99 B C
    ATOM 5268 CG1 VAL B 504 −26.314 36.928 51.274 1.00 32.01 B C
    ATOM 5269 CG2 VAL B 504 −26.845 37.291 48.900 1.00 28.27 B C
    ATOM 5270 C VAL B 504 −26.514 34.012 50.823 1.00 44.16 B C
    ATOM 5271 O VAL B 504 −27.659 33.706 51.195 1.00 40.91 B O
    ATOM 5272 N ILE B 505 −25.387 33.506 51.338 1.00 51.60 B N
    ATOM 5273 CA ILE B 505 −25.326 32.444 52.357 1.00 52.85 B C
    ATOM 5274 CB ILE B 505 −24.007 31.652 52.218 1.00 55.32 B C
    ATOM 5275 CG1 ILE B 505 −23.946 30.935 50.872 1.00 55.99 B C
    ATOM 5276 CD1 ILE B 505 −22.711 31.244 50.082 1.00 58.09 B C
    ATOM 5277 CG2 ILE B 505 −23.855 30.648 53.350 1.00 58.75 B C
    ATOM 5278 C ILE B 505 −25.432 32.974 53.789 1.00 51.35 B C
    ATOM 5279 O ILE B 505 −24.711 33.897 54.181 1.00 52.97 B O
    ATOM 5280 N THR B 506 −26.315 32.358 54.565 1.00 48.09 B N
    ATOM 5281 CA THR B 506 −26.593 32.779 55.924 1.00 47.09 B C
    ATOM 5282 CB THR B 506 −27.931 33.526 55.950 1.00 48.13 B C
    ATOM 5283 OG1 THR B 506 −27.697 34.939 55.863 1.00 48.97 B O
    ATOM 5284 CG2 THR B 506 −28.595 33.374 57.292 1.00 50.75 B C
    ATOM 5285 C THR B 506 −26.671 31.519 56.766 1.00 48.75 B C
    ATOM 5286 O THR B 506 −27.584 30.719 56.585 1.00 52.12 B O
    ATOM 5287 N GLY B 507 −25.721 31.330 57.679 1.00 50.28 B N
    ATOM 5288 CA GLY B 507 −25.621 30.075 58.412 1.00 51.01 B C
    ATOM 5289 C GLY B 507 −25.590 28.880 57.461 1.00 51.67 B C
    ATOM 5290 O GLY B 507 −24.529 28.536 56.899 1.00 51.19 B O
    ATOM 5291 N LYS B 508 −26.758 28.261 57.271 1.00 50.11 B N
    ATOM 5292 CA LYS B 508 −26.916 27.171 56.304 1.00 51.34 B C
    ATOM 5293 CB LYS B 508 −27.022 25.812 57.008 1.00 50.25 B C
    ATOM 5294 CG LYS B 508 −27.934 25.776 58.225 1.00 49.54 B C
    ATOM 5295 CD LYS B 508 −27.205 25.229 59.434 1.00 50.14 B C
    ATOM 5296 CE LYS B 508 −27.202 23.706 59.431 1.00 51.54 B C
    ATOM 5297 NZ LYS B 508 −28.176 23.135 60.400 1.00 54.37 B N
    ATOM 5298 C LYS B 508 −28.094 27.380 55.345 1.00 53.15 B C
    ATOM 5299 O LYS B 508 −28.794 26.431 54.990 1.00 54.71 B O
    ATOM 5300 N LYS B 509 −28.302 28.621 54.919 1.00 55.68 B N
    ATOM 5301 CA LYS B 509 −29.359 28.947 53.960 1.00 61.78 B C
    ATOM 5302 CB LYS B 509 −30.583 29.558 54.669 1.00 68.02 B C
    ATOM 5303 CG LYS B 509 −31.209 28.645 55.754 1.00 75.10 B C
    ATOM 5304 CD LYS B 509 −31.956 29.428 56.867 1.00 76.79 B C
    ATOM 5305 CE LYS B 509 −32.161 28.625 58.170 1.00 73.41 B C
    ATOM 5306 NZ LYS B 509 −31.388 29.179 59.327 1.00 70.29 B N
    ATOM 5307 C LYS B 509 −28.845 29.884 52.861 1.00 61.33 B C
    ATOM 5308 O LYS B 509 −28.210 30.909 53.142 1.00 66.26 B O
    ATOM 5309 N ILE B 510 −29.112 29.529 51.610 1.00 53.31 B N
    ATOM 5310 CA ILE B 510 −28.732 30.387 50.500 1.00 47.96 B C
    ATOM 5311 CB ILE B 510 −27.847 29.621 49.486 1.00 47.05 B C
    ATOM 5312 CG1 ILE B 510 −27.390 30.539 48.349 1.00 47.77 B C
    ATOM 5313 CD1 ILE B 510 −25.914 30.482 48.051 1.00 43.29 B C
    ATOM 5314 CG2 ILE B 510 −28.569 28.418 46.943 1.00 48.55 B C
    ATOM 5315 C ILE B 510 −29.970 31.038 49.868 1.00 44.99 B C
    ATOM 5316 O ILE B 510 −30.965 30.375 49.584 1.00 46.16 B O
    ATOM 5317 N THR B 511 −29.889 32.345 49.669 1.00 40.67 B N
    ATOM 5318 CA THR B 511 −31.032 33.160 49.292 1.00 41.47 B C
    ATOM 5319 CB THR B 511 −31.242 34.217 50.363 1.00 45.32 B C
    ATOM 5320 OG1 THR B 511 −30.734 33.722 51.618 1.00 50.07 B O
    ATOM 5321 CG2 THR B 511 −32.716 34.453 50.602 1.00 44.33 B C
    ATOM 5322 C THR B 511 −30.723 33.859 47.992 1.00 40.90 B C
    ATOM 5323 O THR B 511 −29.586 34.276 47.782 1.00 46.23 B O
    ATOM 5324 N LYS B 512 −31.722 34.009 47.126 1.00 35.30 B N
    ATOM 5325 CA LYS B 512 −31.491 34.566 45.793 1.00 29.91 B C
    ATOM 5326 CB LYS B 512 −32.092 33.665 44.723 1.00 22.89 B C
    ATOM 5327 CG LYS B 512 −31.582 33.925 43.325 1.00 23.69 B C
    ATOM 5328 CD LYS B 512 −32.402 33.133 42.302 1.00 28.13 B C
    ATOM 5329 CE LYS B 512 −31.796 33.207 40.901 1.00 31.45 B C
    ATOM 5330 NZ LYS B 512 −32.717 32.728 39.823 1.00 34.26 B N
    ATOM 5331 C LYS B 512 −32.048 35.975 45.682 1.00 36.32 B C
    ATOM 5332 O LYS B 512 −33.093 36.207 45.059 1.00 42.57 B O
    ATOM 5333 N ILE B 513 −31.340 36.920 46.287 1.00 35.43 B N
    ATOM 5334 CA ILE B 513 −31.769 38.312 46.289 1.00 31.31 B C
    ATOM 5335 CB ILE B 513 −31.049 39.064 47.397 1.00 27.61 B C
    ATOM 5336 CG1 ILE B 513 −31.137 38.249 48.691 1.00 25.50 B C
    ATOM 5337 CD1 ILE B 513 −30.231 38.744 49.771 1.00 27.33 B C
    ATOM 5338 CG2 ILE B 513 −31.611 40.493 47.533 1.00 25.53 B C
    ATOM 5339 C ILE B 513 −31.524 38.979 44.937 1.00 33.99 B C
    ATOM 5340 O ILE B 513 −30.373 39.099 44.510 1.00 36.24 B O
    ATOM 5341 N PRO B 514 −32.606 39.381 44.265 1.00 34.33 B N
    ATOM 5342 CA PRO B 514 −32.527 40.131 43.007 1.00 36.56 B C
    ATOM 5343 CB PRO B 514 −33.982 40.490 42.738 1.00 35.33 B C
    ATOM 5344 CG PRO B 514 −34.626 40.356 44.067 1.00 35.03 B C
    ATOM 5345 CD PRO B 514 −34.003 39.138 44.647 1.00 34.41 B C
    ATOM 5346 C PRO B 514 −31.769 41.412 43.199 1.00 40.43 B C
    ATOM 5347 O PRO B 514 −31.944 42.037 44.240 1.00 46.11 B O
    ATOM 5348 N LEU B 515 −30.968 41.807 42.217 1.00 42.57 B N
    ATOM 5349 CA LEU B 515 −30.198 43.044 42.312 1.00 45.31 B C
    ATOM 5350 CB LEU B 515 −29.175 43.131 41.178 1.00 44.56 B C
    ATOM 5351 CG LEU B 515 −28.031 42.114 41.142 1.00 43.12 B C
    ATOM 5352 CD1 LEU B 515 −27.300 42.208 39.819 1.00 41.22 B C
    ATOM 5353 CD2 LEU B 515 −27.071 42.344 42.296 1.00 42.46 B C
    ATOM 5354 C LEU B 515 −31.052 44.311 42.310 1.00 48.69 B C
    ATOM 5355 O LEU B 515 −30.612 45.335 42.818 1.00 50.19 B O
    ATOM 5356 N ASN B 516 −32.272 44.239 41.774 1.00 51.39 B N
    ATOM 5357 CA ASN B 516 −32.944 45.458 41.344 1.00 53.55 B C
    ATOM 5358 CB ASN B 516 −32.905 45.545 39.822 1.00 52.30 B C
    ATOM 5359 CG ASN B 516 −31.683 46.288 39.322 1.00 53.51 B C
    ATOM 5360 OD1 ASN B 516 −31.298 47.325 39.867 1.00 52.78 B O
    ATOM 5361 ND2 ASN B 516 −31.062 45.758 38.284 1.00 57.11 B N
    ATOM 5362 C ASN B 516 −34.336 45.839 41.876 1.00 58.86 B C
    ATOM 5363 O ASN B 516 −34.521 46.936 42.433 1.00 62.39 B O
    ATOM 5364 N GLY B 517 −35.322 44.973 41.685 1.00 59.47 B N
    ATOM 5365 CA GLY B 517 −36.691 45.350 42.011 1.00 59.33 B C
    ATOM 5366 C GLY B 517 −36.963 45.689 43.470 1.00 55.99 B C
    ATOM 5367 O GLY B 517 −37.901 46.422 43.778 1.00 56.60 B O
    ATOM 5368 N LEU B 518 −36.109 45.178 44.353 1.00 52.22 B N
    ATOM 5369 CA LEU B 518 −36.430 45.004 45.763 1.00 46.10 B C
    ATOM 5370 CB LEU B 518 −35.300 44.246 46.464 1.00 44.34 B C
    ATOM 5371 CG LEU B 518 −35.765 43.451 47.683 1.00 44.94 B C
    ATOM 5372 CD1 LEU B 518 −36.183 42.040 47.310 1.00 47.31 B C
    ATOM 5373 CD2 LEU B 518 −34.681 43.414 48.726 1.00 44.90 B C
    ATOM 5374 C LEU B 518 −36.784 46.268 46.532 1.00 42.67 B C
    ATOM 5375 O LEU B 518 −37.728 46.271 47.322 1.00 41.36 B O
    ATOM 5376 N GLY B 519 −36.039 47.342 46.303 1.00 40.30 B N
    ATOM 5377 CA GLY B 519 −36.232 48.563 47.065 1.00 42.21 B C
    ATOM 5378 C GLY B 519 −37.584 49.234 46.869 1.00 42.24 B C
    ATOM 5379 O GLY B 519 −37.761 50.411 47.203 1.00 41.48 B O
    ATOM 5380 N CYS B 520 −38.532 48.482 46.326 1.00 39.31 B N
    ATOM 5381 CA CYS B 520 −39.857 48.996 46.045 1.00 38.82 B C
    ATOM 5382 CB CYS B 520 −40.146 48.886 44.554 1.00 37.59 B C
    ATOM 5383 SG CYS B 520 −39.027 49.892 43.568 1.00 35.58 B S
    ATOM 5384 C CYS B 520 −40.884 48.208 46.809 1.00 40.00 B C
    ATOM 5385 O CYS B 520 −41.929 48.736 47.170 1.00 39.24 B O
    ATOM 5386 N ARG B 521 −40.562 46.944 47.065 1.00 44.69 B N
    ATOM 5387 CA ARG B 521 −41.533 45.968 47.537 1.00 49.98 B C
    ATOM 5388 CB ARG B 521 −40.938 44.564 47.523 1.00 55.09 B C
    ATOM 5389 CG ARG B 521 −40.870 43.953 46.124 1.00 63.59 B C
    ATOM 5390 CD ARG B 521 −40.265 42.554 46.079 1.00 71.10 B C
    ATOM 5391 NE ARG B 521 −40.860 41.682 47.095 1.00 75.72 B N
    ATOM 5392 CZ ARG B 521 −40.277 40.602 47.605 1.00 76.13 B C
    ATOM 5393 NH1 ARG B 521 −39.067 40.230 47.193 1.00 73.32 B N
    ATOM 5394 NH2 ARG B 521 −40.914 39.891 48.529 1.00 76.82 B N
    ATOM 5395 C ARG B 521 −42.097 46.301 48.905 1.00 51.00 B C
    ATOM 5396 O ARG B 521 −43.202 45.869 49.243 1.00 53.86 B O
    ATOM 5397 N HIS B 522 −41.366 47.099 49.676 1.00 50.09 B N
    ATOM 5398 CA HIS B 522 −41.825 47.444 51.021 1.00 51.92 B C
    ATOM 5399 CB HIS B 522 −40.640 47.602 51.975 1.00 53.81 B C
    ATOM 5400 CG HIS B 522 −39.993 48.944 51.903 1.00 54.81 B C
    ATOM 5401 ND1 HIS B 522 −38.950 49.215 51.039 1.00 56.49 B N
    ATOM 5402 CE1 HIS B 522 −38.588 50.479 51.188 1.00 58.86 B C
    ATOM 5403 NE2 HIS B 522 −39.367 51.039 52.107 1.00 57.45 B N
    ATOM 5404 CD2 HIS B 522 −40.254 50.100 52.572 1.00 54.77 B C
    ATOM 5405 C HIS B 522 −42.758 48.664 51.124 1.00 50.26 B C
    ATOM 5406 O HIS B 522 −43.078 49.084 52.240 1.00 53.55 B O
    ATOM 5407 N PHE B 523 −43.181 49.240 49.992 1.00 43.87 B N
    ATOM 5408 CA PHE B 523 −44.156 50.344 50.016 1.00 34.84 B C
    ATOM 5409 CB PHE B 523 −43.887 51.377 48.926 1.00 30.23 B C
    ATOM 5410 CG PHE B 523 −42.620 52.145 49.132 1.00 29.35 B C
    ATOM 5411 CD1 PHE B 523 −41.454 51.792 48.407 1.00 29.06 B C
    ATOM 5412 CE1 PHE B 523 −40.263 52.498 48.594 1.00 25.47 B C
    ATOM 5413 CZ PHE B 523 −40.225 53.557 49.514 1.00 24.47 B C
    ATOM 5414 CE2 PHE B 523 −41.381 53.918 50.245 1.00 30.23 B C
    ATOM 5415 CD2 PHE B 523 −42.574 53.211 50.050 1.00 30.94 B C
    ATOM 5416 C PHE B 523 −45.581 49.814 49.935 1.00 34.18 B C
    ATOM 5417 O PHE B 523 −45.994 49.215 48.929 1.00 34.09 B O
    ATOM 5418 N GLN B 524 −46.318 50.033 51.023 1.00 33.26 B N
    ATOM 5419 CA GLN B 524 −47.561 49.326 51.259 1.00 35.86 B C
    ATOM 5420 CB GLN B 524 −47.719 49.086 52.773 1.00 39.90 B C
    ATOM 5421 CG GLN B 524 −48.046 47.645 53.194 1.00 45.25 B C
    ATOM 5422 CD GLN B 524 −47.197 46.574 52.485 1.00 50.10 B C
    ATOM 5423 OE1 GLN B 524 −47.730 45.571 51.998 1.00 51.86 B O
    ATOM 5424 NE2 GLN B 524 −45.883 46.782 52.436 1.00 52.55 B N
    ATOM 5425 C GLN B 524 −48.758 50.081 50.682 1.00 35.92 B C
    ATOM 5426 O GLN B 524 −49.915 49.692 50.899 1.00 36.74 B O
    ATOM 5427 N SER B 525 −48.473 51.156 49.941 1.00 33.82 B N
    ATOM 5428 CA SER B 525 −49.514 52.071 49.473 1.00 30.97 B C
    ATOM 5429 CB SER B 525 −50.004 52.943 50.632 1.00 33.70 B C
    ATOM 5430 OG SER B 525 −49.155 54.099 50.818 1.00 39.19 B O
    ATOM 5431 C SER B 525 −49.061 52.962 48.318 1.00 27.28 B C
    ATOM 5432 O SER B 525 −47.912 53.482 48.309 1.00 27.58 B O
    ATOM 5433 N CYS B 526 −49.998 53.163 47.365 1.00 24.58 B N
    ATOM 5434 CA CYS B 526 −49.681 53.950 46.157 1.00 19.24 B C
    ATOM 5435 CB CYS B 526 −50.960 54.320 45.354 1.00 18.73 B C
    ATOM 5436 SG CYS B 526 −50.512 55.211 43.829 1.00 15.67 B S
    ATOM 5437 C CYS B 526 −48.893 55.216 46.465 1.00 16.28 B C
    ATOM 5438 O CYS B 526 −47.652 55.318 46.047 1.00 15.73 B O
    ATOM 5439 N SER B 527 −49.622 56.172 47.193 1.00 15.92 B N
    ATOM 5440 CA SER B 527 −48.928 57.403 47.589 1.00 15.45 B C
    ATOM 5441 CB SER B 527 −49.640 58.093 48.735 1.00 16.48 B C
    ATOM 5442 OG SER B 527 −48.651 58.912 49.479 1.00 20.53 B O
    ATOM 5443 C SER B 527 −47.482 57.178 48.031 1.00 18.59 B C
    ATOM 5444 O SER B 527 −46.569 57.788 47.481 1.00 19.04 B O
    ATOM 5445 N GLN B 528 −47.284 56.316 49.030 1.00 22.16 B N
    ATOM 5446 CA GLN B 528 −45.958 56.092 49.604 1.00 23.92 B C
    ATOM 5447 CB GLN B 528 −46.029 55.001 50.669 1.00 26.41 B C
    ATOM 5448 CG GLN B 528 −45.788 55.518 52.080 1.00 29.27 B C
    ATOM 5449 CD GLN B 528 −46.734 54.916 53.111 1.00 27.95 B C
    ATOM 5450 OE1 GLN B 528 −46.683 53.709 53.387 1.00 27.67 B O
    ATOM 5451 NE2 GLN B 528 −47.589 55.756 53.691 1.00 22.48 B N
    ATOM 5452 C GLN B 528 −44.976 55.718 48.507 1.00 25.49 B C
    ATOM 5453 O GLN B 528 −43.832 56.202 48.477 1.00 28.91 B O
    ATOM 5454 N CYS B 529 −45.460 54.875 47.597 1.00 24.45 B N
    ATOM 5455 CA CYS B 529 −44.686 54.336 46.476 1.00 21.14 B C
    ATOM 5456 CB CYS B 529 −45.522 53.278 45.752 1.00 22.04 B C
    ATOM 5457 SG CYS B 529 −44.724 52.460 44.370 1.00 22.10 B S
    ATOM 5458 C CYS B 529 −44.276 55.432 45.503 1.00 19.89 B C
    ATOM 5459 O CYS B 529 −43.151 55.464 45.033 1.00 21.64 B O
    ATOM 5460 N LEU B 530 −45.175 56.349 45.204 1.00 19.23 B N
    ATOM 5461 CA LEU B 530 −44.791 57.455 44.343 1.00 23.13 B C
    ATOM 5462 CB LEU B 530 −46.019 58.272 43.898 1.00 22.39 B C
    ATOM 5463 CG LEU B 530 −47.106 57.578 43.083 1.00 20.21 B C
    ATOM 5464 CD1 LEU B 530 −48.027 58.574 42.460 1.00 16.44 B C
    ATOM 5465 CD2 LEU B 530 −46.469 56.700 42.020 1.00 22.29 B C
    ATOM 5466 C LEU B 530 −43.775 58.374 45.020 1.00 25.56 B C
    ATOM 5467 O LEU B 530 −43.232 59.287 44.380 1.00 29.36 B O
    ATOM 5468 N SER B 531 −43.528 58.148 46.309 1.00 24.02 B N
    ATOM 5469 CA SER B 531 −42.709 59.078 47.074 1.00 29.39 B C
    ATOM 5470 CB SER B 531 −43.379 59.424 48.410 1.00 32.04 B C
    ATOM 5471 OG SER B 531 −43.995 60.717 48.379 1.00 32.10 B O
    ATOM 5472 C SER B 531 −41.279 58.578 47.265 1.00 33.38 B C
    ATOM 5473 O SER B 531 −40.428 59.284 47.811 1.00 35.32 B O
    ATOM 5474 N ALA B 532 −41.021 57.369 46.773 1.00 35.38 B N
    ATOM 5475 CA ALA B 532 −39.723 56.707 46.889 1.00 33.85 B C
    ATOM 5476 CB ALA B 532 −39.824 55.287 46.347 1.00 31.65 B C
    ATOM 5477 C ALA B 532 −38.604 57.464 46.171 1.00 35.34 B C
    ATOM 5478 O ALA B 532 −38.870 58.236 45.242 1.00 35.60 B O
    ATOM 5479 N PRO B 533 −37.359 57.234 46.597 1.00 36.25 B N
    ATOM 5480 CA PRO B 533 −36.180 57.792 45.924 1.00 35.80 B C
    ATOM 5481 CB PRO B 533 −35.017 57.082 46.619 1.00 37.77 B C
    ATOM 5482 CG PRO B 533 −35.640 55.914 47.337 1.00 36.66 B C
    ATOM 5483 CD PRO B 533 −36.978 56.414 47.761 1.00 36.96 B C
    ATOM 5484 C PRO B 533 −36.177 57.452 44.437 1.00 37.92 B C
    ATOM 5485 O PRO B 533 −36.250 56.268 44.067 1.00 35.73 B O
    ATOM 5486 N PRO B 534 −36.082 58.484 43.602 1.00 40.65 B N
    ATOM 5487 CA PRO B 534 −36.281 58.348 42.154 1.00 43.08 B C
    ATOM 5488 CB PRO B 534 −35.967 59.749 41.622 1.00 43.53 B C
    ATOM 5489 CG PRO B 534 −35.176 60.391 42.706 1.00 44.34 B C
    ATOM 5490 CD PRO B 534 −35.753 59.868 43.982 1.00 42.50 B C
    ATOM 5491 C PRO B 534 −35.375 57.305 41.501 1.00 43.92 B C
    ATOM 5492 O PRO B 534 −35.866 56.544 40.667 1.00 46.13 B O
    ATOM 5493 N PHE B 535 −34.098 57.255 41.874 1.00 43.31 B N
    ATOM 5494 CA PHE B 535 −33.171 56.293 41.260 1.00 43.87 B C
    ATOM 5495 CB PHE B 535 −31.750 56.409 41.839 1.00 43.86 B C
    ATOM 5496 CG PHE B 535 −31.571 55.740 43.177 1.00 40.68 B C
    ATOM 5497 CD1 PHE B 535 −31.264 54.386 43.261 1.00 42.53 B C
    ATOM 5498 CE1 PHE B 535 −31.099 53.777 44.497 1.00 44.40 B C
    ATOM 5499 CZ PHE B 535 −31.237 54.537 45.664 1.00 43.40 B C
    ATOM 5500 CE2 PHE B 535 −31.539 55.884 45.585 1.00 36.71 B C
    ATOM 5501 CD2 PHE B 535 −31.700 56.473 44.351 1.00 38.28 B C
    ATOM 5502 C PHE B 535 −33.658 54.841 41.302 1.00 41.68 B C
    ATOM 5503 O PHE B 535 −33.407 54.085 40.369 1.00 43.66 B O
    ATOM 5504 N VAL B 536 −34.350 54.464 42.378 1.00 37.37 B N
    ATOM 5505 CA VAL B 536 −34.867 53.103 42.538 1.00 32.40 B C
    ATOM 5506 CB VAL B 536 −35.492 52.886 43.936 1.00 28.07 B C
    ATOM 5507 CG1 VAL B 536 −36.062 51.491 44.074 1.00 19.57 B C
    ATOM 5508 CG2 VAL B 536 −34.471 53.121 45.017 1.00 28.40 B C
    ATOM 5509 C VAL B 536 −35.905 52.789 41.461 1.00 34.29 B C
    ATOM 5510 O VAL B 536 −36.122 51.628 41.138 1.00 37.01 B O
    ATOM 5511 N GLN B 537 −36.536 53.831 40.921 1.00 34.19 B N
    ATOM 5512 CA GLN B 537 −37.489 53.717 39.813 1.00 37.25 B C
    ATOM 5513 CB GLN B 537 −36.781 53.359 38.491 1.00 43.61 B C
    ATOM 5514 CG GLN B 537 −35.602 54.262 38.115 1.00 50.57 B C
    ATOM 5515 CD GLN B 537 −34.857 53.780 36.869 1.00 54.96 B C
    ATOM 5516 OE1 GLN B 537 −35.090 54.295 35.767 1.00 55.50 B O
    ATOM 5517 NE2 GLN B 537 −33.961 52.793 37.040 1.00 55.50 B N
    ATOM 5518 C GLN B 537 −38.661 52.763 40.079 1.00 35.11 B C
    ATOM 5519 O GLN B 537 −38.912 51.849 39.295 1.00 33.64 B O
    ATOM 5520 N CYS B 538 −39.378 52.994 41.178 1.00 33.99 B N
    ATOM 5521 CA CYS B 538 −40.621 52.275 41.474 1.00 30.58 B C
    ATOM 5522 CB CYS B 538 −40.895 52.284 42.968 1.00 31.61 B C
    ATOM 5523 SG CYS B 538 −39.461 51.843 43.916 1.00 40.00 B S
    ATOM 5524 C CYS B 538 −41.816 52.913 40.807 1.00 26.54 B C
    ATOM 5525 O CYS B 538 −41.788 54.102 40.475 1.00 21.86 B O
    ATOM 5526 N GLY B 539 −42.874 52.120 40.648 1.00 25.92 B N
    ATOM 5527 CA GLY B 539 −44.177 52.639 40.256 1.00 29.71 B C
    ATOM 5528 C GLY B 539 −45.343 51.874 40.855 1.00 27.62 B C
    ATOM 5529 O GLY B 539 −45.148 50.834 41.491 1.00 28.31 B O
    ATOM 5530 N TRP B 540 −46.559 52.370 40.654 1.00 22.58 B N
    ATOM 5531 CA TRP B 540 −47.701 51.678 41.235 1.00 23.87 B C
    ATOM 5532 CB TRP B 540 −48.631 52.656 41.935 1.00 20.61 B C
    ATOM 5533 CG TRP B 540 −49.674 51.979 42.757 1.00 18.60 B C
    ATOM 5534 CD1 TRP B 540 −51.011 51.861 42.458 1.00 22.67 B C
    ATOM 5535 NE1 TRP B 540 −51.668 51.190 43.462 1.00 21.67 B N
    ATOM 5536 CE2 TRP B 540 −50.745 50.858 44.436 1.00 16.29 B C
    ATOM 5537 CD2 TRP B 540 −49.478 51.343 44.024 1.00 16.67 B C
    ATOM 5538 CE3 TRP B 540 −48.359 51.133 44.861 1.00 18.20 B C
    ATOM 5539 CZ3 TRP B 540 −48.541 50.457 46.055 1.00 16.38 B C
    ATOM 5540 CH2 TRP B 540 −49.813 49.997 46.434 1.00 13.70 B C
    ATOM 5541 CZ2 TRP B 540 −50.924 50.189 45.640 1.00 14.20 B C
    ATOM 5542 C TRP B 540 −48.475 50.813 40.255 1.00 27.32 B C
    ATOM 5543 O TRP B 540 −49.143 51.309 39.348 1.00 31.37 B O
    ATOM 5544 N CYS B 541 −48.392 49.507 40.472 1.00 29.65 B N
    ATOM 5545 CA CYS B 541 −49.100 48.540 39.645 1.00 34.46 B C
    ATOM 5546 CB CYS B 541 −48.187 47.360 39.313 1.00 37.32 B C
    ATOM 5547 SG CYS B 541 −48.608 46.580 37.747 1.00 41.09 B S
    ATOM 5548 C CYS B 541 −50.404 48.050 40.285 1.00 34.49 B C
    ATOM 5549 O CYS B 541 −50.475 46.923 40.795 1.00 34.58 B O
    ATOM 5550 N HIS B 542 −51.423 48.910 40.249 1.00 33.21 B N
    ATOM 5551 CA HIS B 542 −52.771 48.591 40.736 1.00 35.58 B C
    ATOM 5552 CB HIS B 542 −53.396 47.435 39.939 1.00 39.34 B C
    ATOM 5553 CG HIS B 542 −54.803 47.117 40.343 1.00 42.34 B C
    ATOM 5554 ND1 HIS B 542 −55.132 45.989 41.065 1.00 42.44 B N
    ATOM 5555 CE1 HIS B 542 −56.436 45.973 41.279 1.00 43.94 B C
    ATOM 5556 NE2 HIS B 542 −56.964 47.050 40.722 1.00 44.40 B N
    ATOM 5557 CD2 HIS B 542 −55.963 47.784 40.133 1.00 42.97 B C
    ATOM 5558 C HIS B 542 −52.887 48.322 42.243 1.00 34.45 B C
    ATOM 5559 O HIS B 542 −53.626 49.028 42.943 1.00 35.13 B O
    ATOM 5560 N ASP B 543 −52.194 47.289 42.725 1.00 30.98 B N
    ATOM 5561 CA ASP B 543 −52.203 46.954 44.147 1.00 28.77 B C
    ATOM 5562 CB ASP B 543 −52.993 45.675 44.428 1.00 30.73 B C
    ATOM 5563 CG ASP B 543 −52.640 44.538 43.483 1.00 34.62 B C
    ATOM 5564 OD1 ASP B 543 −53.579 44.032 42.828 1.00 35.81 B O
    ATOM 5565 OD2 ASP B 543 −51.480 44.071 43.335 1.00 35.65 B O
    ATOM 5566 C ASP B 543 −50.823 46.836 44.763 1.00 29.02 B C
    ATOM 5567 O ASP B 543 −50.698 46.896 45.978 1.00 33.51 B O
    ATOM 5568 N LYS B 544 −49.792 46.672 43.940 1.00 26.83 B N
    ATOM 5569 CA LYS B 544 −48.438 46.489 44.449 1.00 25.39 B C
    ATOM 5570 CB LYS B 544 −47.897 45.134 43.989 1.00 30.32 B C
    ATOM 5571 CG LYS B 544 −47.894 44.934 42.472 1.00 36.12 B C
    ATOM 5572 CD LYS B 544 −48.387 43.546 42.073 1.00 41.41 B C
    ATOM 5573 CE LYS B 544 −47.218 42.597 41.759 1.00 43.22 B C
    ATOM 5574 NZ LYS B 544 −47.668 41.282 41.192 1.00 43.58 B N
    ATOM 5575 C LYS B 544 −47.504 47.621 44.016 1.00 24.84 B C
    ATOM 5576 O LYS B 544 −47.849 48.419 43.159 1.00 25.15 B O
    ATOM 5577 N CYS B 545 −46.316 47.683 44.605 1.00 27.68 B N
    ATOM 5578 CA CYS B 545 −45.302 48.665 44.212 1.00 31.24 B C
    ATOM 5579 CB CYS B 545 −44.950 49.560 45.406 1.00 27.50 B C
    ATOM 5580 SG CYS B 545 −43.724 50.847 45.041 1.00 26.28 B S
    ATOM 5581 C CYS B 545 −44.032 47.994 43.625 1.00 37.80 B C
    ATOM 5582 O CYS B 545 −43.457 47.089 44.236 1.00 39.35 B O
    ATOM 5583 N VAL B 546 −43.600 48.457 42.447 1.00 42.68 B N
    ATOM 5584 CA VAL B 546 −42.500 47.838 41.694 1.00 43.63 B C
    ATOM 5585 CB VAL B 546 −42.872 46.404 41.284 1.00 42.90 B C
    ATOM 5586 CG1 VAL B 546 −44.193 46.366 40.499 1.00 39.68 B C
    ATOM 5587 CG2 VAL B 546 −41.744 45.783 40.509 1.00 46.05 B C
    ATOM 5588 C VAL B 546 −42.075 48.626 40.432 1.00 47.24 B C
    ATOM 5589 O VAL B 546 −42.790 49.548 39.997 1.00 45.55 B O
    ATOM 5590 N ARG B 547 −40.925 48.254 39.848 1.00 48.48 B N
    ATOM 5591 CA ARG B 547 −40.461 48.861 38.588 1.00 52.40 B C
    ATOM 5592 CB ARG B 547 −38.930 48.907 38.498 1.00 55.38 B C
    ATOM 5593 CG ARG B 547 −38.274 47.742 37.824 1.00 58.48 B C
    ATOM 5594 CD ARG B 547 −37.139 47.148 38.619 1.00 58.66 B C
    ATOM 5595 NE ARG B 547 −37.308 45.704 38.751 1.00 59.52 B N
    ATOM 5596 CZ ARG B 547 −36.682 44.802 38.005 1.00 59.56 B C
    ATOM 5597 NH1 ARG B 547 −35.830 45.185 37.057 1.00 59.35 B N
    ATOM 5598 NH2 ARG B 547 −36.904 43.510 38.211 1.00 59.12 B N
    ATOM 5599 C ARG B 547 −41.114 48.248 37.341 1.00 50.72 B C
    ATOM 5600 O ARG B 547 −41.588 47.115 37.389 1.00 48.52 B O
    ATOM 5601 N SER B 548 −41.138 48.999 36.237 1.00 51.45 B N
    ATOM 5602 CA SER B 548 −42.079 48.719 35.141 1.00 53.15 B C
    ATOM 5603 CB SER B 548 −42.016 49.770 34.017 1.00 53.59 B C
    ATOM 5604 OG SER B 548 −40.685 50.128 33.704 1.00 56.77 B O
    ATOM 5605 C SER B 548 −42.002 47.297 34.589 1.00 53.91 B C
    ATOM 5606 O SER B 548 −43.027 46.611 34.509 1.00 53.72 B O
    ATOM 5607 N GLU B 549 −40.793 46.858 34.234 1.00 55.87 B N
    ATOM 5608 CA GLU B 549 −40.573 45.504 33.700 1.00 57.44 B C
    ATOM 5609 CB GLU B 549 −39.081 45.187 33.539 1.00 53.42 B C
    ATOM 5610 CG GLU B 549 −38.205 45.646 34.684 1.00 50.56 B C
    ATOM 5611 CD GLU B 549 −37.353 46.841 34.307 1.00 52.88 B C
    ATOM 5612 OE1 GLU B 549 −37.894 47.851 33.796 1.00 53.25 B O
    ATOM 5613 OE2 GLU B 549 −36.129 46.769 34.525 1.00 55.17 B O
    ATOM 5614 C GLU B 549 −41.233 44.415 34.543 1.00 59.78 B C
    ATOM 5615 O GLU B 549 −41.718 43.419 34.008 1.00 65.11 B O
    ATOM 5616 N GLU B 550 −41.261 44.630 35.854 1.00 56.62 B N
    ATOM 5617 CA GLU B 550 −41.779 43.666 36.814 1.00 52.20 B C
    ATOM 5618 CB GLU B 550 −40.971 43.811 38.095 1.00 53.08 B C
    ATOM 5619 CG GLU B 550 −40.746 42.572 38.938 1.00 55.13 B C
    ATOM 5620 CD GLU B 550 −40.158 42.947 40.291 1.00 59.40 B C
    ATOM 5621 OE1 GLU B 550 −40.795 42.651 41.326 1.00 61.85 B O
    ATOM 5622 OE2 GLU B 550 −39.075 43.581 40.323 1.00 60.17 B O
    ATOM 5623 C GLU B 550 −43.269 43.887 37.096 1.00 49.10 B C
    ATOM 5624 O GLU B 550 −43.796 43.359 38.073 1.00 49.30 B O
    ATOM 5625 N CYS B 551 −43.946 44.653 36.241 1.00 47.59 B N
    ATOM 5626 CA CYS B 551 −45.365 44.959 36.447 1.00 49.58 B C
    ATOM 5627 CB CYS B 551 −45.576 46.471 36.598 1.00 47.57 B C
    ATOM 5628 SG CYS B 551 −47.260 47.072 36.293 1.00 46.78 B S
    ATOM 5629 C CYS B 551 −46.298 44.370 35.380 1.00 53.53 B C
    ATOM 5630 O CYS B 551 −46.203 44.705 34.190 1.00 51.95 B O
    ATOM 5631 N LEU B 552 −47.209 43.513 35.852 1.00 58.99 B N
    ATOM 5632 CA LEU B 552 −48.178 42.748 35.043 1.00 64.62 B C
    ATOM 5633 CB LEU B 552 −49.131 41.961 35.976 1.00 70.91 B C
    ATOM 5634 CG LEU B 552 −48.920 40.480 36.370 1.00 75.43 B C
    ATOM 5635 CD1 LEU B 552 −47.505 40.152 36.915 1.00 74.61 B C
    ATOM 5636 CD2 LEU B 552 −50.005 40.032 37.369 1.00 75.38 B C
    ATOM 5637 C LEU B 552 −48.995 43.553 34.009 1.00 62.25 B C
    ATOM 5638 O LEU B 552 −48.683 43.524 32.816 1.00 60.24 B O
    ATOM 5639 N SER B 553 −50.026 44.263 34.480 1.00 62.45 B N
    ATOM 5640 CA SER B 553 −51.006 44.956 33.622 1.00 62.32 B C
    ATOM 5641 CB SER B 553 −52.275 45.291 34.423 1.00 61.74 B C
    ATOM 5642 OG SER B 553 −51.974 46.123 35.528 1.00 60.96 B O
    ATOM 5643 C SER B 553 −50.506 46.210 32.879 1.00 61.08 B C
    ATOM 5644 O SER B 553 −49.335 46.583 32.956 1.00 61.29 B O
    ATOM 5645 N GLY B 554 −51.416 46.855 32.156 1.00 59.99 B N
    ATOM 5646 CA GLY B 554 −51.073 47.999 31.329 1.00 59.38 B C
    ATOM 5647 C GLY B 554 −50.898 49.309 32.076 1.00 56.97 B C
    ATOM 5648 O GLY B 554 −50.475 50.309 31.490 1.00 58.37 B O
    ATOM 5649 N THR B 555 −51.237 49.317 33.361 1.00 51.98 B N
    ATOM 5650 CA THR B 555 −51.065 50.511 34.175 1.00 46.15 B C
    ATOM 5651 CB THR B 555 −52.207 50.669 35.184 1.00 46.99 B C
    ATOM 5652 OG1 THR B 555 −51.844 51.675 36.136 1.00 48.11 B O
    ATOM 5653 CG2 THR B 555 −52.355 49.418 36.049 1.00 47.37 B C
    ATOM 5654 C THR B 555 −49.733 50.477 34.907 1.00 42.63 B C
    ATOM 5655 O THR B 555 −49.145 49.408 35.096 1.00 44.37 B O
    ATOM 5656 N TRP B 556 −49.280 51.658 35.318 1.00 34.63 B N
    ATOM 5657 CA TRP B 556 −48.032 51.846 36.056 1.00 26.61 B C
    ATOM 5658 CB TRP B 556 −46.874 51.122 35.395 1.00 13.10 B C
    ATOM 5659 CG TRP B 556 −45.634 51.046 36.208 1.00 10.94 B C
    ATOM 5660 CD1 TRP B 556 −45.329 50.103 37.159 1.00 15.04 B C
    ATOM 5661 NE1 TRP B 556 −44.068 50.317 37.676 1.00 10.32 B N
    ATOM 5662 CE2 TRP B 556 −43.517 51.408 37.056 1.00 8.38 B C
    ATOM 5663 CD2 TRP B 556 −44.477 51.896 36.120 1.00 10.63 B C
    ATOM 5664 CE3 TRP B 556 −44.147 53.026 35.354 1.00 9.06 B C
    ATOM 5665 CZ3 TRP B 556 −42.890 53.628 35.549 1.00 4.82 B C
    ATOM 5666 CH2 TRP B 556 −41.974 53.118 36.488 1.00 2.00 B C
    ATOM 5667 CZ2 TRP B 556 −42.268 52.017 37.248 1.00 2.48 B C
    ATOM 5668 C TRP B 556 −47.768 53.327 35.985 1.00 28.65 B C
    ATOM 5669 O TRP B 556 −47.689 53.885 34.887 1.00 32.89 B O
    ATOM 5670 N THR B 557 −47.657 53.969 37.144 1.00 25.23 B N
    ATOM 5671 CA THR B 557 −47.338 55.388 37.180 1.00 19.31 B C
    ATOM 5672 CB THR B 557 −48.562 56.227 37.597 1.00 14.69 B C
    ATOM 5673 OG1 THR B 557 −49.483 55.370 38.312 1.00 13.85 B O
    ATOM 5674 CG2 THR B 557 −49.329 56.705 36.332 1.00 14.28 B C
    ATOM 5675 C THR B 557 −46.192 55.674 38.127 1.00 19.82 B C
    ATOM 5676 O THR B 557 −45.692 54.781 38.849 1.00 13.19 B O
    ATOM 5677 N GLN B 558 −45.774 56.939 38.069 1.00 21.06 B N
    ATOM 5678 CA GLN B 558 −44.924 57.558 39.065 1.00 19.59 B C
    ATOM 5679 CB GLN B 558 −43.510 57.741 38.513 1.00 23.72 B C
    ATOM 5680 CG GLN B 558 −42.499 56.735 39.040 1.00 28.82 B C
    ATOM 5681 CD GLN B 558 −41.472 56.320 37.996 1.00 31.49 B C
    ATOM 5682 OE1 GLN B 558 −41.767 56.314 36.797 1.00 30.94 B O
    ATOM 5683 NE2 GLN B 558 −40.263 55.968 38.451 1.00 32.36 B N
    ATOM 5684 C GLN B 558 −45.580 58.904 39.360 1.00 16.29 B C
    ATOM 5685 O GLN B 558 −44.915 59.864 39.743 1.00 19.47 B O
    ATOM 5686 N GLN B 559 −46.897 58.972 39.188 1.00 10.08 B N
    ATOM 5687 CA GLN B 559 −47.560 60.262 39.273 1.00 9.23 B C
    ATOM 5688 CB GLN B 559 −47.447 60.967 37.925 1.00 16.38 B C
    ATOM 5689 CG GLN B 559 −46.092 61.588 37.637 1.00 20.31 B C
    ATOM 5690 CD GLN B 559 −45.789 61.587 36.157 1.00 23.58 B C
    ATOM 5691 OE1 GLN B 559 −46.430 62.328 35.359 1.00 18.19 B O
    ATOM 5692 NE2 GLN B 559 −44.823 60.740 35.765 1.00 23.75 B N
    ATOM 5693 C GLN B 559 −49.044 60.305 39.727 1.00 8.01 B C
    ATOM 5694 O GLN B 559 −49.539 61.359 40.270 1.00 9.84 B O
    ATOM 5695 N ILE B 560 −49.764 59.197 39.491 1.00 6.13 B N
    ATOM 5696 CA ILE B 560 −51.221 59.261 39.713 1.00 2.72 B C
    ATOM 5697 CB ILE B 560 −51.936 59.155 38.222 1.00 3.13 B C
    ATOM 5698 CG1 ILE B 560 −52.238 60.671 37.707 1.00 8.67 B C
    ATOM 5699 CD1 ILE B 560 −50.799 61.181 37.073 1.00 12.88 B C
    ATOM 5700 CG2 ILE B 560 −53.258 58.451 38.338 1.00 4.97 B C
    ATOM 5701 C ILE B 560 −51.760 58.170 40.639 1.00 6.20 B C
    ATOM 5702 O ILE B 560 −51.463 56.931 40.449 1.00 8.34 B O
    ATOM 5703 N CYS B 561 −52.555 58.623 41.633 1.00 6.24 B N
    ATOM 5704 CA CYS B 561 −53.104 57.519 42.583 1.00 7.85 B C
    ATOM 5705 CB CYS B 561 −52.670 57.845 44.061 1.00 10.20 B C
    ATOM 5706 SG CYS B 561 −50.816 57.253 44.183 1.00 12.15 B S
    ATOM 5707 C CYS B 561 −54.639 57.583 42.382 1.00 9.24 B C
    ATOM 5708 O CYS B 561 −55.224 58.700 42.507 1.00 14.16 B O
    ATOM 5709 N LEU B 562 −55.296 56.422 42.058 1.00 9.86 B N
    ATOM 5710 CA LEU B 562 −56.756 56.495 41.763 1.00 14.76 B C
    ATOM 5711 CB LEU B 562 −57.163 55.407 40.696 1.00 14.45 B C
    ATOM 5712 CG LEU B 562 −56.351 55.710 39.345 1.00 10.42 B C
    ATOM 5713 CD1 LEU B 562 −56.207 54.397 38.579 1.00 13.65 B C
    ATOM 5714 CD2 LEU B 562 −56.994 56.855 38.446 1.00 8.39 B C
    ATOM 5715 C LEU B 562 −57.518 56.375 43.094 1.00 17.35 B C
    ATOM 5716 O LEU B 562 −56.964 55.809 44.055 1.00 21.25 B O
    ATOM 5717 N PRO B 563 −58.770 56.913 43.154 1.00 16.54 B N
    ATOM 5718 CA PRO B 563 −59.567 56.864 44.396 1.00 18.87 B C
    ATOM 5719 CB PRO B 563 −60.938 57.426 43.962 1.00 22.52 B C
    ATOM 5720 CG PRO B 563 −60.666 58.234 42.720 1.00 21.69 B C
    ATOM 5721 CD PRO B 563 −59.525 57.553 42.038 1.00 18.04 B C
    ATOM 5722 C PRO B 563 −59.727 55.409 44.856 1.00 21.04 B C
    ATOM 5723 O PRO B 563 −60.628 54.714 44.364 1.00 24.65 B O
    ATOM 5724 N ALA B 564 −58.855 54.941 45.745 1.00 21.91 B N
    ATOM 5725 CA ALA B 564 −59.038 53.611 46.336 1.00 21.94 B C
    ATOM 5726 CB ALA B 564 −57.714 52.858 46.441 1.00 16.58 B C
    ATOM 5727 C ALA B 564 −59.718 53.740 47.709 1.00 24.09 B C
    ATOM 5728 O ALA B 564 −60.674 54.518 47.881 1.00 20.73 B O
    END
  • TABLE 3
    BURIED RESIDUES IN INTERFACE ON HGF
    (numbers refer to the amount of buried surface in A2)
    TYR A 513 24.00
    LYS A 516 34.00
    ARG A 533 36.00
    GLN A 534 48.00
    PHE A 536 6.00
    PRO A 537 67.00
    SER A 538 1.00
    ARG A 539 10.00
    ASP A 578 29.00
    TYR A 619 30.00
    ARG A 647 39.00
    LYS A 649 71.00
    GLU A 656 24.00
    PRO A 668 2.00
    CYS A 669 6.00
    GLU A 670 97.00
    TYR A 673 20.00
    VAL A 692 11.00
    PRO A 693 49.00
    GLY A 694 36.00
    ARG A 695 92.00
    GLY A 696 28.00
    CYS A 697 24.00
    ILE A 699 10.00
    ARG A 702 38.00
    ILE A 705 8.00
    VAL A 707 3.00
    BURIED RESIDUES IN INTERFACE ON MET
    (numbers refer to the amount of buried surface in A2)
    THR B 124 17.00
    TYR B 125 77.00
    TYR B 126 21.00
    ASP B 127 61.00
    ASP B 128 11.00
    HIS B 148 50.00
    GLU B 167 38.00
    ASP B 190 69.00
    ARG B 191 144.00
    PHE B 192 59.00
    ARG B 218 15.00
    LYS B 220 9.00
    GLU B 221 138.00
    THR B 222 72.00
    LYS B 223 18.00
    ASP B 224 6.00
    MET B 227 5.00
    LEU B 229 43.00
    THR B 230 38.00
    ILE B 284 1.00
    SER B 286 23.00
    ASP B 414 11.00
  • TABLE 4
    An Amino Acid Sequence of HGF-β
        495    501        511        521        531
        VVNGIP TRTNIGWMVS LRYRNKHICG GSLIKESWVL TARQCFPSRD 540 (SEQ ID NO:1)
    541 LKDYEAWLGI HDVHGRGDEK CKQVLNVSQL VYGPEGSDLV LMKLARPAVL 590
    591 DDFVSTIDLP NYGSTIPEKT SCSVYGWGYT GLINYDGLLR VAHLYIMGNE 640
    641 KCSQHHRGKV TLNESEICAG AEKIGSGPCE GDYGGPLVCE QHKMRMVLGV 690
    691 IVPGRGCAIP NRPGIFVRVA YYAKWIHKII LTYKVPQS
  • TABLE 5
    An Amino Acid Sequence of the Met Receptor
    1          11         21         31         41
       1 MKAPAVLAPG ILVLLFTLVQ RSNGECKEAL AKSEMNVNMK YQLPNFTAET 50 (SEQ ID NO: 2)
      51 PIQNVILHEH HIFLGATNYI YVLNEEDLQK VAEYKTGPVL EHPDCFPCQD 100
     101 CSSKANLSGG VWKDNINMAL VVDTYYDDQL ISCGSVNRGT CQRHVFPHNH 150
     151 TADIQSEVHC IFSPQIEEPS QCPDCVVSAL GAKVLSSVKD RFINFFVGNT 200
     201 INSSYFPDHP LHSISVRRLK ETKDGFMFLT DQSYIDVLPE FRDSYPIKYV 250
     251 HAFESNNFIY FLTVQRETLD AQTFHTRIIR FCSINSGLHS YMEMPLECIL 300
     301 TEKRKKRSTK KEVFNILQAA YVSKPGAQLA RQIGASLNDD ILFGVFAQSK 350
     351 PDSAEPMDRS AMCAFPIKYV NDFFNKIVNK NNVRCLQHFY GPNHEHCFNR 400
     401 TLLRNSSGCE ARRDEYRTEF TTALQRVDLF MGQFSEVLLT SISTFIKGDL 450
     451 TIANLGTSEG RFMQVVVSRS GPSTPHVNFL LDSHPVSPEV IVEHTLNQNG 500
     501 YTLVITGKKI TKIPLNGLGC RHFQSCSQCL SAPPFVQCGW CHDKCVRSEE 550
     551 CLSGTWTQQI CLPAIYKVFP NSAPLEGGTR LTICGWDFGF RRNNKFDLKK 600
     601 TRVLLGNESC TLTLSESTMN TLKCTVGPAM NKHFNMSIII SNGHGTTQYS 650
     651 TFSYVDPVIT SISPKYGPMA GGTLLTLTGN YLNSGNSRHI SIGGKTCTLK 700
     701 SVSNSILECY TPAQTISTEF AVKLKIDLAN RETSIFSYRE DPIVYEIHPT 750
     751 KSFISGGSTI TGVGKNLNSV SVPRMVINVH EAGRNFTVAC QHRSNSEIIC 800
     801 CTTPSLQQLN LQLPLKTKAF FMLDGILSKY FDLIYVHNPV FKPFEKPVMI 850
     851 SMGNENVLEI KGNDIDPEAV KGEVLKVGNK SCENIHLHSE AVLCTVPNDL 900
     901 LKLNSELNIE WKQAISSTVL GKVIVQPDQN FTGLIAGVVS ISTALLLLLG 950
     951 FFLWLKKRKQ IKDLGSELVR YDARVHTPHL DRLVSARSVS PTTEMVSNES 1000
    1001 VDYRATFPED QFPNSSQNGS CRQVQYPLTD MSPILTSGDS DISSPLLQNT 1050
    1051 VHIDLSALNP ELVQAVQHVV IGPSSLIVHF NEVIGRGHFG CVYHGTLLDN 1100
    1101 DGKKIHCAVK SLNRITDIGE VSQFLTEFII MKDFSHPNVL SLLGICLRSE 1150
    1151 GSPLVVLPYM KHGDLRNFIR NETHNPTVKD LIGFGLQVAK GMKYLASKKF 1200
    1201 VHRDLAARNC MLDEKFTVKV ADFGLARDMY DKEYYSVHNK TGAKLPVKWM 1250
    1251 ALESLQTQKF TTKSDVWSFG VVLWELMTRG APPYPDVNTF DITVYLLQGR 1300
    1301 RLLQPEYCPD PLYEVMLKCW HPKAEMRPSF SELVSRISAI FSTFIGEHYV 1350
    1351 HVNATYVNVK CVAPYPSLLS SEDNADDEVD TRPASFWETS
  • TABLE 6
    An Amino Acid Sequence of Human Sema Domain 4d
    and the Psi Domain of Met Receptor.
        25     31         41         51
        ECKEAL AKSEMNVMNK YQLPNFTAET PIQNVILHEH HIFLGATNYI 70 (SEQ ID NO: 3)
     71 YVLNEEDLQK VAEYKTGPVL EHPDCFPCQD CSSKANLSGG VWKDNINMAL 120
    121 VVDTYYDDQL ISCGSVNRGT CQRNVFPHNH TADIQSEVHC IFSPQIEEPS 170
    171 QCPDCVVSAL GAKVLSSVKD RFINFFVGNT INSSYFPDHP LHSISVRRLK 220
    221 ETKDGFMFLT DQSYIDVLPE FRDSYPIKYV HAFESNNFIY FLTVQRETLD 270
    271 AQTFHTRIIR FCSINSFLHS YMEMPLECIL TELVPRGSTK KEVFNILQAA 320
    321 YVSKPGAQLA RQIGASLNDD ILFGVFAQSK PDSAEPMDRS AMCAFPIKYV 370
    371 NDFFNKIVNK NNVRCLQHFY GPNHEHCFNR TLLRNSSGCE AARDEYRTEF 420
    421 TTALQRVLDF MGQFSEVLLT SISTFIKGDL TIANLGTSEG RFMQVVVSRS 470
    471 GPSTPHVNFL LDSHPVSPEV IVENTLNQNG YTLVITGKKI TKIPLNGLGC 520
    521 RHFQSCSQCL SAPPFVQCGW CHDKCVRSEE CLSGTWTQQI CLPAIYK
  • TABLE 8
    An Amino Acid Sequence of Wild-Type HGF β
    VVNGIPTRTNIGWMVSLRYSNKHICGGSLIKESWV (SEQ ID NO:14)
    LTARQCFPSRDLKDYEAWLGIHDVHGRGDEKCKQV
    LNVSQLVYGPEGSDLVLMKLARPAVLDDFVSTIDL
    PNYGCTIPEKTSCSVYGWGYTGLINYDGLLRVAHL
    YIMGNEKCSQHHRGKVTLNESEICAGAEKIGSGPC
    EGDYGGPLVCEQHKMRMVLGVIVPGRGCAIPNRPG
    IFVRVAYYAKWIHKIILTYKVPQS
  • TABLE 7
    Atomic Coordinates of Hepatocyte Growth Factor Beta Chain with Met
    Receptor Secondary Structural Features
    Amino
    Structural Feature Acid Amino Acid
    Feature Number Types Numbers
    HELIX 1 1 ARG A 533 CYS A 535 5
    HELIX 2 2 LEU A 541 ASP A 543 5
    HELIX 3 3 ASN A 639 GLN A 644 1
    HELIX 4 4 ALA A 710 ILE A 720 5
    HELIX 5 5 ASP B 231 SER B 233 5
    HELIX 6 6 ALA B 327 ILE B 333 1
    HELIX 7 7 ILE B 367 ASN B 375 1
    HELIX 8 8 GLY B 517 CYS B 520 5
    HELIX 9 9 CYS B 526 SER B 531 1
    HELIX 10 10 PRO B 534 VAL B 536 5
    HELIX 11 11 SER B 548 GLU B 550 5
    SHEET 1 A7 GLN A 563 LEU A 565 0
    SHEET 2 A7 TYR A 544 LEU A 548-1 N LEU A 548 O GLN A 563
    SHEET 3 A7 MET A 508 TYR A 513-1 N ARG A 512 O GLU A 545
    SHEET 4 A7 LYS A 516 LYS A 525-1 N GLY A 521 O VAL A 509
    SHEET 5 A7 TRP A 528 ALA A 532-1 N LEU A 530 O SER A 522
    SHEET 6 A7 LEU A 579 LEU A 584-1 N MET A 582 O VAL A 529
    SHEET 7 A7V AL A 567 TYR A 572-1 N VAL A 571 O LEU A 581
    SHEET 1 B6 ARG A 685 VAL A 690 0
    SHEET 2 B6 PRO A 676 GLU A 680-1 N CYS A 679 O MET A 686
    SHEET 3 B6 SER A 611 GLY A 616-1 N SER A 613 O VAL A 678
    SHEET 4 B6 ARG A 630 MET A 637-1 N LEU A 634 O CYS A 612
    SHEET 5 B6 GLU A 656 GLY A 660-1 N GLY A 660 O TYR A 63S
    SHEET 6 B6 GLY A 704 VAL A 707-1 N PHE A 706 O ILE A 6S7
    SHEET
    1 C4 ASN B 45 THR B 47 0
    SHEET 2 C4 LYS B 509 PRO B 514-1 N ILE B 510 O PHE B 46
    SHEET 3 C4 ASN B 499 THR B 506-1 N THR B 506 O LYS B 509
    SHEET 4 C4 VAL B 490 THR B 495-1 N THR B 495 O ASN B 499
    SHEET 1 D4 ILE B 52 HIS B 58 0
    SHEET 2 D4 HIS B 61 ALA B 66-1 N GLY B 65 O GLN B 53
    SHEET 3 D4 TYR B 69 ASN B 74-1 N LEU B 73 O ILE B 62
    SHEET 4 D4 LYS B 80 LYS B 85-1 N TYR B 84 O ILE B 70
    SHEET 1 E2 VAL B 89 GLU B 91 0
    SHEET 2 E2 VAL B 111 LYS B 113-1 N LYS B 113 O VAL B 89
    SHEET 1 F4 VAL B 158 GYS B 160 0
    SHEET 2 F4 CYS B 141 VAL B 145-1 N ARG B 143 O HIS B 159
    SHEET 3 F4 GLN B 129 GLY B 134-1 N SER B 132 O GLN B 142
    SHEET 4 F4 ASN B 117 ASP B 123-1 N ASP B 123 O GLN B 129
    SHEET 1 G4 ALA B 182 LYS B 189 0
    SHEET 2 G4 PHE B 192 ASN B 199-1 N GLY B 198 O LYS B 183
    SHEET 3 G4 VAL B 216 LEU B 219-1 N ARG B 217 O PHE B 195
    SHEET 4 G4 PHE B 226 PHE B 228-1 N MET B 227 O ARG B 218
    SHEET 1 H5 LEU B 424 VAL B 427 0
    SHEET 2 H5 MET B 292 ILE B 299 1 N GLU B 297 O LEU B 424
    SHEET 3 H5 THR B 276 CYS B 282-1 N ARG B 280 O MET B 292
    SHEET 4 H5 PHE B 258 VAL B 264-1 N THR B 263 O ARG B 277
    SHEET 5 H5 LYS B 248 SER B 255-1 N SER B 255 O PHE B 258
    SHEET 1 I3 ALA B 319 LYS B 324 0
    SHEET 2 I3 ASP B 340 ALA B 347-1 N VAL B 345 O ALA B 319
    SHEET 3 I3 SER B 360 PRO B 366-1 N PHE B 36S O LEU B 342
    SHEET 1 J4 VAL B 477 LEU B 480 0
    SHEET 2 J4 ARG B 461 VAL B 466-1 N GLN B 464 O VAL B 477
    SHEET 3 J4 LEU B 450 THR B 457-1 N LEU B 455 O MET B 463
    SHEET 4 J4 LEU B 439 LYS B 447-1 N LYS B 447 O LEU B 450
    SHEET 1 K2 GLY B 539 CYS B 541 0
    SHEET 2 K2 LYS B 544 VAL B 546-1 N VAL B 546 O GLY B 539
    SSBOND 1 CYS A 519 CYS A 535
    SSBOND 2 CYS A 612 CYS A 679
    SSBOND 3 CYS A 642 CYS A 658
    SSBOND 4 CYS A 669 CYS A 697
    SSBOND 5 CYS B 95 CYS B 101
    SSBOND 6 CYS B 98 CYS B 160
    SSBOND 7 CYS B 133 CYS B 141
    SSBOND 8 CYS B 172 CYS B 175
    SSBOND 9 CYS B 298 CYS B 363
    SSBOND 10 CYS B 385 CYS B 397
    SSBOND 11 CYS B 520 CYS B 538
    SSBOND 12 CYS B 526 CYS B 561
    SSBOND 13 CYS B 529 CYS B 545
    SSBOND 14 CYS B 541 CYS B 551
  • LIST OF REFERENCES
    • Antipenko A, Himanen J P, van Leyen K, Nardi-Dei V, Lesniak J, Barton W A, Rajashankar K R, Lu M, Hoemme C, Puschel A W, Nikolov D B (2003) Neuron 39: 589-598.
    • Bork P, Doerks T, Springer T A, Snel B (1999) Trends Biochem Sci 24: 261-263.
    • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude G F (2003) Nat Rev Mol Cell Biol 4: 915-25.
    • Chan A M, Rubin J S, Bottaro D P, Hirschfield D W, Chedid M, and Aaronson S A (1991) Science 254: 1382-1385.
    • Cioce V, Csaky K G, Chan A M, Bottaro D P, Taylor W G, Jensen R, Aaronson S A, Rubin J S (1996) J Biol Chem 271: 13110-13115.
    • Collaborative Computational Project, N. (1994) Acta Cytstallogr Sect D 50: 760-763.
    • Comoglio, P M, Boccaccio C (2001). Semin Cancer Biol 11: 153-165.
    • Comoglio P M, Tamagnone L, Boccaccio C (1999) Experimental Cell Research, 253: 88-99.
    • Danilkovitch, A., Miller, M. and Leonard, E. J. (1999) J. Biol. Chem., 274, 29937-29943.
    • Date L, Matsumoto K, Shimura H, Tanaka M, Nakamura T, (1997). FEBS Letters 520: 1-8.
    • DeLano W L (2002) The PyMOL Molecular Graphics System on World Wide Web http://www.pymol.org.
    • de Vos A M, Ultsch M, Kossiakoff A A (1992) Science 255: 306-12.
    • Donate L E, Gherardi E, Srinivasan N, Sowdhamini R, Aparicio S, Blundell T L (1994) Protein Sci 3: 2378-2394.
    • Freer S T, Kraut J, Robertus J D, Wright H T, Xuong N H (1970). Biochemistry 9:1997-2009.
    • Gherardi E, Youles M E, Miguel R N, Blundell T L, Iamele L, Gough J, Bandyopadhyay A, Hartmann G, Butler P J (2003). Proc. Natl. Acad. Sci. USA. 100: 12039-12044.
    • Hartmann G, Naldini L, Weidner K M, Sachs M, Vigna E, Comoglio P M, Birchmeier W. (1992). Proc Natl Acad Sci USA. 89: 11574-11578
    • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102, 4501-4524.
    • Huber R, Bode W (1978) Acc Chem Res 11:114-122.
    • Huff J L, Jelinek M A, Borgman C A, Lansing T J, and Parsons J T (1993). Proc. Natl. Acad. Sci. USA 90: 6140-6144.
    • Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J, Houghton P, Janowska-Wieczorek A, Ratajczak M Z (2003) Cancer Res. 63: 7926-7935.
    • Jones T A, Zou J Y, Cowan S W, Kjeldgaard M (1991) Acta Crystallog. Sect. A 47: 110-119.
    • Kataoka H, Miyata S, Uchinokura S, Itoh H (2003) Cancer Metastasis Rev 22: 223-236.
    • Komada M, Hatsuzawa K, Shibamoto S, Ito F, Nakayama K, Kitamura N (1993) FEBS Lett 328: 25-29.
    • Laskowski R A, MacArthur M W, Moss D S, Thornton J M (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283-291.
    • Lokker N A, Mark M R, Luis E A, Bennett G L, Robbins K A, Baker J B, Godowski P J (1992) EMBO J. 11, 2503-2510.
    • Love C A, Harlos K, Mavaddat N, Davis S J, Stuart D I, Jones E Y, Esnouf R M (2003) Nat Struct Biol 10: 843-848.
    • Ma P C, Maulik G, Christensen J, and Salgia R (2003) Cancer Metastasis Rev 22: 309-325.
    • Miller M, Leonard E J (1998). FEBS Lett 429: 1-3.
    • Montesano R, Matsumoto K, Nakamura T, Orci L (1991) Cell 67:901-908.
    • Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Nature 342: 440-443.
    • Navaza J (1994) AMoRe: an Automated Package for Molecular Replacement. Acta Crystallogr. Sect. A 50: 157-163.
    • Nardone H C, Ziober A F, LiVolsi V A, Mandel S J, Baloch Z W, Weber R S, Mick R, Ziober B L (2003) Cancer 98: 1386-1393.
    • Otwinowski Z, Minor W (1997) Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276: 307-326.
    • Perona J J, Craik, C S (1995). Protein Sci. 4: 337-360.
    • Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio P M (1998). J Cell Sci 111: 237-247.
    • Ronsin C, Muscatelli F, Mattei M G, Breathnach R (1993). Oncogene 8: 1195-1202.
    • Rosen E M, Nigam S K, Goldberg I D (1994) J Cell Biol 127: 1783-1787.
    • Sonnenberg E, Meyer D, Weidner K M, Birchmeier C (1993) J Cell Biol 123:223-235.
    • Takagi S, Murakami Y, Kasuya Y, Tanaka H, Kawakami A, Mizutani A, Ohta K, Fujisawa H (1995) Neuron 14: 1189-1199.
    • Trusolino L, Comoglio P M (2002) Nature Rev Cancer 2: 289-300.
    • Ultsch M, Lokker N A, Godowski P J, de Vos A M (1998). Structure 15: 1383-1393.
    • Winberg M L, Noordermeer J N, Tamagnone L, Comoglio P M, Spriggs M K, Tessier-Lavigne M, Goodman C S (1998). Cell 95: 903-916.
    • Xiong J P, Stehle T, Zhang, R, Joachimiak A, Frech F, Goodman, S L, Amaout M A (2002) Science 296: 151-155.
    • Zhang Y W, Vande Woude G F (2003) J Cell Biochem 88: 408-417.

Claims (27)

1. A crystal of HGF β complexed with Met comprising a human hepatocyte growth factor beta chain comprising an amino acid sequence of SEQ ID NO:1 or conservative substitutions thereof complexed with an extracellular fragment of a Met Receptor comprising an amino acid sequence of SEQ ID NO:3 or conservative substitutions thereof.
2. Crystalline form of a complex of HGF β-chain with an extracellular fragment of the Met Receptor.
3. A crystal of a 1:1 complex of the HGF β-chain with an extracellular fragment of the Met Receptor having a space group symmetry of P21212 and comprising a unit cell having the dimensions of a, b, and c, where a is about 137.1 Å, b is about 186.4 Å, and c is about 66.7 Å.
4. The cocrystal of claim 3, wherein the HGF β-chain with an extracellular fragment of the Met Receptor has the three-dimensional coordinates of Table 2.
5. The crystal of claim 1, wherein the crystal diffracts X-rays for the determination of atomic coordinates to a resolution of 5 Å or better.
6. A composition comprising a crystal of claim 1, and a carrier.
7. A molecule or molecular complex comprising at least a portion of the Met binding site for HGF β of a polypeptide comprising an amino acid sequence of SEQ ID NO:3 or conservative substitution thereof, wherein the binding site comprises at least one amino acid residue corresponding to residues 124 to 128, 148, 167, 190 to 192, 218, 220 to 224, 229, 230, 286, 414 or mixtures thereof, the binding site defined by a set of points having a root mean square deviation of less than about 0.70 Å from points representing the backbone atoms of the amino acids as represented by the structure coordinates listed in Table 2.
8. (canceled)
9. (canceled)
10. A three-dimensional configuration of points, wherein at least a portion of the points are derived from structure coordinates representing locations of at least the backbone atoms of amino acids defining the Met binding site for HGF β.
11. (canceled)
12. The three-dimensional configuration of points of claim 10 displayed as a holographic image, a stereodiagram, a model, or a computer-displayed image.
13. A machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein a machine programmed with instructions for using such data displays a graphical three-dimensional representation of at least one molecule or molecular complex comprising at least a portion of a Met binding site for HGF β, the binding site defined by a set of points having a root mean square deviation of less than about 0.05 Å from points representing the atoms of the amino acids as represented by the structure coordinates listed in Table 2.
14. (canceled)
15. A method for obtaining structural information about a molecule or molecular complex comprising applying of at least a portion of the HGF β:Met structure coordinates of a crystal of claim 5 to an X-ray diffraction pattern of the molecule or molecular complex's crystal structure to generate a three-dimensional electron density map of at least a portion of the molecule or molecular complex.
16-22. (canceled)
23. A method of identifying a molecule that binds Met and blocks binding of HGF β to Met comprising:
(a) searching a molecular structure database with the structural coordinates of a crystal of claim 5; and
(b) selecting a molecule from the database that mimics the structural coordinates of bound HGF in HGF β:Met.
24. A method of assessing agents that are antagonists or agonists of HGF and/or Met comprising:
applying at least a portion of the crystallography coordinates of a crystal of claim 5 to a computer algorithm that generates a 3 dimensional model of HGF β:Met or of the Met binding site for HGF βsuitable for designing molecules that are antagonists or agonists; and
searching a molecular structure database to identify potential antagonists or agonists of Met or HGF β:Met.
25. The method of claim 24, further comprising:
(a) synthesizing or obtaining the antagonist or agonist;
(b) contacting the antagonist or agonist with Met and selecting the antagonist or agonist that binds to Met.
26. The method of any of claim 24, further comprising selecting an agonist or antagonist that can associate with at least one or more or all amino acid residues on the Met receptor that comprise amino acids corresponding to residues Y125, Y126, D127, H148, E168, R191, F192, R218, E221, K223, D224 or mixtures thereof of a polypeptide comprising an amino acid sequence of SEQ ID NO:3.
27. The method of claim 24, further comprising selecting an agonist or antagonist that can associate with at least one or more or all amino acid residues on HGF β that comprise amino acids corresponding to residues Y513, K516, R533, D578, Y619, R647, K649, E656, E670, Y673, R695, R702 or mixtures thereof of a polypeptide comprising an amino acid sequence of SEQ ID NO:1.
28. (canceled)
29. A molecule or molecular complex comprising at least a portion of the HGF β binding site for Met of a polypeptide comprising an amino acid sequence of SEQ ID NO: 1 or conservative substitution thereof, wherein the binding site comprises at least one amino acid residue corresponding to amino acid residues 513, 516, 533, 534, 537, 578, 619, 647, 649, 656, 669, 670, 673, 692, 693, 694, 695, 696, 697, 699, 702 or mixtures thereof, the binding site defined by a set of points having a root mean square deviation of less than about 0.70 Å from points representing the backbone atoms of the amino acids as represented by the structure coordinates listed in Table 2.
30. The three-dimensional configuration of points of claim 29, wherein at least a portion of the points are derived from structure coordinates representing locations of at least the backbone atoms of amino acids defining the Met binding site for HGF β.
31. The three-dimensional configuration of points of claim 29 displayed as a holographic image, a stereodiagram, a model, or a computer-displayed image.
32. A machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein a machine programmed with instructions for using such data displays a graphical three-dimensional representation of at least one molecule or molecular complex comprising at least a portion of a Met binding site on HGF β, the binding site defined by a set of points having a root mean square deviation of less than about 0.05 Å from points representing the atoms of the amino acids as represented by the structure coordinates listed in Table 2.
33. (canceled)
US11/124,607 2004-05-06 2005-05-06 Crystal structure of the complex of hepatocyte growth factor beta chain with Met receptor and methods of use Abandoned US20060069019A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/124,607 US20060069019A1 (en) 2004-05-06 2005-05-06 Crystal structure of the complex of hepatocyte growth factor beta chain with Met receptor and methods of use
US12/015,993 US7754458B2 (en) 2004-05-06 2008-01-17 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US12/784,419 US20110012894A1 (en) 2004-05-06 2010-05-20 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56886504P 2004-05-06 2004-05-06
US11/124,607 US20060069019A1 (en) 2004-05-06 2005-05-06 Crystal structure of the complex of hepatocyte growth factor beta chain with Met receptor and methods of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/015,993 Continuation US7754458B2 (en) 2004-05-06 2008-01-17 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use

Publications (1)

Publication Number Publication Date
US20060069019A1 true US20060069019A1 (en) 2006-03-30

Family

ID=34968358

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/124,607 Abandoned US20060069019A1 (en) 2004-05-06 2005-05-06 Crystal structure of the complex of hepatocyte growth factor beta chain with Met receptor and methods of use
US12/015,993 Expired - Fee Related US7754458B2 (en) 2004-05-06 2008-01-17 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US12/784,419 Abandoned US20110012894A1 (en) 2004-05-06 2010-05-20 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/015,993 Expired - Fee Related US7754458B2 (en) 2004-05-06 2008-01-17 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US12/784,419 Abandoned US20110012894A1 (en) 2004-05-06 2010-05-20 Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use

Country Status (2)

Country Link
US (3) US20060069019A1 (en)
WO (1) WO2005108424A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080195366A1 (en) * 2004-05-06 2008-08-14 Eigenbrot Charles W Crystal structure of the hepatocyte growth factor and methods of use
US20080293923A1 (en) * 2004-05-06 2008-11-27 Christian Wiesmann Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US11884734B2 (en) 2015-03-16 2024-01-30 Celldex Therapeutics, Inc. Anti-MET antibodies and methods of use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019116A1 (en) * 2007-07-26 2009-01-28 Helmholtz-Zentrum für Infektionsforschung GmbH Inhibitor of the met-receptor and its use
IL198545A0 (en) 2008-05-14 2011-07-31 Metheresis Translational Res Sa High affinity binding site of hgfr and methods for identification of antagonists thereof
EP2138508A1 (en) 2008-06-26 2009-12-30 Helmholtz-Zentrum für Infektionsforschung GmbH Met agonists
US9260486B2 (en) 2012-03-13 2016-02-16 The University Of Vermont And State Agricultural College Peptidic activators of type I cGMP dependent protein kinases and uses thereof
WO2017019454A2 (en) * 2015-07-28 2017-02-02 Musc Foundation For Research Development Identification of novel anti-fibrotic peptide in c-terminal region of the met receptor tyrosine kinase

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30985E (en) * 1978-01-01 1982-06-29 Serum-free cell culture media
US4560655A (en) * 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4767704A (en) * 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4927762A (en) * 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
US5122469A (en) * 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5849296A (en) * 1990-08-03 1998-12-15 Vertex Pharmaceuticals, Inc. Crosslinked protein crystals
US5849689A (en) * 1993-09-08 1998-12-15 Genentech, Inc. Method of extending the plasma half-life of deletion variants of hepatocyte growth factor
US5879910A (en) * 1992-05-18 1999-03-09 Genetech, Inc. Hepatocyte growth factor protease domain variants
US6099841A (en) * 1996-07-03 2000-08-08 Genentech, Inc. Hepatocyte growth factor receptor agonists and uses thereof
US6133231A (en) * 1995-10-05 2000-10-17 Genentech, Inc. Angiogenesis using hepatocyte growth factor
US6207152B1 (en) * 1995-06-02 2001-03-27 Genentech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof
US20020136721A1 (en) * 1998-02-17 2002-09-26 Schwall Ralph H. Hepatocyte growth factor receptor antagonists and uses thereof
US20040005686A1 (en) * 2002-03-07 2004-01-08 Pharmacia Corporation Crystalline structure of human MAPKAP kinase-2
US20040009569A1 (en) * 2001-08-14 2004-01-15 The Cancer Research Institute Kinase crystal structures and materials and methods for kinase activation
US6689595B1 (en) * 1999-08-04 2004-02-10 Pharmacia & Upjohn Company Crystallization and structure determination of Staphylococcus aureus thymidylate kinase
US6795776B1 (en) * 1999-10-14 2004-09-21 Bristol-Myers Squibb Company Crystallographic structure of the androgen receptor ligand binding domain

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
ATE135397T1 (en) 1988-09-23 1996-03-15 Cetus Oncology Corp CELL CULTIVATION MEDIUM FOR INCREASED CELL GROWTH, TO INCREASE THE LONGEVITY AND EXPRESSION OF THE PRODUCTS
US6183121B1 (en) * 1997-08-14 2001-02-06 Vertex Pharmaceuticals Inc. Hepatitis C virus helicase crystals and coordinates that define helicase binding pockets
NZ526672A (en) 2001-02-09 2006-10-27 Genentech Inc Process for forming crystalline human insulin-like growth factor-1
AU2760602A (en) * 2001-03-23 2002-09-26 Agouron Pharmaceuticals, Inc. Catalytic domains of the human hepatocyte growth factor receptor tyrosine kinase, and materials and methods for identification of inhibitors thereof
US20040137518A1 (en) * 2002-01-31 2004-07-15 Lambert Millard Hurst CRYSTALLIZED PPARa LIGAND BINDING DOMAIN POLYPEPTIDE AND SCREENING METHODS EMPLOYING SAME
US20060003931A1 (en) 2004-05-06 2006-01-05 Genentech, Inc. Crystal structure of the hepatocyte growth factor and methods of use
WO2005108424A1 (en) 2004-05-06 2005-11-17 Genentech, Inc. Crystal structure of the complex of hepatocyte growth factor bata chain with met receptor and methods of use
US7741096B2 (en) * 2004-12-10 2010-06-22 Genentech, Inc. Crystal structure of hepatocyte growth factor activator complexed with Kunitz domain inhibitor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30985E (en) * 1978-01-01 1982-06-29 Serum-free cell culture media
US4560655A (en) * 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4767704A (en) * 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4927762A (en) * 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
US5849296A (en) * 1990-08-03 1998-12-15 Vertex Pharmaceuticals, Inc. Crosslinked protein crystals
US5122469A (en) * 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5879910A (en) * 1992-05-18 1999-03-09 Genetech, Inc. Hepatocyte growth factor protease domain variants
US5849689A (en) * 1993-09-08 1998-12-15 Genentech, Inc. Method of extending the plasma half-life of deletion variants of hepatocyte growth factor
US6207152B1 (en) * 1995-06-02 2001-03-27 Genentech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof
US6133231A (en) * 1995-10-05 2000-10-17 Genentech, Inc. Angiogenesis using hepatocyte growth factor
US6099841A (en) * 1996-07-03 2000-08-08 Genentech, Inc. Hepatocyte growth factor receptor agonists and uses thereof
US20020136721A1 (en) * 1998-02-17 2002-09-26 Schwall Ralph H. Hepatocyte growth factor receptor antagonists and uses thereof
US6689595B1 (en) * 1999-08-04 2004-02-10 Pharmacia & Upjohn Company Crystallization and structure determination of Staphylococcus aureus thymidylate kinase
US6795776B1 (en) * 1999-10-14 2004-09-21 Bristol-Myers Squibb Company Crystallographic structure of the androgen receptor ligand binding domain
US20040009569A1 (en) * 2001-08-14 2004-01-15 The Cancer Research Institute Kinase crystal structures and materials and methods for kinase activation
US20040005686A1 (en) * 2002-03-07 2004-01-08 Pharmacia Corporation Crystalline structure of human MAPKAP kinase-2

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080195366A1 (en) * 2004-05-06 2008-08-14 Eigenbrot Charles W Crystal structure of the hepatocyte growth factor and methods of use
US20080293923A1 (en) * 2004-05-06 2008-11-27 Christian Wiesmann Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US7754458B2 (en) 2004-05-06 2010-07-13 Genentech, Inc. Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US20110012894A1 (en) * 2004-05-06 2011-01-20 Genentech, Inc. Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
US11884734B2 (en) 2015-03-16 2024-01-30 Celldex Therapeutics, Inc. Anti-MET antibodies and methods of use thereof

Also Published As

Publication number Publication date
WO2005108424A1 (en) 2005-11-17
US20110012894A1 (en) 2011-01-20
US7754458B2 (en) 2010-07-13
US20080293923A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US20080195366A1 (en) Crystal structure of the hepatocyte growth factor and methods of use
US7754458B2 (en) Crystal structure of the complex of hepatocyte growth factor beta chain with met receptor and methods of use
KR101259655B1 (en) Hgf beta chain variants
US20050196851A1 (en) Crystal structure of the BTK kinase domain
US20100277473A1 (en) Crystal structure of hepatocyte growth factor activator complexed with kunitz domain inhibitor
US7129072B1 (en) Crystal of fibroblast growth factor receptor 1 in complex with fibroblast growth factor
MXPA06014083A (en) Crystal structure of dipeptidyl peptidase iv (dpp-iv) and uses thereof.
US20090125289A1 (en) Crystallization and structure determination of glycosylated human beta secretase, an enzyme implicated in alzheimer&#39;s disease
US20100112665A1 (en) Crystallization and Structure Determination of Glycosylated Human Beta Secretase, an Enzyme Implicated in Alzheimer&#39;s Disease
US20040142381A1 (en) Methods for designing IGF1 receptor modulators for therapeutics
US20130157281A1 (en) Factor IXa Crystals, Related Complexes and Methods
US7806980B2 (en) Method for crystallizing human beta secretase in complex with an inhibitor
Carafoli et al. Crystal structure of the β‐chain of human hepatocyte growth factor‐like/macrophage stimulating protein
US7498157B2 (en) Three-dimensional structure of dipeptidyl peptidase IV
US20110206704A1 (en) Methods and compositions for modulating hepatocyte growth factor activator
US20200165308A1 (en) Netrin- 1 and dependence receptor proteins and method of use
US7494795B2 (en) Crystal structure of FMS-like tyrosine kinase
US20100081621A1 (en) Crystal structure of the catalytic domain of the viral restriction factor APOBEC3G
US20080064052A1 (en) Crystal of a Receptor-Ligand Complex and methods of use
EP1932907A1 (en) Crystal structure of the catalytic domain of tolloid-like protease 1 and uses thereof
Iyer Structural studies on angiogenic proteins

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENENTECH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WIESMANN, CHRISTIAN;STAMOS, JENNIFER;REEL/FRAME:016776/0230;SIGNING DATES FROM 20050801 TO 20050809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION