US20060057954A1 - View port window with optional illumination and alarm system - Google Patents

View port window with optional illumination and alarm system Download PDF

Info

Publication number
US20060057954A1
US20060057954A1 US11/222,985 US22298505A US2006057954A1 US 20060057954 A1 US20060057954 A1 US 20060057954A1 US 22298505 A US22298505 A US 22298505A US 2006057954 A1 US2006057954 A1 US 2006057954A1
Authority
US
United States
Prior art keywords
view port
duct
flexible
port window
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/222,985
Inventor
Nickolaj Hrebeniuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONCEPT TO CREATION CO-OP
Original Assignee
CONCEPT TO CREATION CO-OP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONCEPT TO CREATION CO-OP filed Critical CONCEPT TO CREATION CO-OP
Priority to US11/222,985 priority Critical patent/US20060057954A1/en
Assigned to CONCEPT TO CREATION CO-OP reassignment CONCEPT TO CREATION CO-OP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HREBENIUK, NICKOLAJ
Publication of US20060057954A1 publication Critical patent/US20060057954A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/029Duct comprising an opening for inspection, e.g. manhole
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays

Definitions

  • This invention relates to a view port window of visually inspecting for indications of unacceptable IAQ contamination, and for checking cleaning and routine maintenance of ventilation air duct systems that are present in Heating, Ventilation, Air-conditioning (HVAC) and related systems.
  • HVAC Heating, Ventilation, Air-conditioning
  • the United States Environmental Protection Agency has rated poor IAQ as being among the top environmental risks to human health. Due to rising energy costs, buildings are better insulated and constructed more airtight in an effort to minimize HVAC operating costs. A disturbing drawback to improved energy savings and efficiency is that we live and work in closed, climate controlled, buildings with materials and products that are made of highly sophisticated chemicals in climates that are also comfortable living and breeding grounds for bacteria, molds, viruses, and a host of chemicals which re-circulate through forced air ventilation systems.
  • Improvement toward good indoor air quality requires a planned IAQ approach of periodic visual inspection or constant monitoring by an alarm system in ventilation air duct systems at home and in work environments to determine when cleaning is required.
  • HVAC access doors are typically used in industrial and commercial practices.
  • Ductmate Industries for example, catalogues a ‘Sandwich observation access door’, which has an airtight advanced pressure vessel design with a safety glass window view port surrounded by a galvanized steel or a specialty metal frame.
  • Ruskin Co also catalogues a “Standard access door” with round plexi glass or safety glass window.
  • the present invention provides a view port window to allow the user a quick and frequent visual inspection view port system for determining contamination levels present which may be occupant IAQ unacceptable.
  • the view port window also is designed to permit visual verification that the duct cleaning work has been properly performed throughout the ventilation ducts including the heavily contaminated areas of joist liner rafter ducts.
  • the purpose of the view port window is to be able to visually inspect, identify or rule out the presence of indoor contaminants, their sources, causes and pathways and design, operation or maintenance issues regarding the HVAC building systems.
  • the view port window facilitates access into forced air ventilation ducts to visually determine when they need to be cleaned, thereby improving the Indoor Air Quality (IAQ) program for residential, institutional, public, commercial and industrial buildings.
  • IAQ Indoor Air Quality
  • the view port window enables systems that have been cleaned to be visually checked to ensure the treatment was effective.
  • the view port window also allows for opening, entering and illuminating the ducts repeatedly to determine when the cleaning needs to be done again without the use of screws or duct tape.
  • the view port window so includes an optional viewing light and an optional electronic dust alarm that will automatically alarm the consumer when cleaning service is needed.
  • the present invention provides a view port window which facilitates the need for routine maintenance and cleaning of the HVAC systems, by introducing voluntary user proactive initiatives as an appropriate practice for solving IAQ problems.
  • HVAC filter systems on the market for the purpose of filtering out airborne particles. It is quite common for homeowners and maintenance workers to visually check the filters and replace them whenever necessary. If the entire ventilation duct system is not cleaned regularly and a new filter is installed, the filter becomes clogged almost immediately by the rampant particles within the ventilation system. Once a filter is clogged, airflow is reduced; heating and air-conditioning equipment lose their efficiency and consequently are subject to more dust and wear. In this event, forced air is no longer properly filtered and the air quality suffers. Thus, it is important to ensure that the ventilation system and the equipment are not heavily contaminated before replacing or cleaning a filter.
  • the view port window offers a means of visually inspecting the ventilation duct system easily and inexpensively by any layperson. Therefore, it would raise the HVAC industry standards and assist for the improvement of air quality in home and work environments.
  • This invention consists of a flexible view port window that forms a flexible inspection window which is attached by releasable bonding devices or substances, such as by magnetic strips or by a peelable adhesive, to ventilation air ducts which are present in forced air heating and cooling systems.
  • the view port window consists of a flexible, heat-resistant and transparent plastic layer which is sealed to a flexible, heat-resistant flat border.
  • the border is either a magnet or a peelable adhesive layer.
  • An opening is cut into the duct itself and the view port window closes the opening.
  • the view port window is flexible and will conform to the different contours and shapes of ventilation ductwork. Further, it may be cut, trimmed or shaped with common scissors to make any allowance for variable duct designs, plumbing pipes, electrical wiring or other such obstacles, which exist within or protrude through ventilation ducts.
  • the optional viewing light consists of a housing, a switch, a battery and an illumination source such as a LED and is mounted into the side of the view port window.
  • the on/off switch which activates by push/turn control is accessible by the user at a corner on the device. Its housing protrudes through a hole in the view port window and duct and the viewing light aims forward illuminating the interior of the selected ventilation duct, so that dust and dirt accumulation may be easily recognized.
  • the optional electronic dust alarm consists of a sensor, the electronic circuitry, a sound or light alarm, a reset button and a small battery.
  • the alarm can be affixed into a small opening in the view port window or off to the side within the duct. It is able to measure the contamination level by means of a light source and photo sensor, which triggers an alarm by obscuring the light transmission if the concentration of dust particles exceeds a preset, adjustable threshold. At high levels of dust, a visual or audible alarm goes off to warn the user of excess contamination.
  • This device may be strategically placed within the duct to constantly monitor for dust accumulation and levels of contaminants. The electronic warning alarm can then be reset and the air duct system cleaned.
  • Simple visual inspection is possible trough the view port window for observing contamination levels within the ventilation system.
  • Optional light system to assist in visual inspection.
  • Optional electronic dust alarm to automatically indicate excessive levels of contamination.
  • Removable and replaceable without tools May be easily trimmed with eg. scissors.
  • FIG. 1 is an isometric view of view port window showing the transparent layer sealed to a border layer;
  • FIG. 2 is a perspective view of a ventilation duct end cap with installation profile of the view port window;
  • FIG. 3 is a perspective view showing various installation location areas for bi-directional or overhead viewing
  • FIG. 4 shows a circular ventilation pipe with installed view port window
  • FIG. 5 shows a perspective view of a bi-level ventilation configuration
  • FIG. 6 shows a perspective of a joist liner-rafter ventilation connected to the main ventilation duct
  • FIG. 7 is a perspective of a ventilation duct end cap with the view port window with the illumination feature
  • FIG. 8 is a cross sectional view of the illumination feature components
  • FIG. 9 is a cross sectional view of the electronic dust alarm
  • FIG. 10 is a schematic side view of a duct and port showing the target mounted in the duct.
  • FIG. 1 is an isometric view showing the view port and is comprised of the flexible transparent viewing layer ( 1 ), and a flexible border ( 2 ).
  • the border ( 2 ) may be either a metallic magnetized material which is adhered viewing layer ( 1 ) or may be a strip of a peelable adhesive sheet material, which is similarly adhered to the viewing layer ( 1 ).
  • Layer ( 1 ) is formed of flexible plastic material and border ( 2 ) is also flexible so as to permit conformation of the view port window to non-planar duct surface.
  • FIG. 2 is an isometric view showing a typical application where the transparent viewing layer ( 1 ) and the border ( 2 ) are shown held in place either magnetically, or by peelable adhesive to the ventilation duct ( 3 ) over the duct hole cut-out ( 4 ) of the sheet metal.
  • a smaller round hole is sometimes also cut out with a hole saw in order to insert an air-pressure cleaning tool often called a skipper ball, air rake, snake, scorpion rod which may be used for a more precise cleaning.
  • an air-pressure cleaning tool often called a skipper ball, air rake, snake, scorpion rod which may be used for a more precise cleaning.
  • a duct cleaning plastic plug ( 6 ) may be inserted to cover the hole or is covered with duct tape.
  • FIG. 2 one can see the typical application of the view port window in which a duct hole cut-out ( 4 ) has been cut with a metal hole saw or metal cutting snips from the ventilation duct ( 3 ).
  • the transparent viewing layer ( 1 ) and border ( 2 ) being magnetic or peelable layer, which are adhered together (with an adhesive), would be placed over the duct hole cut-out ( 4 ) and held in place by border ( 2 ) by the magnetic force or peelable adhesive sheet layer to the metal of the ventilation duct ( 3 ).
  • the transparent viewing layer ( 1 ) and border ( 2 ) may be used to replace the duct cleaning cover metal plate ( 5 ).
  • FIG. 3 shows an angled-style ventilation duct ( 3 ) with transparent viewing layer ( 1 ) and magnetic border ( 2 ) which is either peelable adhesive layer ( 2 ), which is installed onto the face of the ventilation duct ( 3 ), allowing for horizontal and bi-directional visual inspection.
  • This installation shows the flexible and conforming nature of transparent viewing layer ( 1 ) and border ( 2 ).
  • FIG. 3 further shows along the underside of ventilation duct ( 3 ), the duct cleaning plastic plug ( 6 ) next to the transparent viewing layer ( 1 ) and border ( 2 ) installed instead of duct cleaning metal cover plate ( 5 ) of FIG. 2 .
  • FIG. 4 shows the flexible and leveling properties of transparent viewing layer ( 1 ) and border ( 2 ) when installed onto a radiussed ventilation duct ( 3 ).
  • FIG. 5 shows again the flexible, and equalizing properties of transparent viewing layer ( 1 ) and border ( 2 ) when installed onto a curved ventilation duct ( 3 ).
  • self-tapping metal screw ( 14 ) may be used for purposes of duct cleaning when high air pressure tools are being used within the interior of ventilation duct ( 3 ).
  • FIG. 6 shows a bi-level ventilation duct ( 3 ) system whereas the top level ventilation duct ( 3 ) is a wood joist rafter cavity ( 7 ).
  • Transparent viewing layer ( 1 ) and border ( 2 ) when installed onto the end cap of a joist rafter cavities ( 7 ) ventilation duct ( 3 ) allows for the visual inspection of the interior of these typically high-level contaminated ducts.
  • the lower level ventilation duct ( 3 ) also has transparent viewing layer ( 1 ) and border ( 2 ) of magnetic peelable adhesive sheet layer installed for further horizontal visual inspection.
  • FIG. 7 shows a basic view of the total assembly of view port window transparent viewing layer ( 1 ) and border ( 2 ) incorporating the optional light assembly.
  • FIG. 8 is a exploded side view showing the optional light assembly.
  • the light emitting diode LED ( 8 ) conforms to the LED board ( 9 ) which is bonded to the retainer ring ( 10 ) where the battery ( 11 ) is set inside of the battery housing ( 12 ) and the light switch on/off ( 13 ) is fixed inside of the battery housing ( 12 ).
  • FIG. 8 is inside of transparent viewing layer ( 1 ) and border ( 2 ) of magnetic/peelable adhesive sheet layer which are inside of the ventilation duct ( 3 ).
  • the light switch on/off ( 13 ) is on the outside of transparent viewing layer ( 1 ) and border ( 2 ) which is on the outside of the ventilation duct ( 3 ).
  • FIG. 9 shows the electronic dust alarm ( 15 ), which is mounted in the ductwork. It consists of a light chamber ( 16 ), which has an opening for air and dust particles travelling through the duct to enter. Inside the light chamber ( 16 ) an LED light source ( 18 ) emits light, which is detected by photo sensor ( 19 ). Without dust particles in between, the photo sensor ( 19 ) detects the full light level from the LED light source ( 18 ). If dust particles accumulate inside the light chamber ( 16 ), the light path is obscured which will trigger an audible or visual alarm when the output voltage from the photo sensor ( 19 ) exceeds a pre-set threshold in the associated electronics.
  • FIG. 10 shows the interior of ventilation duct ( 3 ) as seen through transparent viewing layer ( 1 ) and magnetic or peelable adhesive sheet layer ( 2 ) to the opposite inside of ventilation duct ( 3 ) where graphic viewing target ( 20 ) is seen.
  • a hole of suitable shape for example circular, is made with tin snips or a hole saw, and is cut to 1 ⁇ 4′′ inch larger diameter than the viewing layer ( 1 ) but less than the diameter of border ( 2 ).
  • the border ( 2 ) covers any uneven metal cutting to the viewer and presents a very neat surface presentation. Since the viewing layer ( 1 ) is 1 ⁇ 4′′ inch smaller than the diameter of the hole which is cut, the view to the interior of the ventilation system is completely unobstructed by any peripheral duct work.
  • the dimensions of the device can vary according to the size of ducts to be provided with an inspection system.
  • the view port should not be used on a duct which consistently generates initial heat source of over 180 degree F.

Abstract

A flexible inspection and access view port window that conforms to the shape of air ducts present in forced air heating, cooling and ventilation systems and held in place using a border layer which is magnetic or peelable adhesive, so that it can easily be installed, removed and re-installed without tools. This device allows the user to visually inspect the air ducts by sighting the clarity of a graphic viewing target with border attached within the duct. The graphic will be obscured with an accumulation of dust or other contaminants. Air pressure integrity inside the air duct system is maintained without the use of sealing gaskets or screws. The viewer can assist inspection with the aid of an optional light by activating a switch at the time of inspection. An optional dust alarm can also be installed that will trigger an audible or visual alarm when the accumulated dust level inside the duct exceeds a preset threshold.

Description

    FIELD OF THE INVENTION
  • This invention relates to a view port window of visually inspecting for indications of unacceptable IAQ contamination, and for checking cleaning and routine maintenance of ventilation air duct systems that are present in Heating, Ventilation, Air-conditioning (HVAC) and related systems.
  • BACKGROUND OF THE INVENTION
  • In recent years the issue of indoor air quality in home and work environments has become a major concern. There is convincing evidence that poor indoor air quality (I.A.Q.) is damaging people's health. The Center for Disease Control has recognized that there is an alarming increase in asthma and allergy sufferers, pulmonary diseases and other health issues nationwide. It is also apparent that the increase in these conditions is not due to the outdoor environment, but the indoor environment coupled with our changing life styles. Buildings can harbor chemicals, spread disease, and in some cases can even be the source of the problem, such as mold growth in ductwork or chemical off-gassing from building materials.
  • The United States Environmental Protection Agency has rated poor IAQ as being among the top environmental risks to human health. Due to rising energy costs, buildings are better insulated and constructed more airtight in an effort to minimize HVAC operating costs. A disturbing drawback to improved energy savings and efficiency is that we live and work in closed, climate controlled, buildings with materials and products that are made of highly sophisticated chemicals in climates that are also comfortable living and breeding grounds for bacteria, molds, viruses, and a host of chemicals which re-circulate through forced air ventilation systems.
  • Many companies and homeowners are now aware that mold and bacterial growth in buildings and within HVAC systems is not hygienic and can be associated with health outcomes and impact building systems operations. In an attempt to reduce IAQ related legal liability and alleviate this suffering, the only solution to control diminished indoor air quality and develop a proactive approach for maintaining acceptable indoor air quality, is to hire duct-cleaning companies on a routine basis to have the air handling ventilation systems cleaned and disinfected professionally.
  • Most ventilation systems are either hidden or not designed and constructed to be easily accessible, so it is difficult for occupants to visually inspect and determine their acceptable contamination levels for IAQ improvement programs. The need for professional duct cleaners has risen as a result of this difficulty. Indeed, air duct cleaning is a buyer-beware industry, according to the National Air Duct Cleaners Association. Some companies, nicknamed “blow and go” businesses, don't have the proper equipment to suck out all the dirt. The association warns consumers to avoid gimmicks, such as $99 whole-house specials and sweeping claims about health benefits. Duct cleaning operators use large and expensive equipment to access, enter and reach the inside areas of the air duct systems and ensure the cleaning procedure is thorough.
  • Improvement toward good indoor air quality requires a planned IAQ approach of periodic visual inspection or constant monitoring by an alarm system in ventilation air duct systems at home and in work environments to determine when cleaning is required.
  • DESCRIPTION OF RELATED ART
  • Viewing devices occur in other areas where air filtration is widely practiced. For example, U.S. Pat. No. 4,779,456 Cantoni, being aware of the great need of clean air for engines, describes a complex device for visually checking the air filter of an automobile. U.S. Pat. No. 3,199,488 Farr, again in an automotive function, describes a window for checking for contaminates behind a filter. While air filtration of engines is widely practiced, we recognize that it is much more important to protect the delicate structure of the human lung.
  • HVAC access doors are typically used in industrial and commercial practices. Ductmate Industries for example, catalogues a ‘Sandwich observation access door’, which has an airtight advanced pressure vessel design with a safety glass window view port surrounded by a galvanized steel or a specialty metal frame.
  • Ruskin Co. also catalogues a “Standard access door” with round plexi glass or safety glass window.
  • These large and rigid access doors are inflexible and do not conform to the variable ventilation configurations, unlike the present invention. Furthermore the cost of the ‘sandwich observation access door’ is considerably higher than the present invention.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a view port window to allow the user a quick and frequent visual inspection view port system for determining contamination levels present which may be occupant IAQ unacceptable.
  • The view port window also is designed to permit visual verification that the duct cleaning work has been properly performed throughout the ventilation ducts including the heavily contaminated areas of joist liner rafter ducts.
  • The purpose of the view port window is to be able to visually inspect, identify or rule out the presence of indoor contaminants, their sources, causes and pathways and design, operation or maintenance issues regarding the HVAC building systems. The view port window facilitates access into forced air ventilation ducts to visually determine when they need to be cleaned, thereby improving the Indoor Air Quality (IAQ) program for residential, institutional, public, commercial and industrial buildings. The view port window enables systems that have been cleaned to be visually checked to ensure the treatment was effective.
  • The view port window also allows for opening, entering and illuminating the ducts repeatedly to determine when the cleaning needs to be done again without the use of screws or duct tape.
  • The view port window so includes an optional viewing light and an optional electronic dust alarm that will automatically alarm the consumer when cleaning service is needed.
  • In a proper duct cleaning procedure, access holes are cut into the sheet metal of the main ventilation ductwork. These access openings allow for the removal of contamination levels and permit a subsequent check visually of the interior condition of the ventilation system after cleaning. These holes are then closed with sheet metal covers and/or duct tape and attached to the ductwork with several sheet metal screws. Although it is possible to remove these covers later on, it is not as simple or as practical as the present invention, which allows the user an immediate view into the ventilation ducts through its transparent viewing layer. Furthermore, the inner area of the air duct may be easily accessed by peeling off the magnetic or adhesive layer by hand, without the use of tools. This facilitates the retrieval of debris or foreign matter that has fallen or crawled into the ventilation duct system, which is a common problem. The flexible and conforming features of this invention allow installation on the elbow of a duct bend or turn, thus enabling the viewer a bi-directional and horizontal inspection.
  • The present invention provides a view port window which facilitates the need for routine maintenance and cleaning of the HVAC systems, by introducing voluntary user proactive initiatives as an appropriate practice for solving IAQ problems. There are many HVAC filter systems on the market for the purpose of filtering out airborne particles. It is quite common for homeowners and maintenance workers to visually check the filters and replace them whenever necessary. If the entire ventilation duct system is not cleaned regularly and a new filter is installed, the filter becomes clogged almost immediately by the rampant particles within the ventilation system. Once a filter is clogged, airflow is reduced; heating and air-conditioning equipment lose their efficiency and consequently are subject to more dust and wear. In this event, forced air is no longer properly filtered and the air quality suffers. Thus, it is important to ensure that the ventilation system and the equipment are not heavily contaminated before replacing or cleaning a filter.
  • The view port window offers a means of visually inspecting the ventilation duct system easily and inexpensively by any layperson. Therefore, it would raise the HVAC industry standards and assist for the improvement of air quality in home and work environments.
  • This invention consists of a flexible view port window that forms a flexible inspection window which is attached by releasable bonding devices or substances, such as by magnetic strips or by a peelable adhesive, to ventilation air ducts which are present in forced air heating and cooling systems.
  • The view port window consists of a flexible, heat-resistant and transparent plastic layer which is sealed to a flexible, heat-resistant flat border. The border is either a magnet or a peelable adhesive layer. An opening is cut into the duct itself and the view port window closes the opening.
  • The view port window is flexible and will conform to the different contours and shapes of ventilation ductwork. Further, it may be cut, trimmed or shaped with common scissors to make any allowance for variable duct designs, plumbing pipes, electrical wiring or other such obstacles, which exist within or protrude through ventilation ducts. The optional viewing light consists of a housing, a switch, a battery and an illumination source such as a LED and is mounted into the side of the view port window. The on/off switch, which activates by push/turn control is accessible by the user at a corner on the device. Its housing protrudes through a hole in the view port window and duct and the viewing light aims forward illuminating the interior of the selected ventilation duct, so that dust and dirt accumulation may be easily recognized.
  • The optional electronic dust alarm consists of a sensor, the electronic circuitry, a sound or light alarm, a reset button and a small battery. The alarm can be affixed into a small opening in the view port window or off to the side within the duct. It is able to measure the contamination level by means of a light source and photo sensor, which triggers an alarm by obscuring the light transmission if the concentration of dust particles exceeds a preset, adjustable threshold. At high levels of dust, a visual or audible alarm goes off to warn the user of excess contamination. This device may be strategically placed within the duct to constantly monitor for dust accumulation and levels of contaminants. The electronic warning alarm can then be reset and the air duct system cleaned.
  • Several features and advantages of the present invention are:
  • Simple visual inspection is possible trough the view port window for observing contamination levels within the ventilation system.
  • Quick and easy access to otherwise inaccessible areas for retrieval of articles.
  • Optional light system to assist in visual inspection.
  • Optional electronic dust alarm to automatically indicate excessive levels of contamination.
  • Flexible material and conforming to changing configurations of ventilation design.
  • Assists duct cleaning technicians with additional visibility observation ports for a more precise cleaning.
  • Provides permanent visual observation of proper cleaning by duct cleaning trades.
  • Allows for interior visibility to view other HVAC mechanical related equipment.
  • Graphic viewing target affixed within the duct which aids in observing increasing contamination levels.
  • Removable and replaceable without tools. May be easily trimmed with eg. scissors.
  • Easily installed system allows for multiple viewing and bi-directional inspection areas.
  • Will level and equalize out to the contours of sheet metal without use of a gasket.
  • Introduces simple voluntary user initiative assisted by visual inspection, for routine cleaning practice as user-friendly procedure for improving I.A.Q.
  • Provides all the above advantages at a reasonable cost.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an isometric view of view port window showing the transparent layer sealed to a border layer;
  • FIG. 2 is a perspective view of a ventilation duct end cap with installation profile of the view port window;
  • FIG. 3 is a perspective view showing various installation location areas for bi-directional or overhead viewing;
  • FIG. 4 shows a circular ventilation pipe with installed view port window;
  • FIG. 5 shows a perspective view of a bi-level ventilation configuration;
  • FIG. 6 shows a perspective of a joist liner-rafter ventilation connected to the main ventilation duct;
  • FIG. 7 is a perspective of a ventilation duct end cap with the view port window with the illumination feature;
  • FIG. 8 is a cross sectional view of the illumination feature components;
  • FIG. 9 is a cross sectional view of the electronic dust alarm;
  • FIG. 10 is a schematic side view of a duct and port showing the target mounted in the duct.
  • FIG. 1 is an isometric view showing the view port and is comprised of the flexible transparent viewing layer (1), and a flexible border (2). The border (2) may be either a metallic magnetized material which is adhered viewing layer (1) or may be a strip of a peelable adhesive sheet material, which is similarly adhered to the viewing layer (1). Layer (1) is formed of flexible plastic material and border (2) is also flexible so as to permit conformation of the view port window to non-planar duct surface.
  • FIG. 2 is an isometric view showing a typical application where the transparent viewing layer (1) and the border (2) are shown held in place either magnetically, or by peelable adhesive to the ventilation duct (3) over the duct hole cut-out (4) of the sheet metal.
  • Current duct cleaning practices involve cutting a hole out of the underside of the ventilation duct (3), which after cleaning is covered over with a duct cleaning metal cover plate (5). This hole is cut out for purposes of viewing the interior of the ventilation duct (3) and the removal of contamination and dust levels.
  • A smaller round hole is sometimes also cut out with a hole saw in order to insert an air-pressure cleaning tool often called a skipper ball, air rake, snake, scorpion rod which may be used for a more precise cleaning. At completion of cleaning, a duct cleaning plastic plug (6) may be inserted to cover the hole or is covered with duct tape.
  • Operation
  • Referring to FIG. 2, one can see the typical application of the view port window in which a duct hole cut-out (4) has been cut with a metal hole saw or metal cutting snips from the ventilation duct (3). The transparent viewing layer (1) and border (2), being magnetic or peelable layer, which are adhered together (with an adhesive), would be placed over the duct hole cut-out (4) and held in place by border (2) by the magnetic force or peelable adhesive sheet layer to the metal of the ventilation duct (3). The transparent viewing layer (1) and border (2) may be used to replace the duct cleaning cover metal plate (5).
  • FIG. 3, shows an angled-style ventilation duct (3) with transparent viewing layer (1) and magnetic border (2) which is either peelable adhesive layer (2), which is installed onto the face of the ventilation duct (3), allowing for horizontal and bi-directional visual inspection.
  • This installation shows the flexible and conforming nature of transparent viewing layer (1) and border (2).
  • FIG. 3 further shows along the underside of ventilation duct (3), the duct cleaning plastic plug (6) next to the transparent viewing layer (1) and border (2) installed instead of duct cleaning metal cover plate (5) of FIG. 2.
  • FIG. 4 shows the flexible and leveling properties of transparent viewing layer (1) and border (2) when installed onto a radiussed ventilation duct (3).
  • FIG. 5 shows again the flexible, and equalizing properties of transparent viewing layer (1) and border (2) when installed onto a curved ventilation duct (3). Furthermore, self-tapping metal screw (14) may be used for purposes of duct cleaning when high air pressure tools are being used within the interior of ventilation duct (3). There may be practice-specific installations of transparent viewing layer (1) and border (2) where requirements may entail permanent or security related reasoning for using self-tapping metal screws (14) or a bead of silicone adhesive may be applied to transparent viewing layer (1) and to border (2) which is affixed to ventilation duct (3).
  • FIG. 6 shows a bi-level ventilation duct (3) system whereas the top level ventilation duct (3) is a wood joist rafter cavity (7).
  • Transparent viewing layer (1) and border (2) when installed onto the end cap of a joist rafter cavities (7) ventilation duct (3) allows for the visual inspection of the interior of these typically high-level contaminated ducts. The lower level ventilation duct (3) also has transparent viewing layer (1) and border (2) of magnetic peelable adhesive sheet layer installed for further horizontal visual inspection.
  • FIG. 7 shows a basic view of the total assembly of view port window transparent viewing layer (1) and border (2) incorporating the optional light assembly.
  • FIG. 8 is a exploded side view showing the optional light assembly.
  • The light emitting diode LED (8) conforms to the LED board (9) which is bonded to the retainer ring (10) where the battery (11) is set inside of the battery housing (12) and the light switch on/off (13) is fixed inside of the battery housing (12).
  • FIG. 8 is inside of transparent viewing layer (1) and border (2) of magnetic/peelable adhesive sheet layer which are inside of the ventilation duct (3).
  • The light switch on/off (13) is on the outside of transparent viewing layer (1) and border (2) which is on the outside of the ventilation duct (3).
  • This allows inspection to be done by engaging light switch on/off (13) which activates the light emitting diode LED (8) thereby providing illumination to the interior of the ventilation duct (3).
  • FIG. 9 shows the electronic dust alarm (15), which is mounted in the ductwork. It consists of a light chamber (16), which has an opening for air and dust particles travelling through the duct to enter. Inside the light chamber (16) an LED light source (18) emits light, which is detected by photo sensor (19). Without dust particles in between, the photo sensor (19) detects the full light level from the LED light source (18). If dust particles accumulate inside the light chamber (16), the light path is obscured which will trigger an audible or visual alarm when the output voltage from the photo sensor (19) exceeds a pre-set threshold in the associated electronics.
  • FIG. 10 shows the interior of ventilation duct (3) as seen through transparent viewing layer (1) and magnetic or peelable adhesive sheet layer (2) to the opposite inside of ventilation duct (3) where graphic viewing target (20) is seen.
  • Although the above description is rather specific, it should not be construed as limiting the scope of the invention, but merely providing illustrations of some of the currently preferred embodiments of this invention.
  • Installation Procedure.
  • A hole of suitable shape, for example circular, is made with tin snips or a hole saw, and is cut to ¼″ inch larger diameter than the viewing layer (1) but less than the diameter of border (2). When fitted and placed over the hole, the border (2) covers any uneven metal cutting to the viewer and presents a very neat surface presentation. Since the viewing layer (1) is ¼″ inch smaller than the diameter of the hole which is cut, the view to the interior of the ventilation system is completely unobstructed by any peripheral duct work. The dimensions of the device can vary according to the size of ducts to be provided with an inspection system. The view port should not be used on a duct which consistently generates initial heat source of over 180 degree F.

Claims (12)

1. A flexible view port window that forms a flexible inspection window for an HVAC duct and comprising:
a panel of flexible translucent material;
an attachment border secured around said panel;
releasable bonding material on said attachment border for bonding said border to said duct.
2. A flexible view port window as claimed in claim 1 wherein releasable bonding material is selected from magnetic strips or a peelable adhesive.
3. A flexible view port window as claimed in claim 2 consists of a flexible, heat-resistant and transparent plastic panel secured to a flexible, heat-resistant flat border.
4. A flexible view port window as claimed in claim 3 which is adapted to fit over and close an opening cut into the duct.
5. A flexible view port window as claimed in claim 4 and including a viewing light which consists of a housing, a switch, a battery and an illumination source adapted to be mounted into the side of the view port window.
6. A flexible view port window as claimed in claim 5 wherein the switch activates by push/turn control and is accessible from the exterior of the duct.
7. A flexible view port window as claimed in claim 6 wherein the switch has a housing which protrudes through a hole in the view port window and duct and the viewing light aims forward illuminating the interior of the selected ventilation duct, so that dust and dirt accumulation may be easily recognized.
8. A flexible view port window as claimed in claim 7 and including an electronic dust alarm which consists of a sensor, electronic circuitry, an alarm, a reset button and a battery.
9. A flexible view port window as claimed in claim 8 wherein the alarm can be affixed into an opening in the view port window or off to the side within the duct.
10. A flexible view port window as claimed in claim 9 wherein the sensing device measures the contamination level by means of a light source and photo sensor, which triggers an alarm by obscuring the light transmission if the concentration of dust particles exceeds a preset, adjustable threshold.
11. A flexible view port window as claimed in claim 10 wherein flexible material conforms to changing configurations of ventilation design.
12. A flexible view port window as claimed in claim 1 and including a graphic viewing target affixed within the duct which aids in observing increasing contamination levels.
US11/222,985 2004-09-13 2005-09-12 View port window with optional illumination and alarm system Abandoned US20060057954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/222,985 US20060057954A1 (en) 2004-09-13 2005-09-12 View port window with optional illumination and alarm system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60888904P 2004-09-13 2004-09-13
US11/222,985 US20060057954A1 (en) 2004-09-13 2005-09-12 View port window with optional illumination and alarm system

Publications (1)

Publication Number Publication Date
US20060057954A1 true US20060057954A1 (en) 2006-03-16

Family

ID=36087440

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/222,985 Abandoned US20060057954A1 (en) 2004-09-13 2005-09-12 View port window with optional illumination and alarm system

Country Status (2)

Country Link
US (1) US20060057954A1 (en)
CA (1) CA2512303A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080288193A1 (en) * 2007-05-17 2008-11-20 International Business Machines Corporation Techniques for Analyzing Data Center Energy Utilization Practices
US20080285232A1 (en) * 2007-05-17 2008-11-20 International Business Machines Corporation Techniques for Data Center Cooling
ITMI20090275A1 (en) * 2009-02-26 2010-08-27 Marco Zambolin AIR DISTRIBUTION SYSTEM INCLUDING A DISCHARGE WHEEL FOR ADJUSTING AIR CURRENTS IN THE ENVIRONMENT
US20130097881A1 (en) * 2009-12-02 2013-04-25 Markus Profos Sighting device
US20130295837A1 (en) * 2012-05-01 2013-11-07 Wayne Edward Bailey Apparatus to prevent damage to a gaseous fluid (radon) mitigation system's fan and monitor the system's performance to assure efficient operation
WO2016004171A1 (en) * 2014-07-03 2016-01-07 Centrillion Technology Holdings Corporation Device for storage and dispensing of reagents
US10307724B2 (en) 2015-07-02 2019-06-04 Centrillion Technology Holdings Corporation Systems and methods to dispense and mix reagents
US20210237884A1 (en) * 2020-02-05 2021-08-05 The Boeing Company Aircraft air duct system for transmitting sanitized air
US11499716B2 (en) 2016-06-30 2022-11-15 Regal Beloit America, Inc. Furnace subassembly, furnace blower and associated method
US11535384B2 (en) 2020-02-05 2022-12-27 The Boeing Company Aircraft air duct system for transmitting electrical power and visible light
US11926423B2 (en) 2020-02-05 2024-03-12 The Boeing Company Aircraft air duct system for providing light, data, electrical power, and sanitized air

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199488A (en) * 1963-04-09 1965-08-10 Farr Co Dust and liquid detector
US4779456A (en) * 1986-04-07 1988-10-25 Ital Idee S.R.L. An Italian Limited Liability Company Device for visually checking the degree of clogging of an air filter in motor vehicle engines
US5833740A (en) * 1996-11-25 1998-11-10 Brais; Normand Air purifier
US6583726B1 (en) * 2002-01-14 2003-06-24 Vent-Defense, Llc Apparatus for detecting and preventing chemical or biological contamination of buildings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199488A (en) * 1963-04-09 1965-08-10 Farr Co Dust and liquid detector
US4779456A (en) * 1986-04-07 1988-10-25 Ital Idee S.R.L. An Italian Limited Liability Company Device for visually checking the degree of clogging of an air filter in motor vehicle engines
US5833740A (en) * 1996-11-25 1998-11-10 Brais; Normand Air purifier
US6583726B1 (en) * 2002-01-14 2003-06-24 Vent-Defense, Llc Apparatus for detecting and preventing chemical or biological contamination of buildings

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080288193A1 (en) * 2007-05-17 2008-11-20 International Business Machines Corporation Techniques for Analyzing Data Center Energy Utilization Practices
US20080285232A1 (en) * 2007-05-17 2008-11-20 International Business Machines Corporation Techniques for Data Center Cooling
US8009430B2 (en) * 2007-05-17 2011-08-30 International Business Machines Corporation Techniques for data center cooling
US8593815B2 (en) 2007-05-17 2013-11-26 International Business Machines Corporation Techniques for data center cooling
US20140063729A1 (en) * 2007-05-17 2014-03-06 International Business Machines Corporation Techniques for Data Center Cooling
US8964375B2 (en) * 2007-05-17 2015-02-24 International Business Machines Corporation Techniques for data center cooling
ITMI20090275A1 (en) * 2009-02-26 2010-08-27 Marco Zambolin AIR DISTRIBUTION SYSTEM INCLUDING A DISCHARGE WHEEL FOR ADJUSTING AIR CURRENTS IN THE ENVIRONMENT
EP2224183A1 (en) * 2009-02-26 2010-09-01 Marco Zambolin Air distribution plant and diffuser conduit therefor
US20130097881A1 (en) * 2009-12-02 2013-04-25 Markus Profos Sighting device
US9335165B2 (en) * 2009-12-02 2016-05-10 Kriss International Sa Sighting device
US9140461B2 (en) * 2012-05-01 2015-09-22 Wayne E. Bailey Radon exhaust system with a diagnostic bypass filter apparatus
US20130295837A1 (en) * 2012-05-01 2013-11-07 Wayne Edward Bailey Apparatus to prevent damage to a gaseous fluid (radon) mitigation system's fan and monitor the system's performance to assure efficient operation
WO2016004171A1 (en) * 2014-07-03 2016-01-07 Centrillion Technology Holdings Corporation Device for storage and dispensing of reagents
US10376888B2 (en) 2014-07-03 2019-08-13 Centrillion Technology Holdings Corporation Device for storage and dispensing of reagents
US10307724B2 (en) 2015-07-02 2019-06-04 Centrillion Technology Holdings Corporation Systems and methods to dispense and mix reagents
US11499716B2 (en) 2016-06-30 2022-11-15 Regal Beloit America, Inc. Furnace subassembly, furnace blower and associated method
US20210237884A1 (en) * 2020-02-05 2021-08-05 The Boeing Company Aircraft air duct system for transmitting sanitized air
US11535384B2 (en) 2020-02-05 2022-12-27 The Boeing Company Aircraft air duct system for transmitting electrical power and visible light
US11613362B2 (en) * 2020-02-05 2023-03-28 The Boeing Company Aircraft air duct system for transmitting sanitized air
US11926423B2 (en) 2020-02-05 2024-03-12 The Boeing Company Aircraft air duct system for providing light, data, electrical power, and sanitized air

Also Published As

Publication number Publication date
CA2512303A1 (en) 2006-03-13

Similar Documents

Publication Publication Date Title
US20060057954A1 (en) View port window with optional illumination and alarm system
US9729945B2 (en) Environmental monitor device with database
US9311807B2 (en) Environmental monitor device
US6920874B1 (en) Intelligent ventilating safety range hood
KR101700302B1 (en) Window type ventilator with filter
US20150260424A1 (en) Hvac filter monitoring
US20160063833A1 (en) Environmental Sensor Device with Alarms
US20160061794A1 (en) Environmental Sensor Device with Thresholding
US20160061476A1 (en) Environmental Sensor Device
US20160061795A1 (en) Environmental Sensor Device with Calibration
US20160061477A1 (en) Environmental Sensing System
US20110185302A1 (en) Monitor for uvc/ir decontamination systems
US20140179216A1 (en) Particle Containment Systems
CA2921709A1 (en) Hazardous gas response system
US20150027314A1 (en) Air filter apparatus with adhesive air filter (adaf) and components for air purification, and systems using the same
US4820319A (en) Remote control and monitor means
US20130325368A1 (en) System for monitoring air flow efficiency
US7993437B2 (en) Filter removal bag
KR101494663B1 (en) Apparatus for displaying room air level with real time
KR100706881B1 (en) Heat exchanger
Streifel Health care IAQ: guidance for infection control.
CN202630307U (en) Air-conditioner unit detection mechanism capable of monitoring filter screen soot formation
KR20180036254A (en) a adjusting device of indoor pressure of building
JP2005283057A (en) Air conditioner with drainage device
US20220404257A1 (en) Airflow Filter Sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONCEPT TO CREATION CO-OP, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HREBENIUK, NICKOLAJ;REEL/FRAME:016975/0180

Effective date: 20050909

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION