US20060021445A1 - Load monitoring systems and methods - Google Patents

Load monitoring systems and methods Download PDF

Info

Publication number
US20060021445A1
US20060021445A1 US11/152,303 US15230305A US2006021445A1 US 20060021445 A1 US20060021445 A1 US 20060021445A1 US 15230305 A US15230305 A US 15230305A US 2006021445 A1 US2006021445 A1 US 2006021445A1
Authority
US
United States
Prior art keywords
load
sensor
carrying member
inductance
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/152,303
Inventor
Douglas Hanna
David Whittemore
Richard Madden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oil States Industries Inc
Original Assignee
BBNT Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBNT Solutions LLC filed Critical BBNT Solutions LLC
Priority to US11/152,303 priority Critical patent/US20060021445A1/en
Assigned to BBNT SOLUTIONS LLC reassignment BBNT SOLUTIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANNA, DOUGLAS S., MADDEN, RICHARD, WHITTEMORE, DAVID H.
Publication of US20060021445A1 publication Critical patent/US20060021445A1/en
Assigned to OIL STATES INDUSTRIES, INC. reassignment OIL STATES INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BBNT SOLUTIONS LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/08Apparatus for feeding the rods or cables; Apparatus for increasing or decreasing the pressure on the drilling tool; Apparatus for counterbalancing the weight of the rods
    • E21B19/09Apparatus for feeding the rods or cables; Apparatus for increasing or decreasing the pressure on the drilling tool; Apparatus for counterbalancing the weight of the rods specially adapted for drilling underwater formations from a floating support using heave compensators supporting the drill string
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/164Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs

Definitions

  • the present invention relates generally to load monitoring and, more particularly, to systems and methods for signal conditioning and processing of load monitoring signals
  • Load and tension monitoring of load carrying members are very important in some applications. For example, load and tension monitoring of moorings and risers is important in offshore oil production platforms.
  • One such monitoring system includes variable reluctance sensors placed around the periphery of a load carrying member to measure the load associated with that member. This system uses a resonant circuit to process signals from the sensors and report results to a marine monitoring system.
  • the electronics used in such a system are sophisticated and expensive.
  • the electronics are typically housed in a fixed cabinet and powered by an AC line voltage. Therefore, the electronics are rendered inoperable in the event of line voltage failure, which may occur in critical situations, such as in a severe storm.
  • Systems and methods consistent with the present invention address this and other needs by providing a monitoring system that is inexpensive, portable, and/or capable of being powered by DC power.
  • a system monitors a load associated with a load carrying member.
  • the system may include a voltage divider and a computer device.
  • the voltage divider measures inductance associated with load sensing elements that monitor the load carrying member.
  • the computer device determines displacements of the load sensing elements based on the inductance associated with the load sensing elements and determines the load associated with the load carrying member based on the displacements of the load sensing elements.
  • a portable load monitoring system monitors the load associated with a load carrying member.
  • the system includes a voltage divider and a portable computer device.
  • the voltage divider is configured to measure inductance associated with load sensing elements that are associated with the load carrying member.
  • the portable computer device is configured to determine displacements of the load sensing elements due to the load based on the inductance associated with the load sensing elements, and determine the load associated with the load carrying member based on the displacements of the load sensing elements.
  • a system monitors a load associated with a load carrying member.
  • the system includes a voltage divider and a computer device connected to a DC power source.
  • the voltage divider is configured to measure inductance associated with load sensing elements associated with the load carrying member.
  • the computer device is configured to determine displacements of the load sensing elements due to the load based on the inductance associated with the load sensing elements, and determine the load associated with the load carrying member based on the displacements of the load sensing elements.
  • FIG. 1 is an exemplary diagram of an environment in which systems and methods consistent with the present invention may be implemented
  • FIG. 2 is an exemplary diagram of a system in which systems and methods consistent with the present invention may be implemented
  • FIG. 3 is an exemplary diagram of the load measurement unit of FIG. 2 according to an implementation consistent with the present invention
  • FIG. 4 is an exemplary diagram of the upper sensor ring of FIG. 3 according to an implementation consistent with the present invention
  • FIG. 5 is an exemplary diagram of a sensor of FIG. 4 according to an implementation consistent with the present invention.
  • FIG. 6 is an exemplary detailed diagram of the signal conditioning system of FIG. 2 according to an implementation consistent with the present invention
  • FIG. 7 is an exemplary diagram of a sensor plane that may be constructed to facilitate determination of displacement according to an implementation consistent with the principles of the invention
  • FIG. 8 is a flowchart of exemplary processing for determining tension, bending, and orientation of bending associated with a load carrying member according to an implementation consistent with the present invention.
  • FIG. 9 is an exemplary diagram of a sensor according to another implementation consistent with the principles of the invention.
  • Systems and methods consistent with the present invention provide load monitoring that may be used to monitor the load associated with load carrying members, such as moorings and risers of offshore oil production platforms.
  • the systems and methods may include inexpensive circuitry with DC power capability. In certain critical situations, such as in a severe storm, uncertainty in the determination of the load associated with a load carrying member may be unacceptable.
  • the DC power capability permits the monitoring to occur in situations, such as where there is AC line voltage failure.
  • the systems and methods consistent with the present invention also provide a portable, compact configuration for deployment to remote locations.
  • Field personnel can use the portable configuration as a diagnostic and/or troubleshooting tool to quickly localize problems at various points in the cabling.
  • the portable configuration may be enclosed in a protective container and deployed for load measurements at locations, such as in underwater mooring and riser systems at or near the sea floor.
  • FIG. 1 is an exemplary environment 100 in which systems and methods consistent with the principles of the invention may be implemented.
  • environment 100 may be associated with a floating production system, such as a floating offshore oil platform 110 .
  • Platform 110 may be secured to the sea floor via chains or tendons, such as moorings 120 .
  • Oil, gas, and/or water may be extracted and provided to platform 110 and/or exported via one or more tubes, such as riser 130 . It may be important to monitor the load and tension associated with moorings 120 and riser 130 to make sure that moorings 120 and riser 130 are not loose or overstrained, possibly, to the point of breakage, and that platform 110 is stable.
  • systems and methods consistent with the principles of the invention will be described within environment 100 , such systems and methods are not so limited. In fact, systems and methods consistent with the present invention may be used in any environment where it may be useful to monitor the load of a load carrying member.
  • FIG. 2 is an exemplary diagram of a system 200 in which systems and methods consistent with the principles of the invention may be implemented.
  • System 200 includes one or more load measurement units 210 , one or more cables 220 , junction box 230 , signal conditioning system 240 , and computer system 250 .
  • Computer system 250 and/or signal conditioning system 240 may be powered by AC power or DC power, such as a battery (not shown). The DC power permits computer system 250 and/or signal conditioning system 240 to operate in the event of AC power failure.
  • load measurement unit 210 may generate signals indicative of displacement associated with a tendon or tube, such as mooring 120 or riser 130 .
  • Cable 220 may connect load measurement unit 210 to junction box 230 within platform 110 .
  • Cable 220 may include one or more underwater connectors.
  • Junction box 230 may provide connection points between one or more load measurement units 210 and signal conditioning system 240 .
  • a typical platform 110 may include one or more junction boxes 230 .
  • Signal conditioning system 240 may gather data for determining inductance associated with load measurement unit 210 based on the signals from load measurement unit 210 .
  • Computer system 250 may determine the inductance associated with a load measurement unit 210 and, from this, the load associated with mooring 120 or riser 130 .
  • computer system 250 may determine tension, bending, and orientation of bending associated with mooring 120 or riser 130 .
  • FIG. 3 is an exemplary diagram of load measurement unit 210 according to an implementation consistent with the principles of the invention.
  • Load measurement unit 210 may be located on a load carrying member, such as mooring 120 or riser 130 , approximately 100 or more feet underwater.
  • Load measurement unit 210 may include upper sensor ring 310 and lower sensor ring 320 that form rings around the periphery of the load carrying member.
  • Load measurement unit 210 may generate signals indicative of the displacement between upper sensor ring 310 and lower sensor ring 320 .
  • FIG. 4 is an exemplary diagram of upper sensor ring 310 according to an implementation consistent with the principles of the invention.
  • Sensor ring 310 may include approximately three to twelve load sensing elements, such as sensors 410 , located around the periphery of the load carrying member (e.g., mooring 120 or riser 130 ).
  • the actual number of sensors 410 included may be a number sufficient to obtain good estimates of tension, bending, and the orientation of the bending of the load carrying member.
  • FIG. 5 is an exemplary diagram of a section of sensor 410 according to an implementation consistent with the principles of the invention.
  • Sensor 410 may include a variable reluctance sensor or capacitive sensor.
  • Sensor 410 may include C-shaped magnetic core 510 , I-shaped magnetic core 520 , brackets 530 and 540 , and windings 550 .
  • C-shaped magnetic core 510 may be constructed, for example, of a highly permeable laminated transformer material.
  • C-shaped core 510 may be mounted on upper sensor ring 310 via bracket 530 with the ends of the C-shape pointed downward or in a direction generally parallel to the direction of force within the load carrying member.
  • I-shaped magnetic core 520 may be constructed, for example, of a highly permeable laminated transformer material. I-shaped magnetic core 520 may be mounted on lower sensor ring 320 via bracket 540 . I-shaped core 520 may be positioned so that narrow gaps exist between each end of C-shaped core 510 and a facing portion of I-shaped core 520 . In an implementation consistent with the principles of the invention, the widths of the gaps are small as compared with any transverse dimension of the ends of C-shaped core 510 . Further, the cross-sectional dimensions or areas of the ends of C-shaped core 510 may be smaller than those of the facing portion of I-shaped core 520 .
  • a winding 550 may be mounted around each end of C-shaped core 510 closely adjacent to the respective gap. Windings 550 may connect in series so that their electromotive forces add.
  • C-shaped core 510 and I-shaped core 520 may be highly permeable and, thus, the gaps between cores 510 and 520 may constitute most of the reluctance in the magnetic circuit linking windings 550 .
  • the inductance exhibited may be directly dependent on the widths of the gaps in the direction of the magnetic flux in the gaps (i.e., the vertical direction in FIG. 5 ).
  • the width of the respective gap between each end of C-shaped core 510 and the adjacent portion of I-shaped core 520 increases or reduces. As the gaps are reduced, the inductance exhibited increases.
  • Both of the gaps may be used in determining the value of inductance.
  • small increases in the length of one gap can compensate or offset for small decreases in the length of the other gap.
  • sensor 410 may be relatively insensitive to bending moments applied thereto (i.e., around a horizontal axis perpendicular to the paper as illustrated in FIG. 5 ). Bending moments around the orthogonal horizontal axis lying in the plane of the paper only produce changes in width as a function of displacement across the surfaces of the ends of both gaps but not changes in the average width of each gap, to a first order approximation.
  • Cable 220 may include a marine cable that connects load measurement unit 210 to junction box 230 within platform 110 .
  • Cable 220 may include conductors that connect to sensors 410 of load measurement unit 210 .
  • Cable 220 may also include one or more underwater connectors with active or inactive components to relay signals between segments of cable 220 .
  • Junction box 230 may include a set of connection points that connect cables 220 to signal conditioning system 240 .
  • One or more junction boxes 230 may be located within platform 110 .
  • one junction box 230 may be located in the control room of platform 110 and another junction box 230 may be located in the lower regions of platform 110 , such as where cables 220 come into platform 110 .
  • FIG. 6 is an exemplary diagram of signal conditioning system 240 according to an implementation consistent with the principles of the invention.
  • Signal conditioning system 240 may gather data for determining the inductance and the operational status of sensors 410 and communicate this data to computer system 250 .
  • Signal conditioning system 240 may include interface 610 , filters 620 , driver 630 , resistors 640 , and switches 650 .
  • Interface 610 is shown as a component of signal conditioning system 240 . In an alternate implementation, interface 610 may be part of computer system 250 .
  • Interface 610 may include a Personal Computer Memory Card International Association (PCMCIA) interface that facilitates the connection of signal conditioning system 240 to computer system 250 .
  • Interface 610 may include one or more digital-to-analog (D/A) channels that may be used to operate components of signal conditioning system 240 . If interface 610 includes more than one D/A channel, each D/A channel may correspond to a different one of sensors 410 .
  • PCMCIA Personal Computer Memory Card International Association
  • D/A digital-to-analog
  • Interface 610 may also include one or more analog-to-digital (A/D) channels that may be used to capture data, such as data used in determining the inductance of a sensor 410 .
  • A/D analog-to-digital
  • interface 610 includes N+1 A/D channels that correspond to N different ones of sensors 410 .
  • A/D channel 0 may be used for calibrations and data acquisition, as will be described in more detail below.
  • Interface 610 may also include ground (GND) connections.
  • Filters 620 may include conventional low pass filters that are designed to remove noise and aliased components of the signal.
  • Driver 630 may include a sensor line driver that drive signals from the D/A channel.
  • Resistors 640 may be reference resistors (RR) having a known resistance.
  • Switches 650 may include calibration switches that are used to switch the components of signal conditioning system 240 between calibration and data acquisition modes. As shown in FIG. 6 , switches 650 may be in the up position during the calibration mode.
  • Signal conditioning system 240 may view sensor 410 and cable 220 as a combination of resistors, capacitors, and inductors.
  • cable 220 may be represented by a capacitor CC, a resistor RC, and an inductor LC.
  • the features of cable 220 may be measured and remain constant. Therefore, the capacitance, resistance, and inductance of cable 220 are known.
  • Sensor 410 may be represented by a resistor RS and an inductor LS.
  • the resistance of sensor 410 may be measured and remain constant.
  • the inductance of sensor 410 is a variable inductance that changes based on changes in displacement, as described above.
  • the impedance of cable 220 and sensor 410 may be represented by ZSC.
  • Signal conditioning system 420 uses a voltage divider circuit made up of the resistor RR and impedance ZSC to gather data for determining the inductance of sensor 410 .
  • Signal conditioning system 240 provides the measurements used in determining the transfer function TF in the above equation to computer system 250 via the appropriate one(s) of the A/D channels.
  • Computer system 250 may include a computer device, such as a personal computer, laptop, personal digital assistant, etc. To make system 200 portable, computer system 250 may include a portable device, such as a laptop or a personal digital assistant. Computer system 250 may determine inductance, displacement, and load associated with a load carrying member, such as mooring 120 or riser 130 . Computer system 250 may determine displacement at a number of different locations around the periphery of the load carrying member. Computer system 250 may convert determined sensor inductance values to displacement due to tension and displacement due to bending.
  • Computer system 250 may calibrate the components of signal conditioning system 240 in the calibration mode. For example, switches 650 and the A/D channels may be placed into the calibration mode. Computer system 250 may output a reference signal via the D/A channel. Computer system 250 may then determine magnitude and phase corrections for all channels relative to the reference A/D channel 0 .
  • computer system 250 may obtain the measurements for determining the transfer functions for the voltage dividers from signal conditioning system 240 .
  • Computer system 240 may use the transfer functions to determine the inductance of sensors 410 . For a given inductance value, computer system 240 may estimate the corresponding displacement for sensor 410 based on prior calibrations of that sensor 410 .
  • FIG. 7 is an exemplary diagram of a sensor plane that may be constructed to facilitate determination of displacement according to an implementation consistent with the principles of the invention.
  • Computer system 250 may determine the displacement of each sensor 410 based on its inductance and then subtract out the displacement for that sensor 410 under zero load. As a result, computer system 250 may determine just how much each sensor 410 is displaced under load.
  • a load measurement unit 210 may be calibrated beforehand to determine values for K axial and K bend .
  • Orientation of bending may be determined based on A and B (i.e., the displacement components due to bending).
  • Computer system 250 may present information to an operator via a graphical user interface.
  • the display parameters of the graphical user interface may include individual sensor status, inductance, and calculated load, tension and bending values associated with a load carrying member (instantaneous or averaged), and/or other information that may be useful to the operator.
  • FIG. 8 is a flowchart of exemplary processing for determining tension, bending, and orientation of bending associated with a load carrying member, such as a mooring 120 or riser 130 , according to an implementation consistent with the present invention.
  • Processing may begin with the calibration of the components of signal conditioning system 240 (act 810 ).
  • Computer system 250 may instruct signal processing system 240 to enter the calibration mode.
  • Computer system 250 may then input digitized data via the D/A channel of interface 610 and simultaneously calibrate the components of signal conditioning system 240 to determine magnitude and phase corrections for all of the channels relative to the reference A/D channel 0 .
  • computer system 250 may instruct signal processing system 240 to enter the data acquisition mode.
  • sensor inductance may be determined using the voltage divider of signal conditioning system 240 (act 820 ).
  • the D/A channel of interface 610 may apply a band-limited random or sine input to the cable ends through driver 630 .
  • the reference voltage input (Vi) and the response voltage samples (Vm) may then be measured at the A/D channels of interface 610 .
  • Reference voltage input (Vi) may be measured at the A/D channel 0 and the reference voltage samples (Vm) may be simultaneously measured at the A/D channels 1 -N.
  • Computer system 250 may perform a discrete Fourier transform on the data obtained during the calibration mode and the data obtained during the data acquisition mode at the excitation frequency.
  • Computer system 250 may divide the complex amplitude of the data from each of the channels obtained during the data acquisition mode by the complex amplitude of the data from each of the channels obtained during the calibration mode to obtain a set of N complex transfer functions TF.
  • the TF values may be used in the equation for LS (identified above) to obtain the inductance of each sensor 410 .
  • sensor displacement may be determined (act 830 ). Sensor displacement may be estimated from information gathered during the previously-conducted sensor calibrations. The displacements of several sensors 410 may then be used to construct a plane through the displacements using a Least Mean Square algorithm, as described above. Construction of the plane may facilitate the determination of the displacement components due to bending and tension, as described above.
  • the tension, bending, and orientation of bending associated with the load carrying member may be determined (act 840 ).
  • the tension may be determined based on a stiffness value and the displacement component due to tension.
  • the bending may be determined based on a bending stiffness value and the displacement components due to bending, and the orientation of bending may be determined based on the displacement components due to bending.
  • a load measurement unit has been described as the vehicle for measuring the load associated with a load carrying member, such as a mooring or riser.
  • a load cell may be used.
  • one or more load cells may be associated with each load carrying member. Instead of being located along the periphery of the load carrying member, the load cells are connected to the load carrying member at a point where the load carrying member connects to something else, like the platform. Like the load measurement unit, the load cells measure the load associated with the load carrying member.
  • FIG. 9 is an exemplary diagram of a sensor 900 according to an implementation consistent with the principles of the invention.
  • Sensor 900 may include a variable reluctance sensor, such as the one described in U.S. Pat. No. 5,359,902.
  • Sensor 900 may include a hollow cylinder 910 connected to rigid end caps 920 and 930 .
  • Hollow cylinder 910 may be of circular cross-section and act as an elastic element for forces applied in a direction along the axis of cylinder 910 .
  • Cylinder 910 may, for example, be constructed of a high grade steel that has a very repeatable and essentially linear elasticity. Cylinder 910 may act essentially as a lossless spring. While the spring constant will typically be very high as understood by those skilled in the art, the forces intended to be measured may also be quite high.
  • End caps 920 and 930 connect to the ends of cylinder 910 .
  • end caps 920 and 930 are not separate from, but are integral with, cylinder 910 . At least one of end caps 920 and 930 may connect to the load carrying member.
  • sensor 900 may include C-shaped magnetic core 940 , I-shaped magnetic core 950 , brackets 960 and 970 , and windings 980 .
  • C-shaped magnetic core 940 may be constructed, for example, of a highly permeable laminated transformer material.
  • C-shaped core 940 may be mounted on upper end cap 920 via bracket 960 with the ends of the C-shape pointed downward or in a direction generally parallel to the direction of force within the wall of cylinder 910 .
  • I-shaped magnetic core 950 may be constructed, for example, of a highly permeable laminated transformer material. I-shaped magnetic core 950 may be mounted on lower end cap 930 via bracket 970 . I-shaped core 950 may be positioned so that narrow gaps exist between each end of C-shaped core 940 and a facing portion of I-shaped core 950 . In an implementation consistent with the principles of the invention, the widths of the gaps are small as compared with any transverse dimension of the ends of C-shaped core 940 . Further, the cross-sectional dimensions or areas of the ends of C-shaped core 940 may be smaller than those of the facing portion of I-shaped core 950 .
  • a winding 980 may be mounted around each end of C-shaped core 940 closely adjacent to the respective gap. Windings 980 may connect in series so that their electromotive forces add.
  • C-shaped core 940 and I-shaped core 950 may be highly permeable and, thus, the gaps between cores 940 and 950 may constitute most of the reluctance in the magnetic circuit linking windings 980 .
  • the inductance exhibited may be directly dependent on the widths of the gaps in the direction of the magnetic flux in the gaps (i.e., the vertical direction as shown in FIG. 9 ).
  • cylinder 910 compresses or expands and the width of the respective gap between each end of C-shaped core 940 and the adjacent portion of I-shaped core 950 reduces or increases. As the gaps are reduced, the inductance exhibited increases.
  • the inductance value of sensor 900 may be insensitive to small displacements of C-shaped core 940 in directions transverse to the axis of cylinder 910 and to the widths of the gaps. Both of the gaps may be used in determining the value of inductance. As a result, small increases in the length of one gap can compensate or offset for small decreases in the length of the other gap. Accordingly, sensor 900 may be relatively insensitive to bending moments applied thereto (i.e., around a horizontal axis perpendicular to the paper as illustrated in FIG. 9 ). Bending moments around the orthogonal horizontal axis lying in the plane of the paper only produce changes in width as a function of displacement across the surfaces of the ends of both gaps but not changes in the average width of each gap, to a first order approximation.
  • sensor 900 may connect to a signal conditioning system and a computer system, which may be configured and operate similar to signal conditioning system 240 ( FIG. 2 ) and computer system 250 described above.
  • Systems and methods consistent with the present invention may provide portable signal conditioning and signal processing components for variable reluctance load measurement.
  • the systems and methods determine inductance and operational status of sensors used to measure the load of a load carrying member, converts the sensor inductance into displacement, and performs a Least Mean Square process to identify a plane through the displacements.
  • the systems and methods may use this information to determine tension, bending, and orientation of bending associated with the load carrying member.
  • Systems and methods consistent with the principles of the invention may be configured with a laptop computer to provide a portable load measurement device or as a compact standalone device for deployment to remote areas or areas that are not easily accessible.
  • the compact standalone device may be remotely operable and capable of being placed within a pressure vessel for deployment at or near the sea floor.
  • systems and methods consistent with the present invention include inexpensive circuitry that is amenable to operation on both line AC power and DC battery power.
  • the DC power capability makes the systems and methods operable in the event of line voltage failure that may occur in critical situations, such as during a severe storm.

Abstract

A system (200) monitors a load associated with a load carrying member. The system (200) may include a voltage divider (240) and a computer device (250). The voltage divider (240) measures inductance associated with load sensing elements (210) that monitor the load carrying member. The computer device (250) determines displacements of the load sensing elements (210) based on the inductance associated with the load sensing elements (210) and determines the load associated with the load carrying member based on the displacements of the load sensing elements (210). The system may be designed to be portable and/or DC powered.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/228,669, filed on Aug. 26, 2002, the specification of which is incorporated by reference herein in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to load monitoring and, more particularly, to systems and methods for signal conditioning and processing of load monitoring signals
  • 2. Description of Related Art
  • Load and tension monitoring of load carrying members are very important in some applications. For example, load and tension monitoring of moorings and risers is important in offshore oil production platforms. One such monitoring system includes variable reluctance sensors placed around the periphery of a load carrying member to measure the load associated with that member. This system uses a resonant circuit to process signals from the sensors and report results to a marine monitoring system.
  • The electronics used in such a system are sophisticated and expensive. The electronics are typically housed in a fixed cabinet and powered by an AC line voltage. Therefore, the electronics are rendered inoperable in the event of line voltage failure, which may occur in critical situations, such as in a severe storm.
  • As a result, there is a need for a monitoring system that is inexpensive, portable, and/or capable of being powered by DC power.
  • SUMMARY OF THE INVENTION
  • Systems and methods consistent with the present invention address this and other needs by providing a monitoring system that is inexpensive, portable, and/or capable of being powered by DC power.
  • In accordance with the principles of the invention as embodied and broadly described herein, a system monitors a load associated with a load carrying member. The system may include a voltage divider and a computer device. The voltage divider measures inductance associated with load sensing elements that monitor the load carrying member. The computer device determines displacements of the load sensing elements based on the inductance associated with the load sensing elements and determines the load associated with the load carrying member based on the displacements of the load sensing elements.
  • In another aspect of the invention, a portable load monitoring system monitors the load associated with a load carrying member. The system includes a voltage divider and a portable computer device. The voltage divider is configured to measure inductance associated with load sensing elements that are associated with the load carrying member. The portable computer device is configured to determine displacements of the load sensing elements due to the load based on the inductance associated with the load sensing elements, and determine the load associated with the load carrying member based on the displacements of the load sensing elements.
  • In a further aspect of the invention, a system monitors a load associated with a load carrying member. The system includes a voltage divider and a computer device connected to a DC power source. The voltage divider is configured to measure inductance associated with load sensing elements associated with the load carrying member. The computer device is configured to determine displacements of the load sensing elements due to the load based on the inductance associated with the load sensing elements, and determine the load associated with the load carrying member based on the displacements of the load sensing elements.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate the invention and, together with the description, explain the invention. In the drawings,
  • FIG. 1 is an exemplary diagram of an environment in which systems and methods consistent with the present invention may be implemented;
  • FIG. 2 is an exemplary diagram of a system in which systems and methods consistent with the present invention may be implemented;
  • FIG. 3 is an exemplary diagram of the load measurement unit of FIG. 2 according to an implementation consistent with the present invention;
  • FIG. 4 is an exemplary diagram of the upper sensor ring of FIG. 3 according to an implementation consistent with the present invention;
  • FIG. 5 is an exemplary diagram of a sensor of FIG. 4 according to an implementation consistent with the present invention;
  • FIG. 6 is an exemplary detailed diagram of the signal conditioning system of FIG. 2 according to an implementation consistent with the present invention;
  • FIG. 7 is an exemplary diagram of a sensor plane that may be constructed to facilitate determination of displacement according to an implementation consistent with the principles of the invention;
  • FIG. 8 is a flowchart of exemplary processing for determining tension, bending, and orientation of bending associated with a load carrying member according to an implementation consistent with the present invention; and
  • FIG. 9 is an exemplary diagram of a sensor according to another implementation consistent with the principles of the invention.
  • DETAILED DESCRIPTION
  • The following detailed description of the invention refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims and equivalents.
  • Systems and methods consistent with the present invention provide load monitoring that may be used to monitor the load associated with load carrying members, such as moorings and risers of offshore oil production platforms. The systems and methods may include inexpensive circuitry with DC power capability. In certain critical situations, such as in a severe storm, uncertainty in the determination of the load associated with a load carrying member may be unacceptable. The DC power capability permits the monitoring to occur in situations, such as where there is AC line voltage failure.
  • The systems and methods consistent with the present invention also provide a portable, compact configuration for deployment to remote locations. Field personnel can use the portable configuration as a diagnostic and/or troubleshooting tool to quickly localize problems at various points in the cabling. In other implementations, the portable configuration may be enclosed in a protective container and deployed for load measurements at locations, such as in underwater mooring and riser systems at or near the sea floor.
  • Exemplary Environment
  • FIG. 1 is an exemplary environment 100 in which systems and methods consistent with the principles of the invention may be implemented. As shown in FIG. 1, environment 100 may be associated with a floating production system, such as a floating offshore oil platform 110. Platform 110 may be secured to the sea floor via chains or tendons, such as moorings 120. Oil, gas, and/or water may be extracted and provided to platform 110 and/or exported via one or more tubes, such as riser 130. It may be important to monitor the load and tension associated with moorings 120 and riser 130 to make sure that moorings 120 and riser 130 are not loose or overstrained, possibly, to the point of breakage, and that platform 110 is stable.
  • While systems and methods consistent with the principles of the invention will be described within environment 100, such systems and methods are not so limited. In fact, systems and methods consistent with the present invention may be used in any environment where it may be useful to monitor the load of a load carrying member.
  • Exemplary Load Measurement Unit Configuration
  • FIG. 2 is an exemplary diagram of a system 200 in which systems and methods consistent with the principles of the invention may be implemented. System 200 includes one or more load measurement units 210, one or more cables 220, junction box 230, signal conditioning system 240, and computer system 250. Computer system 250 and/or signal conditioning system 240 may be powered by AC power or DC power, such as a battery (not shown). The DC power permits computer system 250 and/or signal conditioning system 240 to operate in the event of AC power failure.
  • Generally, load measurement unit 210 may generate signals indicative of displacement associated with a tendon or tube, such as mooring 120 or riser 130. Cable 220 may connect load measurement unit 210 to junction box 230 within platform 110. Cable 220 may include one or more underwater connectors. Junction box 230 may provide connection points between one or more load measurement units 210 and signal conditioning system 240. A typical platform 110 may include one or more junction boxes 230.
  • Signal conditioning system 240 may gather data for determining inductance associated with load measurement unit 210 based on the signals from load measurement unit 210. Computer system 250 may determine the inductance associated with a load measurement unit 210 and, from this, the load associated with mooring 120 or riser 130. For example, computer system 250 may determine tension, bending, and orientation of bending associated with mooring 120 or riser 130.
  • These components will now be described in more detail.
  • Load Measurement Unit
  • FIG. 3 is an exemplary diagram of load measurement unit 210 according to an implementation consistent with the principles of the invention. Load measurement unit 210 may be located on a load carrying member, such as mooring 120 or riser 130, approximately 100 or more feet underwater. Load measurement unit 210 may include upper sensor ring 310 and lower sensor ring 320 that form rings around the periphery of the load carrying member. Load measurement unit 210 may generate signals indicative of the displacement between upper sensor ring 310 and lower sensor ring 320.
  • FIG. 4 is an exemplary diagram of upper sensor ring 310 according to an implementation consistent with the principles of the invention. Sensor ring 310 may include approximately three to twelve load sensing elements, such as sensors 410, located around the periphery of the load carrying member (e.g., mooring 120 or riser 130). The actual number of sensors 410 included may be a number sufficient to obtain good estimates of tension, bending, and the orientation of the bending of the load carrying member.
  • FIG. 5 is an exemplary diagram of a section of sensor 410 according to an implementation consistent with the principles of the invention. Sensor 410 may include a variable reluctance sensor or capacitive sensor. Sensor 410 may include C-shaped magnetic core 510, I-shaped magnetic core 520, brackets 530 and 540, and windings 550. C-shaped magnetic core 510 may be constructed, for example, of a highly permeable laminated transformer material. C-shaped core 510 may be mounted on upper sensor ring 310 via bracket 530 with the ends of the C-shape pointed downward or in a direction generally parallel to the direction of force within the load carrying member.
  • I-shaped magnetic core 520 may be constructed, for example, of a highly permeable laminated transformer material. I-shaped magnetic core 520 may be mounted on lower sensor ring 320 via bracket 540. I-shaped core 520 may be positioned so that narrow gaps exist between each end of C-shaped core 510 and a facing portion of I-shaped core 520. In an implementation consistent with the principles of the invention, the widths of the gaps are small as compared with any transverse dimension of the ends of C-shaped core 510. Further, the cross-sectional dimensions or areas of the ends of C-shaped core 510 may be smaller than those of the facing portion of I-shaped core 520.
  • A winding 550 may be mounted around each end of C-shaped core 510 closely adjacent to the respective gap. Windings 550 may connect in series so that their electromotive forces add. As will be understood by those skilled in the art, C-shaped core 510 and I-shaped core 520 may be highly permeable and, thus, the gaps between cores 510 and 520 may constitute most of the reluctance in the magnetic circuit linking windings 550. Thus, the inductance exhibited may be directly dependent on the widths of the gaps in the direction of the magnetic flux in the gaps (i.e., the vertical direction in FIG. 5).
  • As an axial load is applied to sensor 410, the width of the respective gap between each end of C-shaped core 510 and the adjacent portion of I-shaped core 520 increases or reduces. As the gaps are reduced, the inductance exhibited increases.
  • Both of the gaps may be used in determining the value of inductance. As a result, small increases in the length of one gap can compensate or offset for small decreases in the length of the other gap. Accordingly, sensor 410 may be relatively insensitive to bending moments applied thereto (i.e., around a horizontal axis perpendicular to the paper as illustrated in FIG. 5). Bending moments around the orthogonal horizontal axis lying in the plane of the paper only produce changes in width as a function of displacement across the surfaces of the ends of both gaps but not changes in the average width of each gap, to a first order approximation.
  • Cable
  • Cable 220 may include a marine cable that connects load measurement unit 210 to junction box 230 within platform 110. Cable 220 may include conductors that connect to sensors 410 of load measurement unit 210. Cable 220 may also include one or more underwater connectors with active or inactive components to relay signals between segments of cable 220.
  • Junction Box
  • Junction box 230 may include a set of connection points that connect cables 220 to signal conditioning system 240. One or more junction boxes 230 may be located within platform 110. For example, one junction box 230 may be located in the control room of platform 110 and another junction box 230 may be located in the lower regions of platform 110, such as where cables 220 come into platform 110.
  • Signal Conditioning System
  • FIG. 6 is an exemplary diagram of signal conditioning system 240 according to an implementation consistent with the principles of the invention. Signal conditioning system 240 may gather data for determining the inductance and the operational status of sensors 410 and communicate this data to computer system 250.
  • Signal conditioning system 240 may include interface 610, filters 620, driver 630, resistors 640, and switches 650. Interface 610 is shown as a component of signal conditioning system 240. In an alternate implementation, interface 610 may be part of computer system 250.
  • Interface 610 may include a Personal Computer Memory Card International Association (PCMCIA) interface that facilitates the connection of signal conditioning system 240 to computer system 250. Interface 610 may include one or more digital-to-analog (D/A) channels that may be used to operate components of signal conditioning system 240. If interface 610 includes more than one D/A channel, each D/A channel may correspond to a different one of sensors 410.
  • Interface 610 may also include one or more analog-to-digital (A/D) channels that may be used to capture data, such as data used in determining the inductance of a sensor 410. In the example of FIG. 6, interface 610 includes N+1 A/D channels that correspond to N different ones of sensors 410. A/D channel 0 may be used for calibrations and data acquisition, as will be described in more detail below. Interface 610 may also include ground (GND) connections.
  • Filters 620 may include conventional low pass filters that are designed to remove noise and aliased components of the signal. Driver 630 may include a sensor line driver that drive signals from the D/A channel.
  • Resistors 640 may be reference resistors (RR) having a known resistance. Switches 650 may include calibration switches that are used to switch the components of signal conditioning system 240 between calibration and data acquisition modes. As shown in FIG. 6, switches 650 may be in the up position during the calibration mode.
  • Signal conditioning system 240 may view sensor 410 and cable 220 as a combination of resistors, capacitors, and inductors. For example, cable 220 may be represented by a capacitor CC, a resistor RC, and an inductor LC. The features of cable 220 may be measured and remain constant. Therefore, the capacitance, resistance, and inductance of cable 220 are known. Sensor 410 may be represented by a resistor RS and an inductor LS. The resistance of sensor 410 may be measured and remain constant. The inductance of sensor 410 is a variable inductance that changes based on changes in displacement, as described above. The impedance of cable 220 and sensor 410 may be represented by ZSC.
  • Signal conditioning system 420 uses a voltage divider circuit made up of the resistor RR and impedance ZSC to gather data for determining the inductance of sensor 410. The transfer function TF of the voltage divider may be represented by: TF Vm Vi = Z SC R R + Z SC ,
    where Vi refers to a reference voltage input and Vm refers to a response voltage sample. The sensor and cable impedance ZSC may be represented by: Z SC = Z CC ( R C + Z LC + R S + Z LS ) Z CC + R C + Z LC + R S + Z LS ,
    where ZCC refers to the impedance of the capacitance of cable capacitor CC, ZLC refers to the impedance of cable inductor LC, and ZLS refers to the impedance of sensor inductor LS. From these equations, the impedance of inductor LS (ZLS) can be determined. The inductance of inductor LS may then be determined from the following: L S = ( R R ( 1 / TF - 1 ) - R R / Z CC - R C - R S ) / - L C .
  • Signal conditioning system 240 provides the measurements used in determining the transfer function TF in the above equation to computer system 250 via the appropriate one(s) of the A/D channels.
  • Computer System
  • Computer system 250 may include a computer device, such as a personal computer, laptop, personal digital assistant, etc. To make system 200 portable, computer system 250 may include a portable device, such as a laptop or a personal digital assistant. Computer system 250 may determine inductance, displacement, and load associated with a load carrying member, such as mooring 120 or riser 130. Computer system 250 may determine displacement at a number of different locations around the periphery of the load carrying member. Computer system 250 may convert determined sensor inductance values to displacement due to tension and displacement due to bending.
  • Computer system 250 may calibrate the components of signal conditioning system 240 in the calibration mode. For example, switches 650 and the A/D channels may be placed into the calibration mode. Computer system 250 may output a reference signal via the D/A channel. Computer system 250 may then determine magnitude and phase corrections for all channels relative to the reference A/D channel 0.
  • Thereafter, during the data acquisition mode, computer system 250 may obtain the measurements for determining the transfer functions for the voltage dividers from signal conditioning system 240. Computer system 240 may use the transfer functions to determine the inductance of sensors 410. For a given inductance value, computer system 240 may estimate the corresponding displacement for sensor 410 based on prior calibrations of that sensor 410.
  • Computer system 250 may then determine displacement due to tension and displacement due to bending. FIG. 7 is an exemplary diagram of a sensor plane that may be constructed to facilitate determination of displacement according to an implementation consistent with the principles of the invention.
  • Computer system 250 may determine the displacement of each sensor 410 based on its inductance and then subtract out the displacement for that sensor 410 under zero load. As a result, computer system 250 may determine just how much each sensor 410 is displaced under load. The displacement of a sensor(i) may be represented by:
    Z i =Ax i +By i +C,
    where xi and yi are positions of sensor(i) in the X and Y planes, respectively; A and B are displacement components due to bending; and C is a displacement component due to tension. Computer system 250 may use a Least Mean Square process, or another process, to identify a plane through the displacements: E = i = 1 N [ Z i - ( Ax i + By i + C ) ] 2 .
  • Once the variables A, B, and C are known, then computer system 250 may determine tension, bending, and orientation of bending associated with riser 130. Tension (T) may be determined based on:
    T=KaxialC,
    where Kaxial may refer to a stiffness value associated with load measurement unit 210. Bending (Be) may be determined based on:
    Be=K bend√{square root over (A 2 +B 2)},
    where Kbend may refer to a bending stiffness value associated with load measurement unit 210. A load measurement unit 210 may be calibrated beforehand to determine values for Kaxial and Kbend. Orientation of bending may be determined based on A and B (i.e., the displacement components due to bending).
  • Computer system 250 may present information to an operator via a graphical user interface. The display parameters of the graphical user interface may include individual sensor status, inductance, and calculated load, tension and bending values associated with a load carrying member (instantaneous or averaged), and/or other information that may be useful to the operator.
  • Exemplary Processing
  • FIG. 8 is a flowchart of exemplary processing for determining tension, bending, and orientation of bending associated with a load carrying member, such as a mooring 120 or riser 130, according to an implementation consistent with the present invention. Processing may begin with the calibration of the components of signal conditioning system 240 (act 810). Computer system 250 may instruct signal processing system 240 to enter the calibration mode. Computer system 250 may then input digitized data via the D/A channel of interface 610 and simultaneously calibrate the components of signal conditioning system 240 to determine magnitude and phase corrections for all of the channels relative to the reference A/D channel 0.
  • Thereafter, computer system 250 may instruct signal processing system 240 to enter the data acquisition mode. In the data acquisition mode, sensor inductance may be determined using the voltage divider of signal conditioning system 240 (act 820). For example, the D/A channel of interface 610 may apply a band-limited random or sine input to the cable ends through driver 630. The reference voltage input (Vi) and the response voltage samples (Vm) may then be measured at the A/D channels of interface 610. Reference voltage input (Vi) may be measured at the A/D channel 0 and the reference voltage samples (Vm) may be simultaneously measured at the A/D channels 1-N.
  • Computer system 250 may perform a discrete Fourier transform on the data obtained during the calibration mode and the data obtained during the data acquisition mode at the excitation frequency. Computer system 250 may divide the complex amplitude of the data from each of the channels obtained during the data acquisition mode by the complex amplitude of the data from each of the channels obtained during the calibration mode to obtain a set of N complex transfer functions TF. The TF values may be used in the equation for LS (identified above) to obtain the inductance of each sensor 410.
  • Once sensor inductance has been determined, sensor displacement may be determined (act 830). Sensor displacement may be estimated from information gathered during the previously-conducted sensor calibrations. The displacements of several sensors 410 may then be used to construct a plane through the displacements using a Least Mean Square algorithm, as described above. Construction of the plane may facilitate the determination of the displacement components due to bending and tension, as described above.
  • Once the displacement components due to bending and tension are determined, the tension, bending, and orientation of bending associated with the load carrying member may be determined (act 840). As described above, the tension may be determined based on a stiffness value and the displacement component due to tension. As also described above, the bending may be determined based on a bending stiffness value and the displacement components due to bending, and the orientation of bending may be determined based on the displacement components due to bending.
  • Load Cell Configuration
  • Thus far, a load measurement unit has been described as the vehicle for measuring the load associated with a load carrying member, such as a mooring or riser. In an alternate implementation consistent with the principles of the invention, a load cell may be used. In this load cell configuration, one or more load cells may be associated with each load carrying member. Instead of being located along the periphery of the load carrying member, the load cells are connected to the load carrying member at a point where the load carrying member connects to something else, like the platform. Like the load measurement unit, the load cells measure the load associated with the load carrying member.
  • FIG. 9 is an exemplary diagram of a sensor 900 according to an implementation consistent with the principles of the invention. Sensor 900 may include a variable reluctance sensor, such as the one described in U.S. Pat. No. 5,359,902. Sensor 900 may include a hollow cylinder 910 connected to rigid end caps 920 and 930. Hollow cylinder 910 may be of circular cross-section and act as an elastic element for forces applied in a direction along the axis of cylinder 910. Cylinder 910 may, for example, be constructed of a high grade steel that has a very repeatable and essentially linear elasticity. Cylinder 910 may act essentially as a lossless spring. While the spring constant will typically be very high as understood by those skilled in the art, the forces intended to be measured may also be quite high.
  • End caps 920 and 930 connect to the ends of cylinder 910. In another implementation consistent with the present invention, end caps 920 and 930 are not separate from, but are integral with, cylinder 910. At least one of end caps 920 and 930 may connect to the load carrying member.
  • Within cylinder 910, sensor 900 may include C-shaped magnetic core 940, I-shaped magnetic core 950, brackets 960 and 970, and windings 980. C-shaped magnetic core 940 may be constructed, for example, of a highly permeable laminated transformer material. C-shaped core 940 may be mounted on upper end cap 920 via bracket 960 with the ends of the C-shape pointed downward or in a direction generally parallel to the direction of force within the wall of cylinder 910.
  • I-shaped magnetic core 950 may be constructed, for example, of a highly permeable laminated transformer material. I-shaped magnetic core 950 may be mounted on lower end cap 930 via bracket 970. I-shaped core 950 may be positioned so that narrow gaps exist between each end of C-shaped core 940 and a facing portion of I-shaped core 950. In an implementation consistent with the principles of the invention, the widths of the gaps are small as compared with any transverse dimension of the ends of C-shaped core 940. Further, the cross-sectional dimensions or areas of the ends of C-shaped core 940 may be smaller than those of the facing portion of I-shaped core 950.
  • A winding 980 may be mounted around each end of C-shaped core 940 closely adjacent to the respective gap. Windings 980 may connect in series so that their electromotive forces add. As will be understood by those skilled in the art, C-shaped core 940 and I-shaped core 950 may be highly permeable and, thus, the gaps between cores 940 and 950 may constitute most of the reluctance in the magnetic circuit linking windings 980. Thus, the inductance exhibited may be directly dependent on the widths of the gaps in the direction of the magnetic flux in the gaps (i.e., the vertical direction as shown in FIG. 9).
  • As an axial load is applied to sensor 900, cylinder 910 compresses or expands and the width of the respective gap between each end of C-shaped core 940 and the adjacent portion of I-shaped core 950 reduces or increases. As the gaps are reduced, the inductance exhibited increases.
  • Because the facing portion of I-shaped core 950 opposite each end of C-shaped core 940 is broader in transverse dimensions than the facing end of the C-shaped core 940, the inductance value of sensor 900 may be insensitive to small displacements of C-shaped core 940 in directions transverse to the axis of cylinder 910 and to the widths of the gaps. Both of the gaps may be used in determining the value of inductance. As a result, small increases in the length of one gap can compensate or offset for small decreases in the length of the other gap. Accordingly, sensor 900 may be relatively insensitive to bending moments applied thereto (i.e., around a horizontal axis perpendicular to the paper as illustrated in FIG. 9). Bending moments around the orthogonal horizontal axis lying in the plane of the paper only produce changes in width as a function of displacement across the surfaces of the ends of both gaps but not changes in the average width of each gap, to a first order approximation.
  • In this load cell configuration, sensor 900 may connect to a signal conditioning system and a computer system, which may be configured and operate similar to signal conditioning system 240 (FIG. 2) and computer system 250 described above.
  • CONCLUSION
  • Systems and methods consistent with the present invention may provide portable signal conditioning and signal processing components for variable reluctance load measurement. The systems and methods determine inductance and operational status of sensors used to measure the load of a load carrying member, converts the sensor inductance into displacement, and performs a Least Mean Square process to identify a plane through the displacements. The systems and methods may use this information to determine tension, bending, and orientation of bending associated with the load carrying member.
  • Systems and methods consistent with the principles of the invention may be configured with a laptop computer to provide a portable load measurement device or as a compact standalone device for deployment to remote areas or areas that are not easily accessible. For example, the compact standalone device may be remotely operable and capable of being placed within a pressure vessel for deployment at or near the sea floor.
  • Further, systems and methods consistent with the present invention include inexpensive circuitry that is amenable to operation on both line AC power and DC battery power. The DC power capability makes the systems and methods operable in the event of line voltage failure that may occur in critical situations, such as during a severe storm.
  • The foregoing description of preferred embodiments of the present invention provides illustration and description, but is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. For example, while a series of acts has been described with regard to FIG. 8, the order of the acts may differ in other implementations consistent with the present invention. For another example, load forces upon the load sensors or load cells need not be vertical. The load sensors or load cells may operate in any orientation relative to Earth vertical.
  • No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items. Where only one item is intended, the term “one” or similar language is used. The scope of the invention is defined by the claims and their equivalents.

Claims (2)

1. A system that monitors a load associated with a load carrying member, a plurality of load sensing elements that monitor the load carrying member, the system comprising:
a voltage divider configured to measure inductance associated with the load sensing elements; and
a computer device configured to:
determine displacements of the load sensing elements based on the inductance associated with the load sensing elements, and
determine the load associated with the load carrying member based on the displacements of the load sensing elements.
2-30. (canceled)
US11/152,303 2002-08-26 2005-06-14 Load monitoring systems and methods Abandoned US20060021445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/152,303 US20060021445A1 (en) 2002-08-26 2005-06-14 Load monitoring systems and methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/228,669 US6748809B2 (en) 2002-08-26 2002-08-26 Load monitoring systems and methods
US10/848,600 US20050028607A1 (en) 2002-08-26 2004-05-17 Load monitoring systems and methods
US11/152,303 US20060021445A1 (en) 2002-08-26 2005-06-14 Load monitoring systems and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/848,600 Continuation US20050028607A1 (en) 2002-08-26 2004-05-17 Load monitoring systems and methods

Publications (1)

Publication Number Publication Date
US20060021445A1 true US20060021445A1 (en) 2006-02-02

Family

ID=31887624

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/228,669 Expired - Lifetime US6748809B2 (en) 2002-08-26 2002-08-26 Load monitoring systems and methods
US10/848,600 Abandoned US20050028607A1 (en) 2002-08-26 2004-05-17 Load monitoring systems and methods
US11/152,303 Abandoned US20060021445A1 (en) 2002-08-26 2005-06-14 Load monitoring systems and methods

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/228,669 Expired - Lifetime US6748809B2 (en) 2002-08-26 2002-08-26 Load monitoring systems and methods
US10/848,600 Abandoned US20050028607A1 (en) 2002-08-26 2004-05-17 Load monitoring systems and methods

Country Status (3)

Country Link
US (3) US6748809B2 (en)
AU (1) AU2003268126A1 (en)
WO (1) WO2004018342A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308324B2 (en) 2016-12-13 2019-06-04 Oil States Industries, Inc. Porch mounted variable reluctance measurement technology tendon tension monitoring system
US10882589B2 (en) 2017-12-04 2021-01-05 Oil States Industries, Inc. Retrofit variable reluctance measurement technology tendon tension monitoring system
US11187603B2 (en) 2018-06-11 2021-11-30 Oil States Industries, Inc. Variable reluctance measurement technology for drilling risers and riser towers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869254B1 (en) * 2002-10-23 2005-03-22 Electrowaveusa Riser tensioner sensor assembly
GB2527782B (en) * 2014-07-01 2017-01-18 Flintstone Tech Ltd A connector having an inductive transmission
CN108026759A (en) * 2015-04-21 2018-05-11 越洋塞科外汇合营有限公司 The motion compensation of drilling rod

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913396A (en) * 1972-04-28 1975-10-21 Secretary Trade Ind Brit Monitoring system for moored floating vessels
US3986010A (en) * 1973-08-23 1976-10-12 International Business Machines Corporation Automatic tool deflection calibration system
US5038795A (en) * 1987-08-05 1991-08-13 Roush Elsie S Muscle tonometer apparatus and method
US5359902A (en) * 1993-07-15 1994-11-01 Bolt Beranek And Newman Inc. Load cell
US5675094A (en) * 1990-12-10 1997-10-07 Sensortech Lp Load variation detector
US5932815A (en) * 1997-12-19 1999-08-03 Dodds; Donald J. Anchor monitoring system
US6345544B1 (en) * 1997-12-26 2002-02-12 Yamaha Hatsudoki Kabushiki Kaisha Electromagnetic load detection device
US6591688B2 (en) * 2001-03-07 2003-07-15 Starr-Johnson Load sensing by partial magnetic saturation
US6609429B2 (en) * 1999-05-20 2003-08-26 Richard M. Weiss Method and apparatus for locating and aligning golf club shaft spine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653404A (en) * 1979-10-08 1981-05-13 Hitachi Ltd Nonlinear correction circuit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913396A (en) * 1972-04-28 1975-10-21 Secretary Trade Ind Brit Monitoring system for moored floating vessels
US3986010A (en) * 1973-08-23 1976-10-12 International Business Machines Corporation Automatic tool deflection calibration system
US5038795A (en) * 1987-08-05 1991-08-13 Roush Elsie S Muscle tonometer apparatus and method
US5675094A (en) * 1990-12-10 1997-10-07 Sensortech Lp Load variation detector
US5359902A (en) * 1993-07-15 1994-11-01 Bolt Beranek And Newman Inc. Load cell
US5932815A (en) * 1997-12-19 1999-08-03 Dodds; Donald J. Anchor monitoring system
US6345544B1 (en) * 1997-12-26 2002-02-12 Yamaha Hatsudoki Kabushiki Kaisha Electromagnetic load detection device
US6609429B2 (en) * 1999-05-20 2003-08-26 Richard M. Weiss Method and apparatus for locating and aligning golf club shaft spine
US6591688B2 (en) * 2001-03-07 2003-07-15 Starr-Johnson Load sensing by partial magnetic saturation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308324B2 (en) 2016-12-13 2019-06-04 Oil States Industries, Inc. Porch mounted variable reluctance measurement technology tendon tension monitoring system
US10668988B2 (en) 2016-12-13 2020-06-02 Oil States Industries, Inc. Porch mounted variable reluctance measurement technology tendon tension monitoring system
US10882589B2 (en) 2017-12-04 2021-01-05 Oil States Industries, Inc. Retrofit variable reluctance measurement technology tendon tension monitoring system
US11187603B2 (en) 2018-06-11 2021-11-30 Oil States Industries, Inc. Variable reluctance measurement technology for drilling risers and riser towers

Also Published As

Publication number Publication date
US20040035215A1 (en) 2004-02-26
WO2004018342A3 (en) 2004-06-17
AU2003268126A1 (en) 2004-03-11
US20050028607A1 (en) 2005-02-10
WO2004018342A2 (en) 2004-03-04
AU2003268126A8 (en) 2004-03-11
US6748809B2 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
US20060021445A1 (en) Load monitoring systems and methods
US20120130663A1 (en) On-line diagnostic method for health monitoring of a transformer
CN101208845B (en) Fault current analyser for detecting a fault current and a fault current detection device
US6242911B1 (en) Field sensor and device and process for measuring electric and/or magnetic fields
US7755347B1 (en) Current and voltage measurement device
US8278939B2 (en) Diagnostic method for determining deformations in a transformer winding
US4565099A (en) Method and apparatus for determining tension in a cable
WO2005052511A2 (en) Integrated sensor system for measuring electric and/or magnetic field vector components
Wild et al. Basic aspects of partial discharge on-site testing of long length transmission power cables
US10668988B2 (en) Porch mounted variable reluctance measurement technology tendon tension monitoring system
US6466034B1 (en) Transformer winding movement detection by high frequency internal response analysis
US4112354A (en) Mobile bridge test apparatus and method utilizing a sub-power frequency test signal for cable system evaluation
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
US9664649B2 (en) Structural health monitoring system employing electromechanical impedance technology
EP3206041A1 (en) A system and a method for monitoring transformer bushings
US10876940B2 (en) Material testing machine with a control device for cable disconnection warning
RU2654996C1 (en) Device for equipment diagnostics (measuring channel)
US5566572A (en) Circuitry to minimize stray capacitance effects in a capacitive liquid level measurement device
AU616250B2 (en) Instrument transformer testing apparatus
KR101763347B1 (en) Device for detection of fault location
KR102485053B1 (en) Apparatus for inspecting cable joint and module
US20230062399A1 (en) Strain measuring assembly
RU2099725C1 (en) Measurement of loss angle tangent of high-voltage equipment and device for its implementation
CN117968879A (en) High-precision temperature measurement device and system
KR101360119B1 (en) Magnetic Signal Transfer Apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BBNT SOLUTIONS LLC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANNA, DOUGLAS S.;WHITTEMORE, DAVID H.;MADDEN, RICHARD;REEL/FRAME:016702/0072

Effective date: 20020821

AS Assignment

Owner name: OIL STATES INDUSTRIES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BBNT SOLUTIONS LLC;REEL/FRAME:018338/0699

Effective date: 20051206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION