US20060013900A1 - Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator - Google Patents

Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator Download PDF

Info

Publication number
US20060013900A1
US20060013900A1 US11/222,815 US22281505A US2006013900A1 US 20060013900 A1 US20060013900 A1 US 20060013900A1 US 22281505 A US22281505 A US 22281505A US 2006013900 A1 US2006013900 A1 US 2006013900A1
Authority
US
United States
Prior art keywords
composition
betel leaf
leaf extract
extract
lyophilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/222,815
Inventor
Santu Bandyopadhyay
Bikash Pal
Samir Bhattacharya
Mitali Ray
Keshab Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Priority to US11/222,815 priority Critical patent/US20060013900A1/en
Publication of US20060013900A1 publication Critical patent/US20060013900A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/67Piperaceae (Pepper family), e.g. Jamaican pepper or kava

Definitions

  • This invention relates to use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells.
  • Stinging nettle leaf extracts are registered in Germany for adjuvant therapy of rheumatic diseases.
  • the nettle extract IDS 23 (Rheuma-Hek) inhibited lipopolysaccharide stimulated monocyte cytokine expression, indicating an immunomodulating effect.
  • IDS 23 a Stinging Nettle Leaf Extract
  • T helper cytokines T helper cytokines
  • the oil consists of phenols and terpens. The higher the proportion of phenol oil, the better the quality.
  • An isomer of eugenol named chavibetol (betel phenol; 4-allyl-2-hydroxy-1-methoxy benzene) is considered to be the characteristic constituent of betel oil. It is however, absent in Indian samples. Betel oil of Indian types contain as a predominant phenolic constituent. Oil of betel has been used in the treatment of various respiratory catarrhs, under as a local application either by gargle or by inhalation in diphtheria. It has carminative properties. It exhibits in different action on the central nervous system of mammals; lethal doses produce deep narcosis leading to death within a few hours.
  • the essential oil and extracts of the leaves possess activity against several Gram-positive and Gram-negative bacteria such as Micrococcus pyogenes var. albus and var. aureus, Bacillus subtilis and B. megaterium, Diplococcus pneumoniae, Streptococcus pyogenes, Escherichia coli, Salmonella typhosa, Vibrio comma, Shigella dysenteriae, Proteus vulgaris, Pseudomonas solanacaerum, Sarcina lutea and Erwinia carotovora.
  • the oil is found to be lethal in about 5 minutes to the protozoa Paramaecium caudatum (Wealth of India, Vol.8 pp.
  • the main object of the present invention is to provide a method for inducing IFN- ⁇ from human peripheral blood mononuclear cells.
  • Another object of the present invention relates to use of betel leaf extract for inducing IFN- ⁇ production from human peripheral blood T cells.
  • Another object of the invention is to provide a composition comprising betel leaf extract, which is useful as Th 1 type immunomodulator.
  • the present invention provides a method for inducing IFN- ⁇ from human peripheral blood mononuclear cells.
  • the invention also relates to use of betel leaf extract for inducing IFN- ⁇ production from human peripheral blood T cells.
  • the invention relates to a method for inducing IFN ⁇ from human peripheral blood mononuclear cells wherein the said method comprising preparing water extract of betel leaf, preparation of human peripheral blood mononuclear cells; incubation of hPBMC with betel leaf extract for a period of 18-48 hours; extraction of RNA for cytokine specific RT-PCR or for flow cytometry for the detection of intracellular cytokine protein.; subjecting RNA for RT-PCR to obtain PCR products using IFN ⁇ specific known primers and enhancement of IFN ⁇ as reflected by IFN ⁇ specific band.
  • one more method for inducing IFN ⁇ produced from human peripheral blood mononuclear cells comprising subjecting incubated cells for intracellular staining for IFN ⁇ ; analysis of stained cells in flow cytometer; and enhancement of IFN ⁇ positive cells to at least seven fold.
  • a method for using betel leaf extract as Th 1 type immuno-modulator wherein the said method comprising:
  • composition useful as Th 1 type immunomodulator comprising an effective amount of betel leaf aqueous extract or lyophilized betel leaf extract together with or associated with an additive.
  • the additive is selected in such a manner that does not interfere with the activity of betel leaf extract.
  • the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
  • the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
  • the oral route is in the form of capsule, syrup, concentrate, powder or granules.
  • the ratio of betel leaf extract to the additive is in the range between 10-1:1-10
  • the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
  • a method of treating a subject to provide Th1 type immuno-mudulation comprising administering a pharmaceutically effective amount of betel leaf extract, lyophilized extract or a composition comprising the extract to the subject.
  • the additive is selected in such a manner it does not interfere with the activity of lyophilized betel leaf extract.
  • the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
  • the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
  • the oral route is in the form of capsule, syrup, concentrate, powder or granules.
  • the ratio of betel leaf extract to the additive is in the range between 10-1:1-10
  • the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
  • the additive is selected in such a manner it does not interfere with the activity of lyophilized betel leaf extract.
  • the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
  • the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
  • the oral route is in the form of capsule, syrup, concentrate, powder or granules.
  • the ratio of betel leaf extract to the additive is in the range between 10-1:1-10
  • the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
  • One more embodiment of the present invention relates to the preparation of betel leaf extracts comprising the following steps;
  • the lyophilized extract is obtained by freeze drying the aqueous extract by conventional methods.
  • the water extract is prepared from following types of betel leaf ( Piper betel ) namely Wild type, Climber type, Bangla type and Sweet type.
  • FIG. 1 represents RT-PCR to demonstrate that betel leaf extract enhances IFN- ⁇ mRNA expression by peripheral blood mononuclear cells (PBMC) of normal individuals.
  • PBMC peripheral blood mononuclear cells
  • FIG. 2 represents flow cytometric determination that betel leaf extract enhances IFN- ⁇ expression at the protein level by PBMC of normal individuals.
  • the biologically active material obtained by examples 1 and 2 has the following properties:
  • PBMC Peripheral Blood Mononuclear Cells
  • Heparinized whole bloods collected from normal individuals were subjected to Ficoll Hypaque density gradient centrifugation. Cells in the interface were washed twice with phosphate buffered saline (PBS) and then re-suspended in medium RPMI-1640 supplemented with 10% Fetal Bovine Serum.
  • PBS phosphate buffered saline
  • PBMC PBMC (5.0 ⁇ 10 6 cells) were cultured overnight (18 hours) at 37° C. in 5% CO 2 in a total volume of 2.0 ml RPMI+10% FBS containing 5 ⁇ g/ml of phytohemagglutinin (PHA) in 24 well plates in the presence or absence of betel leaf extracts (12.5 mg/ml final concentration).
  • PHA phytohemagglutinin
  • RNA from cultured PBMC was extracted by Trizol (Gibco BRL). 5 ⁇ 10 6 cells were cultured for 18 hours as described above and harvested and resuspended in 1 ml Trizol. 2 ⁇ g of RNA and 10 ⁇ m of each primers were used to synthesize cDNA and PCR in single tube using superscript TM
  • One step RT-PCR system (Gibco BRL) in a total volume of 25 ⁇ l-Primer sequences of human IFN ⁇ and human IL-4 were as follows:
  • IFN ⁇ sense 5′ TCT GCA TCG TTT TGG GTT CT 3′, antisense 5′ CAG CTT TTC GAAGTC ATC TC 3′; IL-4 Sense 5′ CCT CTG TTC TTC CTG CTAGC 3′; antisense 5′ CCG TTTCAGGAA TCG GAT CA 3′.
  • Amplification and cDNA synthesis was performed as described in manufacturer's protocol. PCR products were electrophoresed in a 1.2% agarose gel in the presence of ethidium bromide and photographed under ultraviolet transmilluminator. Molecular weight markers (123 bp ladder, Gibco BRL) were included in all gels. (J. Rheumatol. 1999: 26: 2517-2522)
  • FIG. 1 that betel leaf extract enhances IFN ⁇ mRNA expression but has no effect on IL-4 m RNA expression by peripharal blood mononuclear cells of normaL human individuals as determined by RT-PCR.
  • the applicants' data as shown in Fig. I indicates that betel leaf extract significantly enhances synthesis of IFN ⁇ specific mRNA and having virtually no effect on IL-4 mRNA sysnthesis.
  • IFN ⁇ synthesis by PBMC was also detectable at the protein level as evident from the flow cytometric dot plot analysis as shown in Fig. II. Only 0.9% PBMC were positive for IFN ⁇ when PBMC were incubated with PHA (Fig. IIA). On the other hand, 7.1% PBMC showed intracellular IFN ⁇ (Fig II B) when PBMC were incubated with PHA plus betel leaf extract. In contrast, percentages of IL-4 producing cells were not appreciably changed when PBMC were incubated with betel leaf extract (Fig. II C & D).
  • T cells are subdivided into Th 1 and Th 2 phenotypes by their cytokine patterns (Mossmann, T. R., Coffman, R L. Th 1 and Th 2 cells: different patterns of lymphokine secretions lead different functional properties.
  • cytokine patterns Mossmann, T. R., Coffman, R L. Th 1 and Th 2 cells: different patterns of lymphokine secretions lead different functional properties.
  • Annual Rev. Immunol. 1989, 7; 145 -73 which regulate cell mediated and humoral immune responses.
  • Inflammatory immune responses are primarily mediated by Th 1 cell polpulations through the production of IL 2 & 1FN- ⁇ , which enhance cellular immunity (Trinchieri G. Interlenkin—12 and its role in generation of Th 1 cells. Immunol Today 1993; 14: 335-8; Germann, T., Szeliga, J., Hess, H. et al. Administration of interlenkin—12 in combination with type-II collagen induces severe arthritis in DBA

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicinal Preparation (AREA)

Abstract

This invention relates to use of betel leaf extract to induce IFNγ from human peripheral blood mononuclear cells and as a Th1 type immuno modulator, wherein the said method comprises the steps of, preparing water extract of betel leaf, preparation of human peripheral blood mononuclear cells, incubation of hPBMC with betel leaf extract for a period of 18-48 hours, extraction of RNA for cytokine specific RT-PCR or for flow cytometry for the detection of intracellular cytokine protein, subjecting RNA for RT-PCR to obtain PCR products using IFNγ specific known primers, and enhancement of IFNγ as reflected by IFNγ specific band.

Description

    FIELD OF THE INVENTION
  • This invention relates to use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells.
  • BACKGROUND AND PRIOR ART REFERENCES
  • Stinging nettle leaf extracts are registered in Germany for adjuvant therapy of rheumatic diseases. In a whole blood culture system, the nettle extract IDS 23 (Rheuma-Hek) inhibited lipopolysaccharide stimulated monocyte cytokine expression, indicating an immunomodulating effect. (Antirheumatic Effect of IDS 23, a Stinging Nettle Leaf Extract, on in vitro expression of T helper cytokines). The applicants investigated the immunomodulating effects of betel leaf extracts on phytohemagglutinin (PHA) stimulated peripheral blood mononuclear cells (PBMC) in vitro. Betel leaves has a strong pungent aromatic flavor and widely used as a masticatory. Generally, mature or over mature leaves, which has ceased growing but not yet become brittle are used for chewing. The basic preparation for chewing purposes consists of betel leaf smeared with hydrated lime and catechu to which scrapings of arecanut are added; flavorings such as coconut shavings, clove, cardamon, fennel, powdered liquorice, nutmeg and also tobacco are used according to one's taste. In some places prepared pan is covered with silver or gold leaf. As a masticatory, it is credited with many properties: it is aromatic, digestive, stimulant and carminative. Medicinally it is useful in catarrhal and pulmonary affections; it is also used for poultices. The effects of chewing of betel with arecanut and other adjuncts are the excitation of the salivary glands and the irritation of the mucous membrane of the mouth. The red coloration produced is due to a pigment in the arecanut, which manifests itself under the action of alkali in lime and catechu. A mild degree of stimulation is produced, resulting in a sensation of warmth and well being, besides imparting a pleasant odor. The most important factor determining the aromatic value of the leaf is the amount and particularly the nature of the essential oil present. Betel leaves from different regions vary in smell and taste. The most pungent is the Sanchi type, while the most mild and sweet ones are from Madras. The betel leaves contain essential oils, the content of oil varies from 0.7 to 2.6 per cent depending upon the varieties of leaves. The oil consists of phenols and terpens. The higher the proportion of phenol oil, the better the quality. An isomer of eugenol named chavibetol (betel phenol; 4-allyl-2-hydroxy-1-methoxy benzene) is considered to be the characteristic constituent of betel oil. It is however, absent in Indian samples. Betel oil of Indian types contain as a predominant phenolic constituent. Oil of betel has been used in the treatment of various respiratory catarrhs, under as a local application either by gargle or by inhalation in diphtheria. It has carminative properties. It exhibits in different action on the central nervous system of mammals; lethal doses produce deep narcosis leading to death within a few hours. The essential oil and extracts of the leaves possess activity against several Gram-positive and Gram-negative bacteria such as Micrococcus pyogenes var. albus and var. aureus, Bacillus subtilis and B. megaterium, Diplococcus pneumoniae, Streptococcus pyogenes, Escherichia coli, Salmonella typhosa, Vibrio comma, Shigella dysenteriae, Proteus vulgaris, Pseudomonas solanacaerum, Sarcina lutea and Erwinia carotovora. The oil is found to be lethal in about 5 minutes to the protozoa Paramaecium caudatum (Wealth of India, Vol.8 pp. 84-94). It inhibits the growth of Vibrio cholerae, Salmonella typhosum and Shigella flexneri and Escherichia coli. Steam—distillate of the leaves showed activity against Mycobacterium tuberculosis.
  • OBJECTS OF THE INVENTION
  • The main object of the present invention is to provide a method for inducing IFN-γ from human peripheral blood mononuclear cells.
  • Another object of the present invention relates to use of betel leaf extract for inducing IFN-γ production from human peripheral blood T cells.
  • Another object of the invention is to provide a composition comprising betel leaf extract, which is useful as Th1 type immunomodulator.
  • SUMMARY OF THE INVENTION
  • To meet the above objects, the present invention provides a method for inducing IFN-γ from human peripheral blood mononuclear cells. The invention also relates to use of betel leaf extract for inducing IFN-γ production from human peripheral blood T cells.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Accordingly, the invention relates to a method for inducing IFNγ from human peripheral blood mononuclear cells wherein the said method comprising preparing water extract of betel leaf, preparation of human peripheral blood mononuclear cells; incubation of hPBMC with betel leaf extract for a period of 18-48 hours; extraction of RNA for cytokine specific RT-PCR or for flow cytometry for the detection of intracellular cytokine protein.; subjecting RNA for RT-PCR to obtain PCR products using IFNγ specific known primers and enhancement of IFNγ as reflected by IFNγ specific band.
  • Alternatively, one more method for inducing IFNγ produced from human peripheral blood mononuclear cells wherein the said process comprising subjecting incubated cells for intracellular staining for IFNγ; analysis of stained cells in flow cytometer; and enhancement of IFNγ positive cells to at least seven fold.
  • A method for using betel leaf extract as Th1 type immuno-modulator wherein the said method comprising:
      • a) administering to a subject at least 5 to 10 mg/ml/kg body wt. of betel leaf extract, and
      • b) administering the extract through oral or intramuscular route once in a day for a period of at least one month,
  • In an embodiment of the present invention provides a pharmaceutical composition useful as Th1 type immunomodulator, said composition comprising an effective amount of betel leaf aqueous extract or lyophilized betel leaf extract together with or associated with an additive.
  • In still another embodiment of the invention, the additive is selected in such a manner that does not interfere with the activity of betel leaf extract.
  • Yet another embodiment of the invention, the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
  • Yet another embodiment of the invention, the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
  • Yet another embodiment of the invention, the oral route is in the form of capsule, syrup, concentrate, powder or granules.
  • Yet another embodiment of the invention, the ratio of betel leaf extract to the additive is in the range between 10-1:1-10
  • Yet another embodiment of the invention, the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
  • In one more embodiment of the present invention, a method of treating a subject to provide Th1 type immuno-mudulation, said method comprising administering a pharmaceutically effective amount of betel leaf extract, lyophilized extract or a composition comprising the extract to the subject.
  • Yet another embodiment of the present invention, the additive is selected in such a manner it does not interfere with the activity of lyophilized betel leaf extract.
  • Yet another embodiment of the invention, the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
  • Yet another embodiment of the invention, the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
  • Yet another embodiment of the invention, the oral route is in the form of capsule, syrup, concentrate, powder or granules.
  • Yet another embodiment of the invention, the ratio of betel leaf extract to the additive is in the range between 10-1:1-10
  • Yet another embodiment of the invention, the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
  • In one more embodiment of the present invention, use of betel leaf extract in association with suitable carriers/additive as Th1 type immunomodulator.
  • Yet another embodiment of the present invention, the additive is selected in such a manner it does not interfere with the activity of lyophilized betel leaf extract. Yet another embodiment of the invention, the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
  • Yet another embodiment of the invention, the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
  • Yet another embodiment of the invention, the oral route is in the form of capsule, syrup, concentrate, powder or granules.
  • Yet another embodiment of the invention, the ratio of betel leaf extract to the additive is in the range between 10-1:1-10
  • Yet another embodiment of the invention, the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month. One more embodiment of the present invention relates to the preparation of betel leaf extracts comprising the following steps;
      • 1) washing of the fresh leaves of Piper betel and homogenizing in a mixture blender;
      • 2) sonicating in an ultrasonic bath with 2 to 3 bursts each for 15 minutes and filtering the extract, if desired repeating the extraction at least once and drying; and
      • 3) lyophilizing the extract to get a semi-solid mass
  • In one more embodiment of the invention, the lyophilized extract is obtained by freeze drying the aqueous extract by conventional methods.
  • In another embodiment, the water extract is prepared from following types of betel leaf (Piper betel) namely Wild type, Climber type, Bangla type and Sweet type.
  • BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
  • FIG. 1: represents RT-PCR to demonstrate that betel leaf extract enhances IFN-γ mRNA expression by peripheral blood mononuclear cells (PBMC) of normal individuals.
  • FIG. 2: represents flow cytometric determination that betel leaf extract enhances IFN-γ expression at the protein level by PBMC of normal individuals.
  • The following examples further illustrate the invention, but the invention is not limited thereto.
  • EXAMPLE 1
  • 34.14 gm of fresh leaves of Piper betle thoroughly washed in sterile water was homogenized with 100 ml of glass distilled water in a mixture-blender. It was then sonicated in an ultrasonic bath with 3 burst each for 15 min. The extract was filtered through Whatman No.1 filter paper and the filtrate was collected. This process of extraction was repeated three times. The combined extract was lyophilized yielding a semi-solid mass weighing 1.17 gm. This was then tested for biological activity.
  • EXAMPLE 2
  • The fresh leaves of Piper betle weighing 21.68 gm homogenized with distilled water (60 ml) in a mixture—blender and then sonicated in an ultrasonic bath with 2 burst each for 15 min. It was allowed to be extracted overnight or 16 hours. Filtering through Whatman No. 1 filter paper separated the material extracted in water. This type of treatment for extraction was repeated for three times. The combined extract was evaporated to dryness in a flash evaporator under reduced pressure at 45° C. The residual substance was then dried in a desiccator under high vacuum and the semi-solid mass weighing 0.59 gm was tested for biological activity.
  • Properties of the Materials
  • The biologically active material obtained by examples 1 and 2 has the following properties:
      • 1) The dried semisolid prepared as stated above was a dark colored material soluble in water and dimethyl sulfoxide.
      • 2) Thin layer chromatography of the active material shows five spots having Rf 0.75, 0.64, 0.50, 0.40 and 0.33 in the solvent system of n-butanol, acetic acid and water in the ratio of 9:5:7 respectively.
      • 3) The HPLC analysis of the active material using Intersil ODS-3 (4.6×250 mm) analytical column, solvent system methanol and water in the ratio of 4:1 and a flow rate of 1.0 ml/min., detection at 217 nm resolved the material into eleven peaks with the retention time of 2.69, 4.27, 5.95, 6.97, 7.49, 9.39, 11.20, 12.40, 15.53, 18.90 and 21.49 mins.
    EXAMPLE 3
  • 1. Preparation of Human Peripheral Blood Mononuclear Cells (PBMC):
  • Heparinized whole bloods (collected from normal individuals) were subjected to Ficoll Hypaque density gradient centrifugation. Cells in the interface were washed twice with phosphate buffered saline (PBS) and then re-suspended in medium RPMI-1640 supplemented with 10% Fetal Bovine Serum.
  • 2. Incubation of hPBMC with Betel Leaf Extract:
  • PBMC (5.0×106 cells) were cultured overnight (18 hours) at 37° C. in 5% CO2 in a total volume of 2.0 ml RPMI+10% FBS containing 5 μg/ml of phytohemagglutinin (PHA) in 24 well plates in the presence or absence of betel leaf extracts (12.5 mg/ml final concentration). At the end of the incubation period PBMC were washed twice with PBS and used for extraction of total RNA for cytokine specific RT-PCR or for flow cytometry for the detection of intracellular cytokine at the single cell level.
  • 3. RNA Preparation and RT-PCR
  • Total cellular RNA from cultured PBMC was extracted by Trizol (Gibco BRL). 5×106 cells were cultured for 18 hours as described above and harvested and resuspended in 1 ml Trizol. 2 μg of RNA and 10 μm of each primers were used to synthesize cDNA and PCR in single tube using superscript TM One step RT-PCR system (Gibco BRL) in a total volume of 25μl-Primer sequences of human IFNγ and human IL-4 were as follows:
  • IFNγ sense, 5′ TCT GCA TCG TTT TGG GTT CT 3′, antisense 5′ CAG CTT TTC GAAGTC ATC TC 3′; IL-4 Sense 5′ CCT CTG TTC TTC CTG CTAGC 3′; antisense 5′ CCG TTTCAGGAA TCG GAT CA 3′. Amplification and cDNA synthesis was performed as described in manufacturer's protocol. PCR products were electrophoresed in a 1.2% agarose gel in the presence of ethidium bromide and photographed under ultraviolet transmilluminator. Molecular weight markers (123 bp ladder, Gibco BRL) were included in all gels. (J. Rheumatol. 1999: 26: 2517-2522)
  • 4. Flow Cytometry
  • Cells were washed, permeabilized by treatment with 4% paraformaldehyde for 10 min., followed by incubation with 0.1% saponin for 10 min. Cells were then washed with washing buffer (PBS containing 1% albumin, 0.1% saponin and 0.1% sodium azide). After washing, permeabilized cells were treated with FITC or PE labeled control monoclonal antibody (mAb), anti-human IFNγ Ab labeled with FITC or anti-human IL-4 mAb labeled with PE, for 20 min. in room temperature at dark. Cells were then washed once with washing buffer and once with PBS and then resuspended in PBS containing 1% paraformaldehyde for flow cytometric analysis.
  • Results:
  • Influence of Betel Leaf Extract on Th1 Cytokine Expression
  • It is clear that FIG. 1, that betel leaf extract enhances IFNγ mRNA expression but has no effect on IL-4 m RNA expression by peripharal blood mononuclear cells of normaL human individuals as determined by RT-PCR. In other words, the applicants' data as shown in Fig. I indicates that betel leaf extract significantly enhances synthesis of IFNγ specific mRNA and having virtually no effect on IL-4 mRNA sysnthesis.
  • IFNγ synthesis by PBMC was also detectable at the protein level as evident from the flow cytometric dot plot analysis as shown in Fig. II. Only 0.9% PBMC were positive for IFNγ when PBMC were incubated with PHA (Fig. IIA). On the other hand, 7.1% PBMC showed intracellular IFNγ (Fig II B) when PBMC were incubated with PHA plus betel leaf extract. In contrast, percentages of IL-4 producing cells were not appreciably changed when PBMC were incubated with betel leaf extract (Fig. II C & D).
  • Discussion
  • T cells are subdivided into Th1 and Th2 phenotypes by their cytokine patterns (Mossmann, T. R., Coffman, R L. Th1 and Th2 cells: different patterns of lymphokine secretions lead different functional properties. Annual Rev. Immunol. 1989, 7; 145 -73), which regulate cell mediated and humoral immune responses. Inflammatory immune responses are primarily mediated by Th1 cell polpulations through the production of IL2 & 1FN-γ, which enhance cellular immunity (Trinchieri G. Interlenkin—12 and its role in generation of Th1 cells. Immunol Today 1993; 14: 335-8; Germann, T., Szeliga, J., Hess, H. et al. Administration of interlenkin—12 in combination with type-II collagen induces severe arthritis in DBA/1 mice. Proc Natl Acad Sci. USA 1995; 92: 4823-7).
  • Thus, our experimental results suggest that betel leaf extracts enhance Th1 type response leading to enhanced cellular immunity.

Claims (21)

1. (canceled)
2. A method for inducing IFNγ produced from human peripheral blood mononuclear cells wherein the said process further comprises alternate steps of:
a) subjecting incubated cells for intracellular staining for IFNγ,
b) analysis of stained cells in flow cytometer, and
c) enhancement of IFNγ positive cells to at least seven fold.
3-10. (canceled)
11. A pharmaceutical composition useful as Th1 type immunodulator, said composition comprising an effective amount of betel leaf aqueous extract or lyophilized betel leaf extract together with or associated with an additive.
12. A composition as claimed in claim 11 wherein, the lyophilized extract is obtained by freeze drying the aqueous extract by conventional methods.
13. A composition as claimed in claim 11 wherein, the additive is selected in such a manner that does not interfere with the activity of betel leaf extract.
14. A composition as claimed in claim 11 wherein, the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
15. A composition as claimed in claim 11 wherein, the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
16. A composition as claimed in claim 11 wherein, the oral route is in the form of capsule, syrup, concentrate, powder or granules.
17. A composition as claimed in claim 11 wherein the ratio of betel leaf extract to the additive is in the range between 10-1:1-10.
18. A composition as claimed in claim 11 wherein, the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
19. A composition as claimed in claim 11 wherein, the lyophilized betel leaf extract has the following properties:
i) the dried sample is a dark colored material soluble in water and dimethyl sulfoxide,
ii) thin layer chromatography of the active material shows five spots having Rf 0.75, 0.64, 0.50, 0.40 and 0.33 in the solvent system of n-butanol, acetic acid and water in the ratio of 9:5:7 respectively, and
iii) the HPLC analysis of the active material using Intersil ODS-3 (4.6×250 mm) analytical column, solvent system methanol and water in the ratio of 4:1 and a flow rate of 1.0 ml/min., detection at 217 nm resolved the material into eleven peaks with the retention time of 2.69, 4.27, 5.95, 6.97, 7.49, 9.39, 11.20, 12.40, 15.53, 18.90 and 21.49 min.
20. (canceled)
21. A use of betel leaf extract or its lyophilized extract or a composition comprising effective amount of betel leaf extract for inducing IFNγ from human peripheral blood mononuclear cells or as a Th1 type immunomodulator.
22. Use as claimed in claim 21 wherein, the said composition comprising betel leaf extract associated with or in combination with a pharmaceutically acceptable additive.
23. Use as claimed in claim 21 wherein, the additive is selected in such a manner it does not interfere with the activity of lyophilized betel leaf extract.
24. Use as claimed in claim 21 wherein, the additive is selected from nutrients such as proteins, carbohydrates, sugar, talc, magnesium stearate, cellulose, calcium carbonate, starch-gelatin paste and/or pharmaceutically acceptable carriers, excipient, diluent or solvent.
25. Use as claimed in claim 21 wherein, the aqueous extract, lyophilized product or the composition is administered orally or intramuscularly.
26. Use as claimed in claim 21 wherein, the oral route is in the form of capsule, syrup, concentrate, powder or granules.
27. Use as claimed in claim 21 wherein, the ratio of betel leaf extract to the additive is in the range between 10-1:1-10.
28. Use as claimed in claim 21 wherein, the betel leaf extract, lyophilized extract or the composition comprising the betel leaf extract is administered at a dosage level between 5 to 10 mg/kg of body weight at least once in a day for one month.
US11/222,815 2000-12-26 2005-09-12 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator Abandoned US20060013900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/222,815 US20060013900A1 (en) 2000-12-26 2005-09-12 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/746,017 US6531166B2 (en) 2000-12-26 2000-12-26 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US10/319,618 US7045157B2 (en) 2000-12-26 2002-12-16 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US11/222,815 US20060013900A1 (en) 2000-12-26 2005-09-12 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/319,618 Division US7045157B2 (en) 2000-12-26 2002-12-16 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator

Publications (1)

Publication Number Publication Date
US20060013900A1 true US20060013900A1 (en) 2006-01-19

Family

ID=24999156

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/746,017 Expired - Fee Related US6531166B2 (en) 2000-12-26 2000-12-26 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US10/319,618 Expired - Fee Related US7045157B2 (en) 2000-12-26 2002-12-16 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US11/222,815 Abandoned US20060013900A1 (en) 2000-12-26 2005-09-12 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/746,017 Expired - Fee Related US6531166B2 (en) 2000-12-26 2000-12-26 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US10/319,618 Expired - Fee Related US7045157B2 (en) 2000-12-26 2002-12-16 Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator

Country Status (1)

Country Link
US (3) US6531166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105326A (en) * 2012-12-30 2013-05-15 上海市内分泌代谢病研究所 Method for surface staining and intracellular staining of Th cells and application of method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ582900A0 (en) * 2000-02-24 2000-03-16 Silverbrook Research Pty Ltd Printed media production
US6531166B2 (en) * 2000-12-26 2003-03-11 Council Of Scientific And Industrial Research Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US9301987B2 (en) * 2007-09-24 2016-04-05 Laila Nutraceuticals Anti-adipogenic compositions containing Piper betle and Dolichos biflorus
CN101951932B (en) * 2007-12-17 2013-10-16 科学与工业研究委员会 Use of extract of piper betel leaves for the treatment of human malignancies sensitive to oxidative stress
CN108354946A (en) * 2017-08-25 2018-08-03 肖定璋 A kind of preparation method and application of human immunity composite factor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389371A (en) * 1992-02-13 1995-02-14 Shiao; Shin Jen Areca food additives and its foods
US6228347B1 (en) * 1997-12-01 2001-05-08 Thione International, Inc. Antioxidant gel for gingival conditions
US6413553B1 (en) * 2000-12-18 2002-07-02 Council Of Scientific And Industrial Research Herbal formulation of a combination of Piper betel and Murrya koenigii extracts for blocking 5 lipoxygenase activity
US20020086068A1 (en) * 2000-10-16 2002-07-04 Santu Bandyopadhyay Herbal composition of blend of active components prepared from murrya koenigii and piper betle useful for blocking of 5 lipoxygenase activity leading to the inhibition of leukotriene synthesis, suppression of interleukin-4 production, and enhancement of gamma interferon release
US6531166B2 (en) * 2000-12-26 2003-03-11 Council Of Scientific And Industrial Research Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US20030049334A1 (en) * 2000-12-04 2003-03-13 Council Of Scientific And Industrial Research Herbal composition for treating CD33+ acute and chronic myeloid leukemia and a method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678714A (en) * 1992-04-30 1994-03-22 Kojin Sho Gambier composition
JPH09278666A (en) * 1996-04-09 1997-10-28 Res Inst For Prod Dev Antimicrobial agent and its production
JPH1077495A (en) * 1996-09-03 1998-03-24 Ogawa Koryo Kk Flavor and fragrance modifier for perfume and modifying method
JPH11130685A (en) * 1997-10-29 1999-05-18 Res Inst For Prod Dev Antiallergic agent
JP4155430B2 (en) * 1999-04-07 2008-09-24 三省製薬株式会社 Skin aging inhibitor and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389371A (en) * 1992-02-13 1995-02-14 Shiao; Shin Jen Areca food additives and its foods
US6228347B1 (en) * 1997-12-01 2001-05-08 Thione International, Inc. Antioxidant gel for gingival conditions
US20020086068A1 (en) * 2000-10-16 2002-07-04 Santu Bandyopadhyay Herbal composition of blend of active components prepared from murrya koenigii and piper betle useful for blocking of 5 lipoxygenase activity leading to the inhibition of leukotriene synthesis, suppression of interleukin-4 production, and enhancement of gamma interferon release
US20030049334A1 (en) * 2000-12-04 2003-03-13 Council Of Scientific And Industrial Research Herbal composition for treating CD33+ acute and chronic myeloid leukemia and a method thereof
US6413553B1 (en) * 2000-12-18 2002-07-02 Council Of Scientific And Industrial Research Herbal formulation of a combination of Piper betel and Murrya koenigii extracts for blocking 5 lipoxygenase activity
US6531166B2 (en) * 2000-12-26 2003-03-11 Council Of Scientific And Industrial Research Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
US7045157B2 (en) * 2000-12-26 2006-05-16 Council Of Scientific & Industrial Research Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105326A (en) * 2012-12-30 2013-05-15 上海市内分泌代谢病研究所 Method for surface staining and intracellular staining of Th cells and application of method

Also Published As

Publication number Publication date
US20020146470A1 (en) 2002-10-10
US6531166B2 (en) 2003-03-11
US20030108632A1 (en) 2003-06-12
US7045157B2 (en) 2006-05-16

Similar Documents

Publication Publication Date Title
KR100934955B1 (en) Pharmaceutical composition and methods of using same
US7674487B2 (en) Herbal composition for treating CD33+ acute and chronic myeloid leukemia and a method thereof
US20060013900A1 (en) Use of betel leaf extract to induce IFN-gamma production from human peripheral blood T cells and as a Th1 type immunomodulator
JP4440767B2 (en) Herbal molecules as potential anti-leukemic agents
US6610332B2 (en) Anti-leishmanial activity of betel leaf extract
WO2002049655A1 (en) Extracts of piper betle leaves as immunomodulator
KR20200027455A (en) Composition for improving respiratory diseases using the extract of Euonymus alatus
KR102346078B1 (en) Fermented Cirsium japonicum var. maackii production method and anti-inflammatory composition prepared by the method
KR20190043996A (en) Composition for prevention or treatment respiratory diseases comprising Chrysanthemum morifolium Ramatuelle extract and Scutellaria baicalensis extract as an active ingredient
JP4460286B2 (en) Herbal compositions for the treatment and therapy of bronchial dyspnea
KR20200027450A (en) Composition for improving respiratory diseases using the extract of Picrasma quassioides
KR20200027449A (en) Composition for improving respiratory diseases using the extract of Rosa davurica
US20020068096A1 (en) Antimonocytic activity of betel leaf extracts
AU2001230492A1 (en) Antimonocytic activity of extracts of piper betel leaves
JP2004517845A (en) Extract of betel leaf as immunomodulator
KR20200061306A (en) Food composition for improving respiratory function using Pediococcus pentosaceus
US7615574B2 (en) Synergistic composition for treating leukemia
WO2020050633A1 (en) Composition for improving respiratory disease including extract of paliurus ramosissimus (lour.) poir.
KR20200027448A (en) Composition for improving respiratory diseases using the extract of Paliurus ramosissimus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION