US20060008644A1 - Fabrics of mixed-polyester-ratio bi-component fibers - Google Patents

Fabrics of mixed-polyester-ratio bi-component fibers Download PDF

Info

Publication number
US20060008644A1
US20060008644A1 US11/152,807 US15280705A US2006008644A1 US 20060008644 A1 US20060008644 A1 US 20060008644A1 US 15280705 A US15280705 A US 15280705A US 2006008644 A1 US2006008644 A1 US 2006008644A1
Authority
US
United States
Prior art keywords
yarn
fibers
component
component fibers
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/152,807
Inventor
Carmen Covelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista North America LLC
Original Assignee
Invista North America LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invista North America LLC filed Critical Invista North America LLC
Priority to US11/152,807 priority Critical patent/US20060008644A1/en
Assigned to INVISTA NORTH AMERICA S.A.R.L. reassignment INVISTA NORTH AMERICA S.A.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COVELLI, CARMEN A.
Publication of US20060008644A1 publication Critical patent/US20060008644A1/en
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: INVISTA NORTH AMERICA S.A.R.L.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: INVISTA NORTH AMERICA S.A.R.L.
Assigned to INVISTA NORTH AMERICA S.A.R.L. (F/K/A ARTEVA NORTH AMERICA S.A.R.L.) reassignment INVISTA NORTH AMERICA S.A.R.L. (F/K/A ARTEVA NORTH AMERICA S.A.R.L.) RELEASE OF U.S. PATENT SECURITY INTEREST Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT (F/K/A JPMORGAN CHASE BANK)
Assigned to INVISTA NORTH AMERICA S.A.R.L. reassignment INVISTA NORTH AMERICA S.A.R.L. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/18Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by combining fibres, filaments, or yarns, having different shrinkage characteristics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the invention is directed to yarn comprising mixed polymer ratio bi-component fibers and to fabrics formed therefrom.
  • Bi-component fibers formed by melt spinning a filament from two or more polymer components have previously been disclosed in the art and are well known for use in various applications, such as fabric and apparel production, stuffing for filled articles, and the like.
  • the bi-component fibers result from coalescing two different polymer melts before or after passing the melts through a spinneret to produce fibers.
  • Bi-component fibers may be obtained by extrusion of at least two different polymers through the same spinneret die opening in which the two polymers have different shrinking potentials.
  • Such bi-component fibers have a latent crimping ability which can be developed during subsequent processing steps.
  • bi-component fiber When a bi-component fiber is produced, its composition, denier, and other characteristics result in a particular type of helical crimp. When these fibers are wound into yarn, bi-component fibers all having the same component weight ratio all have the same helical crimp. This causes the fibers of the yarn to exhibit what is sometimes known as “follow-the-leader” crimp which results when the helices of many crimps all match up. In the subsequent production of fabric, this follow-the leader crimping can result in random filament direction reversals leading to areas of non-uniformity in the fabric.
  • a yarn and a fabric formed from the yarn are disclosed.
  • the yarn comprises mixed ratios of polyesters, such as polyethylene terephthalate and polytrimethylene terephthalate, in which some filaments of the yarn are of different polymer ratios than other filaments. It is preferred that the yarns be spun with the desired mixture of ratios and that the differences in polymer ratios between the filaments of the yarn is at least about 10% absolute.
  • the net overall weight ratio in the yarn is preferably in the range of about 55/45 to about 75/25 polyethylene terephthalate to polytrimethylene terephthalate.
  • the number of filaments in each yarn does not need to be uniformly distributed. Fabrics can be formed from the yarn, such as by knitting or weaving.
  • FIG. 1 is a chart showing crimp frequency versus tension for three yarns of various bi-component fiber ratio.
  • FIG. 2 is a chart showing crimp frequency versus tension for a different set of yarns of various bi-component fiber ratio.
  • Exemplary embodiments of the invention are directed toward yarn and fabric knit from that yarn that comprises mixed polymer ratio bi-component fibers.
  • Bi-component fibers may be produced by melt-spinning polymers. By modifying various properties that affect crimping of individual fibers spun in a spinneret, a yarn can be produced with individual bi-component fibers of the yarn having different crimping frequency.
  • One way of producing such a yarn may be accomplished by varying the, ratio of polymer components fed to individual orifices of a spinneret, resulting in bi-component fibers of varying component weight ratios. The various weight ratios in turn result in the bi-component fibers in the yarn having crimping frequencies that differ from other bi-component fibers in the same yarn.
  • bi-component filament and “bi-component fiber” as used herein refer to any filament or fiber that is composed of two distinct polymers which have been spun together to form a single filament or fiber.
  • fiber includes both continuous filaments and discontinuous (staple) fibers.
  • distinct polymers it is meant that each of at least two polymeric components are arranged in distinct substantially constantly positioned zones across the cross-section of the bi-component fibers and extend substantially continuously along the length of the fibers.
  • Bi-component fibers are distinguished from fibers that are extruded from a homogeneous melt blend of polymeric materials in which zones of distinct polymers are not formed.
  • the two distinct polymeric components useable herein can be chemically different or they can be chemically the same polymer, but have different physical characteristics, such as tacticity, intrinsic viscosity, melt viscosity, die swell, density, crystallinity, and melting point or softening point.
  • One or more of the polymeric components in the bi-component fiber can be a blend of different polymers.
  • Bi-component fibers useful in the current invention have a laterally eccentric cross-section, that is, the polymeric components are arranged in an eccentric relationship in the cross-section of the fiber.
  • the bi-component fiber is made of two distinct polymers and has an eccentric sheath-core or a side-by-side arrangement of the polymers.
  • Laterally eccentric bi-component fibers comprising two synthetic components that differ in their ability to shrink are known in the art.
  • Such fibers form helical/spiral crimp when the crimp is activated by subjecting the fibers to shrinking conditions in an essentially tensionless state.
  • the amount of crimp is directly related to the difference in shrinkage between the components in the fibers.
  • the crimped fibers that are formed after crimp activation have the higher-shrinkage component on the inside of the spiral helix and the lower-shrinkage component on the outside of the helix.
  • Such crimp is referred to herein as spiral crimp.
  • Such crimp is distinguished from mechanically crimped fibers, such as stuffer-box crimped fibers, which generally have two-dimensional crimp.
  • the bi-component fibers used in exemplary embodiments of the present invention may typically be polyester bi-component fibers spun from various polyester components.
  • polyester is meant polymers in which at least 85% of the recurring units are condensation products of carboxylic acids and dihydroxy alcohols with linkages created by formation of ester units. This includes aromatic, aliphatic, saturated, unsaturated di-acids and di-alcohols. The term is also meant to include copolymers, blends, and modifications thereof.
  • polyesters of the present invention include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polypropylene terephthalate (PPT), and polybutylene terephthalate (PBT). These polyesters may be synthetically produced from any known method of polyester production. One typical process includes the condensation reaction of alkylene glycol and terephthalic acid to produce polyalkylene terephthalate.
  • a single spinneret may be used to produce multiple fibers, each having varying ratios of distinct polymers. These fibers can then be wound into a yarn of mixed ratio bi-component fibers without the need to separately wind other yarns together to form a larger yarn.
  • the various bi-component fibers, or yarns of these fibers, having mixed component ratios, are combined to form a single yarn that may be used to knit fabrics.
  • the weight ratio of individual bi-component fibers of the yarn of the invention may be any weight ratio of one component versus the other, but typically the ratio is between about 75/25 to 25/75, more typically between about 70/30 to 30/70.
  • the overall or net weight ratio of the components in the yarn is about 45/55 to about 75/25, wherein the first number represents the component having the repeating unit of smaller mass.
  • the overall net weight ratio is asymmetric, favoring higher amounts of the component having the smaller repeating unit, i.e. PET in preferred embodiments of the invention using a PET and PTT as components.
  • the weight ratios of one component versus the other may vary between the fibers within the yarn, thus creating the mixed-ratio bi-component fibers.
  • the components of various filaments may typically differ by about 10 weight percent or more in any particular yarn.
  • a yarn might typically include multiple bi-component fibers of 30/70, 40/60, 50/50, 60/40 and 70/30, but not typically 30/70, 33/67, 50/50, 67/33, and 70/30. Differences of less than about 10 weight percerit may not produce bi-component fibers with sufficient differences in crimp frequency to achieved the most desired levels of avoiding follow-the-leader crimping.
  • the yarns may be used to knit fabrics which have desirable characteristics, such as a smooth and silky touch.
  • Crimp contraction is measured as follows.
  • a bi-component fiber is formed into a skein of 5000+/ ⁇ 5 total denier (5550 dtex) with a skein reel at a tension of about 0.1 gpd (0.09 dN/tex).
  • the skein was conditioned at 70+/ ⁇ 2 degrees F. (21+/ ⁇ 1 degrees C.) and 65+/ ⁇ 2% relative humidity for a minimum of about 16 hours.
  • the skein was hung substantially vertically from a stand, a 1.5 mg/den (1.35 mg/dtex) weight (e.g.
  • the test is performed on several samples and the results are averaged.
  • a first yarn was produced by commingling two yarns. Each yarn contained fibers of a unitary weight ratio of components for all filaments in the yarn.
  • One yarn was a 150 denier PTT/PET yarn, which was then commingled with a 100 denier PTT/PET yarn. Each yarn was spun with 34 filaments.
  • the resulting commingled yarn had a total of 68 filaments, with a denier per filament (dpf) of 250 divided by 68, or about 3.7.
  • Tenacity for the commingled yarn was about 4 g/denier, with a maximum elongation of about 20%. Crimp contraction of the commingled yarn was about 60%.
  • a second yarn was produced in the same manner as generally described above, except that this 34 filament yarn included a mixed filament ratio from 70/30 to 30/70 weight percent of PET and PTT.
  • the overall weight percent of PET to PTT in the yarn was about 50/50.
  • the yarn was drawn 3.75 ⁇ .
  • Tenacity for the mixed filament ratio yarn was about 3.5 g/denier, with a maximum elongation of about 20% Crimp contraction was measured at about 45%.
  • a third yarn was produced in a manner identical to the yarn of Example 2, with the only exception that the yarn was drawn 4 ⁇ . Tenacity, elongation and crimp contraction were all measured at about the same value as the yarn of Example 2.
  • FIG. 1 shows an analysis of three filaments comprising PET and PTT.
  • the weight ratios vary between 30/70, 40/60, and 50/50.
  • Crimp frequency measured in the number of crimps per inch, is plotted on the y-axis as measured against increasing tension from 0 to .01 g/ denier, in 1 mg/denier increments. Tensions typically seen in fabrics tend to be about 2 to 4 mg/denier. Over this range, the difference in crimp frequency between the 40/60 and 50/50 versions are about 4-5%, while the difference between the 30/70 and 50/50 mixture filaments is about 16-27%.
  • FIG. 2 also demonstrates test results of three bi-component filaments comprising PET and PTT, but in this case, the 40/60 filament is substituted with a 70/30 filament. In this range, the crimp frequency versus tension of the two yarns with the same, but inverted weight percents tend to show little difference in crimp frequency versus tension, but maintain the 16-27% difference versus the 50/50 mixture;
  • a fourth yarn sample was created with 34 separate fibers.
  • the spinneret was adjusted to produce individual fibers in the yarn of various weight ratios as shown below in Table 1, wherein the weight ratio is shown in PET/PTT.
  • the overall net weight percent of PET to PTT in the yarn was about 51/49.
  • TABLE 1 Weight 25/75 30/70 35/65 40/60 45/55 50/50 55/45 60/40 65/35 70/30 75/25 Ratio # 4 2 2 2 4 4 4 2 4 filaments
  • Fabrics were produced by knitting yarns of mixed-ratio bi-component fibers. Fabric was knit using a 24 feed circular knit machine with 255 inches per revolution to prepare a single jersey fabric. The fabrics were dyed at 212 degrees F., followed by drying at 250 degrees F. and heat set at 330 degrees F. Fabric properties are shown below in Table 2. “W ⁇ F” is an abbreviation for “warp by fill,” measured in number of yarns per inch. Fabric weight is measured in units of ounces per square yard of fabric. TABLE 2 Fabric W ⁇ F Fabric weight 1 50 ⁇ 60 4.74 2 42 ⁇ 56 5.62

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Yarns of mixed ratios of bi-component fibers are disclosed, in which some filaments of a yarn produced during the spinning process are of different polymer ratios than other filaments in the same yarn. The yarns are preferably spun with the desired mixture of polymer ratios and the difference in polymer ratios are preferably at least about 10% absolute. The net overall ratio of the yarn is between about a 55/45 and a 75/25 mixture of PET/PTT by weight. Knit and woven fabrics can be prepared that include these mixed ratio yarns.

Description

  • This is a non-provisional of U.S. application number 60/585,899 filed July 7, 2004, now pending.
  • FIELD OF THE INVENTION
  • The invention is directed to yarn comprising mixed polymer ratio bi-component fibers and to fabrics formed therefrom.
  • BACKGROUND OF THE INVENTION
  • Bi-component fibers formed by melt spinning a filament from two or more polymer components have previously been disclosed in the art and are well known for use in various applications, such as fabric and apparel production, stuffing for filled articles, and the like. The bi-component fibers result from coalescing two different polymer melts before or after passing the melts through a spinneret to produce fibers. Bi-component fibers may be obtained by extrusion of at least two different polymers through the same spinneret die opening in which the two polymers have different shrinking potentials. Such bi-component fibers have a latent crimping ability which can be developed during subsequent processing steps.
  • When a bi-component fiber is produced, its composition, denier, and other characteristics result in a particular type of helical crimp. When these fibers are wound into yarn, bi-component fibers all having the same component weight ratio all have the same helical crimp. This causes the fibers of the yarn to exhibit what is sometimes known as “follow-the-leader” crimp which results when the helices of many crimps all match up. In the subsequent production of fabric, this follow-the leader crimping can result in random filament direction reversals leading to areas of non-uniformity in the fabric.
  • SUMMARY OF THE INVENTION
  • Accordingly, it may be desirable to develop a yarn of bi-component fibers of varying crimp frequency in order to produce a yarn that contains fibers without matching crimps, avoiding follow-the-leader crimping.
  • A yarn and a fabric formed from the yarn are disclosed. The yarn comprises mixed ratios of polyesters, such as polyethylene terephthalate and polytrimethylene terephthalate, in which some filaments of the yarn are of different polymer ratios than other filaments. It is preferred that the yarns be spun with the desired mixture of ratios and that the differences in polymer ratios between the filaments of the yarn is at least about 10% absolute. The net overall weight ratio in the yarn is preferably in the range of about 55/45 to about 75/25 polyethylene terephthalate to polytrimethylene terephthalate. The number of filaments in each yarn does not need to be uniformly distributed. Fabrics can be formed from the yarn, such as by knitting or weaving.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a chart showing crimp frequency versus tension for three yarns of various bi-component fiber ratio.
  • FIG. 2 is a chart showing crimp frequency versus tension for a different set of yarns of various bi-component fiber ratio.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Exemplary embodiments of the invention are directed toward yarn and fabric knit from that yarn that comprises mixed polymer ratio bi-component fibers.
  • Bi-component fibers may be produced by melt-spinning polymers. By modifying various properties that affect crimping of individual fibers spun in a spinneret, a yarn can be produced with individual bi-component fibers of the yarn having different crimping frequency. One way of producing such a yarn may be accomplished by varying the, ratio of polymer components fed to individual orifices of a spinneret, resulting in bi-component fibers of varying component weight ratios. The various weight ratios in turn result in the bi-component fibers in the yarn having crimping frequencies that differ from other bi-component fibers in the same yarn.
  • The terms “bi-component filament” and “bi-component fiber” as used herein refer to any filament or fiber that is composed of two distinct polymers which have been spun together to form a single filament or fiber. As used herein the term “fiber” includes both continuous filaments and discontinuous (staple) fibers. By the term “distinct polymers” it is meant that each of at least two polymeric components are arranged in distinct substantially constantly positioned zones across the cross-section of the bi-component fibers and extend substantially continuously along the length of the fibers. Bi-component fibers are distinguished from fibers that are extruded from a homogeneous melt blend of polymeric materials in which zones of distinct polymers are not formed. The two distinct polymeric components useable herein can be chemically different or they can be chemically the same polymer, but have different physical characteristics, such as tacticity, intrinsic viscosity, melt viscosity, die swell, density, crystallinity, and melting point or softening point. One or more of the polymeric components in the bi-component fiber can be a blend of different polymers. Bi-component fibers useful in the current invention have a laterally eccentric cross-section, that is, the polymeric components are arranged in an eccentric relationship in the cross-section of the fiber. Preferably, the bi-component fiber is made of two distinct polymers and has an eccentric sheath-core or a side-by-side arrangement of the polymers.
  • Laterally eccentric bi-component fibers comprising two synthetic components that differ in their ability to shrink are known in the art. Such fibers form helical/spiral crimp when the crimp is activated by subjecting the fibers to shrinking conditions in an essentially tensionless state. The amount of crimp is directly related to the difference in shrinkage between the components in the fibers. When the multiple-component fibers are spun in a side-by-side conformation, the crimped fibers that are formed after crimp activation have the higher-shrinkage component on the inside of the spiral helix and the lower-shrinkage component on the outside of the helix. Such crimp is referred to herein as spiral crimp. Such crimp is distinguished from mechanically crimped fibers, such as stuffer-box crimped fibers, which generally have two-dimensional crimp.
  • The bi-component fibers used in exemplary embodiments of the present invention may typically be polyester bi-component fibers spun from various polyester components. By “polyester” is meant polymers in which at least 85% of the recurring units are condensation products of carboxylic acids and dihydroxy alcohols with linkages created by formation of ester units. This includes aromatic, aliphatic, saturated, unsaturated di-acids and di-alcohols. The term is also meant to include copolymers, blends, and modifications thereof.
  • Particularly suitable polyesters of the present invention include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polypropylene terephthalate (PPT), and polybutylene terephthalate (PBT). These polyesters may be synthetically produced from any known method of polyester production. One typical process includes the condensation reaction of alkylene glycol and terephthalic acid to produce polyalkylene terephthalate.
  • By varying the polymer ratio fed to individual apertures of a spinneret, such as using the method described in U.S. Pat. No. 3,671,379 to Evans et al., a single spinneret may be used to produce multiple fibers, each having varying ratios of distinct polymers. These fibers can then be wound into a yarn of mixed ratio bi-component fibers without the need to separately wind other yarns together to form a larger yarn. The various bi-component fibers, or yarns of these fibers, having mixed component ratios, are combined to form a single yarn that may be used to knit fabrics.
  • The weight ratio of individual bi-component fibers of the yarn of the invention may be any weight ratio of one component versus the other, but typically the ratio is between about 75/25 to 25/75, more typically between about 70/30 to 30/70.
  • Regardless of the weight ratios of the individual fibers, the overall or net weight ratio of the components in the yarn is about 45/55 to about 75/25, wherein the first number represents the component having the repeating unit of smaller mass. Preferably, the overall net weight ratio is asymmetric, favoring higher amounts of the component having the smaller repeating unit, i.e. PET in preferred embodiments of the invention using a PET and PTT as components.
  • The weight ratios of one component versus the other may vary between the fibers within the yarn, thus creating the mixed-ratio bi-component fibers. The components of various filaments may typically differ by about 10 weight percent or more in any particular yarn. For example, a yarn might typically include multiple bi-component fibers of 30/70, 40/60, 50/50, 60/40 and 70/30, but not typically 30/70, 33/67, 50/50, 67/33, and 70/30. Differences of less than about 10 weight percerit may not produce bi-component fibers with sufficient differences in crimp frequency to achieved the most desired levels of avoiding follow-the-leader crimping.
  • Once the yarns are spun, they may be used to knit fabrics which have desirable characteristics, such as a smooth and silky touch.
  • EXAMPLES
  • Several yarns were produced. In each case, PTT and PET were used to spin bi-component fibers that were then wound into yarn. The PTT and PET polymer was fed at 60 degrees C., drawn at 90 degrees C., and annealed after drawing at 160 degrees C. with no letdown. The fibers were spun using a stacked plate spinneret and were coalesced post-spinning. The fibers were cooled using a cross flow quench and wound into yarn, which was drawn 3.75×(375% of the original length) at 2100 m/min.
  • Tenacity and crimp contraction of all of the yarn samples was measured.
  • Crimp contraction is measured as follows. A bi-component fiber is formed into a skein of 5000+/−5 total denier (5550 dtex) with a skein reel at a tension of about 0.1 gpd (0.09 dN/tex). The skein was conditioned at 70+/−2 degrees F. (21+/−1 degrees C.) and 65+/−2% relative humidity for a minimum of about 16 hours. The skein was hung substantially vertically from a stand, a 1.5 mg/den (1.35 mg/dtex) weight (e.g. 7.5 grams for a 5550 dtex skein) was hung on the bottom of the skein, the weighted skein was allowed to come to an equilibrium length for 15 seconds, and the length of the skein was measured to within 1 mm and recorded as “Cb”. The 1.35 mg/dtex weight was left on the skein for the duration of the test. Next, a 500 gram weight (100 mg/d; 90 mg/dtex) was hung from the bottom of the skein, and the length of the skein was measured to within 1 mm and recorded as “Lb”. Percent crimp contraction (CC) was calculated according to the formula
    CC=100×(L bC b)/L b   (1)
  • The test is performed on several samples and the results are averaged.
  • EXAMPLE 1
  • A first yarn was produced by commingling two yarns. Each yarn contained fibers of a unitary weight ratio of components for all filaments in the yarn. One yarn was a 150 denier PTT/PET yarn, which was then commingled with a 100 denier PTT/PET yarn. Each yarn was spun with 34 filaments. Thus, the resulting commingled yarn had a total of 68 filaments, with a denier per filament (dpf) of 250 divided by 68, or about 3.7. Tenacity for the commingled yarn was about 4 g/denier, with a maximum elongation of about 20%. Crimp contraction of the commingled yarn was about 60%.
  • EXAMPLE 2
  • A second yarn was produced in the same manner as generally described above, except that this 34 filament yarn included a mixed filament ratio from 70/30 to 30/70 weight percent of PET and PTT. The overall weight percent of PET to PTT in the yarn was about 50/50. The yarn was drawn 3.75×. Tenacity for the mixed filament ratio yarn was about 3.5 g/denier, with a maximum elongation of about 20% Crimp contraction was measured at about 45%.
  • EXAMPLE 3
  • A third yarn was produced in a manner identical to the yarn of Example 2, with the only exception that the yarn was drawn 4×. Tenacity, elongation and crimp contraction were all measured at about the same value as the yarn of Example 2.
  • To evaluate yarns of mixed ratios, the crimp frequency of individual filaments having varying weight ratios was charted versus applied tension as shown in FIGS. 1 and 2.
  • FIG. 1 shows an analysis of three filaments comprising PET and PTT. The weight ratios vary between 30/70, 40/60, and 50/50. Crimp frequency, measured in the number of crimps per inch, is plotted on the y-axis as measured against increasing tension from 0 to .01 g/ denier, in 1 mg/denier increments. Tensions typically seen in fabrics tend to be about 2 to 4 mg/denier. Over this range, the difference in crimp frequency between the 40/60 and 50/50 versions are about 4-5%, while the difference between the 30/70 and 50/50 mixture filaments is about 16-27%.
  • FIG. 2 also demonstrates test results of three bi-component filaments comprising PET and PTT, but in this case, the 40/60 filament is substituted with a 70/30 filament. In this range, the crimp frequency versus tension of the two yarns with the same, but inverted weight percents tend to show little difference in crimp frequency versus tension, but maintain the 16-27% difference versus the 50/50 mixture;
  • EXAMPLE4
  • A fourth yarn sample was created with 34 separate fibers. The spinneret was adjusted to produce individual fibers in the yarn of various weight ratios as shown below in Table 1, wherein the weight ratio is shown in PET/PTT. The overall net weight percent of PET to PTT in the yarn was about 51/49.
    TABLE 1
    Weight 25/75 30/70 35/65 40/60 45/55 50/50 55/45 60/40 65/35 70/30 75/25
    Ratio
    #
    4 2 2 2 4 4 4 2 4 2 4
    filaments
  • EXAMPLE 5
  • Fabrics were produced by knitting yarns of mixed-ratio bi-component fibers. Fabric was knit using a 24 feed circular knit machine with 255 inches per revolution to prepare a single jersey fabric. The fabrics were dyed at 212 degrees F., followed by drying at 250 degrees F. and heat set at 330 degrees F. Fabric properties are shown below in Table 2. “W×F” is an abbreviation for “warp by fill,” measured in number of yarns per inch. Fabric weight is measured in units of ounces per square yard of fabric.
    TABLE 2
    Fabric W × F Fabric weight
    1 50 × 60 4.74
    2 42 × 56 5.62
  • These fabrics had improved characteristics that included a smooth and silky touch.
  • The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such modifications are intended to fall within the scope of the following appended claims. Further, although the present invention has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize that its usefulness is not limited thereto and that the present invention can be beneficially implemented in any number of environments for any number of purposes. Accordingly, the claims set forth below should be construed in view of the full breadth and spirit of the present invention as disclosed herein.

Claims (8)

1. A yarn comprising at least two bi-component fibers, the fibers having different characteristic crimp frequencies.
2. The yarn of claim 1, comprising bi-component fibers of mixed component ratios.
3. The yarn of claim 1, wherein the components of the bi-component fibers are polyesters.
4. The yarn of claim 3, wherein each component of the bi-component fibers comprises a different one of polyethylene terephthalate, polytrimethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate.
5. The yarn of claim 4, wherein the bi-component fibers are polyethylene terephthalate/polytrimethylene terephthalate bi-component filaments wherein the components of each of the fibers are of mixed ratios having from about 30% by weight polyethylene terephthalate to about 70% by weight polyethylene terephthalate.
6. The yarn of claim 5 wherein the average weight ratio of the polyethylene terephthalate to polytrimethylene terephthalate in the yarn is in the range of between about 55/45 to 75/25 percent by weight.
7. The yarn of claim 1 wherein the bi-component fibers are of varying denier per filament.
8. Fabric formed from the yarn of any one of the preceding claims.
US11/152,807 2004-07-07 2005-06-14 Fabrics of mixed-polyester-ratio bi-component fibers Abandoned US20060008644A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/152,807 US20060008644A1 (en) 2004-07-07 2005-06-14 Fabrics of mixed-polyester-ratio bi-component fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58589904P 2004-07-07 2004-07-07
US11/152,807 US20060008644A1 (en) 2004-07-07 2005-06-14 Fabrics of mixed-polyester-ratio bi-component fibers

Publications (1)

Publication Number Publication Date
US20060008644A1 true US20060008644A1 (en) 2006-01-12

Family

ID=35541708

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/152,807 Abandoned US20060008644A1 (en) 2004-07-07 2005-06-14 Fabrics of mixed-polyester-ratio bi-component fibers

Country Status (1)

Country Link
US (1) US20060008644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282431A1 (en) * 2010-07-21 2012-11-08 E.I. Du Pont De Nemours And Company Mixed polyester yarns and articles made therefrom
CN104480596A (en) * 2014-12-10 2015-04-01 海兴材料科技有限公司 Blended yarn made of PET (polyethylene terephthalate) and PTT (polytrimethylene terephthalate) composite filament and preparing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671379A (en) * 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
US4332758A (en) * 1978-12-21 1982-06-01 Fiber Industries, Inc. Method for producing polyester wool-like yarn
US20020045395A1 (en) * 2000-03-01 2002-04-18 Lintecum Boyd M. Bicomponent effect yarns and fabrics thereof
US20030124938A1 (en) * 2001-12-21 2003-07-03 Zafiroglu Dimitri P. Stretchable multiple-component nonwoven fabrics and methods for preparing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671379A (en) * 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
US4332758A (en) * 1978-12-21 1982-06-01 Fiber Industries, Inc. Method for producing polyester wool-like yarn
US20020045395A1 (en) * 2000-03-01 2002-04-18 Lintecum Boyd M. Bicomponent effect yarns and fabrics thereof
US20030124938A1 (en) * 2001-12-21 2003-07-03 Zafiroglu Dimitri P. Stretchable multiple-component nonwoven fabrics and methods for preparing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282431A1 (en) * 2010-07-21 2012-11-08 E.I. Du Pont De Nemours And Company Mixed polyester yarns and articles made therefrom
CN104480596A (en) * 2014-12-10 2015-04-01 海兴材料科技有限公司 Blended yarn made of PET (polyethylene terephthalate) and PTT (polytrimethylene terephthalate) composite filament and preparing method thereof

Similar Documents

Publication Publication Date Title
US7608329B2 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JP5484383B2 (en) Method for producing poly (trimethylene terephthalate) staple fiber, and poly (trimethylene terephthalate) staple fiber, yarn and fabric
US3038235A (en) Textile fibers and their manufacture
US6761970B2 (en) Poly(lactic acid) fiber
US3118011A (en) Process for preparing helically crimped composite filaments
EP1230449B1 (en) Poly(trimethylene terephthalate) tetrachannel cross-section staple fiber
JP2023506733A (en) Carpet made from bicomponent fibers containing self-lofting PTT
US20060008644A1 (en) Fabrics of mixed-polyester-ratio bi-component fibers
KR100519015B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
KR100291599B1 (en) Spontaneous crimped fiber
JPH02289112A (en) Thick-denier undrawn nylon 66 filament

Legal Events

Date Code Title Description
AS Assignment

Owner name: INVISTA NORTH AMERICA S.A.R.L., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COVELLI, CARMEN A.;REEL/FRAME:016696/0806

Effective date: 20050819

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A.,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:INVISTA NORTH AMERICA S.A.R.L.;REEL/FRAME:017032/0902

Effective date: 20060117

Owner name: JPMORGAN CHASE BANK, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:INVISTA NORTH AMERICA S.A.R.L.;REEL/FRAME:017032/0902

Effective date: 20060117

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: SECURITY AGREEMENT;ASSIGNOR:INVISTA NORTH AMERICA S.A.R.L.;REEL/FRAME:022416/0849

Effective date: 20090206

Owner name: INVISTA NORTH AMERICA S.A.R.L. (F/K/A ARTEVA NORTH

Free format text: RELEASE OF U.S. PATENT SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT (F/K/A JPMORGAN CHASE BANK);REEL/FRAME:022427/0001

Effective date: 20090206

AS Assignment

Owner name: INVISTA NORTH AMERICA S.A.R.L., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:027211/0298

Effective date: 20111110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION