US20050288084A1 - Casino table gaming system with round counting system - Google Patents

Casino table gaming system with round counting system Download PDF

Info

Publication number
US20050288084A1
US20050288084A1 US10/880,410 US88041004A US2005288084A1 US 20050288084 A1 US20050288084 A1 US 20050288084A1 US 88041004 A US88041004 A US 88041004A US 2005288084 A1 US2005288084 A1 US 2005288084A1
Authority
US
United States
Prior art keywords
date
signal
data
component
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/880,410
Inventor
Oliver Schubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHFL Enterteiment Inc
Original Assignee
SHFL Enterteiment Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/880,410 priority Critical patent/US20050288084A1/en
Application filed by SHFL Enterteiment Inc filed Critical SHFL Enterteiment Inc
Assigned to SHUFFLE MASTER, INC. reassignment SHUFFLE MASTER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHUBERT, OLIVER M.
Priority to US10/920,776 priority patent/US20050288085A1/en
Priority to US10/954,152 priority patent/US20050113166A1/en
Priority to US10/957,877 priority patent/US20050288086A1/en
Priority to US10/958,208 priority patent/US7407438B2/en
Priority to US10/958,209 priority patent/US7434805B2/en
Publication of US20050288084A1 publication Critical patent/US20050288084A1/en
Assigned to DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENT reassignment DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SHUFFLE MASTER, INC.
Priority to US11/881,432 priority patent/US20070267812A1/en
Priority to US12/221,607 priority patent/US9289677B2/en
Priority to US12/287,979 priority patent/US20090091078A1/en
Priority to US12/717,021 priority patent/US20100167826A1/en
Assigned to SHUFFLE MASTER, INC. reassignment SHUFFLE MASTER, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENT
Priority to US13/542,512 priority patent/US20120283025A1/en
Priority to US14/730,709 priority patent/US9452349B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • G07F17/3202Hardware aspects of a gaming system, e.g. components, construction, architecture thereof
    • G07F17/3204Player-machine interfaces
    • G07F17/3206Player sensing means, e.g. presence detection, biometrics
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
    • G07F17/3202Hardware aspects of a gaming system, e.g. components, construction, architecture thereof
    • G07F17/3204Player-machine interfaces
    • G07F17/3211Display means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F1/00Card games
    • A63F1/06Card games appurtenances
    • A63F1/18Score computers; Miscellaneous indicators
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F3/00Board games; Raffle games
    • A63F3/00003Types of board games
    • A63F3/00157Casino or betting games

Definitions

  • the present invention relates to the field of gaming systems, particularly gaming systems that have elements of play, reward, monetary/credit transactions and/or monitoring that are performed by processing systems, and including casino table card games.
  • Wagering games such as those played in casinos and card clubs, have traditionally been played with only mechanical implements such as cards, dice, wheels, balls and the like.
  • One of the reasons for this is to make the wagering game open for inspection, including the implements that are used to provide the chance occurrences upon which the wagers are made.
  • Dice have been weighted or counterfeited to influence the occurrence of specific values, chips have been switched or amounts altered on the tables in carps. This has been addressed by the presence of many persons in the pit crew that supervise elements of the game and the close surveillance of activities on the table by proximal personnel at the table or distal personnel watching cameras or tapes of activities.
  • Gaming devices are based around a main processor unit (which may include a random number generator), an accounting function operatively coupled to the main processor or embedded in the main processor, and more recently a processor or EPROM having stored therein the important gaming functions.
  • these gaming devices include gaming displays, coin acceptors, player identity recognition, bill validation functions, ticket-in-ticket out controls and the like operatively coupled to the main processor.
  • These casino table gaming devices and systems have been relatively simple and limited in scope, usually consisting of a few executing programs utilizing straight forward interrupt schemes and detection loops for asynchronous events for simple evaluation.
  • associated devices There are a wide variety of associated devices that can be connected to or serve as part of a gaming machine such as a casino table gaming system. These devices provide gaming features that define or augrnent the game(s) played on the gaming machine. Some examples of these devices are player location or player order indicators, lights, ticket printers, card readers, speakers, bill validators, coin acceptors, display panels, key pads, and button pads. Many of these devices are built into the table or into associated components carried on the table. Often, a number of devices are grouped together in a separate box that is placed on top of the gaming table.
  • U.S. Pat. No. 6,071,190 (Weiss) describes a gaming device security system which includes two processing areas linked together and communicating critical gaming functions via a security protocol wherein each transmitted gaming function includes a specific encrypted signature to be decoded and validated before being processed by either processing area.
  • the two processing areas include a first processing area having a dynamic RAM and an open architecture design which is expandable without interfering or accessing critical gaming functions and a second “secure” processing area having a non-alterable memory for the storage of critical gaming functions therein.
  • Casino Table Games (such as blackjack, poker, varietal poker such as Let It Ride® poker, Three CardTM poker and Four-CardTM poker, baccarat, Casino WarTM game, also require some security control, and more highly automated systems are being described in the literature and introduced to the marketplace.
  • U.S. Pat. No. 5,803,808 (Strisower) describes a device to be utilized in casino gaming that will count the number of “hands” (read “rounds”) of a given card game played per given period of time.
  • the information is used by a database system within the casino to determine theoretical win/loss based upon historical and theoretical outcome data related to probability of winning/losing any given hand and then factoring in the number of hands (rounds) played.
  • this device is polled by a database system to collect this information.
  • the device could be utilized with an automatic tracking and information management system.
  • the automatic tracking and information management system (ATMS) automatically determines various player transactions associated with a device in a gaming establishment.
  • ATMS automatic tracking and information management system
  • the ATMS includes an automatic tracking and management unit (ATMU) which transmits and receives information between all gaming tables in all pit areas and the gaming establishment database system.
  • ATMU automatic tracking and management unit
  • the ATMU provides for the interactive determination of various transactions within the pit area. Through the automatic tracking and management system the manual paper tracking, activities associated with the pit area are eliminated, thereby freeing pit personnel for other tasks.
  • the device could also be generically connected to any tracking and information system through any standard serial interface.
  • Crown Casinos in Australia has recently provided a device that assists in counting rounds of play by using a card sensing component on a table that responds to the blockage of ambient light into a hole and the forwarding of the sensed data to a central computer.
  • the data is logged in as it is received to indicate a time element associated with each piece of data received.
  • peripheral devices such as a hand sensor or round counter or bet sensor provides the signal and sends the signal to the gaming table processor and/or to a main processor.
  • the systems in gaming table operations tend to be structured in the same manner, with systems described as comprising a main computer, central computer or the like, and various peripherals such as card readers, chip readers, cameras, lighting elements, shufflers, bet sensors, movement sensors, motion sensors, jackpot incrementers/decrementers, game status indicators (e.g., jackpot registers, blackjack indicators, symbol indicators and the like) and any other elements of the table game.
  • peripherals such as card readers, chip readers, cameras, lighting elements, shufflers, bet sensors, movement sensors, motion sensors, jackpot incrementers/decrementers, game status indicators (e.g., jackpot registers, blackjack indicators, symbol indicators and the like) and any other elements of the table game.
  • game status indicators e.g., jackpot registers, blackjack indicators, symbol indicators and the like
  • Examples of such systems include method, apparatus and article for verifying card games, such as playing card distribution as described in U.S. Pat. Nos.
  • a transport path extends from the loading area exit to a card accumulation area.
  • the transport path is further defined by two pairs of transport rollers, one roller of each pair above the transport path and one roller of each pair below the transport path.
  • a camera is located between the two pairs of transport rollers, and a processor governs the operation of a digital camera and the rollers.
  • a printer produces a record of the device's operation based on an output of the processor, and a portion of the transport path is illuminated by one or more blue LEDs.
  • a printer is also provided as part of the system driven by a central computer.
  • Casino table card games are provided with sensors for detection of an indicator initiated by a dealer to indicate approximate or final completion or beginning of a round of play of a casino table card game.
  • the signal is read by a table subcomponent that has a time/dating capability.
  • the signal is time/date stamped (referred to herein as “Date Stamping” or “date stamping” for simplicity.
  • the date stamped signal is then transmitted from the subcomponent to a processor (e.g., gaming table processor or pit processor or main casino processor and/or central processor for multiple casinos).
  • the data retains its date stamping at least through storage, analysis, data entry or other treatment of the data after transmission away from the table, and the date stamping may or may not be provided by the sensor itself.
  • the system also allows for the date stamping or other status information to be sent to a data bank or repository of information (e.g., security bank or security room) for storage of the information, without necessarily any game-play related function.
  • a data bank or repository of information e.g., security bank or security room
  • the data may be processed in real time at this bank or repository, or may me reviewed and analyzed at a later time.
  • FIG. 1 shows a schematic of casino table card game arrangement with sensor, intermediate date stamping component and subsequent information flow in a casino table card gaming apparatus.
  • FIG. 2 shows a schematic of data transmission in the system of FIG. 1 .
  • FIG. 1 shows a casino card gaming table 2 .
  • the Table 2 has a surface 4 with seven player positions 6 (three positions labeled 6 ), 8 10 , 12 and 14 thereon.
  • a hand sensor 16 is provided for the dealer cards 18 .
  • the sensor 16 is connected by a communication system (preferably a wire system, but RF or other wireless systems could be used) to a rabbit 22 for the table 2 .
  • the rabbit 22 is on a communication line 24 to a data collector (not shown).
  • FIG. 2 shows a schematic of data transmission in the system of FIG. 1 .
  • a concept of operative control among processing units should be appreciated to appreciate the performance of the present technology. It is believed that existing systems perform by a single main processor sending commands to peripherals to perform specific functions, and that date stamping is usually done at point of receipt of the data by a gaming processor, especially the main processor. For purposes of discussion, the initial main emphasis of the description will be directed towards the performance of casino table card games with a live dealer, but the system is equally applicable to the use of a fully automated (live dealer-less) gaming apparatus. This emphasis is not intended to narrow the scope of the invention, but is rather intended to simplify the description.
  • a central processor evaluates this information and commands another element to perform a procedure or initiates a sequential event, including an analytic review of data or providing an alarm or message/report relating to analysis of the data or in response to identification of meaningful data. For example, a coin or token or chip is deposited in the coin receptor or in a bet sensing region viewed by cameras or detectors, the coin is sensed in the coin acceptor and a signal is sent to the main processor that a coin has been received.
  • the main processor receives this information and sends a signal to the credit display or other accounting function to indicate that one credit should be displayed or provides ongoing information on playing wagering that Player X has wagered Y tokens. An additional signal is sent to any wager award control that identifies what wagers have been made, how much has been wagered, and what the theoretic awards could be based on that wager.
  • the game play capability for that player was inactive.
  • the same event happens between the coin acceptor, the processor and the credit display and award tracking, with the command now being to display two available credits.
  • the processor knows not to send a separate activation notice to the Start button.
  • a signal may be sent to the game control function within the main processor to register the amount of the wager.
  • a start button is pressed or a start function initiated by a dealer or automated virtual dealer
  • a signal is sent to the main processor which then sends a signal to the game processor to initiate play of a game.
  • Signals are sent from the main processor to the table game control system and the game play (which may in more automated systems be driven by a random number generator) to perform the tasks necessary to effect a play event. This could be as little as indicating to a dealer that the game is ready for dealing.
  • the cards or the random number generator provides the results to or within the main processor (or a more local game table controller or pit game controller) and the main processor or other processor identifies the cards or other symbols to be provided in the play of the game (or which symbols have been dealt, by reading values, suits, ranks, etc. of cards dealt) and determines the existence of the status of the wager (win, lose or draw).
  • the processor In the event that the processor is used to determine whether a winning event has occurred, the processor then signals the credit display to indicate the total amount of credits won and commands the system to display or otherwise identify any winning alerts and the like.
  • the individual peripherals send signals to the main processor and the main processor provides specific commands to the various peripherals that specific functions are to be performed.
  • peripherals there are many different elements of the gaming system that can be considered as peripherals.
  • Another listing of these components would include 9 in addition to those described above) are multimedia processing, stepper motor control, random number generation, card reading, hand reading (ranking), player strategy review/analysis, I/O detection and response, audio signals, video signals, currency handling, coin acceptors, bill acceptors, paperless transactions, ticket-in and ticket-out crediting, security systems, player accounting functions, door locks, player input (e.g., button controls, joy sticks, touch screens, service calls, etc.) and any other functions that my be provided on the table gaming apparatus.
  • multimedia processing stepper motor control, random number generation, card reading, hand reading (ranking), player strategy review/analysis, I/O detection and response, audio signals, video signals, currency handling, coin acceptors, bill acceptors, paperless transactions, ticket-in and ticket-out crediting, security systems, player accounting functions, door locks, player input (e.g., button controls, joy sticks, touch screens, service calls, etc.) and any
  • the units or subcomponents on the gaming table or within the table gaming system can be operated substantially independently of each other, although some interdependencies may exist. In most systems substantially all performance of the peripheries is done only at the command of the gaming control processor or central computer.
  • RTOS real time operating system
  • round counting is one service or data component that can be important to a table.
  • round completion can be important for evaluating rates of play at tables, player rate performance, dealer rate performance, and even disputes over time of completion of hands at different tables or different casinos where priority might be an issue (as in competitive events or qualifying events).
  • Round counting requires some form of signal generation at a table that is indicative of approximate completion of a round and preferably absolute completion of a round. This can be done in a number of ways for signal generation. For example, video cameras can be placed to observe the dealer's hand. When the motions of a dealer or the dealer's cards indicate that the dealer's cards have been removed from the playing area, a signal is sent “round completed” or “dealer's hand removed” or some functional equivalent.
  • a sensor can be placed on the table over which the dealer's cards are placed. It is preferred that this sensor not be as movement limiting as the sensor in U.S. Pat. No. 5,803,808, where cards appear to have to be specifically fitted into at least a right angle abutment with a card reading ability.
  • a sensing system with a relatively flat or slightly indented or slightly raised surface is more desirable.
  • the system could comprise a transparent or translucent panel approximately flush with the table surface that allows light (e.g., ambient light or specially directed wavelengths of light for which a sensor is particularly sensitive) to pass to a sensor.
  • the absence of light in the sensor for a predetermined period of time and/or intervals of time can be the original signals themselves, which are interpreted by an intermediary intelligence on the table that has the time sensing capability for evaluating the signal.
  • the original signals are then time stamped before being forwarded to the gaming intelligence (e.g., game table computer, pit computer, main or central computer so that the signals themselves are time stamped and the receiving intelligence interprets the signals (light sensed/light not sensed and the accompanying time stamping) to determine if a round should be counted.
  • the gaming intelligence e.g., game table computer, pit computer, main or central computer so that the signals themselves are time stamped and the receiving intelligence interprets the signals (light sensed/light not sensed and the accompanying time stamping) to determine if a round should be counted.
  • the signal being sent by the sensor is that light is being received.
  • the dealer's hand has been dealt or during the process of dealing the dealer's hand one-card-at-a-time, the dealer places the dealer's cards over the hole. A signal or state is then sent that light is not being received. If the lack of light signal is of too short a duration (e.g., 1-2 seconds), the receiving intelligence, based on the time stamp for a light admission signal changing to a light blocking signal and back again, will be programmed to interpret this as a non-round event, such as a dealer leaning on the table or a player throwing away cards, or some article being misplaced over the light-sensing system.
  • the intelligence will be programmed to interpret this as a non-round event, such as an inactive table with cards spread over the table and the sensor.
  • the processor receiving the time stamped signal will be programmed to interpret the data on this basis.
  • the processor can poll the signal stamping component on a regular basis or wait for a signal or state change information to be received before it acts.
  • the signal could also be originated by cards being placed in a shuffler and a shuffling process initiated, the shuffler sending a start shuffling signal to the date stamping component on the table.
  • the dealer could even activate or press a button provided on the table, but this would tend to leave the results under the control of the dealer, which could be manipulated by the dealer to improve results on dealer play, or could suffer from forgetfulness.
  • Gaming tables would include typical casino tables such as those used for blackjack (Twenty-One), baccarat, roulette, poker, poker variants (Let It Ride® poker, Three-Card Poker® game, Caribbean Stud® poker, etc.), craps, and the like. These latter systems, unless they are completely electronic without any physical implementation (such as physical playing cards, dice, spinning wheel, drop ball, etc.) will need sensing and/or reading equipment (e.g., card reading for suits and/or rank, bet reading sensors, ball position sensors, dice reading sensors, player card readers, dealer input sensors, player input systems, and the like. These would be the peripherals in the table systems.
  • typical casino tables such as those used for blackjack (Twenty-One), baccarat, roulette, poker, poker variants (Let It Ride® poker, Three-Card Poker® game, Caribbean Stud® poker, etc.), craps, and the like.
  • These latter systems unless they are completely electronic without any physical implementation (such as physical playing cards, dice, spinning wheel, drop ball, etc.) will
  • newer capabilities are enabled such as moisture detection (e.g., for spilled drinks), smoke detection, infrared ink detection (to avoid card marking), shuffler operation, dealer shoe operation, discard rack operation, jackpot meters, side bet detectors, and the like.
  • time stamping is meant any relatable time entry, such as just time, all the way to time and date.
  • the “time” does not even have to be actual local or standard time of day, but can be time from when machines are turned on or when shifts begin, or when dealing starts at a table, etc.
  • the information may be sent to a data bank or information repository directly from each table (e.g., on a network directly from tables, through a table computer, or central networked computer, etc.).
  • the information need not even be directly sent to a specific repository, but can be placed on a network as information status (as well as a specific signal or data package) such that when it is received by the data bank or storage repository, the recipient memory device will appropriately log-in and/or store the data or signal that is received from each table.
  • This information can be analyzed and stored in real time or stored for later analysis upon command or upon regular intervals.
  • a G-Mod is a game module that supports specific functions on the gaming table or associated peripherals (e.g., shuffler). To understand a G-mod and its function, is desirable to understand the concept of operative control among processing units. It is believed that existing systems perform by a single main processor sending commands to peripherals to perform specific functions, and that date stamping is usually done at point of receipt of the data by a gaming processor, especially the main processor. For purposes of discussion, the initial main emphasis of the description will be directed towards the performance of casino table card games with a live dealer, but the system is equally applicable to the use of a fully automated (live dealer-less) gaming apparatus. This emphasis is not intended to narrow the scope of the invention, but is rather intended to simplify the description.
  • a G-Mod is an electronic hardware element that performs its task independent of direct control from a main processor.
  • the device may have sufficient intelligence to read data and make a decision on data, but its primary task is not to receive and obey commands. For example, it may receive status signals or status data and determine whether it is to respond to the signal or data, but is not commanded by the data. Equally importantly, it is capable of sending out status data and/or signal data.
  • a central processor evaluates this information and commands another element to perform a procedure or initiates a sequential event, including an analytic review of data or providing an alarm or message/report relating to analysis of the data or in response to identification of meaningful data. For example, a coin or token or chip is deposited in the coin receptor or in a bet sensing region viewed by cameras or detectors, the coin is sensed in the coin acceptor and a signal is sent to the main processor that a coin has been received.
  • the main processor receives this information and sends a signal to the credit display or other accounting function to indicate that one credit should be displayed or provides ongoing information on playing wagering that Player X has wagered Y tokens. An additional signal is sent to any wager award control that identifies what wagers have been made, how much has been wagered, and what the theoretic awards could be based on that wager.
  • the game play capability for that player was inactive.
  • the same event happens between the coin acceptor, the processor and the credit display and award tracking, with the command now being to display two available credits.
  • the processor knows not to send a separate activation notice to the Start button.
  • a signal may be sent to the game control function within the main processor to register the amount of the wager.
  • a start button is pressed or a start function initiated by a dealer or automated virtual dealer
  • a signal is sent to the main processor which then sends a signal to the game processor to initiate play of a game.
  • Signals are sent from the main processor to the table game control system and the game play (which may in more automated systems be driven by a random number generator) to perform the tasks necessary to effect a play event. This could be as little as indicating to a dealer that the game is ready for dealing.
  • the cards or the random number generator provides the results to or within the main processor (or a more local game table controller or pit game controller) and the main processor or other processor identifies the cards or other symbols to be provided in the play of the game (or which symbols have been dealt, by reading values, suits, ranks, etc. of cards dealt) and determines the existence of the status of the wager (win, lose or draw).
  • the processor In the event that the processor is used to determine whether a winning event has occurred, the processor then signals the credit display to indicate the total amount of credits won and commands the system to display or otherwise identify any winning alerts and the like.
  • the individual peripherals send signals to the main processor and the main processor provides specific commands to the various peripherals that specific functions are to be performed.
  • peripherals there are many different elements of the gaming system that can be considered as peripherals.
  • Another listing of these components would include 9 in addition to those described above) are multimedia processing, stepper motor control, random number generation, card reading, hand reading (ranking), player strategy review/analysis, I/O detection and response, audio signals, video signals, currency handling, coin acceptors, bill acceptors, paperless transactions, ticket-in and ticket-out crediting, security systems, player accounting functions, door locks, player input (e.g., button controls, joy sticks, touch screens, service calls, etc.) and any other functions that my be provided on the table gaming apparatus.
  • Some of the G-Mods may have more than one function associated with them, and some may have no game function to them, but only peripheral function.
  • the units or subcomponents on the gaming table or within the table gaming system can be operated substantially independently of each other, although some interdependencies may exist. In most systems substantially all performance of the peripheries is done only at the command of the gaming control processor or central computer.
  • a blackjack gaming table that is equipped with a round counting sensor (which may not be a G-Mod) and G-Mod may also be equipped with a sensor at the output of the dealing shoe for counting cards dispensed from the shoe.
  • This information can be used in combination with the round counting information to deduce the number of cards dealt in a given round of play. If you count the number (and possibly value) or cards coming out of the shoe, you can also determine or estimate the number of players at the table. If there are bet present sensors (and associated or non-associated G-Mod(s)) for the bet sensors, the number of hands played per round of play (e.g., the number of players) can be determined.
  • Each G-Mod is collecting, date stamping and transmitting data as the data is collected from the table to a central database, but none of the G-Mods are in communication with each other, and the database does not issue commands to the G-Mods.
  • each G-Mod is a freestanding microprocessor that runs independently of the any other intelligence.
  • a card swipe module could be added to the table system, with an associated G-Mod.
  • This G-Mod could not only transmit time-stamped data to the data repository, but could also transmit player I.D. information to the player tracking system residing in the casino computer system or dealer I.D. to link a specific dealer to a specific table and to evaluate the specific dealer.
  • One or more sensors could sense information transmitted through an output data port of a shuffler, for example, or a keypad control used to issue commands to a shuffler.
  • the shuffler would have its own G-Mod and would be capable of transmitting date stamped information such as number of cards per hand, number of hands per hour, number of cards dispensed per unit time, number of player positions occupied, number of cards re-fed into a continuous shuffler per unit of time, number of promotional cards dispensed per unit of time, bonus awards granted at a certain time, and the like.
  • This information could be collected in a central database, data bank or information repository (e.g., any electronic memory or storage system).
  • a bet interface module could also be provided.
  • Known techniques for measuring wagers include optical and metal detection type bet present sensors for fixed bets, and camera imaging, radio frequency/identification technology and the like for measuring the amount of the bet, as well as the presence of the bet. Outputs from these measurement devices are fed through a dedicated G-Mod and the data is date stamped and delivered to the central data depository.
  • Another possible G-Mod could control a card reading camera located in either the card shuffler, the dealing shoe, the discard tray or combinations of the above. Information about the specific cards dealt to each player could be obtained by feeding date-stamped information about cards dealt and returned.
  • the G-Mod sends date-stamped information to the database and an algorithm residing in the same computer or house computer uses this information as well as round counting and betting information to determine the composition of a hand of blackjack, for example.
  • Another G-Mod might be in communication with an identification system for tracking the movement of employees in and out of the pit, or more preferably when the dealers arrive at and leave the table. This information could be collected and reported along with rounds of play per hour to determine which dealers deal the most hands in a given period of time.
  • a sensor and associated G-Mod can record the number of spins of the wheel in a unit of time, for example. This information could be associated with the player swipe card information from another G-Mod by merely comparing the time stamping of the data to determine how long a particular player stayed at a table.
  • a sensor or G-Mod may “listen in” to communication to the reader board on a roulette table, and send that information to a data bank, so that a distinct sensor is not needed to read the position of the ball separate from existing components.
  • the G-Mod's are in communication (e.g., direct communication or command, although data or signal transmission from one G-Mod may pass through the communication network of one or more other G-Mods, without the signal being a command to any other G-Mod) with other G-Mods on the same gaming table.
  • the data repository does not issue commands to the G-Mods.
  • the central database merely organizes the data in a manner that allows for easy access by external or other associated computers or another application program residing on the same computer as the database.
  • the G-Mod's are self-executing and do not require central intelligence to perform their individual functions. The data may be analyzed and used to make decisions about comping players, promoting pit personnel, closing and opening tables, determining optimal betting limits for given periods of time and other important managerial functions.
  • Each G-Mod may be in data communication with an interface device such as one or more specialized circuit boards to allow the data from multiple G-Mod's to be fed into a standard port of the computer that serves as the data repository.
  • an interface device such as one or more specialized circuit boards to allow the data from multiple G-Mod's to be fed into a standard port of the computer that serves as the data repository.
  • a software interface can be provided to directly access data in the data repository and to manipulate and organize the data so that it can be outputted onto a display, written report or data stream so that the data can be interpreted.
  • the operator can obtain reports of rounds of play per hour per actual table, per pit, or per property, as determined by the user.
  • the information in the form of a data stream may be further analyzed.
  • the data is fed into a host computer or can be analyzed in the same computer system where the database and interface resides.
  • the data from one or more of the round counting module, the shoe sensor, the card swipe, card reading module, the shuffler data port sensor, and the bet interfaces can be used to create a report of rounds played per unit of time, the number of players at the table per unit of time, the number of hands played at each round, the maximum bet per player in a given unit of time, the average bet per player in a unit of time, the number of shuffles per unit of time, the number of cards removed from and placed into the shuffler in a unit of time, hand composition and other information considered important to the casino manager.
  • the casino operator can choose the modules and resulting data that is most important to them, while saving valuable resources by only purchasing the sensing/data analysis packages they need. For example, one casino might want to reconstruct individual hands, track betting and associate the information with a particular player in a high stakes game, while tracking only rounds and the identification of the employees on low-stakes games.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Casino table card games are provided with sensors for detection of an indicator initiated by a dealer to indicate approximate beginning of or final completion of a round of play of a casino table card game. The signal is read by a table subcomponent that has a time or time/dating capability. The signal is time/date stamped (referred to herein as “Date Stamping” or “date stamping” for simplicity. The date stamped signal is then transmitted from the subcomponent to a processor (e.g., gaming table processor or pit processor or main casino processor and/or central processor for multiple casinos). The data retains its date stamping at least through storage, analysis, data entry or other treatment of the data after transmission away from the table, and the date stamping may or may not be provided by the sensor itself. The system also allows for the date stamping or other status information to be sent to a data bank or repository of information (e.g., security bank or security room) for storage of the information, without necessarily any game-play related function. The data may be processed in real time at this bank or repository, or may me reviewed and analyzed at a later time.

Description

    BACKGROUND OF THE INVENTION
  • 1 Field of the Invention
  • The present invention relates to the field of gaming systems, particularly gaming systems that have elements of play, reward, monetary/credit transactions and/or monitoring that are performed by processing systems, and including casino table card games.
  • 2. Background of the Art
  • Wagering games, such as those played in casinos and card clubs, have traditionally been played with only mechanical implements such as cards, dice, wheels, balls and the like. One of the reasons for this is to make the wagering game open for inspection, including the implements that are used to provide the chance occurrences upon which the wagers are made.
  • The creative mind of players and wagering institutions have devised ways of manipulating implements or calculating probabilities of events that have affected the odds in the favor of the manipulator. Cards have been marked, ‘sleeved’ for timed use, stacked in a deal, bottom dealt, or otherwise altered in characteristics or location to enable cheating. Sophisticated players are able to read decks by counting cards, and have been able to calculate changes in the probability of success at different times in the game of blackjack, altering overall odds more in favor of the player. The use of limited portions of decks, efficient card shuffling devices, restrictions on players' handling of cards, and continuous shuffling devices have alleviated some of the card problems.
  • Dice have been weighted or counterfeited to influence the occurrence of specific values, chips have been switched or amounts altered on the tables in carps. This has been addressed by the presence of many persons in the pit crew that supervise elements of the game and the close surveillance of activities on the table by proximal personnel at the table or distal personnel watching cameras or tapes of activities.
  • Processing equipment and computers have become an increasingly important part of the gaming industry, but the introduction of the technology has been sporadic, inconsistent, and often ill designed. In addition, the direction of improvement in the processing apparatus used in casinos has consistently been heading in the direction that bigger and more powerful is better, attempting to mimic the home computer market. The original processors introduced into the market were hardwired, unique designs that performed all command functions from a central controlling processor or actually performed within a single computer that sent signals to all mechanical operating elements.
  • Traditional gaming devices are based around a main processor unit (which may include a random number generator), an accounting function operatively coupled to the main processor or embedded in the main processor, and more recently a processor or EPROM having stored therein the important gaming functions. In addition, these gaming devices include gaming displays, coin acceptors, player identity recognition, bill validation functions, ticket-in-ticket out controls and the like operatively coupled to the main processor. These casino table gaming devices and systems have been relatively simple and limited in scope, usually consisting of a few executing programs utilizing straight forward interrupt schemes and detection loops for asynchronous events for simple evaluation. There have been a simple external program validation devices that can be coupled to the EPROM or main processor (through a line connection or port) for providing effective regulatory validation of critical gaming functions to preclude unauthorized tampering or modification of the system through software. In addition, an external device validation process for suspicious results or disputes may be validated by simply reading the stored data that has been generated from the table gaming systems and associated with the main processor.
  • Today's trend in gaming devices is towards automation and an increasing utilization of LINUX or personal computer based gaming platforms. Personal computer based platforms are being employed by designers to make use of real time operating systems which allow for multi-threaded/multi-tasking processes and the use of many “off the shelf” device drivers.
  • There are a wide variety of associated devices that can be connected to or serve as part of a gaming machine such as a casino table gaming system. These devices provide gaming features that define or augrnent the game(s) played on the gaming machine. Some examples of these devices are player location or player order indicators, lights, ticket printers, card readers, speakers, bill validators, coin acceptors, display panels, key pads, and button pads. Many of these devices are built into the table or into associated components carried on the table. Often, a number of devices are grouped together in a separate box that is placed on top of the gaming table.
  • U.S. Pat. No. 6,071,190 (Weiss) describes a gaming device security system is disclosed which includes two processing areas linked together and communicating critical gaming functions via a security protocol wherein each transmitted gaming function includes a specific encrypted signature to be decoded and validated before being processed by either processing area. The two processing areas include a first processing area having a dynamic RAM and an open architecture design which is expandable without interfering or accessing critical gaming functions and a second “secure” processing area having a non-alterable memory for the storage of critical gaming functions therein.
  • Casino Table Games (such as blackjack, poker, varietal poker such as Let It Ride® poker, Three Card™ poker and Four-Card™ poker, baccarat, Casino War™ game, also require some security control, and more highly automated systems are being described in the literature and introduced to the marketplace. There are, for example, numerous U.S. Patents assigned to MindPlay LLC (e.g., U.S. Pat. Nos. 6,712,696; 6,688,979; 6,685,568; 6,663,490; 6,652,379; 6,638,161; 6,595,857; 6,579,181; 6,579,180; 6,533,662; 6,530,837; 6,530,836; 6,527,271; 6,520,857; 6,517,436; 6,517,435; and 6,460,848) describe systems and components of systems that are used to more fully automate casino table card games, and especially blackjack. These systems include card recognition devices, bet sensing devices (e.g., chip sensors and counters), software to evaluate the games as and after they are played, and the like.
  • U.S. Pat. No. 5,803,808 (Strisower) describes a device to be utilized in casino gaming that will count the number of “hands” (read “rounds”) of a given card game played per given period of time. The information is used by a database system within the casino to determine theoretical win/loss based upon historical and theoretical outcome data related to probability of winning/losing any given hand and then factoring in the number of hands (rounds) played. Preferably this device is polled by a database system to collect this information. In a preferred embodiment, the device could be utilized with an automatic tracking and information management system. The automatic tracking and information management system (ATMS) automatically determines various player transactions associated with a device in a gaming establishment. The ATMS includes an automatic tracking and management unit (ATMU) which transmits and receives information between all gaming tables in all pit areas and the gaming establishment database system. The ATMU provides for the interactive determination of various transactions within the pit area. Through the automatic tracking and management system the manual paper tracking, activities associated with the pit area are eliminated, thereby freeing pit personnel for other tasks. The device could also be generically connected to any tracking and information system through any standard serial interface.
  • Crown Casinos in Australia has recently provided a device that assists in counting rounds of play by using a card sensing component on a table that responds to the blockage of ambient light into a hole and the forwarding of the sensed data to a central computer. The data is logged in as it is received to indicate a time element associated with each piece of data received.
  • Various other U.S. Patents that include automation enhancing technology for casino table card games include U.S. Pat. Nos. 6,582,301; 6,299,536; 6,165,069; 6,117,012; 6,093,103; 6,039,650; 5,722,893; 5,605,334. As can be seen from these disclosure, the computing structural and component structures of gaming systems follows the traditional format of a main processor driving peripherals, and where one feature demands a significant amount of computing power, two processors may be added, with one processor still tending to be the dominant main processor sending commands to the peripherals. In proposed table systems, peripheral devices (such as a hand sensor or round counter or bet sensor provides the signal and sends the signal to the gaming table processor and/or to a main processor. These signals are sometimes logged in with a time stamp for noting when it was received and/or logged in. The systems in gaming table operations tend to be structured in the same manner, with systems described as comprising a main computer, central computer or the like, and various peripherals such as card readers, chip readers, cameras, lighting elements, shufflers, bet sensors, movement sensors, motion sensors, jackpot incrementers/decrementers, game status indicators (e.g., jackpot registers, blackjack indicators, symbol indicators and the like) and any other elements of the table game. Examples of such systems include method, apparatus and article for verifying card games, such as playing card distribution as described in U.S. Pat. Nos. 6,638,161; 6,595,857; 6,5,79,181; 6,579,180; 6,533,275; 6,530,837; 6,530,836; 6,527,271; 6,520,857; 6,517,436; 6,517,535; and 6,460,848 (the Soltys' patents). Other gaming table systems that operate on the basis of a central programmer commanding peripheral devices (that may or may not have some processing capability of their own) include U.S. Pat. Nos. 6,299,536 and 6,039,650 (Hill); U.S. Pat. No. 5,779,546 (Meissner) which describes touch screens and player entry features at each player position, U.S. Pat. Nos. 6,093,103 and 6,117,012 (McCrea) which describes card sensing systems at each player location as well a card reading shoes; and U.S. Pat. No. 6,126,166 (Lorson) describing a card control and recognition system and method, as represented by claim 1, which is shown directly below. U.S. Pat. No. 6,629,894 (Purton, Dolphin Advanced Technologies, Ltd.) describes a card inspection device including a first loading area adapted to receive one or more decks of playing cards. A drive roller is located adjacent the loading area and positioned to impinge on a card if a card were present in the loading area. The loading area has an exit through which cards are urged, one at a time, by a feed roller. A transport path extends from the loading area exit to a card accumulation area. The transport path is further defined by two pairs of transport rollers, one roller of each pair above the transport path and one roller of each pair below the transport path. A camera is located between the two pairs of transport rollers, and a processor governs the operation of a digital camera and the rollers. A printer produces a record of the device's operation based on an output of the processor, and a portion of the transport path is illuminated by one or more blue LEDs. A printer is also provided as part of the system driven by a central computer.
  • Applicants have found that there are potential issues involved in the method of date stamping provided for and taught by these references and as known to be used in the art. When signals are stamped in by the main computer, this is merely indicative of when the signal arrived. Also by providing the stamping function at the receipt site (such as the main processor, or central gaming location), the information is more easily subject to manipulation or change by an operator. Also, when there is a line breakdown (e.g., some casinos may still use telephone line connections which can be busy or interrupted, or the communication system to the main computer breaks down), the accuracy of the stamping is adversely affected. The value of the data decreases in some necessary transactions and casino oversight if the time data is inaccurate. A gaming system with different architectural structure and informational structure would be desirable if it could reduce these issues.
  • SUMMARY OF THE INVENTION
  • Casino table card games are provided with sensors for detection of an indicator initiated by a dealer to indicate approximate or final completion or beginning of a round of play of a casino table card game. The signal is read by a table subcomponent that has a time/dating capability. The signal is time/date stamped (referred to herein as “Date Stamping” or “date stamping” for simplicity. The date stamped signal is then transmitted from the subcomponent to a processor (e.g., gaming table processor or pit processor or main casino processor and/or central processor for multiple casinos). The data retains its date stamping at least through storage, analysis, data entry or other treatment of the data after transmission away from the table, and the date stamping may or may not be provided by the sensor itself. The system also allows for the date stamping or other status information to be sent to a data bank or repository of information (e.g., security bank or security room) for storage of the information, without necessarily any game-play related function. The data may be processed in real time at this bank or repository, or may me reviewed and analyzed at a later time.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a schematic of casino table card game arrangement with sensor, intermediate date stamping component and subsequent information flow in a casino table card gaming apparatus.
  • FIG. 2 shows a schematic of data transmission in the system of FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a casino card gaming table 2. The Table 2 has a surface 4 with seven player positions 6 (three positions labeled 6), 8 10, 12 and 14 thereon. A hand sensor 16 is provided for the dealer cards 18. The sensor 16 is connected by a communication system (preferably a wire system, but RF or other wireless systems could be used) to a rabbit 22 for the table 2. The rabbit 22 is on a communication line 24 to a data collector (not shown).
  • FIG. 2 shows a schematic of data transmission in the system of FIG. 1.
  • A concept of operative control among processing units should be appreciated to appreciate the performance of the present technology. It is believed that existing systems perform by a single main processor sending commands to peripherals to perform specific functions, and that date stamping is usually done at point of receipt of the data by a gaming processor, especially the main processor. For purposes of discussion, the initial main emphasis of the description will be directed towards the performance of casino table card games with a live dealer, but the system is equally applicable to the use of a fully automated (live dealer-less) gaming apparatus. This emphasis is not intended to narrow the scope of the invention, but is rather intended to simplify the description.
  • In a standard casino table card game, different events are sensed (usually visually by a live dealer and/or combinations of video cameras and personnel who review images from the video cameras and the system provides information from these observations. Where there is automated review of information (provided by manual or automatic input), a central processor evaluates this information and commands another element to perform a procedure or initiates a sequential event, including an analytic review of data or providing an alarm or message/report relating to analysis of the data or in response to identification of meaningful data. For example, a coin or token or chip is deposited in the coin receptor or in a bet sensing region viewed by cameras or detectors, the coin is sensed in the coin acceptor and a signal is sent to the main processor that a coin has been received. The main processor receives this information and sends a signal to the credit display or other accounting function to indicate that one credit should be displayed or provides ongoing information on playing wagering that Player X has wagered Y tokens. An additional signal is sent to any wager award control that identifies what wagers have been made, how much has been wagered, and what the theoretic awards could be based on that wager. Prior to this command from the main processor, the game play capability for that player was inactive. When a second token or coin is inserted, the same event happens between the coin acceptor, the processor and the credit display and award tracking, with the command now being to display two available credits. The processor knows not to send a separate activation notice to the Start button. When the player performs a task that indicates that a wager has been placed and the system identifies this task performance, a signal may be sent to the game control function within the main processor to register the amount of the wager. When the a start button is pressed or a start function initiated by a dealer or automated virtual dealer, a signal is sent to the main processor which then sends a signal to the game processor to initiate play of a game. Signals are sent from the main processor to the table game control system and the game play (which may in more automated systems be driven by a random number generator) to perform the tasks necessary to effect a play event. This could be as little as indicating to a dealer that the game is ready for dealing. The cards or the random number generator provides the results to or within the main processor (or a more local game table controller or pit game controller) and the main processor or other processor identifies the cards or other symbols to be provided in the play of the game (or which symbols have been dealt, by reading values, suits, ranks, etc. of cards dealt) and determines the existence of the status of the wager (win, lose or draw). In the event that the processor is used to determine whether a winning event has occurred, the processor then signals the credit display to indicate the total amount of credits won and commands the system to display or otherwise identify any winning alerts and the like. As can be seen from this analysis, the individual peripherals send signals to the main processor and the main processor provides specific commands to the various peripherals that specific functions are to be performed. There are a couple of concepts that are of interest to consider in this performance. First, a fairly sophisticated and powerful processor is needed to control all of the peripherals, such as a PC grade processor. Second, the processor must order events to send out separate signals to each of the peripherals, slowing down game performance. Any slow down in receipt of data may affect the value and treatment of data, including round counting functions.
  • As noted above, there are many different elements of the gaming system that can be considered as peripherals. Another listing of these components would include 9 in addition to those described above) are multimedia processing, stepper motor control, random number generation, card reading, hand reading (ranking), player strategy review/analysis, I/O detection and response, audio signals, video signals, currency handling, coin acceptors, bill acceptors, paperless transactions, ticket-in and ticket-out crediting, security systems, player accounting functions, door locks, player input (e.g., button controls, joy sticks, touch screens, service calls, etc.) and any other functions that my be provided on the table gaming apparatus.
  • The units or subcomponents on the gaming table or within the table gaming system can be operated substantially independently of each other, although some interdependencies may exist. In most systems substantially all performance of the peripheries is done only at the command of the gaming control processor or central computer.
  • Some game devices such as motors, player identification acceptors, etc., require a real time (RT) operating system (OS) to handle events in a timely fashion. An RTOS operation often adversely effects more traditional OS needs such as multimedia requirements. Ideally, separating the RTOS from the multimedia frees the multimedia system resources. Additionally, separating the multimedia control from the RTOS will eliminate the version dependencies created by coupling unique RTOS to the multimedia OS.
  • As noted earlier, round counting is one service or data component that can be important to a table. For example, round completion can be important for evaluating rates of play at tables, player rate performance, dealer rate performance, and even disputes over time of completion of hands at different tables or different casinos where priority might be an issue (as in competitive events or qualifying events).
  • Round counting requires some form of signal generation at a table that is indicative of approximate completion of a round and preferably absolute completion of a round. This can be done in a number of ways for signal generation. For example, video cameras can be placed to observe the dealer's hand. When the motions of a dealer or the dealer's cards indicate that the dealer's cards have been removed from the playing area, a signal is sent “round completed” or “dealer's hand removed” or some functional equivalent. A sensor can be placed on the table over which the dealer's cards are placed. It is preferred that this sensor not be as movement limiting as the sensor in U.S. Pat. No. 5,803,808, where cards appear to have to be specifically fitted into at least a right angle abutment with a card reading ability. Upright extensions on the card table can interfere with card movement, can interfere with chip movement, can cause accidental disclosure of cards, and are generally undesirable. A sensing system with a relatively flat or slightly indented or slightly raised surface is more desirable. The system could comprise a transparent or translucent panel approximately flush with the table surface that allows light (e.g., ambient light or specially directed wavelengths of light for which a sensor is particularly sensitive) to pass to a sensor. The absence of light in the sensor for a predetermined period of time and/or intervals of time can be the original signals themselves, which are interpreted by an intermediary intelligence on the table that has the time sensing capability for evaluating the signal. The original signals are then time stamped before being forwarded to the gaming intelligence (e.g., game table computer, pit computer, main or central computer so that the signals themselves are time stamped and the receiving intelligence interprets the signals (light sensed/light not sensed and the accompanying time stamping) to determine if a round should be counted.
  • For example, before the dealer's hand is dealt, the signal being sent by the sensor is that light is being received. When the dealer's hand has been dealt or during the process of dealing the dealer's hand one-card-at-a-time, the dealer places the dealer's cards over the hole. A signal or state is then sent that light is not being received. If the lack of light signal is of too short a duration (e.g., 1-2 seconds), the receiving intelligence, based on the time stamp for a light admission signal changing to a light blocking signal and back again, will be programmed to interpret this as a non-round event, such as a dealer leaning on the table or a player throwing away cards, or some article being misplaced over the light-sensing system. Similarly, if the light blocking event is too long (10-15 minutes), the intelligence will be programmed to interpret this as a non-round event, such as an inactive table with cards spread over the table and the sensor. The processor receiving the time stamped signal will be programmed to interpret the data on this basis. The processor can poll the signal stamping component on a regular basis or wait for a signal or state change information to be received before it acts. By having the date stamping on the original signals at the table before being sent to any computer that analyzes or tabulates or permanently stores the information, a good level of quality information is maintained.
  • Particularly in games where batch shuffling is used, such as poker or even single deck blackjack, the signal could also be originated by cards being placed in a shuffler and a shuffling process initiated, the shuffler sending a start shuffling signal to the date stamping component on the table. The dealer could even activate or press a button provided on the table, but this would tend to leave the results under the control of the dealer, which could be manipulated by the dealer to improve results on dealer play, or could suffer from forgetfulness.
  • The application of this technology to gaming tables follows similar architecture and application of design and performance. Gaming tables would include typical casino tables such as those used for blackjack (Twenty-One), baccarat, roulette, poker, poker variants (Let It Ride® poker, Three-Card Poker® game, Caribbean Stud® poker, etc.), craps, and the like. These latter systems, unless they are completely electronic without any physical implementation (such as physical playing cards, dice, spinning wheel, drop ball, etc.) will need sensing and/or reading equipment (e.g., card reading for suits and/or rank, bet reading sensors, ball position sensors, dice reading sensors, player card readers, dealer input sensors, player input systems, and the like. These would be the peripherals in the table systems. Also, newer capabilities are enabled such as moisture detection (e.g., for spilled drinks), smoke detection, infrared ink detection (to avoid card marking), shuffler operation, dealer shoe operation, discard rack operation, jackpot meters, side bet detectors, and the like.
  • The signals and information, when date stamped, do not have to be sent directly, indirectly or even eventually to a main game computer. The term “time stamping” is meant any relatable time entry, such as just time, all the way to time and date. The “time” does not even have to be actual local or standard time of day, but can be time from when machines are turned on or when shifts begin, or when dealing starts at a table, etc. As the date stamping of some information, such as the counting of rounds, number of shuffles per hour, number of rounds per shuffle, and the like do not have any direct and underlying effect on the play of individual rounds of the game, the information may be sent to a data bank or information repository directly from each table (e.g., on a network directly from tables, through a table computer, or central networked computer, etc.). The information need not even be directly sent to a specific repository, but can be placed on a network as information status (as well as a specific signal or data package) such that when it is received by the data bank or storage repository, the recipient memory device will appropriately log-in and/or store the data or signal that is received from each table. This information can be analyzed and stored in real time or stored for later analysis upon command or upon regular intervals.
  • A G-Mod is a game module that supports specific functions on the gaming table or associated peripherals (e.g., shuffler). To understand a G-mod and its function, is desirable to understand the concept of operative control among processing units. It is believed that existing systems perform by a single main processor sending commands to peripherals to perform specific functions, and that date stamping is usually done at point of receipt of the data by a gaming processor, especially the main processor. For purposes of discussion, the initial main emphasis of the description will be directed towards the performance of casino table card games with a live dealer, but the system is equally applicable to the use of a fully automated (live dealer-less) gaming apparatus. This emphasis is not intended to narrow the scope of the invention, but is rather intended to simplify the description. A G-Mod is an electronic hardware element that performs its task independent of direct control from a main processor. The device may have sufficient intelligence to read data and make a decision on data, but its primary task is not to receive and obey commands. For example, it may receive status signals or status data and determine whether it is to respond to the signal or data, but is not commanded by the data. Equally importantly, it is capable of sending out status data and/or signal data.
  • In a standard casino table card game, different events are sensed (usually visually by a live dealer and/or combinations of video cameras and personnel who review images from the video cameras and the system provides information from these observations. Where there is automated review of information (provided by manual or automatic input), a central processor evaluates this information and commands another element to perform a procedure or initiates a sequential event, including an analytic review of data or providing an alarm or message/report relating to analysis of the data or in response to identification of meaningful data. For example, a coin or token or chip is deposited in the coin receptor or in a bet sensing region viewed by cameras or detectors, the coin is sensed in the coin acceptor and a signal is sent to the main processor that a coin has been received. The main processor receives this information and sends a signal to the credit display or other accounting function to indicate that one credit should be displayed or provides ongoing information on playing wagering that Player X has wagered Y tokens. An additional signal is sent to any wager award control that identifies what wagers have been made, how much has been wagered, and what the theoretic awards could be based on that wager. Prior to this command from the main processor, the game play capability for that player was inactive. When a second token or coin is inserted, the same event happens between the coin acceptor, the processor and the credit display and award tracking, with the command now being to display two available credits. The processor knows not to send a separate activation notice to the Start button. When the player performs a task that indicates that a wager has been placed and the system identifies this task performance, a signal may be sent to the game control function within the main processor to register the amount of the wager. When the a start button is pressed or a start function initiated by a dealer or automated virtual dealer, a signal is sent to the main processor which then sends a signal to the game processor to initiate play of a game. Signals are sent from the main processor to the table game control system and the game play (which may in more automated systems be driven by a random number generator) to perform the tasks necessary to effect a play event. This could be as little as indicating to a dealer that the game is ready for dealing. The cards or the random number generator provides the results to or within the main processor (or a more local game table controller or pit game controller) and the main processor or other processor identifies the cards or other symbols to be provided in the play of the game (or which symbols have been dealt, by reading values, suits, ranks, etc. of cards dealt) and determines the existence of the status of the wager (win, lose or draw). In the event that the processor is used to determine whether a winning event has occurred, the processor then signals the credit display to indicate the total amount of credits won and commands the system to display or otherwise identify any winning alerts and the like. As can be seen from this analysis, the individual peripherals send signals to the main processor and the main processor provides specific commands to the various peripherals that specific functions are to be performed. There are a couple of concepts that are of interest to consider in this performance. First, a fairly sophisticated and powerful processor is needed to control all of the peripherals, such as a PC grade processor. Second, the processor must order events to send out separate signals to each of the peripherals, slowing down game performance. Any slow down in receipt of data may affect the value and treatment of data, including round counting functions.
  • As noted above, there are many different elements of the gaming system that can be considered as peripherals. Another listing of these components would include 9 in addition to those described above) are multimedia processing, stepper motor control, random number generation, card reading, hand reading (ranking), player strategy review/analysis, I/O detection and response, audio signals, video signals, currency handling, coin acceptors, bill acceptors, paperless transactions, ticket-in and ticket-out crediting, security systems, player accounting functions, door locks, player input (e.g., button controls, joy sticks, touch screens, service calls, etc.) and any other functions that my be provided on the table gaming apparatus. Some of the G-Mods may have more than one function associated with them, and some may have no game function to them, but only peripheral function.
  • The units or subcomponents on the gaming table or within the table gaming system can be operated substantially independently of each other, although some interdependencies may exist. In most systems substantially all performance of the peripheries is done only at the command of the gaming control processor or central computer.
  • One such format of use of this information would be for each table to have a rabbit receive the original signal from the dealer's card sensor, preferably date stamp the signal and broadcast that signal over a direct line or network to an information repository or data bank. The data bank would periodically (or immediately) evaluate the data in that signal, determine the frequency of rounds being played (e.g., rounds per hour) and enter that formal data into a database. There could be an immediate or periodic review of the data by software so that anomalies can be identified and reported appropriately.
  • Although the present invention has been described largely in terms of a single round-counting module that sends date-stamped information to a central database, other modules also could send data to the same database.
  • For example, a blackjack gaming table that is equipped with a round counting sensor (which may not be a G-Mod) and G-Mod may also be equipped with a sensor at the output of the dealing shoe for counting cards dispensed from the shoe. This information can be used in combination with the round counting information to deduce the number of cards dealt in a given round of play. If you count the number (and possibly value) or cards coming out of the shoe, you can also determine or estimate the number of players at the table. If there are bet present sensors (and associated or non-associated G-Mod(s)) for the bet sensors, the number of hands played per round of play (e.g., the number of players) can be determined.
  • Each G-Mod is collecting, date stamping and transmitting data as the data is collected from the table to a central database, but none of the G-Mods are in communication with each other, and the database does not issue commands to the G-Mods. In effect, each G-Mod is a freestanding microprocessor that runs independently of the any other intelligence.
  • A card swipe module could be added to the table system, with an associated G-Mod. This G-Mod could not only transmit time-stamped data to the data repository, but could also transmit player I.D. information to the player tracking system residing in the casino computer system or dealer I.D. to link a specific dealer to a specific table and to evaluate the specific dealer.
  • One or more sensors could sense information transmitted through an output data port of a shuffler, for example, or a keypad control used to issue commands to a shuffler. The shuffler would have its own G-Mod and would be capable of transmitting date stamped information such as number of cards per hand, number of hands per hour, number of cards dispensed per unit time, number of player positions occupied, number of cards re-fed into a continuous shuffler per unit of time, number of promotional cards dispensed per unit of time, bonus awards granted at a certain time, and the like. This information could be collected in a central database, data bank or information repository (e.g., any electronic memory or storage system).
  • A bet interface module could also be provided. Known techniques for measuring wagers include optical and metal detection type bet present sensors for fixed bets, and camera imaging, radio frequency/identification technology and the like for measuring the amount of the bet, as well as the presence of the bet. Outputs from these measurement devices are fed through a dedicated G-Mod and the data is date stamped and delivered to the central data depository.
  • Another possible G-Mod could control a card reading camera located in either the card shuffler, the dealing shoe, the discard tray or combinations of the above. Information about the specific cards dealt to each player could be obtained by feeding date-stamped information about cards dealt and returned. In one form of the invention, the G-Mod sends date-stamped information to the database and an algorithm residing in the same computer or house computer uses this information as well as round counting and betting information to determine the composition of a hand of blackjack, for example.
  • Another G-Mod might be in communication with an identification system for tracking the movement of employees in and out of the pit, or more preferably when the dealers arrive at and leave the table. This information could be collected and reported along with rounds of play per hour to determine which dealers deal the most hands in a given period of time.
  • In a roulette application, a sensor and associated G-Mod can record the number of spins of the wheel in a unit of time, for example. This information could be associated with the player swipe card information from another G-Mod by merely comparing the time stamping of the data to determine how long a particular player stayed at a table. A sensor or G-Mod may “listen in” to communication to the reader board on a roulette table, and send that information to a data bank, so that a distinct sensor is not needed to read the position of the ball separate from existing components.
  • It is important to note that none of the G-Mod's are in communication (e.g., direct communication or command, although data or signal transmission from one G-Mod may pass through the communication network of one or more other G-Mods, without the signal being a command to any other G-Mod) with other G-Mods on the same gaming table. Also, the data repository does not issue commands to the G-Mods. The central database merely organizes the data in a manner that allows for easy access by external or other associated computers or another application program residing on the same computer as the database. In this respect, the G-Mod's are self-executing and do not require central intelligence to perform their individual functions. The data may be analyzed and used to make decisions about comping players, promoting pit personnel, closing and opening tables, determining optimal betting limits for given periods of time and other important managerial functions.
  • Each G-Mod may be in data communication with an interface device such as one or more specialized circuit boards to allow the data from multiple G-Mod's to be fed into a standard port of the computer that serves as the data repository.
  • A software interface can be provided to directly access data in the data repository and to manipulate and organize the data so that it can be outputted onto a display, written report or data stream so that the data can be interpreted. In one preferred software interface program, the operator can obtain reports of rounds of play per hour per actual table, per pit, or per property, as determined by the user. The information in the form of a data stream may be further analyzed. In one example, the data is fed into a host computer or can be analyzed in the same computer system where the database and interface resides. For example, the data from one or more of the round counting module, the shoe sensor, the card swipe, card reading module, the shuffler data port sensor, and the bet interfaces can be used to create a report of rounds played per unit of time, the number of players at the table per unit of time, the number of hands played at each round, the maximum bet per player in a given unit of time, the average bet per player in a unit of time, the number of shuffles per unit of time, the number of cards removed from and placed into the shuffler in a unit of time, hand composition and other information considered important to the casino manager.
  • Because all of the G-Mod's work independently, the casino operator can choose the modules and resulting data that is most important to them, while saving valuable resources by only purchasing the sensing/data analysis packages they need. For example, one casino might want to reconstruct individual hands, track betting and associate the information with a particular player in a high stakes game, while tracking only rounds and the identification of the employees on low-stakes games.
  • By using a modular approach to data collection, only the equipment and reports that are wanted can be provided at the lowest possible cost. Since none of the G-Mod's are in command communication with one-another, it is not necessary to rewrite any code when additional modules are added.
  • All of the apparatus, devices and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the apparatus, devices and methods of this invention have been described in terms of both generic descriptions and preferred embodiments, it will be apparent to those skilled in the art that variations may be applied to the apparatus, devices and methods described herein without departing from the concept and scope of the invention. More specifically, it will be apparent that certain elements, components, steps, and sequences that are functionally related to the preferred embodiments may be substituted for the elements, components, steps, and sequences described and/or claimed herein while the same of similar results would be achieved. All such similar substitutions and modifications apparent to those skilled in the art are deemed to be within the scope and concept of the invention as defined by the appended claims.

Claims (16)

1. A casino table card gaming system in which a message is communicated from a sensor without date stamping to a first component that date stamps the signal and forwards the date stamped signal to a memory component that stores the date stamped signal, the system comprising a casino table, a sensor that sends an undated signal, and the first component.
2. The system of claim 1 wherein the sensor is a light sensor.
3. The system of claim 1 wherein the first component comprises a chipboard.
4. The system of claim 1 wherein the first component does not store signals or data contained in the signals after date stamping and forwarding the signals.
5. The system of claim 2 wherein the first component does not store signals.
6. The system of claim 3 wherein the first component does not store signals.
7. The system of claim 2 wherein the sensor detects ambient light.
8. The system of claim 1 wherein date stamped signals are received by a central computer that creates data relating to counting of rounds and a rate of rounds for at least one of a table and a dealer.
9. A method of counting rounds of cards played at a casino wagering table comprising automatically providing an original signal indicative of an end of a round or beginning of the round, sending that signal without date stamping thereon to a first component on the table, the component date stamping the signal and then forwarding a date stamped signal to a memory component.
10. The method of claim 9 wherein the memory component provides stored signal information to a processor that interprets received date stamped signals to compute a number of rounds played over a period of time, the time being based upon use of the date stamping received.
11. The method of claim 9 wherein the original signal contains no indication of date or time thereon.
12. The method of claim 9 wherein the original signal is provided by an ambient light detector indicating relative amounts of light detected.
13. The method of claim 12 wherein the relative amount of light relates to light blockage or light availability to the detector.
14. The method of claim 10 wherein the processor determines end of round events based at least in part upon evaluation of a time component in date stamped data it receives.
15. A hardware component on a casino card able that receives signals without time stamped information thereon, adds time stamped information to the signals, and forwards the time stamped signal to a memory storage component.
16. The hardware component of claim 15 wherein the hardware component is constructed so that it cannot store time stamped signals after forwarding the time stamped signals.
US10/880,410 2003-07-17 2004-06-28 Casino table gaming system with round counting system Abandoned US20050288084A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US10/880,410 US20050288084A1 (en) 2004-06-28 2004-06-28 Casino table gaming system with round counting system
US10/920,776 US20050288085A1 (en) 2004-06-28 2004-08-18 Dealer identification system
US10/954,152 US20050113166A1 (en) 2003-07-17 2004-09-28 Discard rack with card reader for playing cards
US10/957,877 US20050288086A1 (en) 2004-06-28 2004-10-04 Hand count methods and systems for casino table games
US10/958,208 US7407438B2 (en) 2003-07-17 2004-10-04 Modular dealing shoe for casino table card games
US10/958,209 US7434805B2 (en) 2003-07-17 2004-10-04 Intelligent baccarat shoe
US11/881,432 US20070267812A1 (en) 2003-07-17 2007-07-27 Discard rack with card reader for playing cards
US12/221,607 US9289677B2 (en) 2003-07-17 2008-08-04 Modular dealing shoe for casino table card games
US12/287,979 US20090091078A1 (en) 2003-07-17 2008-10-14 Intelligent baccarat shoe
US12/717,021 US20100167826A1 (en) 2003-07-17 2010-03-03 Discard rack with card reader for playing cards
US13/542,512 US20120283025A1 (en) 2003-07-17 2012-07-05 Method of decommissioning cards
US14/730,709 US9452349B2 (en) 2003-07-17 2015-06-04 Modular dealing shoe for casino table card games

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/880,410 US20050288084A1 (en) 2004-06-28 2004-06-28 Casino table gaming system with round counting system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/880,408 Continuation-In-Part US20050288083A1 (en) 2001-09-28 2004-06-28 Distributed intelligent data collection system for casino table games
US10/915,914 Continuation-In-Part US7264241B2 (en) 2003-07-17 2004-08-10 Intelligent baccarat shoe

Related Child Applications (8)

Application Number Title Priority Date Filing Date
US10/622,388 Continuation-In-Part US7278923B2 (en) 2003-07-17 2003-07-17 Smart discard rack for playing cards
US10/880,408 Continuation-In-Part US20050288083A1 (en) 2001-09-28 2004-06-28 Distributed intelligent data collection system for casino table games
US10/915,914 Continuation-In-Part US7264241B2 (en) 2003-07-17 2004-08-10 Intelligent baccarat shoe
US10/920,776 Continuation-In-Part US20050288085A1 (en) 2004-06-28 2004-08-18 Dealer identification system
US10/954,152 Continuation-In-Part US20050113166A1 (en) 2003-07-17 2004-09-28 Discard rack with card reader for playing cards
US10/958,209 Continuation-In-Part US7434805B2 (en) 2003-07-17 2004-10-04 Intelligent baccarat shoe
US10/957,877 Continuation-In-Part US20050288086A1 (en) 2004-06-28 2004-10-04 Hand count methods and systems for casino table games
US10/958,208 Continuation-In-Part US7407438B2 (en) 2003-07-17 2004-10-04 Modular dealing shoe for casino table card games

Publications (1)

Publication Number Publication Date
US20050288084A1 true US20050288084A1 (en) 2005-12-29

Family

ID=35506650

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/880,410 Abandoned US20050288084A1 (en) 2003-07-17 2004-06-28 Casino table gaming system with round counting system

Country Status (1)

Country Link
US (1) US20050288084A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005920A1 (en) * 2002-02-05 2004-01-08 Mindplay Llc Method, apparatus, and article for reading identifying information from, for example, stacks of chips
US20050121852A1 (en) * 2003-10-16 2005-06-09 Bally Gaming International, Inc. Method, apparatus and article for determining an initial hand in a playing card game, such as blackjack or baccarat
US20060009292A1 (en) * 2004-07-10 2006-01-12 Tan Hsiao M Electric gambling machine for dealing cards randomly
US20070087843A1 (en) * 2005-09-09 2007-04-19 Steil Rolland N Game phase detector
US20090054161A1 (en) * 2003-07-17 2009-02-26 Schubert Oliver M Modular dealing shoe for casino table card games
US7686681B2 (en) 2001-06-08 2010-03-30 Igt Systems, methods and articles to facilitate playing card games with selectable odds
US7736236B2 (en) 2003-11-07 2010-06-15 Bally Gaming International, Inc. Method, apparatus and article for evaluating card games, such as blackjack
US7753798B2 (en) 2003-09-05 2010-07-13 Bally Gaming International, Inc. Systems, methods, and devices for monitoring card games, such as baccarat
US7753779B2 (en) 2006-06-16 2010-07-13 Bally Gaming, Inc. Gaming chip communication system and method
US7771272B2 (en) 2004-04-15 2010-08-10 Bally Gaming, Inc. Systems and methods for monitoring activities on a gaming table
US7770893B2 (en) 2001-02-21 2010-08-10 Bally Gaming, Inc. Method, apparatus and article for evaluating card games, such as blackjack
US7905784B2 (en) 2001-02-21 2011-03-15 Bally Gaming International, Inc. Method, apparatus and article for evaluating card games, such as blackjack
US7967682B2 (en) 2006-04-12 2011-06-28 Bally Gaming, Inc. Wireless gaming environment
US8038153B2 (en) 2006-05-23 2011-10-18 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games
US8052519B2 (en) 2006-06-08 2011-11-08 Bally Gaming, Inc. Systems, methods and articles to facilitate lockout of selectable odds/advantage in playing card games
US8100753B2 (en) 2006-05-23 2012-01-24 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with selectable odds
US8192277B2 (en) 2006-08-17 2012-06-05 Bally Gaming, Inc. Systems, methods and articles to enhance play at gaming tables with bonuses
US8192283B2 (en) 2009-03-10 2012-06-05 Bally Gaming, Inc. Networked gaming system including a live floor view module
US8272945B2 (en) 2007-11-02 2012-09-25 Bally Gaming, Inc. Game related systems, methods, and articles that combine virtual and physical elements
US8285034B2 (en) 2009-08-26 2012-10-09 Bally Gaming, Inc. Apparatus, method and article for evaluating a stack of objects in an image
US8342932B2 (en) 2005-09-12 2013-01-01 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with intermediary playing card receiver
US8342533B2 (en) 2005-09-12 2013-01-01 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with multi-compartment playing card receivers
US8366542B2 (en) 2008-05-24 2013-02-05 Bally Gaming, Inc. Networked gaming system with enterprise accounting methods and apparatus
US8366109B2 (en) 2006-04-12 2013-02-05 Bally Gaming, Inc. System and method to handle playing cards, employing elevator mechanism
US8550464B2 (en) 2005-09-12 2013-10-08 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with selectable odds
US8613655B2 (en) 2008-04-30 2013-12-24 Bally Gaming, Inc. Facilitating group play with multiple game devices
US8647191B2 (en) 2006-09-26 2014-02-11 Bally Gaming, Inc. Resonant gaming chip identification system and method
US8651486B2 (en) 2005-02-14 2014-02-18 Shfl Entertainment, Inc. Apparatuses for providing hands of playing cards with differential hand count capability
US20140370955A1 (en) * 2012-10-18 2014-12-18 Michael Pertgen Method, system, and device for generating a current game display
US8998692B2 (en) 2006-06-21 2015-04-07 Bally Gaming, Inc. Systems, methods and articles to facilitate delivery of sets or packets of playing cards
US9092944B2 (en) 2008-04-30 2015-07-28 Bally Gaming, Inc. Coordinating group play events for multiple game devices
US9165420B1 (en) 2007-11-13 2015-10-20 Genesis Gaming Solutions, Inc. Bet spot indicator on a gaming table
US9174114B1 (en) 2007-11-13 2015-11-03 Genesis Gaming Solutions, Inc. System and method for generating reports associated with casino table operation
US9339723B2 (en) 2007-06-06 2016-05-17 Bally Gaming, Inc. Casino card handling system with game play feed to mobile device
US9406194B2 (en) 2008-04-30 2016-08-02 Bally Gaming, Inc. Method and system for dynamically awarding bonus points
US10046230B1 (en) * 2012-10-01 2018-08-14 Genesis Gaming Solutions, Inc. Tabletop insert for gaming table
US10242525B1 (en) 2007-11-13 2019-03-26 Genesis Gaming Solutions, Inc. System and method for casino table operation

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224712A (en) * 1991-03-01 1993-07-06 No Peek 21 Card mark sensor and methods for blackjack
US5362053A (en) * 1989-12-04 1994-11-08 Tech Art, Inc. Card reader for blackjack table
US5470079A (en) * 1994-06-16 1995-11-28 Bally Gaming International, Inc. Game machine accounting and monitoring system
US5586766A (en) * 1994-05-13 1996-12-24 Casinovations, Inc. Blackjack game system and methods
US5586936A (en) * 1994-09-22 1996-12-24 Mikohn Gaming Corporation Automated gaming table tracking system and method therefor
US5605334A (en) * 1995-04-11 1997-02-25 Mccrea, Jr.; Charles H. Secure multi-site progressive jackpot system for live card games
US5613912A (en) * 1995-04-05 1997-03-25 Harrah's Club Bet tracking system for gaming tables
US5655961A (en) * 1994-10-12 1997-08-12 Acres Gaming, Inc. Method for operating networked gaming devices
US5722893A (en) * 1995-10-17 1998-03-03 Smart Shoes, Inc. Card dispensing shoe with scanner
US5779546A (en) * 1997-01-27 1998-07-14 Fm Gaming Electronics L.P. Automated gaming system and method of automated gaming
US5788574A (en) * 1995-02-21 1998-08-04 Mao, Inc. Method and apparatus for playing a betting game including incorporating side betting which may be selected by a game player
US5803808A (en) * 1995-08-18 1998-09-08 John M. Strisower Card game hand counter/decision counter device
US5919090A (en) * 1995-09-14 1999-07-06 Grips Electronic Gmbh Apparatus and method for data gathering in games of chance
US6039650A (en) * 1995-10-17 2000-03-21 Smart Shoes, Inc. Card dispensing shoe with scanner apparatus, system and method therefor
US6071190A (en) * 1997-05-21 2000-06-06 Casino Data Systems Gaming device security system: apparatus and method
US6117012A (en) * 1995-04-11 2000-09-12 Mccrea, Jr.; Charles H. Jackpot system for live card games based upon game play wagering and method
US6126166A (en) * 1996-10-28 2000-10-03 Advanced Casino Technologies, Inc. Card-recognition and gaming-control device
US6165069A (en) * 1998-03-11 2000-12-26 Digideal Corporation Automated system for playing live casino table games having tabletop changeable playing card displays and monitoring security features
US6267671B1 (en) * 1999-02-12 2001-07-31 Mikohn Gaming Corporation Game table player comp rating system and method therefor
US20010036866A1 (en) * 1999-10-06 2001-11-01 International Game Technology Standard peripheral communications
US20020107067A1 (en) * 2000-01-05 2002-08-08 International Gaming Technology Slot reel controller as a peripheral device
US6446864B1 (en) * 1999-01-29 2002-09-10 Jung Ryeol Kim System and method for managing gaming tables in a gaming facility
US6460848B1 (en) * 1999-04-21 2002-10-08 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6582301B2 (en) * 1995-10-17 2003-06-24 Smart Shoes, Inc. System including card game dispensing shoe with barrier and scanner, and enhanced card gaming table, enabling waging by remote bettors
US6629894B1 (en) * 1999-02-24 2003-10-07 Dolphin Advanced Technologies Pty Ltd. Inspection of playing cards
US6638161B2 (en) * 2001-02-21 2003-10-28 Mindplay Llc Method, apparatus and article for verifying card games, such as playing card distribution
US6652379B2 (en) * 2001-01-04 2003-11-25 Mindplay Llc Method, apparatus and article for verifying card games, such as blackjack
US6685568B2 (en) * 2001-02-21 2004-02-03 Mindplay Llc Method, apparatus and article for evaluating card games, such as blackjack
US20050012270A1 (en) * 2003-07-17 2005-01-20 Shuffle Master, Inc. Intelligent baccarat shoe

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362053A (en) * 1989-12-04 1994-11-08 Tech Art, Inc. Card reader for blackjack table
US5224712A (en) * 1991-03-01 1993-07-06 No Peek 21 Card mark sensor and methods for blackjack
US5586766A (en) * 1994-05-13 1996-12-24 Casinovations, Inc. Blackjack game system and methods
US5470079A (en) * 1994-06-16 1995-11-28 Bally Gaming International, Inc. Game machine accounting and monitoring system
US5586936A (en) * 1994-09-22 1996-12-24 Mikohn Gaming Corporation Automated gaming table tracking system and method therefor
US5655961A (en) * 1994-10-12 1997-08-12 Acres Gaming, Inc. Method for operating networked gaming devices
US5788574A (en) * 1995-02-21 1998-08-04 Mao, Inc. Method and apparatus for playing a betting game including incorporating side betting which may be selected by a game player
US5613912A (en) * 1995-04-05 1997-03-25 Harrah's Club Bet tracking system for gaming tables
US5605334A (en) * 1995-04-11 1997-02-25 Mccrea, Jr.; Charles H. Secure multi-site progressive jackpot system for live card games
US6117012A (en) * 1995-04-11 2000-09-12 Mccrea, Jr.; Charles H. Jackpot system for live card games based upon game play wagering and method
US6093103A (en) * 1995-04-11 2000-07-25 Mccrea, Jr.; Charles H. Secure multi-site progressive jackpot system for live card games
US5803808A (en) * 1995-08-18 1998-09-08 John M. Strisower Card game hand counter/decision counter device
US5919090A (en) * 1995-09-14 1999-07-06 Grips Electronic Gmbh Apparatus and method for data gathering in games of chance
US6039650A (en) * 1995-10-17 2000-03-21 Smart Shoes, Inc. Card dispensing shoe with scanner apparatus, system and method therefor
US5722893A (en) * 1995-10-17 1998-03-03 Smart Shoes, Inc. Card dispensing shoe with scanner
US6299536B1 (en) * 1995-10-17 2001-10-09 Smart Shoes, Inc. Card dispensing shoe with scanner apparatus, system and method therefor
US6582301B2 (en) * 1995-10-17 2003-06-24 Smart Shoes, Inc. System including card game dispensing shoe with barrier and scanner, and enhanced card gaming table, enabling waging by remote bettors
US6126166A (en) * 1996-10-28 2000-10-03 Advanced Casino Technologies, Inc. Card-recognition and gaming-control device
US5779546A (en) * 1997-01-27 1998-07-14 Fm Gaming Electronics L.P. Automated gaming system and method of automated gaming
US6071190A (en) * 1997-05-21 2000-06-06 Casino Data Systems Gaming device security system: apparatus and method
US6165069A (en) * 1998-03-11 2000-12-26 Digideal Corporation Automated system for playing live casino table games having tabletop changeable playing card displays and monitoring security features
US6446864B1 (en) * 1999-01-29 2002-09-10 Jung Ryeol Kim System and method for managing gaming tables in a gaming facility
US6267671B1 (en) * 1999-02-12 2001-07-31 Mikohn Gaming Corporation Game table player comp rating system and method therefor
US6629894B1 (en) * 1999-02-24 2003-10-07 Dolphin Advanced Technologies Pty Ltd. Inspection of playing cards
US6533662B2 (en) * 1999-04-21 2003-03-18 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6579181B2 (en) * 1999-04-21 2003-06-17 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6517436B2 (en) * 1999-04-21 2003-02-11 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6517435B2 (en) * 1999-04-21 2003-02-11 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6520857B2 (en) * 1999-04-21 2003-02-18 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6527271B2 (en) * 1999-04-21 2003-03-04 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6530837B2 (en) * 1999-04-21 2003-03-11 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6530836B2 (en) * 1999-04-21 2003-03-11 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6533276B2 (en) * 1999-04-21 2003-03-18 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6460848B1 (en) * 1999-04-21 2002-10-08 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6579180B2 (en) * 1999-04-21 2003-06-17 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6712696B2 (en) * 1999-04-21 2004-03-30 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6688979B2 (en) * 1999-04-21 2004-02-10 Mindplay, Llcc Method and apparatus for monitoring casinos and gaming
US6595857B2 (en) * 1999-04-21 2003-07-22 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US6663490B2 (en) * 1999-04-21 2003-12-16 Mindplay Llc Method and apparatus for monitoring casinos and gaming
US20010036866A1 (en) * 1999-10-06 2001-11-01 International Game Technology Standard peripheral communications
US20020187830A1 (en) * 1999-10-06 2002-12-12 International Gaming Technology Standard peripheral communication
US20020107067A1 (en) * 2000-01-05 2002-08-08 International Gaming Technology Slot reel controller as a peripheral device
US6652379B2 (en) * 2001-01-04 2003-11-25 Mindplay Llc Method, apparatus and article for verifying card games, such as blackjack
US6638161B2 (en) * 2001-02-21 2003-10-28 Mindplay Llc Method, apparatus and article for verifying card games, such as playing card distribution
US6685568B2 (en) * 2001-02-21 2004-02-03 Mindplay Llc Method, apparatus and article for evaluating card games, such as blackjack
US20050012270A1 (en) * 2003-07-17 2005-01-20 Shuffle Master, Inc. Intelligent baccarat shoe

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905784B2 (en) 2001-02-21 2011-03-15 Bally Gaming International, Inc. Method, apparatus and article for evaluating card games, such as blackjack
US7770893B2 (en) 2001-02-21 2010-08-10 Bally Gaming, Inc. Method, apparatus and article for evaluating card games, such as blackjack
US8016663B2 (en) 2001-06-08 2011-09-13 The United States Playing Card Company Method, apparatus and article for random sequence generation and playing card distribution
US7686681B2 (en) 2001-06-08 2010-03-30 Igt Systems, methods and articles to facilitate playing card games with selectable odds
US20040005920A1 (en) * 2002-02-05 2004-01-08 Mindplay Llc Method, apparatus, and article for reading identifying information from, for example, stacks of chips
US20090054161A1 (en) * 2003-07-17 2009-02-26 Schubert Oliver M Modular dealing shoe for casino table card games
US9289677B2 (en) 2003-07-17 2016-03-22 Bally Gaming, Inc. Modular dealing shoe for casino table card games
US9452349B2 (en) 2003-07-17 2016-09-27 Bally Gaming, Inc. Modular dealing shoe for casino table card games
US8485907B2 (en) 2003-09-05 2013-07-16 Bally Gaming, Inc. Systems, methods, and devices for monitoring card games, such as Baccarat
US7753798B2 (en) 2003-09-05 2010-07-13 Bally Gaming International, Inc. Systems, methods, and devices for monitoring card games, such as baccarat
US20050121852A1 (en) * 2003-10-16 2005-06-09 Bally Gaming International, Inc. Method, apparatus and article for determining an initial hand in a playing card game, such as blackjack or baccarat
US7736236B2 (en) 2003-11-07 2010-06-15 Bally Gaming International, Inc. Method, apparatus and article for evaluating card games, such as blackjack
US7771272B2 (en) 2004-04-15 2010-08-10 Bally Gaming, Inc. Systems and methods for monitoring activities on a gaming table
US20060009292A1 (en) * 2004-07-10 2006-01-12 Tan Hsiao M Electric gambling machine for dealing cards randomly
US8651486B2 (en) 2005-02-14 2014-02-18 Shfl Entertainment, Inc. Apparatuses for providing hands of playing cards with differential hand count capability
US20070087843A1 (en) * 2005-09-09 2007-04-19 Steil Rolland N Game phase detector
US8550464B2 (en) 2005-09-12 2013-10-08 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with selectable odds
US8342932B2 (en) 2005-09-12 2013-01-01 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with intermediary playing card receiver
US8342533B2 (en) 2005-09-12 2013-01-01 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with multi-compartment playing card receivers
US7967682B2 (en) 2006-04-12 2011-06-28 Bally Gaming, Inc. Wireless gaming environment
US9786123B2 (en) 2006-04-12 2017-10-10 Bally Gaming, Inc. Wireless gaming environment
US8870647B2 (en) 2006-04-12 2014-10-28 Bally Gaming, Inc. Wireless gaming environment
US8366109B2 (en) 2006-04-12 2013-02-05 Bally Gaming, Inc. System and method to handle playing cards, employing elevator mechanism
US8408551B2 (en) 2006-04-12 2013-04-02 Bally Gaming, Inc. System and method to handle playing cards, employing elevator mechanism
US8038153B2 (en) 2006-05-23 2011-10-18 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games
US8100753B2 (en) 2006-05-23 2012-01-24 Bally Gaming, Inc. Systems, methods and articles to facilitate playing card games with selectable odds
US8052519B2 (en) 2006-06-08 2011-11-08 Bally Gaming, Inc. Systems, methods and articles to facilitate lockout of selectable odds/advantage in playing card games
US7753779B2 (en) 2006-06-16 2010-07-13 Bally Gaming, Inc. Gaming chip communication system and method
US8998692B2 (en) 2006-06-21 2015-04-07 Bally Gaming, Inc. Systems, methods and articles to facilitate delivery of sets or packets of playing cards
US8192277B2 (en) 2006-08-17 2012-06-05 Bally Gaming, Inc. Systems, methods and articles to enhance play at gaming tables with bonuses
US9514610B2 (en) 2006-09-26 2016-12-06 Bally Gaming, Inc. Resonant gaming chip identification system and method
US8647191B2 (en) 2006-09-26 2014-02-11 Bally Gaming, Inc. Resonant gaming chip identification system and method
US9659461B2 (en) 2007-06-06 2017-05-23 Bally Gaming, Inc. Casino card handling system with game play feed to mobile device
US9339723B2 (en) 2007-06-06 2016-05-17 Bally Gaming, Inc. Casino card handling system with game play feed to mobile device
US10504337B2 (en) 2007-06-06 2019-12-10 Bally Gaming, Inc. Casino card handling system with game play feed
US10008076B2 (en) 2007-06-06 2018-06-26 Bally Gaming, Inc. Casino card handling system with game play feed
US8920236B2 (en) 2007-11-02 2014-12-30 Bally Gaming, Inc. Game related systems, methods, and articles that combine virtual and physical elements
US9613487B2 (en) 2007-11-02 2017-04-04 Bally Gaming, Inc. Game related systems, methods, and articles that combine virtual and physical elements
US8272945B2 (en) 2007-11-02 2012-09-25 Bally Gaming, Inc. Game related systems, methods, and articles that combine virtual and physical elements
US8734245B2 (en) 2007-11-02 2014-05-27 Bally Gaming, Inc. Game related systems, methods, and articles that combine virtual and physical elements
US9165420B1 (en) 2007-11-13 2015-10-20 Genesis Gaming Solutions, Inc. Bet spot indicator on a gaming table
US9889371B1 (en) 2007-11-13 2018-02-13 Genesis Gaming Solutions, Inc. Bet spot indicator on a gaming table
US11538304B1 (en) 2007-11-13 2022-12-27 Genesis Gaming Solutions, Inc System and method for casino table operation
US9174114B1 (en) 2007-11-13 2015-11-03 Genesis Gaming Solutions, Inc. System and method for generating reports associated with casino table operation
US10825288B1 (en) 2007-11-13 2020-11-03 Genesis Gaming Solutions, Inc. System and method for casino table operation
US9511275B1 (en) 2007-11-13 2016-12-06 Genesis Gaming Solutions, Inc. Bet spot indicator on a gaming table
US10242525B1 (en) 2007-11-13 2019-03-26 Genesis Gaming Solutions, Inc. System and method for casino table operation
US9406194B2 (en) 2008-04-30 2016-08-02 Bally Gaming, Inc. Method and system for dynamically awarding bonus points
US9092944B2 (en) 2008-04-30 2015-07-28 Bally Gaming, Inc. Coordinating group play events for multiple game devices
US8613655B2 (en) 2008-04-30 2013-12-24 Bally Gaming, Inc. Facilitating group play with multiple game devices
US8382584B2 (en) 2008-05-24 2013-02-26 Bally Gaming, Inc. Networked gaming system with enterprise accounting methods and apparatus
US8366542B2 (en) 2008-05-24 2013-02-05 Bally Gaming, Inc. Networked gaming system with enterprise accounting methods and apparatus
US8192283B2 (en) 2009-03-10 2012-06-05 Bally Gaming, Inc. Networked gaming system including a live floor view module
US8606002B2 (en) 2009-08-26 2013-12-10 Bally Gaming, Inc. Apparatus, method and article for evaluating a stack of objects in an image
US8285034B2 (en) 2009-08-26 2012-10-09 Bally Gaming, Inc. Apparatus, method and article for evaluating a stack of objects in an image
US10046230B1 (en) * 2012-10-01 2018-08-14 Genesis Gaming Solutions, Inc. Tabletop insert for gaming table
US10471337B2 (en) 2012-10-01 2019-11-12 Genesis Gaming Solutions, Inc. Tabletop insert for gaming table
US20140370955A1 (en) * 2012-10-18 2014-12-18 Michael Pertgen Method, system, and device for generating a current game display
US9299216B2 (en) * 2012-10-18 2016-03-29 Check or Bet Gaming, Inc. Method, system, and device for generating a current game display

Similar Documents

Publication Publication Date Title
US20050288084A1 (en) Casino table gaming system with round counting system
US20060183540A1 (en) Casino table gaming system with round counting system
US20050288083A1 (en) Distributed intelligent data collection system for casino table games
US20050288086A1 (en) Hand count methods and systems for casino table games
US20050288085A1 (en) Dealer identification system
US9452349B2 (en) Modular dealing shoe for casino table card games
US20050082750A1 (en) Round of play counting in playing card shuffling system
US7407438B2 (en) Modular dealing shoe for casino table card games
AU2005294599B2 (en) Intelligent baccarat shoe
US7213812B2 (en) Intelligent baccarat shoe
US8205884B2 (en) Intelligent baccarat shoe
US20050113166A1 (en) Discard rack with card reader for playing cards
US20030064798A1 (en) Method and apparatus for using upstream communication in a card shuffler
US20070057469A1 (en) Gaming table activity sensing and communication matrix
KR20110086561A (en) Card reading shoe with card stop feature and systems utilizing the same
WO2007005009A1 (en) Casino table gaming system with round counting system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHUFFLE MASTER, INC., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHUBERT, OLIVER M.;REEL/FRAME:015535/0682

Effective date: 20040628

AS Assignment

Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERA

Free format text: SECURITY AGREEMENT;ASSIGNOR:SHUFFLE MASTER, INC.;REEL/FRAME:018645/0715

Effective date: 20061130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SHUFFLE MASTER, INC., NEVADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERAL AGENT;REEL/FRAME:025941/0313

Effective date: 20110302