US20050284707A1 - Wheel securing means - Google Patents

Wheel securing means Download PDF

Info

Publication number
US20050284707A1
US20050284707A1 US11/118,185 US11818505A US2005284707A1 US 20050284707 A1 US20050284707 A1 US 20050284707A1 US 11818505 A US11818505 A US 11818505A US 2005284707 A1 US2005284707 A1 US 2005284707A1
Authority
US
United States
Prior art keywords
securing means
wheel
accordance
wheel securing
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/118,185
Inventor
Antony Morris
Stephen Payne
Theodore Valerio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004902318A external-priority patent/AU2004902318A0/en
Application filed by Individual filed Critical Individual
Publication of US20050284707A1 publication Critical patent/US20050284707A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/01Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens
    • B60R25/09Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens by restraining wheel rotation, e.g. wheel clamps
    • B60R25/093Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens by restraining wheel rotation, e.g. wheel clamps comprising ground-engaging means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T3/00Portable devices for preventing unwanted movement of vehicles, e.g. chocks

Definitions

  • the present invention relates to means for securing a wheel of a vehicle, for example an aircraft, to prevent movement of the vehicle.
  • the present invention attempts to overcome at least in part the aforementioned disadvantages of previous securing means.
  • a wheel securing means for securing a wheel comprising a rim and a tire, the wheel securing means comprising:
  • a first arm member having a first end arranged to engage with the rim on a first side thereof and to extend from the first end to a second end adjacent a point on the outer circumference of the tire;
  • a second arm member having a first end arranged to engage with the rim on a second side thereof and to extend from the first end to a second end adjacent said point on the outer circumference of the tire;
  • a locking means arranged to secure the second end of the first arm member to the second end of the second arm member
  • first and second arm members are shaped to engage with the outer surface of the tire in use such that rotation of the wheel causes rotation of the wheel securing means.
  • FIG. 1 is a side view of a wheel securing means in accordance with the present invention
  • FIG. 2 is a cross sectional view of the wheel securing means of FIG. 1 through the line A-A;
  • FIG. 3 is a top view of one of the arm members of the wheel securing means of FIG. 1 ;
  • FIG. 4 a is a top view of a wheel chock of the wheel securing means
  • FIG. 4 b is a side view the wheel chock of FIG. 4 a positioned in use about the wheel;
  • FIG. 5 a is a top view of an alternative embodiment of a wheel chock of the wheel securing means
  • FIG. 5 b is a side view the wheel chock of FIG. 5 a positioned in use about the wheel;
  • FIG. 5 c is an end view the wheel chock of FIG. 5 a.
  • a wheel securing means 10 for securing a wheel 12 The wheel 12 comprises a rim 14 and tire 16 of the type typically found on aircraft.
  • the wheel securing means 10 includes a first arm member 18 and a second arm member 20 .
  • Each of the first and second arm members 18 and 20 are of the same shape and include a first end arranged to engage with the rim 14 of the wheel 12 .
  • the first end of the arm member 18 or 20 engages with the rim 14 by means of an engaging portion 22 which extends in use generally parallel to the rotational axis of the wheel 12 and inside and adjacent to the outer edge of the rim 14 when the wheel securing means 10 is in an engaged configuration as shown in FIG. 2 .
  • the first and second arm members 18 and 20 each include a connecting portion 24 adjacent a second end thereof.
  • the connecting portion 24 comprises a generally rectangular plate having a first side 26 arranged to be positioned against an outer circumference of the tire 16 generally parallel to the rotational axis of the wheel 12 .
  • the first and second arm members 18 and 20 are generally arcuate in shape between the first end 22 and the connecting portion 24 such that when the first end engages with the rim 14 and the first side 26 of the connecting portion 24 is positioned against the tire 16 , the arm member 18 or 20 engages the surface of the tire 16 along at least a portion of the length of the arm member 18 or 20 .
  • the first arm member 18 extends from the rim 14 on a first side of the wheel 12 to said point adjacent the outer circumference of the wheel 14 in the engaged position.
  • the second arm member 18 extends from the rim 14 on a second opposed side of the wheel 14 to said point adjacent the outer circumference of the wheel 14 in the engaged position. In the engaged position, the first and second arm members 18 and 20 extend generally radially from adjacent the rim 14 to said point adjacent the outer circumference of the wheel 14 .
  • the connecting portions 24 of the first and second arm members 18 and 20 are connected together one on top of the other such the first and second arm members 18 and 20 can pivot with respect to each other and also slide either toward or away from each other.
  • the pivotal and sliding movements are facilitated by slots 32 through which is provided a pivot pin 34 .
  • the slots 32 are provided in each of the connecting portions 24 such that the slots 32 are parallel to the first side 26 , extending from a point generally on an axis perpendicular to and bisecting the first side 26 , in a direction towards the side of the connecting portion 24 from which the arcuate portion extends.
  • the connecting portions 24 can therefore slide from a position in which they are generally aligned, one on top of the other, away from each other and can also pivot relative to each other about the pivot pin 34 .
  • the combination of pivotal and sliding movement allows the wheel securing means 10 to be arranged in the engaged position about the wheel 12 in the close fitting manner as described above.
  • the arcuate portions of the first and second arm members 18 and 20 also include a raised portion 40 .
  • the raised portion 40 can provide additional strength to the arcuate portions of the arm members 18 and 20 .
  • the raised portions are also arranged to extend up to the connecting portion 24 such that each raised portion 40 engages with the connection portion 24 of the other arm member, when the first and second arm members 18 and 20 reach the engaged position, to prevent further pivotal movement.
  • the connecting portion 24 of the first arm member 18 is connectable to the connecting portion 24 of the second arm member 20 in the engaged position such that the first and second arm members 18 and 20 cannot move relative to each other, thus fixing the first and second arm members 18 and 20 to the wheel 12 .
  • the connecting portion 24 of the first arm member 18 and the connecting portion 24 of the second arm member 20 are both provided with apertures 30 , which align in use, when the wheel securing means 10 is in the engaged position.
  • a suitable locking means in this case a first padlock 28 , is passed through the apertures 30 to secure the first and second arm members 18 and 20 together.
  • the wheel securing means 10 is also provided with a means to secure to a chock 36 .
  • the means to secure to a chock 36 comprises openings 38 provided in each of the first and second arm members 18 and 20 that align in the engaged position.
  • the openings 38 are arranged to receive a tab 39 provided on the chock 36 .
  • the tab 39 is provided with a hole on a distal end thereof to receive a suitable securing means, such as a second padlock 33 , to fix the first and second arm members 18 and 20 to the chock 36 .
  • the chock 36 is provided in the form as shown in FIGS. 3, 4 a and 4 b .
  • the chock 36 comprises a first cylindrical member 42 connected to a second parallel cylindrical member 44 by an arcuate connecting member 46 .
  • the second cylindrical member 44 is rotatably mounted to the arcuate connecting member 46 for rotation about an axis parallel to and offset from the longitudinal axis of the second cylindrical member 44 . This allows the second cylindrical member 44 to move in a cam-like action to fit the first and second cylindrical members 42 and 44 closely about the wheel 12 in use.
  • the first cylindrical member 42 is provided with the tab 39 generally half way along its length.
  • the tab 39 is arranged to extend in a plane perpendicular to the longitudinal axis of the first cylindrical member 42 in a direction rotated approximately 45 degrees upwards from the plane of the ground such that it is generally tangential to the wheel 12 .
  • FIGS. 5 a , 5 b and 5 c show an alternative embodiment of the chock 36 shown in FIGS. 3, 4 a and 4 b .
  • the arcuate connecting member 46 is replaced by an elongate connecting member 50 which interconnects the first and second cylindrical members 42 and 44 .
  • the elongate connecting member 50 is extendable such that the distance between the first and second cylindrical members 42 and 44 can be increased or decreased. The extendibility is achieved by the elongate connecting member 50 comprising a telescoping tube.
  • the elongate member 50 is also provided with a tensioning means.
  • the tensioning means is arranged to provide a force between the first and second cylindrical members 42 and 44 such that the first and second cylindrical members tend to move towards each other.
  • the tensioning means in the embodiment shown in FIGS. 5 a to 5 c comprises an elastic member within the telescoping tube, connecting the first and second cylindrical members 42 and 44 . In use, the elastic member causes the first and second cylindrical members 42 and 44 to be pulled towards, and maintain contact with the wheel 12 .
  • the chock 36 of FIGS. 5 a , 5 b and 5 c also includes a plurality of transverse plates 52 along a portion of the length of each of the first and second cylindrical members 42 and 44 .
  • the transverse plates 52 are each generally circular in shape.
  • On a side adjacent the tire 16 is provided a flexible tongue member 53 extending between the outer edges of each of the transverse plates 52 .
  • the flexible tongue member 53 extends towards the tire 16 and includes an upper surface angled such that the upper surface engages with the tire 16 generally tangentially.
  • the chock 36 or 37 is placed on the ground such that the first cylindrical member 42 is in front of the wheel 12 and the second cylindrical member 44 is behind the wheel 12 , with the arcuate connecting member 46 or elongate connecting member 50 extending alongside the wheel 12 .
  • the second cylindrical member 44 can then be moved toward the first cylindrical member 42 and engaged with the tire 16 being either rotating the second cylindrical member 44 in the embodiment shown in FIGS. 3, 4 a and 4 b or contraction of the telescoping tube in the embodiment of FIGS. 5 a , 5 b and 5 c.
  • the first and second arm members 18 and 20 are slid apart and pivoted away from each other to be placed around the wheel 12 .
  • the first and second arm members 18 and 20 are then pivoted towards each other and slid together to the engaged position, with the first and second arm members 18 and 20 being positioned in a plane at an angle of approximately 45 degrees to the ground, as shown in FIG. 1 .
  • the first and second arm members 18 and 20 are then secured together by placing the first padlock 28 through apertures 30 .
  • first and second arm members 18 and 20 are then engaged with the tab 39 on the chock 32 and the second padlock 33 placed through the hole on the tab 39 to secure the tab 36 to the first and second arm members 18 and 20 .
  • the wheel securing means 10 has the advantage that the close fitting arrangement prevents tools being inserted between the device and the wheel 12 in an attempt to lever the wheel securing means 10 off.
  • a further advantage is that the physical arrangement makes it possible to produce the device by laser cutting from a sheet of suitable material, thus making the device inexpensive.
  • the wheel securing means 10 will need to be sized for the tire size of the aircraft. This is not expected to be a major problem as most non-commercial aircraft use one of a limited number of common sizes.

Abstract

A wheel securing means (10) for securing a wheel (12) comprising a rim (14) and a tire (16). The wheel securing means (10) comprises first and second arm members (18,20). Each of the first and second arm members (18,20) has a first end arranged to engage with the rim (14) on a first side thereof and extends from the first end to a second end adjacent a point on the outer circumference of the tire (16). A locking means (28) is provided to secure the second end of the first arm member (18) to the second end of the second arm member (20) and the first and second arm members (18,20) are shaped to engage with the outer surface of the tire (16) in use such that rotation of the wheel (12) causes rotation of the wheel securing means (10).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application claims priority to Australian Patent Application Number 2004902318, filed May 4, 2004, and Australian Patent Application No. 2004904343, filed Aug. 2, 2004, both of which are incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
  • The present invention relates to means for securing a wheel of a vehicle, for example an aircraft, to prevent movement of the vehicle.
  • The theft of aircraft is an increasing problem to the aviation industry. It is well known that preventing the theft of non-commercial type aircraft poses a number of difficulties.
  • Various methods have been devised to prevent theft of these aircraft, including devices attached to the wheels or propeller of the aircraft to prevent the aircraft from taking off. Such devices may prevent the aircraft from taking off but have disadvantages arising from the means of performing this function. Many wheel or propeller locks comprise apparatus that attach to the wheel or propeller and interfere with normal operation but do not necessarily stop operation completely. For example, some wheel locks will allow the wheel to turn but the resulting damage to the wheel prevents take off. Also, devices are available that attach to a propeller blade to unbalance the propeller. It would be extremely unsafe to attempt to take off with this device attached but it does not necessarily prevent someone from making an attempt, which would probably result in damage to the aircraft.
  • Other problems with known devices include the possibility of the device being forcibly removed given the right tools and the cost of manufacturing the device.
  • The present invention attempts to overcome at least in part the aforementioned disadvantages of previous securing means.
  • SUMMARY OF THE INVENTION
  • In accordance with one aspect of the present invention there is provided a wheel securing means for securing a wheel comprising a rim and a tire, the wheel securing means comprising:
  • a first arm member having a first end arranged to engage with the rim on a first side thereof and to extend from the first end to a second end adjacent a point on the outer circumference of the tire;
  • a second arm member having a first end arranged to engage with the rim on a second side thereof and to extend from the first end to a second end adjacent said point on the outer circumference of the tire; and
  • a locking means arranged to secure the second end of the first arm member to the second end of the second arm member;
  • wherein the first and second arm members are shaped to engage with the outer surface of the tire in use such that rotation of the wheel causes rotation of the wheel securing means.
  • DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 is a side view of a wheel securing means in accordance with the present invention;
  • FIG. 2 is a cross sectional view of the wheel securing means of FIG. 1 through the line A-A;
  • FIG. 3 is a top view of one of the arm members of the wheel securing means of FIG. 1;
  • FIG. 4 a is a top view of a wheel chock of the wheel securing means;
  • FIG. 4 b is a side view the wheel chock of FIG. 4 a positioned in use about the wheel;
  • FIG. 5 a is a top view of an alternative embodiment of a wheel chock of the wheel securing means;
  • FIG. 5 b is a side view the wheel chock of FIG. 5 a positioned in use about the wheel; and
  • FIG. 5 c is an end view the wheel chock of FIG. 5 a.
  • DESCRIPTION OF THE INVENTION
  • Referring to the Figures, there is shown a wheel securing means 10 for securing a wheel 12. The wheel 12 comprises a rim 14 and tire 16 of the type typically found on aircraft.
  • The wheel securing means 10 includes a first arm member 18 and a second arm member 20. Each of the first and second arm members 18 and 20 are of the same shape and include a first end arranged to engage with the rim 14 of the wheel 12. The first end of the arm member 18 or 20 engages with the rim 14 by means of an engaging portion 22 which extends in use generally parallel to the rotational axis of the wheel 12 and inside and adjacent to the outer edge of the rim 14 when the wheel securing means 10 is in an engaged configuration as shown in FIG. 2.
  • The first and second arm members 18 and 20 each include a connecting portion 24 adjacent a second end thereof. The connecting portion 24 comprises a generally rectangular plate having a first side 26 arranged to be positioned against an outer circumference of the tire 16 generally parallel to the rotational axis of the wheel 12.
  • The first and second arm members 18 and 20 are generally arcuate in shape between the first end 22 and the connecting portion 24 such that when the first end engages with the rim 14 and the first side 26 of the connecting portion 24 is positioned against the tire 16, the arm member 18 or 20 engages the surface of the tire 16 along at least a portion of the length of the arm member 18 or 20. The first arm member 18 extends from the rim 14 on a first side of the wheel 12 to said point adjacent the outer circumference of the wheel 14 in the engaged position. The second arm member 18 extends from the rim 14 on a second opposed side of the wheel 14 to said point adjacent the outer circumference of the wheel 14 in the engaged position. In the engaged position, the first and second arm members 18 and 20 extend generally radially from adjacent the rim 14 to said point adjacent the outer circumference of the wheel 14.
  • The connecting portions 24 of the first and second arm members 18 and 20 are connected together one on top of the other such the first and second arm members 18 and 20 can pivot with respect to each other and also slide either toward or away from each other. The pivotal and sliding movements are facilitated by slots 32 through which is provided a pivot pin 34. The slots 32 are provided in each of the connecting portions 24 such that the slots 32 are parallel to the first side 26, extending from a point generally on an axis perpendicular to and bisecting the first side 26, in a direction towards the side of the connecting portion 24 from which the arcuate portion extends. The connecting portions 24 can therefore slide from a position in which they are generally aligned, one on top of the other, away from each other and can also pivot relative to each other about the pivot pin 34. The combination of pivotal and sliding movement allows the wheel securing means 10 to be arranged in the engaged position about the wheel 12 in the close fitting manner as described above.
  • The arcuate portions of the first and second arm members 18 and 20 also include a raised portion 40. The raised portion 40 can provide additional strength to the arcuate portions of the arm members 18 and 20. The raised portions are also arranged to extend up to the connecting portion 24 such that each raised portion 40 engages with the connection portion 24 of the other arm member, when the first and second arm members 18 and 20 reach the engaged position, to prevent further pivotal movement.
  • The connecting portion 24 of the first arm member 18 is connectable to the connecting portion 24 of the second arm member 20 in the engaged position such that the first and second arm members 18 and 20 cannot move relative to each other, thus fixing the first and second arm members 18 and 20 to the wheel 12. In the embodiment shown in the drawings, the connecting portion 24 of the first arm member 18 and the connecting portion 24 of the second arm member 20 are both provided with apertures 30, which align in use, when the wheel securing means 10 is in the engaged position. A suitable locking means, in this case a first padlock 28, is passed through the apertures 30 to secure the first and second arm members 18 and 20 together.
  • The wheel securing means 10 is also provided with a means to secure to a chock 36. The means to secure to a chock 36 comprises openings 38 provided in each of the first and second arm members 18 and 20 that align in the engaged position. The openings 38 are arranged to receive a tab 39 provided on the chock 36. The tab 39 is provided with a hole on a distal end thereof to receive a suitable securing means, such as a second padlock 33, to fix the first and second arm members 18 and 20 to the chock 36.
  • In one embodiment, the chock 36 is provided in the form as shown in FIGS. 3, 4 a and 4 b. The chock 36 comprises a first cylindrical member 42 connected to a second parallel cylindrical member 44 by an arcuate connecting member 46. The second cylindrical member 44 is rotatably mounted to the arcuate connecting member 46 for rotation about an axis parallel to and offset from the longitudinal axis of the second cylindrical member 44. This allows the second cylindrical member 44 to move in a cam-like action to fit the first and second cylindrical members 42 and 44 closely about the wheel 12 in use.
  • The first cylindrical member 42 is provided with the tab 39 generally half way along its length. The tab 39 is arranged to extend in a plane perpendicular to the longitudinal axis of the first cylindrical member 42 in a direction rotated approximately 45 degrees upwards from the plane of the ground such that it is generally tangential to the wheel 12.
  • FIGS. 5 a, 5 b and 5 c show an alternative embodiment of the chock 36 shown in FIGS. 3, 4 a and 4 b. In this embodiment, the arcuate connecting member 46 is replaced by an elongate connecting member 50 which interconnects the first and second cylindrical members 42 and 44. The elongate connecting member 50 is extendable such that the distance between the first and second cylindrical members 42 and 44 can be increased or decreased. The extendibility is achieved by the elongate connecting member 50 comprising a telescoping tube.
  • The elongate member 50 is also provided with a tensioning means. The tensioning means is arranged to provide a force between the first and second cylindrical members 42 and 44 such that the first and second cylindrical members tend to move towards each other. The tensioning means in the embodiment shown in FIGS. 5 a to 5 c comprises an elastic member within the telescoping tube, connecting the first and second cylindrical members 42 and 44. In use, the elastic member causes the first and second cylindrical members 42 and 44 to be pulled towards, and maintain contact with the wheel 12.
  • The chock 36 of FIGS. 5 a, 5 b and 5 c also includes a plurality of transverse plates 52 along a portion of the length of each of the first and second cylindrical members 42 and 44. The transverse plates 52 are each generally circular in shape. On a side adjacent the tire 16 is provided a flexible tongue member 53 extending between the outer edges of each of the transverse plates 52. The flexible tongue member 53 extends towards the tire 16 and includes an upper surface angled such that the upper surface engages with the tire 16 generally tangentially.
  • In use, the chock 36 or 37 is placed on the ground such that the first cylindrical member 42 is in front of the wheel 12 and the second cylindrical member 44 is behind the wheel 12, with the arcuate connecting member 46 or elongate connecting member 50 extending alongside the wheel 12. The second cylindrical member 44 can then be moved toward the first cylindrical member 42 and engaged with the tire 16 being either rotating the second cylindrical member 44 in the embodiment shown in FIGS. 3, 4 a and 4 b or contraction of the telescoping tube in the embodiment of FIGS. 5 a, 5 b and 5 c.
  • The first and second arm members 18 and 20 are slid apart and pivoted away from each other to be placed around the wheel 12. The first and second arm members 18 and 20 are then pivoted towards each other and slid together to the engaged position, with the first and second arm members 18 and 20 being positioned in a plane at an angle of approximately 45 degrees to the ground, as shown in FIG. 1. The first and second arm members 18 and 20 are then secured together by placing the first padlock 28 through apertures 30.
  • The first and second arm members 18 and 20 are then engaged with the tab 39 on the chock 32 and the second padlock 33 placed through the hole on the tab 39 to secure the tab 36 to the first and second arm members 18 and 20.
  • In the engaged position and secured to the chock 36, if someone were to attempt to move the aircraft, the rotation of the wheel 12 would cause rotation of the wheel securing means 10 towards the chock 36 due to the close fitting engagement with the tire 16. As the second ends of the first and second arm members 18 and 20 are fixed to the chock 36, the rotational force on the first and second arm members 18 and 20 causes the first and second arm members 18 and 20 to bite into the tire 16 preventing further rotation of the wheel 12. Should sufficient force be applied, it is possible that the wheel 12 may be made to jump over the chock 36. However on application of sufficient force, the engaging portions 22 of the arm members 18 and 20 will bite into the rim 14 with sufficient force to crack the rim 14, resulting of deflation of the tire 16.
  • Aside from the prevention of any rotation of the wheel 12 without the application of a large amount of force, the wheel securing means 10 has the advantage that the close fitting arrangement prevents tools being inserted between the device and the wheel 12 in an attempt to lever the wheel securing means 10 off. A further advantage is that the physical arrangement makes it possible to produce the device by laser cutting from a sheet of suitable material, thus making the device inexpensive.
  • It will be appreciated that due to the close fitting arrangement of the wheel securing means 10 with the tire 16, the wheel securing means 10 will need to be sized for the tire size of the aircraft. This is not expected to be a major problem as most non-commercial aircraft use one of a limited number of common sizes.
  • Modifications and variations as would be apparent to a skilled addressee are deemed to be within the scope of the present invention.

Claims (23)

1. A wheel securing means for securing a wheel comprising a rim and a tire, the wheel securing means comprising:
a first arm member having a first end arranged to engage with the rim on a first side thereof and to extend from the first end to a second end adjacent a point on the outer circumference of the tire;
a second arm member having a first end arranged to engage with the rim on a second side thereof and to extend from the first end to a second end adjacent said point on the outer circumference of the tire; and
a locking means arranged to secure the second end of the first arm member to the second end of the second arm member;
wherein the first and second arm members are shaped to engage with the outer surface of the tire in use such that rotation of the wheel causes rotation of the wheel securing means.
2. A wheel securing means in accordance with claim 1 wherein the first and second arm members are generally arcuate between the first and second ends thereof such that the first and second arm members generally conform to the outer surface of the tire in the engaged position.
3. A wheel securing means in accordance with claim 1, wherein the first and second arm members each include an engaging portion adjacent the first end thereof, the engaging portion extending generally parallel to the rotational axis of the wheel from the respective arm member adjacent the circumference of and inside the wheel rim when the first and second arm members are in the engaged position such that the engaging portions engage with the rim.
4. A wheel securing means in accordance with claim 1, wherein the first and second arm members extend generally radially from adjacent the rim to said point on the outer circumference of the tire.
5. A wheel securing means in accordance with claim 1, wherein the first and second arm members are pivotally connected adjacent second ends thereof, the locking means preventing said pivotal movement when the locking means secures the second end of the first arm member to the second end of the second arm member.
6. A wheel securing means in accordance with claim 5, wherein the first and second arm members are slidably connected adjacent second ends thereof, the locking means preventing said slidable movement when the locking means secures the second end of the first arm member to the second end of the second arm member.
7. A wheel securing means in accordance with claim 6, wherein second ends of the first and second arm members are each provided with a connecting portion having a slot therein and a pin provided through the slots such that the first and second arm members are pivotable and slidable about each other.
8. A wheel securing means in accordance with claim 7, wherein the connecting portions each comprise a plate member such that when the plate member of the first arm member is arranged on top of and in the same orientation as the plate member of the second arm member, the first and second arm members are engaged with the wheel and the slots on the plate members are generally parallel to the rotational axis of the wheel.
9. A wheel securing means in accordance with claim 8, characterized in that the plate members comprise generally rectangular plates and each respective arm member extends from a corner of said rectangular plate.
10. A wheel securing means in accordance with claim 8, wherein the connecting portions of the first and second arm members each include an aperture, the apertures being aligned when the first and second arm members are in the engaged position such that that locking means is received within the aligned apertures to prevent relative movement of the first and second arm members.
11. A wheel securing means in accordance with claim 10, wherein the locking means comprises a padlock.
12. A wheel securing means in accordance with claim 1, wherein the first and second arm members are securable to a chock when in the engaged position.
13. A wheel securing means in accordance with claim 12, wherein the chock includes a tab and the first and second arm members include openings adjacent the seconds thereof, the openings being aligned when the first and second arm members are in the engaged position such that the tab is received in the openings to secure the chock to the first and second arm members.
14. A wheel securing means in accordance with claim 13, wherein the tab includes a hole for receiving a second locking means when the tab is received in the holes to secure the chock to the first and second arm members.
15. A wheel securing means in accordance with claim 14, wherein the second locking means is a padlock.
16. A wheel securing means in accordance with claim 12, wherein the chock comprises a first portion arranged to rest on the ground and engage a first side of the tire, a second portion arranged to rest on the ground and engage with a second opposite side of the tire and a connecting member arranged to extend along the side of the tire in use between the first and second portions.
17. A wheel securing means in accordance with claim 16, wherein the first and second portions comprise parallel first and second cylindrical members.
18. A wheel securing means in accordance with claim 17 wherein the second cylindrical member is rotatably mounted about an axis parallel to and offset from the longitudinal axis of the second cylindrical member such that rotation of the second cylindrical member allows the second cylindrical member to be moved toward and away from the tire.
19. A wheel securing means in accordance with claim 17, wherein the length of the connecting member is adjustable such that the first and second cylindrical members may be moved toward or away from each other to allow the first and second cylindrical members to be engaged against the tire in use.
20. A wheel securing means in accordance with claim 19, wherein the connecting member comprises a telescoping tube.
21. A wheel securing means in accordance with claim 20, wherein the telescoping tube is provided with a tensioning means arranged to provide a force that tends to pull the first and second cylindrical members toward each other.
22. A wheel securing means in accordance with claim 17, wherein each of the first and second cylindrical members are provided with a plurality of transverse plates along the length thereof.
23. A wheel securing means in accordance with claim 23, wherein each of the transverse plates are circular in shape and a flexible tongue member extends between the transverse plate members on a side adjacent the tire, the flexible tongue member having an upper surface angled such that the upper surface engages with the tire generally tangentially.
US11/118,185 2004-05-04 2005-04-28 Wheel securing means Abandoned US20050284707A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2004902318A AU2004902318A0 (en) 2004-05-04 Wheel securing means
AU2004902318 2004-05-04
AU2004904343 2004-08-04
AU2004904343A AU2004904343A0 (en) 2004-08-04 Wheel securing means

Publications (1)

Publication Number Publication Date
US20050284707A1 true US20050284707A1 (en) 2005-12-29

Family

ID=35504404

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/118,185 Abandoned US20050284707A1 (en) 2004-05-04 2005-04-28 Wheel securing means

Country Status (1)

Country Link
US (1) US20050284707A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167209A1 (en) * 2004-02-04 2005-08-04 Barnett Ralph L. Double wheel chock frame
US20110100765A1 (en) * 2009-11-03 2011-05-05 Bird Steve K Wheel chock having a roller assist
WO2017200475A1 (en) * 2016-05-18 2017-11-23 Vinnicombe Timothy Richard A device for immobilizing a wheeled vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031726A (en) * 1976-03-19 1977-06-28 Garry De Jager Aircraft anti-theft chock device
US5427210A (en) * 1994-03-14 1995-06-27 Willaford; Kenneth Wheel chock for aircraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031726A (en) * 1976-03-19 1977-06-28 Garry De Jager Aircraft anti-theft chock device
US5427210A (en) * 1994-03-14 1995-06-27 Willaford; Kenneth Wheel chock for aircraft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167209A1 (en) * 2004-02-04 2005-08-04 Barnett Ralph L. Double wheel chock frame
US7185744B2 (en) * 2004-02-04 2007-03-06 Triodyne Safety Systems, L.L.C. Double wheel chock frame
US20110100765A1 (en) * 2009-11-03 2011-05-05 Bird Steve K Wheel chock having a roller assist
WO2017200475A1 (en) * 2016-05-18 2017-11-23 Vinnicombe Timothy Richard A device for immobilizing a wheeled vehicle

Similar Documents

Publication Publication Date Title
US8393507B2 (en) Vehicle article carrier
US5333477A (en) Vehicle parking boot
EP0272801A1 (en) Vehicle immobilising device
US6617532B1 (en) Circuit breaker lockout device
US6409418B1 (en) Tire deflating blade system
JP2007298084A (en) Band fastener
US20050284707A1 (en) Wheel securing means
EP3351428B1 (en) An automatic strap retracting mechanism for wheel restraint devices
US11673502B2 (en) Lock mechanism
US7107802B2 (en) Wheel immobilizer
EP0298716A1 (en) Wheel clamp
US8601840B2 (en) Vehicular wheel lock
WO2008097876A1 (en) Wheel, immobilizer apparatus and associated method
US9717296B2 (en) Locking clip and anchor assembly for a tether
US20210347613A1 (en) Rapid Recovery Grapple
US20130147190A1 (en) Flange assembly
KR200487714Y1 (en) Folding apparatus for bicycle
US20170120670A1 (en) Automobile Tire And Rim Anti-Theft Device
ES2378728T3 (en) Mooring Apparatus
EP0000848A1 (en) Hinge for folding ladders
US11046130B2 (en) Securing device for attaching a cable to a tow ball
US10023006B2 (en) Wheel rim retainer
US20120085852A1 (en) Line tightening device
US4872496A (en) Readily installed tire cleats with improved fastening means
CN210363182U (en) Wheel anti-skid device and anti-skid structure

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION