US20050266362A1 - Variable input radiant heater - Google Patents

Variable input radiant heater Download PDF

Info

Publication number
US20050266362A1
US20050266362A1 US10/858,244 US85824404A US2005266362A1 US 20050266362 A1 US20050266362 A1 US 20050266362A1 US 85824404 A US85824404 A US 85824404A US 2005266362 A1 US2005266362 A1 US 2005266362A1
Authority
US
United States
Prior art keywords
burner
air
fuel
heater
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/858,244
Inventor
Patrick Stone
Mark Murdoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roberts Gordon LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/858,244 priority Critical patent/US20050266362A1/en
Assigned to ROBERTS-GORDON LLC reassignment ROBERTS-GORDON LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURDOCH, MARK V., STONE, PATRICK C.
Assigned to MANUFACTURERS AND TRADERS TRUST COMPANY reassignment MANUFACTURERS AND TRADERS TRUST COMPANY SECURITY AGREEMENT Assignors: ROBERTS-GORDON LLC
Publication of US20050266362A1 publication Critical patent/US20050266362A1/en
Priority to US11/728,464 priority patent/US20070287111A1/en
Assigned to ROBERTS-GORDON LLC reassignment ROBERTS-GORDON LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MANUFACTURERS AND TRADERS TRUST COMPANY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/126Radiant burners cooperating with refractory wall surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/151Radiant burners with radiation intensifying means other than screens or perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/08Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/04Prepurge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/26Fail safe for clogging air inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/10Ventilators forcing air through heat exchangers

Definitions

  • the present invention relates to controlling the thermal energy generated by a heating system.
  • radiant heaters and radiant heating systems most commonly operate at a single preset input; and space temperature is controlled by a thermostat by turning the heater or heating system on or off.
  • radiant heaters have been developed to operate at either of two distinct preset inputs by varying the fuel pressure communicated to the burner via a two-stage fuel regulator.
  • One radiant burner with a two-stage operation is described in U.S. Pat. No. 5,353,986 titled “Demand Radiant Heating System” by Joseph B. Wortman.
  • Wortman describes a radiant heater with a single fuel control capable of dual regulation. The dual regulation is limited to only providing a high or low input rate to respond to a high or low heat demand.
  • Heater inputs are sized to satisfy building heat loss based on an outdoor design temperature that occurs approximately 1-5% of the time during the entire heating season.
  • single-stage heating systems normally operate at an input that exceeds the demand. It is favorable to have the option of varying the heater input based on the heating demand to decrease the number of heater on/off cycles and to increase occupant comfort in the heated space.
  • Two-stage burners are alternative options to the heaters that conform to the cited references. Such two-stage burners are limited to only two distinct operating inputs, offering only coarse control of varying demands and do not match the heat demand for the majority of the time. Continuously variable modulating control allows fine control of heater input to match the heat demand closely, operating at any percentage of the heater's full rated input, within a predetermined range.
  • Timothy Seel describes a variable input system of infrared burners-in-series.
  • the infrared system of burners possesses the ability to vary fuel and combustion air to achieve modulating system input. Seel does not disclose, teach or suggest any ability to control a single “unitary” style infrared heater with associated burner modulating controls and blower mounted internal to the burner housing.
  • a version of the control that can be used in the present invention is manufactured by Varidigm Corporation of Madison, Minn. That control has the capability of controlling a modulating gas valve and varying the speed of a single-phase shaded-pole motor. That control, however, cannot be merely inserted into the present invention without tailoring certain parameters to obtain the desired results.
  • Fractional horsepower DC motors are readily available in the market and can easily be controlled to vary their speed, but a DC motor is more expensive than a shaded pole motor of similar size.
  • a controller is needed to send a control signal to the DC motor to vary its speed; a controller would also need to send a separate control signal to vary the gas valve, adding more cost.
  • the ability to vary the speed of a shaded pole motor allows a cost savings by eliminating the need to use a more expensive DC motor as well as incorporating motor control, gas valve control and burner ignition and sequencing.
  • Two-stage and modulating infrared heaters with fixed combustion air flow set the combustion air flow for the maximum input.
  • two stage heaters exhibit 9-10% lower radiant efficiency at low input due to the blower delivering an excess of combustion air, which is fixed to deliver a volume and pressure of air that is optimum only at maximum input.
  • two-stage infrared heaters show an approximate 2% decrease in thermal efficiency at low input versus high input.
  • the present invention relates to the use of an apparatus for continuously varying the input of radiant gas heaters that respond to heat demand.
  • the variable input radiant heater apparatus has a burner housing having a combustion air and fuel inlet, a burner assembly for mixing the fuel and air, and conveying the mixture into a heat exchanger for combustion. Combustion takes place inside the heat exchanger and the resulting hot products of combustion are moved through the heat exchanger to the exhaust end due to air pressure from a combustion air blower providing either positive air pressure from the burner end of the heater or negative pressure from the exhaust end of the heater. At the exhaust end of the heat exchanger, the combustion gasses are vented from the heater.
  • a signal is conveyed to a controller mounted in the burner housing from a heat demand control device. Based on the signal, the controller varies the input of the heater to satisfy the heat demand.
  • the input of the burner is varied by changes in the combustion air (via blower speed changes) and fuel (via modulating gas valve) supplied to the burner assembly.
  • the present invention is directed to a single radiant heater or multi-burner radiant heating system.
  • the present invention is directed to a single radiant heater or multi-burner radiant heating system that modulates the burner input by varying fuel and combustion air supply to the burner's mixing apparatus.
  • the apparatus continuously varies the input of radiant gas heaters that respond to heat demand.
  • the variable input radiant heater apparatus have a burner housing with a combustion air and fuel inlet and a burner assembly for mixing the fuel and air, and conveying the mixture into a heat exchanger for combustion.
  • Combustion takes place inside the heat exchanger and the resulting hot products of combustion are moved through the heat exchanger to the exhaust end due to air pressure from a combustion air blower providing either positive air pressure from the burner end of the heater or negative pressure from the exhaust end of the heater.
  • a combustion air blower providing either positive air pressure from the burner end of the heater or negative pressure from the exhaust end of the heater.
  • the combustion gasses are vented from the heater.
  • a signal is conveyed to a controller mounted in the burner housing from a heat demand control device. Based on the signal, the controller varies the input of the heater to satisfy the heat demand.
  • the input of the burner is varied by changes in the combustion air (via blower speed changes) and fuel (via modulating gas valve) supplied to the burner assembly.
  • a modulating gas valve controls fuel supply.
  • the gas valve may have either pneumatic or electronic modulation.
  • the fuel volume and pressure issued from the outlet of the gas valve to the burner can either be controlled by an electronic signal from the controller or a pneumatic (air pressure) signal from the blower.
  • An advantage of the present invention using an electronic modulating gas valve is that the control of the gas valve is independent of the air pressure generated by the blower allowing for customization of the fuel to combustion air ratio.
  • An advantage of the ability to customize this ratio is that heater performance, efficiencies and safety can be maximized for various burner fuel types and inputs.
  • the combustion air pressure and volume supplied to the burner is variable and is controlled by varying the speed of the blower motor.
  • the motor may be DC, permanent split capacitor (AC, single phase) or shaded pole (AC, single phase).
  • AC permanent split capacitor
  • AC shaded pole
  • the controller varies the speed of the motor by electronic signal. Currently there is no other control readily available that can vary the speed of a fractional horsepower shaded-pole motor.
  • the burner may operate at any input between and including full rated input to 30% of full rated input.
  • the input range may be narrowed by reprogramming of the control's logic chip(s) if desired.
  • a programmed algorithm can pre-determine the initial heater input of a new heating cycle.
  • the controller can adjust this pre-determined heater input based on timing of the new heating cycle and/or additional limit sensors or thermostats.
  • the controller is pre-programmed with the required gas valve positions for every burner pressure.
  • blower speed adjusts first to achieve a desired burner pressure, as correct burner pressure is sensed the fuel is immediately adjusted for desired combustion based on the pre-programmed settings. If adequate burner pressure cannot be achieved by changing blower speed, the fuel supplied will adjust according to the burner pressure that is achieved. If burner pressure decreases during a heating cycle, the controller senses the pressure drop and the controller will adjust the gas valve to supply the fuel necessary for correct combustion at the lower burner pressure.
  • the heater or multi-burner heating system 10 in this invention includes a burner housing 12 to which a heat exchanger 14 is connected, as shown in FIG. 1 .
  • the heat exchanger's 14 length and shape may be various. Examples of shapes include and is not limited to straight, U-shaped, J-shaped, L-shaped, and polygonal shaped.
  • the heat exchanger 14 is of conventional construction and will typically be mounted below a reflector 16 covering at least a significant portion of the length of the heat exchanger 14 .
  • the entire heater 10 including burner housing 12 , heat exchanger 14 and reflector 16 is typically suspended, as shown in FIG. 2 , with conventional suspension instruments like cables, rods, cords and the like 102 from and/or attached (clamps, brackets, screws, bolts, nails and the like) to a ceiling 100 of a structure.
  • the housing 12 is provided with a single fuel delivery system, as shown in FIG. 3 , including (1) a modulating gas valve 121 , (2) a gas manifold 122 whose inlet side 122 a is connected to the outlet side 121 a of the gas valve 121 and (3) a burner assembly 123 whose inlet side 123 a is connected to the outlet side 122 b of the manifold 122 .
  • the burner assembly 123 includes suitable apertures 123 b , and an apertured stem 123 c connected to the manifold 122 outlet 122 b fitted with a suitable gas orifice 124 .
  • a flame igniter 123 d and flame sensor 123 e Mounted either downstream of the burner 123 or inside the burner 123 is a flame igniter 123 d and flame sensor 123 e.
  • the burner assembly 123 is positioned at the inlet end 141 of the heat exchanger 14 .
  • a blower 18 is provided for causing a draft through (1) the combustion air inlet 125 of the burner housing 12 , (2) the burner assembly 123 , and (3) then the heat exchanger 14 .
  • the blower 18 may be positioned between the combustion air inlet 125 of the burner housing 12 and the burner assembly 123 , forcing air through the burner housing 12 and heat exchanger 14 .
  • the blower (draft inducer) may be positioned at the outlet end 142 of the heat exchanger 14 , providing vacuum to pull air through the combustion air inlet 125 of the burner housing 12 , through the burner assembly 123 then through the heat exchanger 14 .
  • An air restriction plate 20 is placed before or after the blower 18 to meter the combustion air delivered from the blower 18 to the burner assembly 123 .
  • the blower 18 can be any conventional blower capable of providing the above-described attributes for conventional heating systems.
  • a single controller 22 controls the operation and sequencing of the modulating gas valve 121 , the blower 18 and the igniter 123 d .
  • the circuit board 22 manufactured by Varidigm Corporation of Madison, Minn., is powered both from a line voltage source 220 and from a 24V transformer 221 mounted in the burner housing 12 connected to line voltage 220 .
  • a pressure (or vacuum) switch 222 being sensitive to burner pressure via pressure lines 223 is electrically connected to the control board 22 .
  • the control board 22 monitors the opening and closing of the pressure switch circuit 222 to verify proper operation and calibration of a pressure transducer 224 on the control board 22 .
  • the pressure transducer 224 is also sensitive to burner pressure communicated via pressure hoses 223 , which allows the controller 22 to alter blower 18 and gas valve operation 123 according to the current burner pressure.
  • a pressure hose 223 is also connected to a tap on the modulating gas valve 121 to communicate a reference burner pressure to the valve for proper valve operation.
  • a conventional thermostat 225 can be used to communicate heat demand to the controller 22 .
  • the control board 22 can collect data relating to a thermostat 225 circuit closing and opening cycle timing. Based on this timing the controller 22 can command ignition, modulation or shutting off of the burner 123 . Alternately, an air temperature sensor or group of such sensors 226 can be used to communicate heat demand.
  • the controller 22 can process the sensed temperature to command ignition, modulation or shutting off of the burner 123 . Alternately, the user can initiate ignition and shut down the heater 10 with an on/off switch 227 as well as set the input rate during operation with a manual potentiometer 228 .
  • the present invention achieves a thermal efficiency 5-6% higher than a two-stage infrared heater at low input.
  • the controller 22 allows for a greater range of modulation between high and low input than a two-stage heater.
  • the burner controller 22 has pressure-sensing capability that greatly improves the safety and reliability of an infrared heater. Since the controller 22 has independent control of the combustion air and fuel supplies, it can adjust the blower speed to compensate for additional flue lengths or for partial flue or inlet blockage in an effort to optimize combustion quality. If proper combustion is not achievable by increasing blower 18 speed, the controller 22 will command the gas valve to reduce gas flow maintaining proper burner combustion. This ability maintains the quality of emissions for the modulating infrared heater and corrects situations that would otherwise result in elevated heat exchanger temperatures of infrared heaters. Not only does this increase the overall safety of the heater, but also potentially increases the service life of the heat exchanger 14 .
  • the heater 10 is operated in a similar fashion to other thermostatically controlled heating appliances.
  • a thermostat 225 or temperature sensor 226 or on/off switch 227 initiates the operation.
  • the blower 18 is energized and will operate at full speed.
  • the controller 22 allows an air purge period prior to ignition. After the purge period, the controller 22 energizes the igniter 123 d then opens the gas valve 121 . Gas flows through the gas valve 121 , manifold 122 and orifice 124 then into the burner 123 where it mixes with the combustion air and the mixture is ignited by the igniter 123 d .
  • Ignition is detected by the flame sensor 123 e , which signals the controller 22 to maintain the gas valve 121 in an open position. If the flame is extinguished at any time during operation, the flame sensor 123 e will signal the controller 22 to close the gas valve 121 and stop the flow of gas to the manifold 122 .
  • initial input is 100% of full rated input or maximum input allowed as dictated by achieved burner pressure.
  • the heater 10 will continue to operate at maximum input for a predetermined duration for heat exchanger warm-up. Following the warm-up period, the heater will modulate based on achieved burner pressure and/or signals from demand control devices 225 , 226 , 227 , 228 . At all times during the operation of the heater 123 , the burner pressure is monitored.
  • Burner pressure as realized by the blower operating speed, will dictate the appropriate gas pressure and volume as pre-determined by detailed laboratory testing for maximum safety, performance, efficiency and combustion and emissions quality.
  • the heat and fire and associated flue gasses are pushed or drawn downstream through the heat exchanger 14 , away from the burner 123 towards the exhaust end 142 of the heat exchanger 14 .
  • the fire and hot flue gasses heat up the heat exchanger 14 .
  • the heat exchanger 14 releases this energy through convective and radiant heat transfer from the tubes outer surface in all directions.
  • the reflector 16 over the heat exchanger helps contain the convective heat to maintain desired tube temperature, it also reflects and directs the radiant energy down toward the heated space below the heater 10 .
  • the heater described could also be grouped into a multi-burner heating system.
  • the exhaust ends 142 of multiple heat exchangers 14 are coupled together through a common draft inducer that is located at the exhaust end of the coupled heat exchanger.
  • the draft inducer creates negative pressure through heating system drawing the flame and heated gasses toward the end of the coupled heat exchanger. All burners would modulate simultaneously as a result of connection to the same draft inducer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A variable demand radiant heating system applies variable burner control technology to singular or mulit-burner radiant heating systems. A radiant heater consists of a burner connected to an elongated heat exchanger tube. The combustion air is supplied to the burner via blower or draft inducer. Fuel is supplied to the burner via fuel regulator. Fuel and air are mixed in burner and communicated to the inlet end of the heat exchanger tube. Spent products of combustion are expelled from the heat exchanger at the outlet end. The burner controls continuously vary gas supply pressure (volume), via a modulating gas regulator, and combustion air pressure (volume), via a variable speed blower, communicated to the burner mixing chamber, which in turn, varies the burner input on a continuous curve (not stepped or staged) within a pre-determined input range as heat demand varies.

Description

    FIELD OF THE INVENTION
  • The present invention relates to controlling the thermal energy generated by a heating system.
  • BACKGROUND OF THE INVENTION
  • Presently, radiant heaters and radiant heating systems most commonly operate at a single preset input; and space temperature is controlled by a thermostat by turning the heater or heating system on or off. In the early to mid 1990's, radiant heaters have been developed to operate at either of two distinct preset inputs by varying the fuel pressure communicated to the burner via a two-stage fuel regulator. One radiant burner with a two-stage operation is described in U.S. Pat. No. 5,353,986 titled “Demand Radiant Heating System” by Joseph B. Wortman. In the '986 patent, Wortman describes a radiant heater with a single fuel control capable of dual regulation. The dual regulation is limited to only providing a high or low input rate to respond to a high or low heat demand.
  • Further advances in radiant burner input control are described in U.S. Pat. No. 5,989,011 titled “Burner Control System” by Caruso et al. Caruso et al. in the '011 patent disclose a control system. Caruso et al. describe the control system as being capable of altering the fuel pressure to the burner by varying air pressure from a blower to the fuel regulator via an air regulator. By continuously varying the air pressure communicated to the fuel regulator, the discharge gas pressure to the burner is also varied allowing a continuously variable input.
  • However, in neither cited patent is air pressure (volume) to the burner's fuel/air mixing apparatus varied.
  • Heater inputs are sized to satisfy building heat loss based on an outdoor design temperature that occurs approximately 1-5% of the time during the entire heating season. In other words, single-stage heating systems normally operate at an input that exceeds the demand. It is favorable to have the option of varying the heater input based on the heating demand to decrease the number of heater on/off cycles and to increase occupant comfort in the heated space.
  • Two-stage burners are alternative options to the heaters that conform to the cited references. Such two-stage burners are limited to only two distinct operating inputs, offering only coarse control of varying demands and do not match the heat demand for the majority of the time. Continuously variable modulating control allows fine control of heater input to match the heat demand closely, operating at any percentage of the heater's full rated input, within a predetermined range.
  • In both patents mentioned above, there are disadvantages to varying gas volume (or pressure) to the burner mixing apparatus without also varying combustion air volume (or pressure) to the burner's mixing apparatus. Without variation of the air flow to the burner simultaneously with variation of fuel flow, sacrifices are made in terms of heater performance and efficiency as well as combustion quality and efficiency. It is desirable to vary the heater's input not only by controlling the gas flow to the burner, but also the combustion air flow. By varying both the combustion air flow and gas flow (pressure or volume); combustion efficiency, combustion quality, heater efficiencies and flue emissions can be more closely regulated for optimum infrared heater performance.
  • In commonly assigned U.S. Pat. No. 5,211,331 entitled “Control in Combination with Thermostatically Responsive Assembly”, Timothy Seel describes a variable input system of infrared burners-in-series. The infrared system of burners possesses the ability to vary fuel and combustion air to achieve modulating system input. Seel does not disclose, teach or suggest any ability to control a single “unitary” style infrared heater with associated burner modulating controls and blower mounted internal to the burner housing.
  • A version of the control that can be used in the present invention is manufactured by Varidigm Corporation of Plymouth, Minn. That control has the capability of controlling a modulating gas valve and varying the speed of a single-phase shaded-pole motor. That control, however, cannot be merely inserted into the present invention without tailoring certain parameters to obtain the desired results.
  • Fractional horsepower DC motors are readily available in the market and can easily be controlled to vary their speed, but a DC motor is more expensive than a shaded pole motor of similar size. In addition to the DC motor costing more, a controller is needed to send a control signal to the DC motor to vary its speed; a controller would also need to send a separate control signal to vary the gas valve, adding more cost. The ability to vary the speed of a shaded pole motor allows a cost savings by eliminating the need to use a more expensive DC motor as well as incorporating motor control, gas valve control and burner ignition and sequencing.
  • Two-stage and modulating infrared heaters with fixed combustion air flow set the combustion air flow for the maximum input. In laboratory testing in accordance with the European Standard prEN 416-2 “Single Burner Gas-Fired Overhead Radiant Tube Heaters For Non-Domestic Use”, it has been shown that two stage heaters exhibit 9-10% lower radiant efficiency at low input due to the blower delivering an excess of combustion air, which is fixed to deliver a volume and pressure of air that is optimum only at maximum input. Besides a reduction in radiant efficiency, two-stage infrared heaters show an approximate 2% decrease in thermal efficiency at low input versus high input. By reducing the combustion air and fuel when input is reduced, a modulating infrared heater will maintain its optimum radiant efficiency at all inputs. That results in an exhibition of radiant efficiency at low fire that is 9-10% higher than a two-stage heater. That capability is not possible in current modulating or two-stage infrared heater design with single speed blowers. In addition, by maintaining heat exchanger temperature through varying fuel and combustion air flow with respect to burner pressure, the radiant efficiency of the heater can be maintained throughout the entire input modulation range. Not only is radiant efficiency improved, but also thermal efficiency increases as input decreases, thermal efficiency increases 3-4% at minimum input versus maximum input. Two stage infrared heaters typically allow for a 30-35% input turndown from high input to low input, an air and fuel modulating heater can exhibit input turndowns near 70% from maximum input to minimum input, doubling the turndown capability of a two-stage infrared heater.
  • SUMMARY OF THE INVENTION
  • The present invention relates to the use of an apparatus for continuously varying the input of radiant gas heaters that respond to heat demand. The variable input radiant heater apparatus has a burner housing having a combustion air and fuel inlet, a burner assembly for mixing the fuel and air, and conveying the mixture into a heat exchanger for combustion. Combustion takes place inside the heat exchanger and the resulting hot products of combustion are moved through the heat exchanger to the exhaust end due to air pressure from a combustion air blower providing either positive air pressure from the burner end of the heater or negative pressure from the exhaust end of the heater. At the exhaust end of the heat exchanger, the combustion gasses are vented from the heater. A signal is conveyed to a controller mounted in the burner housing from a heat demand control device. Based on the signal, the controller varies the input of the heater to satisfy the heat demand. The input of the burner is varied by changes in the combustion air (via blower speed changes) and fuel (via modulating gas valve) supplied to the burner assembly.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • Generically, the present invention is directed to a single radiant heater or multi-burner radiant heating system. In particular, the present invention is directed to a single radiant heater or multi-burner radiant heating system that modulates the burner input by varying fuel and combustion air supply to the burner's mixing apparatus. The apparatus continuously varies the input of radiant gas heaters that respond to heat demand. The variable input radiant heater apparatus have a burner housing with a combustion air and fuel inlet and a burner assembly for mixing the fuel and air, and conveying the mixture into a heat exchanger for combustion. Combustion takes place inside the heat exchanger and the resulting hot products of combustion are moved through the heat exchanger to the exhaust end due to air pressure from a combustion air blower providing either positive air pressure from the burner end of the heater or negative pressure from the exhaust end of the heater. At the exhaust end of the heat exchanger, the combustion gasses are vented from the heater. A signal is conveyed to a controller mounted in the burner housing from a heat demand control device. Based on the signal, the controller varies the input of the heater to satisfy the heat demand. The input of the burner is varied by changes in the combustion air (via blower speed changes) and fuel (via modulating gas valve) supplied to the burner assembly.
  • 1. Some Objectives of the Present Invention
  • It is an object of the present invention to combine patented burner control technology and detailed laboratory analysis of infrared heaters specifically, to customize the operation and settings of the control for the purpose of optimization of performance, efficiencies and safety unique to an infrared heater.
  • It is an object of the present invention that a modulating gas valve controls fuel supply. The gas valve may have either pneumatic or electronic modulation. The fuel volume and pressure issued from the outlet of the gas valve to the burner can either be controlled by an electronic signal from the controller or a pneumatic (air pressure) signal from the blower. An advantage of the present invention using an electronic modulating gas valve is that the control of the gas valve is independent of the air pressure generated by the blower allowing for customization of the fuel to combustion air ratio. An advantage of the ability to customize this ratio is that heater performance, efficiencies and safety can be maximized for various burner fuel types and inputs.
  • It is an object of the present invention that the combustion air pressure and volume supplied to the burner is variable and is controlled by varying the speed of the blower motor. An advantage of the present invention is that the motor may be DC, permanent split capacitor (AC, single phase) or shaded pole (AC, single phase). The option allows for the most economical choice as the motor market dictates. The controller varies the speed of the motor by electronic signal. Currently there is no other control readily available that can vary the speed of a fractional horsepower shaded-pole motor.
  • It is an object of the present invention to be able to control motor speed of a standard single-phase shaded pole motor that is commonly used in single and two-stage infrared heaters. Achieving motor speed control by purchasing a more expensive DC motor is not required.
  • It is an object of the present invention to incorporate the burner control into infrared burner design such that the compact, lightweight control allows mounting of the control inside the burner housing and also allows optional mounting of the blower inside the burner housing without the need to increase the housing size.
  • It is an object of the present invention to control the input to any point within a predetermined range of inputs. The burner may operate at any input between and including full rated input to 30% of full rated input. The input range may be narrowed by reprogramming of the control's logic chip(s) if desired.
  • It is an object of the present invention to vary the burner input based on any one of various demand control devices.
  • It is an object of the present invention to detect heated area conditions with a traditional mechanical thermostat. By recording input and duration of past heating cycles, a programmed algorithm can pre-determine the initial heater input of a new heating cycle. During a new heating cycle the controller can adjust this pre-determined heater input based on timing of the new heating cycle and/or additional limit sensors or thermostats.
  • It is an object of the present invention to detect heated area conditions with a temperature sensor in the space. By calculating the difference between a set point temperature and an actual air temperature the controller can vary the heater input to respond to sensed heat demand.
  • It is an object of the present invention to detect user-controlled settings from a manually operated potentiometer to select heater input based on user demands.
  • It is an object of the present invention to control the combustion characteristics at the continuously varying input by continuously varying the fuel flow and combustion air flow to the burner's mixing means. Continuously changing condition inputs communicated to the burner control dictate the desired heat input. Combustion air flow and fuel flow are continuously varied to achieve changing input requirements to satisfy the desired heat demand.
  • It is an object of the present invention to monitor burner pressure and correct fuel flow and/or combustion air flow to maintain proper combustion under varying burner pressure conditions and to control blower speed and gas valve position independent of each other. The controller is pre-programmed with the required gas valve positions for every burner pressure. In response to changing demands, blower speed adjusts first to achieve a desired burner pressure, as correct burner pressure is sensed the fuel is immediately adjusted for desired combustion based on the pre-programmed settings. If adequate burner pressure cannot be achieved by changing blower speed, the fuel supplied will adjust according to the burner pressure that is achieved. If burner pressure decreases during a heating cycle, the controller senses the pressure drop and the controller will adjust the gas valve to supply the fuel necessary for correct combustion at the lower burner pressure.
  • 2. Heater
  • The heater or multi-burner heating system 10 in this invention includes a burner housing 12 to which a heat exchanger 14 is connected, as shown in FIG. 1. The heat exchanger's 14 length and shape may be various. Examples of shapes include and is not limited to straight, U-shaped, J-shaped, L-shaped, and polygonal shaped. The heat exchanger 14 is of conventional construction and will typically be mounted below a reflector 16 covering at least a significant portion of the length of the heat exchanger 14. The entire heater 10 including burner housing 12, heat exchanger 14 and reflector 16 is typically suspended, as shown in FIG. 2, with conventional suspension instruments like cables, rods, cords and the like 102 from and/or attached (clamps, brackets, screws, bolts, nails and the like) to a ceiling 100 of a structure.
  • In accordance with this invention, the housing 12 is provided with a single fuel delivery system, as shown in FIG. 3, including (1) a modulating gas valve 121, (2) a gas manifold 122 whose inlet side 122 a is connected to the outlet side 121 a of the gas valve 121 and (3) a burner assembly 123 whose inlet side 123 a is connected to the outlet side 122 b of the manifold 122.
  • The burner assembly 123 includes suitable apertures 123 b, and an apertured stem 123 c connected to the manifold 122 outlet 122 b fitted with a suitable gas orifice 124. Mounted either downstream of the burner 123 or inside the burner 123 is a flame igniter 123 d and flame sensor 123 e.
  • The burner assembly 123 is positioned at the inlet end 141 of the heat exchanger 14.
  • 3. Blower
  • A blower 18 is provided for causing a draft through (1) the combustion air inlet 125 of the burner housing 12, (2) the burner assembly 123, and (3) then the heat exchanger 14. The blower 18 may be positioned between the combustion air inlet 125 of the burner housing 12 and the burner assembly 123, forcing air through the burner housing 12 and heat exchanger 14. Alternately, the blower (draft inducer) may be positioned at the outlet end 142 of the heat exchanger 14, providing vacuum to pull air through the combustion air inlet 125 of the burner housing 12, through the burner assembly 123 then through the heat exchanger 14. An air restriction plate 20 is placed before or after the blower 18 to meter the combustion air delivered from the blower 18 to the burner assembly 123. Obviously, the blower 18 can be any conventional blower capable of providing the above-described attributes for conventional heating systems.
  • 4. Controller
  • In accordance with this invention, a single controller 22 (control board) controls the operation and sequencing of the modulating gas valve 121, the blower 18 and the igniter 123 d. The circuit board 22, manufactured by Varidigm Corporation of Plymouth, Minn., is powered both from a line voltage source 220 and from a 24V transformer 221 mounted in the burner housing 12 connected to line voltage 220. A pressure (or vacuum) switch 222 being sensitive to burner pressure via pressure lines 223 is electrically connected to the control board 22. The control board 22 monitors the opening and closing of the pressure switch circuit 222 to verify proper operation and calibration of a pressure transducer 224 on the control board 22. The pressure transducer 224 is also sensitive to burner pressure communicated via pressure hoses 223, which allows the controller 22 to alter blower 18 and gas valve operation 123 according to the current burner pressure. A pressure hose 223 is also connected to a tap on the modulating gas valve 121 to communicate a reference burner pressure to the valve for proper valve operation.
  • A conventional thermostat 225, as shown in FIG. 4, can be used to communicate heat demand to the controller 22. The control board 22 can collect data relating to a thermostat 225 circuit closing and opening cycle timing. Based on this timing the controller 22 can command ignition, modulation or shutting off of the burner 123. Alternately, an air temperature sensor or group of such sensors 226 can be used to communicate heat demand. The controller 22 can process the sensed temperature to command ignition, modulation or shutting off of the burner 123. Alternately, the user can initiate ignition and shut down the heater 10 with an on/off switch 227 as well as set the input rate during operation with a manual potentiometer 228.
  • By using the modulating burner control 22 and making modifications for application on an infrared heater 10, fuel and combustion air can be varied in correct proportions for optimum safety, performance and efficiency. The compact size allows for mounting in the burner housing 12 of the heater 123. By tailoring the controller's 22 fuel and combustion air settings specifically for infrared heaters through performing detailed laboratory analysis of burner performance characteristics individual to infrared heaters, burner efficiencies and safety can be maximized as never before.
  • At minimum input, the present invention achieves a thermal efficiency 5-6% higher than a two-stage infrared heater at low input. In addition, the controller 22 allows for a greater range of modulation between high and low input than a two-stage heater.
  • The burner controller 22 has pressure-sensing capability that greatly improves the safety and reliability of an infrared heater. Since the controller 22 has independent control of the combustion air and fuel supplies, it can adjust the blower speed to compensate for additional flue lengths or for partial flue or inlet blockage in an effort to optimize combustion quality. If proper combustion is not achievable by increasing blower 18 speed, the controller 22 will command the gas valve to reduce gas flow maintaining proper burner combustion. This ability maintains the quality of emissions for the modulating infrared heater and corrects situations that would otherwise result in elevated heat exchanger temperatures of infrared heaters. Not only does this increase the overall safety of the heater, but also potentially increases the service life of the heat exchanger 14.
  • 5. Operation
  • In operation, the heater 10 is operated in a similar fashion to other thermostatically controlled heating appliances. A thermostat 225 or temperature sensor 226 or on/off switch 227 initiates the operation. Upon activation the blower 18 is energized and will operate at full speed. Once the pressure switch 222 proves flow of air through the burner and the pressure transducer 224 senses adequate pressure, the controller 22 allows an air purge period prior to ignition. After the purge period, the controller 22 energizes the igniter 123 d then opens the gas valve 121. Gas flows through the gas valve 121, manifold 122 and orifice 124 then into the burner 123 where it mixes with the combustion air and the mixture is ignited by the igniter 123 d. Ignition is detected by the flame sensor 123 e, which signals the controller 22 to maintain the gas valve 121 in an open position. If the flame is extinguished at any time during operation, the flame sensor 123 e will signal the controller 22 to close the gas valve 121 and stop the flow of gas to the manifold 122. Upon ignition, initial input is 100% of full rated input or maximum input allowed as dictated by achieved burner pressure. The heater 10 will continue to operate at maximum input for a predetermined duration for heat exchanger warm-up. Following the warm-up period, the heater will modulate based on achieved burner pressure and/or signals from demand control devices 225, 226, 227, 228. At all times during the operation of the heater 123, the burner pressure is monitored. Burner pressure, as realized by the blower operating speed, will dictate the appropriate gas pressure and volume as pre-determined by detailed laboratory testing for maximum safety, performance, efficiency and combustion and emissions quality. The heat and fire and associated flue gasses are pushed or drawn downstream through the heat exchanger 14, away from the burner 123 towards the exhaust end 142 of the heat exchanger 14. The fire and hot flue gasses heat up the heat exchanger 14. The heat exchanger 14 releases this energy through convective and radiant heat transfer from the tubes outer surface in all directions. The reflector 16 over the heat exchanger helps contain the convective heat to maintain desired tube temperature, it also reflects and directs the radiant energy down toward the heated space below the heater 10.
  • The heater described could also be grouped into a multi-burner heating system. In such a configuration, the exhaust ends 142 of multiple heat exchangers 14 are coupled together through a common draft inducer that is located at the exhaust end of the coupled heat exchanger. In this configuration, the draft inducer creates negative pressure through heating system drawing the flame and heated gasses toward the end of the coupled heat exchanger. All burners would modulate simultaneously as a result of connection to the same draft inducer.
  • While a preferred form of this invention has been described above and shown in the accompanying drawings. It should be understood that the applicant does not intend to be limited to the particular details described above and illustrated, but intends to be limited only by the scope of the invention as defined by the following claims.

Claims (20)

1. A gas-fired radiant tube heater comprising:
at least one unitary burner housing connected to an elongated heat exchanger;
a burner controller mounted inside the burner housing;
a modulating gas valve, and a burner controller in the burner housing;
the burner controller capable of simultaneously varying gas and combustion air inputs to continuously deliver proper fuel/air ratio at every input rate.
2. The gas heater of claim 1 wherein the elongated heat exchanger is configurable in a shape that is straight.
3. The gas heater of claim 1 wherein the elongated heat exchanger is configurable in a shape that is U-shaped.
4. The gas heater of claim 1 wherein the elongated heat exchanger is configurable in a shape that is selected from the group consisting of straight, U-shaped, J-shaped, L-shaped, and polygonal shaped.
5. The gas heater of claim 1 wherein the heat exchanger is coupled to heat exchangers of additional heaters and vented through a common exit.
6. The gas heater of claim 1 wherein the burner modulates an input within a preset range burner inputs.
7. The gas heater of claim 1 wherein the burner input responds to at least one demand control device.
8. The gas heater of claim 1 wherein the burner senses burner pressure and automatically adjusts gas and combustion air inputs based on pre-programmed settings for optimum safety, efficiency and performance.
9. The gas heater of claim 1 wherein the burner adjusts the speed of a blower to allow combustion air adjustment for flue or vent blockage and/or various inlet flue or vent lengths.
10. The gas heater of claim 1 wherein the burner is capable of a 5:1 turndown.
11. The gas heater of claim 1 further comprising a blower.
12. The gas heater of claim 11 wherein the blower draws air into the heater.
13. The gas heater of claim 11 wherein the blower pushes air into the heater.
14. An apparatus for continuously varying the input of at least one radiant gas heater that responds to heat demand comprising:
a burner housing having (1) a combustion air and fuel inlet and (2) a burner assembly for mixing the fuel and air and conveying the mixture into a heat exchanger for combustion;
at least one conduit in conjunction with a blower that directs at least the energy formed from the combustion of the fuel and the air from the burner housing to a heat exchanger;
the energy formed from the combustion of the fuel and the air are vented from the heat exchanger;
a heat demand control device is positioned in the burner housing transmits a signal to a controller and based on the signal, the controller varies the input of the fuel and the air into the burner housing to satisfy the heat demand;
the controller varies the input of the fuel and the air into the burner housing by being able to simultaneously (1) alter the speed of the blower which controls the air input into the burner assembly and (2) modulate a fuel valve that controls the fuel input into the burner assembly.
15. The apparatus of claim 14 wherein the blower provides positive air pressure from the burner end of the heater.
16. The apparatus of claim 14 wherein the blower provides negative pressure from the exhaust end of the heater.
17. The apparatus of claim 14 further comprising (1) a pressure switch completes or breaks an electrical circuit due to differential pressure of air in the burner housing and (2) a pressure transducer that measures pressure within the burner housing.
18. The apparatus of claim 17 wherein if the values of the pressure switch and the pressure transducer meet a predetermined parameter, the controller allows an air purge period prior to ignition.
19. The apparatus of claim 17 wherein if the values of the pressure switch and/or the pressure transducer exceed or are below predetermined parameters, the controller will adjust or terminate the flow of air and/or fuel into the burner housing.
20. The apparatus of claim 17 wherein the energy generated by the fuel and the air is radiant and convective heat.
US10/858,244 2004-06-01 2004-06-01 Variable input radiant heater Abandoned US20050266362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/858,244 US20050266362A1 (en) 2004-06-01 2004-06-01 Variable input radiant heater
US11/728,464 US20070287111A1 (en) 2004-06-01 2007-03-26 Variable input radiant heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/858,244 US20050266362A1 (en) 2004-06-01 2004-06-01 Variable input radiant heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/728,464 Continuation-In-Part US20070287111A1 (en) 2004-06-01 2007-03-26 Variable input radiant heater

Publications (1)

Publication Number Publication Date
US20050266362A1 true US20050266362A1 (en) 2005-12-01

Family

ID=35425741

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/858,244 Abandoned US20050266362A1 (en) 2004-06-01 2004-06-01 Variable input radiant heater

Country Status (1)

Country Link
US (1) US20050266362A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257803A1 (en) * 2005-04-13 2006-11-16 Maxitrol Company Gas valve controller
WO2006120717A1 (en) * 2005-05-11 2006-11-16 Systema S.P.A. Heating plant with radiant tubes
US20070151292A1 (en) * 2004-09-22 2007-07-05 Heath Rodney T Vapor Recovery Process System
US20070221196A1 (en) * 2005-12-13 2007-09-27 Schwank Bernd H Heating device and method for its operations
US20070281262A1 (en) * 2006-05-31 2007-12-06 Johnston Michael R Safety mechanism for a torch
US20070287111A1 (en) * 2004-06-01 2007-12-13 Roberts-Gordon Llc Variable input radiant heater
US20080115781A1 (en) * 2006-11-17 2008-05-22 John Vancak Radiant tube heater assembly
US20080182214A1 (en) * 2006-10-19 2008-07-31 Wayne/Scott Fetzer Company Modulated power burner system and method
US20090061373A1 (en) * 2007-08-17 2009-03-05 Bannos Thomas S Integrated operating and control package for a pressurized burner system
ITMO20090040A1 (en) * 2009-02-17 2010-08-18 Ancora Spa RADIANT TUBE BURNER WITH HIGH EFFICIENCY HEAT EXCHANGE
US7905722B1 (en) * 2002-02-08 2011-03-15 Heath Rodney T Control of an adjustable secondary air controller for a burner
CN102889637A (en) * 2012-10-29 2013-01-23 梁广海 Fuel gas electromagnetic radiation heat energy wave oriented concentration beam reflective device
US8529215B2 (en) 2008-03-06 2013-09-10 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US8864887B2 (en) 2010-09-30 2014-10-21 Rodney T. Heath High efficiency slug containing vapor recovery
US9080777B2 (en) 2012-01-31 2015-07-14 Schwank, Ltd. Reflector for radiant tube heater
US9291409B1 (en) 2013-03-15 2016-03-22 Rodney T. Heath Compressor inter-stage temperature control
US9353315B2 (en) 2004-09-22 2016-05-31 Rodney T. Heath Vapor process system
US9527786B1 (en) 2013-03-15 2016-12-27 Rodney T. Heath Compressor equipped emissions free dehydrator
US9932989B1 (en) 2013-10-24 2018-04-03 Rodney T. Heath Produced liquids compressor cooler
US10052565B2 (en) 2012-05-10 2018-08-21 Rodney T. Heath Treater combination unit

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394886A (en) * 1966-02-28 1968-07-30 Roberts Appliance Corp Gordon Control device for gas burners
US3963018A (en) * 1974-04-05 1976-06-15 Natural Resource Systems, Inc. Combustion furnace and infra-red radiant heating system
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
US4729207A (en) * 1986-09-17 1988-03-08 Carrier Corporation Excess air control with dual pressure switches
US4869229A (en) * 1986-08-22 1989-09-26 Johnson Arthur C W Burner unit
US5112217A (en) * 1990-08-20 1992-05-12 Carrier Corporation Method and apparatus for controlling fuel-to-air ratio of the combustible gas supply of a radiant burner
US5211331A (en) * 1990-04-13 1993-05-18 Roberts-Gordon, Inc. Control in combination with thermostatically responsive assembly
US5353986A (en) * 1993-06-15 1994-10-11 Detroit Radiant Products Company Demand radiant heating system
US5634786A (en) * 1994-11-30 1997-06-03 North American Manufacturing Company Integrated fuel/air ratio control system
US5842854A (en) * 1996-04-18 1998-12-01 Willms; Eric Infrared heating system and metering element
US5989011A (en) * 1997-07-18 1999-11-23 Caruso; Pat Burner control system
US6349922B1 (en) * 1998-05-11 2002-02-26 Siemens Elema Ab Valve with valve body which is non-linearly movable relative to a valve seat
US6419478B1 (en) * 1999-11-23 2002-07-16 Honeywell International Inc. Stepper motor driving a linear actuator operating a pressure control regulator
US20030013054A1 (en) * 2001-07-11 2003-01-16 Fredricks Thomas J. System and methods for modulating gas input to a gas burner
US20030059730A1 (en) * 2001-09-10 2003-03-27 Sigafus Paul E. Variable output heating and cooling control
US6571817B1 (en) * 2000-02-28 2003-06-03 Honeywell International Inc. Pressure proving gas valve
US6694926B2 (en) * 2000-01-10 2004-02-24 Lochinvar Corporation Water heater with continuously variable air and fuel input
US6705342B2 (en) * 2003-05-16 2004-03-16 Emerson Electric Co. Modulating gas valve with natural/LP gas conversion capability
US6766962B2 (en) * 2002-07-15 2004-07-27 Teleflex Canada Limited Partnership Temperature maintaining apparatus and temperature control apparatus and method therefor
US6786422B1 (en) * 2001-10-30 2004-09-07 Detroit Radiant Products Co. Infrared heating assembly
US6971871B2 (en) * 2004-02-06 2005-12-06 Solaronics, Inc. Variable low intensity infrared heater

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394886A (en) * 1966-02-28 1968-07-30 Roberts Appliance Corp Gordon Control device for gas burners
US3963018A (en) * 1974-04-05 1976-06-15 Natural Resource Systems, Inc. Combustion furnace and infra-red radiant heating system
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
US4869229A (en) * 1986-08-22 1989-09-26 Johnson Arthur C W Burner unit
US4729207A (en) * 1986-09-17 1988-03-08 Carrier Corporation Excess air control with dual pressure switches
US5211331A (en) * 1990-04-13 1993-05-18 Roberts-Gordon, Inc. Control in combination with thermostatically responsive assembly
US5112217A (en) * 1990-08-20 1992-05-12 Carrier Corporation Method and apparatus for controlling fuel-to-air ratio of the combustible gas supply of a radiant burner
USRE37636E1 (en) * 1993-06-15 2002-04-09 Detroit Radiant Products Company Demand radiant heating system
US5353986A (en) * 1993-06-15 1994-10-11 Detroit Radiant Products Company Demand radiant heating system
US5634786A (en) * 1994-11-30 1997-06-03 North American Manufacturing Company Integrated fuel/air ratio control system
US5842854A (en) * 1996-04-18 1998-12-01 Willms; Eric Infrared heating system and metering element
US5989011A (en) * 1997-07-18 1999-11-23 Caruso; Pat Burner control system
US6349922B1 (en) * 1998-05-11 2002-02-26 Siemens Elema Ab Valve with valve body which is non-linearly movable relative to a valve seat
US6419478B1 (en) * 1999-11-23 2002-07-16 Honeywell International Inc. Stepper motor driving a linear actuator operating a pressure control regulator
US6694926B2 (en) * 2000-01-10 2004-02-24 Lochinvar Corporation Water heater with continuously variable air and fuel input
US6571817B1 (en) * 2000-02-28 2003-06-03 Honeywell International Inc. Pressure proving gas valve
US20030013054A1 (en) * 2001-07-11 2003-01-16 Fredricks Thomas J. System and methods for modulating gas input to a gas burner
US20030059730A1 (en) * 2001-09-10 2003-03-27 Sigafus Paul E. Variable output heating and cooling control
US6786422B1 (en) * 2001-10-30 2004-09-07 Detroit Radiant Products Co. Infrared heating assembly
US6766962B2 (en) * 2002-07-15 2004-07-27 Teleflex Canada Limited Partnership Temperature maintaining apparatus and temperature control apparatus and method therefor
US6705342B2 (en) * 2003-05-16 2004-03-16 Emerson Electric Co. Modulating gas valve with natural/LP gas conversion capability
US6971871B2 (en) * 2004-02-06 2005-12-06 Solaronics, Inc. Variable low intensity infrared heater

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905722B1 (en) * 2002-02-08 2011-03-15 Heath Rodney T Control of an adjustable secondary air controller for a burner
US20070287111A1 (en) * 2004-06-01 2007-12-13 Roberts-Gordon Llc Variable input radiant heater
US9353315B2 (en) 2004-09-22 2016-05-31 Rodney T. Heath Vapor process system
US20070151292A1 (en) * 2004-09-22 2007-07-05 Heath Rodney T Vapor Recovery Process System
US20060257803A1 (en) * 2005-04-13 2006-11-16 Maxitrol Company Gas valve controller
WO2006120717A1 (en) * 2005-05-11 2006-11-16 Systema S.P.A. Heating plant with radiant tubes
US8475163B2 (en) * 2005-12-13 2013-07-02 Schwank Gmbh Heating device and method for its operations
US20070221196A1 (en) * 2005-12-13 2007-09-27 Schwank Bernd H Heating device and method for its operations
US20070281262A1 (en) * 2006-05-31 2007-12-06 Johnston Michael R Safety mechanism for a torch
US20080182214A1 (en) * 2006-10-19 2008-07-31 Wayne/Scott Fetzer Company Modulated power burner system and method
US8075304B2 (en) * 2006-10-19 2011-12-13 Wayne/Scott Fetzer Company Modulated power burner system and method
US20080115781A1 (en) * 2006-11-17 2008-05-22 John Vancak Radiant tube heater assembly
US8381715B2 (en) * 2006-11-17 2013-02-26 John Vancak Radiant tube heater assembly
US8105077B2 (en) * 2007-08-17 2012-01-31 Red-Ray Manufacturing, Co., Inc. Integrated operating and control package for a pressurized burner system
US20090061373A1 (en) * 2007-08-17 2009-03-05 Bannos Thomas S Integrated operating and control package for a pressurized burner system
US8529215B2 (en) 2008-03-06 2013-09-10 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US8840703B1 (en) 2008-03-06 2014-09-23 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
US8900343B1 (en) 2008-03-06 2014-12-02 Rodney T. Heath Liquid hydrocarbon slug containing vapor recovery system
ITMO20090040A1 (en) * 2009-02-17 2010-08-18 Ancora Spa RADIANT TUBE BURNER WITH HIGH EFFICIENCY HEAT EXCHANGE
US8864887B2 (en) 2010-09-30 2014-10-21 Rodney T. Heath High efficiency slug containing vapor recovery
US9080777B2 (en) 2012-01-31 2015-07-14 Schwank, Ltd. Reflector for radiant tube heater
US10052565B2 (en) 2012-05-10 2018-08-21 Rodney T. Heath Treater combination unit
CN102889637A (en) * 2012-10-29 2013-01-23 梁广海 Fuel gas electromagnetic radiation heat energy wave oriented concentration beam reflective device
US9291409B1 (en) 2013-03-15 2016-03-22 Rodney T. Heath Compressor inter-stage temperature control
US9527786B1 (en) 2013-03-15 2016-12-27 Rodney T. Heath Compressor equipped emissions free dehydrator
US9932989B1 (en) 2013-10-24 2018-04-03 Rodney T. Heath Produced liquids compressor cooler

Similar Documents

Publication Publication Date Title
US20050266362A1 (en) Variable input radiant heater
US20070287111A1 (en) Variable input radiant heater
US7735743B2 (en) Apparatus and methods for variable furnace control
US20060169275A1 (en) Variable input radiant heater
US8635997B2 (en) Systems and methods for controlling gas pressure to gas-fired appliances
US5470018A (en) Thermostatically controlled gas heater
US6971871B2 (en) Variable low intensity infrared heater
US9032950B2 (en) Gas pressure control for warm air furnaces
US7293718B2 (en) Variable output heating and cooling control
US7241135B2 (en) Feedback control for modulating gas burner
US4457291A (en) Power burner system for a food preparation oven
CA2202227A1 (en) Fuel-fired modulating furnace calibration apparatus and methods
US8591221B2 (en) Combustion blower control for modulating furnace
MXPA97008331A (en) Modulation oven with two-speed traction inducer
US20020155405A1 (en) Digital modulation for a gas-fired heater
US20090092936A1 (en) Pressure regulator with bleed orifice
CA2040095C (en) Control in combination with thermostatically responsive assembly
US5878741A (en) Differential pressure modulated gas valve for single stage combustion control
EP0894224B1 (en) Infrared heating system and metering element
EP0509155A1 (en) Radiant heating systems
US20120208138A1 (en) Radiant heating assembly and method of operating the radiant heating assembly
CA2544221C (en) Variable low intensity infrared heater
US20230213240A1 (en) Systems and methods for operating a furnace
JPH09229353A (en) Combustion device
JPH02169919A (en) Control device for forced air blasting type combustion apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERTS-GORDON LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STONE, PATRICK C.;MURDOCH, MARK V.;REEL/FRAME:015422/0756;SIGNING DATES FROM 20040528 TO 20040601

AS Assignment

Owner name: MANUFACTURERS AND TRADERS TRUST COMPANY, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ROBERTS-GORDON LLC;REEL/FRAME:016800/0256

Effective date: 20040727

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ROBERTS-GORDON LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY;REEL/FRAME:026297/0403

Effective date: 20110420