US20050199907A1 - Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base - Google Patents

Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base Download PDF

Info

Publication number
US20050199907A1
US20050199907A1 US10/708,563 US70856304A US2005199907A1 US 20050199907 A1 US20050199907 A1 US 20050199907A1 US 70856304 A US70856304 A US 70856304A US 2005199907 A1 US2005199907 A1 US 2005199907A1
Authority
US
United States
Prior art keywords
emitter
bipolar transistor
base
layer
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/708,563
Other versions
US6940149B1 (en
Inventor
Rama Divakaruni
Gregory Freeman
Marwan Khater
William Tonti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US10/708,563 priority Critical patent/US6940149B1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KHATER, MARWAN, TONTI, WILLIAM, DIVAKARUNI, RAMA, FREEMAN, GREGORY
Application granted granted Critical
Publication of US6940149B1 publication Critical patent/US6940149B1/en
Publication of US20050199907A1 publication Critical patent/US20050199907A1/en
Assigned to GLOBALFOUNDRIES U.S. 2 LLC reassignment GLOBALFOUNDRIES U.S. 2 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES U.S. 2 LLC, GLOBALFOUNDRIES U.S. INC.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7378Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Definitions

  • the present invention relates to bipolar transistors and their fabrication, especially heterojunction bipolar transistors utilized in high-speed integrated circuits.
  • High performance circuits favor the use of heterojunction bipolar transistors (HBTs) to provide high maximum oscillation frequency f MAX and high transient frequency f T , also referred to as “cutoff frequency”.
  • HBTs have a structure in which the base of the transistor includes a relatively thin layer of single-crystal semiconductor alloy material.
  • an HBT fabricated on a substrate of single-crystal silicon can have a single-crystal base formed of silicon germanium (SiGe) having substantial germanium content and profile to improve high-speed performance.
  • SiGe HBT silicon germanium
  • a particularly advantageous type of HBT has a “graded base” in which the content of particular semiconductor materials varies according to depth within the base of the transistor.
  • the germanium content varies continuously with depth across the thickness of the SiGe layer.
  • a significant quasi-electric field results during operation that decreases the transit time of charge carriers through the base. Decreased transit time, in turn, enables higher gain and cutoff frequency to be achieved than in transistors having the same semiconductor material throughout.
  • the transit frequency f T is the frequency at which the current gain of the transistor decreases to unity such that the HBT no longer amplifies currents above that frequency.
  • the parasitics of the HBT include the following parasitic capacitances and resistances, as listed in Table 1: TABLE 1 C cb collector-base capacitance C eb emitter-base capacitance R c collector resistance R e emitter resistance R b base resistance
  • the parasitics having the most significant effect on performance are the collector-base capacitance C cb and the base resistance R b .
  • the charging of the parasitic C cb through the parasitic R b has the greatest impact on power delivery that is reflected in the f MAX figure of merit.
  • the emitter-base capacitance C eb is the parasitic having the single largest capacitance.
  • the value of C eb indirectly but profoundly affects the value of C cb , in that large C eb requires high operational current. High operational current can require that the base have a high concentration of charge carriers.
  • FIG. 1 An example of a state of the art heterojunction bipolar transistor (HBT) structure containing parasitics is illustrated in FIG. 1 .
  • an ideal or “intrinsic” device consists of a one-dimensional slice downward through the centerline 2 of the HBT, through emitter 4 , intrinsic base layer 3 , and collector 6 .
  • the emitter 4 is generally heavily doped with a particular dopant type, (e.g. n-type), and generally consists essentially of polycrystalline silicon (hereinafter, “polysilicon”).
  • the intrinsic base 3 is predominantly doped with the opposite type dopant (e.g. p-type), and less heavily than the emitter 4 .
  • the collector 6 is doped predominantly with the same dopant (e.g. n-type) as the emitter 4 , but even less heavily than the intrinsic base 3 .
  • Region 5 represents the depletion region disposed between the intrinsic base 3 and the collector 6 , due to the p-n junction between the base and collector, which have different predominant dopant types.
  • Region 7 represents the depletion region disposed between the intrinsic base 3 and the emitter 4 , due to the p-n junction between the base and emitter, which have different predominant dopant types.
  • the intrinsic base 3 is formed of silicon germanium (SiGe), which is epitaxially grown on the surface of the underlying collector 6 .
  • the ideal structure itself contains two capacitances that impact performance. There is the intrinsic emitter-base capacitance C BE,I at the junction 7 between the emitter 4 and the base 3 . In addition, there is an intrinsic collector base capacitance C CB,I at the junction 5 between the collector and the base. These capacitances are related to the areas of the respective junctions, as well as to the quantities of dopant on either side of the respective junctions. Although these capacitances impact the power gain of the transistor, they are an inextricable part of the ideal transistor structure and thus cannot be fully eliminated.
  • a transistor contains additional parasitics stemming from interaction between the intrinsic device and other material structures in which the intrinsic device is embedded, such structures helping to provide electrical access to and heat transfer from the intrinsic device.
  • additional parasitics is the extrinsic emitter base capacitance, shown in FIG. 1 as C BE,E 8 .
  • C BE,E 8 the extrinsic emitter base capacitance
  • the dimension of the emitter in the lateral dimension is generally made smaller, in order to reduce the parasitic resistances.
  • the region surrounding the emitter becomes larger for the same device area.
  • the HBT 10 includes an intrinsic base 12 , which is disposed in vertical relation between the emitter 14 and the collector 16 .
  • the intrinsic base 12 includes a single-crystal layer of SiGe (a single-crystal of silicon germanium having a substantial proportion of germanium).
  • the SiGe layer forms a heterojunction with the collector 16 and a relatively thin layer of single-crystal silicon 13 which is typically present in the space between the SiGe layer and the emitter 14 .
  • a raised extrinsic base 18 is disposed over the intrinsic base 12 as an annular structure surrounding the emitter 14 .
  • the purpose of the raised extrinsic base 18 is to inject a base current into the intrinsic base 12 .
  • the interface 24 between the raised extrinsic base 18 and the intrinsic base is close to the junction between the emitter 14 and the intrinsic base 12 .
  • R b base resistance
  • the interface 24 to the raised extrinsic base be self-aligned to the edge of the emitter 14 . Such self-alignment would exist if the raised extrinsic base were spaced from the emitter 14 only by the width of one or more dielectric spacers formed on a sidewall of the raised extrinsic base 18 .
  • the interface 24 is not self-aligned to the emitter 14 , and the distance separating them is not as small or as symmetric as desirable.
  • a dielectric landing pad, portions 21 , 22 of which are visible in the view of FIG. 2 is disposed as an annular structure surrounding the emitter 14 . Portions 21 , 22 of the landing pad separate the raised extrinsic base 18 from the intrinsic base 12 on different sides of the emitter 14 , making the two structures not self-aligned.
  • the lengths of portions 21 and 22 can become non-symmetric about the emitter opening, causing performance to vary.
  • the landing pad functions as a sacrificial etch stop layer during fabrication.
  • the formation of the landing pad and its use are as follows. After forming the SiGe layer of the intrinsic base 12 by epitaxial growth onto the underlying substrate 11 , a layer of silicon 13 is formed over the SiGe layer 12 . A layer of silicon dioxide is deposited as the landing pad and is then photolithographically patterned to expose the layer 13 of single-crystal silicon. This photolithographic patterning defines the locations of interface 24 at the edges of landing pad portions 21 , 22 , which will be disposed thereafter to the left and the right of the emitter 14 . A layer of polysilicon is then deposited to a desired thickness, from which layer the extrinsic base 18 will be formed.
  • an opening is formed in the polysilicon by anisotropically etching the polysilicon layer (as by a reactive ion etch) selectively to silicon dioxide, such etch stopping on the landing pad.
  • the landing pad is then wet etched within the opening to expose silicon layer 13 and SiGe layer 12 .
  • a problem of the non-self-aligned structure of HBT 10 is high base resistance R b . Resistance is a function of the distance of a conductive path, divided by the cross-sectional area of the path.
  • the SiGe layer 12 is a relatively thin layer, significant resistance can be encountered by current traversing the distance from the extrinsic base under landing pad portions 21 , 22 to the area of the intrinsic base 12 under the emitter 14 , such resistance limiting the high speed performance of the transistor.
  • FIG. 3 is a cross-sectional view illustrating another HBT 50 according to the prior art.
  • HBT 50 includes an intrinsic base 52 having a layer of silicon germanium and an extrinsic base 58 consisting of polysilicon in contact with the single-crystal intrinsic base 52 .
  • HBT 50 does not include landing pad portions 21 , 22 , but rather, the raised extrinsic base 58 is self-aligned to the emitter 54 , the extrinsic base 58 being spaced from the emitter 54 by dielectric spacer.
  • Self-aligned HBT structures such as HBT 50 have demonstrated high f T and f MAX as reported in Jagannathan, et al., “Self-aligned SiGe NPN Transistors with 285 GHz f MAX and 207 GHz f T in a Manufacturable Technology,” IEEE Electron Device letters 23 , 258 (2002) and J. S. Rieh, et al., “SiGe HBTs with Cut-off Frequency of 350 GHz,” International Electron Device Meeting Technical Digest, 771 (2002).
  • the emitter 54 is self-aligned to the raised extrinsic base 58 .
  • CMP chemical mechanical polishing
  • the intrinsic base is grown using selective epitaxy inside an emitter opening and under an overhanging polysilicon layer of the extrinsic base.
  • self-alignment of the emitter to the extrinsic base is achieved by the epitaxially grown material under the overhang.
  • special crystal growth techniques are required to ensure good, low-resistance contact between the intrinsic base and the extrinsic base.
  • a self-aligned HBT is formed by a process including chemical mechanical polishing (CMP) steps.
  • CMP chemical mechanical polishing
  • the intrinsic base 60 is formed by non-selective epitaxy over the collector 62 .
  • a raised extrinsic base 64 is formed by depositing polysilicon in an opening which has an upwardly projecting mandrel 66 in the center of the opening. Thereafter, as shown in FIG.
  • the polysilicon is recessed by etching selectively to an exterior material of the mandrel, and a layer 68 of oxide is deposited in the opening.
  • the oxide layer is then polished to the level of the mandrel and then the mandrel is thereafter removed, as shown in FIG. 4C . While the process described therein self-aligns the raised extrinsic base to the emitter, the base resistance R b is dependent upon the accuracy and uniformity of recessing the polysilicon layer.
  • C EB,I Another technique for reducing the intrinsic portion of the emitter-base capacitance ( C EB,I ) is described in commonly owned, co-pending U.S. patent application Ser. No. 10/008,383 filed Dec. 6, 2001.
  • the depth of the emitter 62 is intentionally varied, such that it has a lower depth D2 at the center of the transistor, while its depth D1 is greater at the perimeter.
  • the device perimeter dominates the transistor operation and the center is mostly parasitic. Under such conditions, this technique provides a more optimal structure for establishing a low C BE transistor.
  • C EB,E the emitter-base capacitance
  • the emitter 14 is disposed in close proximity to the base 12 and 18 across a dielectric region or spacer. Additional parasitic capacitance results from the junction of the emitter layer with the base under and beyond the spacers 21 , 22 .
  • a structure and a method are provided for making a bipolar transistor, the bipolar transistor including a collector, an intrinsic base overlying the collector, an emitter overlying the intrinsic base, and an extrinsic base spaced from the emitter by a gap, the gap including at least one of an air gap and a vacuum void.
  • FIG. 1 illustrates components of collector base capacitance in relation to the structure of an HBT.
  • FIG. 2 illustrates a non-self-aligned heterojunction bipolar transistor according to the prior art, in which the raised extrinsic base is formed of polysilicon and is not self-aligned to the emitter.
  • FIG. 3 illustrates a self-aligned heterojunction bipolar transistor according to the prior art, in which the raised extrinsic base is formed of polysilicon and is self-aligned to the emitter.
  • FIGS. 4A through 4C illustrate a method of fabricating a self-aligned heterojunction bipolar transistor as described in commonly owned, co-pending U.S. patent application No. 09/962,738 filed Sep. 25, 2001, in which the raised extrinsic base is formed by a recessed layer of polysilicon self-aligned to the emitter.
  • FIGS. 5 and 6 illustrate a method of fabricating a heterojunction bipolar transistor as described in commonly owned, co-pending U.S. patent application Ser. No. 10/008,383 filed Dec. 6, 2001.
  • FIG. 7 illustrates a heterojunction bipolar transistor having a gap disposed between the emitter and the base according to one embodiment of the invention.
  • FIGS. 8 through 20 illustrate a method of fabricating the heterojunction bipolar transistor illustrated in FIG. 7 , according to an embodiment of the invention.
  • the embodiments of the invention described herein provide a structure and method for forming a bipolar transistor having reduced collector-base capacitance ( C cb ). Reducing the collector-base capacitance affects the power gain of the transistor, helping to increase f T and f MAX . According to the embodiments of the invention, these goals are furthered without significant impact to series resistance ( R c ) or base resistance ( R b ), thus enabling improvements to be achieved in the gain and frequency range of a bipolar transistor.
  • the bipolar transistor according to the various embodiments described herein includes an “air gap”, i.e. a gap filled with any suitable one or combination of gases or a vacuum void (hereinafter “gap”) in the place of a traditional solid dielectric spacer of silicon nitride or silicon dioxide between the emitter and the raised extrinsic base.
  • a gap in place of such solid dielectric reduces the dielectric constant by a 3:1 ratio or greater and reduces the fringing portion of the capacitance between the emitter and the raised extrinsic base to the same degree.
  • the semiconductor material is recessed in the area below the gap between the emitter and the raised extrinsic base. This has the effect of reducing the perimeter component of the junction in the semiconductor material, and helping to further reduce the emitter- base capacitance.
  • FIG. 7 is a cross-sectional view illustrating a heterojunction bipolar transistor (HBT) 100 according to a first embodiment of the invention.
  • HBT 100 is desirably fabricated from a substrate 101 , e.g. wafer, of single-crystal silicon.
  • the HBT 100 includes a collector 116 , an intrinsic base 112 overlying the collector 116 region, and an emitter 114 disposed within an opening overlying the intrinsic base 112 .
  • the intrinsic base consists essentially of single-crystal silicon.
  • the intrinsic base includes a layer of single-crystal semiconductor alloy such as silicon germanium (SiGe).
  • the intrinsic base is doped with an impurity to provide the opposite type of conductivity (e.g. p-type conductivity) as the emitter and the collector, which have the same type of conductivity (e.g. n-type conductivity).
  • a raised extrinsic base 128 overlies the intrinsic base 112 and is conductively connected thereto, the raised extrinsic base including a layer of polycrystalline semiconductor material 125 such as polysilicon or polycrystalline silicon germanium (SiGe).
  • the raised extrinsic base 128 desirably includes a low-resistance layer 123 including a metal or metal silicide, overlying the polycrystalline semiconductor layer 125 .
  • the raised extrinsic base 128 has an annular shape, surrounding the emitter 114 .
  • a semiconductor material layer 113 known as an intrinsic layer is provided between the emitter 114 and the intrinsic base 112 and between the raised extrinsic base and the intrinsic base 112 .
  • This layer is typically a relatively thin layer, which initially has a light dopant concentration but takes on a higher dopant concentration and conductivity type as a result of dopant diffusion from layers with which it is in contact.
  • Layer 113 has the conductivity type of the emitter 114 where it underlies the emitter 114 and has the conductivity type of the raised extrinsic base 128 where it underlies the raised extrinsic base 128 .
  • layer 113 is recessed or removed.
  • a layer of oxide 117 desirably contacts a top surface 115 of the intrinsic base 112 .
  • the space between the emitter 114 and raised extrinsic base 128 is occupied by a gap 130 , which is an air gap or vacuum void.
  • the space above the gap 130 is capped by a deposited dielectric material which is preferably silicon dioxide.
  • this structure will be referred to as a spacer cap 1800 , for ease of reference.
  • the emitter 114 extends downwardly to contact the intrinsic base 112 through an opening in the raised extrinsic base 128 .
  • Oxide regions 136 and 1800 separate an upper portion 2000 of the emitter from the raised extrinsic base 128 .
  • the emitter 114 can be made out of a variety of semiconductor materials such as polysilicon or polycrystalline SiGe.
  • Vertical contact to each of the raised extrinsic base 128 , emitter 114 and collector reach-through region 103 from a overlying wiring level (not shown) is provided through metal or metal-silicide filled vias 140 , 142 , and 144 that are etched into an overlying deposited interlevel dielectric layer (ILD) 146 .
  • ILD 146 consists essentially of a deposited oxide, for example, silicon dioxide such as oxide deposited from a tetraethylorthosilicate (TEOS) precursor or borophosphosilicate glass (BPSG).
  • TEOS tetraethylorthosilicate
  • BPSG borophosphosilicate glass
  • FIGS. 8 through 20 A method of fabricating an HBT 100 according to an embodiment of the invention is illustrated in FIGS. 8 through 20 .
  • a single-crystal silicon substrate 101 is patterned to form a first active area 102 and a second active area 103 , and shallow trench isolations 126 between the active areas 102 and 103 .
  • the shallow trench isolations 126 are formed by directionally etching trenches in the substrate 101 , and then filling the trenches with a dense oxide, such as may be provided by a high electron density plasma (HDP) deposition.
  • HDP high electron density plasma
  • a layer 105 of dielectric material preferably consisting of silicon dioxide deposited from a TEOS precursor, is deposited over the substrate and photolithographically patterned to expose the first active area 102 but not the second active area 103 .
  • Active area 102 is then ion implanted, or otherwise doped to form collector 116 .
  • the dopant source for this step is an n-type dopant such as arsenic and/or phosphorous.
  • a layer 112 of semiconductor material including a dopant of the opposite type as the collector is epitaxially grown onto the surface of the substrate in active area 102 .
  • This layer 112 becomes an intrinsic base layer of the transistor when completed.
  • the dopant source for this step is a p-type dopant such as boron.
  • the intrinsic base layer 112 includes a semiconductor alloy such as silicon germanium (SiGe) having a substantial percentage content of germanium.
  • SiGe silicon germanium
  • Such layer 112 desirably has a germanium content which is greater than 20%, while the silicon content makes up a complementary percentage.
  • Carbon may also be incorporated at small amount, i.e., less than one percent, to reduce diffusion of the dopants in subsequent processing.
  • the SiGe layer 112 is grown using non-selective epitaxy.
  • a second layer 113 of semiconductor material, thinner than layer 112 and having a lowered dopant concentration compared to the intrinsic base 112 is then epitaxially grown over intrinsic base layer 112 .
  • This layer 113 is subject to being doped by overlying layers which are subsequently formed in contact therewith, as by dopant outdiffusion therefrom.
  • steps are performed to define the lateral dimension of the emitter.
  • a thin layer of oxide (e.g. silicon dioxide) 1061 is deposited over single-crystal layer 113 and polycrystalline base layer 125 .
  • a relatively thick layer 1064 of silicon nitride is deposited over the oxide layer.
  • FIG. 9B depicts the resulting structure after photolithographically patterning the nitride layer 1064 , and then patterning the oxide layer 1061 as by a wet etch, selective to nitride and to silicon.
  • FIG. 9A a thin layer of oxide (e.g. silicon dioxide) 1061 is deposited over single-crystal layer 113 and polycrystalline base layer 125 .
  • a relatively thick layer 1064 of silicon nitride is deposited over the oxide layer.
  • FIG. 9B depicts the resulting structure after photolithographically patterning the nitride layer 1064 , and then patterning the oxide layer 1061 as by a wet etch, selective to
  • a layer of polysilicon 125 is deposited over single-crystal layer 113 and preexisting polysilicon layer 124 . This may be accomplished through deposition, CMP planarization and etch-back, or by selective deposition. This step is followed by blanket deposition of an additional oxide layer 1000 . The oxide layer is then planarized to the level of the nitride layer 1064 , as by an etchback process selective to nitride, or chemical mechanical polishing (CMP), resulting in the structure as shown.
  • CMP chemical mechanical polishing
  • FIG. 10 depicts the structure after removing the nitride layer 1064 , as by etching, selective to oxide, and then forming a relatively thick nitride spacer 1062 in the opening 1060 .
  • spacer 1062 is formed, typically by conformally depositing a relatively thick layer of silicon nitride, and then vertically etching the nitride layer, as by a reactive ion etch (RIE), until the underlying oxide layer 1061 is exposed.
  • RIE reactive ion etch
  • the underlying oxide layer 1061 is thereafter removed from the opening 1060 , as by a wet etch, leaving oxide pad 1174 .
  • a further layer 1100 of polysilicon is deposited over layer 113 within the opening as an emitter contact layer.
  • the emitter polysilicon layer 114 is recessed, as by CMP, or by etching the polysilicon selectively to oxide and nitride.
  • the oxide layer 1000 is recessed, as by RIE or a wet etch, in a process selective to at least nitride.
  • the nitride spacer 1062 is removed, as by wet etching, selective to oxide and to polysilicon, to form an annular opening 1400 .
  • the oxide pad 1174 is then removed, as by wet etching selective to the underlying semiconductor material.
  • layer 113 is removed from inside the annular opening 1400 , as by a wet etch, selective to the material of the intrinsic base layer 112 .
  • dopants diffuse laterally outward from the emitter 114 into this region, such that an unnecessary p-n junction exists by the juxtaposition of this outdiffusion region to the intrinsic base 112 .
  • the junction is eliminated in region 1400 , thereby eliminating its contribution to the emitter-base junction capacitance.
  • Selectivity is achieved because at least the conductivity (p- and n-) types of layer 112 and 113 vary, and preferably the materials also vary between SiGe and silicon.
  • a timed etch can be performed to remove semiconductor material to a desired recess depth.
  • Other more exact etching techniques can also be utilized such as a plasma etching technique such as a plasma RIE or a plasma dry chemical etch (DCE), as well as other methods that involve oxidation of layer 113 followed by wet stripping using an etchant such as hydrofluoric acid (HF).
  • a plasma etching technique such as a plasma RIE or a plasma dry chemical etch (DCE)
  • etchant such as hydrofluoric acid (HF).
  • a non-conformal layer 1700 of oxide is de-posited over the structure, including over the oxide layer 1000 , on the emitter 114 and inside the annular opening 1400 . Since this new layer of oxide is non-conformal, the annular opening 1400 is not entirely filled, as illustrated in FIG. 17 .
  • the oxide is deposited on the sidewalls of layer 1000 and on the bottom of the opening 1400 .
  • the quantity of material resulting at the bottom of opening 1400 is small due to the reduced opening resulting from the sidewall deposition. In this way, an annular oxide pad 117 is formed on a top surface 115 of the intrinsic base layer 112 .
  • annular gap 1730 results between the emitter 114 and the sidewalls of the layers 125 , 1000 of polysilicon and oxide inside the annular opening 1400 .
  • the deposition of this layer of oxide 1700 can be conducted using a technique such as plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the oxide layer 1700 is recessed until the top surface 214 of the emitter 114 is cleared of oxide.
  • Such recessing process can be conducted by an etching technique such as a RIE or a wet etch. This process results in the formation of an annular oxide spacer cap 1800 overlying the gap 1730 .
  • a further emitter layer 1900 is deposited over the structure, preferably including polysilicon, but which can alternatively consist essentially of a metal, a metal silicide or other conductive metal compound which is compatible with polysilicon, or a combination of the foregoing.
  • an upper portion 2000 of the emitter 114 is photolithographically defined, followed by the photolithographic definition of the raised extrinsic base 128 .
  • the oxide layer 105 ( FIG. 8 ) is removed, to expose the collector reach-through area 103 .
  • an optional self-aligned silicidation process can be performed when the layer 1900 consists essentially of polysilicon to form the aforementioned silicide layers 123 , 150 and 152 which overlie the emitter 114 , raised extrinsic base polysilicon layer 125 and collector reach-through area 103 , as shown in FIG. 7 .
  • ILD 146 a thick interlevel dielectric layer (ILD) 146 is then formed over the structure.
  • ILD 146 consists essentially of a deposited oxide, for example a silicon dioxide such as a TEOS oxide or borophosphosilicate glass (BPSG).
  • Vias 140 , 142 , and 144 are then etched in the ILD 146 and subsequently filled with a metal, metal silicide or other conductive metal compound or combination of the foregoing to form the structure discussed above with reference to FIG. 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

Structure and a method are provided for making a bipolar transistor, the bipolar transistor including a collector, an intrinsic base overlying the collector, an emitter overlying the intrinsic base, and an extrinsic base spaced from the emitter by a gap, the gap including at least one of an air gap and a vacuum void.

Description

    BACKGROUND OF INVENTION
  • The present invention relates to bipolar transistors and their fabrication, especially heterojunction bipolar transistors utilized in high-speed integrated circuits.
  • High performance circuits, especially those used for radio frequency chips, favor the use of heterojunction bipolar transistors (HBTs) to provide high maximum oscillation frequency fMAX and high transient frequency fT, also referred to as “cutoff frequency”. HBTs have a structure in which the base of the transistor includes a relatively thin layer of single-crystal semiconductor alloy material. As an example, an HBT fabricated on a substrate of single-crystal silicon can have a single-crystal base formed of silicon germanium (SiGe) having substantial germanium content and profile to improve high-speed performance. Such HBT is commonly referred to as a SiGe HBT.
  • A particularly advantageous type of HBT has a “graded base” in which the content of particular semiconductor materials varies according to depth within the base of the transistor. For example, in some graded base HBTs which have a base including SiGe, the germanium content varies continuously with depth across the thickness of the SiGe layer. In such “graded-base HBT, a significant quasi-electric field results during operation that decreases the transit time of charge carriers through the base. Decreased transit time, in turn, enables higher gain and cutoff frequency to be achieved than in transistors having the same semiconductor material throughout.
  • To increase the performance of an HBT, it is desirable to increase the transit frequency fT, and the maximum oscillation frequency fMAX. The transit frequency fT is the frequency at which the current gain of the transistor decreases to unity such that the HBT no longer amplifies currents above that frequency. FMAX is a function of fT and of parasitic resistances and parasitic capacitances (collectively referred to herein as “parasitics”) between elements of the transistor according to the formula
    f MAX=(f T/8πC cb R b)1/2.
  • The parasitics of the HBT include the following parasitic capacitances and resistances, as listed in Table 1:
    TABLE 1
    Ccb collector-base capacitance
    Ceb emitter-base capacitance
    Rc collector resistance
    Re emitter resistance
    Rb base resistance
  • The parasitics having the most significant effect on performance are the collector-base capacitance Ccb and the base resistance Rb. The charging of the parasitic Ccb through the parasitic Rb has the greatest impact on power delivery that is reflected in the fMAX figure of merit. On the other hand, the emitter-base capacitance Ceb is the parasitic having the single largest capacitance. As explained more fully below, the value of Ceb indirectly but profoundly affects the value of Ccb, in that large Ceb requires high operational current. High operational current can require that the base have a high concentration of charge carriers. The ability of the device to sustain a high charge carrier concentration without the base dimension expanding during operation due to the well-known “base push-out effect” comes at the expense of increased Ccb. Thus, it is desirable to provide an HBT structure and method by which Ceb and Ccb are significantly reduced.
  • An example of a state of the art heterojunction bipolar transistor (HBT) structure containing parasitics is illustrated in FIG. 1. As depicted in the cross-sectional view therein, an ideal or “intrinsic” device consists of a one-dimensional slice downward through the centerline 2 of the HBT, through emitter 4, intrinsic base layer 3, and collector 6. The emitter 4 is generally heavily doped with a particular dopant type, (e.g. n-type), and generally consists essentially of polycrystalline silicon (hereinafter, “polysilicon”). The intrinsic base 3 is predominantly doped with the opposite type dopant (e.g. p-type), and less heavily than the emitter 4. The collector 6 is doped predominantly with the same dopant (e.g. n-type) as the emitter 4, but even less heavily than the intrinsic base 3. Region 5 represents the depletion region disposed between the intrinsic base 3 and the collector 6, due to the p-n junction between the base and collector, which have different predominant dopant types. Region 7 represents the depletion region disposed between the intrinsic base 3 and the emitter 4, due to the p-n junction between the base and emitter, which have different predominant dopant types. Often, the intrinsic base 3 is formed of silicon germanium (SiGe), which is epitaxially grown on the surface of the underlying collector 6.
  • The ideal structure itself contains two capacitances that impact performance. There is the intrinsic emitter-base capacitance C BE,I at the junction 7 between the emitter 4 and the base 3. In addition, there is an intrinsic collector base capacitance C CB,I at the junction 5 between the collector and the base. These capacitances are related to the areas of the respective junctions, as well as to the quantities of dopant on either side of the respective junctions. Although these capacitances impact the power gain of the transistor, they are an inextricable part of the ideal transistor structure and thus cannot be fully eliminated. Since a one-dimensional transistor, free of all material beyond the intrinsic device, cannot be realized in a practical process, typically a transistor contains additional parasitics stemming from interaction between the intrinsic device and other material structures in which the intrinsic device is embedded, such structures helping to provide electrical access to and heat transfer from the intrinsic device. Among such additional parasitics is the extrinsic emitter base capacitance, shown in FIG. 1 as C BE,E 8 . In higher performance transistors the dimension of the emitter in the lateral dimension is generally made smaller, in order to reduce the parasitic resistances. In such transistors, the region surrounding the emitter becomes larger for the same device area. As a result, the extrinsic portion of the emitter-base capacitance CEB,E increases as a proportion of the total emitter-base capacitance. Reductions in CEB,E, therefore, produce increasing benefits as the device dimensions decrease.
  • Through the well-known relation that transit time (˜1/fT) is proportional to (Ceb+Ccb)/IC (where IC is the collector current), and the observation that Ceb is generally significantly larger than Ccb, one can observe that fT and fMAX performance increase with decreasing Ceb. Alternatively, the reduction in Ceb is matched by a similar reduction in IC, resulting in the same performance at a lower power. With lower IC required for the needed performance, the collector doping can be reduced, which in turn causes the value of Ccb to fall, as a result. In such way, a reduction in Ceb will indirectly result in a decrease in Ccb and an in-crease in fMAX.
  • Therefore, it would be desirable to provide a structure and method of fabricating a bipolar transistor having reduced extrinsic emitter base capacitance CEB,E so as to achieve superior high-frequency current and power gain.
  • As provided by the prior art, differences exist among SiGe HBTs which allow them to achieve higher performance, or to be more easily fabricated. A cross-sectional view of one such prior art SiGe HBT 10 is illustrated in FIG. 2. Such non-self-aligned HBT 10 can be fabricated relatively easily, but other designs provide better performance. As depicted in FIG. 2, the HBT 10 includes an intrinsic base 12, which is disposed in vertical relation between the emitter 14 and the collector 16. The intrinsic base 12 includes a single-crystal layer of SiGe (a single-crystal of silicon germanium having a substantial proportion of germanium). The SiGe layer forms a heterojunction with the collector 16 and a relatively thin layer of single-crystal silicon 13 which is typically present in the space between the SiGe layer and the emitter 14.
  • A raised extrinsic base 18 is disposed over the intrinsic base 12 as an annular structure surrounding the emitter 14. The purpose of the raised extrinsic base 18 is to inject a base current into the intrinsic base 12. For good performance, the interface 24 between the raised extrinsic base 18 and the intrinsic base is close to the junction between the emitter 14 and the intrinsic base 12. By making this distance small, the resistance across the intrinsic base 12 between the interface 24 and the emitter 14 is decreased, thereby reducing the base resistance Rb (hence RC delay) of the HBT 10. It is desirable that the interface 24 to the raised extrinsic base be self-aligned to the edge of the emitter 14. Such self-alignment would exist if the raised extrinsic base were spaced from the emitter 14 only by the width of one or more dielectric spacers formed on a sidewall of the raised extrinsic base 18.
  • However, in the HBT 10 shown in FIG. 2, the interface 24 is not self-aligned to the emitter 14, and the distance separating them is not as small or as symmetric as desirable. A dielectric landing pad, portions 21, 22 of which are visible in the view of FIG. 2, is disposed as an annular structure surrounding the emitter 14. Portions 21, 22 of the landing pad separate the raised extrinsic base 18 from the intrinsic base 12 on different sides of the emitter 14, making the two structures not self-aligned. Moreover, as shown in FIG. 2, because of imperfect alignment between lithography steps used to define the edges of portions 21 and 22 and those used to define the emitter opening, the lengths of portions 21 and 22 can become non-symmetric about the emitter opening, causing performance to vary.
  • The landing pad functions as a sacrificial etch stop layer during fabrication. The formation of the landing pad and its use are as follows. After forming the SiGe layer of the intrinsic base 12 by epitaxial growth onto the underlying substrate 11, a layer of silicon 13 is formed over the SiGe layer 12. A layer of silicon dioxide is deposited as the landing pad and is then photolithographically patterned to expose the layer 13 of single-crystal silicon. This photolithographic patterning defines the locations of interface 24 at the edges of landing pad portions 21, 22, which will be disposed thereafter to the left and the right of the emitter 14. A layer of polysilicon is then deposited to a desired thickness, from which layer the extrinsic base 18 will be formed.
  • Thereafter, an opening is formed in the polysilicon by anisotropically etching the polysilicon layer (as by a reactive ion etch) selectively to silicon dioxide, such etch stopping on the landing pad. After forming a spacer in the opening, the landing pad is then wet etched within the opening to expose silicon layer 13 and SiGe layer 12. A problem of the non-self-aligned structure of HBT 10 is high base resistance Rb. Resistance is a function of the distance of a conductive path, divided by the cross-sectional area of the path. As the SiGe layer 12 is a relatively thin layer, significant resistance can be encountered by current traversing the distance from the extrinsic base under landing pad portions 21, 22 to the area of the intrinsic base 12 under the emitter 14, such resistance limiting the high speed performance of the transistor.
  • FIG. 3 is a cross-sectional view illustrating another HBT 50 according to the prior art. Like HBT 10, HBT 50 includes an intrinsic base 52 having a layer of silicon germanium and an extrinsic base 58 consisting of polysilicon in contact with the single-crystal intrinsic base 52. However, unlike HBT 10, HBT 50 does not include landing pad portions 21, 22, but rather, the raised extrinsic base 58 is self-aligned to the emitter 54, the extrinsic base 58 being spaced from the emitter 54 by dielectric spacer. Self-aligned HBT structures such as HBT 50 have demonstrated high f T and f MAX as reported in Jagannathan, et al., “Self-aligned SiGe NPN Transistors with 285 GHz f MAX and 207 GHz f T in a Manufacturable Technology,” IEEE Electron Device letters 23, 258 (2002) and J. S. Rieh, et al., “SiGe HBTs with Cut-off Frequency of 350 GHz,” International Electron Device Meeting Technical Digest, 771 (2002). In such self-aligned HBT structures, the emitter 54 is self-aligned to the raised extrinsic base 58.
  • Several methods are provided by art which is background to the present invention for fabricating an HBT 50 such as that shown in FIG. 3. According to one approach, chemical mechanical polishing (CMP) is used to planarize the extrinsic base polysilicon over a pre-defined sacrificial emitter pedestal, as described in U.S. Pat. Nos. 5,128,271 and 6,346,453. A drawback of this method is that the extrinsic base layer thickness, hence the base resistance R b, can vary significantly between small and large devices, as well as, between low and high density areas of devices due to dishing of the polysilicon during CMP.
  • In another approach, described in U.S. Pat. Nos. 5,494,836; 5,506,427; and 5,962,880, the intrinsic base is grown using selective epitaxy inside an emitter opening and under an overhanging polysilicon layer of the extrinsic base. In this approach, self-alignment of the emitter to the extrinsic base is achieved by the epitaxially grown material under the overhang. However, with this approach, special crystal growth techniques are required to ensure good, low-resistance contact between the intrinsic base and the extrinsic base.
  • As described in commonly assigned, co-pending U.S. patent application No. 09/962,738 of Freeman et al. filed Sep. 25, 2001, a self-aligned HBT is formed by a process including chemical mechanical polishing (CMP) steps. In such process, as shown in FIGS. 4A-4C, the intrinsic base 60 is formed by non-selective epitaxy over the collector 62. A raised extrinsic base 64 is formed by depositing polysilicon in an opening which has an upwardly projecting mandrel 66 in the center of the opening. Thereafter, as shown in FIG. 4B, the polysilicon is recessed by etching selectively to an exterior material of the mandrel, and a layer 68 of oxide is deposited in the opening. The oxide layer is then polished to the level of the mandrel and then the mandrel is thereafter removed, as shown in FIG. 4C. While the process described therein self-aligns the raised extrinsic base to the emitter, the base resistance R b is dependent upon the accuracy and uniformity of recessing the polysilicon layer.
  • The article by M. W. Xu et al entitled “Ultra Low Power SiGe:C HBT for 0.18μm RF-BiCMOS”published in Proceedings of the IEEE International Electron Devices Meeting, 2003 describes a method of optimizing the dimension of the emitter layer and its dopant profile in order to reduce the intrinsic portion of the emitter-base capacitance (C EB,I) However, the techniques proposed therein result in a larger space charge region between the emitter and the base of the transistor, which reduces peak performance.
  • Another technique for reducing the intrinsic portion of the emitter-base capacitance (C EB,I) is described in commonly owned, co-pending U.S. patent application Ser. No. 10/008,383 filed Dec. 6, 2001. According to such technique, as illustrated in FIGS. 5 and 6, the depth of the emitter 62 is intentionally varied, such that it has a lower depth D2 at the center of the transistor, while its depth D1 is greater at the perimeter. At high current injection the device perimeter dominates the transistor operation and the center is mostly parasitic. Under such conditions, this technique provides a more optimal structure for establishing a low C BE transistor.
  • It is desirable to provide a self-aligned HBT and method for making such HBT that reduces the extrinsic portion of the emitter-base capacitance (C EB,E), i.e., the capacitance outside of the operational portion of the transistor between the dielectric spacers 21, 22 (FIG. 2). Referring to illustrative FIG. 2, significant contributions to the C BE,E parasitic capacitance are provided where the emitter 14 is disposed in close proximity to the base 12 and 18 across a dielectric region or spacer. Additional parasitic capacitance results from the junction of the emitter layer with the base under and beyond the spacers 21, 22. There is opportunity for reducing the extrinsic emitter-base capacitance (C EB,E) and obtaining consequent performance enhancements. It would further be desirable to reduce the overall emitter-base capacitance without having to increase the thickness of the space charge region of the emitter and suffer loss of peak performance.
  • It would further be desirable to lower overall emitter-base capacitance, to permit the collector base capacitance to be lowered as a result.
  • SUMMARY OF INVENTION
  • According to aspects of the invention, a structure and a method are provided for making a bipolar transistor, the bipolar transistor including a collector, an intrinsic base overlying the collector, an emitter overlying the intrinsic base, and an extrinsic base spaced from the emitter by a gap, the gap including at least one of an air gap and a vacuum void.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates components of collector base capacitance in relation to the structure of an HBT.
  • FIG. 2 illustrates a non-self-aligned heterojunction bipolar transistor according to the prior art, in which the raised extrinsic base is formed of polysilicon and is not self-aligned to the emitter.
  • FIG. 3 illustrates a self-aligned heterojunction bipolar transistor according to the prior art, in which the raised extrinsic base is formed of polysilicon and is self-aligned to the emitter.
  • FIGS. 4A through 4C illustrate a method of fabricating a self-aligned heterojunction bipolar transistor as described in commonly owned, co-pending U.S. patent application No. 09/962,738 filed Sep. 25, 2001, in which the raised extrinsic base is formed by a recessed layer of polysilicon self-aligned to the emitter.
  • FIGS. 5 and 6 illustrate a method of fabricating a heterojunction bipolar transistor as described in commonly owned, co-pending U.S. patent application Ser. No. 10/008,383 filed Dec. 6, 2001.
  • FIG. 7 illustrates a heterojunction bipolar transistor having a gap disposed between the emitter and the base according to one embodiment of the invention.
  • FIGS. 8 through 20 illustrate a method of fabricating the heterojunction bipolar transistor illustrated in FIG. 7, according to an embodiment of the invention.
  • DETAILED DESCRIPTION
  • The embodiments of the invention described herein provide a structure and method for forming a bipolar transistor having reduced collector-base capacitance (C cb). Reducing the collector-base capacitance affects the power gain of the transistor, helping to increase f T and f MAX. According to the embodiments of the invention, these goals are furthered without significant impact to series resistance (R c) or base resistance (R b), thus enabling improvements to be achieved in the gain and frequency range of a bipolar transistor.
  • The bipolar transistor according to the various embodiments described herein includes an “air gap”, i.e. a gap filled with any suitable one or combination of gases or a vacuum void (hereinafter “gap”) in the place of a traditional solid dielectric spacer of silicon nitride or silicon dioxide between the emitter and the raised extrinsic base. The use of a gap in place of such solid dielectric reduces the dielectric constant by a 3:1 ratio or greater and reduces the fringing portion of the capacitance between the emitter and the raised extrinsic base to the same degree.
  • In a particular embodiment of the invention, the semiconductor material is recessed in the area below the gap between the emitter and the raised extrinsic base. This has the effect of reducing the perimeter component of the junction in the semiconductor material, and helping to further reduce the emitter- base capacitance.
  • FIG. 7 is a cross-sectional view illustrating a heterojunction bipolar transistor (HBT) 100 according to a first embodiment of the invention. As shown in FIG. 7, HBT 100 is desirably fabricated from a substrate 101, e.g. wafer, of single-crystal silicon. The HBT 100 includes a collector 116, an intrinsic base 112 overlying the collector 116 region, and an emitter 114 disposed within an opening overlying the intrinsic base 112 . In an embodiment, the intrinsic base consists essentially of single-crystal silicon. In another embodiment, the intrinsic base includes a layer of single-crystal semiconductor alloy such as silicon germanium (SiGe). The intrinsic base is doped with an impurity to provide the opposite type of conductivity (e.g. p-type conductivity) as the emitter and the collector, which have the same type of conductivity (e.g. n-type conductivity).
  • A raised extrinsic base 128 overlies the intrinsic base 112 and is conductively connected thereto, the raised extrinsic base including a layer of polycrystalline semiconductor material 125 such as polysilicon or polycrystalline silicon germanium (SiGe). The raised extrinsic base 128 desirably includes a low-resistance layer 123 including a metal or metal silicide, overlying the polycrystalline semiconductor layer 125. The raised extrinsic base 128 has an annular shape, surrounding the emitter 114.
  • A semiconductor material layer 113 known as an intrinsic layer is provided between the emitter 114 and the intrinsic base 112 and between the raised extrinsic base and the intrinsic base 112. This layer is typically a relatively thin layer, which initially has a light dopant concentration but takes on a higher dopant concentration and conductivity type as a result of dopant diffusion from layers with which it is in contact. Layer 113 has the conductivity type of the emitter 114 where it underlies the emitter 114 and has the conductivity type of the raised extrinsic base 128 where it underlies the raised extrinsic base 128.
  • Between the emitter 114 and the raised extrinsic base 128, layer 113 is recessed or removed. In its place, a layer of oxide 117 desirably contacts a top surface 115 of the intrinsic base 112. The space between the emitter 114 and raised extrinsic base 128 is occupied by a gap 130, which is an air gap or vacuum void. The space above the gap 130 is capped by a deposited dielectric material which is preferably silicon dioxide. Hereinafter, this structure will be referred to as a spacer cap 1800, for ease of reference.
  • The emitter 114 extends downwardly to contact the intrinsic base 112 through an opening in the raised extrinsic base 128. Oxide regions 136 and 1800 separate an upper portion 2000 of the emitter from the raised extrinsic base 128.
  • The emitter 114 can be made out of a variety of semiconductor materials such as polysilicon or polycrystalline SiGe. Vertical contact to each of the raised extrinsic base 128, emitter 114 and collector reach-through region 103 from a overlying wiring level (not shown) is provided through metal or metal-silicide filled vias 140, 142, and 144 that are etched into an overlying deposited interlevel dielectric layer (ILD) 146. Desirably, ILD 146 consists essentially of a deposited oxide, for example, silicon dioxide such as oxide deposited from a tetraethylorthosilicate (TEOS) precursor or borophosphosilicate glass (BPSG).
  • A method of fabricating an HBT 100 according to an embodiment of the invention is illustrated in FIGS. 8 through 20. As depicted in FIG. 8, a single-crystal silicon substrate 101 is patterned to form a first active area 102 and a second active area 103, and shallow trench isolations 126 between the active areas 102 and 103. The shallow trench isolations 126 are formed by directionally etching trenches in the substrate 101, and then filling the trenches with a dense oxide, such as may be provided by a high electron density plasma (HDP) deposition.
  • A layer 105 of dielectric material, preferably consisting of silicon dioxide deposited from a TEOS precursor, is deposited over the substrate and photolithographically patterned to expose the first active area 102 but not the second active area 103. Active area 102 is then ion implanted, or otherwise doped to form collector 116. When the HBT is an npn transistor, the dopant source for this step is an n-type dopant such as arsenic and/or phosphorous.
  • As also depicted in FIG. 8, a layer 112 of semiconductor material including a dopant of the opposite type as the collector is epitaxially grown onto the surface of the substrate in active area 102. This layer 112 becomes an intrinsic base layer of the transistor when completed. When the HBT is an npn transistor, the dopant source for this step is a p-type dopant such as boron. Preferably, the intrinsic base layer 112 includes a semiconductor alloy such as silicon germanium (SiGe) having a substantial percentage content of germanium. Such layer 112 desirably has a germanium content which is greater than 20%, while the silicon content makes up a complementary percentage. Carbon may also be incorporated at small amount, i.e., less than one percent, to reduce diffusion of the dopants in subsequent processing. In one embodiment of the invention, the SiGe layer 112 is grown using non-selective epitaxy. A second layer 113 of semiconductor material, thinner than layer 112 and having a lowered dopant concentration compared to the intrinsic base 112, is then epitaxially grown over intrinsic base layer 112. This layer 113 is subject to being doped by overlying layers which are subsequently formed in contact therewith, as by dopant outdiffusion therefrom.
  • Thereafter, with reference to FIGS. 9A-9C and 10, steps are performed to define the lateral dimension of the emitter. As shown in FIG. 9A, a thin layer of oxide (e.g. silicon dioxide) 1061 is deposited over single-crystal layer 113 and polycrystalline base layer 125. Thereafter, a relatively thick layer 1064 of silicon nitride is deposited over the oxide layer. FIG. 9B depicts the resulting structure after photolithographically patterning the nitride layer 1064, and then patterning the oxide layer 1061 as by a wet etch, selective to nitride and to silicon. Thereafter, as shown in FIG. 9C, a layer of polysilicon 125 is deposited over single-crystal layer 113 and preexisting polysilicon layer 124. This may be accomplished through deposition, CMP planarization and etch-back, or by selective deposition. This step is followed by blanket deposition of an additional oxide layer 1000. The oxide layer is then planarized to the level of the nitride layer 1064, as by an etchback process selective to nitride, or chemical mechanical polishing (CMP), resulting in the structure as shown.
  • FIG. 10 depicts the structure after removing the nitride layer 1064, as by etching, selective to oxide, and then forming a relatively thick nitride spacer 1062 in the opening 1060. Such spacer 1062 is formed, typically by conformally depositing a relatively thick layer of silicon nitride, and then vertically etching the nitride layer, as by a reactive ion etch (RIE), until the underlying oxide layer 1061 is exposed.
  • As illustrated in FIG. 11, the underlying oxide layer 1061 is thereafter removed from the opening 1060, as by a wet etch, leaving oxide pad 1174. A further layer 1100 of polysilicon is deposited over layer 113 within the opening as an emitter contact layer.
  • Thereafter, as shown in FIG. 12, the emitter polysilicon layer 114 is recessed, as by CMP, or by etching the polysilicon selectively to oxide and nitride. Then, as shown in FIG. 13, the oxide layer 1000 is recessed, as by RIE or a wet etch, in a process selective to at least nitride. Thereafter, as shown in FIG. 14, the nitride spacer 1062 is removed, as by wet etching, selective to oxide and to polysilicon, to form an annular opening 1400. As illustrated in FIG. 15, the oxide pad 1174 is then removed, as by wet etching selective to the underlying semiconductor material.
  • Thereafter, as illustrated in FIG. 16, layer 113 is removed from inside the annular opening 1400, as by a wet etch, selective to the material of the intrinsic base layer 112. Ordinarily, dopants diffuse laterally outward from the emitter 114 into this region, such that an unnecessary p-n junction exists by the juxtaposition of this outdiffusion region to the intrinsic base 112. By removing the lightly doped layer 113 in region 1400, the junction is eliminated in region 1400, thereby eliminating its contribution to the emitter-base junction capacitance. Selectivity is achieved because at least the conductivity (p- and n-) types of layer 112 and 113 vary, and preferably the materials also vary between SiGe and silicon. Alternatively, a timed etch can be performed to remove semiconductor material to a desired recess depth. Other more exact etching techniques can also be utilized such as a plasma etching technique such as a plasma RIE or a plasma dry chemical etch (DCE), as well as other methods that involve oxidation of layer 113 followed by wet stripping using an etchant such as hydrofluoric acid (HF).
  • In FIG. 17, a non-conformal layer 1700 of oxide is de-posited over the structure, including over the oxide layer 1000, on the emitter 114 and inside the annular opening 1400. Since this new layer of oxide is non-conformal, the annular opening 1400 is not entirely filled, as illustrated in FIG. 17. The oxide is deposited on the sidewalls of layer 1000 and on the bottom of the opening 1400. The quantity of material resulting at the bottom of opening 1400 is small due to the reduced opening resulting from the sidewall deposition. In this way, an annular oxide pad 117 is formed on a top surface 115 of the intrinsic base layer 112. In addition, an annular gap 1730 results between the emitter 114 and the sidewalls of the layers 125, 1000 of polysilicon and oxide inside the annular opening 1400. The deposition of this layer of oxide 1700 can be conducted using a technique such as plasma enhanced chemical vapor deposition (PECVD).
  • Thereafter, as shown in FIG. 18, the oxide layer 1700 is recessed until the top surface 214 of the emitter 114 is cleared of oxide. Such recessing process can be conducted by an etching technique such as a RIE or a wet etch. This process results in the formation of an annular oxide spacer cap 1800 overlying the gap 1730.
  • As depicted in FIG. 19, a further emitter layer 1900 is deposited over the structure, preferably including polysilicon, but which can alternatively consist essentially of a metal, a metal silicide or other conductive metal compound which is compatible with polysilicon, or a combination of the foregoing. Thereafter, as shown in FIG. 20, an upper portion 2000 of the emitter 114 is photolithographically defined, followed by the photolithographic definition of the raised extrinsic base 128. Thereafter, the oxide layer 105 (FIG. 8) is removed, to expose the collector reach-through area 103. It is at this time that an optional self-aligned silicidation process can be performed when the layer 1900 consists essentially of polysilicon to form the aforementioned silicide layers 123, 150 and 152 which overlie the emitter 114, raised extrinsic base polysilicon layer 125 and collector reach-through area 103, as shown in FIG. 7.
  • Referring to FIG. 7 again, a thick interlevel dielectric layer (ILD) 146 is then formed over the structure. ILD 146 consists essentially of a deposited oxide, for example a silicon dioxide such as a TEOS oxide or borophosphosilicate glass (BPSG). Vias 140, 142, and 144 are then etched in the ILD 146 and subsequently filled with a metal, metal silicide or other conductive metal compound or combination of the foregoing to form the structure discussed above with reference to FIG. 7.
  • While the invention has been described in accordance with certain preferred embodiments thereof, those skilled in the art will understand the many modifications and enhancements which can be made thereto without departing from the true scope and spirit of the invention, which is limited only by the claims appended below.

Claims (20)

1. a bipolar transistor, comprising:
a collector;
an intrinsic base overlying said collector;
an emitter overlying said intrinsic base; and
an extrinsic base spaced from said emitter by a gap, said gap including at least one of an air gap and a vacuum void.
2. A bipolar transistor as claimed in claim 1, wherein said gap includes only an air gap.
3. A bipolar transistor as claimed in claim 1, wherein said gap includes only a vacuum gap.
4. A bipolar transistor as claimed in claim 1, wherein said bipolar transistor further includes a semiconductor layer overlying said intrinsic base, wherein said emitter and said extrinsic base overlie said semiconductor layer.
5. A bipolar transistor as claimed in claim 4, wherein said gap overlies an opening in said semiconductor layer.
6. A bipolar transistor as claimed in claim 5, further comprising a solid dielectric material disposed on said intrinsic base in said opening.
7. A bipolar transistor as claimed in claim 2, further comprising a solid dielectric material having a lower surface disposed over said gap and an upper surface underlying an overhanging portion of said emitter.
8. A bipolar transistor as claimed in claim 1, wherein said bipolar transistor includes a raised extrinsic base, wherein said raised extrinsic base includes a polycrystalline semiconductor layer and a low resistance layer disposed above said polycrystalline semiconductor layer, said low resistance layer including at least one material selected from metals and metal silicides.
9. A bipolar transistor as claimed in claim 8, wherein said low resistance layer includes a salicide.
10. A bipolar transistor as claimed in claim 1, wherein said intrinsic base includes a layer of a single-crystal semiconductor alloy, said single-crystal semiconductor alloy forming a heterojunction with at least one of said emitter and said collector.
11. A method of making a bipolar transistor, comprising:
forming a collector and an intrinsic base overlying said collector;
forming an emitter overlying said intrinsic base and an extrinsic base spaced from said emitter by a gap, said gap including at least one of an air gap and a vacuum void.
12. A method of making a bipolar transistor as claimed in claim 11, wherein said gap includes only an air gap.
13. A method of making a bipolar transistor as claimed in claim 11, wherein said gap includes only a vacuum gap.
14. A method of making a bipolar transistor as claimed in claim 11, further comprising making a semiconductor layer overlying said intrinsic base, wherein said emitter and said extrinsic base overlie said semiconductor layer.
15. A method of making a bipolar transistor as claimed in claim 14, further comprising forming an opening in said semiconductor layer and forming said gap over said opening.
16. A method of making a bipolar transistor as claimed in claim 15, further comprising forming an oxide disposed on said intrinsic base in said opening.
17. A method of making a bipolar transistor as claimed in claim 12, further comprising a forming a region of solid dielectric material having a lower surface disposed over said gap and an upper surface underlying an overhanging portion of said emitter.
18. A method of making a bipolar transistor as claimed in claim 11, wherein said extrinsic base is formed as a raised extrinsic base including a polycrystalline semiconductor layer and a low resistance layer disposed above polycrystalline semiconductor layer, said low resistance layer including at least one material selected from metals and metal silicides.
19. A method of making a bipolar transistor as claimed in claim 18, wherein said low resistance layer includes a salicide.
20. A method of making a bipolar transistor as claimed in claim 11, wherein said intrinsic base is formed to include a layer of a single-crystal semiconductor alloy, said single-crystal semiconductor alloy forming a heterojunction with at least one of said emitter and said collector.
US10/708,563 2004-03-11 2004-03-11 Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base Expired - Fee Related US6940149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/708,563 US6940149B1 (en) 2004-03-11 2004-03-11 Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/708,563 US6940149B1 (en) 2004-03-11 2004-03-11 Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base

Publications (2)

Publication Number Publication Date
US6940149B1 US6940149B1 (en) 2005-09-06
US20050199907A1 true US20050199907A1 (en) 2005-09-15

Family

ID=34886465

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/708,563 Expired - Fee Related US6940149B1 (en) 2004-03-11 2004-03-11 Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base

Country Status (1)

Country Link
US (1) US6940149B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147691A1 (en) * 2006-06-21 2007-12-27 International Business Machines Corporation Bipolar transistor with dual shallow trench isolation and low base resistance
US20110198671A1 (en) * 2008-08-19 2011-08-18 Nxp B.V. Gringo heterojunction bipolar transistor with a metal extrinsic base region
CN102420243A (en) * 2011-11-09 2012-04-18 上海华虹Nec电子有限公司 Germanium-silicon heterojunction bipolar transistor and manufacturing method thereof
US20120126292A1 (en) * 2010-11-22 2012-05-24 International Business Machines Corporation Heterojunction bipolar transistors with reduced base resistance
US20120175738A1 (en) * 2005-07-28 2012-07-12 International Business Machines Corporation Methods of fabricating bipolar transistor for improved isolation, passivation and critical dimension control
CN102931220A (en) * 2011-08-12 2013-02-13 上海华虹Nec电子有限公司 Germanium-silicon heterojunction bipolar triode power device and manufacturing method thereof
CN102956477A (en) * 2011-08-22 2013-03-06 上海华虹Nec电子有限公司 Method for optimizing photoetching registration accuracy of emitting electrode of silicon germanium HBT (heterojunction bipolar transistor)
US8846481B2 (en) 2011-06-08 2014-09-30 International Business Machines Corporation Transistor and method of forming the transistor so as to have reduced base resistance
US9224858B1 (en) 2014-07-29 2015-12-29 Globalfoundries Inc. Lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) with a below source isolation region and a method of forming the LDMOSFET

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190046B2 (en) * 2004-03-29 2007-03-13 International Business Machines Corporation Bipolar transistor having reduced collector-base capacitance
US7265018B2 (en) * 2004-09-21 2007-09-04 International Business Machines Corporation Method to build self-aligned NPN in advanced BiCMOS technology
KR100580115B1 (en) * 2004-12-31 2006-05-12 동부일렉트로닉스 주식회사 Self-aligned bipolar semiconductor device and manufacturing method of the same
US7900167B2 (en) * 2007-10-24 2011-03-01 International Business Machines Corporation Silicon germanium heterojunction bipolar transistor structure and method
US7750371B2 (en) 2007-04-30 2010-07-06 International Business Machines Corporation Silicon germanium heterojunction bipolar transistor structure and method
US7927958B1 (en) * 2007-05-15 2011-04-19 National Semiconductor Corporation System and method for providing a self aligned bipolar transistor using a silicon nitride ring
US8405127B2 (en) * 2008-02-20 2013-03-26 International Business Machines Corporation Method and apparatus for fabricating a heterojunction bipolar transistor
US8603885B2 (en) 2011-01-04 2013-12-10 International Business Machines Corporation Flat response device structures for bipolar junction transistors
US8536012B2 (en) 2011-07-06 2013-09-17 International Business Machines Corporation Bipolar junction transistors with a link region connecting the intrinsic and extrinsic bases
US8610174B2 (en) 2011-11-30 2013-12-17 International Business Machines Corporation Bipolar transistor with a raised collector pedestal for reduced capacitance
US8841750B2 (en) 2012-07-18 2014-09-23 International Business Machines Corporation Local wiring for a bipolar junction transistor including a self-aligned emitter region
US8816401B2 (en) 2012-11-30 2014-08-26 International Business Machines Corporation Heterojunction bipolar transistor
US9093491B2 (en) 2012-12-05 2015-07-28 International Business Machines Corporation Bipolar junction transistors with reduced base-collector junction capacitance
US8956945B2 (en) 2013-02-04 2015-02-17 International Business Machines Corporation Trench isolation for bipolar junction transistors in BiCMOS technology
US8796149B1 (en) 2013-02-18 2014-08-05 International Business Machines Corporation Collector-up bipolar junction transistors in BiCMOS technology
US9209264B2 (en) * 2013-03-12 2015-12-08 Newport Fab, Llc Heterojunction bipolar transistor having a germanium raised extrinsic base
US9064886B2 (en) * 2013-03-12 2015-06-23 Newport Fab, Llc Heterojunction bipolar transistor having a germanium extrinsic base utilizing a sacrificial emitter post
US9231074B2 (en) 2013-07-19 2016-01-05 Globalfoundries Inc. Bipolar junction transistors with an air gap in the shallow trench isolation
US8957456B1 (en) 2013-07-31 2015-02-17 International Business Machines Corporation Heterojunction bipolar transistors with reduced parasitic capacitance
US9159817B2 (en) * 2013-11-19 2015-10-13 International Business Machines Corporation Heterojunction bipolar transistors with an airgap between the extrinsic base and collector
US9368608B1 (en) 2015-06-25 2016-06-14 Globalfoundries Inc. Heterojunction bipolar transistor with improved performance and breakdown voltage
US10211090B2 (en) 2016-10-12 2019-02-19 Globalfoundries Inc. Transistor with an airgap for reduced base-emitter capacitance and method of forming the transistor
US10186605B1 (en) * 2017-10-13 2019-01-22 Stmicroelectronics (Crolles 2) Sas Cyclic epitaxy process to form air gap isolation for a bipolar transistor
US10224423B1 (en) 2017-10-13 2019-03-05 STMircoelectronics (Crolles 2) SAS Heterojunction bipolar transistor and method of manufacturing the same
FR3087048B1 (en) 2018-10-08 2021-11-12 St Microelectronics Sa BIPOLAR TRANSISTOR
FR3087047B1 (en) 2018-10-08 2021-10-22 St Microelectronics Sa BIPOLAR TRANSISTOR
US11063139B2 (en) 2019-09-23 2021-07-13 Globalfoundries U.S. Inc. Heterojunction bipolar transistors with airgap isolation
FR3113539B1 (en) 2020-08-24 2022-09-23 St Microelectronics Crolles 2 Sas bipolar transistor
US11990535B2 (en) 2021-08-25 2024-05-21 Globalfoundries U.S. Inc. Lateral heterojunction bipolar transistor with emitter and/or collector regrown from substrate and method
US11837653B2 (en) 2021-08-30 2023-12-05 Globalfoundries U.S. Inc. Lateral bipolar junction transistor including a stress layer and method
US11967635B2 (en) 2021-09-01 2024-04-23 Globalfoundries U.S. Inc. Lateral bipolar transistor
US11710771B2 (en) 2021-09-01 2023-07-25 Globalfoundries U.S. Inc. Non-self-aligned lateral bipolar junction transistors
US11935927B2 (en) 2021-11-10 2024-03-19 Globalfoundries U.S. Inc. Bipolar transistor with collector contact
US11869941B2 (en) * 2022-02-24 2024-01-09 Globalfoundries U.S. Inc. Vertical bipolar junction transistor and method
US12074211B2 (en) 2022-07-25 2024-08-27 Globalfoundries U.S. Inc. Lateral bipolar transistors

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994400A (en) * 1989-01-27 1991-02-19 Tektronix, Inc. Method of fabricating a semiconductor device using a tri-layer structure and conductive sidewalls
US5128271A (en) * 1989-01-18 1992-07-07 International Business Machines Corporation High performance vertical bipolar transistor structure via self-aligning processing techniques
US5494836A (en) * 1993-04-05 1996-02-27 Nec Corporation Process of producing heterojunction bipolar transistor with silicon-germanium base
US5962880A (en) * 1996-07-12 1999-10-05 Hitachi, Ltd. Heterojunction bipolar transistor
US6346453B1 (en) * 2000-01-27 2002-02-12 Sige Microsystems Inc. Method of producing a SI-GE base heterojunction bipolar device
US20030057458A1 (en) * 2001-09-25 2003-03-27 International Business Machines Corporation Bipolar device having shallow junction raised extrinsic base and method for making the same
US6548882B1 (en) * 1997-08-08 2003-04-15 Infineon Technologies Ag Power transistor cell
US20030109109A1 (en) * 2001-12-06 2003-06-12 International Business Machines Corporation Bipolar device having non-uniform depth base-emitter junction
US6586782B1 (en) * 1998-07-30 2003-07-01 Skyworks Solutions, Inc. Transistor layout having a heat dissipative emitter
US6777782B1 (en) * 2003-02-13 2004-08-17 Agilent Technologies, Inc. Method for fabricating base-emitter self-aligned heterojunction bipolar transistors
US6806554B2 (en) * 2001-03-29 2004-10-19 Sharp Laboratories Of America, Inc. Self-aligned SiGe HBT on a SOI substrate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128271A (en) * 1989-01-18 1992-07-07 International Business Machines Corporation High performance vertical bipolar transistor structure via self-aligning processing techniques
US4994400A (en) * 1989-01-27 1991-02-19 Tektronix, Inc. Method of fabricating a semiconductor device using a tri-layer structure and conductive sidewalls
US5494836A (en) * 1993-04-05 1996-02-27 Nec Corporation Process of producing heterojunction bipolar transistor with silicon-germanium base
US5506427A (en) * 1993-04-05 1996-04-09 Nec Corporation Heterojunction bipolar transistor with silicon-germanium base
US5962880A (en) * 1996-07-12 1999-10-05 Hitachi, Ltd. Heterojunction bipolar transistor
US6548882B1 (en) * 1997-08-08 2003-04-15 Infineon Technologies Ag Power transistor cell
US6586782B1 (en) * 1998-07-30 2003-07-01 Skyworks Solutions, Inc. Transistor layout having a heat dissipative emitter
US6346453B1 (en) * 2000-01-27 2002-02-12 Sige Microsystems Inc. Method of producing a SI-GE base heterojunction bipolar device
US6806554B2 (en) * 2001-03-29 2004-10-19 Sharp Laboratories Of America, Inc. Self-aligned SiGe HBT on a SOI substrate
US20030057458A1 (en) * 2001-09-25 2003-03-27 International Business Machines Corporation Bipolar device having shallow junction raised extrinsic base and method for making the same
US20030109109A1 (en) * 2001-12-06 2003-06-12 International Business Machines Corporation Bipolar device having non-uniform depth base-emitter junction
US6777782B1 (en) * 2003-02-13 2004-08-17 Agilent Technologies, Inc. Method for fabricating base-emitter self-aligned heterojunction bipolar transistors

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175738A1 (en) * 2005-07-28 2012-07-12 International Business Machines Corporation Methods of fabricating bipolar transistor for improved isolation, passivation and critical dimension control
WO2007147691A1 (en) * 2006-06-21 2007-12-27 International Business Machines Corporation Bipolar transistor with dual shallow trench isolation and low base resistance
US20110198671A1 (en) * 2008-08-19 2011-08-18 Nxp B.V. Gringo heterojunction bipolar transistor with a metal extrinsic base region
US9041149B2 (en) 2008-08-19 2015-05-26 Nxp, B.V. Gringo heterojunction bipolar transistor with a metal extrinsic base region
US20120126292A1 (en) * 2010-11-22 2012-05-24 International Business Machines Corporation Heterojunction bipolar transistors with reduced base resistance
US8389372B2 (en) * 2010-11-22 2013-03-05 International Business Machines Corporation Heterojunction bipolar transistors with reduced base resistance
US8513706B2 (en) 2010-11-22 2013-08-20 International Business Machines Corporation Heterojunction bipolar transistors with reduced base resistance
US8846481B2 (en) 2011-06-08 2014-09-30 International Business Machines Corporation Transistor and method of forming the transistor so as to have reduced base resistance
CN102931220A (en) * 2011-08-12 2013-02-13 上海华虹Nec电子有限公司 Germanium-silicon heterojunction bipolar triode power device and manufacturing method thereof
CN102956477A (en) * 2011-08-22 2013-03-06 上海华虹Nec电子有限公司 Method for optimizing photoetching registration accuracy of emitting electrode of silicon germanium HBT (heterojunction bipolar transistor)
CN102420243A (en) * 2011-11-09 2012-04-18 上海华虹Nec电子有限公司 Germanium-silicon heterojunction bipolar transistor and manufacturing method thereof
US9224858B1 (en) 2014-07-29 2015-12-29 Globalfoundries Inc. Lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) with a below source isolation region and a method of forming the LDMOSFET

Also Published As

Publication number Publication date
US6940149B1 (en) 2005-09-06

Similar Documents

Publication Publication Date Title
US6940149B1 (en) Structure and method of forming a bipolar transistor having a void between emitter and extrinsic base
US7615457B2 (en) Method of fabricating self-aligned bipolar transistor having tapered collector
US7190046B2 (en) Bipolar transistor having reduced collector-base capacitance
US7491617B2 (en) Transistor structure with minimized parasitics and method of fabricating the same
US6972443B2 (en) Structure and method of forming a bipolar transistor having a self-aligned raised extrinsic base using link-up region formed from an opening therein
US8048734B2 (en) Bipolar transistor and method for making same
US5024957A (en) Method of fabricating a bipolar transistor with ultra-thin epitaxial base
US7932541B2 (en) High performance collector-up bipolar transistor
US9553177B2 (en) Vertically base-connected bipolar transistor
US7087940B2 (en) Structure and method of forming bipolar transistor having a self-aligned raised extrinsic base using self-aligned etch stop layer
US8026146B2 (en) Method of manufacturing a bipolar transistor
US6846710B2 (en) Method for manufacturing self-aligned BiCMOS
US20100207683A1 (en) Ultra-thin soi vertical bipolar transistors with an inversion collector on thin-buried oxide (box) for low substrate-bias operation and methods thereof
US6927476B2 (en) Bipolar device having shallow junction raised extrinsic base and method for making the same
US6777302B1 (en) Nitride pedestal for raised extrinsic base HBT process
US7084485B2 (en) Method of manufacturing a semiconductor component, and semiconductor component formed thereby
KR100455829B1 (en) a Super self-aligned heterojunction bipolar device and a method for fabricating the same
US6531720B2 (en) Dual sidewall spacer for a self-aligned extrinsic base in SiGe heterojunction bipolar transistors

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIVAKARUNI, RAMA;FREEMAN, GREGORY;KHATER, MARWAN;AND OTHERS;REEL/FRAME:014407/0741;SIGNING DATES FROM 20040224 TO 20040310

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090906

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910